Genes and uses for plant improvement

Abstract
Transgenic seed for crops with improved traits are provided by trait-improving recombinant DNA where plants grown from such transgenic seed exhibit one or more improved traits as compared to a control plant. Of particular interest are transgenic plants that have increased yield. The present invention also provides recombinant DNA molecules for expression of a protein, and recombinant DNA molecules for expression of mRNA complementary to at least a portion of an mRNA native to the target plant for use in gene suppression to suppress the expression of a protein.
Description
INCORPORATION OF SEQUENCE LISTING

Two copies of the sequence listing (Copy 1 and Copy 2) and a computer readable form (CRF) of the sequence listing, all on CD-ROMs, each containing the file named 3126.001US2.txt, which is 34,279,424 bytes (measured in MS-WINDOWS) and was created on Jan. 24, 2014, are herein incorporated by reference.


FIELD OF THE INVENTION

Disclosed herein are inventions in the field of plant genetics and developmental biology. More specifically, the present invention provides transgenic seeds for crops, wherein the genome of said seed comprises recombinant DNA, the expression of which results in the production of transgenic plants that have improved trait(s).


BACKGROUND OF THE INVENTION

Transgenic plants with improved traits such as improved yield, environmental stress tolerance, pest resistance, herbicide tolerance, modified seed compositions, and the like are desired by both farmers and consumers. Although considerable efforts in plant breeding have provided significant gains in desired traits, the ability to introduce specific DNA into plant genomes provides further opportunities for generation of plants with improved and/or unique traits. The ability to develop transgenic plants with improved traits depends in part on the identification of genes that are useful in recombinant DNA constructs for production of transformed plants with improved properties.


SUMMARY OF THE INVENTION

This invention provides transgenic seeds, transgenic plants and DNA constructs with trait-improving recombinant DNA from a gene or homolog which has been demonstrated for trait improvement in a model plant. More specifically, such recombinant DNA is from a gene identified in a model plant screen as disclosed herein or homologues of such gene, e.g., from related species or in some cases from a broad range of unrelated species. In particular aspects of the invention the recombinant DNA will express a protein having an amino acid sequence with at least 90% identity to a consensus amino acid sequence in the group consisting of the consensus amino acid sequence of SEQ ID NO:240 and its homologs through SEQ ID NO:478 and its homologs, but excluding SEQ ID NO:391 and its homologs. The amino acid sequences of homologs are SEQ ID NO: 479 through SEQ ID NO: 12463. Tables 2 identifying the sequences of homologs for proteins encoded by the trait-improving genes described supra is provided herein as appendix. In some cases of trait improvement, the recombinant DNA encodes a protein; in other cases, the recombinant DNA suppresses endogenous protein expression. In a broad aspect this invention provides transgenic seed for growing crop plants with improved traits, such crop plants with improved traits and the plant parts including transgenic seed produced by such crop plants. The improved trait provided by the recombinant DNA in the transgenic crop plant of this invention is identified by comparison to a control plant, i.e., a plant without the trait-improving recombinant DNA. In one aspect of the invention, transgenic crop plant grown from the transgenic seed has improved yield, as compared to the yield of a control plant, e.g., a plant without the recombinant DNA that produces the increased yield. Increased yield may be characterized as plant yield increase under non-stress conditions, or by plant yield increase under one or more environmental stress conditions including, but not limited to, water deficit stress, cold stress, heat stress, high salinity stress, shade stress, and low nitrogen availability stress. Still another aspect of the present invention also provides transgenic plants having other improved phenotypes, such as improved plant development, plant morphology, plant physiology or seed composition as compared to a corresponding trait of a control plant. The various aspects of this invention are especially useful for transgenic seed and transgenic plants having improved traits in corn (also know as maize), soybean, cotton, canola (rape), wheat, sunflower, sorghum, alfalfa, barley, millet, rice, tobacco, fruit and vegetable crops, and turfgrass.


The invention also comprises recombinant DNA constructs. In one aspect such recombinant DNA constructs useful for the transgenic seed and transgenic plants of this invention comprise a promoter functional in a plant cell operably linked to a DNA segment for expressing a protein associated with a trait in a model plant or a homologue. In another aspect the recombinant DNA constructs useful for the transgenic seed and transgenic plants of this invention comprise a promoter functional in a plant cell operably linked to a DNA segment for suppressing the level of an endogenous plant protein which is a homologue to a model-plant protein, the suppression of which is associated with an improved trait. Suppression can be effected by any of a variety of methods known in the art, e.g., post transcriptional suppression by anti-sense, sense, dsRNA and the like or by transcriptional suppression.


This invention also provides a method of producing a transgenic crop plant having at least one improved trait, wherein the method comprises providing to a grower of transgenic seeds comprising recombinant DNA for expression or suppression of a trait-improving gene provided herein, and growing transgenic plant from said transgenic seed. Such methods can be used to generate transgenic crop plants having at least one improved traits under one or more environmental stress conditions including, but not limited to, water deficit stress, cold stress, heat stress, high salinity stress, shade stress, and low nitrogen availability stress. In another aspect, such method also can be used to generate transgenic crop plants having improved plant development, plant morphology, plant physiology or seed component phenotype as compared to a corresponding phenotype of a control plant. Of particular interest are uses of such methods to generate transgenic crop plants having increased yield under non-stress condition, or under one or more stress conditions.


One a particular embodiment of this invention provides transgenic seeds comprising trait improving recombinant DNA in its genome for the expression of a bacterial phytochrome protein. Transgenic plants resulting from such invention have improved tolerance to water deficit stress, cold stress and low nitrogen availability stress. In another aspect, transgenic crop plants overexpressing the bacterial phytochrome protein have increased yield under non-stress condition, or under one or more stress conditions.







DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to transgenic plant seed, wherein the genome of said transgenic plant seed comprises a trait-improving recombinant DNA as provided herein, and transgenic plant grown from such seed possesses an improved trait as compared to the trait of a control plant. In one aspect, the present invention relates to transgenic plants wherein the improved trait is one or more traits including improved drought stress tolerance, improved heat stress tolerance, improved cold stress tolerance, improved high salinity stress tolerance, improved low nitrogen availability stress tolerance, improved shade stress tolerance, improved plant growth and development at the stages of seed imbibition through early vegetative phase, and improved plant growth and development at the stages of leaf development, flower production and seed maturity. Of particular interest are the transgenic plants grown from transgenic seeds provided herein wherein the improved trait is increased seed yield. Recombinant DNA constructs disclosed by the present invention comprise recombinant polynucleotides providing for the production of mRNA to modulate gene expression, imparting improved traits to plants.


As used herein, “gene” refers to chromosomal DNA, plasmid DNA, cDNA, synthetic DNA, or other DNA that encodes a peptide, polypeptide, protein, or RNA molecule, and regions flanking the coding sequences involved in the regulation of expression.


As used herein, “transgenic seed” refers to a plant seed whose genome has been altered by the incorporation of recombinant DNA, e.g., by transformation as described herein. The term “transgenic plant” is used to refer to the plant produced from an original transformation event, or progeny from later generations or crosses of a plant to a transformed plant, so long as the progeny contains the recombinant DNA in its genome. As used herein, “recombinant DNA” refers to a polynucleotide having a genetically engineered modification introduced through combination of endogenous and/or exogenous elements in a transcription unit, manipulation via mutagenesis, restriction enzymes, and the like or simply by inserting multiple copies of a native transcription unit. Recombinant DNA may comprise DNA segments obtained from different sources, or DNA segments obtained from the same source, but which have been manipulated to join DNA segments which do not naturally exist in the joined form. A recombinant polynucleotide may exist outside of the cell, for example as a PCR fragment, or integrated into a genome, such as a plant genome.


As used herein, “trait” refers to a physiological, morphological, biochemical, or physical characteristic of a plant or particular plant material or cell. In some instances, this characteristic is visible to the human eye, such as seed or plant size, or can be measured by biochemical techniques, such as detecting the protein, starch, or oil content of seed or leaves, or by observation of a metabolic or physiological process, e.g., by measuring uptake of carbon dioxide, or by the observation of the expression level of a gene or genes, e.g., by employing Northern analysis, RT-PCR, microarray gene expression assays, or reporter gene expression systems, or by agricultural observations such as stress tolerance, yield, or pathogen tolerance.


As used herein, “control plant” is a plant without trait-improving recombinant DNA. A control plant is used to measure and compare trait improvement in a transgenic plant with such trait-improving recombinant DNA. A suitable control plant may be a non-transgenic plant of the parental line used to generate a transgenic plant herein. Alternatively, control plant may be a transgenic plant that comprises an empty vector or marker gene, but does not contain the recombinant DNA that produces the trait improvement. A control plant may also be a negative segregant progeny of hemizygous transgenic plant. In certain demonstrations of trait improvement, the use of a limited number of control plants can cause a wide variation in the control dataset. To minimize the effect of the variation within the control dataset, a “reference” is used. As use herein a “reference” is a trimmed mean of all data from both transgenic and control plants grown under the same conditions and at the same developmental stage. The trimmed mean is calculated by eliminating a specific percentage, i.e., 20%, of the smallest and largest observation from the data set and then calculating the average of the remaining observation.


As used herein, “trait improvement” refers to a detectable and desirable difference in a characteristic in a transgenic plant relative to a control plant or a reference. In some cases, the trait improvement can be measured quantitatively. For example, the trait improvement can entail at least a 2% desirable difference in an observed trait, at least a 5% desirable difference, at least about a 10% desirable difference, at least about a 20% desirable difference, at least about a 30% desirable difference, at least about a 50% desirable difference, at least about a 70% desirable difference, or at least about a 100% difference, or an even greater desirable difference. In other cases, the trait improvement is only measured qualitatively. It is known that there can be a natural variation in a trait. Therefore, the trait improvement observed entails a change of the normal distribution of the trait in the transgenic plant compared with the trait distribution observed in a control plant or a reference, which is evaluated by statistical methods provided herein. Trait improvement includes, but not limited to, yield increase, including increased yield under non-stress conditions and increased yield under environmental stress conditions. Stress conditions may include, for example, drought, shade, fungal disease, viral disease, bacterial disease, insect infestation, nematode infestation, cold temperature exposure, heat exposure, osmotic stress, reduced nitrogen nutrient availability, reduced phosphorus nutrient availability and high plant density. Many agronomic traits can affect “yield”, including without limitation, plant height, pod number, pod position on the plant, number of internodes, incidence of pod shatter, grain size, efficiency of nodulation and nitrogen fixation, efficiency of nutrient assimilation, resistance to biotic and abiotic stress, carbon assimilation, plant architecture, resistance to lodging, percent seed germination, seedling vigor, and juvenile traits. Other traits that can affect yield include, efficiency of germination (including germination in stressed conditions), growth rate (including growth rate in stressed conditions), ear number, seed number per ear, seed size, composition of seed (starch, oil, protein) and characteristics of seed fill. Also of interest is the generation of transgenic plants that demonstrate desirable phenotypic properties that may or may not confer an increase in overall plant yield. Such properties include improved plant morphology, plant physiology or improved components of the mature seed harvested from the transgenic plant.


As used herein, “yield-limiting environment” refers to the condition under which a plant would have the limitation on yield including environmental stress conditions.


As used herein, “stress condition” refers to the condition unfavorable for a plant, which adversely affect plant metabolism, growth and/or development. A plant under the stress condition typically shows reduced germination rate, retarded growth and development, reduced photosynthesis rate, and eventually leading to reduction in yield.


Specifically, “water deficit stress” used herein preferably refers to the sub-optimal conditions for water and humidity needed for normal growth of natural plants. Relative water content (RWC) can be used as a physiological measure of plant water deficit. It measures the effect of osmotic adjustment in plant water status, when a plant is under stressed conditions. Conditions which may result in water deficit stress include heat, drought, high salinity and PEG induced osmotic stress.


“Cold stress” used herein preferably refers to the exposure of a plant to a temperatures below (two or more degrees Celsius below) those normal for a particular species or particular strain of plant.


As used herein, “sufficient nitrogen growth condition” refers to the growth condition where the soil or growth medium contains or receives enough amounts of nitrogen nutrient to sustain a healthy plant growth and/or for a plant to reach its typical yield for a particular plant species or a particular strain. As used herein, “nitrogen nutrient” means any one or any mix of the nitrate salts commonly used as plant nitrogen fertilizer, including, but not limited to, potassium nitrate, calcium nitrate, sodium nitrate, ammonium nitrate. The term ammonium as used herein means any one or any mix of the ammonium salts commonly used as plant nitrogen fertilizer, e.g., ammonium nitrate, ammonium chloride, ammonium sulfate, etc. One skilled in the art would recognize what constitute such soil, media and fertilizer inputs for most plant species. “Low nitrogen availability stress” used herein refers to a plant growth condition that does not contain sufficient nitrogen nutrient to maintain a healthy plant growth and/or for a plant to reach its typical yield under a sufficient nitrogen growth condition, and preferably refers to a growth condition with 50% or less of the conventional nitrogen inputs.


“Shade stress” used herein preferably refers to limited light availability that triggers the shade avoidance response in plant. Plants are subject to shade stress when localized at lower part of the canopy, or in close proximity of neighboring vegetation. Shade stress may become exacerbated when the planting density exceeds the average prevailing density for a particular plant species. The average prevailing densities per acre of a few other examples of crop plants in the USA in the year 2000 were: wheat 1,000,000-1,500,000; rice 650,000-900,000; soybean 150,000-200,000, canola 260,000-350,000, sunflower 17,000-23,000 and cotton 28,000-55,000 plants per acre (Cheikh, et al., (2003) U.S. Patent Application No. 20030101479).


As used herein, “increased yield” of a transgenic plant of the present invention may be evidenced and measured in a number of ways, including test weight, seed number per plant, seed weight, seed number per unit area (i.e., seeds, or weight of seeds, per acre), bushels per acre, tons per acre, tons per acre, kilo per hectare. For example, maize yield may be measured as production of shelled corn kernels per unit of production area, e.g., in bushels per acre or metric tons per hectare, often reported on a moisture adjusted basis, e.g., at 15.5% moisture. Increased yield may result from improved utilization of key biochemical compounds, such as nitrogen, phosphorous and carbohydrate, or from improved responses to environmental stresses, such as cold, heat, drought, salt, and attack by pests or pathogens. Trait-improving recombinant DNA may also be used to provide transgenic plants having improved growth and development, and ultimately increased yield, as the result of modified expression of plant growth regulators or modification of cell cycle or photosynthesis pathways.


As used herein, “expression” refers to transcription of DNA to produce RNA. The resulting RNA may be without limitation mRNA encoding a protein, antisense RNA that is complementary to an mRNA encoding a protein, or an RNA transcript comprising a combination of sense and antisense gene regions, such as for use in RNAi technology. Expression as used herein may also refer to production of encoded protein from mRNA.


As used herein, “promoter” includes reference to a region of DNA upstream from the start of transcription and involved in recognition and binding of RNA polymerase and other proteins to initiate transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells whether or not its origin is a plant cell. Exemplary plant promoters include, but are not limited to, those that are obtained from plants, plant viruses, and bacteria which comprise genes expressed in plant cells such as Agrobacterium or Rhizobium. Examples of promoters under developmental control include promoters that preferentially initiate transcription in certain tissues, such as leaves, roots, or seeds. Such promoters are referred to as “tissue preferred”. Promoters which initiate transcription only in certain tissues are referred to as “tissue specific”. A “cell type” specific promoter primarily drives expression in certain cell types in one or more organs, for example, vascular cells in roots or leaves. An “inducible” or “repressible” promoter is a promoter which is under environmental control. Examples of environmental conditions that may effect transcription by inducible promoters include anaerobic conditions, or certain chemicals, or the presence of light. Tissue specific, tissue preferred, cell type specific, and inducible promoters constitute the class of “non-constitutive” promoters. A “constitutive” promoter is a promoter which is active under most conditions. As used herein, “antisense orientation” includes reference to a polynucleotide sequence that is operably linked to a promoter in an orientation where the antisense strand is transcribed. The antisense strand is sufficiently complementary to an endogenous transcription product such that translation of the endogenous transcription product is often inhibited.


As used herein, “operably linked” refers to the association of two or more nucleic acid fragments on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., that the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked to regulatory sequences in sense or antisense orientation.


As used herein, “consensus sequence” refers to an artificial, amino acid sequence of conserved parts of the proteins encoded by homologous genes, e.g., as determined by a CLUSTALW alignment of amino acid sequence of homolog proteins.


As used herein, “homolog” refers to a gene related to a second gene by descent from a common ancestral DNA sequence. The term, homolog, may apply to the relationship between genes separated by the event of speciation (see ortholog) or to the relationship between genes separated by the event of genetic duplication (see paralog). Homologs can be from the same or a different organism that performs the same biological function. “Orthologs” refer to a set of homologous genes in different species that evolved from a common ancestral gene by specification. Normally, orthologs retain the same function in the course of evolution; and “paralogs” refer to a set of homologous genes in the same species that have diverged from each other as a consequence of genetic duplication.


Percent identity refers to the extent to which two optimally aligned DNA or protein segments are invariant throughout a window of alignment of components, e.g., nucleotide sequence or amino acid sequence. An “identity fraction” for aligned segments of a test sequence and a reference sequence is the number of identical components which are shared by sequences of the two aligned segments divided by the total number of sequence components in the reference segment over a window of alignment which is the smaller of the full test sequence or the full reference sequence. “Percent identity” (“% identity”) is the identity fraction times 100. “% identity to a consensus amino acid sequence” is 100 times the identity fraction in a window of alignment of an amino acid sequence of a test protein optimally aligned to consensus amino acid sequence of this invention.


As used herein “Arabidopsis” means plants of Arabidopsis thaliana.


Recombinant DNA Constructs

The present invention provides recombinant DNA constructs comprising one or more polynucleotides disclosed herein for imparting one or more improved traits to transgenic plant. Such constructs also typically comprise a promoter operatively linked to said polynucleotide to provide for expression in a target plant. Other construct components may include additional regulatory elements, such as 5′ or 3′ untranslated regions (such as polyadenylation sites), intron regions, and transit or signal peptides. Such recombinant DNA constructs can be assembled using methods known to those of ordinary skill in the art.


In a preferred embodiment, a polynucleotide of the present invention is operatively linked in a recombinant DNA construct to a promoter functional in a plant to provide for expression of the polynucleotide in the sense orientation such that a desired polypeptide is produced. Also provided are embodiments wherein a polynucleotide is operatively linked to a promoter functional in a plant to provide for expression of the polynucleotide in the antisense orientation such that a complementary copy of at least a portion of an mRNA native to the target plant host is produced.


Recombinant constructs prepared in accordance with the present invention may also generally include a 3′ untranslated DNA region (UTR) that typically contains a polyadenylation sequence following the polynucleotide coding region. Examples of useful 3′ UTRs include those from the nopaline synthase gene of Agrobacterium tumefaciens (nos), a gene encoding the small subunit of a ribulose-1,5-bisphosphate carboxylase-oxygenase (rbcS), and the T7 transcript of Agrobacterium tumefaciens. Constructs and vectors may also include a transit peptide for targeting of a gene target to a plant organelle, particularly to a chloroplast, leucoplast or other plastid organelle. For descriptions of the use of chloroplast transit peptides, see U.S. Pat. No. 5,188,642 and U.S. Pat. No. 5,728,925, incorporated herein by reference.


Table1 provides a list of genes that can provide recombinant DNA that was used in a model plant to discover associate improved traits and that can be used with homologs to define a consensus amino acid sequence for characterizing recombinant DNA in the transgenic seeds, transgenic plants, DNA constructs and methods of this invention.


“NUC SEQ ID NO” refers to a SEQ ID NO. for a particular DNA sequence in the Sequence Listing.


“PEP SEQ ID NO” refers to a SEQ ID NO. in the Sequence Listing for the amino acid sequence of a protein cognate to a particular DNA “construct_id” refers to an arbitrary number used to identify a particular recombinant DNA construct comprising the particular DNA.


“gene” refers to an arbitrary name used to identify the particular DNA.


“orientation” refers to the orientation of the particular DNA in a recombinant DNA construct relative to the promoter.


“species” refers to the organism from which the particular DNA was derived.














TABLE 1





Nuc SEQ ID
Pep SEQ ID
construct_id
Gene
orientation
Species




















1
240
19867
CGPG4046
Sense

Glycine max



2
241
74518
CGPG6792
Sense

Pseudomonas fluorescens PfO-1



3
242
15816
CGPG2244
Sense

Arabidopsis thaliana



4
243
17918
CGPG2774
Sense

Arabidopsis thaliana



5
244
15306
CGPG1909
AntiSense

Arabidopsis thaliana



6
245
12038
CGPG1087
Sense

Arabidopsis thaliana



7
246
12046
CGPG1106
Sense

Arabidopsis thaliana



8
247
13432
CGPG1525
Sense

Arabidopsis thaliana



9
248
13711
CGPG1114
Sense

Arabidopsis thaliana



10
249
14809
CGPG692
Sense

Arabidopsis thaliana



11
250
14951
CGPG1636
Sense

Arabidopsis thaliana



12
251
15632
CGPG1469
Sense

Arabidopsis thaliana



13
252
16147
CGPG2088
Sense

Arabidopsis thaliana



14
253
16158
CGPG2169
Sense

Arabidopsis thaliana



15
254
16170
CGPG2192
Sense

Arabidopsis thaliana



16
255
16171
CGPG2194
Sense

Arabidopsis thaliana



17
256
16175
CGPG2204
Sense

Arabidopsis thaliana



18
257
17430
CGPG2478
Sense

Arabidopsis thaliana



19
258
17819
CGPG2587
Sense

Arabidopsis thaliana



20
259
17921
CGPG2878
Sense

Arabidopsis thaliana



21
260
17928
CGPG2739
Sense

Arabidopsis thaliana



22
261
18637
CGPG3450
Sense

Arabidopsis thaliana



23
262
18816
CGPG2406
Sense

Arabidopsis thaliana



24
263
19227
CGPG3025
Sense

Arabidopsis thaliana



25
264
19429
CGPG3486
Sense

Arabidopsis thaliana



26
265
70235
CGPG96
Sense

Arabidopsis thaliana



27
266
72634
CGPG4855
Sense

Arabidopsis thaliana



28
267
72752
CGPG5532
Sense

Saccharomyces cerevisiae



29
268
12007
CGPG1089
AntiSense

Arabidopsis thaliana



30
269
12290
CGPG977
AntiSense

Arabidopsis thaliana



31
270
12343
CGPG581
AntiSense

Arabidopsis thaliana



32
271
14348
CGPG1692
AntiSense

Arabidopsis thaliana



33
272
15708
CGPG2167
AntiSense

Arabidopsis thaliana



34
273
17615
CGPG2458
Anti-Sense

Arabidopsis thaliana



35
274
17622
CGPG2454
Anti-Sense

Arabidopsis thaliana



36
275
70714
CGPG1480
Anti-sense

Arabidopsis thaliana



37
276
17925
CGPG2883
Sense

Arabidopsis thaliana



38
277
18541
CGPG2971
Sense

Arabidopsis thaliana



39
278
11425
CGPG628
Sense

Arabidopsis thaliana



40
279
12263
CGPG799
Sense

Arabidopsis thaliana



41
280
12288
CGPG811
Sense

Arabidopsis thaliana



42
281
12910
CGPG985
Sense

Arabidopsis thaliana



43
282
14335
CGPG1685
Sense

Arabidopsis thaliana



44
283
17427
CGPG2475
Sense

Arabidopsis thaliana



45
284
19140
CGPG1758
Sense

Arabidopsis thaliana



46
285
19179
CGPG740
Sense

Arabidopsis thaliana



47
286
19251
CGPG3118
Sense

Arabidopsis thaliana



48
287
19443
CGPG2834
Sense

Arabidopsis thaliana



49
288
19607
CGPG3397
Sense

Arabidopsis thaliana



50
289
19915
CGPG4072
Sense

Glycine max



51
290
70222
CGPG28
Sense

Arabidopsis thaliana



52
291
70464
CGPG3773
Sense

Arabidopsis thaliana



53
292
70474
CGPG3806
Sense

Arabidopsis thaliana



54
293
70484
CGPG3853
Sense

Arabidopsis thaliana



55
294
72474
CGPG4667
Sense

Glycine max



56
295
13047
CGPG1324
ANTI-SENSE

Arabidopsis thaliana



57
296
13304
CGPG1282
ANTI-SENSE

Arabidopsis thaliana



58
297
13474
CGPG1600
ANTI-SENSE

Arabidopsis thaliana



59
298
19252
CGPG3121
SENSE

Arabidopsis thaliana



60
299
12612
CGPG1181
SENSE

Arabidopsis thaliana



61
300
12926
CGPG1299
SENSE

Arabidopsis thaliana



62
301
13230
CGPG1276
SENSE

Arabidopsis thaliana



63
302
14235
CGPG1665
SENSE

Arabidopsis thaliana



64
303
17305
CGPG2261
SENSE

Arabidopsis thaliana



65
304
17470
CGPG2606
SENSE

Arabidopsis thaliana



66
305
17718
CGPG1791
SENSE

Arabidopsis thaliana



67
306
17904
CGPG1912
SENSE

Arabidopsis thaliana



68
307
18280
CGPG3547
SENSE

Arabidopsis thaliana



69
308
18287
CGPG3563
SENSE

Arabidopsis thaliana



70
309
18501
CGPG2237
SENSE

Arabidopsis thaliana



71
310
18877
CGPG3097
SENSE

Arabidopsis thaliana



72
311
19531
CGPG3028
SENSE

Arabidopsis thaliana



73
312
70405
CGPG1672
SENSE

Arabidopsis thaliana



74
313
72136
CGPG5320
SENSE

Glycine max



75
314
72611
CGPG4812
SENSE

Arabidopsis thaliana



76
315
12627
CGPG1003
SENSE

Arabidopsis thaliana



77
316
12813
CGPG825
SENSE

Arabidopsis thaliana



78
317
14945
CGPG1776
SENSE

Arabidopsis thaliana



79
318
15345
CGPG1504
SENSE

Arabidopsis thaliana



80
319
15348
CGPG1514
SENSE

Arabidopsis thaliana



81
320
16325
CGPG2195
SENSE

Arabidopsis thaliana



82
321
16702
CGPG531
SENSE

Arabidopsis thaliana



83
322
16836
CGPG2283
SENSE

Arabidopsis thaliana



84
323
17002
CGPG1926
SENSE

Arabidopsis thaliana



85
324
17012
CGPG2073
SENSE

Arabidopsis thaliana



86
325
17017
CGPG1722
SENSE

Arabidopsis thaliana



87
326
17344
CGPG2404
SENSE

Arabidopsis thaliana



88
327
17426
CGPG2474
SENSE

Arabidopsis thaliana



89
328
17655
CGPG2899
SENSE

Arabidopsis thaliana



90
329
17656
CGPG2714
SENSE

Arabidopsis thaliana



91
330
17906
CGPG2145
SENSE

Arabidopsis thaliana



92
331
18278
CGPG3544
SENSE

Arabidopsis thaliana



93
332
18822
CGPG2398
SENSE

Arabidopsis thaliana



94
333
18881
CGPG3126
SENSE

Arabidopsis thaliana



95
334
19213
CGPG3622
SENSE

Arabidopsis thaliana



96
335
19239
CGPG3197
SENSE

Arabidopsis thaliana



97
336
19247
CGPG3112
SENSE

Arabidopsis thaliana



98
337
19460
CGPG2824
SENSE

Arabidopsis thaliana



99
338
19512
CGPG2898
SENSE

Arabidopsis thaliana



100
339
19533
CGPG3032
SENSE

Arabidopsis thaliana



101
340
19603
CGPG3385
SENSE

Arabidopsis thaliana



102
341
72126
CGPG5310
SENSE

Glycine max



103
342
72437
CGPG5068
SENSE

Arabidopsis thaliana



104
343
72441
CGPG5079
SENSE

Arabidopsis thaliana



105
344
72639
CGPG4861
SENSE

Arabidopsis thaliana



106
345
14825
CGPG1883
Anti-Sense

Arabidopsis thaliana



107
346
17931
CGPG2890
Sense

Arabidopsis thaliana



108
347
18854
CGPG3524
Sense

Arabidopsis thaliana



109
348
12237
CGPG1206
Sense

Arabidopsis thaliana



110
349
13414
CGPG1246
Sense

Arabidopsis thaliana



111
350
16160
CGPG2172
Sense

Arabidopsis thaliana



112
351
16226
CGPG1980
Sense

Arabidopsis thaliana



113
352
16803
CGPG2179
Sense

Arabidopsis thaliana



114
353
18260
CGPG3373
Sense

Arabidopsis thaliana



115
354
18642
CGPG3230
Sense

Arabidopsis thaliana



116
355
18721
CGPG3618
Sense

Arabidopsis thaliana



117
356
19254
CGPG3123
Sense

Arabidopsis thaliana



118
357
70247
CGPG34
Sense

Arabidopsis thaliana



119
358
70650
CGPG4337
Sense

Arabidopsis thaliana



120
359
11787
CGPG951
ANTI-SENSE

Arabidopsis thaliana



120
359
12635
CGPG951
Sense

Arabidopsis thaliana



121
360
13641
CGPG1211
ANTI-SENSE

Arabidopsis thaliana



122
361
14515
CGPG1115
ANTI-SENSE

Arabidopsis thaliana



123
362
14920
CGPG2027
ANTI-SENSE

Arabidopsis thaliana



124
363
15204
CGPG2000
ANTI-SENSE

Arabidopsis thaliana



125
364
15216
CGPG1906
ANTI-SENSE

Arabidopsis thaliana



125
364
19058
CGPG1906
SENSE

Arabidopsis thaliana



126
365
15330
CGPG1237
ANTI-SENSE

Arabidopsis thaliana



127
366
19610
CGPG3419
SENSE

Arabidopsis thaliana



128
367
14338
CGPG1706
SENSE

Arabidopsis thaliana



129
368
17809
CGPG2436
SENSE

Arabidopsis thaliana



130
369
72471
CGPG4648
SENSE

Glycine max



131
370
16403
CGPG1983
SENSE

Arabidopsis thaliana



132
371
17737
CGPG2623
SENSE

Arabidopsis thaliana



133
372
18395
CGPG2994
SENSE

Arabidopsis thaliana



134
373
72772
CGPG2418
SENSE

Arabidopsis thaliana



135
374
19441
CGPG2783
SENSE

Arabidopsis thaliana



136
375
11409
CGPG136
SENSE

Arabidopsis thaliana



137
376
10486
CGPG137
SENSE

Arabidopsis thaliana



138
377
12104
CGPG693
SENSE

Arabidopsis thaliana



139
378
12258
CGPG836
SENSE

Arabidopsis thaliana



140
379
12909
CGPG1195
SENSE

Arabidopsis thaliana



141
380
14310
CGPG1037
SENSE

Arabidopsis thaliana



142
381
14317
CGPG1150
SENSE

Arabidopsis thaliana



143
382
14709
CGPG990
SENSE

Arabidopsis thaliana



144
383
15123
CGPG1730
SENSE

Arabidopsis thaliana



145
384
16013
CGPG978
SENSE

Arabidopsis thaliana



146
385
16185
CGPG2025
SENSE

Arabidopsis thaliana



147
386
16719
CGPG1817
SENSE

Arabidopsis thaliana



148
387
17490
CGPG2638
SENSE

Arabidopsis thaliana



149
388
17905
CGPG2101
SENSE

Arabidopsis thaliana



150
389
18385
CGPG3609
SENSE

Arabidopsis thaliana



151
390
18392
CGPG2989
SENSE

Arabidopsis thaliana



153
392
18531
CGPG3215
SENSE

Arabidopsis thaliana



154
393
18603
CGPG3423
SENSE

Arabidopsis thaliana



155
394
19530
CGPG3026
SENSE

Arabidopsis thaliana



156
395
70202
CGPG3949
SENSE

Glycine max



157
396
72009
CGPG5273
SENSE

Saccharomyces cerevisiae



158
397
72119
CGPG5332
SENSE

Glycine max



159
398
10188
CGPG147
Anti-sense

Arabidopsis thaliana



160
399
10404
CGPG25
Anti-Sense

Arabidopsis thaliana



161
400
11333
CGPG583
Anti-Sense

Arabidopsis thaliana



162
401
11719
CGPG710
Anti-Sense

Arabidopsis thaliana



163
402
13663
CGPG1241
Anti-sense

Arabidopsis thaliana



164
403
13958
CGPG1711
Anti-Sense

Arabidopsis thaliana



165
404
15214
CGPG1904
Anti-Sense

Arabidopsis thaliana



166
405
10483
CGPG447
Sense

Arabidopsis thaliana



167
406
11711
CGPG466
Sense

Arabidopsis thaliana



168
407
11909
CGPG471
Sense

Arabidopsis thaliana



169
408
12216
CGPG1091
Sense

Arabidopsis thaliana



170
409
12236
CGPG1193
Sense

Arabidopsis thaliana



171
410
12256
CGPG824
Sense

Arabidopsis thaliana



172
411
12806
CGPG714
Sense

Arabidopsis thaliana



173
412
12904
CGPG204
Sense

Arabidopsis thaliana



174
413
13212
CGPG1384
Sense

Arabidopsis thaliana



175
414
13232
CGPG1281
Sense

Arabidopsis thaliana



176
415
13912
CGPG1283
Sense

Arabidopsis thaliana



177
416
14327
CGPG1606
Sense

Arabidopsis thaliana



178
417
14704
CGPG1066
Sense

Arabidopsis thaliana



179
418
14714
CGPG1431
Sense

Arabidopsis thaliana



180
419
15142
CGPG1917
Sense

Arabidopsis thaliana



181
420
17450
CGPG2684
Sense

Arabidopsis thaliana



182
421
18607
CGPG3496
Sense

Arabidopsis thaliana



183
422
19409
CGPG2691
Sense

Arabidopsis thaliana



184
423
19412
CGPG2727
Sense

Arabidopsis thaliana



185
424
13005
CGPG724
ANTI-SENSE

Arabidopsis thaliana



186
425
10203
CGPG272
ANTI-SENSE

Arabidopsis thaliana



187
426
11327
CGPG551
ANTI-SENSE

Arabidopsis thaliana



188
427
11814
CGPG1041
ANTI-SENSE

Arabidopsis thaliana



188
427
12018
CGPG1041
SENSE

Arabidopsis thaliana



189
428
13003
CGPG673
ANTI-SENSE

Arabidopsis thaliana



190
429
13949
CGPG1686
ANTI-SENSE

Arabidopsis thaliana



191
430
16416
CGPG2258
ANTI-SENSE

Arabidopsis thaliana



192
431
16438
CGPG1847
ANTI-SENSE

Arabidopsis thaliana



193
432
17124
CGPG2432
ANTI-SENSE

Arabidopsis thaliana



194
433
19132
CGPG1755
ANTI-SENSE

Arabidopsis thaliana



195
434
17922
CGPG2880
SENSE

Arabidopsis thaliana



196
435
19719
CGPG4171
SENSE

Glycine max



197
436
17336
CGPG1732
SENSE

Arabidopsis thaliana



197
436
14274
CGPG1732
ANTI-SENSE

Arabidopsis thaliana



198
437
17735
CGPG2423
SENSE

Arabidopsis thaliana



199
438
19249
CGPG3115
SENSE

Arabidopsis thaliana



200
439
18513
CGPG3485
SENSE

Arabidopsis thaliana



201
440
11517
CGPG224
SENSE

Arabidopsis thaliana



202
441
12363
CGPG981
SENSE

Arabidopsis thaliana



203
442
12922
CGPG1294
SENSE

Arabidopsis thaliana



204
443
15360
CGPG1719
SENSE

Arabidopsis thaliana



205
444
16028
CGPG2047
SENSE

Arabidopsis thaliana



206
445
16648
CGPG2504
SENSE

Agrobacterium tumefaciens



207
446
16705
CGPG1005
SENSE

Arabidopsis thaliana



208
447
16715
CGPG2273
SENSE

Arabidopsis thaliana



209
448
17316
CGPG2146
SENSE

Arabidopsis thaliana



210
449
17331
CGPG1708
SENSE

Arabidopsis thaliana



211
450
17339
CGPG2461
SENSE

Arabidopsis thaliana



212
451
17420
CGPG2465
SENSE

Arabidopsis thaliana



213
452
17446
CGPG2728
SENSE

Arabidopsis thaliana



214
453
17487
CGPG2633
SENSE

Arabidopsis thaliana



215
454
17740
CGPG2605
SENSE

Arabidopsis thaliana



216
455
17752
CGPG2831
SENSE

Arabidopsis thaliana



217
456
18021
CGPG685
SENSE

Arabidopsis thaliana



218
457
18245
CGPG3343
SENSE

Arabidopsis thaliana



219
458
18617
CGPG3521
SENSE

Arabidopsis thaliana



220
459
18734
CGPG3198
SENSE

Arabidopsis thaliana



221
460
18823
CGPG2830
SENSE

Arabidopsis thaliana



222
461
19222
CGPG3017
SENSE

Arabidopsis thaliana



223
462
19430
CGPG3487
SENSE

Arabidopsis thaliana



224
463
12332
CGPG356
AntiSense

Arabidopsis thaliana



225
464
13649
CGPG1544
Anti-Sense

Arabidopsis thaliana



226
465
16113
CGPG2128
AntiSense

Arabidopsis thaliana



227
466
12069
CGPG1188
Sense

Arabidopsis thaliana



228
467
12906
CGPG313
Sense

Arabidopsis thaliana



229
468
13443
CGPG1233
Sense

Arabidopsis thaliana



230
469
14707
CGPG1141
Sense

Arabidopsis thaliana



231
470
15116
CGPG1509
Sense

Arabidopsis thaliana



232
471
16117
CGPG2234
Sense

Arabidopsis thaliana



233
472
16136
CGPG2144
Sense

Arabidopsis thaliana



234
473
19077
CGPG1808
Sense

Arabidopsis thaliana



235
474
19178
CGPG3683
Sense

Saccharomyces cerevisiae



236
475
70752
CGPG4465
Sense

Arabidopsis thaliana



237
476
70753
CGPG4469
Sense

Arabidopsis thaliana



238
477
70809
CGPG388
Sense

Arabidopsis thaliana



239
478
72091
CGPG5264
Sense

Saccharomyces cerevisiae










Recombinant DNA

Exemplary DNA for use in the present invention to improve traits in plants are provided herein as SEQ ID NO:1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239. A subset of the exemplary DNA includes fragments of the disclosed full polynucleotides consisting of oligonucleotides of at least 15, preferably at least 16 or 17, more preferably at least 18 or 19, and even more preferably at least 20 or more, consecutive nucleotides. Such oligonucleotides are fragments of the larger molecules having a sequence selected from the group consisting of SEQ ID NO: 1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239, and find use, for example as probes and primers for detection of the polynucleotides of the present invention.


Also of interest in the present invention are variants of the DNA provided herein. Such variants may be naturally occurring, including DNA from homologous genes from the same or a different species, or may be non-natural variants, for example DNA synthesized using chemical synthesis methods, or generated using recombinant DNA techniques. Degeneracy of the genetic code provides the possibility to substitute at least one base of the protein encoding sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. Hence, a DNA useful in the present invention may have any base sequence that has been changed from the sequences provided herein by substitution in accordance with degeneracy of the genetic code.


Homologs of the genes providing DNA of demonstrated as useful in improving traits in model plants disclosed herein will generally demonstrate significant identity with the DNA provided herein. DNA is substantially identical to a reference DNA if, when the sequences of the polynucleotides are optimally aligned there is about 60% nucleotide equivalence; more preferably 70%; more preferably 80% equivalence; more preferably 85% equivalence; more preferably 90%; more preferably 95%; and/or more preferably 98% or 99% equivalence over a comparison window. A comparison window is preferably at least 50-100 nucleotides, and more preferably is the entire length of the polynucleotide provided herein. Optimal alignment of sequences for aligning a comparison window may be conducted by algorithms; preferably by computerized implementations of these algorithms (for example, the Wisconsin Genetics Software Package Release 7.0-10.0, Genetics Computer Group, 575 Science Dr., Madison, Wis.). The reference polynucleotide may be a full-length molecule or a portion of a longer molecule. Preferentially, the window of comparison for determining polynucleotide identity of protein encoding sequences is the entire coding region.


Recombinant DNA

Proteins useful for imparting improved traits are entire proteins or at least a sufficient portion of the entire protein to impart the relevant biological activity of the protein. The term “protein” also includes molecules consisting of one or more polypeptide chains. Thus, a protein useful in the present invention may constitute an entire protein having the desired biological activity, or may constitute a portion of an oligomeric protein having multiple polypeptide chains. Proteins useful for generation of transgenic plants having improved traits include the proteins with an amino acid sequence provided herein as SEQ ID NO: 240 through SEQ ID NO: 390 and SEQ ID NO: 392 through SEQ ID NO: 478, as well as homologs of such proteins.


Homologs of the proteins useful in the present invention may be identified by comparison of the amino acid sequence of the protein to amino acid sequences of proteins from the same or different plant sources, e.g., manually or by using known homology-based search algorithms such as those commonly known and referred to as BLAST, FASTA, and Smith-Waterman. As used herein, a homolog is a protein from the same or a different organism that performs the same biological function as the polypeptide to which it is compared. An orthologous relation between two organisms is not necessarily manifest as a one-to-one correspondence between two genes, because a gene can be duplicated or deleted after organism phylogenetic separation, such as speciation. For a given protein, there may be no ortholog or more than one ortholog. Other complicating factors include alternatively spliced transcripts from the same gene, limited gene identification, redundant copies of the same gene with different sequence lengths or corrected sequence. A local sequence alignment program, e.g., BLAST, can be used to search a database of sequences to find similar sequences, and the summary Expectation value (E-value) used to measure the sequence base similarity. As a protein hit with the best E-value for a particular organism may not necessarily be an ortholog or the only ortholog, a reciprocal BLAST search is used in the present invention to filter hit sequences with significant E-values for ortholog identification. The reciprocal BLAST entails search of the significant hits against a database of amino acid sequences from the base organism that are similar to the sequence of the query protein. A hit is a likely ortholog, when the reciprocal BLAST's best hit is the query protein itself or a protein encoded by a duplicated gene after speciation. Thus, homolog is used herein to describe protein that are assumed to have functional similarity by inference from sequence base similarity. The relationship of homologs with amino acid sequences of SEQ ID NO: 479 through SEQ ID NO: 12463 to the proteins with amino acid sequences of SEQ ID NO: 240 through SEQ ID NO: 478 is found is found in Table 2 appended.


A further aspect of the invention comprises functional homolog proteins which differ in one or more amino acids from those of a trait-improving protein disclosed herein as the result of one or more of the well-known conservative amino acid substitutions, e.g., valine is a conservative substitute for alanine and threonine is a conservative substitute for serine. Conservative substitutions for an amino acid within the native sequence can be selected from other members of a class to which the naturally occurring amino acid belongs. Representative amino acids within these various classes include, but are not limited to: (1) acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; (2) basic (positively charged) amino acids such as arginine, histidine, and lysine; (3) neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; and (4) neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. Conserved substitutes for an amino acid within a native amino acid sequence can be selected from other members of the group to which the naturally occurring amino acid belongs. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Naturally conservative amino acids substitution groups are: valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the invention comprises proteins that differ in one or more amino acids from those of a described protein sequence as the result of deletion or insertion of one or more amino acids in a native sequence.


Homologs of the trait-improving proteins disclosed provided herein will generally demonstrate significant sequence identity. Of particular interest are proteins having at least 50% sequence identity, more preferably at least about 70% sequence identity or higher, e.g., at least about 80% sequence identity with an amino acid sequence of SEQ ID NO: 240 through SEQ ID NO: 390 and SEQ ID NO: 392 through SEQ ID NO: 478. Of course useful proteins also include those with higher identity, e.g., 90% to 99% identity. Identity of protein homologs is determined by optimally aligning the amino acid sequence of a putative protein homolog with a defined amino acid sequence and by calculating the percentage of identical and conservatively substituted amino acids over the window of comparison. The window of comparison for determining identity can be the entire amino acid sequence disclosed herein, e.g., the full sequence of any of SEQ ID NO: 479 through SEQ ID NO: 12463.


Genes that are homologous to each other can be grouped into families and included in multiple sequence alignments. Then a consensus sequence for each group can be derived. This analysis enables the derivation of conserved and class-(family) specific residues or motifs that are functionally important. These conserved residues and motifs can be further validated with 3D protein structure if available. The consensus sequence can be used to define the full scope of the invention, e.g., to identify proteins with a homolog relationship. Thus, the present invention contemplates that protein homologs include proteins with an amino acid sequence that has at least 90% identity to such a consensus amino acid sequence sequences.


Promoters

Numerous promoters that are active in plant cells have been described in the literature. These include promoters present in plant genomes as well as promoters from other sources, including nopaline synthase (NOS) promoter and octopine synthase (OCS) promoters carried on tumor-inducing plasmids of Agrobacterium tumefaciens, caulimovirus promoters such as the cauliflower mosaic virus or figwort mosaic virus promoters. For instance, see U.S. Pat. Nos. 5,858,742 and 5,322,938 which disclose versions of the constitutive promoter derived from cauliflower mosaic virus (CaMV35S), U.S. Pat. No. 5,378,619 which discloses a Figwort Mosaic Virus (FMV) 35S promoter, U.S. Pat. No. 6,437,217 which discloses a maize RS81 promoter, U.S. Pat. No. 5,641,876 which discloses a rice actin promoter, U.S. Pat. No. 6,426,446 which discloses a maize RS324 promoter, U.S. Pat. No. 6,429,362 which discloses a maize PR-1 promoter, U.S. Pat. No. 6,232,526 which discloses a maize A3 promoter, U.S. Pat. No. 6,177,611 which discloses constitutive maize promoters, U.S. Pat. No. 6,433,252 which discloses a maize L3 oleosin promoter, U.S. Pat. No. 6,429,357 which discloses a rice actin 2 promoter and intron, U.S. Pat. No. 5,837,848 which discloses a root specific promoter, U.S. Pat. No. 6,084,089 which discloses cold inducible promoters, U.S. Pat. No. 6,294,714 which discloses light inducible promoters, U.S. Pat. No. 6,140,078 which discloses salt inducible promoters, U.S. Pat. No. 6,252,138 which discloses pathogen inducible promoters, U.S. Pat. No. 6,175,060 which discloses phosphorus deficiency inducible promoters, U.S. Patent Application Publication 2002/0192813A1 which discloses 5′, 3′ and intron elements useful in the design of effective plant expression vectors, U.S. patent application Ser. No. 09/078,972 which discloses a coixin promoter, U.S. patent application Ser. No. 09/757,089 which discloses a maize chloroplast aldolase promoter, and U.S. patent application Ser. No. 10/739,565 which discloses water-deficit inducible promoters, all of which are incorporated herein by reference. These and numerous other promoters that function in plant cells are known to those skilled in the art and available for use in recombinant polynucleotides of the present invention to provide for expression of desired genes in transgenic plant cells.


Furthermore, the promoters may be altered to contain multiple “enhancer sequences” to assist in elevating gene expression. Such enhancers are known in the art. By including an enhancer sequence with such constructs, the expression of the selected protein may be enhanced. These enhancers often are found 5′ to the start of transcription in a promoter that functions in eukaryotic cells, but can often be inserted in the forward or reverse orientation 5′ or 3′ to the coding sequence. In some instances, these 5′ enhancing elements are introns. Deemed to be particularly useful as enhancers are the 5′ introns of the rice actin 1 and rice actin 2 genes. Examples of other enhancers that can be used in accordance with the invention include elements from the CaMV 35S promoter, octopine synthase genes, the maize alcohol dehydrogenase gene, the maize shrunken 1 gene and promoters from non-plant eukaryotes.


In some aspects of the invention it is preferred that the promoter element in the DNA construct be capable of causing sufficient expression to result in the production of an effective amount of a polypeptide in water deficit conditions. Such promoters can be identified and isolated from the regulatory region of plant genes that are over expressed in water deficit conditions. Specific water-deficit-inducible promoters for use in this invention are derived from the 5′ regulatory region of genes identified as a heat shock protein 17.5 gene (HSP17.5), an HVA22 gene (HVA22), a Rab17 gene and a cinnamic acid 4-hydroxylase (CA4H) gene (CA4H) of Zea maize. Such water-deficit-inducible promoters are disclosed in U.S. application Ser. No. 10/739,565, incorporated herein by reference.


In other aspects of the invention, sufficient expression in plant seed tissues is desired to effect improvements in seed composition. Exemplary promoters for use for seed composition modification include promoters from seed genes such as napin (U.S. Pat. No. 5,420,034), maize L3 oleosin (U.S. Pat. No. 6,433,252), zein Z27 (Russell et al., (1997) Transgenic Res. 6(2):157-166), globulin 1 (Belanger et al., (1991) Genetics 129:863-872), glutelin 1 (Russell (1997) supra), and peroxiredoxin antioxidant (Per1) (Stacy et al., (1996) Plant Mol Biol. 31(6):1205-1216).


In still other aspects of the invention, preferential expression in plant green tissues is desired. Promoters of interest for such uses include those from genes such as SSU (Fischhoff et al., (1992) Plant Mol. Biol. 20:81-93), aldolase and pyruvate orthophosphate dikinase (PPDK) (Taniguchi et al., (2000) Plant Cell Physiol. 41(1):42-48).


Gene Overexpression

“Gene overexpression” used herein in reference to a polynucleotide or polypeptide indicates that the expression level of a target protein, in a transgenic plant or in a host cell of the transgenic plant, exceeds levels of expression in a non-transgenic plant. In a preferred embodiment of the present invention, a recombinant DNA construct comprises the polynucleotide of interest in the sense orientation relative to the promoter to achieve gene overexpression, which is identified as such in Table 1.


Gene Suppression

Gene suppression includes any of the well-known methods for suppressing transcription of a gene or the accumulation of the mRNA corresponding to that gene thereby preventing translation of the transcript into protein. Posttranscriptional gene suppression is mediated by transcription of integrated recombinant DNA to form double-stranded RNA (dsRNA) having homology to a gene targeted for suppression. This formation of dsRNA most commonly results from transcription of an integrated inverted repeat of the target gene, and is a common feature of gene suppression methods known as anti-sense suppression, co-suppression and RNA interference (RNAi). Transcriptional suppression can be mediated by a transcribed dsRNA having homology to a promoter DNA sequence to effect what is called promoter trans suppression.


More particularly, posttranscriptional gene suppression by inserting a recombinant DNA construct with anti-sense oriented DNA to regulate gene expression in plant cells is disclosed in U.S. Pat. No. 5,107,065 (Shewmaker et al.) and U.S. Pat. No. 5,759,829 (Shewmaker et al.). Transgenic plants transformed using such anti-sense oriented DNA constructs for gene suppression can comprise integrated DNA arranged as an inverted repeats that result from insertion of the DNA construct into plants by Agrobacterium-mediated transformation, as disclosed by Redenbaugh et al., in “Safety Assessment of Genetically Engineered Flavr Savr™ Tomato, CRC Press, Inc. (1992). Inverted repeat insertions can comprise a part or all of the T-DNA construct, e.g., an inverted repeat of a complete transcription unit or an inverted repeat of transcription terminator sequence. Screening for inserted DNA comprising inverted repeat elements can improve the efficiency of identifying transformation events effective for gene silencing whether the transformation construct is a simple anti-sense DNA construct which must be inserted in multiple copies or a complex inverted repeat DNA construct (e.g., an RNAi construct) which can be inserted as a single copy.


Posttranscriptional gene suppression by inserting a recombinant DNA construct with sense-oriented DNA to regulate gene expression in plants is disclosed in U.S. Pat. No. 5,283,184 (Jorgensen et al.,) and U.S. Pat. No. 5,231,020 (Jorgensen et al.,). Inserted T-DNA providing gene suppression in plants transformed with such sense constructs by Agrobacterium is organized predominately in inverted repeat structures, as disclosed by Jorgensen et al., Mol. Gen. Genet., 207:471-477 (1987). See also Stam et al. The Plant Journal, 12(1), 63-82 (1997) who used segregation studies to support Jorgensen's finding that gene silencing is mediated by multimeric transgene T-DNA loci in which the T-DNAs are arranged in inverted repeats. Screening for inserted DNA comprising inverted repeat elements can improve the gene silencing efficiency when transforming with simple sense-orientated DNA constructs. Gene silencing efficiency can also be improved by screening for single insertion events when transforming with an RNAi construct containing inverted repeat elements


As disclosed by Redenbaugh et al., gene suppression can be achieved by inserting into a plant genome recombinant DNA that transcribes dsRNA. Such a DNA insert can be transcribed to an RNA element having the 3′ region as a double stranded RNA. RNAi constructs are also disclosed in EP 0426195 A1 (Goldbach et al., 1991) where recombinant DNA constructs for transcription into hairpin dsRNA for providing transgenic plants with resistance to tobacco spotted wilt virus. Double-stranded RNAs were also disclosed in WO 94/01550 (Agrawal et al.,) where anti-sense RNA was stabilized with a self-complementary 3′ segment. Agrawal et al., referred to U.S. Pat. No. 5,107,065 for using such self-stablized anti-sense RNAs for regulating gene expression in plant cells; see International Publication No. 94/01550. Other double-stranded hairpin-forming elements in transcribed RNA are disclosed in International Publication No. 98/05770 (Werner et al.,) where the anti-sense RNA is stabilized by hairpin forming repeats of poly(CG) nucleotides. See also U.S. Patent Application Publication No. 2003/0175965 A1 (Lowe et al.,) which discloses gene suppression using and RNAi construct comprising a gene coding sequence preceded by inverted repeats of 5′UTR. See also U.S. Patent Application Publication No. 2002/0048814 A1 (Oeller) where RNAi constructs are transcribed to sense or anti-sense RNA which is stabilized by a poly(T)-poly(A) tail. See also U.S. Patent Application Publication No. 2003/0018993 A1 (Gutterson et al.,) where sense or anti-sense RNA is stabilized by an inverted repeat of a of the 3′ untranslated region of the NOS gene. See also U.S. Patent Application Publication No. 2003/0036197 A1 (Glassman et al.,) where RNA having homology to a target is stabilized by two complementary RNA regions.


Gene silencing can also be effected by transcribing RNA from both a sense and an anti-sense oriented DNA, e.g., as disclosed by Shewmaker et al., in U.S. Pat. No. 5,107,065 where in Example 1a binary vector was prepared with both sense and anti-sense aroA genes. See also U.S. Pat. No. 6,326,193 where gene targeted DNA is operably linked to opposing promoters.


Gene silencing can also be affected by transcribing from contiguous sense and anti-sense DNA. In this regard see Sijen et al. The Plant Cell, Vol. 8, 2277-2294 (1996) discloses the use of constructs carrying inverted repeats of a cowpea mosaic virus gene in transgenic plants to mediate virus resistance. Such constructs for posttranscriptional gene suppression in plants by double-stranded RNA are also disclosed in International Publication No. WO 99/53050 (Waterhouse et al.,), International Publication No. WO 99/49029 (Graham et al.), U.S. patent application Ser. No. 10/465,800 (Fillatti), U.S. Pat. No. 6,506,559 (Fire et al.). See also U.S. application Ser. No. 10/393,347 (Shewmaker et al.,) that discloses constructs and methods for simultaneously expressing one or more recombinant genes while simultaneously suppressing one or more native genes in a transgenic plant. See also U.S. Pat. No. 6,448,473 (Mitsky et al.,) that discloses multi-gene suppression vectors for use in plants. All of the above-described patents, applications and international publications disclosing materials and methods for posttranscriptional gene suppression in plants are incorporated herein by reference.


Transcriptional suppression such as promoter trans suppression can be affected by a expressing a DNA construct comprising a promoter operably linked to inverted repeats of promoter DNA for a target gene. Constructs useful for such gene suppression mediated by promoter trans suppression are disclosed by Mette et al. The EMBO Journal, Vol. 18, No. 1, pp. 241-148, 1999 and by Mette et al. The EMBO Journal, Vol. 19, No. 19, pp. 5194-5201-148, 2000, both of which are incorporated herein by reference.


Suppression can also be achieved by insertion mutations created by transposable elements may also prevent gene function. For example, in many dicot plants, transformation with the T-DNA of Agrobacterium may be readily achieved and large numbers of transformants can be rapidly obtained. Also, some species have lines with active transposable elements that can efficiently be used for the generation of large numbers of insertion mutations, while some other species lack such options. Mutant plants produced by Agrobacterium or transposon mutagenesis and having altered expression of a polypeptide of interest can be identified using the polynucleotides of the present invention. For example, a large population of mutated plants may be screened with polynucleotides encoding the polypeptide of interest to detect mutated plants having an insertion in the gene encoding the polypeptide of interest.


Gene Stacking

The present invention also contemplates that the trait-improving recombinant DNA provided herein can be used in combination with other recombinant DNA to create plants with a multiple desired traits. The combinations generated can include multiple copies of any one or more of the recombinant DNA constructs.


These stacked combinations can be created by any method, including but not limited to cross breeding of transgenic plants, or multiple genetic transformation.


Plant Transformation Methods

Numerous methods for transforming plant cells with recombinant DNA are known in the art and may be used in the present invention. Two commonly used methods for plant transformation are Agrobacterium-mediated transformation and microprojectile bombardment. Microprojectile bombardment methods are illustrated in U.S. Pat. No. 5,015,580 (soybean); U.S. Pat. No. 5,550,318 (corn); U.S. Pat. No. 5,538,880 (corn); U.S. Pat. No. 5,914,451 (soybean); U.S. Pat. No. 6,160,208 (corn); U.S. Pat. No. 6,399,861 (corn) and U.S. Pat. No. 6,153,812 (wheat) and Agrobacterium-mediated transformation is described in U.S. Pat. No. 5,159,135 (cotton); U.S. Pat. No. 5,824,877 (soybean); U.S. Pat. No. 5,591,616 (corn); and U.S. Pat. No. 6,384,301 (soybean), all of which are incorporated herein by reference. For Agrobacterium tumefaciens based plant transformation system, additional elements present on transformation constructs will include T-DNA left and right border sequences to facilitate incorporation of the recombinant polynucleotide into the plant genome.


In general it is preferred to introduce heterologous DNA randomly, i.e., at a non-specific location, in the genome of a target plant line. In special cases it may be useful to target heterologous DNA insertion in order to achieve site-specific integration, e.g., to replace an existing gene in the genome, to use an existing promoter in the plant genome, or to insert a recombinant polynucleotide at a predetermined site known to be active for gene expression. Several site specific recombination systems exist which are known to function implants include cre-lox as disclosed in U.S. Pat. No. 4,959,317 and FLP-FRT as disclosed in U.S. Pat. No. 5,527,695, both incorporated herein by reference.


Transformation methods of this invention are preferably practiced in tissue culture on media and in a controlled environment. “Media” refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation. Practical transformation methods and materials for making transgenic plants of this invention, e.g., various media and recipient target cells, transformation of immature embryos and subsequent regeneration of fertile transgenic plants are disclosed in U.S. Pat. Nos. 6,194,636 and 6,232,526 and U.S. patent application Ser. No. 09/757,089, which are incorporated herein by reference.


In practice DNA is introduced into only a small percentage of target cells in any one experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a transgenic DNA construct into their genomes. Preferred marker genes provide selective markers that confer resistance to a selective agent, such as an antibiotic or herbicide. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene has been integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA. Useful selective marker genes include those conferring resistance to antibiotics such as kanamycin (nptII), hygromycin B (aph IV) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat) and glyphosate (EPSPS). Examples of such selectable are illustrated in U.S. Pat. Nos. 5,550,318; 5,633,435; 5,780,708 and 6,118,047, all of which are incorporated herein by reference. Screenable markers which provide an ability to visually identify transformants can also be employed, e.g., a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known. It is also contemplated that combinations of screenable and selectable markers will be useful for identification of transformed cells. See PCT publication WO 99/61129 which discloses use of a gene fusion between a selectable marker gene and a screenable marker gene, e.g., an NPTII gene and a GFP gene.


Cells that survive exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in regeneration media and allowed to mature into plants. Developing plantlets can be transferred to soil less plant growth mix, and hardened off, e.g., in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO2, and 25-250 microeinsteins m−2 s−1 of light, prior to transfer to a greenhouse or growth chamber for maturation. Plants are preferably matured either in a growth chamber or greenhouse. Plants are regenerated from about 6 wk to 10 months after a transformant is identified, depending on the initial tissue. During regeneration, cells are grown to plants on solid media at about 19 to 28° C. After regenerating plants have reached the stage of shoot and root development, they may be transferred to a greenhouse for further growth and testing. Plants may be pollinated using conventional plant breeding methods known to those of skill in the art and seed produced.


Progeny may be recovered from transformed plants and tested for expression of the exogenous recombinant polynucleotide. Useful assays include, for example, “molecular biological” assays, such as Southern and Northern blotting and PCR; “biochemical” assays, such as detecting the presence of RNA, e.g., double stranded RNA, or a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant.


Discovery of Trait-improving Recombinant DNA

To identify recombinant DNA that confer improved traits to plants, Arabidopsis thaliana was transformed with a candidate recombinant DNA construct and screened for an improved trait.



Arabidopsis thaliana is used a model for genetics and metabolism in plants. Arabidopsis has a small genome, and well documented studies are available. It is easy to grow in large numbers and mutants defining important genetically controlled mechanisms are either available, or can readily be obtained. Various methods to introduce and express isolated homologous genes are available (see Koncz, et al., eds. Methods in Arabidopsis Research. et al., (1992), World Scientific, New Jersey, New Jersey, in “Preface”).


A two-step screening process was employed which comprised two passes of trait characterization to ensure that the trait modification was dependent on expression of the recombinant DNA, but not due to the chromosomal location of the integration of the transgene. Twelve independent transgenic lines for each recombinant DNA construct were established and assayed for the transgene expression levels. Five transgenic lines with high transgene expression levels were used in the first pass screen to evaluate the transgene's function in T2 transgenic plants. Subsequently, three transgenic events, which had been shown to have one or more improved traits, were further evaluated in the second pass screen to confirm the transgene's ability to impart an improved trait. The following Table 3 summarizes the improved traits that have been confirmed as provided by a recombinant DNA construct.


In particular Table3 reports


“PEP SEQ ID NO” which is the amino acid sequence of the protein cognate to the DNA in the recombinant DNA construct corresponding to a protein sequence of a SEQ ID NO. in the Sequence Listing;


“construct_id” is an arbitrary name for the recombinant DNA describe more particularly in Table 1;


“annotation” refers to a description of the top hit protein obtained from an amino acid sequence query of each PEP SEQ ID NO to GenBank database of the National Center for Biotechnology Information (ncbi). More particularly, “gi” is the GenBank ID number for the top BLAST hit;


“description” refers to the description of the top BLAST hit;


“e-value” provides the expectation value for the BLAST hit;


“identity” refers to the percentage of identically matched amino acid residues along the length of the portion of the sequences which is aligned by BLAST between the sequence of interest provided herein and the hit sequence in GenBank;


“traits” identifies by two letter code the confirmed improvement in a transgenic plant provided by the recombinant DNA. The codes for improved traits are:


“CK” which indicates cold tolerance improvement identified under a cold shock tolerance screen;


“CS” which indicates cold tolerance improvement identified by a cold germination tolerance screen;


“DS” which indicates drought tolerance improvement identified by a drought stress tolerance screen;


“PEG” which indicates osmotic stress tolerance improvement identified by a PEG induced osmotic stress tolerance screen;


“HS” which indicates heat stress tolerance improvement identified by a heat stress tolerance screen;


“SS” which indicates high salinity stress tolerance improvement identified by a salt stress tolerance screen;


“LN” which: indicates nitrogen use efficiency improvement identified by a low nitrogen tolerance screen.


“LL” which indicates attenuated shade avoidance response identified by a shade tolerance screen under a low light condition;


“PP” which indicates improved growth and development at early stages identified by an early plant growth and development screen;


“SP” which indicates improved growth and development at late stages identified by a late plant growth and development screen provided herein.












TABLE 3







PEP SEQ
con-
Annotation














ID NO
struct_id
e-value
identity
gi
Description
traits





















240
19867
2.00E−72 
47
15226242
(NM_128336) hypothetical protein
CK
CS











[Arabidopsis thaliana]


241
74518
0
100
17980436
bacteriophytochrome
DS
LN
PEG
PP
CK
CS







[Pseudomonas fluorescens]


242
15816
1.00E−101
100
18414706
(NM_120565) expressed protein
CK







[Arabidopsis thaliana] dbj|BAB08987.1


243
17918
5.00E−78 
81
15232662
(AB017071) zinc finger protein-like;
SS
CK







Ser/Thr protein kinase-like protein







[Arabidopsis thaliana]


244
15306
1.00E−121
57
15227057
(NM_126342) predicted by genefinder
CS







and genscan







[Arabidopsis thaliana]


245
12038
2.00E−47 
100
18413298
auxin-regulated protein
PP
CS







[Arabidopsis thaliana]







gi|30681325|ref|NP_849354.1


246
12046




CS


247
13432
1.00E−79 
53
18396732
(NM_111270) expressed protein
CS







[Arabidopsis thaliana] gb|AAF05858.1


248
13711
1.00E−33 
84
15232724
expressed protein
CS







[Arabidopsis thaliana]







gi|11280688|pir||T45643 hypothetical







protein


249
14809
1.00E−142
100
15230177
AF488576_1 (AF488576) putative bHLH
CS







transcription factor







[Arabidopsis thaliana]


250
14951
1.00E−146
100
4056434
(AC005990) Similar to OBP32pep
PP
CS







protein gb|U37698 from








Arabidopsis thaliana



251
15632
0
89
9758356
(AB013396) eukaryotic initiation
CS







factor 4, eIF4-like protein







[Arabidopsis thaliana]


252
16147
0
100
11890406
(AF197940) SAM: phosphoethanolamine
CS







N-methyltransferase







[Arabidopsis thaliana] g


253
16158
1.00E−68 
100
18412355
(NM_106587) expressed protein
CS







[Arabidopsis thaliana]


254
16170
2.00E−82 
91
15224757
(NM_127488) putative small heat
CS







shock protein [Arabidopsis thaliana]


255
16171
4.00E−92 
72
18401372
(NM_128284) expressed protein
CS







[Arabidopsis thaliana]


256
16175
1.00E−157
85
15240715
(NM_126137) putative protein
CS







[Arabidopsis thaliana]


257
17430
1.00E−155
90
13878155
(AF370340) putative mitochondrial
CS







dicarboxylate carrier protein







[Arabidopsis thaliana]


258
17819
1.00E−140
95
15236507
(NM_116915) hypothetical protein
SS
CS







[Arabidopsis thaliana] emb|CAB77971.1


259
17921
1.00E−110
74
18415982
(NM_118393) HSP associated protein
CS







like [Arabidopsis thaliana]


260
17928
1.00E−74 
100
15231105
(NM_115730) transcriptional
PP
CS







coactivator - like protein







[Arabidopsis thaliana]


261
18637
1.00E−128
87
15233509
(NM_118226) putative protein
CS







[Arabidopsis thaliana]


262
18816
0
94
18398254
(NM_102942) expressed protein
LL
CS







[Arabidopsis thaliana]


263
19227
1.00E−164
96
15219482
(NM_106009) MAP kinase, putative
CS







[Arabidopsis thaliana]


264
19429
0
100
15237038
(NM_118860) GH3 like protein
CS







[Arabidopsis thaliana]


265
70235
2.00E−94 
100
15234243
(NM_117229) phospholipid
PP
CS







hydroperoxide glutathione







peroxidase [Arabidopsis thaliana]


266
72634
4.00E−52 
86
30699033
GAST1-related protein
CS







[Arabidopsis thaliana]


267
72752
0
100
6319971
(NC_001136) phosphotyrosine-specific
PP
CS







protein phosphatase; Ptp1p







[Saccharomyces cerevisiae]


268
12007
1.00E−119
76
15236117
(NM_118746) uncharacterized protein
HS







[Arabidopsis thaliana]


269
12290
5.00E−66 
92
18396460
(NM_111186) expressed protein
HS







[Arabidopsis thaliana]]


270
12343
1.00E−111
61
18414724
(NM_120571) expressed protein
HS







[Arabidopsis thaliana]







gb|AAF61902.1|AF208051_1 (AF208051)







small heat shock-like protein


271
14348
0
100
15234254
(NM_118912) putative protein
HS







[Arabidopsis thaliana] pir||T05878







isp4 protein homolog T29A15.220


272
15708
7.00E−71 
87
18394214
(NM_101391) expressed protein
HS







[Arabidopsis thaliana]


273
17615
1.00E−108
85
18414711
(NM_120567) expressed protein
CS
HS







[Arabidopsis thaliana]


274
17622
0
93
15238837
(NM_121852) putative protein
HS







[Arabidopsis thaliana]


275
70714
0
94
7446439
probable serine/threonine-specific
HS







protein kinase (EC 2.7.1.—) F1715.140 -








Arabidopsis thaliana emb|CAA19877.1|








(AL031032) protein kinase-like protein







[Arabidopsis thaliana]


276
17925
1.00E−157
82
18405518
(NM_129646) expressed protein
HS
CK







[Arabidopsis thaliana] pir||00747







RING-H2 finger protein RHC1a


277
18541
1.00E−128
83
15237100
(NM_119735) hypothetical protein
HS
CS







[Arabidopsis thaliana]


278
11425
1.00E−155
100
18405364
(AB024028) 20S proteasome beta subunit;
HS







multicatalytic endopeptidase







[Arabidopsis thaliana]


279
12263
9.00E−39 
100
15241279
small zinc finger-related protein
HS







[Arabidopsis thaliana]







gi|12230183|sp|Q9XGY4|IM08_ARATH







Mitochondrial import inner membrane







translocase subunit Tim8


280
12288
0
97
7488126
AAB01678.1| (U27590) Fe(II) transport
HS







protein [Arabidopsis thaliana]


281
12910
0
90
17065456
(AY062804) A6 anther-specific protein
HS







[Arabidopsis thaliana]


282
14335
0
93
15229692
(NM_111953) omega-3 fatty acid
LL
HS







desaturase, chloroplast precursor







[Arabidopsis thaliana]


283
17427
0
100
13878127
(AF370326) putative 2-nitropropane
HS







dioxygenase [Arabidopsis thaliana]


284
19140
0
100
15223458
(NM_104489) SAR DNA binding protein,
HS







putative [Arabidopsis thaliana]







gb|AAF02835.1|AC009894_6 (AC009894)







nucleolar protein







[Arabidopsis thaliana]







gb|AAG40838.1|AF302492_1 (AF302492)







NOP56-like protein







[Arabidopsis thaliana]


285
19179
7.00E−97 
92
18390408
(NM_100335) expressed protein
PP
SS
HS







[Arabidopsis thaliana] gb|AAB80630.1|







(AC002376) Strong similarity to







Triticum ABA induced membrane protein







(gb|U80037)


286
19251
0
100
21553584
(AY085451) putative 3-isopropylmalate
HS







dehydrogenase [Arabidopsis thaliana]


287
19443
1.00E−171
100
15220490
(NM_102700) zinc finger protein,
HS







putative [Arabidopsis thaliana]







gb|AAG51745.1|AC068667_24 (AC068667)







zinc finger protein, putative;







86473-88078 [Arabidopsis thaliana]


288
19607
0
90
15239867
(NM_124313) xylosidase
HS







[Arabidopsis thaliana]


289
19915
2.00E−87 
50
15229221
(NM_111278) NAM-like protein (no
SP
HS







apical meristem) [Arabidopsis thaliana]


290
70222
0
97
15240523
(NM_124341) amino acid permease 6
DS
PP
HS







(emb|CAA65051.1) [Arabidopsis thaliana]


291
70464
1.00E−106
92
15233481
(NM_118221) putative protein
HS







[Arabidopsis thaliana]


292
70474
1.00E−148
99
20127049
(AF488587) putative bHLH transcription
HS







factor [Arabidopsis thaliana]


293
70484
0
93
18418491
(NM_119632) putative protein
CS
PP
HS







[Arabidopsis thaliana]


294
72474
1.00E−129
81
14150732
(AF374475) hypersensitive-induced
PP
HS







response protein [Oryza sativa]


295
13047
1.00E−170
86
15237573
(NM_123481) purine permease-like
LL







protein [Arabidopsis thaliana]







dbj|BAB09718.1| (AB010072) purine







permease-like protein







[Arabidopsis thaliana]


296
13304
0
92
15227905
(NM_127337) putative
LL







senescence-associated protein 12







[Arabidopsis thaliana]


297
13474
0
97
2318131
(AF014824) histone deacetylase
LL







[Arabidopsis thaliana]


298
19252
3.00E−85 
100
18397475
(NM_111486) putative dual-specificity
PP
LL
SS
HS
CS







protein phosphatase







[Arabidopsis thaliana]


299
12612
7.00E−84 
67
18397426
(NM_111472) expressed protein
LL







[Arabidopsis thaliana]


300
12926
2.00E−08 
63
18407064
expressed protein
LL







[Arabidopsis thaliana]







gi|25408990|pir||


301
13230
3.00E−68 
83
15233017
(NM_111160) unknown protein
LL







[Arabidopsis thaliana]


302
14235
1.00E−142
82
18402650
(NM_103835) expressed protein
LL







[Arabidopsis thaliana]


303
17305
0
100
15222179
(NM_100550) sugar kinase, putative
LL







[Arabidopsis thaliana]


304
17470
1.00E−138
76
15219110
AAD17313.1 |(AF 123310) NAC domain
LL







protein NAM [Arabidopsis thaliana]


305
17718
2.00E−91 
91
15228362
(NM_114694) putative protein
LL







[Arabidopsis thaliana]


306
17904
0
97
18399578
(NM_112070) expressed protein
LL







[Arabidopsis thaliana]


307
18280
0
97
18398767
AAM66940.1| (AY088617)
DS
LL







membrane-associated salt-inducible







protein like [Arabidopsis thaliana]


308
18287
1.00E−148
100
15223439
(NM_100045) polyphosphoinositide
LL







binding protein, putative







[Arabidopsis thaliana]


309
18501
0
94
18418838
(NM_121863) putative protein
LL







[Arabidopsis thaliana]







gb|AAG35778.1|AF280057_1 (AF280057)







tonneau 2 [Arabidopsis thaliana]


310
18877
1.00E−85 
100
18408502
(NM_105311) calmodulin-related protein
LL







[Arabidopsis thaliana]


311
19531
0
98
15241970
(NM_125674) 1-deoxy-D-xylulose
LL







5-phosphate reductoisomerase (DXR)







[Arabidopsis thaliana]


312
70405
0
85
18390592
(NM_100475) expressed protein
SS
LL







[Arabidopsis thaliana]


313
72136
2.00E−37 
66
123379
HMG1/2-like protein (SB11 protein)
LL







gi|99914|pir||S22309 high mobility







group protein







HMG-1 - soybean gi|18645|emb|CAA41200.1|







HMG-1 like protein gene [Glycine max]


314
72611
1.00E−102
82
6721504
(AP001072) hypothetical protein
LL







[Oryza sativa (japonica







cultivar-group)]


315
12627
0
100
15236663
(NM_118524) UDPglucose
LN







4-epimerase - like







protein [Arabidopsis thaliana]


316
12813
0
96
2454184
(U80186) pyruvate dehydrogenase E1
LN







beta subunit [Arabidopsis thaliana]


317
14945
1.00E−122
92
18400517
(NM_112338) expressed protein
LN







[Arabidopsis thaliana] dbj|BAB02642.1|







(AP002061) MtN3-like protein


318
15345
0
97
15237392
(NM_123987) ornithine
LN







aminotransferase







[Arabidopsis thaliana]


319
15348
0
81
18414239
(NM_117530) expressed protein
LN







[Arabidopsis thaliana]


320
16325
1.00E−105
100
15225174
(NM_128763) putative alanine acetyl
LN







transferase [Arabidopsis thaliana]







gb|AAD15401.1


321
16702
0
77
18408943
(NM_105480) expressed protein
LN







[Arabidopsis thaliana]







sp|Q9M647|IAR1_ARATH IAA-alanine







resistance protein 1


322
16836
0
100
11692854
AF327534_1 (AF327534) putative
LN







adenosine triphosphatase







[Arabidopsis thaliana]


323
17002
1.00E−138
56
18414140
(NM_117486) Expressed protein
LN







[Arabidopsis thaliana] gb|AAK68800.1|







(AY042860) Unknown protein







[Arabidopsis thaliana]


324
17012
3.00E−79 
100
18398187
(NM_127222) actin depolymerizing
LN







factor 5 [Arabidopsis thaliana]


325
17017
1.00E−155
86
11358585
nuclear envelope membrane protein-like -
LN








Arabidopsis thaliana



326
17344
3.00E−49 
100
18424201
SKP1 family [Arabidopsis thaliana]
PP
LN







gi|9759236|dbj|BAB09760.1| contains







similarity to elongin C~gene_id: MNC17.5







[Arabidopsis thaliana]







gi|15028385|gb|AAK76669.1| putative







elongin protein]


327
17426
0
95
15238801
(NM_124151) farnesyl diphosphate
LN







synthase precursor (gb|AAB49290.1)







[Arabidopsis thaliana]


328
17655
1.00E−129
86
15227472
(NM_129758) putative C2H2-type zinc
LN







finger protein [Arabidopsis thaliana]


329
17656
1.00E−135
74
15233081
(NM_115995) putative DNA-binding
LN







protein [Arabidopsis thaliana]


330
17906
1.00E−129
100
18378887
(NM_100065) expressed protein
PP
LN







[Arabidopsis thaliana]


331
18278
0
95
15220147
(NM_103617) Cyclin, putative
LN







[Arabidopsis thaliana]


332
18822
0
92
15232759
(NM_111813) putative protein kinase
LN







[Arabidopsis thaliana]


333
18881
0
100
18401029
(NM_112485) putative L-asparaginase
LN







[Arabidopsis thaliana]


334
19213
2.00E−70 
91
18408726
(NM_105394) expressed protein
LN







[Arabidopsis thaliana]


335
19239
1.00E−59 
100
15235876
DNA-directed RNA polymerase
LN







subunit -related [Arabidopsis thaliana]







gi|25313101|pir||A85078


336
19247
1.00E−81 
53
9711883
(AP002524) hypothetical protein~similar
LN







to Drosophila melanogaster chromosome







3L, CG10171 gene product [Oryza sativa







(japonica cultivar-group)]


337
19460
1.00E−146
80
15238816
(NM_121850) AP2-domain DNA-binding
LN







protein-like [Arabidopsis thaliana]


338
19512
0
85
15237502
(NM_124046) bHLH protein-like
LN







[Arabidopsis thaliana]


339
19533
0
99
18395911
(NM_102409) expressed protein
LN







[Arabidopsis thaliana]


340
19603
0
87
18403383
(NM_113143) expressed protein
LN







[Arabidopsis thaliana] dbj|BAB01784.1|







(AB022215) hydroxyproline-rich







glycoprotein [Arabidopsis thaliana]


341
72126
5.00E−78 
53
12005328
(AF239956) unknown
LN







[Hevea brasiliensis]


342
72437
8.00E−89 
92
11994756
(AP001313) kinetechore (Skp1p-like)
LN







protein-like [Arabidopsis thaliana]


343
72441
5.00E−95 
84
15218602
(NM_100157) ribosomal protein L19,
LN







putative [Arabidopsis thaliana]


344
72639
2.00E−73 
91
18403896
(NM_104101) expressed protein
LN







[Arabidopsis thaliana]


345
14825
0
93
15242814
(NM_120445) protein kinase-like
PEG







protein [Arabidopsis thaliana]


346
17931
1.00E−136
68
15242003
(NM_125688) Dof zinc finger
PEG
CS







protein - like







[Arabidopsis thaliana]


347
18854
1.00E−164
79
18423918
(NM_125077) nucleosome assembly
PEG
HS







protein [Arabidopsis thaliana]


348
12237
1.00E−21 
76
18398176
expressed protein
PEG







[Arabidopsis thaliana]







gi|12322743|gb|AAG51367.1|AC012562_28


349
13414
2.00E−69 
92
12324443
(AC012329) unknown protein;
PEG







50647-51606 [Arabidopsis thaliana]


350
16160
1.00E−176
87
18415888
(NM_118352) putative protein
PEG







[Arabidopsis thaliana]


351
16226
1.00E−138
96
9294682
(AP001305) contains similarity to
HS
PEG







RNA polymerase transcriptional







regulation mediator~gene_id: MHC9.3







[Arabidopsis thaliana]


352
16803
1.00E−146
90
18394201
(NM_101382) expressed protein
PEG







[Arabidopsis thaliana]







gb|AAD39643.1|AC007591_8 (AC007591)







Contains a PF|00175 Oxidoreductase







FAD/NADH-binding domain.


353
18260
0
100
15219795
(NM_100349) putative K+ channel,
PEG







beta subunit [Arabidopsis thaliana]


354
18642
2.00E−68 
71
15235819
(NM_118411) predicted protein
PP
PEG







[Arabidopsis thaliana]


355
18721
3.00E−21 
53
18408611
glycine-rich protein
PEG







[Arabidopsis thaliana]







gi|12597766|gb|AAG60079.1|AC013288_13


356
19254
0
96
18398480
(NM_111769) expressed protein
PEG







[Arabidopsis thaliana]


357
70247
0
95
15238559
(NM_122954) glutamate-ammonia ligase
CS
DS
HS
PP
PEG







(EC 6.3.1.2) precursor, chloroplast







(clone lambdaAtgsl1) (pir||S18600)







[Arabidopsis thaliana]


358
70650
1.00E−83 
57
18399283
(NM_127582) expressed protein
PP
PEG







[Arabidopsis thaliana]


359
12635
0
97
15231953
(NM_111700) putative non-phototropic
HS







hypocotyl [Arabidopsis thaliana]


359
11787
0
97
15231953
(NM_111700) putative non-phototropic
PP







hypocotyl [Arabidopsis thaliana]


360
13641
1.00E−42 
87
15218189
dynein light chain -related
PP







[Arabidopsis thaliana]







gi|25405535|pir||E96562


361
14515
0
71
15128395
(AP003255) contains ESTs
PP







AU100655(C11462), C26007







(C11462)~similar to








Arabidopsis thaliana chromosome 3,








F24B22.150-unknown protein







[Oryza sativa (japonica cultivar-group)]


362
14920
0
100
4239819
(AB010875) PHR1 [Arabidopsis thaliana]
PP


363
15204
0
96
15230379
(NM_112829) putative tyrosine
PP







phosphatase [Arabidopsis thaliana]


364
19058
0
96
18396298
(NM_102496) expressed protein
LN







[Arabidopsis thaliana]


364
15216
0
96
18396298
(NM_102496) expressed protein
PP







[Arabidopsis thaliana]


365
15330
5.00E−68 
59
18400296
(NM_112272) expressed protein
PP







[Arabidopsis thaliana]


366
19610
0
100
18409509
(NM_115079) expressed protein
PP
CS







[Arabidopsis thaliana]


367
14338
0
100
15222967
(NM_103926) sterol delta7 reductase
PP
HS
CS







[Arabidopsis thaliana] sp


368
17809
0
100
15242240
(NM_124576) sorbitol dehydrogenase-like
PP
HS







protein [Arabidopsis thaliana]


369
72471
3.00E−83 
52
18395821
(NM_111011) expressed protein
DS
PP
HS







[Arabidopsis thaliana]


370
16403
1.00E−176
73
15237042
(NM_117178) 98b like protein
PP
LL
LN







[Arabidopsis thaliana] p


371
17737
0
86
15240924
(NM_122624) RING-H2 zinc finger
PP
LN







protein-like [Arabidopsis thaliana]


372
18395
0
84
18401775
(NM_128415) putative AP2 domain
SS
PP
LN







transcription factor







[Arabidopsis thaliana]


373
72772
0
100
15226228
(NM_128328) putative cytochrome P450
HS
SP
PP
LN







[Arabidopsis thaliana]


374
19441
0
85
9294477
(AB018114) RING finger protein-like
PP
PEG







[Arabidopsis thaliana]


375
10486
1.00E−99 
100
15237535
(NM_120465) Terminal flower1 (TFL1)
PP







[Arabidopsis thaliana]


376
11409
1.00E−133
100
68888
trichome differentiation protein GL1 -
CS
LN
SS
PP








Arabidopsis thaliana



377
12104
1.00E−132
92
15230178
AF488577_1 (AF488577) putative bHLH
PP







transcription factor







[Arabidopsis thaliana]


378
12258
1.00E−22 
59
21554390
arabinogalactan-protein
PP







[Arabidopsis thaliana]


379
12909
0
100
18398696
(NM_111831) expressed protein
PP







[Arabidopsis thaliana]


380
14310
0
96
15226784
(NM_129655) unknown protein
PP







[Arabidopsis thaliana]


381
14317
0
100
18395560
(NM_126399) expressed protein
PP







[Arabidopsis thaliana]


382
14709
0
91
15219676
(NM_100303) putative beta-ketoacyl-CoA
PP







synthase [Arabidopsis thaliana]







pir||T00951 probable







3-oxoacyl-[acyl-carrier-protein]







synthase (EC 2.3.1.41) F20D22.1


383
15123
0
97
15238451
(NM_120596) putative protein
PP







[Arabidopsis thaliana]


384
16013
4.00E−91 
85
15241799
(NM_125629) ripening-related
PP







protein-like [Arabidopsis thaliana]


385
16185
0
95
18420375
(NM_120069) cysteine proteinase
PP







RD19A [Arabidopsis thaliana]


386
16719
0
100
18401703
(NM_103632) expressed protein
PP







[Arabidopsis thaliana]


387
17490
8.00E−93 
92
18405248
(NM_104392) expressed protein
PP







[Arabidopsis thaliana]


388
17905
8.00E−75 
69
18404002
(NM_113306) PHD-finger protein,
PP







putative [Arabidopsis thaliana]


389
18385
1.00E−117
100
15223626
(NM_104559) integral membrane
PP







protein, putative [Arabidopsis thaliana]


390
18392
0
95
15227193
(NM_127194) putative homeodomain
SS
PP







transcription factor







[Arabidopsis thaliana]


392
18531
1.00E−142
100
15242792
(NM_125746) putative protein
PP







[Arabidopsis thaliana]


393
18603
0
94
18415840
(NM_118332) alcohol dehydrogenase
PP







like protein [Arabidopsis thaliana]


394
19530
0
96
15242217
(NM_122138) Ruv DNA-helicase-like
PP







protein [Arabidopsis thaliana]


395
70202
0
61
15241293
(NM_121408) putative protein
HS
PP







[Arabidopsis thaliana]


396
72009
0
91
6319543
(NC_001134) Amino acid transport
PP







protein for valine, leucine,







isoleucine, and tyrosine; Tat1p







[Saccharomyces cerevisiae]


397
72119
3.00E−70 
57
126078
LATE EMBRYOGENESIS ABUNDANT
PP







PROTEIN D-34 (LEA D-34)


398
10188
0
92
15228011
(NM_129846) putative cytochrome P450
DS







[Arabidopsis thaliana]


399
10404
1.00E−151
94
99713
homeotic protein agamous -
DS








Arabidopsis thaliana



400
11333
1.00E−145
100
7207994
(AF083220) proliferating cellular
DS







nuclear antigen [Arabidopsis thaliana]


401
11719
0
87
15240257
(NM_126126) cyclin D3-like protein
DS







[Arabidopsis thaliana]


402
13663
1.00E−152
94
15227497
(NM_129769) unknown protein
DS







[Arabidopsis thaliana]


403
13958
0
96
15222885
(NM_101226)
SP
DS







aminoalcoholphosphotransferase







[Arabidopsis thaliana]


404
15214
0
92
15223772
(NM_106341) Tub family protein,
DS







putative [Arabidopsis thaliana]


405
10483
2.00E−86 
100
15223944
(NM_100757) superoxidase dismutase
SP
DS







[Arabidopsis thaliana]


406
11711
0
100
15234217
(NM_19505) 2-dehydro-3-deoxyphospho-
DS







heptonate aldolase







[Arabidopsis thaliana]


407
11909
1.00E−126
88
99735
L-ascorbate peroxidase (EC 1.11.1.11)
DS







precursor - Arabidopsis thaliana







(fragment)


408
12216
0
100
15236949
(NM_118837) putative protein
DS







[Arabidopsis thaliana]


409
12236
2.00E−55 
100
15231278
pollen specific protein -related
DS







[Arabidopsis thaliana]


410
12256
0
100
2317731
(AF013628) reversibly glycosylated
DS







polypeptide-2 [Arabidopsis thaliana]


411
12806
1.00E−157
86
15235640
(NM_119926) putative protein
DS







[Arabidopsis thaliana]


412
12904
0
96
15239631
BAA97512.1| (AB026634) 3′(2′),
SP
DS







5′-bisphosphate nucleotidase







protein-like protein







[Arabidopsis thaliana]


413
13212
4.00E−74 
93
15236917
(AL161566) putative protein
DS







[Arabidopsis thaliana]


414
13232
5.00E−30 
60
15223263
expressed protein
DS







[Arabidopsis thaliana]







gi|7485996|pir||T00711


415
13912
9.00E−68 
100
18406846
O64644|SP18_ARATH Probable Sin3
DS







associated polypeptide







[Arabidopsis thaliana]


416
14327
0
92
15221444
(NM_102795) putative GTP-binding
DS







protein [Arabidopsis thaliana]


417
14704
3.00E−71 
46
17228240
(NC_003272) hypothetical protein
DS







[Nostoc sp. PCC 7120]


418
14714
0
94
15219541
(NM_106032) ethylene-insensitive3-like3
DS







(EIL3) [Arabidopsis thaliana]


419
15142
0
74
15235217
(NM_118107) putative protein
SP
DS







[Arabidopsis thaliana]


420
17450
1.00E−169
100
15232066
AAF26152.1|AC008261_9 (AC008261)
DS







putative homeobox-leucine zipper







protein, HAT7 [Arabidopsis thaliana]


421
18607
1.00E−151
94
15221373
(NM_105503) putative transcription
DS







factor [Arabidopsis thaliana]


422
19409
0
73
15241667
(NM_120281) putative homeodomain
DS







protein [Arabidopsis thaliana]


423
19412
0
96
15228826
(NM_116132) putative protein
DS







[Arabidopsis thaliana]


424
13005
0
99
15239405
(NM_122447) cyclin 3a
SP
SS
PEG







[Arabidopsis thaliana] gb|AAC98445.1|







(AC006258) cyclin 3a







[Arabidopsis thaliana]


425
10203
0
81
18405485
(NM_104444) expressed protein
SP







[Arabidopsis thaliana]


426
11327
0
92
12643807
Protein farnesyltransferase alpha
SP







subunit (CAAX farnesyltransferase







alpha subunit) (RAS proteins







prenyltransferase alpha)







(FTase-alpha)[Arabidopsis thaliana]


427
12018
1.00E−175
96
18404664
(NM_129374) expressed protein
LL







[Arabidopsis thaliana]


427
11814
1.00E−175
96
18404664
(NM_129374) expressed protein
SP







[Arabidopsis thaliana]


428
13003
1.00E−169
85
18394319
(NM_101474) expressed protein
SP







[Arabidopsis thaliana]


429
13949
1.00E−160
85
18399097
(NM_103124) expressed protein
SP







[Arabidopsis thaliana]


430
16416
1.00E−161
94
15236283
(NM_116570) putative chloroplast
SP







protein import component







[Arabidopsis thaliana]


431
16438
1.00E−167
78
18403775
(AC004667) expressed protein
SP







[Arabidopsis thaliana] gb|AAM62820.1|







(AY085599) zinc finger protein







Glo3-like [Arabidopsis thaliana]


432
17124
0
100
15221491
(NM_104934) similar to flavin-
SP







containing monooxygenase (sp|P36366);







similar to ESTs gb|R30018, gb|H36886,







gb|N37822, and gb|T88100







[Arabidopsis thaliana]


433
19132
0
92
18396094
(NM_111084) expressed protein
SP







[Arabidopsis thaliana]


434
17922
1.00E−134
83
7485939
AAC13593.1| (AF058914) contains
LL
SP
CS







similarity to Arabidopsis thaliana







DNA-damage-repair/tolerance







resistance protein DRT111 (SW: P42698)


435
19719
1.00E−141
72
6692816
(AB036735) allyl alcohol dehydrogenase
PEG
SP
HS







[Nicotiana tabacum]


436
14274
8.00E−90 
100
18407428
(NM_130339) expressed protein
SP







[Arabidopsis thaliana]


436
17336
8.00E−90 
100
18407428
(NM_130339) expressed protein
SP
LL







[Arabidopsis thaliana]


437
17735
1.00E−108
91
18404601
(NM_129353) expressed protein
SP
LL







[Arabidopsis thaliana]


438
19249
5.00E−43 
100
21553354
glycine-rich RNA binding protein 7
PP
SP
LN







[Arabidopsis thaliana]


439
18513
0
96
15226492
(NM_130274) putative protein kinase
SP
PP
SS







[Arabidopsis thaliana] pir||T02181







protein kinase homolog F14M4.11


440
11517
1.00E−153
85
18412044
(NM_106509) expressed protein
SP







[Arabidopsis thaliana]


441
12363
0
100
15242458
(NM_123934) GDSL-motif lipase/
SP







hydrolase-like protein







[Arabidopsis thaliana]


442
12922
7.00E−81 
100
18403216
(NM_128881) expressed protein
SP







[Arabidopsis thaliana]


443
15360
1.00E−152
89
18398108
(NM_111674) expressed protein
SP







[Arabidopsis thaliana]


444
16028
0
100
15232435
(NM_115274) peptide transport-like
SP







protein [Arabidopsis thaliana]


445
16648
1.00E−134
100
15891409
NP_534027.1| (NC_003305)
SP







3-oxoacyl-(acyl-carrier-protein)







reductase [Agrobacterium tumefaciens







str. C58 (U. Washington)]


446
16705
0
95
15236458
(NM_116899) nodulin-like protein
SP







[Arabidopsis thaliana]


447
16715
0
96
15238198
(NM_120537) putative protein
SP







[Arabidopsis thaliana]


448
17316
1.00E−124
95
18378907
(NM_100079) expressed protein
SP







[Arabidopsis thaliana]


449
17331
0
85
15220100
(NM_106680) putative sulfate
SP







transporter [Arabidopsis thaliana]


450
17339
2.00E−79 
100
15228208
(NM_114633) putative protein
SP







[Arabidopsis thaliana]


451
17420
1.00E−124
94
15229782
(NM_114248) glutathione
SP







transferase-like protein







[Arabidopsis thaliana]


452
17446
1.00E−144
88
15230344
(NM_115620) AP2 transcription
SP







factor - like protein







[Arabidopsis thaliana]


453
17487
1.00E−71 
78
15218649
(NM_102603) ethylene-responsive
SP







element binding factor, putative







[Arabidopsis thaliana]


454
17740
0
97
15232593
(NM_114527) scarecrow-like protein
SP







[Arabidopsis thaliana]


455
17752
1.00E−176
94
9755372
(AC000107) F17F8.3
SP







[Arabidopsis thaliana]


456
18021
0
96
7262677
(AC012188) Contains similarity to
SP







MYB-Related Protein B from








Gallus gallus g [Arabidopsis thaliana]



457
18245
1.00E−168
86
15239503
(NM_122484) GATA transcription
SP







factor - like [Arabidopsis thaliana]


458
18617
3.00E−69 
94
18424873
(NM_125879) expressed protein
SP







[Arabidopsis thaliana]


459
18734
0
96
15237253
(NM_121609) UVB-resistance
SP







protein-like [Arabidopsis thaliana]


460
18823
0
82
15222227
AAM62510.1| (AY085278) homeodomain
SP







protein BELL1, putative







[Arabidopsis thaliana]


461
19222
0
100
18390636
(NM_100509) expressed protein
PP
SP







[Arabidopsis thaliana]


462
19430
0
95
18405149
(NM_129533) expressed protein
SP







[Arabidopsis thaliana]


463
12332
1.00E−113
84
15221408
(NM_106142) myb-related transcription
SS







activator, putative







[Arabidopsis thaliana]


464
13649
1.00E−127
92
11281134
hypothetical protein F9G14.50 -
SS








Arabidopsis thaliana



465
16113
0
97
15217485
AAD18098.1| (AC006416) Identical to
SS







gb|Y10557 g5bf gene from








Arabidopsis thaliana putative








RNA-binding protein







[Arabidopsis thaliana]


466
12069
1.00E−63 
100
18410081
(NM_105902) expressed protein
SS







[Arabidopsis thaliana]


467
12906
0
98
5915825
Cytochrome P450 71B2 dbj|BAA28537.1|
SS







(D78605) cytochrome P450







monooxygenase [Arabidopsis thaliana]


468
13443
1.00E−111
100
18409105
(NM_114908) expressed protein
SS







[Arabidopsis thaliana]


469
14707
0
96
13122288
(AB047808) proteasel (pfpl)-like
SS







protein [Arabidopsis thaliana]


470
15116
1.00E−167
100
15242465
(NM_121002) inorganic pyrophosphatase -
SS







like protein [Arabidopsis thaliana]


471
16117
1.00E−90 
78
15227349
(NM_129704) calmodulin-like protein
SS







[Arabidopsis thaliana]


472
16136
1.00E−115
92
15222919
(NM_101236) unknown protein
SS







[Arabidopsis thaliana]


473
19077
8.00E−98 
70
15221874
(NM_101737) hypothetical protein
HS
PP
SS







[Arabidopsis thaliana]


474
19178
0
95
6321456
(NC_001139) gamma-aminobutyrate
CK
HS
PEG
PP
SS







(GABA) transaminase (4-aminobutyrate







aminotransferase); Uga1p







[Saccharomyces cerevisiae]


475
70752
4.00E−46 
100
15224299
trypsin inhibitor-related
SS







[Arabidopsis thaliana]







gi|3287862|sp|O22867|ITI5_ARATH


476
70753
4.00E−86 
100
15231204
(NM_112176) DnaJ protein, putative
SS







[Arabidopsis thaliana]


477
70809
6.00E−70 
48
20503004
(AC098693) Hypothetical protein
LL
PP
SS







[Oryza sativa (japonica cultivar-group)]


478
72091
1.00E−177
94
6322655
(NC_001143) Interacts with and may
LL
LN
SS







be a positive regulator of GLC7 which







encodes type1 protein phosphatase;







Sds22p [Saccharomyces cerevisiae]









Trait Improvement Screens

DS—Improvement of Drought Tolerance Identified by Soil Drought Stress Tolerance Screen:


Drought or water deficit conditions impose mainly osmotic stress on plants. Plants are particularly vulnerable to drought during the flowering stage. The drought condition in the screening process disclosed in Example 1B started from the flowering time and was sustained to the end of harvesting. The present invention provides recombinant DNA that can improve the plant survival rate under such sustained drought condition. Exemplary recombinant RNA for conferring such drought tolerance are identified as such in Table 3. Such recombinant RNA may find particular use in generating transgenic plants that are tolerant to the drought condition imposed during flowering time and in other stages of the plant life cycle. As demonstrated from the model plant screen, in some embodiments of transgenic plants with trait-improving recombinant DNA grown under such sustained drought condition can also have increased total seed weight per plant in addition to the increased survival rate within a transgenic population, providing a higher yield potential as compared to control plants.


PEG—Improvement of Drought Tolerance Identified by PEG Induced Osmotic Stress Tolerance Screen:


Various drought levels can be artificially induced by using various concentrations of polyethylene glycol (PEG) to produce different osmotic potentials (Pilon-Smits et a. (1995) Plant Physiol. 107:125-130). Several physiological characteristics have been reported as being reliable indications for selection of plants possessing drought tolerance. These characteristics include the rate of seed germination and seedling growth. The traits can be assayed relatively easily by measuring the growth rate of seedling in PEG solution. Thus, a PEG-induced osmotic stress tolerance screen is a useful surrogate for drought tolerance screen. As demonstrated from the model plant screen, embodiments of transgenic plants with trait-improving recombinant DNA identified in a PEG-induced osmotic stress tolerance screen can survive better drought conditions providing a higher yield potential as compared to control plants.


SS—Improvement of Drought Tolerance Identified by High Salinity Stress Tolerance Screen:


Three different factors are responsible for salt damages: (1) osmotic effects, (2) disturbances in the mineralization process, (3) toxic effects caused by the salt ions, e.g., inactivation of enzymes. While the first factor of salt stress results in the wilting of the plants that is similar to drought effect, the ionic aspect of salt stress is clearly distinct from drought. The present invention provides genes that help plants to maintain biomass, root growth, and/or plant development in high salinity conditions, which are identified as such in Table 3. Since osmotic effect is one of the major component of salt stress, which is common to the drought stress, trait-improving recombinant DNA identified in a high salinity stress tolerance screen can provide transgenic crops with improved drought tolerance.


HS—Improvement of Drought Tolerance Identified by Heat Stress Tolerance Screen:


Heat and drought stress often occur simultaneously, limiting plant growth. Heat stress can cause the reduction in photosynthesis rate, inhibition of leaf growth and osmotic potential in plants. Thus, genes identified by the present invention as heat stress tolerance conferring genes may also impart improved drought tolerance to plants.


CK and CS—Improvement of Tolerance to Cold Stress:


Low temperature may immediately result in mechanical constraints, changes in activities of macromolecules, and reduced osmotic potential. In the present invention, two screening conditions, i.e., cold shock tolerance screen (CK) and cold germination tolerance screen (CS), were set up to look for transgenic plants that display visual growth advantage at lower temperature. In cold germination tolerance screen, the transgenic Arabidopsis plants were exposed to a constant temperature of 8° C. from planting until day 28 post planting. The recombinant nucleotides identified by such screen as cold stress tolerance conferring genes are particular useful for the production of transgenic plant that can germinate more robustly in a cold temperature as compared to the wild type plants. In cold shock tolerance screen, the transgenic plants were first grown under the normal growth temperature of 22° C. until day 8 post planting, and subsequently were placed under 8° C. until day 28 post planting. In some preferred embodiments, transgenic plants transformed with the recombinant DNA constructs comprising SEQ ID NO: 1 or SEQ ID NO: 2 display more robust growth in both cold tolerance screens.


Improvement of Tolerance to Multiple Stresses:


Different kinds of stresses often lead to identical or similar reaction in the plants. Genes that are activated or inactivated as a reaction to stress can either act directly in a way the genetic product reduces a specific stress, or they can act indirectly by activating other specific stress genes. By manipulating the activity of such regulatory genes, i.e., multiple stress tolerance genes, the plant can be enabled to react to different kinds of stresses. For examples, SEQ ID NO: 37, SEQ ID NO: 38 and SEQ ID NO: 128 can be used to improve both heat stress tolerance and cold stress tolerance in plants. Of particular interest, plants transformed with SEQ ID NO: 59 can resist heat stress, salt stress and cold stress. In addition to these multiple stress tolerance genes, the stress tolerance conferring genes provided by the present invention may be used in combinations to generate transgenic plants that can resist multiple stress conditions.


PP—Improvement of Early Plant Growth and Development.

It has been known in the art that to minimize the impact of disease on crop profitability, it is important to start the season with healthy vigorous plants. This means avoiding seed and seedling diseases, leading to increased nutrient uptake and increased yield potential. Traditionally early planting and applying fertilizer are the methods used for promoting early seedling vigor. In early development stage, plant embryos establish only the basic root-shoot axis, a cotyledon storage organ(s), and stem cell populations, called the root and shoot apical meristems, which continuously generate new organs throughout post-embryonic development. “Early growth and development” used herein encompasses the stages of seed imbibition through the early vegetative phase. The present invention provides genes that are useful to produce transgenic plants that have advantages in one or more processes including, but not limited to, germination, seedling vigor, root growth and root morphology under non-stressed conditions. The transgenic plants starting from a more robust seedling are less susceptible to the fungal and bacterial pathogens that attach germinating seeds and seedling. Furthermore, seedlings with advantage in root growth are more resistant to drought stress due to extensive and deeper root architecture. Therefore, the genes conferring the growth advantage in early stages to plants may also be used to generate transgenic plants that are more resistant to various stress conditions due to improved early plant development. The present invention provides such exemplary genes that confer both the stress tolerance and growth advantages to plants, identified as such in Table 3, e.g., SEQ ID NO: 128 which can improve the plant early growth and development and impart heat and cold tolerance to plants.


SP—Improvement of Late Plant Growth and Development

“Late growth and development” used herein encompasses the stages of leaf development, flower production, and seed maturity. In certain embodiments, transgenic plants produced using genes that confer growth advantages to plants provided by the present invention, identified as such in Table 3, exhibit at least one phenotypic characteristics including, but not limited to, increased rosette radius, increased rosette dry weight, seed dry weight, silique dry weight, and silique length. On one hand, the rosette radius and rosette dry weight are used as the indexes of photosynthesis capacity, and thereby plant source strength and yield potential of a plant. On the other hand, the seed dry weight, silique dry weight and silique length are used as the indexes for plant sink strength, which are considered as the direct determinants of yield.


LL—Improvement of Tolerance to Shade Stress

The effects of light on plant development are especially prominent at the seedling stage. Under normal light conditions with unobstructed direct light, a plant seeding develops according to a characteristic photomorphogenic pattern, in which plants have open and expanded cotyledons and short hypocotyls. Then the plant's energy is devoted to cotyledon and leaf development while longitudinal extension growth is minimized. Under low light condition where light quality and intensity are reduced by shading, obstruction or high population density, a seedling displays a shade-avoidance pattern, in which the seedling displays a reduced cotyledon expansion, and hypocotyls extension is greatly increased. As the result, a plant under low light condition increases significantly its stem length at the expanse of leaf, seed or fruit and storage organ development, thereby adversely affecting of yield. The present invention provides recombinant nucleotides that enable plants to have an attenuated shade avoidance response so that the source of plant can be contribute to reproductive growth efficiently, resulting higher yield as compared to the wild type plants. One skilled in the art can recognize that transgenic plants generated by the present invention may be suitable for a higher density planting, thereby resulting increased yield per unit area. In some preferred embodiments, the present invention provides transgenic plants that have attenuated low light response and advantage in the flower bud formation.


LN—Improvement of Tolerance to Low Nitrogen Availability Stress

Nitrogen is a key factor in plant growth and crop yield. The metabolism, growth and development of plants are profoundly affected by their nitrogen supply. Restricted nitrogen supply alters shoot to root ratio, root development, activity of enzymes of primary metabolism and the rate of senescence (death) of older leaves. All field crops have a fundamental dependence on inorganic nitrogenous fertilizer. Since fertilizer is rapidly depleted from most soil types, it must be supplied to growing crops two or three times during the growing season. Improved nitrogen use efficiency by plants should enable crops cultivated under low nitrogen availability stress condition resulted from low fertilizer input or poor soil quality.


According to the present invention, transgenic plants generated using the recombinant nucleotides, which confer improved nitrogen use efficiency, identified as such in Table 3, exhibit one or more desirable traits including, but not limited to, increased seedling weight, increased number of green leaves, increased number of rosette leaves, increased root length and advanced flower bud formation. One skilled in the art may recognize that the transgenic plants with improved nitrogen use efficiency, established by the present invention may also have altered amino acid or protein compositions, increased yield and/or better seed quality. The transgenic plants of the present invention may be productively cultivated under nitrogen nutrient deficient conditions, i.e., nitrogen-poor soils and low nitrogen fertilizer inputs that would cause the growth of wild type plants to cease or to be so diminished as to make the wild type plants practically useless. The transgenic plants also may be advantageously used to achieve earlier maturing, faster growing, and/or higher yielding crops and/or produce more nutritious foods and animal feedstocks when cultivated using nitrogen non-limiting growth conditions.


Stacked Traits

The present invention also encompasses transgenic plants with stacked engineered traits, e.g., a crop having an improved phenotype resulting from expression of a trait-improving recombinant DNA, in combination with herbicide and/or pest resistance traits. For example, genes of the current invention can be stacked with other traits of agronomic interest, such as a trait providing herbicide resistance, for example a RoundUp Ready trait, or insect resistance, such as using a gene from Bacillus thuringensis to provide resistance against lepidopteran, coliopteran, homopteran, hemiopteran, and other insects. Herbicides for which resistance is useful in a plant include glyphosate herbicides, phosphinothricin herbicides, oxynil herbicides, imidazolinone herbicides, dinitroaniline herbicides, pyridine herbicides, sulfonylurea herbicides, bialaphos herbicides, sulfonamide herbicides and gluphosinate herbicides. To illustrate that the production of transgenic plants with herbicide resistance is a capability of those of ordinary skill in the art, reference is made to U.S. patent application publications 2003/0106096A1 and 2002/0112260A1 and U.S. Pat. Nos. 5,034,322; 5,776,760, 6,107,549 and 6,376,754, all of which are incorporated herein by reference. To illustrate that the production of transgenic plants with pest resistance is a capability of those of ordinary skill in the art reference is made to U.S. Pat. Nos. 5,250,515 and 5,880,275 which disclose plants expressing an endotoxin of Bacillus thuringiensis bacteria, to U.S. Pat. No. 6,506,599 which discloses control of invertebrates which feed on transgenic plants which express dsRNA for suppressing a target gene in the invertebrate, to U.S. Pat. No. 5,986,175 which discloses the control of viral pests by transgenic plants which express viral replicase, and to U.S. Patent Application Publication 2003/0150017 A1 which discloses control of pests by a transgenic plant which express a dsRNA targeted to suppressing a gene in the pest, all of which are incorporated herein by reference.


Once one recombinant DNA has been identified as conferring an improved trait of interest in transgenic Arabidopsis plants, several methods are available for using the sequence of that recombinant DNA and knowledge about the protein it encodes to identify homologs of that sequence from the same plant or different plant species or other organisms, e.g., bacteria and yeast. Thus, in one aspect, the invention provides methods for identifying a homologous gene with a DNA sequence homologous to any of SEQ ID NO: 1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239, or a homologous protein with an amino acid sequence homologous to any of SEQ ID NO: 240 through SEQ ID NO: 390 and SEQ ID NO: 392 through SEQ ID NO: 478. In another aspect, the present invention provides the protein sequences of identified homologs for a sequence listed as SEQ ID NO: 240 through SEQ ID NO: 390 and SEQ ID NO: 392 through SEQ ID NO: 478. In yet another aspect, the present invention also includes linking or associating one or more desired traits, or gene function with a homolog sequence provided herein.


The trait-improving recombinant DNA and methods of using such trait-improving recombinant DNA for generating transgenic plants with improved traits provided by the present invention are not limited to any particular plant species. Indeed, the plants according to the present invention may be of any plant species, i.e., may be monocotyledonous or dicotyledonous. Preferably, they will be agricultural useful plants, i.e., plants cultivated by man for purposes of food production or technical, particularly industrial applications. Of particular interest in the present invention are corn and soybean plants. The recombinant DNA constructs optimized for soybean transformation and corn transformation are provide by the present invention. Other plants of interest in the present invention for production of transgenic plants having improved traits include, without limitation, cotton, canola, wheat, sunflower, sorghum, alfalfa, barley, millet, rice, tobacco, fruit and vegetable crops, and turfgrass.


In certain embodiments, the present invention contemplates to use an orthologous gene in generating the transgenic plants with similarly improved traits as the transgenic Arabidopsis counterpart. Improved physiological properties in transgenic plants of the present invention may be confirmed in responses to stress conditions, for example in assays using imposed stress conditions to detect improved responses to drought stress, nitrogen deficiency, cold growing conditions, or alternatively, under naturally present stress conditions, for example under field conditions. Biomass measures may be made on greenhouse or field grown plants and may include such measurements as plant height, stem diameter, root and shoot dry weights, and, for corn plants, ear length and diameter.


Trait data on morphological changes may be collected by visual observation during the process of plant regeneration as well as in regenerated plants transferred to soil. Such trait data includes characteristics such as normal plants, bushy plants, taller plants, thicker stalks, narrow leaves, striped leaves, knotted phenotype, chlorosis, albino, anthocyanin production, or altered tassels, ears or roots. Other improved traits may be identified by measurements taken under field conditions, such as days to pollen shed, days to silking, leaf extension rate, chlorophyll content, leaf temperature, stand, seedling vigor, internode length, plant height, leaf number, leaf area, tillering, brace roots, stay green, stalk lodging, root lodging, plant health, bareness/prolificacy, green snap, and pest resistance. In addition, trait characteristics of harvested grain may be confirmed, including number of kernels per row on the ear, number of rows of kernels on the ear, kernel abortion, kernel weight, kernel size, kernel density and physical grain quality.


To confirm hybrid yield in transgenic corn plants expressing genes of the present invention, it may be desirable to test hybrids over multiple years at multiple locations in a geographical location where maize is conventionally grown, e.g., in Iowa, Illinois or other locations in the midwestern United States, under “normal” field conditions as well as under stress conditions, e.g., under drought or population density stress.


Transgenic plants can be used to provide plant parts according to the invention for regeneration or tissue culture of cells or tissues containing the constructs described herein. Plant parts for these purposes can include leaves, stems, roots, flowers, tissues, epicotyl, meristems, hypocotyls, cotyledons, pollen, ovaries, cells and protoplasts, or any other portion of the plant which can be used to regenerate additional transgenic plants, cells, protoplasts or tissue culture. Seeds of transgenic plants are provided by this invention can be used to propagate more plants containing the trait-improving recombinant DNA constructs of this invention. These descendants are intended to be included in the scope of this invention if they contain a trait-improving recombinant DNA construct of this invention, whether or not these plants are selfed or crossed with different varieties of plants.


The various aspects of the invention are illustrated by means of the following examples which are in no way intended to limit the full breath and scope of claims.


EXAMPLES
Example 1
Identification of Recombinant DNA that Confers Improved Trait(s) to Plants
A. Expression Constructs for Arabidopsis Plant Transformation

Each gene of interest was amplified from a genomic or cDNA library using primer specific to sequences upstream and downstream of coding region. Transformation vectors were prepared to constitutively transcribe DNA in either sense orientation (for enhanced protein expression) or anti-sense orientation (for endogenous gene suppression) under the control of an enhanced Cauliflower Mosaic Virus 35S promoter (U.S. Pat. No. 5,359,142) directly or indirectly (Moore et al., PNAS 95:376-381, 1998; Guyer et al., Genetics 149: 633-639, 1998; International patent application NO. PCT/EP98/07577). The transformation vectors also contain a bar gene as a selectable marker for resistance to glufosinate herbicide. The transformation of Arabidopsis plants was carried out using the vacuum infiltration method known in the art (Bethtold et al., Methods Mol. Biol. 82:259-66, 1998). Seeds harvested from the plants, named as T1 seeds, were subsequently were grown in a glufosinate-containing selective medium to select for plants which were actually transformed and which produced T2 transgenic seed. For first pass screening T2 seeds from five independent transgenic lines of Arabidopsis were


B. Soil Drought Tolerance Screen

This example describes a soil drought tolerance screen to identify Arabidopsis plants transformed with recombinant DNA that wilt less rapidly and/or produce higher seed yield when grown in soil under drought conditions


T2 seeds were sown in flats filled with Metro/Mix® 200 (The Scotts® Company, USA). Humidity domes were added to each flat and flats were assigned locations and placed in climate-controlled growth chambers. Plants were grown under a temperature regime of 22° C. at day and 20° C. at night, with a photoperiod of 16 hours and average light intensity of 170 μmol/m2/s. After the first true leaves appeared, humidity domes were removed. The plants were sprayed with glufosinate herbicide and put back in the growth chamber for 3 additional days. Flats were watered for 1 hour the week following the herbicide treatment. Watering was continued every seven days until the flower bud primordia became apparent, at which time plants were watered for the last time.


To identify drought tolerant plants, plants were evaluated for wilting response and seed yield. Beginning ten days after the last watering, plants were examined daily until 4 plants/line had wilted. In the next six days, plants were monitored for wilting response. Five drought scores were assigned according to the visual inspection of the phenotypes: 1 for healthy, 2 for dark green, 3 for wilting, 4 severe wilting, and 5 for dead. A score of 3 or higher was considered as wilted.


At the end of this assay, seed yield measured as seed weight per plant under the drought condition was characterized for the transgenic plants and their controls and analyzed as a quantitative response according to example 1M.


Two approaches were used for statistical analysis on the wilting response. First, the risk score was analyzed for wilting phenotype and treated as a qualitative response according to the example 1L. Alternatively, the survival analysis was carried out in which the proportions of wilted and non-wilted transgenic and control plants were compared over each of the six days under scoring and an overall log rank test was performed to compare the two survival curves using S-PLUS statistical software (S-PLUS 6, Guide to statistics, Insightful, Seattle, Wash., USA). Table 4 provides a list of recombinant DNA constructs that improve drought tolerance in transgenic plants.














TABLE 4










Wilt Response
Seed Weight/
Survival Anaysis


Pep


Risk score
plant
of wilt response


















SEQ
Con-

RS
p-


p-

diff time
p-



ID
struct_id
Orientation
mean
value
c
delta
value
c
to wilting
value
c





















241
74518
SENSE
−0.131
0.985
/
1.26
0
S
0
1
/


290
70222
SENSE
−0.032
0.726
/
0.461
0.001
S
−0.63
0.21
/


307
18280
SENSE
−0.066
0.937
/
0.402
0.004
S
0
1
/


357
70247
SENSE
0.11
0.169
T
0.336
0.006
S
−0.57
0.134
/


369
72471
SENSE
0.16
0.038
S
−0.053
0.546
/
0.16
0.226
/


398
10188
ANTI-SENSE
0.133
0.004
S
0.68
0
S
0.24
0.297
/


399
10404
ANTI-SENSE
0.13
0.068
T
0.2
0.271
/
0.57
0.083
T


400
11333
ANTI-SENSE
0.266
0.007
S
0.291
0.293
/
0.77
0.131
T


401
11719
ANTI-SENSE
0.56
0.006
S
−0.088
0.751
/
0
1
/


402
13663
ANTI-SENSE
0.123
0.024
S
−0.198
0.763
/
0.04
0.852
/


403
13958
ANTI-SENSE
0.526
0.001
S
0.518
0.08
T
0
1
/


404
15214
ANTI-SENSE
0.018
0.208
/
0.19
0.243
/
0.06
0.815
/


405
10483
SENSE
0.313
0.012
S
−0.095
0.795
/
0.28
0.358
/


406
11711
SENSE
0.346
0.005
S
0.218
0.009
S
0.3
0.371
/


407
11909
SENSE
0.094
0.021
S
0.002
0.493
/
0.26
0.767
/


408
12216
SENSE
0.623
0
S
−0.195
0.714
/
2.55
0.007
S


409
12236
SENSE
0.233
0.019
S
0.32
0.026
S
0.29
0.124
T


410
12256
SENSE
0.254
0.001
S
0.133
0.245
/
0.09
0.869
/


411
12806
SENSE
0.198
0.016
S
0.689
0.018
S
0.16
0.696
/


412
12904
SENSE
0.292
0.033
S
−1.195
0.992
/
0.81
0.023
S


413
13212
SENSE
0.24
0.006
S
0.676
0.01
S
0.25
0.559
/


414
13232
SENSE
0.166
0.134
T
−0.044
0.568
/
0.81
0.105
T


415
13912
SENSE
0.3
0
S
−0.084
0.74
/
0.91
0.054
T


416
14327
SENSE
0.181
0.008
S
−0.423
0.831
/
0.75
0.021
S


417
14704
SENSE
0.174
0.01
S
0.26
0.003
S
0.92
0.538
/


418
14714
SENSE
0.313
0.007
S
−0.283
0.987
/
0.3
0.702
/


419
15142
SENSE
0.28
0
S
−0.498
0.871
/
0.29
0.196
T


420
17450
SENSE
0.117
0.102
T
0.238
0.079
T
−0.05
0.834
/


421
18607
SENSE
0.161
0.013
S
−0.167
0.782
/
0.64
0.034
S


422
19409
SENSE
0.177
0.032
S
0.33
0.119
T
0.36
0.298
/


423
19412
SENSE
0.501
0.001
S
−0.006
0.515
/
0.15
0.84
/





S: represents that the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05, p value, of the delta of a quantitative response or of the risk score of a qualitative response, is the probability that the observed difference between the transgenic plants and the reference occur by chance)


T: represents that the transgenic plants showed a trend of trait improvement as compared to the reference, preferably with p < 0.2,


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset.






C. Heat Stress Tolerance Screen

Under high temperatures, Arabidopsis seedlings become chlorotic and root growth is inhibited. This example sets forth the heat stress tolerance screen to identify Arabidopsis plants transformed with the gene of interest that are more resistant to heat stress based on primarily their seedling weight and root growth under high temperature. T2 seeds were plated on ½×MS salts, 1% phytagel, with 10 μg/ml glufosinate (7 per plate with 2 control seeds; 9 seeds total per plate). Plates were placed at 4° C. for 3 days to stratify seeds. Plates were then incubated at room temperature for 3 hours and then held vertically for 11 additional days at temperature of 34° C. at day and 20° C. at night. Photoperiod was 16 h. Average light intensity was ˜140 μmol/m2/s. After 14 days of growth, plants were scored for glufosinate resistance, root length, final growth stage, visual color, and seedling fresh weight. A photograph of the whole plate was taken on day 14.


Visual assessment was carried out to evaluate the robustness of the growth based on the leave size and rosette size.


The seedling weight and root length were analyzed as quantitative responses according to example 1M. The final grow stage at day 14 was scored as success if 50% of the plants had reached 3 rosette leaves and size of leaves are greater than 1 mm (Boyes, et al., (2001) The Plant Cell 13, 1499-1510). The growth stage data was analyzed as a qualitative response according to example 1L. Table 5 provides a list of recombinant DNA constructs that improve heat tolerance in transgenic plants.













TABLE 5







Pep

seedling weight
Root Length
growth stage


















SEQ
Con-


p-


p-

RS
p-



ID
struct_id
Orientation
delta
value
c
delta
value
c
mean
value
c





















268
12007
ANTI-SENSE
1.283
0
S
0.221
0.018
S
0.844
0.044
S


269
12290
ANTI-SENSE
0.92
0.002
S
−0.09
0.683
/
0.4
0.14
T


270
12343
ANTI-SENSE
1.186
0
S
0.008
0.478
/
−0.066
0.818
/


271
14348
ANTI-SENSE
0.917
0
S
0.047
0.352
/
0.034
0.314
/


272
15708
ANTI-SENSE
1.12
0
S
0.122
0.092
T
0.467
0.016
S


273
17615
ANTI-SENSE
1.134
0
S
0.176
0.084
T
0.541
0.102
T


274
17622
ANTI-SENSE
0.728
0
S
−0.142
0.874
/
0.875
0.002
S


275
70714
ANTI-SENSE
1.029
0
S
0.032
0.355
/
−0.003
0.515
/


276
17925
SENSE
0.969
0
S
−0.027
0.588
/
0.22
0.215
/


277
18541
SENSE
0.977
0
S
−0.012
0.559
/
0.982
0.028
S


278
11425
SENSE
1.255
0
S
0.152
0.096
T
0.516
0.005
S


279
12263
SENSE
0.869
0.003
S
−0.023
0.552
/
0.481
0.113
T


280
12288
ANTI-SENSE
1.256
0
S
0.086
0.314
/
0.968
0.036
S


281
12910
SENSE
1.067
0.105
T
0.097
0.274
/
−0.417
1
/


282
14335
SENSE
1.107
0
S
0.16
0
S
−0.024
0.804
/


283
17427
SENSE
0.837
0
S
−0.069
0.706
/
0.569
0.087
T


284
19140
SENSE
0.894
0
S
0.111
0.131
T
1.794
0
S


285
19179
SENSE
1.039
0
S
−0.095
0.742
/
0.614
0.063
T


286
19251
SENSE
0.77
0
S
−0.061
0.771
/
0.543
0.027
S


287
19443
SENSE
1.115
0
S
0.042
0.369
/
0.537
0.078
T


288
19607
SENSE
0.939
0
S
0.024
0.381
/
0.095
0.215
/


289
19915
SENSE
1.336
0.057
T
0.19
0.299
/
0.07
0
S


290
70222
SENSE
0.778
0.004
S
−0.078
0.677
/
1.153
0.015
S


291
70464
SENSE
1.039
0
S
0.026
0.411
/
0.806
0.04
S


292
70474
SENSE
1.026
0
S
0.094
0.207
/
1.145
0.03
S


293
70484
SENSE
1.511
0
S
0.236
0.004
S
0.688
0.016
S


294
72474
SENSE
0.816
0
S
0.095
0.229
/
1.149
0.01
S


298
19252
SENSE
0.571
0.111
T
0.02
0.416
/
1.27
0.022
S


347
18854
SENSE
0.854
0
S
−0.14
0.896
/
0.595
0.148
T


351
16226
SENSE
1.372
0
S
0.244
0.009
S
0.112
0.017
S


357
70247
SENSE
1.146
0
S
0.124
0.114
T
0.953
0.029
S


359
12635
SENSE
0.702
0.109
T
0.587
0.001
S
0.637
0.06
T


367
14338
SENSE
0.888
0
S
0.036
0.326
/
0.17
0.077
T


368
17809
SENSE
0.838
0.002
S
0.033
0.308
/
0.619
0.04
S


369
72471
SENSE
1.051
0.001
S
0.067
0.227
/
1.531
0.005
S


373
72772
SENSE
1.364
0
S
0.299
0.002
S
0.648
0.045
S


395
70202
SENSE
1.159
0
S
−0.116
0.941
/
0.339
0.159
T


435
19719
SENSE
1.184
0
S
0.032
0.411
/
1.433
0.018
S


473
19077
SENSE
1.405
0
S
0.026
0.369
/
0.61
0.013
S


474
19178
SENSE
1.381
0
S
0.267
0.008
S
1.54
0.006
S





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement as compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset






D. Salt Stress Tolerance Screen

This example sets forth the high salinity stress screen to identify Arabidopsis plants transformed with the gene of interest that are tolerant to high levels of salt based on their rate of development, root growth and chlorophyll accumulation under high salt conditions.


T2 seeds were plated on glufosinate selection plates containing 90 mM NaCl and grown under standard light and temperature conditions. All seedlings used in the experiment were grown at a temperature of 22° C. at day and 20° C. at night, a 16-hour photoperiod, an average light intensity of approximately 120 umol/m2. On day 11, plants were measured for primary root length. After 3 more days of growth (day 14), plants were scored for transgenic status, primary root length, growth stage, visual color, and the seedlings were pooled for fresh weight measurement. A photograph of the whole plate was also taken on day 14.


Visual assessment was carried out to evaluate the robustness of the growth based on the leave size and rosette size.


The seedling weight and root length were analyzed as quantitative responses according to example 1M. The final growth stage at day 14 was scored as success if 50% of the plants reached 3 rosette leaves and size of leaves are greater than 1 mm (Boyes, D. C., et al., (2001), The Plant Cell 13, 1499/1510). The growth stage data was analyzed as a qualitative response according to example 1L.









TABLE 6







a list of recombinant nucleotides that improve high salinity tolerance in plants












Seedling Weight
Root Length
Root Length













Pep
Con-
at day 14
at day 11
at day 14
Growth Stage




















SEQ
struct

p-


p-


p-

RS
p-



ID
id
delta
value
c
delta
value
c
delta
vallue
c
mean
value
c























243
17918
0.749
0.001
S
0.007
0.945
/
0.054
0.348
/
0.107
0.152
T


258
17819
0.713
0.026
S
0.281
0.09
T
0.29
0.01
S
1.565
0.025
S


285
19179
0.939
0
S
0.228
0.044
S
0.269
0.001
S
1.561
0.034
S


298
19252
0.831
0.003
S
0.327
0.016
S
0.334
0.001
S
1.5
0.028
S


312
70405
0.266
0.096
T
0.051
0.628
/
0.202
0.014
S
−0.201
0.766
/


372
18395
0.506
0.008
S
0.27
0.033
S
0.24
0.007
S
0.653
0.016
S


376
11409
0.834
0.004
S
0.305
0.007
S
0.329
0.001
S
0.712
0.073
T


390
18392
0.767
0
S
0.325
0.005
S
0.181
0.034
S
0.698
0.109
T


424
13005
0.787
0.003
S
0.228
0.021
S
0.161
0.12
T
1.079
0.013
S


439
18513
0.779
0.019
S
0.377
0.013
S
0.298
0.002
S
0.679
0.069
T


463
12332
0.292
0.604
/
0.204
0.22
/
0.057
0.829
/
0.538
0.188
T


464
13649
0.418
0.03
S
0.062
0.493
/
0.147
0.1
T
1.39
0.028
S


465
16113
0.108
0.305
/
0.168
0.221
/
0.138
0.076
T
1.09
0.068
T


466
12069
0.708
0.043
S
0.162
0.091
T
0.165
0.354
/
0.306
0.074
T


467
12906
0.764
0.05
T
0.185
0.039
S
0.175
0.01
S
1.212
0.009
S


468
13443
0.113
0.629
/
−0.061
0.542
/
−0.001
0.993
/
0.658
0.096
T


469
14707
0.388
0.159
T
0.088
0.452
/
−0.094
0.564
/
0.366
0.012
S


470
15116
0.576
0.02
S
0.362
0.01
S
0.221
0.063
T
1.414
0.027
S


471
16117
0.038
0.789
/
0.02
0.87
/
−0.003
0.98
/
0.599
0.224
/


472
16136
0.465
0.001
S
0.297
0
S
0.172
0.007
S
1.911
0.005
S


473
19077
0.525
0.02
S
0.23
0.006
S
0.214
0
S
0.299
0.116
T


474
19178
0.398
0.22
/
0.231
0.106
T
0.219
0.046
S
0.456
0.213
/


475
70752
0.273
0.379
/
0.122
0.387
/
0.096
0.417
/
−0.022
0.519
/


476
70753
0.21
0.459
/
−0.015
0.864
/
0.116
0.286
/
0.489
0.128
T


477
70809
0.802
0.007
S
0.233
0
S
0.348
0
S
2.24
0.009
S


478
72091
0.608
0.014
S
0.115
0.249
/
0.152
0.091
T
0.398
0.267
/





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement as compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset






E. Polyethylene Glycol (PEG) Induced Osmotic Stress Tolerance Screen

There are numerous factors, which can influence seed germination and subsequent seedling growth, one being the availability of water. Genes, which can directly affect the success rate of germination and early seedling growth, are potentially useful agronomic traits for improving the germination and growth of crop plants under drought stress. In this assay, PEG was used to induce osmotic stress on germinating transgenic lines of Arabidopsis thaliana seeds in order to screen for osmotically resistant seed lines.


T2 seeds were plated on glufosinate selection plates containing 3% PEG and grown under standard light and temperature conditions. Seeds were plated on each plate containing 3% PEG, ½ ×MS salts, 1% phytagel, and 10 μg/ml glufosinate. Plates were placed at 4° C. for 3 days to stratify seeds. On day 11, plants were measured for primary root length. After 3 more days of growth, i.e., at day 14, plants were scored for transgenic status, primary root length, growth stage, visual color, and the seedlings were pooled for fresh weight measurement. A photograph of the whole plate was taken on day 14. Visual assessment was carried out to evaluate the robustness of the growth based on the leave size and rosette size.


Seedling weight and root length were analyzed as quantitative responses according to example 1M. The final growth stage at day 14 was scored as success or failure based on whether the plants reached 3 rosette leaves and size of leaves are greater than 1 mm. The growth stage data was analyzed as a qualitative response according to example 1L.









TABLE 7







a list of recombinant nucleotides that improve osmotic stress tolerance in plants












Seedling Weight
Root Length
Root Length













Pep

at day 14
at day 11
at day 14
Growth Stage




















SEQ
Con-

p-


p-


p-

RS
p-



ID
struct
delta
value
c
delta
value
c
delta
value
c
mean
value
c























241
74518
0.53
0.018
S
0.217
0.024
S
0.51
0.001
S
4
0
S


345
14825
0.414
0.181
T
0.271
0.053
T
0.102
0.34
/
2.105
0.01
S


346
17931
0.295
0.425
/
0.124
0.574
/
0.116
0.454
/
2.069
0.085
T


347
18854
0.484
0.015
S
0.342
0.011
S
0.159
0.073
T
1.023
0.238
/


348
12237
0.371
0.165
T
0.325
0.001
S
0.297
0.003
S
2.191
0.017
S


349
13414
0.137
0.311
/
0.241
0.069
T
0.265
0.045
S
2.461
0.027
S


350
16160
0.303
0.044
S
0.242
0.035
S
0.077
0.512
/
3.381
0.001
S


351
16226
0.367
0.047
S
0.132
0.224
/
0.097
0.276
/
4
0
S


352
16803
0.382
0.036
S
0.125
0.489
/
0.224
0.023
S
4
0
S


353
18260
0.183
0.315
/
0.125
0.315
/
0.146
0.143
T
3.362
0.002
S


354
18642
0.076
0.674
/
0.199
0.09
T
0.199
0.029
S
3.056
0.002
S


355
18721
0.336
0.104
T
0.177
0.145
T
0.109
0.228
/
2.281
0.02
S


356
19254
0.334
0.242
/
0.155
0.227
/
0.153
0.183
T
0.905
0.129
T


357
70247
0.45
0.138
T
0.334
0.008
S
0.169
0.07
T
2.692
0.013
S


358
70650
0.215
0.121
T
0.105
0.114
T
0.092
0.255
/
2.749
0.011
S


374
19441
0.413
0.017
S
0.256
0.003
S
0.098
0.085
T
2.324
0.04
S


424
13005
0.685
0.008
S
0.395
0.002
S
0.226
0.013
S
3.787
0
S


435
19719
0.306
0.04
S
0.135
0.051
T
−0.028
0.426
/
−0.338
0.598
/


474
19178
0.515
0.02
S
0.21
0.059
T
0.169
0.08
T
3.53
0
S





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset






F. Cold Shock Tolerance Screen

This example set forth a screen to identify Arabidopsis plants transformed with the genes of interest that are more tolerant to cold stress subjected during day 8 to day 28 after seed planting. During these crucial early stages, seedling growth and leaf area increase were measured to assess tolerance when Arabidopsis seedlings were exposed to low temperatures. Using this screen, genetic alterations can be found that enable plants to germinate and grow better than wild type plants under sudden exposure to low temperatures.


T2 seeds were tested. Eleven seedlings from each line plus one control line were plated together on a plate containing ½ × Gamborg Salts with 0.8 Phytagel™, 1% Phytagel, and 0.3% Sucrose. Plates were then oriented horizontally and stratified for three days at 4° C. At day three, plates were removed from stratification and exposed to standard conditions (16 hr photoperiod, 22° C. at day and 20° C. at night) until day 8. At day eight, plates were removed from standard conditions and exposed to cold shock conditions (24 hr photoperiod, 8° C. at both day and night) until the final day of the assay, i.e., day 28. Rosette areas were measured at day 8 and day 28, which were analyzed as quantitative responses according to example 1M.









TABLE 8







a list of recombinant nucleotides that improve cold shock stress tolerance in plants









difference in



rosette area















rosette area
rosette area
between day 28


Pep


at day 8
at day 28
and day 8


















SEQ
Con-


p-


p-


p-



ID
struct_id
Orientation
delta
value
c
delta
value
c
delta
value
c





















240
19867
SENSE
−0.032
0.603
/
0.15
0.309
/
0.426
0.064
T


241
74518
SENSE
0.184
0.192
T
0.653
0.001
S
0.796
0
S


242
15816
SENSE
0.366
0.027
S
0.592
0.002
S
0.666
0.004
S


243
17918
SENSE
0.594
0
S
0.982
0
S
1.325
0
S


276
17925
SENSE
0.479
0.001
S
0.693
0
S
0.872
0
S


474
19178
SENSE
0.23
0.083
T
0.435
0.026
S
0.435
0.103
T





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset.






G. Cold Germination Tolerance Screen

This example sets forth a screen to identify Arabidopsis plants transformed with the genes of interests are resistant to cold stress based on their rate of development, root growth and chlorophyll accumulation under low temperature conditions.


T2 seeds were plated and all seedlings used in the experiment were grown at 8° C. Seeds were first surface disinfested using chlorine gas and then seeded on assay plates containing an aqueous solution of ½ × Gamborg's B/5 Basal Salt Mixture (Sigma/Aldrich Corp., St. Louis, Mo., USA G/5788), 1% Phytagel™ (Sigma-Aldrich, P-8169), and 10 ug/ml BASTA™ (Bayer Crop Science, Frankfort, Germany), with the final pH adjusted to 5.8 using KOH. Test plates were held vertically for 28 days at a constant temperature of 8° C., a photoperiod of 16 hr, and average light intensity of approximately 100 umol/m2/s. At 28 days post planting, root length was measured, growth stage was observed, the visual color was assessed, and a whole plate photograph was taken.


Visual assessment was carried out to evaluate the robustness of the growth based on the leave size and rosette size.


The root length at day 28 was analyzed as a quantitative response according to example 1M. The growth stage at day 7 was analyzed as a qualitative response according to example 1L.









TABLE 9







a list of recombinant nucleotides that improve cold stress tolerance in plants














Root Length
Growth Stage


Pep


at day 28
at day 28















SEQ
Con-


p-

RS
p-



ID
struct_id
Orientation
delta
value
c
mean
value
c


















240
19867
SENSE
0.071
0.292
/
1.954
0.103
T


241
74518
SENSE
0.278
0.031
S
4
0
S


244
15306
ANTI-SENSE
0.176
0.142
T
1.582
0.067
T


245
12038
SENSE
0.045
0.188
T
2.271
0.022
S


246
12046
SENSE
0.177
0.125
T
3.513
0
S


247
13432
SENSE
0.182
0.015
S
1.108
0.078
T


248
13711
SENSE
0.15
0.022
S
2.357
0.012
S


249
14809
SENSE
−0.034
0.631
/
1.95
0.047
S


250
14951
SENSE
0.237
0.053
T
3.387
0.001
S


251
15632
SENSE
0.003
0.481
/
0.49
0.275
/


252
16147
SENSE
0.176
0.016
S
3.284
0.003
S


253
16158
SENSE
0.084
0.235
/
1.432
0.138
T


254
16170
SENSE
0.066
0.354
/
1.995
0.088
T


255
16171
SENSE
−0.178
0.842
/
−0.671
0.732
/


256
16175
SENSE
−0.054
0.7
/
1.231
0.184
T


257
17430
SENSE
0.254
0.135
T
2.776
0.009
S


258
17819
SENSE
0.221
0.028
S
−0.475
0.922
/


259
17921
SENSE
−0.151
0.912
/
1.291
0.179
T


260
17928
SENSE
0.368
0.028
S
2.599
0.003
S


261
18637
SENSE
0.158
0.225
/
1.143
0.164
T


262
18816
SENSE
0.206
0.075
T
3.038
0.002
S


263
19227
SENSE
0.198
0.058
T
3.068
0.002
S


264
19429
SENSE
0.258
0.062
T
2.582
0.006
S


265
70235
SENSE
0.175
0.065
T
2.584
0.006
S


266
72634
SENSE
0.169
0.064
T
2.835
0.001
S


267
72752
SENSE
0.292
0.019
S
2.816
0.002
S


273
17615
ANTI-SENSE
0.317
0.006
S
2.239
0.022
S


277
18541
SENSE
0.321
0.072
T
2.631
0.014
S


293
70484
SENSE
0.2
0.018
S
2.61
0.016
S


298
19252
SENSE
0.391
0.002
S
1.041
0.084
T


346
17931
SENSE
0.096
0.059
T
1.213
0.142
T


357
70247
SENSE
0.299
0.006
S
2.607
0.005
S


366
19610
SENSE
0.33
0.079
T
4
0
S


367
14338
SENSE
0.223
0.071
T
1.125
0.087
T


376
11409
SENSE
0.193
0
S
1.831
0.024
S


434
17922
SENSE
0.238
0.029
S
3.109
0.002
S





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement as compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset






H. Shade Tolerance-Low Light Screen

Plants undergo a characteristic morphological response in shade that includes the elongation of the petiole, a change in the leaf angle, and a reduction in chlorophyll content. While these changes may confer a competitive advantage to individuals, in a monoculture the shade avoidance response is thought to reduce the overall biomass of the population. Thus, genetic alterations that prevent the shade avoidance response may be associated with higher yields. Genes that favor growth under low light conditions may also promote yield, as inadequate light levels frequently limit yield. This protocol describes a screen to look for Arabidopsis plants that show an attenuated shade avoidance response and/or grow better than control plants under low light intensity. Of particular interest, we were looking for plants that didn't extend their petiole length, had an increase in seedling weight relative to the reference and had leaves that were more close to parallel with the plate surface.


T2 seeds were plated on glufosinate selection plates with ½ MS medium. Seeds were sown on ½ ×MS salts, 1% Phytagel, 10 ug/ml BASTA. Plants were grown on vertical plates at a temperature of 22° C. at day, 20° C. at night and under low light (approximately 30 uE/m2/s, far/red ratio (655/665/725/735) ˜0.35 using PLAQ lights with GAM color filter #680). Twenty-three days after seedlings were sown, measurements were recorded including seedling status, number of rosette leaves, status of flower bud, petiole leaf angle, petiole length, and pooled fresh weights. A digital image of the whole plate was taken on the measurement day. Seedling weight and petiole length were analyzed as quantitative responses according to example 1M. The number of rosette leaves, flowering bud formation and leaf angel were analyzed as qualitative responses according to example 1L.









TABLE 10







a list of recombinant nucleotides that improve shade tolerance in plants















flowerbud


Number of





formation
leaf angle
petiole length
rosette leaves
seedling weight


Pep

at day 23
at day 23
at day 23
at day 23
at day 23























SEQ
Con-
RS
p-

RS
p-


p-

RS
p-


p-



ID
struct_id
mean
value
c
mean
value
c
delta
value
c
mean
value
c
delta
value
c


























262
18816
3.007
0.003
S
0.738
0.003
S
0.046
0.561
/
−0.383
0.929
/
0.171
0.011
S


282
14335
1.81
0.029
S
0.404
0.032
S
0.204
0.301
/
−0.043
0.814
/
0.39
0.093
T


295
13047
2.261
0.006
S
0.482
0.106
T
−0.097
0.31
/
1.655
0.088
T
0.463
0.022
S


296
13304
−0.118
0.643
/
−0.164
0.861
/
−0.228
0.106
T
1.214
0.068
T
0.244
0.421
/


297
13474
−0.319
0.583
/
0.419
0.062
T
−0.051
0.153
T
0.633
0.032
S
0.223
0.002
S


298
19252
−2
0.962
/
0.239
0.257
/
0.099
0.242
/
1.153
0.056
T
0.497
0
S


299
12612
−0.627
0.975
/
−0.094
0.766
/
−0.037
0.341
/
0.61
0.092
T
−0.304
0.298
/


300
12926
0.827
0.15
T
−0.278
1
/
−0.02
0.51
/
0.489
0.218
/
−0.374
0.279
/


301
13230
−0.228
0.954
/
−0.05
0.668
/
0.057
0.33
/
1.83
0.025
S
0.33
0.124
T


302
14235
−0.511
1
/
0.084
0.271
/
−0.324
0.045
S
−0.205
0.848
/
−0.536
0.016
/


303
17305
0.056
0.374
/
0.036
0.226
/
−0.055
0.59
/
0.788
0.143
T
−0.058
0.761
/


304
17470
0.319
0.344
/
0.231
0.112
T
−0.218
0.24
/
1.314
0.052
T
0.094
0.612
/


305
17718
−1.438
0.985
/
0.005
0.486
/
−0.148
0.016
S
1.793
0.027
S
0.033
0.728
/


306
17904
0.965
0.105
T
0.252
0.071
T
−0.15
0.359
/
1.01
0.027
S
−0.022
0.844
/


307
18280
−0.176
0.626
/
0.284
0.258
/
−0.056
0.547
/
1.35
0.037
S
0.269
0.086
T


308
18287
−2.441
0.941
/
0.078
0.348
/
−0.022
0.785
/
1.193
0.05
T
0.292
0.056
T


309
18501
−0.087
1
/
−0.326
1
/
−0.254
0.05
T
0.23
0.438
/
−0.303
0.789
/


310
18877
0.181
0.414
/
0.016
0.41
/
−0.119
0.372
/
0.351
0.212
/
0.076
0.604
/


311
19531
4
0
S
0.04
0.379
/
−0.142
0.344
/
−0.253
0.809
/
0.001
0.998
/


312
70405
−0.931
0.991
/
−0.114
0.957
/
−0.186
0.038
S
0.674
0.188
T
0.13
0.177
T


313
72136
−1.001
1
/
1.063
0.08
T
−0.621
0.008
S
0.775
0.014
S
−1.081
0.018
/


314
72611
−0.476
0.834
/
0.868
0.121
T
−0.262
0.102
T
1.728
0.044
S
−0.365
0.23
/


370
16403
2.223
0.01
S
0.132
0.144
T
−0.157
0.484
/
−1.052
0.999
/
0.148
0.766
/


427
12018
1.283
0.059
T
0.309
0.254
/
−0.006
0.959
/
0.663
0.14
T
−0.643
0.017
/


434
17922
1.171
0.136
T
−0.046
0.58
/
0.057
0.624
/
−0.042
0.614
/
0.317
0.056
T


436
17336
−0.987
1
/
−0.297
1
/
−0.11
0.079
T
1.082
0.074
T
−0.121
0.636
/


437
17735
−3.705
1
/
−0.016
0.524
/
−0.135
0.084
T
0.882
0.022
S
0.014
0.9
/


477
70809
−1.333
0.913
/
0.184
0.173
T
0.102
0.256
/
0.236
0.148
T
0.449
0.046
S


478
72091
1.908
0.006
S
0.009
0.422
/
0.251
0.004
/
−0.056
1
/
0.413
0.083
T





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement as compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset.






I. Early Plant Growth and Development Screen

This example sets forth a plate based phenotypic analysis platform for the rapid detection of phenotypes that are evident during the first two weeks of growth. In this screen, we were looking for genes that confer advantages in the processes of germination, seedling vigor, root growth and root morphology under non-stressed growth conditions to plants. The transgenic plants with advantages in seedling growth and development were determined by the seedling weight and root length at day 14 after seed planting.


T2 seeds were plated on glufosinate selection plates and grown under standard conditions (˜100 uE/m2/s, 16 h photoperiod, 22° C. at day, 20° C. at night). Seeds were stratified for 3 days at 4° C. Seedlings were grown vertically (at a temperature of 22° C. at day 20° C. at night). Observations were taken on day 10 and day 14. Both seedling weight and root length at day 14 were analyzed as quantitative responses according to example 1M.









TABLE 11







a list recombinant nucleotides that improve early plant growth and development














Root Length
Seedling Weight


Pep


at day 14
at day 14















SEQ
Con-


p-


p-



ID
struct_id
Orientation
delta
value
c
delta
value
c


















241
74518
SENSE
0.216
0.01
S
0.454
0.049
S


245
12038
SENSE
0.101
0.046
S
0.629
0.003
S


250
14951
SENSE
0.15
0.072
T
0.138
0.378
/


260
17928
SENSE
0.062
0.22
/
0.246
0.069
T


265
70235
SENSE
0.079
0.519
/
0.414
0.026
S


267
72752
SENSE
0.301
0.001
S
0.789
0.002
S


285
19179
SENSE
0.216
0.024
S
0.603
0.01
S


290
70222
SENSE
0.047
0.468
/
0.394
0.014
S


293
70484
SENSE
0.068
0.364
/
0.444
0.024
S


294
72474
SENSE
0.241
0.051
T
0.183
0.564
/


298
19252
SENSE
0.065
0.392
/
0.316
0.054
T


326
17344
SENSE
0.042
0.565
/
0.223
0.066
T


330
17906
SENSE
0.11
0.152
T
0.419
0.011
S


354
18642
SENSE
0.1
0.247
/
0.257
0.043
S


357
70247
SENSE
−0.04
0.842
/
0.237
0.134
T


358
70650
SENSE
0.121
0.077
T
0.135
0.442
/


359
11787
ANTI-SENSE
−0.083
0.784
/
0.167
0.365
/


360
13641
ANTI-SENSE
0.092
0.15
T
0.336
0.053
T


361
14515
ANTI-SENSE
0.051
0.616
/
0.351
0.038
S


362
14920
ANTI-SENSE
0.08
0.358
/
0.101
0.739
/


363
15204
ANTI-SENSE
0.203
0.015
S
0.076
0.811
/


364
15216
ANTI-SENSE
0.316
0.023
S
0.632
0.073
T


365
15330
ANTI-SENSE
0.084
0.428
/
0.435
0.002
S


366
19610
SENSE
0.192
0.011
S
0.523
0.008
S


367
14338
SENSE
0.145
0.155
T
0.589
0.072
T


368
17809
SENSE
0.014
0.928
/
−0.121
0.753
/


369
72471
SENSE
0.07
0.023
S
0.407
0.048
S


370
16403
SENSE
0.199
0.027
S
0.6
0.003
S


371
17737
SENSE
0.049
0.472
/
0.242
0.073
T


372
18395
SENSE
0.219
0.001
S
0.58
0.002
S


373
72772
SENSE
0.224
0.023
S
0.442
0.106
T


374
19441
SENSE
0.271
0
S
0.482
0.019
S


375
10486
SENSE
0.191
0.03
S
0.343
0.052
T


376
11409
SENSE
0.258
0.034
S
0.468
0.006
S


377
12104
SENSE
0.1
0.379
/
0.489
0.009
S


378
12258
SENSE
0.16
0.05
T
0.392
0.137
T


379
12909
SENSE
0.139
0.267
/
0.322
0.261
/


380
14310
SENSE
0.544
0
S
0.764
0.026
S


381
14317
SENSE
0.134
0.18
T
0.117
0.64
/


382
14709
SENSE
0.206
0.009
S
0.389
0.117
T


383
15123
SENSE
0.026
0.872
/
0.27
0.348
/


384
16013
SENSE
0.046
0.622
/
0.464
0.01
S


385
16185
SENSE
0.191
0.045
S
0.145
0.596
/


386
16719
SENSE
0.019
0.872
/
0.424
0.088
T


387
17490
SENSE
0.186
0.026
S
0.272
0.102
T


388
17905
SENSE
0.239
0.004
S
0.346
0.196
T


389
18385
SENSE
0.287
0.003
S
0.687
0.003
S


390
18392
SENSE
0.088
0.338
/
0.504
0.012
S


392
18531
SENSE
0.313
0.015
S
0.627
0
S


393
18603
SENSE
0.212
0
S
0.165
0.187
T


394
19530
SENSE
0.106
0.137
T
0.342
0.025
S


395
70202
SENSE
0.218
0.056
T
0.279
0.223
/


396
72009
SENSE
0.191
0.054
T
0.328
0.043
S


397
72119
SENSE
0.236
0
S
0.259
0.008
S


438
19249
SENSE
0.054
0.375
/
0.222
0.048
S


439
18513
SENSE
0.204
0.044
S
0.193
0.322
/


461
19222
SENSE
0.255
0.072
T
0.622
0.034
S


473
19077
SENSE
−0.049
0.669
/
0.2
0.227
/


474
19178
SENSE
0.303
0
S
0.592
0.001
S


477
70809
SENSE
0.128
0.093
T
0.224
0.185
T





For other responses:


S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement as compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset






J. Late Plant Growth and Development Screen

This example sets forth a soil based phenotypic platform to identify genes that confer advantages in the processes of leaf development, flowering production and seed maturity to plants.



Arabidopsis plants were grown on a commercial potting mixture (Metro Mix 360, Scotts Co., Marysville, Ohio) consisting of 30-40% medium grade horticultural vermiculite, 35-55% sphagnum peat moss, 10-20% processed bark ash, 1-15% pine bark and a starter nutrient charge. Soil was supplemented with Osmocote time-release fertilizer at a rate of 30 mg/ft3. T2 seeds were imbibed in 1% agarose solution for 3 days at 4° C. and then sown at a density of ˜5 per 2½″ pot. Thirty-two pots were ordered in a 4 by 8 grid in standard greenhouse flat. Plants were grown in environmentally controlled rooms under a 16 h day length with an average light intensity of −200 μmoles/m2/s. Day and night temperature set points were 22° C. and 20° C., respectively. Humidity was maintained at 65%. Plants were watered by sub-irrigation every two days on average until mid-flowering, at which point the plants were watered daily until flowering was complete.


Application of the herbicide glufosinate was performed to select T2 individuals containing the target transgene. A single application of glufosinate was applied when the first true leaves were visible. Each pot was thinned to leave a single glufosinate-resistant seedling ˜3 days after the selection was applied.


The rosette radius was measured at day 25. The silique length was measured at day 40. The plant parts were harvested at day 49 for dry weight measurements if flowering production was stopped. Otherwise, the dry weights of rosette and silique were carried out at day 53. The seeds were harvested at day 58. All measurements were analyzed as quantitative responses according to example 1M.









TABLE 12







a list of recombinant nucleotides that improve late plant growth and development













Pep

Rosette Dry Weight
Rosette Radius
Seed Dry Weight
Silique Dry Weight
Silique Length























SEQ
con-

p-


p-


p-


p-


p-



ID
struct_id
delta
value
c
delta
value
c
delta
value
c
delta
value
c
delta
value
c


























289
19915
0.234
0.027
S
0.2
0.002
S
0.214
0.142
T
0.165
0.138
T
−0.172
0.863
/


373
72772
0.194
0.291
/
0.022
0.068
T
0.259
0.003
S
0.102
0.343
/
−0.223
0.889
/


403
13958
−0.065
0.797
/
−0.279
0.863
/
0.146
0.041
S
0.092
0.177
T
0.009
0.158
T


405
10483
−0.073
0.946
/
0.302
0.002
S
0.288
0.022
T
0.592
0
S
0.137
0
S


412
12904
0.048
0.131
T
0.149
0.003
S
0.349
0.002
S
0.061
0.066
T
−0.045
0.961
/


419
15142
−0.211
0.945
/
0.074
0.076
T
0.284
0.002
S
−0.088
0.984
/
0.014
0.374
/


424
13005
−0.175
0.954
/
0.091
0.014
S
0.629
0.013
S
0.169
0.106
T
−0.031
0.627
/


425
10203
0.2
0.036
S
−0.023
0.587
/
−0.757
0.922
/
−0.059
0.756
/
0.018
0.15
T


426
11327
−0.046
0.747
/
0.056
0.138
T
0.327
0.08
T
−0.109
0.94
/
0.009
0.142
T


427
11814
−0.127
0.799
/
−0.085
0.866
/
0.397
0.016
S
−0.184
0.91
/
0.05
0.236
/


428
13003
0.004
0.47
/
−0.018
0.589
/
0.78
0.003
S
−0.168
0.939
/
−0.264
0.94
/


429
13949
−0.009
0.538
/
−0.309
0.953
/
0.719
0.008
S
−0.214
0.995
/
0.002
0.476
/


430
16416
0.396
0.001
S
0.099
0.03
S
−0.654
0.999
/
0.034
0.187
T
0.013
0.13
T


431
16438
−0.501
0.802
/
−0.516
0.9
/
0.63
0.021
S
−0.968
0.842
/
−0.461
0.905
/


432
17124
−0.226
0.898
/
−0.022
0.618
/
0.702
0.012
S
−0.479
0.942
/
−0.055
0.99
/


433
19132
0.149
0.133
T
0
0.5
/
−0.229
0.965
/
0.198
0.019
S
−0.232
0.974
/


434
17922
0.206
0.012
S
−0.002
0.52
/
0.541
0.037
S
−0.017
0.757
/
0.028
0.3
/


435
19719
0.301
0.016
S
0.074
0.178
T
−0.395
0.988
/
0.112
0.246
/
−0.031
0.608
/


436
14274
0.03
0.411
/
0.131
0.087
T
0.429
0.009
S
−0.086
0.948
/
−0.181
0.968
/


436
17336
0.425
0.021
S
−0.129
0.934
/
−0.343
0.949
/
0.09
0.143
T
0.018
0.443
/


437
17735
−0.377
0.995
/
−0.194
0.977
/
0.663
0.024
S
−0.315
1
/
−0.024
0.648
/


438
19249
−0.284
0.977
/
−0.166
0.768
/
0.337
0.046
S
−0.101
0.796
/
0.053
0.076
T


439
18513
0.194
0.202
/
0.096
0.112
T
0.248
0.159
T
−0.13
0.676
/
−0.072
0.802
/


440
11517
−0.033
0.586
/
0.073
0.052
T
0.133
0.25
/
0.145
0.217
/
−0.016
0.762
/


441
12363
0.204
0.135
T
−0.087
0.926
/
0.578
0.013
S
0.188
0.053
T
0.036
0.176
T


442
12922
0.202
0.003
S
−0.035
0.928
/
0.453
0.14
T
0.164
0.096
T
0.006
0.298
/


443
15360
0.36
0.018
S
−0.046
0.728
/
−0.141
0.75
/
0.07
0.05
T
0.049
0.099
T


444
16028
0.341
0.032
S
−0.036
0.548
/
0.044
0.403
/
0.18
0.034
S
−0.015
0.604
/


445
16648
−0.49
0.989
/
0.033
0.374
/
0.471
0.025
S
−0.169
0.8
/
0.018
0.228
/


446
16705
0.227
0.072
T
−0.168
0.985
/
0.502
0.001
S
−0.228
0.996
/
−0.045
0.932
/


447
16715
0.011
0.442
/
0.059
0.161
T
0.485
0.042
S
−0.087
0.724
/
0.058
0.03
S


448
17316
−0.047
0.812
/
0.047
0.08
T
0.109
0.391
/
−0.172
0.747
/
0.229
0.008
S


449
17331
−0.451
0.979
/
−0.156
0.916
/
0.443
0.001
S
−0.11
0.761
/
0.043
0.069
T


450
17339
0.306
0.026
S
0.152
0.024
S
−0.738
0.936
S
0.095
0.369
/
0.008
0.356
/


451
17420
−0.171
0.931
/
−0.242
0.856
/
0.828
0.015
S
−0.291
0.817
/
−1.008
0.898
/


452
17446
−0.226
0.909
/
−0.038
0.673
/
0.302
0.026
S
0.145
0.118
T
−0.001
0.522
/


453
17487
−0.331
0.966
/
0.074
0.016
S
0.479
0.045
S
−0.209
0.995
/
0.04
0.132
T


454
17740
−0.036
0.641
/
0.016
0.414
/
0.763
0.057
T
0.087
0.15
T
0.095
0
S


455
17752
0.35
0.041
S
−0.107
0.673
/
−0.619
0.915
/
0.343
0.004
S
0.022
0.294
/


456
18021
−0.252
0.947
/
−0.131
0.836
/
0.287
0.079
T
−0.249
0.885
/
−0.018
0.64
/


457
18245
−0.227
0.99
/
−0.031
0.629
/
0.422
0.011
S
−0.126
0.758
/
−0.048
0.827
/


458
18617
−0.193
0.955
/
−0.3
0.95
/
0.877
0.001
S
−0.328
0.971
/
0.075
0.077
T


459
18734
0.248
0.043
S
0.033
0.192
T
−0.959
0.981
/
0.059
0.146
T
−0.012
0.618
/


460
18823
0.229
0.114
T
0.069
0.181
T
−0.056
0.677
/
0.282
0.048
S
0.032
0.24
/


461
19222
0.591
0.014
S
0.045
0.304
/
−0.258
0.767
/
0.156
0.1
T
−0.076
0.698
/


462
19430
0.362
0.024
S
−0.02
0.776
/
−0.751
0.857
/
0.036
0.281
/
−0.231
0.848
/





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement compared to the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset






K. Low Nitrogen Tolerance Screen

Under low nitrogen conditions, Arabidopsis seedlings become chlorotic and have less biomass. This example sets forth the low nitrogen tolerance screen to identify Arabidopsis plants transformed with the gene of interest that are altered in their ability to accumulate biomass and/or retain chlorophyll under low nitrogen condition.


T2 seeds were plated on plates containing 0.5×N-Free Hoagland's T 0.1 mM NH4NO3 T 0.1% sucrose T 1% phytagel media and grown under standard light and temperature conditions. At 12 days of growth, plants were scored for seedling status (i.e., viable or non-viable) and root length. After 21 days of growth, plants were scored for visual color, seedling weight, number of green leaves, number of rosette leaves, root length and formation of flowering buds. A photograph of each plant was also taken at this time point.


The seedling weight and root length were analyzed as quantitative responses according to example 1M. The number green leaves, the number of rosette leaves and the flowerbud formation were analyzed as qualitative responses according to example 1L. We considered that the transgenic plants grew better under the low nitrogen condition evidenced by having more green leaves or greener leaves, compared to the reference. In addition, the change in the root length in either direction, i.e., either increase or decrease will benefit plant growth. Transgenic plants with increased root length under a low nitrogen condition will enable plants to obtain nutrient from a farther distance, whereas transgenic plants with decreased root length while maintain a healthy growth evidenced by green leaves may have developed an intrinsic mechanism of using nitrogen source efficiently.









TABLE 13







a list of recombinant nucleotides that improve low nitrogen availability tolerance in plants


















Number of





flowerbud
Number of

rosette leavels


Pep

formation
green leaves
Root Length
at day 21
Rosette Weight























SEQ
Con-
RS
p-

RS
p-


p-

RS
p-


p-



ID
struct_id
mean
value
c
mean
value
c
delta
value
c
mean
value
c
delta
value
c


























241
74518
−0.141
0.97
/
−0.123
1
/
0.097
0.006
T
−0.532
0.983
/
0.104
0.007
S


315
12627
−0.881
1
/
1.713
0.001
S
−0.222
0.052
S
1.622
0.008
S
−0.037
0.136
/


316
12813
−1.269
1
/
1.151
0.011
S
−0.01
0.89
/
1.858
0.001
S
0.14
0
S


317
14945
−1.131
1
/
0.899
0.014
S
−0.056
0.486
/
0.305
0.289
/
−0.038
0.587
/


318
15345
−0.158
0.626
/
0.961
0.014
S
−0.352
0.004
S
−0.308
0.739
/
0.069
0.297
/


319
15348
−0.582
0.937
/
0.755
0.015
S
−0.17
0.082
T
0.923
0.046
S
−0.033
0.214
/


320
16325
−0.947
0.999
/
0.995
0.003
S
−0.204
0.079
T
1.15
0.01
S
−0.014
0.652
/


321
16702
−0.315
0.997
/
0.567
0.023
S
0.16
0.01
S
0.572
0.071
T
0.012
0.614
/


322
16836
−1.291
1
/
0.149
0.098
T
0.141
0.029
S
2.117
0
S
0.035
0.247
/


323
17002
−1.153
1
/
0.32
0.013
S
0.209
0.007
S
1.818
0.001
S
0.131
0
S


324
17012
−1.201
1
/
0.348
0.025
S
0.291
0.002
S
1.485
0.001
S
0.082
0.107
T


325
17017
−0.352
1
/
0.982
0.003
S
−0.112
0.159
T
0.276
0.127
T
−0.009
0.725
/


326
17344
−1.897
1
/
0.736
0.039
S
0.111
0.181
T
1.344
0.02
S
0.076
0.001
S


327
17426
−1.364
1
/
1.185
0.002
S
−0.218
0.008
S
0.814
0.094
T
−0.076
0.034
/


328
17655
−1.059
1
/
1.094
0.002
S
−0.084
0.208
/
1.656
0
S
0.024
0.637
/


329
17656
−1.309
1
/
0.465
0.04
S
0.107
0.228
/
1.317
0.001
S
−0.046
0.058
/


330
17906
−1.21
1
/
0.058
0.369
/
0.213
0
S
1.251
0.006
S
0.057
0.262
/


331
18278
0.025
0.45
/
0.838
0.003
S
0.04
0.592
/
2.056
0.001
S
0.016
0.667
/


332
18822
−0.47
1
/
0.697
0
S
0.189
0.029
S
1.17
0.001
S
0.048
0.07
T


333
18881
1.062
0.022
S
−0.365
0.949
/
0.08
0.211
/
−1.211
1
/
0.006
0.845
/


334
19213
−0.095
0.712
/
−0.298
1
/
0.18
0.001
S
−0.802
1
/
0.056
0.062
T


335
19239
−0.187
0.931
/
1.466
0
S
−0.104
0.186
T
1.297
0.006
S
−0.048
0.187
/


336
19247
−0.346
0.913
/
0.274
0.022
S
0.013
0.833
/
1.818
0.001
S
0.088
0.216
/


337
19460
−0.526
0.994
/
1.427
0
S
−0.004
0.932
/
0.952
0.01
S
0.003
0.952
/


338
19512
−0.546
1
/
1.611
0
S
0.152
0.011
S
0.824
0.001
S
0.041
0.226
/


339
19533
−0.283
0.929
/
1.909
0
S
0.072
0.353
/
1.904
0.001
S
−0.002
0.952
/


340
19603
−0.25
0.932
/
0.287
0.213
/
0.208
0.005
S
0.234
0.214
/
0.135
0.021
S


341
72126
0.337
0.017
S
−0.447
0.944
/
−0.149
0.059
T
0.23
0.147
T
0.253
0
S


342
72437
0.907
0.016
S
−0.36
0.989
/
0.111
0.049
S
−0.689
0.999
/
0.09
0.005
S


343
72441
0.354
0.011
S
0.57
0.002
S
−0.115
0.078
T
0.269
0.124
T
−0.041
0.361
/


344
72639
0.578
0.065
T
−0.198
0.956
/
0.23
0.001
S
−0.181
0.756
/
0.13
0.005
S


364
19058
1.236
0.008
S
−0.087
0.974
/
−0.103
0.244
/
−0.326
0.94
/
0.123
0.066
T


370
16403
−0.972
1
/
0.63
0.023
S
−0.182
0.006
S
1.751
0.002
S
−0.028
0.202
/


371
17737
−1.124
1
/
0.352
0.038
S
0.059
0.512
/
1.404
0.017
S
−0.038
0.381
/


372
18395
−0.567
1
/
0.522
0.023
S
0.182
0.004
S
0.935
0.007
S
0.027
0.318
/


373
72772
0.439
0.019
S
−0.113
0.827
/
0.211
0.006
S
−0.141
0.739
/
0.106
0.006
S


376
11409
0.001
0.498
/
0.327
0.094
T
−0.069
0.316
/
0.264
0.287
/
0.008
0.843
/


438
19249
−0.834
1
/
0.257
0.058
T
0.061
0.25
/
1.01
0.004
S
0.038
0.438
/


478
72091
−0.803
1
/
−0.273
1
/
0.526
0
S
1.033
0.029
S
0.167
0.003
S





S: represents the transgenic plants showed statistically significant trait improvement as compared to the reference (p < 0.05)


T: represents the transgenic plants showed a trend of trait improvement compared than the reference, preferably with p < 0.2


/: represents the transgenic plants didn't show any alteration or had unfavorable change in traits examined compared to the reference in the current dataset






L. Statistic Analysis for Qualitative Responses









TABLE 14







a list of responses analyzed as qualitative responses









response
screen
categories (success vs. failure)





wilting response risk
drought tolerance screen
non-wilted vs. wilted


score


growth stage at day 14
heat stress tolerance screen
50% of plants reach stage1.03 vs. not


growth stage at day 14
salt stress tolerance screen
50% of plants reach stage1.03 vs. not


growth stage at day 14
PEG induced osmotic stress
50% of plants reach stage1.03 vs. not



tolerance screen


growth stage at day 7
cold germination stress tolerance
50% of plants reach stage 0.5 vs. not



screen


number of rosette leaves
shade tolerance-low light screen
5 leaves appeared vs. not


at day 23


flower bud formation at
Shade tolerance-low light screen
flower buds appear vs. not


day 23


leaf angle at day 23
Shade tolerance-low light screen
>60 degree vs. <60 degree


number of green leaves at
low nitrogen tolerance screen
6 or 7 leaves appeared vs. not


day 21


number of rosette leaves
low nitrogen tolerance screen
6 or 7 leaves appeared vs. not


at day 21


Flower bud formation at
low nitrogen tolerance screen
flower buds appear vs. not


day 21









Plants were grouped into transgenic and reference groups and were scored as success or failure according to Table 14. First, the risk (R) was calculated, which is the proportion of plants that were scored as of failure plants within the group. Then the relative risk (RR) was calculated as the ratio of R (transgenic) to R (reference). Risk score (RS) was calculated as −log2RR. Subsequently the risk scores from multiple events for each transgene of interest were evaluated for statistical significance by t-test using S-PLUS statistical software (S-PLUS 6, Guide to statistics, Insightful, Seattle, Wash., USA). RS with a value greater than 0 indicates that the transgenic plants perform better than the reference. RS with a value less than 0 indicates that the transgenic plants perform worse than the reference. The RS with a value equal to 0 indicates that the performance of the transgenic plants and the reference don't show any difference.


M. Statistic Analysis for Quantitative Responses









TABLE 15







a list of responses analyzed as quantitative responses








response
screen





seed yield
drought stress tolerance screen


seedling weight at day 14
heat stress tolerance screen


root length at day 14
heat stress tolerance screen


seedling weight at day 14
salt stress tolerance screen


root length at day 14
salt stress tolerance screen


root length at day 11
salt stress tolerance screen


seedling weight at day 14
PEG induced osmotic stress tolerance screen


root length at day 11
PEG induced osmotic stress tolerance screen


root length at day 14
PEG induced osmotic stress tolerance screen


rosette area at day 8
cold shock tolerance screen


rosette area at day28
cold shock tolerance screen


difference in rosette area
cold shock tolerance screen


from day 8 to day 28


root length at day 28
cold stress tolerance screen


seedling weight at day 23
Shade tolerance-low light screen


petiole length at day 23
Shade tolerance-low light screen


root length at day 14
Early plant growth and development screen


seedling weight at day14
Early plant growth and development screen


rosette radius at day 25
Late plant growth and development screen


seed dry weight at day 58
Late plant growth and development screen


silique dry weight at day 53
Late plant growth and development screen


silique length at day 40
Late plant growth and development screen


Seedling weight at day 21
Low nitrogen tolerance screen


Root length at day 21
Low nitrogen tolerance screen










The measurements (M) of each plant were transformed by log2 calculation. The Delta was calculated as log2M(transgenic)−log2M(reference). Subsequently the mean delta from multiple events of the transgene of interest was evaluated for statistical significance by t-test using S-PLUS statistical software (S-PLUS 6, Guide to statistics, Insightful, Seattle, Wash., USA). The Delta with a value greater than 0 indicates that the transgenic plants perform better than the reference. The Delta with a value less than 0 indicates that the transgenic plants perform worse than the reference. The Delta with a value equal to 0 indicates that the performance of the transgenic plants and the reference don't show any difference.


Example 2
Identification of Homologs

A BLAST searchable “All Protein Database” was constructed of known protein sequences using a proprietary sequence database and the National Center for Biotechnology Information (NCBI) non-redundant amino acid database (nr.aa). For each organism from which a DNA sequence provided herein was obtained, an “Organism Protein Database” was constructed of known protein sequences of the organism; the Organism Protein Database is a subset of the All Protein Database based on the NCBI taxonomy ID for the organism.


The All Protein Database was queried using amino acid sequence of cognate protein for gene DNA used in trait-improving recombinant DNA, i.e., sequences of SEQ ID NO: 240 through SEQ ID NO: 478 using “blastp” with E-value cutoff of 1e-8. Up to 1000 top hits were kept, and separated by organism names. For each organism other than that of the query sequence, a list was kept for hits from the query organism itself with a more significant E-value than the best hit of the organism. The list contains likely duplicated genes, and is referred to as the Core List. Another list was kept for all the hits from each organism, sorted by E-value, and referred to as the Hit List.


The Organism Protein Database was queried using amino acid sequences of SEQ ID NO: 240 through SEQ ID NO: 478 using “blastp” with E-value cutoff of 1e-4. Up to 1000 top hits were kept. A BLAST searchable database was constructed based on these hits, and is referred to as “SubDB”. SubDB was queried with each sequence in the Hit List using “blastp” with E-value cutoff of 1e-8. The hit with the best E-value was compared with the Core List from the corresponding organism. The hit is deemed a likely ortholog if it belongs to the Core List, otherwise it is deemed not a likely ortholog and there is no further search of sequences in the Hit List for the same organism. Likely orthologs from a large number of distinct organisms were identified and are reported by amino acid sequences of SEQ ID NO: 479 to SEQ ID NO: 12463. These orthologs are reported in Tables 2 as homologs to the proteins cognate to genes used in trait-improving recombinant DNA.


Example 3
Consensus Sequence Build

ClustalW program was selected for multiple sequence alignments of the amino acid sequence of SEQ ID NO:439 and 25 homologs. Three major factors affecting the sequence alignments dramatically are (1) protein weight matrices; (2) gap open penalty; (3) gap extension penalty. Protein weight matrices available for ClustalW program include Blosum, Pam and Gonnet series. Those parameters with gap open penalty and gap extension penalty were extensively tested. On the basis of the test results, Blosum weight matrix, gap open penalty of 10 and gap extension penalty of 1 were chosen for multiple sequence alignment. Attached are the sequences of SEQ ID NO: 439, its homologs and the consensus sequence at the end. The symbols for consensus sequence are (1) uppercase letters for 100% identity in all positions of multiple sequence alignment output; (2) lowercase letters for >=70% identity; symbol; (3) “X” indicated <70% identity; (4) dashes “-” meaning that gaps were in >=70% sequences.











SEQ ID NO
:



5211
:------------------------------------------------------------





12100
:------------------------------------------------------------





6033
:------------------------------------------------------------





5630
:------------------------------------------------------------





2801
:------------------------------------------------------------





11474
:------------------------------------------------------------





12365
:------------------------------------------------------------





9090
:------------------------------------------------------------





439
:------------------------------------------------------------





11419
:------------------------------------------------------------





11201
:------------------------------------------------------------





4683
:------------------------------------------------------------





1624
:------------------------------------------------------------





11490
:------------------------------------------------------------





9137
:------------------------------------------------------------





10769
:MIGTRVLAHSRVDPAIRWGVAARGRVVFAAIRWGAAARGRVVFAAVRWGAAARGTKREAG





2036
:------------------------------------------------------------





1472
:------------------------------------------------------------





2526
:------------------------------------------------------------





12153
:------------------------------------------------------------





2333
:------------------------------------------------------------





8918
:------------------------------------------------------------





12149
:------------------------------------------------------------





6330
:------------------------------------------------------------





11407
:------------------------------------------------------------





9050
:------------------------------------------------------------





consensus
:------------------------------------------------------------





12464









-------------------MSCFACCGDEDTQ-VPDTRAQYPGHHPAR------------






-------------------MSCFACCGDEDTQ-VPDTRAQYPGHHPAR------------





-------------------MSCFACCGDEDTQ-VPDTRAQYPGHHPAR------------





-------------------MSCFACCGDEDTQ-VPDTRTQYPGHHPAR------------





-------------------MSCFACCGDEDTQGVPDNRNPYPGNHPAR------------





-------------------MSCLACCGGEDTQRTPDNGGPYPGGYPPR------------





-------------------MSCLACCGGEDTQRTPDNGGPYPGGYPPR------------





-------------------MSCFVCCGDEDTQRAPDNRNQYXKAIQQG------------





-------------------MSCFGCCGEDDDMHKTADYGGRHNQAKHFPPG---------





-------------------MSCFSCCDDDDMHRATDNGPFMAHNSAGN------------





-------------------MSCFSCCDDDDMHRATDNGPFMAHNSAGN------------





-------------------MGCFSCCGADDVGKKKKRDDPYVPIPDPG--G---------





-------------------MGFLCCSGKPSKRLESSSINENNSNIKRKDQTHVTSGSLKM





-------------------MGFLCFSGKSSKRSENSSIDENNSNIKRKDQTQLTSGSMKV





-------------------MGWIPCSGKSSGKTKKRSDSDENLSRNCSVSASERS-----





QETSTSETKKTKRKWGRGFCGMASHEVEEPLTSETKKTKRKWGRGFCGMASHEAEEPLTS





------------------MKILLGVGINGGLFGSCVSSRSKVDSSTSGISSHFEIKSTN-





------------------------------------------------------------





------------------------------------------------------------





------------------------------------------------------------





------------------------------------------------------------





------------------------------------------------------------





------------------------------------------------------------





------------------------------------------------------------





------------------------------------------------------------





----------------------MAAADTSRVFLILIIALVMVIVVLLGICWRFLGPGIMR





-------------------xxxxxxxxxxxxxxxxxxxxxxxxxxxxx--x---------





------------------ADAYRPSDQPPKGPQPVKMQPIAVPAIPVDEIREVTKGFGDE





------------------ADAYRPSDQPPKGPQPVKMQPIAVPAIPVDEIREVTKGFGDE





------------------ADAYRPSDQPPKGPQPVKMQPIAVPAIPVDEIREVTKGFGDE





------------------ADAYRPADQPPKGSQPVKMQPIAVPAIPVDELREVTKGFGDE





------------------SDAYRTADPTPRGPQPVKVQPIAVPIIPVDEIREVTKNFGDE





------------------DDAYRTADPTPRGAQPLKMQPITVPTIPVEEIREVTVAFGDE





------------------DDAYRTADPTPRGAQPLKMQPITVPTIPVEEIREVTVAFGDE





------------------NDAYRTADPTPKGPQPVKVQPIAVPTIPMDEIREKNCTGGDE





----------------NDARHHQASETAQKGPPVVKLQPIEVPIIPFSELKEATDDFGSN





------------------NGGQRATESAQRETQTVNIQPIAVPSIAVDELKDITDNFGSK





------------------NGGQRATESAQRETQTVNIQPIAVPSIAVDELKDITDNFGSK





----------------NYGRSKPGPPAPSRSPPTSRNLPIAVPAIPLDEIKGITKNFSSD





KPYVNNLSKEGESKDDQLSLDVKSLNMKDEISKDRRSNGKQAQTFTFEELAAATSNFRSD





KPYVNDSREEGASKDDQLSLDVKSLNLKDEISKDIRNNGNPAQTFTFEELVAATDNFRSD





-----------------------KAKSSVSESRSRGSDNIVAQTFTFSELATATRNFRKE





ETKKKRKNVAASSEPDKKRWFKNKIWKKKKAKNEQLATLVKEISLATKLNSAMHVNINLS





-----------NVSKDQPTTSNSEHNLPTLTPEDELKVASRLRKFGFNDLKMATRNFRPE





----------------MGSKYSKATNSINDALNSSYLVPFESYRFPLVDLEEATNNFD--





----------------MGSKYSKATNSINDALSSSYLVPFESYRVPLVDLEEATNNFDDK





----------------MGSKYSKATNSISDASNSRYGVPFENYRVPLVDLEEATNNFDDN





----------------MGSKYSKATNSINDASNSSYRVPFESLRVPFVDLQEATNNFDDK





-------------------------------LNSSYRVPFESFRVPFVDLQEATNNFDEK





-------------------------------LNSSYRVPFESFRVPFVDLQEATNNFDEK





-------------------------------LNSSYRVPFESFRVPFVDLQEATNNFDEK





------------------MRSKDSKETTYISDTTSYRFPVESSQIPFAALQEATNNFNCN





---------------RLLRPRRCPSEVPEYFSGNMSGNLRTITYFDYVTLKKATKDFHQK





----------------xxxxxxxxxxxxxxxxxxxxxxpxxxxxxxxxxxxxxtxxfxxx





ALIGEGSFGRVYLGVLRNG----------RSAAVKKLDS-NKQPDQEFLA-QVSMVSRLK





ALIGEGSFGRVYLGVLRNGX---------GVAAVKKLDS-NKQPDQEFLSXQVSMVSRLK





ALIGEGSFGRVYLGVLRNG----------RSAAVKKLDS-NKQPDQEFLA-QVSMVSRLK





ALIGEGSFGRVYLGVLRNGR---------SAXRVKKLDS-NKQPDQEFLXAQVSMVSRLK





ALIGEGSFGRVYFGVLRNG----------RSAAVKKLDS-SKQPDQEFLA-QVSMVSRLK





ALIGEGSFGRVYFGVLKNG----------RSAAIKKLDS-SKQPEQEFLA-QVSMVSRLK





ALIGEGSFGRVYFGVLKNG----------RSAAIKKLDS-SKQPEQEFLA-QVSMVSRLK





ALIGEGSFGRVYFGTLRNG----------RGAAIKKLDS-SKQPDQELLA-QVSMVSRLK





SLIGEGSYGRVYYGVLNND----------LPSAIKKLDS-NKQPDNEFLA-QVSMVSRLK





ALIGEGSYGRVYHGVLKSG----------RAAAIKKLDS-SKQPDREFLA-QVSMVSRLK





ALIGEGSYGRVYHGVLKSG----------RAAAIKKLDS-SKQPDREFLA-QVSMVSRLK





ALIGEGSYARVFFGVLRDG----------RRSAVKKLDS-SKQPDQEFLV-QVSAVSRLK





CFLGEGGFGKVYKGYLDK---------INQAVAIKQLDR-NGVQGIREFVVEVVTLSLAD





CFLGEGGFGKVYKGYLEK---------INQVVAIKQLDQ-NGLQGIREFVVEVLTLSLAD





CLIGEGGFGRVYKGYLAS---------TGQTAAIKQLDH-NGLQGNREFLVEVLMLSLLH





MNICPTQTYEEHSGTYLR---------NLAVIAVKQLDK-DGLQGNREFLVEVLMLSLLH





SLLGEGGFGCVFKGWIEENGTAPVKPGTGLTVAVKTLNH-DGLQGHKEWLAEVNFLGDLG





---GKGGFGKVYRGVLRDG----------TKVALKRHNR-DSGQSIEPFRTEIEILSRRS





FFIGAGVFGKVYKGVLRDG----------TKVALKRRKP-ESSQGIEEFETEIEILSFCS





FFIAEGGFGKVYRGVLRDG----------TKVALKRHNC-DSQQSIEEFRTEIEILSRRS





FLIGWGVFGKVYMGVLRNG----------TKVALKKHMP-ESSQGIEEFRTEIEILSLCS





FHIGLGGFGKVYRGVLRDG----------TKVALKRCKR-ESSQGIEEFRTEIEILSFCS





FHIGLGGFGKVYRGVLRDG----------TKVALKRCKR-ESSQGIEEFRTEIEILSFCS





FHIGLGGFGKVYRGVLRDG----------TKVALKRCKR-ESSQGIEEFQTEIEILSFCS





SLIGLGGFGTVYRGVLCDG----------TKVALKRCKL-ESSQGIEEFQTEIEMLSHFR





NQLGRGGFGPVYLGKLDDG----------RKVAVKQLSVGKSGQGESEFFMEVNMITSIQ





xxigxgxfgxvyxGvlxxg----------xxxaxKxxxx-xxxxxxexxxxxxxxxsxxx





HENVVELLGYCADGTLRVLAYEFATMGSLHDMLHGRKGVKG-AQPGPVLSWSQRVKIAVG





HENXVELLGYCXDGTLRVLAYEFATMGSLHDMLHGRKGVKG-AQPGPVLXWSQRXKIAVG





HENVVELLGYCADGTLRVLAYEFATMGSLHDMLHGRKGVKG-AQPGPVLSWSQRVKIAVG





HENVVELLGYCADGTLRVLAYEFATMGSLHDMLHGRKGVKG-AQPGPVLSWLQRVKIAVG





HEHVVELLGYCVDGNLRVLAYEFATMGSLHDMLHGRKGVKG-AQPGPVLSWAQRVKIAVG





HGNVVELLGYCVDGNTRILAYEFATMGSLHDMLHGRKGVKG-AQPGPVLSWTQRVKIAVG





HGNVVELLGYCVDGNTRILAYEFATMGSLHDMLHGRKGVKG-AQPGPVLSWTQRVKIAVG





HENVVELLGYCLDGNTRVLAYEFATMGSLHDMLHGRKGVKG-AQPGPVLSWIQRVKIAVG





HDNFVQLLGYCVDGNSRILSYEFANNGSLHDILHGRKGVKG-AQPGPVLSWYQRVKIAVG





DENVVELLGYCVDGGFRVLAYEYAPNGSLHDILHGRKGVKG-AQPGPVLSWAQRVKIAVG





DENVVELLGYCVDGGFRVLAYEYAPNGSLHDILHGRKGVKG-AQPGPVLSWAQRVKIAVG





HENIIQLIGYCAGGSIRVLAYEYAPRGSLHDILHGKKGVKG-AQPGPALSWMQRVKIALS





HPNLVKLIGFCAEGDQRLLVYEYMPLGSLENHLHDIP------PNRQPLDWNTRMKIAAG





NPNLVKLIGFCAEGDQRLLVYEYMPLGSLENHLHDIP------PNRQPLDWNARMKIAAG





HPNLVNLIGYCADGDQRLLVYEYMPLGSLEDHLHDIS------PSKQPLDWNTRMKIAAG





HPNLVTLLGYCTECDQKILVYEYMPLGSLQDHLLDLT------PKSQPLSWHTRMKIAVD





NPNLVKLIGYCIEDDQRLLVYEFLPRGSLENHLFRR---------SLPLPWSIRMKIALG





HPHLVSLIGFCDERNEMILIYDYMENGNLKSHLYG--------SDLPTMSWEQRLEICIG





HPHLVSLIGFCDERNEMILIYKYMENGNLKSHLYG--------SDLPSMSWEQRLEICIG





HPHLVSLIGYCDGRNEMILIYDYMENGNLKSHLYG--------SDLPSMSWEQRLEICIG





HPHLVSLIGYCDERNEMILIYEYMENGNLRSHLYG--------SDLPAMSWEQRLEICIG





HPHLVSLIGYCDETNEMILVYDYIENGNLRSHLYG--------PDLPTMSWEQRLEICIG





HPHLVSLIGYCDETNVMILVYDYIENGNLRSHLYG--------PDLPTMSWEQGLEICIG





HPHLVSLIGYCDERNEMILVYDYIENGNLRSHLYG--------SDLPSMSWEQRLEICIG





HPYLVSLIGYCDENNVTILIFKYMENGSLSSHLYG--------SYLPTMTWEQRLEICIG





HKNLVRLVGCCSEGTERLLVYEYMKNKSLDKILFAAADAPAPASAPPFLNWRTRHQIIIG





hxxxvxLxGyCxxxxxxxLxyexxxxgsLxxxLxgxxxxxx-xxxxpxxsWxqrxxIxxg





AAKGLEYLHEKAQPHIIHRDIKSSNVLLFDDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHIIHRDIKSSNVLSFDDDVAKIADFDLSNQXAPDMAARLHSTRVLG





AAKGLEYLHEKAQPHIIHRDIKSSNVLLFDDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHIMHRDIKSSNVLLFDDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHIIHRDIKSSNVLLFDDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHIIHRDIKSSNVLLFDDDVSKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHIIHRDIKSSNVLLFDDDVSKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHVIHRDIKSSNVLLFDDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AARGLEYLHEKANPHIIHRDIKSSNVLLFEDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHIIHRDIKSSNILLFDDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEYLHEKAQPHIIHRDIKSSNILLFDDDVAKIADFDLSNQ-APDMAARLHSTRVLG





AAKGLEFLHEKAEPRVVHRDIKSSNIMLFDNDVAKVGDFDVSNQ-SPDMAARLHSTRVLG





AAKGLEYLHNEMKPPVIYRDLKCSNILLGEGYHPKLSDFGLAKV-GPSGDKTHVSTRVMG





AAKGLEYLHNEMAPPVIYRDLKCSNILLGEGYHPKLSDFGLAKV-GPSGDHTHVSTRVMG





AAKGLEYLHDKTMPPVIYRDLKCSNILLGDDYFPKLSDFGLAKL-GPVGDKSHVSTRVMG





AARGLEYLHEVANPPVVYRDLKASNILLDGNFSAKLADFGLAKL-GPVGDKTHVTTRVMG





AAKGLAFLHEEAKRPVIYRDFKTSNILLDAEYNAKLSDFGLAKD-GPEGDKTHISTRVMG





AARGLHYLHTS---AVIHRDVKSTNILLDENFVAKITDFGISKK-GTELDQTHVSTDVKG





AARGLYYLHTR---AVIHRDVKSINILLDENFVPKITDFGISKK-GTELDQTHLSTVVQG





AARGLHYLHTN---GVMHRDVKSSNILLDENFVPKITDFGLSKT-RPQLYQTHVSTDVKG





AARGLHYLHTS---AVIHRDVKSINILLDDNFVPKITDFGLSKT-GTELDQTHVSTAVKG





AARGLHYLHTS---AVIHRDVKSINILLDENFVAKITDFGISKK-GTELDQTHLSTLVQG





AARGLHYLHTS---AVIHRDVKSINILLDENFVAKITDFGISKK-GTELDQTHLSTLVQG





AARGLHYLHTS---AVIHRDVKSINMLLDENFVAKITDFGLSKK-GTELDQTHLSTLVQG





AARGLYYLHKN---AVIHRDVKSANILLDENFVAKTTDFGVSKT-RTELDQTHVSTVVKG





IGRGLQYLHEESNLRIVHRDIKASNILLDDKFQPKISDFGLAR--FFPEDQTYLSTAFAG





aaxGLxyLHxxxxxxxihRDxKssNxllxxxxvxKixDFxlsxx-xxxxxxxxxsTxvxG





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLSED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPXLSED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLSED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLSED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLSED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLCED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLCED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLSED





TFGYHAPEYAMTGQLNAKSDVYSFGVVLLELLTGRKPVDHRLPRGQQSLVTWATPKLSED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLSED





TFGYHAPEYAMTGQLSSKSDVYSFGVVLLELLTGRKPVDHTLPRGNR-VCYLGNARLSED





TFGYHAPEYAMTGQLSTKSDVYSFGVVLLELLTGRKPVDHTLPRGQQSLVTWATPRLSED





TYGYCAPDYAMTGQLTFKSDIYSFGVVLLELITGRKAIDQRKERGEQNLVAWARPMFKDR





TYGYCAPDYAMTGQLTFKSDVYSFGVVLLELITGRKAIDQTKERSEQNLVAWARPMFKDR





TYGYCAPEYAMTGQLTLKSDVYSFGVVLLEIITGRKAIDNSRCTGEQNLVAWARPLFKDR





TYGYCAPEYAMSGKLTKMSDIYCFGVVLLELITGRRAIDTTKPTREQILVHWAAPLFKDK





TYGYAAPEYVMTGHLSSKSDVYSFGVVLLEMLTGRRSMDKKRPNGEHNLVEWARPHLGER





TFGYLDPEYFIKGRLTEKSDVYSFGVVLFEVLCARSAIVQSLPREMVNLAEWAVESHNNG





TLGYLDPEYFIKGRLTEKSDVYSFGVVLFEVLCARSAIVQSLPREMVNLAEWAVESHNNG





TFGYIDPEYFIKGRLTEKSDVYSFGVVLFEVLCARSAIVQSLPSEMVNLAEWAVESHNNG





TVGYLDPEYFIRGQLTEKSDVYSFGVVLFEVLCARPAIAHSHSREMISLAEWAVESHNNG





TIGYLDPEYFIRGQLTEKSDVYSFGVVLFEVLCARPAIVQSLPREMVNLAEWAVDSHNKG





TIGYLDPEYFLRGQLTEKSDVYSFGVVLFEVLFARPAIVQSLPREMVSLAEWAVDSHNKG





TIGYLDPEYFIRGQLTEKSDVYSFGVVLFEVLCARPAIVQSLPREMVNLAEWAVDSHNKG





TLGYLDPEYVIRGKLTEKSDVYSFGVVLFKVLCARSAIVHYISKGLVTLAAWAMDSHKKG





TLGYTAPEYAIRGELTVKADTYSFGVLVLEIISSRKNTDLNLPNEMQYLPEHAWRLYEQS





TxGYxxPeYxxxGqLxxksDvYsFGVvlxexlxxRxxxxxxlprxxxxlxxwaxxxxxxx





K-VRQCVDSRLGGD--YPPKAVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNAHAR-





K-VRQCVDSRLGGD--YPPKAVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNAACAG





K-VRQCVDSRLGGD--YPPKAVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNAHAR-





K-VRQCVDSRLGGD--YPPKAVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNAHARA





K-VRQCVDSRLGGD--YPPKAVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNARATN





K-VRQCVDSRLGVE--YPPKSVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNARASN





K-VRQCVDSRLGVE--YPPKSVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNARASN





K-VRQCVDSRLGGD--YPPKAVAKFAAVAALCVQYEADFRPNMSIVVKALQPLLNARAAH





K-VKQCVDARLGGD--YPPKAVAKLAAVAALCVQYEADFRPNMSIVVKALQPLLNARAVA





K-VKQCVDARLNTD--YPPKAIAKMAAVAALCVQYEADFRPNMSIVVKALQPLLPRPVPS





K-VKQCVDARLNTD--YPPKAIAKMAAVAALCVQYEADFRPNMSIVVKLFSLCCLDLYQV





K-VKQCVDPRLEGD--YPPKAVAKMAAVAALCVQYEADFRPNMSIVVKALNPLLNSRPNN





RNFSCMVDPLLQGQ--YPIRGLYQALAIAAMCVQEQPNMRPAVSDLVMALNYLASHKYDP





RNFSGMVDPFLQGQ--YPIKGLYQALAIAAMCVQEQPNMRPAVSDVVLALNYLASHKYDP





RKFSQMADPMIQGQ--YPPRGLYQALAVAAMCVQEQPNLRPVIADVVTALTYLASQRFDP





KKFTKMADPLLDSK--YPLKGLYQALAISSMCLQEEAISRPLISDVVTALTFLADPNYDP





RRFYRLIDPRLEGH--FSIKGAQKAAQLASRCLSRDPKARPLMSEVVDCLKPLPALKDMA





Q-LEQIVDPNLADK--IRPESLRKFGDTAVKCLALSSEDRPSMGDVLWKLEYALRLQESV





Q-LEQIIDPNLADK--ITPESLRKFGETAVKCLALSSEDRPSMGDVLWKLEYALRLQESV





Q-LEQIIDPNLAAK--IRPESLRKFGETAVKCLALSSEDRPSMGDVLWKLEYALRLQESV





Q-LEQIIAPNIAAK--IRPESLKKFGETVVKCLALSSEDRPSMGDVLWKLEYALRLQESV





H-LEQIIDPDLAAK--IRPESLRKFGETAVKCLALSSEDRPSMGDVL-------------





Q-LEQIVDPDLAAK--IRPESLRKFGETAVKCLALSSEDRPSMGDVL-------------





Q-LEQIIDLNLAAK--IRPESLRKFGETAVKCLALSSGDRPSMGDVL-------------





Q-LEQIVDPNLASK--IRPKYLNKFGETAVKCLADSGVDRPSVGDVL-------------





K-ILELVDGRVQGGEGFEEKEVMLVCQIALLCVQPYPNSRPAMSEVVRMLTMKTDQSIPA





x-xxqxxdxxlxxx--xxpxxxxkxxxxaxxCxxxxxxxRPxmxxvxxxlxxxxxxxxxx





ATNPGEHAGS----------------------------------------------------





RPNPGEHAGS----------------------------------------------------





ATNPGEHAGS----------------------------------------------------





TNP-----------------------------------------------------------





PGENAGS-------------------------------------------------------





NPG-----------------------------------------------------------





NPG-----------------------------------------------------------





PGAEHAGR------------------------------------------------------





PGEGVII-------------------------------------------------------





--------------------------------------------------------------





RHQACEFSPYPCLYVMK---------------------------------------------





RPASFTDAGERSGL------------------------------------------------





---QVHSVQDSRRSPSRPGLDKDRGQ------------------------------------





---QIHPFKDPRRRPSHPGLDKDNGRT-----------------------------------





---MSQPVQGSLFGPGTPPRSKRVV-------------------------------------





---PDDIEPLPISVPNYDKGISLREAEISLSGFEEKQVEDS---------------------





GPSYYLQTVQPERAGSSPDPNRTRVGSFSRNGSQHPRTLSIPNASPRHNQFLQDSPNPNGKQ





I-------------------------------------------------------------





I-------------------------------------------------------------





I-------------------------------------------------------------





I-------------------------------------------------------------





--------------------------------------------------------------





--------------------------------------------------------------





--------------------------------------------------------------





--------------------------------------------------------------





PAKPAFLDRKNLNGDRDAASSDTATMEMMRSPAGYWMMTPSPMLEVDRPYDMSFGK------





xxxxxxxxxxxxxx------------------------------------------------






Example 4
Corn Transformation Construct

GATEWAY™ destination vectors (available from Invitrogen Life Technologies, Carlsbad, Calif.) were constructed for insertion of trait-improving DNA for corn transformation. The elements of each destination vector are summarized in Table 16 below and include a selectable marker transcription region and a DNA insertion transcription region. The selectable marker transcription region comprises a Cauliflower Mosaic Virus 35S promoter operably linked to a gene encoding neomycin phosphotransferase II (nptII) followed by both the 3′ region of the Agrobacterium tumefaciense nopaline synthase gene (nos) and the 3′ region of the potato proteinase inhibitor II (pinII) gene. The DNA insertion transcription region comprises a rice actin 1 promoter, a rice actin 1 exon 1 intron1 enhancer, an att-flanked insertion site and the 3′ region of the potato pinII gene. Following standard procedures provided by Invitrogen the att-flanked insertion region is replaced by recombination with trait-improving DNA, in a sense orientation for expression of a trait-improving protein and in a gene suppression orientation (i.e., either anti-sense orientation or in a sense- and anti-sense orientation) for a trait-improving suppression of a protein. Although the vector with trait-improving DNA inserted at the att-flanked insertion region is useful for plant transformation by direct DNA delivery, such as microprojectile bombardment, it is preferable to bombard target plant tissue with tandem transcription units that have been cut from the vector. For Agrobacterium-mediated transformation of plants the vector also comprises T-DNA borders from Agrobacterium flanking the transcription units. Vectors for Agrobacterium-mediated transformation are prepared with each of the trait-improving genes having a sequence of SEQ ID NO: 1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239 with the DNA solely in sense orientation for expression of the cognate trait-improving protein and in a gene suppression orientation for suppression of the cognate protein. Each vector is transformed into corn callus which is propagated into a plant that is grown to produce transgenic seed. Progeny plants are self-pollinated to produce seed which is selected for homozygous seed. Homozygous seed is used for producing inbred plants, for introgressing the trait into elite lines, and for crossing to make hybrid seed. The progeny transgenic plants comprising the trait-improving DNA with a sequence of SEQ ID NO:1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239 have one or more improved traits including, but not limited to increased yield and those disclosed in Table 3. Transgenic corn including inbred and hybrids are also produced with DNA from each of the identified homologs and provide seeds for plants with the improved trait of the cognate DNA of SEQ ID NO: 1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239. Transgenic corn plants are also produced where the trait-improving DNA is transcribed by each of the promoters from the group selected from, a maize globulin 1 promoter, a maize oleosin promoter, a glutelin 1 promoter, an aldolase promoter, a zein Z27 promoter, a pyruvate orthophosphate dikinase (PPDK) promoter, a soybean 7S alpha promoter, a peroxiredoxin antioxidant (Per1) promoter and a CaMV 35S promoter.


Seed produced by the plants is provided to growers to enable production of corn crops with improved traits associated with the trait-improving DNA.









TABLE 16







Elements of an exemplary corn transformation vector









FUNCTION
ELEMENT
REFERENCE





DNA insertion
Rice actin 1 promoter
U.S. Pat. No. 5,641,876


transcription region
Rice actin 1 exon 1, intron 1
U.S. Pat. No. 5,641,876



enhancer


DNA insertion
AttR1
GATEWAY ™Cloning Technology


transcription region

Instruction Manual


(att-flanked insertin
CmR gene
GATEWAY ™Cloning Technology


region)

Instruction Manual



ccdA, ccdB genes
GATEWAY ™Cloning Technology




Instruction Manual



attR2
GATEWAY ™Cloning Technology




Instruction Manual


DNA insertion
Potato pinII 3′ region
An et al., (1989) Plant Cell 1: 115-122


transcription region


selectable marker
CaMV 35S promoter
U.S. Pat. No. 5,858,742


transcription region
nptII selectable marker
U.S. Pat. No. 5,858,742



nos 3region
U.S. Pat. No. 5,858,742



PinII 3′ region
An et al., (1989) Plant Cell 1: 115-122



E. coli maintenance

ColE1 origin of replication


region
F1 origin of replication



Bla ampicillin resistance









Example 5
Soybean Transformation Construct

Constructs for use in transformation of soybean may be prepared by restriction enzyme based cloning into a common expression vector. Elements of an exemplary common expression vector are shown in Table 17 below and include a selectable marker expression cassette and a gene of interest expression cassette. The selectable marker expression cassette comprises Arabidopsis act 7 gene (AtAct7) promoter with intron and 5′UTR, the transit peptide of Arabidopsis EPSPS, the synthetic CP4 coding region with dicot preferred codon usage and a 3′ UTR of the nopaline synthase gene. The gene of interest expression cassette comprises a Cauliflower Mosaic Virus 35S promoter operably linked to a trait-improving gene in a sense orientation for expression of a trait-improving protein and in a gene suppression orientation (i.e., either anti-sense orientation or in a sense- and anti-sense orientation for a trait-improving suppression of a protein.


Vectors similar to that described above may be constructed for use in Agrobacterium mediated soybean transformation systems, with each of the trait-improving DNA having a sequence of SEQ ID NO: 1 though SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239 with the DNA solely in sense orientation for expression of the cognate protein and in a gene suppression orientation for suppression of the cognate protein. Transgenic soybean plants are produced comprising the trait-improving DNA with a sequence of SEQ ID NO: 1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239 have one or more improved traits including, but not limited to, those disclosed in Table 3 and increased yield. Transgenic soybean plants are also produced with DNA from each of the identified homologs and provide seeds for plants with improved trait of the cognate DNA of SEQ ID NO: 1 through SEQ ID NO: 151 and SEQ ID NO: 153 through SEQ ID NO: 239. Transgenic soybean plants are also produced where the trait-improving DNA is transcribed by a desirable promoter including, but not limited to, the enhanced 35S promoter, napin promoter and Arabidopsis SSU promoter.


Seed produced by the plants is provided to growers to enable production of soybean crops with improved traits associated with the trait-improving DNA.









TABLE 17







Elements of an exemplary soybean transformation construct









Function
Element
Reference





Agro transformation
B-ARGtu.right border
Depicker, A. et al.,, (1982) Mol




Appl Genet 1: 561-573


Antibiotic resistance
CR-Ec.aadA-SPC/STR


Repressor of primers from the ColE1 plasmid
CR-Ec.rop


Origin of replication
OR-Ec.oriV-RK2


Agro transformation
B-ARGtu.left border
Barker, R. F. et al.,, (1983)




Plant Mol Biol 2: 335-350


Plant selectable marker expression cassette

Arabidopsis act 7 gene

McDowell et al., (1996) Plant



(AtAct7) promoter with
Physiol. 111: 699-711.



intron and 5′UTR



5′ UTR of Arabidopsis act 7 gene



Intron in 5′UTR of AtAct7



Transit peptide region of
Klee, H. J. et al.,, (1987) MGG




Arabidopsis EPSPS

210: 437-442



Synthetic CP4 coding region with



dicot preferred codon usage



A 3′ UTR of the nopaline synthase
U.S. Pat. No. 5,858,742



gene of Agrobacterium




tumefaciens Ti plasmid



Plant gene of interest expression cassette
Promoter for 35S RNA from
U.S. Pat. No. 5,322,938



CaMV containing a duplication of



the −90 to −350 region



Gene of interest insertion site



Cotton E6 3′ end
GenBank accession U30508
















APPENDIX TABLE 3





SEQ ID NO: SEQ ID NOs of homologs



























240:
7319
7772
4165
7279
8472
1915








241:
872
9283
6127
9719
4864
6242
8526
6419
7759
9073
2613
2268



4632
9988
706
4211
5868
5162
6778
2818
4446
8022
5640
2336



937
9010
7423
10353
8552
4128
4105
7686
12195
10669
12342
8692



5537
11579
2835
8650
5475
11890
7460
9427
2284
3244
11978
9829



4748
8553
1446
2403
7293
3548
12319
6834
10066
6183
4312
7543



5134
8322
2800
11545
6091
11097
3540
3961
7214
10438
1640
9780



4934
7927
2400
7549
12416
10157
1349
6290
7629
4403
10890
6442



2515
5801
12216
8987
5141
9726
6551
10160
5289
1354
4654
7838



11102
3968
2890
6186
628
8703
9371
3860
10153
8874
1345
7931



11204
11770
3018
3441
10577
10610
10499
8307
12271
1848
4425
1204



1537
11923
3133
4808
9940
6766
3234
12003
8649
7112
12207
10622



5119
3464
9955
6521
4120
9924
5693
8842
7406
4197
4325
11073



9174
6893
10059
1792
9442
8812
5665
9783
1361
6628
8108
6348



10795
6924
1868
12137
4042
2276
3365
6619
12076
2084
4511
3278



10300
4514
7688
1267
870
4951
2767
8580
11788
10100
7117
5046



6531
5445
9848
2178
713
10999
6411
646
5189
7310
10504
11929



1690
5343
6267
1010
5444
10776
7548
3144
4347
6416
9264
9668



1540
7457
1122
10665
8509
11546
9473
4244
3142
6550
4093
2863



10916
9567
862
7304
1912
11709
884
11773
4089
11785
2325
5602



8736
11430
3004
5891
11938
8737
6309
4091
10924
5306
970
8723



3683
9687
7150
3905
10712
8324
8543
6285
2682
5065
2993
8344



1928
12197
6661
3414
3878
8576
774
10904
8487
5985
7098
9655



5534
7770
12211
7227
6188
11837
8030
8147
9951
9758
683
5810



9658
7427
854
9096
9694
10883
8039
9649
1316
2610
8172
9902



11673
9763
499
2532
2273
1867
10674
11658
10467
11143
1561
1227



9980
2746
6047
9225
2913
6734
10827
3272
6723
9908
7466
1095



3459
6609
11165
9800
10526
4253
9446
9328
5243
6005
1744
3090



12421
3920
9832
3711
9011
8423
4461
6692
6831
8360
1571
3181



10685
9072
11904
1514
2794
8680
1183
2396
9496
723
3283
5147



998
10149
12448
9404
2278
9070
5576
1261
5939
3430
2638
11889



9203
5258
12274
5799
9522
2209
11401
4316
10154
7581
4238
1104



2565
2848
3349
4385
7993
4012
10842
544
2395
6432
11530
3630



6887
1938
8532
4631
7779
9935
6726
5294
3500
2088
5588
8751



10934
9077
12313
8073
6328
3806
12016
9891
2751
5347
3832
10482



524
4855
1451
4889
9957
9833
3328
3098
11887
579
2376
3260



1257
10421
5585
7953
6402
1187
8710
933
10081
11571
10018
11279



929
11738
10702
8395
1157
3651
6278
10269
5139
1814
9838
12108



7445
2303
9917
11909
2568
7488
10105
12154
11220
2690
3294
8852



2106
8583
3726
9139
4395
7992
7908
9159
5429
8677
5538
1997



10866
5592
7970
3940
8551
6443
4844
10921
7499
3865
12214
9624



9142
10614
3371
11020
5516
3879
2073
1240
10773
867
6888
483



7134
7633
4447
3518
9610
10005
4180
2410
2959
6221
10371
4837



6806
10032
9340
610
6464
3840
6788
8340
5255
11301
3620
11459



1054
9431
3644
6930
815
12034
4401
1154
10315
3519
4509
7105



5666
8850
3340
2021
10868
3167
2533
4785
3507
1879
1719
7972



9585
784
11284
10399










242:
6383
3426
9749
9579
6504
8571
11363
9729
2774
2824
6800
11836



10978
7535












243:
5229
2681
3233
1102
12450
7058
6882
3684
4692
2430
6687
2702



11159
493
3493
6575
9272
8970
4693
4714
7364
4741
11303
7436



6620
9708
652
2422
6738
8982
8262
3429
5618
10576
9432
10821



546
12282
7540
3060
4399
5507
4375
597
4290
6727
1992
2652



10629
2001
4620
7522
3946
5212
8061
3108
11936
9667
9717



244:
11270
10304
1123
8010
8141
2919
10052
3566
6143





245:
9076
1014
3740
10454
2125
974
3282
11533
12119
7082
8997
10377


246:
7026
4240
12380











247:
9507
5676
8328
9317
3732
4437
1163
9237
8320
2838
8151
1714



11146
6077
9057
11217
2449
10690
9448
10293
5728
5782
2401
4138



7730
4667
11152
2750
5910
1459
8501
967
3942





249:
5305
5158
1726
8705
7617
4366
12092
7504
11434
7904




250:
909
10291
9115
8458
1394
8188
6229
2718
3041
1813
8123
2293



4615
5989












251:
5788
3707
4166
1309
11626
1215
9592
10564
11762
2922
1120
12246



10130
6124
7520
7244
10681
11835
10359
11822
1766
2023
3987
4219



4929
3514
7009
6835
10366









252:
2506
10724
1168
12248
3861
6955
5455
8083
2472
2882
11296
7518



4531
2790
5220
4642
5764
10555
8516
7162
10500
9751
11410
3195



949
2139
9846
4335
8027
1533
9734
7365
5135
8792
10929
10357



8500
4674
5959
6248
9723
9847
2620
3874
6654
2979
2131
8267



8917
1975
1952
5318
5235
10456
6570
9295
5997
8133
9082
3101



11307
5913
10426
10488
9032
1935
11387
5730
9598
886
9453
3484



2108
9605












253:
9563
6621
3102
7854
11948
9707
2789
1234
7544
3885
709
3508



2080
8875
6633
5726
583
9480
6387







254:
2558
10259
7830
12190
11787
11233
11804
11932
5432
11382
10976
10354



8558
8784
1077











255:
663













256:
3155
8327
12074
9950
11278
1918
6688
12219
11002
11810
8671
11340



3023
2359
11271
7811
5557
10846
11839
5352
9877
1249




257:
5521
2418
9398
6286
3794
2948
10602
1167
9572
8598
4842
10051



8479
1101
2475
4960
4151
11114
7441
9907
5012
10145
5948
5536



7793
2678
1630
5607
3893
11211
4471
2407
5192
10494
9235
5625



2844
7863
1916
11840
9416
12031
7637
5138
1397
10345
11318
10309



533
5104
9566











258:
10132
11629
1984











259:
2502
2744
1758
1245
7521
1770
3621
3677
7322
6549
3343
3277



665
1392
5927
4207
3763
11133
10919
8597
7914
1260
825
4249



7390
8418
9344
1332
11207
9792
10283
8237
9052
10573
4819
5161



2192
9433
9103
11532
1235
9170
7685
12286
7576
504
9858
5613



773
12105
6580
8482
882
7672
11475
4067






260:
5500
10296
1405
4006
3542
3588
9697
3853
9860
4078
11994
5042



8840
5076
11683
7326
10026
11098
7930
10838
7510
4570
2206
6315



10542
6334
790
3761
8956
812
5842
7642
9437
1657
4261
10932



6736
7695
1678
11518
4057
11273
6908
8749






261:
7236
10747
6886
8505
4433
2828








262:
5541
12099
1314
7357
4849
6797
10245
8407
7689
11614
11634
10992



8211
9445
11122
3505
3148
7133
5137
5978
7204
6146
1059
3030



11553
4770
4028
2756
3934
2656
9282
5506
5701
12125
7721
5870



10689
11077
6742
9122
3045
11005
1242
4623
1135
12324
9419
4799



3549
860
4326
6616
12346
4982
1794
5146
4991
1988
4589
5126



3279
9035
12249
8864
1774
10361
7949
3640
1388
9286
11235
1803



6587
9401
2722
10861
1954
6421
4603
3258
6379
3220
2945
10757



6351
7391
12326
8560
1725
11541
7338
11740
2415
5573
2977
4393



1588
5712
6159
10673
7398
1137
10128







263:
5581
3054
4968
11826
7738
7209
11043
9303
8847
11344
4650
8603



6538
7278
11262
9330
1403
3746
1381
7631
8428
2483
4715
11572



10166
7872
4218
1555
9388
4651
5293
11379
7883
5692
6376
9091



11863
5991
7677
3240
9457
2300
10016
6676
7461
7839
866
4971



11657
5928
7762
6798
3314
7619
5988
2960
8922
1702
6642
2170


264:
6344
6298
1512
7511
5719
2491
5202
10321
3352
10631
5917
6083



9894
5968
3590
12458
7922
8486








265:
5263
2200
8210
4468
4206
4894
5244
2592
10185
5266
7690
5903



9738
7426
5696
649
2130
9378
2976
8828
5950
11690
877
9138



4017
6360
1056
10568
824
1530
9517
8233
3151
753
7163
5754



2049
530
8273
7202
11941
5905
6366
6487
2697
7635
6279
12035



10146
6342
752
8246
9931
692
10126
8766
5561
11222
3361
10946



5242
8076
2405
2617
1865
2657
8607
5921
6471
5322
5204
8380



9132
7500
10092
3267
8286
9969
6973
11893
12262
10563
3738
822



6392
622
10857
9505
11086
10533
2312
3827
8685
2271
6241
5008



3275
11760
7717
8735
5121
4477
10541
2457
12093
672
10642
3263



4132
3908
2158
1110
9674
4706
5371
4655
1385
7054
10162
4026



9426
798
8527
7663
9407
1548
12317
1065
6247
3991
6995
10511



3310
7942
7749
971
8054
3702
7725
4149
1430
4869
8240
863



5849
2614
676
6373
9434
6569
8422
7905
2065
8226
1508
9293



10963
7217
1061
11930
5694
4859
2066
4479
3376
3741
8660
4973



5325
12445
7501
11478
9009









266:
5282
9034
7946
3565
11010
7556
8542
2900
11813
2791
11619
8609



8565
3327
12063
10274
10374
900
7557







267:
11439
1214
4657
9436
2384
9226
4077
682
8386
4448
11550
8196



11891
5540
8891
2221
2140
6220
8049
9688
10817





268:
10697
8194
3123
9121
966
3221
3093







269:
10295
1410
8017
3948
5643
4846
6118
9778
6770
9890
12451
1151



3574
4835












270:
7653
9879
12273
7937
9112
4263
8319
5428
2874
11856
9069
3095



8815
2046
641
8043
4590
11907
9367
1159
3424
9260
11646
11305



11376
7165
4574
4181
2391
12397
5370
5450
8238
11297




271:
9887
1594
4561
739
2428
7289
3300
8694
1074
4512
12138
1956



10699
1707
7373
11092
8691
1166
9373
700
1732
4645
10654
1460



1285
1281
8288
11083
1510
2274
11977
10396
750
9084
10927
9906



5155
1382
8164
2022
3091
2406
5839
11635
5635
7282
5281
6545



9626
11931
2083
7990
5071
3039
9941
2486
6359
11986
8040
5737



7068
2386
969
8753
10709
1706
3782
5246
2968
11013
11425
6000


272:
12210
3011












273:
4502
1337
6810
4527
5021
4545
10234
4774
8930
11081
12176
4641



4805
10993
5304
3150
4398
2850
11682
10640
7643
2956
7696
10206



2017
10653
12339
11567
9175
5639
9149
4145
10829
7654
7745
6090



4474
12310
11298
4324
7989









274:
10151
1343
9690
5795
915
6283
12244
6167
12415
11244
7538
669



10236
7748
5338
8272
3603
10715
8221
6126
8746
1147
3862
1386



4626
9462
3382
11669
9745
1953
5485
11800
12029
7011
4464
3433



6878
916
10508
9362
6949
7323
9591
3126
4283
10994
4969
5567



2076
829
11238
1408
1733
8827
7859
8376
2390
6010
9864
10550



11449
4453
11559
574
12253
12301
2742
3302
7911
10899
1584
10625



907
6246
11192
840
11341
609
3764
10344
11888
4851
2989
7281



5505
764
10714
10412
3223
2713
1255
11776
10389
3325
10604
4254



6746
5745
2438
4102
3660
11358
6251
10395
7396
7923
5336
4661



5515
10273
11125
8513
6191
5873
5865
5467
3138
6058
9002
6100



3066
7028
7343
7983
11854
8332
7665
6357
8659
3544
6694
10434



1608
9976
6353
10465
5897
3342
12015
10483
2353
3379
8843
11336



899
4186
2077
11282
2511
696
3951







275:
3988
802
11542
11369
9017
11035
9816
5563
4495
3642
6836
1845



8908
5111
3844
9772
8011
11500
12331
3612
3997
1045
8865
7631



11726
9696
6732
10000
4895
3344
697
6470
807
8854
9589
10566



9152
8713
1944
7340
702
3836
8254
10886
564
1886
3831
6333



6117
1496
11477
8135
1724
950
5818
10193
8811
8628
905
3898



8299
8358
12402
4237
11838
6642
1355







276:
2169
11476
7821
9495
559
1266
9387
6032
9172
6564
5439
10117



12044
3527
12088
1802
10038
6104
11857
1112
5026
1804
1488
4647



5852
8919
3271
10791
1940
10169
5685
4328
8860





278:
4220
5703
10281
11415
5739
1519
633
8471
11602
3177
10311
3720



6857
7703
4881
8725
4607
2350
7783
8244
9074
2110
8593
11793



9543
3699
7208
9578
2215
5605
2949
10824
5027
5513
1127
2378



6061
8900
5611
1681
500
8962
2636
9653
6323
8203




279:
7977
4811
2446
5969
7781
11781
6820
3168
5194
2308
2692
7979



3206
3191
10546
3728
7408
7127
10251
8926
2683
4190
11458
624



2770
7857
12407
12231
4035
12461
9756
2575
8112
5600
5560
3284


280:
2287
7413
3795
955
7407
6771
3577
6512
918
11231
2508
9630



4279
11287
9474
7449
1585
11322








281:
2028
1786
5526
6693
4360
11647
11029
7795
3076
6567
12424
5784



8619
7640
719
10603
3255
4058
5009
9469
3104
3560
1991
4995



7473
3131
3446
11778
2436
11154
1914
3301
3697
6627
2421
2985



8765
11696
2067
2884
6975
808
4659
12259
6116
4053
3061
1241



2503
9710
8539
11176
5157
12436
5596
1069
7135
2640
3543
9315



7926
1963
11876
11825
1926
4235
2876
8700
1574
12368
12254
823



4476
3534
6997
1948
9739
4457
7074
566
5110
3289
4223
1173



11332
2668
9331
8372
3257
5631
1114
2596
9870
5609
11966
8627



4572
11263
1106
2517










282:
6885
12394
3460
5431
10471
1949
11830
8616
10537
8905
8718
7566



11255
7655
4357
9718
8693
10578
5918
7620
3719
6735
8835
7577



2545
10266
4353
2003
7606
10833
4397
5077
8739
8635
9581
9878



6257
9391
10046
9449
8224
6202
3529
7739
3053
10569
6689
9494



3892
9795
5280
4728
8773
5720
6472
6961
12395
1772
9164
9819



9351
12175
4380
8389
8062
5525
4322
6666
602
9760
6826
9359



6952
8535
1524
1587
8816
8477
6697
3154
12001
1083
3502
4513



3252
9470
1909
8651
2347
7341
8427
7945
5368
8447
2143
1516



9817
8044
7032
7719
735
4038
4756
4966
5522
6631
11853
4975



7003
6724
9360
9209
1951
12228
1609
1421
7481
6644
8777
12140



10687













283:
1264
11225
3729
5940
7731
12370
659
7066
9515
4931
2567
6128



3931
2518
6686
705
5223
5813
2082
10751
3378
10518
8119
7714



7598
8128
5904
8647
9354
8977
6953
12230
9075
10913
621
2918



6596
6500
5250
5906
3182
10854
3105
11319
10872
7611
11668
645



3083
7126
3944
10161
10805
5835
2014
5486
2092
8804
4986
1747



8661
3669
11765
3911
5170
5131
11064
4830
3169
4771
8468
2199



9730
12042
6401
3880
10156
4342
4126
12422
2433
2908
7692
4703



3001
5603
8034
9394
7102
11362
2880
7164
3841
2730
2902
7741



2688
9762
10756
1500
12018
7554
6614
4299
10031
7987
4336
3353



1452
7666
3538
7184
1032
496
4521
6170
1031
12261
7659
3522



3406
6207
3941
3107
6114
1364
7036
6553
5645
11299
1591
2260



2527
7807
10915
11381
3339
4106
3403
3513






284:
6275
8031
11396
11068
6144
6901
1677
9747
5479
10638
10458
12008



7191
4441
10503
9320
5378
6741
8310
11937
5463
5820
6201
4251



10652
5984
3650
4243
8318
2772
690
4162
2152
951
3034
11886



4131
4517
4483
1053
4076
12352
2833
2445
10815
10247
9468
1097



9265













285:
940
9000
9831
9731
7276
8668
6396
7301
2470
10278
2467
4421



7774
3286
2063
1808
2189
7260
11548
8989
1250
5911
4075
5203



2358
5558
5226
7431
1785
6448
3767







286:
2145
8599
10948
6225
11072
2197
2757
6638
5311
7645
1982
4821



1376
2555
2747
10907
3161
4905
1891
7299
6938
8788
893
11843



8470
11662
5421
2349
11864
7049
10028
1222
2608
12111
2214
1335



10383
8738
1841
6534
1246
6377
2646
4358
5942
7951
8088
4662



11432
6967
5837
3017
8907
9593
9659
482
3666
2501
3744
3064



9837
10637
6827
1996
9849
1985
2873
1882
5028
9685
11008
8686



6446
7029
7027
5458
7033
6213
6295
1076
12256
8859
12163
931



4920
11878
3715
9643
7875
8225
12038
8403
11408
6962
8291
12013



9666
7532
10425
3996
4964
10826
484
1417
6821
8311
10644
5302



7711
1979
8295
3649
12328
4085
5838
1563
2427
1369
10062
2039



3137
7986
6801
1872
9285
11018
1415
3585
6710
1520
7573
5535



12389
11651
8631
11896
1279
4516
4043
10442
4972
3363
1219
8277



6808
10460
10481
4724
4086
4843
8260
6972
8897
9573
6840
1319



4866
6354
8954
4541
9078
2367
7262
8419
4023
5593
2103
5880



9207
10480
4878
8507
4682
1189
7154
2118
3589
2629
11281
9269



9208
1812
12377
2700
6802
5328
9597
4302
10352
11089
3569
9420



11397
896
7628
6205
9287
11031
5218
11549
6524
10574
1881
5339



5045
4071
10233
10909
12281
7025
7971
11737
11915
8033
9418
8461



8346
3737
2205
2107
606
11914
3822
11576
7789
5578
5056
1764



6011
8217
12298
10433
3351
8600
1967
9809
5511
4280
10360
2531



1660
5200
1817
1484
7733
12423
10823
5112
1901
8200
8462
5319



7648
4216
12052
6554
10867
5774
3524
10230
1877
9711
9335
6059



11667
8707
11717
3197
7064
11940
10287
10939
1480
844
4796
2135



749
7963
4915
1352
6211
5892
11275
3046
4718
9194
4402
7782



6584
7550
7199
6271
10918
9995
4084
10596
8450
2859
6992
10175



8530
10138
850
9383
5116
7826
4456
2062
5628
746
6980
3618



9693
8455
4187
5821
8832
9025
9657
1017
11242
9336
9925
3739



11971
5185












288:
5348
6988
9850
7061
12393
5642
4272
7664
5768
2239
10722
11731



6181
8354
8858
4580
2292
11675
11955
3003
2309
6978
7437
6963



3348
1384
3367
4295
11024
6522
10818
2095
8059
5391
4575
2845



751
5938
2005
7757
8416
1079
9930
6064
8019
7973
5001
8966



8103
3696
8845
10877
11016
3966
11997
7483
4704
1755
5574
2153



10075
4543
613
4822
4321
1170
7459
10843
7479
4345
1028
821



7615
10064
4827
4045
9607
3901
9278
4885
8800
3708
12309
8573



4029
8098
976
11913
9490
6374
9234
892
11638
11650
842
5597



11803
9447
532
10820
6853
11295
10415
10973
6258
625
6489
4373



8623
1861
11497
10774
1341
5241
7291
11074
9223
1636
10485
8099



10704
1689
3110
1625
3479
2459
7846
4670
4908
11404
7790
11959



2302
4099
7169
2704
3935
5659
11109
1971
4882
1420
2724
7516



2619
11145
726
11950
10404
11066
8602
4952
4595
8430
7957
6667



4098
5760
3721











289:
1683
12362
9113
4392
7600
2414
2717
7366
11744
2316
12432
10453



11679
8722
6948
2664
778
5462
5825
6919
945
2473
6807
8373



2166
1633
7234
7776
12372









290:
4700
7981
9048
2079
2356
10812
9843
3864
2142
9836
1057
3447



1172
7866
7140
8426
5441
8679
8292
7107
1826
4121
10814
1141


291:
7236
8505
4433











293:
6920
2766
12174
5078
10056
1978
3146
3915
7250
6194
7842
3385



12026
10851
9549
5924
9689
7070
3010
1015
3080





294:
11118
1686
1569
7161
9314
6479
5327
8152
7604
2735
6160
11023



6082
7438
11324
658
6632









295:
1797
12327
9056
1769
8521
6141
4451
10662
3121
6729
4002



296:
11665
4628
8100
11272
2962
6690
8757
3907
736
10968
8396
4139



2701
2537
11009
3140
569
636
10430
11348
11239
4423
8170



297:
10040
6879
1716
4274
5840
11946
10045
1299
4204
6868
1203
1570



12187
4055
11034
11867
10121
8764
9896
4383
10441
11603
5197
7751



2307
4538
8156
9640
9117
9173
2889
2739
1302
11224
6739
12406



5005
2175
11240
6051
8920
4088
2602
3670
4411
2277
8695
9684



2157
9102
12411
667
11355
12131
3377
4744
1665
1819
9771
6610



3356
8252
7484
12046
2109
6629
7975
3550
12082
11922
2488
7468



6702
3819
12435
3037
7503
8208
2368
1656
10950
7799
3709
11821



6754
9570
3461
2514
10798
6302
9565
12201
1206
7542
7345
9166



1827













298:
8139
8641
6523
7360
10848
7080
11351
10710
6316
8361
9946
1907



6719
10272
12085
7644
8212
1763








299:
6133













301:
2843
8911
6094
12023
11991
12055
2010







302:
10750
3288
4820
10759
7232
1468
2951
4205
1048





303:
7006
9229
1705
10858
4364
880
1760
7465
4675
12426
5360
2156



9318
8825
11203
6042
7668
11101
1703
6193
7506
6825
5555
4308


304:
1683
4392
7600
2710
7988
10089
2414
2717
7366
2316
960
1455



10749
9333
4153
10429
6807
8373








305:
6095
6918
10432
6852
5239
3438
10943
9551
695
9080
5993



306:
4430
2094
4292
12439










307:
1536
9023
11880
10936
7226
9524
9199
6926
6112
11618
7321
8750



11623
4860
6588
5722
8796
4694
11392
7090
10582





308:
5238
3842
10493
3617
12025
10781
7017
10148
4213
1647
734
1922



1286
6020
11398
4553
4130
1328
10923
2987
997
9857
1651
8745



1276
11827
5769
11903
1711
10772
2601
8974
5893
9389
3765
6869



1320
8841
560
4916
9060
7308
3672
10804
7998
5884
7476
6162


309:
8801
3541
1041
6711
7964
681
876
1839
9861
3546
9830
9865



1265
6813
11471
9210
1347
9892
9273
7114
12376
2419
3964



310:
4125
2643
777
875
8914
5741
7486
11181
7454
10520
1438
12303



9051
5051
7954
6123
3280
1495
3158
3837
12409
4690
2998
8519



7534
797
9155
2452
10780
10529
1310
9092
6012
8983
10985
4080



2765
2516
2971
5804
7794
9472
4925
1082
1535
8326
10677
4469



10965
4601
5747
1947
11884
8621
2712
485
497
5002
7211
5018



4902
11085
5772
3149
11134
3570
7109
545
2244
5163
4170
10310



2612
1373
10624
1896
11243
584
5259
3993
4281
1326
8302
4033



3299
1465
9045
1664










311:
5122
8544
1850
3407
3082
2101
8807
1743
4416
4485
4518
3943



4757
7512
786
9889
3591
2580
2002
3092
5789
9825
994
3209



8435
4537
11593
7021
8789
10106
1573
6780
7096
6073
7736
7171



4282
4394
1849
930
972
2847
1117
8721
7189
2100
5149
7221



11953
11963
4974
1429
2210
11598
1531
7039
11711
9936
5224
10186



4072
2649
8963
2382
10351
2096
10974
10636
11000
8734
3916
6796



8657
11687
4697
4329
6832
2727
8374
9438
10668
3647
11552
7524



6604
1885
11828
7595
10209
11411
7797
11885
10661
12019
10202
4612



10108
10561
1613
1092
10530
7110
9015
3939
4852
1642
724
2015



12189
9706
3937
2177
8937
11655
4387
10778
528
3692
1932
9177



8140
6092
5247
1545
9038
5309
11555
5090
7242
785
8998
10155



3954
1639
6650
8405
3305
10431
10539
8886
4361
1783
9454
2362



4246
1134
11285
2831
7650
4979
12225
6502
1557
4758
6477
2980



5277
9165
7722
7118
7822
3783
11529
1049
6277
11780
5477
11519



11902
8645
10034
2590
9003









312:
7634
1055
5087
3270
10523
6530
4135
2639
12447
10719
3604
10044



11004
5269
5981
9041
6527
7087
1003
12355
3599
1749
1820
5237



7019
10664
4458
6210
6762
5579
1513
6086
10859
10159
3881
10294



2398
12212
766
6385
11329
1607
1256
2732
11289
12151
9669
12374



2974
11070
10739
3928
2935
3478
3994
8822
7264
6240
12089
1476



5528
4883
10745
11984
2621
8740
3950
745
1798
3044
7394
5136



9692
9466
10063
2967
12391
6677
2946
10268
10123
2008
8755
2625



2298
7571
9242
3014
11869
11288
6433
5751
9405
1874
1578
9665



9703
10320
1824
11681
948
6637
4997
5823
9683
604
3847
8941



3539
7889
12124
6925
8278
4831
1027
6795
9728
4914
11590
4955



3033
8945
3413
2133
3141
9776
8259
5604
661
6708
2072
12017



7921
9961
3450
11775
11689
6597
1305
4984
6024
4604
7267
2781



3324
8629
6970
4731
5856
9555
9063
10972
10612
7412
3246
9125



4523
6617
2807
8556
2723
8799
6217
9664
1990
11713
2075
10468



4467
6119
11216
7469
2925
2494
3341
4896
2416
4030
10414
9642



4643
7255
9639
5236
1493
9646
4850
11457
1654
2507
12091
10492



7103
2934
5863
8408
5290
4617
9606
8925
9280
7235
9904
5480



2332
1344
6048
1870
4562
3225
6261
9429
11873
9097
8533
3625



1562
3814
9222
6849
9779
9289
10403
7784
10394
10711
5376
9998



9111
11670
2440
4937
8095
11790
3533
3573
10164
3631
5413
7728



4797
5032
3704
4146
12291
3808
8279
3188
9621
5861
3160
1278



9042
7012
1339
8067
4027
12239
1111
6505
1964
2755
7935
1146



5619
11265
9550
7470
5941
2048
671
2054
11792
10983
4007
11511



3313
2905
8370
577
6682
8829
2637
7402
10339
2388
11321
8431



7853
5000
708
8697
11858
8007
3242
10998
7675
6001
6775
10819



10672
4362
4303
6889
9634
12308
3291
10452
10522
11809
637
6341



12285
12296
3800
10019
11112
9244
9312
10119
9168
6896
6098
10192



7342
5015
2487
3021
11213
7043
986
9461
9910
2648
4195
4300



11055
2513
1815
1005
2305
11368
3526
1900
8978
9874
1294
6139



11757
9476
6915
6678
8672
11808
9501
10375
632
3130
11380
1466



5108
396
12020
6945
2981
6611
10243
7593
4578
5469
8960
3071



3977
9183
4638
4536
5335
7404
8494
10474
5464
8474
6990
8014



5831
6203
12383
2696
11829
9304
2557
4221
4376
9927
10496
1226



3798
585
9118
660
619
8366
12387
10069
12183
4463
4586
11071



2345
5424
6894
10158
11247
9301
8176
6140
4214
871
11164
3381



1638
4957
5190
6700
3735
1445
4493
4490
3902
5321
6187
8125



8124
10068
10324
4539
4117
3925
3859
11975
4532
10405
11859
7496



8381
9275
6259
803
6176
11343
11136
11610
9332
4494
8895
5353



5936
11292
8637
7285
3825
10337
8522
2680
8726
7136
11138
3680



5761
11442
6639
5433










313:
3073
2474
3510
7075
4976
9185
6594
869
9518
10060
2564
8838


314:
10029
7651
7037
7585
7372
977
1353
5662
11431
7052
1583
10463



12267
6507
3712
8663










315:
9863
731
7111
1547
6030
1144
2530
2947
7906
6412
10680
711



2149
7709
1058
10768
11394
10997
1284
965
4092
9557
8392
9018



11227
11661
7614
8846
8961
6265
490
12083
5584
6306
3578
978



2842
8258
10448
3028
3973
2330
6069
9296
5493
11444
8227
1889



1976
12418
11926
5310
9629
2823
7121
8824
7288
2825
5007
4727



12316
11612
6029
10124
5395
1188
5651
9230
2587
9403
9616
4660



8057
8263
12442
4124
2229
9270
4779
3224
2595
1363
1671
8594



6155
1946
6712
8032
4807
5172
985
1160
11249
9027
7492
503



1411
3627
6314
2251
4025
9899
2898
4371
5499
4640
1407
1416



2827
8336
3321
6390
11330
5678
2357
7419
4422
1604
1334
9460



9380
3823
1149
1878
3273
11574
2693
9855
6216
9497
1866
7358



9376
3870
5679
11309
1521
5487
6999
9402
3639
5342
9511
11774



10476
6643
10262
9095
7084
4824
6791
6636
4738
3470
11228
3628



7590
8050
5438
3050
2836
8078
9535
11620
9299
851
10008
11688



10302
9253
10109
10392
7447
10775
9647
6398
11767
2404
9532
7553



2223
4320
12144
9221
11973
1195
6037
612
8163
6142
1835
11727



10024
11866
1740
11823
1296
6755
6363
10020
1599
9297
7901
2689



1450
12117
6630
3852
9369
5010
3440
541
2026
8352
11759
7435



11048
6494
1923
2091
9363
3829
9321
11337
10557
8839
5332
9599



9455
5217
8901
5962
6050
10900
11801
11059
578
9821
11653
3449



4684
5740
3923
3266
2247
783
3906
1238
911
9782
6669
3056



3331
8118
5734
10367
9491
11323
6276
12005
9249
5317
10489
11752



7123
4021
6679
3673
10752
5998
10004
10887
7803
3768
10845
2786



1270
10072
4981
7207
2866
902
1837
11543
8433
8274
2372
6706



11025
9202
859
6833
3706
11172
9258
4993
7131
9538
4212
2504



2399













316:
8724
5044
10558
8303
9909
12419
4296
12010
10150
6441
7879
1790



6993
7248
6491
1233
8304
3559
5660
11014
6121
7157
10033
9834



8343
623
4818
2695
8950
5944
8070
6179
7155
8476
7471
4735



1999
3100
5671
2691
2148
10084
9248
7835
11562
2611
5661
7181



6841
6612
11769
11372
12269
6349
7224
7867
9948
4404
8851
4016



7750
11832
12148
11180
2896
9964
2111
3311
11733
5130
6634
3026



11157
9412
3099
3498
5691
10021
6282
4159
2235
3506
6135
10583



5471
7428
3029
4177
6845
5345
5775
3075
8251
1968
8338
10990



9254
8337
9663
954
3674









317:
3309
1527
722
3863
6557
3497
9944
9740
9322
10027
1087
1070



5196
8294
7902
1436
1367
8642








318:
5591
1829
11695
2000
9068
10423
11601
5883
4658
7572
11257
12196



8459
8921
10876
12235
1905
856
7764
7158
8826
7552
10363
6559



3049
10022
3134
11123
959
5622
6519
2482
10006
7884
8634
10070



8473
6909
1942
5807
3129
11586
6254
1094
8148
1685
7743
3487



6540
12002
11155
3419
11976
11185
8314
8820
10691
6859
6339
11175



7919
10204
10947
3213
11850
3694
8055
9086
1409
4904
6427
9284



7984
1606
10085
6498
12180
4930
5899
828
6794
8456
8300
2319



10521
8577
1989
10299
4438
3051
4884
9888
1004
10552
855
4405



2535
1499
5039
1597
8767
11625
5482
5559
9932
10570
2068
6563



10524
12314
4977
757
651
11350
4768
9005
4429
4780
3250
8964



5900
8137
2594
11961
9012
754
1230
10885
10536
5399
8142
6244



2943
2168
1691
4435










319:
8234
755
4745
5743
11416
5655
10409
2053
6607
7820




320:
9329
6305
5715
6935
1731
3235
12440
12412
4278
1822
847
5334



7870
10648
9544
12378
4268
8349
5812
8182
7802
11782
1218
925



717
3215
2591
4985
1602
2996
2432
1383
3682
6516
11924
4415



6860
6131
5268
7382
571
4888
3972
11464
10290
4716
9677
5653



9087
7976
8046
2070
7624
811
6873
8268
7044
1659
10116
10088



1282
8742
5145
5955
10182
1895
7354
591
8388
11998
5166
4933



4983













321:
2426
7091
11276
4874
9934
4591
1667
7682
6262
1393
10547
1777



12123
2176
7559
6552
4963
6164
4840
9408
2716
2793
891



322:
5419
1980
10862
5179
5755
8819
8830
6917
1185
595
6593
1568



7678
4248
1342
4787
11039
12209
1773
537
8102
2886
1780
6969



3022
2431
9990
8284
889
2883
601
9129
6056
3334
6536
489



10095
6789
2134
7294
9824
3856








323:
4349
10326
768
6031
10342
4665
1943
8790






324:
1807
6871
7314
1009
1853
3486
9866
10057
6759
6556
9450
7290



4154
5279
5478
11702
7771
12388
2031
9217
8382
11450
10571
4891



2887
2749
7969
1467
11587
4119
10940
6703
9822
10009
1458
10348


325:
1672
4606
2593
3085
10400
12452
5312
8862
8090
10382
7674
7752



10332
11535
1038
6913
7099
3416
1507
5055
5806
4176
5817



326:
9196
7256
12366
4110
10397
10333
11199
4630
4803
3350
4579
12192



9062
5834
5404
2669
11508
9233
2116
5182
2314
8990
3210



327:
3079
1902
6763
6196
10297
525
1136
10317
8887
9143
6493
9364



6322
4750
5504
4828
2519
9913
10221
721
10417
8585
9033
4739



6515
11302
3894
10054
3781
7528
10683
4917
9992
11040
8730
10090



11452
6125
7046
6717
1544
8931
1612
6804
2283
1567
3563
3714



4051
9487
7312
5698
4906
9488
7768
10592
9266
1871
4306
6941



5085
3766
657
7452
2721
7222
2942
10732
7982
2495
5802
5023



12359
2051
7891
6362
11507
9238
599
4022
6595
7515
7974
3985



7170
5916
2462
5466
7960
1303
9959
5841
1153
6843
11521
1442



7399
2188
4833
6839
11489
5350
924
8774
2086
9533
3810
10807



4054
5228
7206
10738
4228
11845
9187
11075
3002
8384
7124
4747



10742
958












328:
9919
4426
6725
7362
1497
4470
4262
781
6226
6466
3147



329:
2983
6189
952
4334
3360
11105
2813







330:
9520
5175
6428
1775
3228
2615
1674
1529
10556
12061
6180
1471



10413
11057
4958
5727
11103
6356
4687
3052
6579
7318
5171
10445



1884
4172
7024
6395
4588
3482
8574
3077
5684
4175
7684
8761



8410
11156
3963
8793
7076
11898
12294
4594
2505
7292
910
11927



10280
10853
2562
9290










331:
5926
3535
9559
5422
9498
5418
11106
3035
8145
3788
3434
2958



4528
5307
2150
8390
6071
7591
11525
6824
12012
5780
7924
588



2542
12236
1781
3295
7747
10979
927
5393
5498
1232
6378
6060



5705
4565
4678
2892
5214
2604
8270
10598
3347
6773
1983
10666



5416
4535
2042
6985
12304
2254
12193
11445
8126
6218
11609
2510



8946
6891
10623
9150
9341
8952
10725
6292
8420
4743
1894
5205


332:
8023
7887
10238
9213
8562
6182
1506
1558
1435
3884
10364
7810



6750
8165
9926
8918
11981
4257
6330
7446
4730
2526
2036
2270


333:
7316
11087
8566
7430
8215
10884
617
11671
7403
771
5330
11210



874
2708
10986
8079
10214
8720
9937
9954
12443
5156
11161
11236



11274
3882
8213
11346
3833
1433
2146
5627
12305
6370
522
12343



6792
6740
4809
5925
4436
8130
3983
7141
11712
2424
10882
3292



10338
4927
7045
5949
1851
5053
3412
6405
9316
10864
5664
655



7325
5686
3063
3152
3401
7125
8904
7596
12198
2961
9424
7305



10419
3652
9133
3164










334:
2706
10115
1941
10786
12217
1037
5649
6880
2468
8350
5120
11413



8965
2552
5150
1490
5544
5454
10388
10222
9089
2064
1925
8449



5369
6375
1883
7228
5106
10227
1628
11584
8197
838
2743
9261



1906
12437












335:
5048
2893
1470
8587
9982
8563
992
5407
3472
9481
11433
6747



10703
3793
630
2029
552
9920
10658
11925
6440
10163
4087
4297



3477
11972
11551
795
10649
7128
11956
4428
2600





336:
2895
11678
10073
8802
7383
1186
6288
6895
1846
3139
11160
7898



953
6648
2246
7020
7962
12043
10436
11144
11645
767
6783
4500



3097
9773
4921
1572
10510
3845
11447
895
9193
5457
6529
3256



1148













337:
6394
10174
8413
2929
12463
7434
4194
2477
9390
11245
3690
7237



989
4445
4639
3312
10763
7760
2499
9922
11703
7259
5299
11517



2798
8113
4275
4259
1133
10427
763
492
11466
796




338:
12363
12358
4801
8504
11079
9200
9918
2258
11786
8127
5101
9562



1375
10840
5449
7015
7705
1126
4355
9939
2626
1582
6415
9793



7240
9134
4378
5484
8595
1002
1960
7380
5733
12030




339:
8296
10930
3512
4549
4311
3678
8316
12037
9411
6338
7588
1091



3445
10255
9984
2081
5707
7200
11607
9106
2524
11617
7681
10626



1113
2574












340:
6308
8489
3318
5096
4024
12141
9463
2413
8951
4618
11140
6875



2236
11496
2869
10416
6720
6805








341:
5401
12226
2834
3616
1217
7007
10418
5716
10594
2310
3910
4193



9768
6605
11899
8567
3432
6624
5099
8967
1439
9542
3431
1580



10323
1036
1177
11223
7907









342:
8184
2250
6514
7840
6940
6635
10785
7934
5709
2204
5402
1125



4370
9392
11049
5524
3287
10067
7632
6768
5285
7306
8805
7167



2858
4232
3200
1748
6964
4942
6830
6320
5638
10736
7545
7179



7873
6641
2570
11995
10216
2186
7050
3787
5272
6912
5990
1461



4227
11698
1142
728
1109
3685
3116
12289
9409
12039
3725
11595



5366
3201
9379
11360
6166
1739
9236
1011
5206
3835
10449
1684



2915













343:
10188
2007
2016
5850
4350
7000
2306
6027
519
2627
4501
4773



7047
2914
6721
10525
10225
11664
4271
10554
9443
8053
9601
1757



6957
9214
12095
2338
8091
8158
9876
8185
3219
4001
10901
10380



11232
6571
6321
7238
5509
5531
6190
1481
11491
7251
8202
1424



9430
1093
1539
8094
9162
8491
12373
6691
4250
6326
4367
3120



11992
9516
10384
11969
5383
7443
9761
11954
11438
6884
8081
5689



3693
9510
3198
3815
1676
5420
1290
7955
7065
5890
4961
6062



581
2686
3394
9435










344:
6016
8669
7837
3285
5153
8414
5003
6936
1823
11693
6756
1090



7296
10903
8308
3336
8975
11448
12311
5895






345:
6350
10059
1792
10553
1052
9871
4680
11701
1620
6685
5543
9189



3089
2955
3239
984
2183
6136
2550
2867
10379
8511
8936
7833



9393
5546
1247
2344
9603
6670
10229
5013
5216
9638
495
10870



8502
10014
2097
5365
11704
10925








346:
10910
9252
7236
10747
11205
8087
9568
8505
3422
11280
2828



347:
9478
7851
9259
3554
2906
9872
1549
5257
2227
10439
712
2975



1371
3769
4323
2624
10343
4133
1652
3408
3218
5867
4967
1191



11187
1193
5545
11252
10671
5564
1704
4129
7409
9529
9895
5213



12184
11141
6986
1931
6701
6585
3384
11504
5388
5954
3475
12215



10107
7680
12113
1006
3982
6968
2578
12021
11605
730
9840



348:
11699
890
7060
5408
3891
2025
5553
6088
1171
9536
7944
2585



6626













349:
4581
12427
4118
10579
6861
11017
8438
11054
5359
3828
670
11094



10308
7001
4034
901
7814
2667
4970
1542
3173
3981
3355
2383



6150













350:
11417
1710
7143
12413
4143
1380
5658
4141
2529
689
12054
5683



8670
9716
7767
9724
804
8261
1972
8448
12347
4600
6403
8928



836
6649
7254
8646
1538
4115
6751
2245
5315
1289




351:
2222
5633
1475
12182
10043
6299
1275
10135
11560
8411
4729
11979



10980
11596
1161
3153
2759
2928








352:
3872
8759
1601
2322
6250
5881
8675
3496
10136
8605
7855
7819



2394
10960
8041
11325
11502
4391
2074
10684
1169
10878
8550
775



8673
3320
8355
8001
8863
1030
9350
6478
9459
4688
4136
7283



9853
9923
5566
8153
7558









353:
10729
2481
11933
3274
9399
7657
12414
6573
2679
4924
12348
2129



2299
3695
5412
9744
4871
2663
5923
2674
1178
1213
3849
2812



10001
3040
7938
1696
4418
1816
2257
7555
2598
11267
1432
4946



9786
2875
12110
3799
4560
1737
10215
3437
3598
3230
8884
11290



7198
9757
1742
10197
5169
1351
9201
5459
9239
6426
3909
2267



10834
7698
6068
6956
11540
7030
4097
10678
1428
9789
5995
666



5811
1503
12315
7385
5947
12398
5400
6539
11174
7393
8239
3812



1653
10532
9596
5128
2417
4137
2861
10966
9180
3986
1263
2984



9218
8933
5833
3661
5314
2161
5284
4800
7097
9081
2924
1699



6281
8441
3435
8639
10284
5275
8084
8781
8537
1919
11367
6958



11592
3615
6817
7464
2180
11746
11385
11558
3797
12334
6057
9651



8955
8992
2857
9806
4886
7824
4487
6178
9130
3375
9905
1398



6760
8464
7732
4224
2586
5502
7432
4857
10490
7225
10228
9110



2758
4533
1779
5049
2878
2816
8666
8986
873
7639
11037
9989



8794
11928
9425
10771
5714
7804
5127
747
4868
4427
1259
7243



1489
5103
1546
1887
4898
9628
10306
7507
3959
1423
9192
8092



2190
11640
7115
10231
562
2155
4284
2253
2213
1116
5381
3855



2045
7900
8283
6510
10386
8440
4365
11779
8018
4992
1449
9564



10995
9255
6769
11406
1040
5650
2768
10855
7041
3867
9767
10335



11169
11871
3491
7880
6921









354:
4928
539
6076
7626
2465
8883
12086
9675






355:
10941
5827












356:
7899
2286
11193
1590
4944
8228
5230
8377
10663
6499
7913
3914



3330
8929
1366
6532
5461
12302
2425
5550
7472
3786
9953
7359



638
2439
12129
3601
10559
5320








357:
9769
8015
4161
2360
7713
9049
5894
1492
8881
9292
6846
11197



10179
5547
7991
1577
10964
995
4854
2078
8454
11277
7270
846



11149
4711
8179
8940
5875
4163
8004
6019
3517
11480
9759
11982



2443
7831
6866
520
10288
11721
10794
5184
9263
9227
7967
6704



4726
12229
12241
2761
2548
5888
5798
1304
4558
10053
10279
7726



2371
8763
11964
1440
11352
3185
10955
5377
2392
1330
6764
9999



7932
7710
1216
833
2822
1258
6423
1610
9479
7241
9311
5974



5542
12079
11012
6111
2738
2779
9294
616
6406
8857
4171
4185



7448
6154
2581
8570
2912
5060
5572
11258
6898
3143
11849
7311



9897
8778
4540
3875
10589
3523
10101
9704
9915
6361
3492
5763



946
10099
11632
4390
4475
6157
10420
6455
8280
11246
8247
5118



11855
11044
10706
2632
7589
7257
8483
7583
5337
11797
9735
4686



10244
1413
10049
7841
4148
1205
8981
2705
2841
3059
10241
511



6765
1196
3400
4548
1293
4870
8298
6870
7601
3758
1806
6713



7895
9746
11440
3296
11135
531
12232
6959
7712
2528
10944
4544



6844
12396
10265
7950
7862
8733
5434
9512
523
6422
4564
2037



4559
8460
10141
8241
6939
4947
5088
3115
1152
5316
9093
12321



2484
570
5793
11604
7268
4359
6138
1899
8219
5061
1784
10748



7525
9250
10620
7416
11644
8451
5301
7048
3817
615
9384
4912



1646
10461
2840
9147
6007
6548
2734
8712
11513
6640
6099
8335



5174
8138
5809











358:
9456
10091
8818
9686
491
6509
10041
5375
5497





359:
1799
8105
6680
5822
716
9622
6488
8882
6249
5621
7246



360:
714
4732
1511
9059
11326
12188
3337
7352
9720
8923
3113
2381



688
11186
6294
11728
4873
12114
4636
8596
1858
4552
7753



361:
12275
7578
1271
8220
517
6822
11492
10740
8915
1237
7313
6003



8089
502
3632
6236
800
2290
7104
10731
10208
8285
9695
2429



11179
4061
975
12345
3469
4432
6660
11019
6525
7694
7153
4766



7563
1551
7850
6954
9960
5047
10767
11958
9620
9043
1269
558



11895
9231
2972
4156
5700
2228
744
4646
834
12048
3418
2115



9996
2315
12024
8896
3724
2033
8309
12022
8056
12152
8698
596



12222
7183
10896











362:
3074
9370
4079
5426
2409
3958
6274
3117
3264
8655
2301
6897



8397
1864
6452
8528
2090
4208
4000
6705
10758
3971
11095
11734



10908
5836
11366
11983
3945
10695
10698







363:
6232
8229
5094
2536
8195
8305
11129
7370
6651
10713
12329
10502



3869
1362
12428
11633
4386
1833








364:
3918
9184
6928
11422
9880
3754
3316
5448
6234
5494
7231
4443



961
9464
2019











365:
5176
5308
11795
12263
839
8051
725
738
1801
1487
5073
10122



11570
4047
3557
6291
7582
8394
12237
5501
8878
4245
8257
8779



3803
9036
6984
10692
10346
12011
3038
3889
1145
11293




366:
11753
3016
2911
5829
2185
9537
11999
6447
2243
9823
5031
9323



5143













367:
1672
4606
2208
2593
3085
4608
5312
2365
4258
1108
7780
1474



2670
6672
4877
8116
4113
567
5844
922
1507
5055
6371
12297



5806
6153
4176











368:
1637
6662
7275
12072
10534
10235
7477
576
4547
5695
11725
11041



2144
3637
8866
3065
12238
12051
11021
6537
1315
1024
2776
5470



5271
11906
5583
5907
9609
2444
4763
4066
12204
4410
5862
4046



11455
6668
4742
6937
5198
6748
6490
3031
7966
6454
6436
2497



7737
818
11952
5274
2207
6707
5151
1248
6284
3067
575
10007



2991
1336
1312
600
9022
3545
10301
8325
11648
2573
11182
7903



12047
7980
11206
3655
7216
11534
8589
2655
6075
10114
2052
1673



9678
7502
7151
2295
4856
11942
2868
4169
11253
8689
12295
10478



7533
857
8484
7778
8608
4112
9338
837
1936
6393
8245
1834



3359
861
10811
9277
8301
2937
10010
11536
853
2242
3345
4826



5960
5105
8612
4918
883
8756
6790
2420
3917
11919
10002
7083



9966
7808
4384
6867
5608
9513
3877
7763
488
9339
4829
518



9901
8154
3676
8495
2121
9977
12277
5725
4140
1444
7439
12357



4332
3531
2839
10627
2826
5935
11544
9962
4569
2554
6850
10074



1553
2184
7145
7918
9156
8271
6902
4199
9774
10303
11493
8249



6239
5059
8701
1162
5882
5987
3718
9160
11007
7067
4939
12064



11600
1202
2849
3317
8129
10239
10865
1962
6325
4691
9302
2234



9123
12322
8457
8979
5670
3024
4440
9560
5885
3421
4265
11628



2280
12332
592
1494
11523
1244
2523
6110
2231
5437
551
5409



6716
4573
3839
10422
8275
8588
737
9262
7487
5465
7493
4534



11266
10727
7828
11115
8002
5225
10562
8378
9400
12224
7420
8290



3780
6224
11462
2397
5411
8797
806
11718
7378
12283
9921
6854



3333
10881
9100
1559
11751
8944
10954
2226
7330
6079
3924
1099



2694
1412
5610
6149
8696
3607
7008
9274
2442
1729
1453
11468



8334
6233
10632
7636
4455
535
1073
8699
9325
11585
9441
4294



4236
10498
3813
7263
7939
2030








369:
12323
718
9099
11577
11908
9361
7271
12027
5331
8889
12136
6562



7298
10254












370:
1105
10455
3073
6977
4330
5374
2173
10058
9053
6486
2474
8879



4004
7530
11226
11126
11987
10782
10535
4210
5472





371:
3659
3717
5958
5227
5173
563
1974
11405
2411
10256
11147
9698



1595
3775
3388
7148
4862
7827
3850
8768
5847
6009
1598
5296



2435













372:
10050
9750
10875
7497
2584
2941
5460
8412
2471
11342
3448
6615



4344
10212
11030
8614
1464
10355
8387
6526
3483
5803
3900
4887



12318
10250
10765
1081
7302
3451
5781
8856
6456





373:
3742
9841
9366
1717
10514
6445
2098
7489
11807
10922
2004
7092



5699
5406
9352
1306
11743
7252
4103
1291
9039
3402
7490
2927



4815
5718
9085
3587
4252
12361
1119
11527
6757
6177
2117
957



1619
7647
8758
6103
1550
3373
4234
8442
10275
3397
919
10491



8000
9483
5624
7353
6772
8995
11944
3528
11162
6346
11389
10330



12218
9741
5986
6424
9046
11148
6134
5934
9327
6745
1192
8662



10515
759
5589
1023
8465
8035
1001
7307
11719
7387
6332
2820



12268
11591
8391
6081
3757
5736
8020
12109
10194
1220
11399
557



9619
12369
6998
10519
6297
10023
2635
6815
4672
1753
9523
3481



12171













374:
2263
8253
8529
2957
5854
8654
12242
1321
9319
8683
5453
4689



8478













375:
6965
11170
1791
4291
11390
8902
11875
6799
6266
9014
11320
3805



5529
4032
8287
11865
10167









376:
4414
8762
11259
9504
9784
11748
5341
9107
10327
1525
9644
12240



10723
1910
8082
6558
9736
7526
5682
6365
6386
9545
9617
6173



7400
11050
12004
3364
11569
8475
4872
1043
9671
1955
4256
2500



8467
10828
11694
8568
9268
2855
11353
9054
2577
7462
1663
10479



11794
11561
7197
11386
2607
9614
1643
11100
7336
4389
1201
10178


377:
5305
5158
1726
7617
8705
4366
12092
7504
11434
7904




378:
7791
5199
11173
10410
12364
4074
3537
6151
741
762
3820
3868



1629













379:
8873
4792
3802
648
7890
7159
3112
587
9007
3183
1698
6097



6555
5115












381:
3204
9368
2597
3132
8678
3380
8421
9867
10548
4247




382:
11124
1434
12462
4719
11190
12213
1457
10349
5414
2201
629
10253



2904
9701
7085
6219
4861
5765
7175
4363
6087
12403
5209
644



5425
11916
8134
11897
11316
9508








383:
8186
6269
9355
11705
5262
10621
8036
3610
2124
9722
3871
1741



3293
9385
9781
6364










384:
10959
5098
5436
9777
2795
3974
11831
7152
1401
6574
7742
1793



5222
5508
6900
12449
9310
10787
10837
3205
11388
9547
12014
4307



8890
8402












385:
11531
9198
6864
9815
8024
9374
1209
1771
9211
8255
6256
9337



10996
8496
7172
8276
9452
1945
4713
4611
9224
864
7916
3171



5590
2342
6484
9458
9525
8711
5971
6313
3830
9611
1348
7495



11484
3667
1068
10307
11676
7425
4337
3776
2715
11741
8903
3713



10572
2520
4409
4568
9662
10575
9713
4522
4201
9353
936
7455



3127
9055
11472
2804
2485
5992
7546
5787
1614
12272
820
8199



7565
11045
5264
1051
2219
7215
5054
4622
12247
6046
729
7607



4563
2792
2126
7328










386:
11268
6449
4644
5349
12159
3613
7832
3553
10905
7536
12202
990



8235
10686
2456
2603
2327
7754
12260
3458






387:
2041
8848
2909
5750
7062
4627
2566
7094
2141





388:
817
9679
3392
4988
6465
10879
9281
11631
1000
534
10133
5512



10286
2050
7915
1818










389:
4812
3006
2832
11649
3536
8821
10336
12335
5851
1395
1668
4183



9732
3319
799
2877
8991
8968
770
5606
12115
4496
7805
6408



6388
4134
5270
827
7072
8775
9001
7871






390:
12454
3012
6026
11219
4005
8748
9818
11892
12191
2496
6715
10737



12145
3276
5188











391:
8545
662
1325
8282
5909
2352








392:
3087
1402
9975
3048
11515
5142
11356
11860
8331
1322
9492
4784



2179
2266
494
4286
794
10808
5496
7186
3629
9467
6453
2769



678
620
3062
4408
7878
8400
7106
727
6473
9963
2035
2329



1505
1184
9006
586
5387
7630
8564
4111
10667
2540
831
8752



8741
4285
6108
4478
4676
10888
11470
8906
11374
9804
11082
12059



10716
10951
5568
8984
6565
5677
5668
1692
12299
9991
5144
10080



3759
7077
10211
4790
4990
5612
8143
1228
5168
3596
11402
7494



8578
10799
9580
4424
7560
3595
6156
5757
4823
9770
8546
3396



8716
983
9875
5474
9798
9660
5632
10938
8351
6228
1658
5249



1655
8782
11119
4708
5361
3238
6045
7505
11188
1130
5358
2458



572
11949
11349
7315
6368
10143
6467
10184
7817
10408
9191
10195



3913
5575
2363











393:
5476
3156
7848
2476
2917
2879
3307
12433
7564
3663
7337
5783



8492
653
10313
3936
4150
6230
1268
618
12371
6907
4781
10328



5762
7523
7610
3953
11848
8038
5291
8207
8717
10645
3175
10077



5355
7843
12205
675
8025
10802
4230
7442
11996
6699
9826
1847



1129
9828
7023
9128
7245
5886
8159
4379
7579
4577
4293
3338



6458
3801
5160
6767
5447
4196
5382
6407
1389
11917
10248
2377



740
10316
4945
3203
7608
5178
553
2461
2973
10111
2127
4848



1026
11706
10753
10183
11627
9775
2703
7978
2569
5828
5451
12455



1456
11283
1701
8844
710
9094
3956
4188
3166
6451
10587
6671



8321
11032
8064
10543
991
3456
5983
8160
8490
3876
3675
3848



1007
7687
780
10198
10170
9502
7586
4377
10544
2163
4597
1857



4260
2760
6049
6397
7101
7829
3057
11110
11974
2218
830
1965



4585
7985
5385
3665
11516
1085
8026
10270
8959
677
4810
4525



8508
2647
10777
11654
8066
3608
8630
5491
9485
6865
11842
3552



7034
11656
11707
10172
11547
10144
10762
11451
8610
12102
10271
8345



6410
4709
3036
11819
1441
3088
1483
1727
12139
5187
5912
7309



5324
6561
9499
12155
7758
8109
6547
7609
2043
5351
7456
5256



8175
4504
4817
512
8191
5510
8969
6036
2631
12120
9623
627



3298
9413
9691
6673
6028
6089
12168
8409
1374
1143
1523
1957



1239
964
8785
4339
6876
10707
3619
1937
5233
5129
9195
3743



12420
6343
1970
10813
10784
765
9308
3751
556
2539
7584
11347



4941
8101
11764
2087
8554
5556
8656
5011
8371
6231
9375
1688



1277
1863
6863
2464
8658
6914
6506
5975
2599
4775
2970
10102



4056
11171
6469
4664
5520
4233
7877
11046
10362
7882
3399
4648



11663
8204
5826
6600
7417
10655
2645
5846
11520
908
7676
10289



6927
8934
1600
2256
5082
2966
11209
8256
5100
5234
7616
11269



4679
6851
11874
8281
6417
9440
8060
4903
11306
10096
7188
3960



4609
5752
7834
6130
9279
5037
4499
8894
11304
3703
9835
9539



2198
11027
7792
12223
9024
7561
506
2965
11735
1324
2059
3597



5933
7100
11400
7740
8760
4225
6430
12071
11429
9553
7828
10142



2328
9801
8953
2978
7185
8005
2047
3834
9754
12283
4712
10223



8557
4996
6289
10585
8497
4486
7374
3069
4157
12169
8806
8617



4723
7812
10588
3480
8341
5952
1251
8110
1019
11680
2191
9276



8947
2803
2269
10226
3199
4629
8357
1356
973
4949
7777
5004



5617
2910
1088
1131
4382
8944
4557
4576
7734
2385
3453
914



4305
12150
6718
5647
9307
3749
555
12257
8626
5808
9903
1300



7723
5794
3600
3572
12280
9079
6828
2662
10017
2676
10406
12128



10605
6838
11469
6107
8242
8927
4901
11985
10954
3043
10030
10822



9993
8485
6944
5708
8339
3658
11312
1715
8106
3436
5946
11078



10835
962
6414
6168
1486
8813
8569
8218
9842
6652
12194
7813



12243
1391
12065
9965
8869
2811
4663
5729
10447
1650
7956
8517



9796
4943
6065
11108
2099
7220
11806
7844
10633
10898
7691
10676



11939
2085
6287
11789
7317
9670
5329
1498
8582
3824
2027
9148



7379
11715
5373
10207
8534
7177
4948
4624
11841
2311
2071
5014



10889
11736
1357
3007
1412
9396
4515
11403
6535
6006
3561
5265



5932
8572
2034
5253
1973
1662
6198
3688
10809
1225
3208
3638


394:
9790
5879
6253
4178
7414
668
3932
6039
9240
6497
707
1809



11817
7266
10531
1832
5033
3501
5124
9856
7284
3779
1313
4142



1504
1828
5364
11080
3912
8681








395:
2323
4956
6172
1800
10801
1060
12405
2783
8187
1288
1426
1541



7327













396:
2709
1262
5083
2123
6530
9041
4778
2821
7509
7002
5183
8935



10971
3687
4584
7122
1820
1513
2355
6762
5579
7856
1115
5240



3881
11329
12212
12006
766
10294
2974
10120
11070
3994
5346
3478



10739
2935
1476
9938
11383
2621
3950
9141
5528
5357
11499
745



1034
9885
1645
7498
1798
10268
9242
8855
6677
12391
6300
2625



3980
8755
10123
7014
12133
2946
2967
10063
8021
6070
11870
1898



3474
2387
1138
6433
9405
9703
9665
1874
4997
11912
5823
604



8941
9683
6637
12124
6925
8278
9421
10643
9728
11590
3033
10708



9776
8259
2133
7201
3141
5604
1622
8625
10177
6435
10473
9584



2288
4984
8665
9021
8432
687
6024
12375
4604
582
12078
4508



9765
6109
2262
7347
11526
10717
3324
4304
9063
4731
11766
4550



12438
9125
3246
4523
4740
6617
6217
2075
3723
10468
7469
11216



4467
6684
6929
3341
7729
2494
8780
9642
5236
2642
9639
4643



7255
10492
12091
6586
2507
1360
8408
9606
8925
9280
4050
5290



6048
1344
5480
8533
9429
9377
3814
9779
9289
10403
12121
9222



7784
11901
5095
9111
3096
9372
5032
7728
10242
9788
3704
3808



4797
4656
9489
10368
9621
5816
1339
1111
1964
11335
8067
7935



12239
6505
10285
3691
9985
5843
3202
4605
7470
11265
10983
6195



11511
577
8370
3313
2388
8463
2255
3614
1759
5093
8364
11117



5702
4264
6761
6682
8829
7402
8431
11858
656
8007
9145
5063



3174
2324
4303
3792
9884
6775
6001
7675
9634
9313
12028
11308



3159
6974
9168
5749
3021
10836
7671
9461
9910
4300
11055
8265



9140
312
3955
1431
2547
11090
10475
1447
3005
10528
9968
1287



11505
9648
3745
8077
8329
6678
8177
7182
12399
8672
11808
12050



10956
4702
2366
10340
9869
6899
8192
11495
5245
6132
1730
1207



1466
6758
3193
9040
632
3671
7925
5595
5108
3071
1253
9131



3977
1966
1103
11163
5831
4583
12383
4593
7113
9309
2862
11829



6185
7597
10496
585
7603
3798
9118
9291
619
660
12183
3679



4463
2345
4214
7958
6700
3735
5190
4957
8042
6476
6812
748



8888
12104
3902
6187
3251
5321
8124
2102
4539
12077
3925
3859



2490
11859
10721
6259
11136
6176
11198
803
11343
7496
11610
5936



4494
5353
8726
11033
5761
879
5433
11442
6639
7136




397:
11768
5972
8910
6923
1071
11851
3710
1869
4352
10083
5081
5356



11051
2289
4439
7568
5405
4287
12135
2238
2944
1840
814
1365



11685
7720
2450
9029
835
6444
12097







398:
2241
3444
6018
956
10922
12070
7756
10305
2233
4152
1831
2888



9085
7130
9343
10869
4488
8664
5915
1687
8817
11945
7519
11722



2340
5215
5565
3125
1158
10459
10104
9271
3962
6008
3648
1644



7928
2589
7139
11905
4777
9004
1700
11514
11036
4652
4910
8706



6911
5860
8837
12199
7806
6227
4073
9973
2733
11001
4677
8312



7287
10325
521
6781
1491
12453
10517
2560
7057
3111
1821
5721



7273
704
12186
2164










399:
548
9300
9554
7547
8636
11881
4081
7368
10874
7147
4338
2672



11463
897
5276
4009
2799
1012
1575
5022
10933
5070
6434
8834



8406
5201
8190
12049
8181
514
4751
691
1767
6329
11877
1680



10586
7377
2658
9232
480
8714
4954
3145
7995
8236
3581
6223



10411
5267
7422
3748
2852
8424
4634
6391
3124
9163
5748
6437



9868
11575
7517
10741
10982
8916
7693
1140
7885
554
7514
3442



1603
5029
5123
8183
4909
10055
4431
5473
7168
4270
7849
7531



5394
7411
10616
3995
2860
9151
4699
2282
8849
8250
5746
4599



6543
8198
12459
12279
607
11063
1212
4450
2899
3979
9037
8939



2885
8016
6074
9176
4764
1418
6932
7599
640
4267
10800
1961



1175
9484
1927
6577
11918
5133
8223
3567
5066
1789
8592
9415



1359
9807
9047
4922
8086
988
3032
2572
12081
9637
4095
2630



6483
11583
5674
11611
9987
8434
6803
8317
8909
2060
9595



400:
3594
5858
6163
8162
5298
6877
9676
7641
7335
11393
3236
10613



8880
928
5961
5117
5323
11677
7040
9672
626
11053
10989
7333



4094
8536
10370
10189
6608
2659
11501
2780
5252
1180
2806
611



5273
698
9186
8885
813
8008
11483
1722
5973
3970
12157
3681



5384
1502
5038
7864
9886
12360
10487
3582
6067
536
9997
11573



4836
5853
11038
2661
8809
11980
1396
1350
7475
7888
12350
2466



6947
6793
9650
10087
11195
5024
789
2707
6485
8289
5193
1462



7392
5069
12069
10754
4717
5452
9067
5340
7623
3952
5417
11597



3826
5648
11720
4998
9061
10975








401:
11218
10912
3778
3297
9967
6495
12167
12233
9791
6623
9588
10369



11113
1522
4935
3583
5697
5283
11315
1860
9530





402:
7156













403:
1556
906
2463
4200
3646
6052
7351
7138
12208
3362
5601
4063



9933
10137
4783
7869
11375
3335
6733
12390
11524
11659
8359
2685



7053
12265
11011
7166
3975
11317
4015
4255
7397
5041
12284
10201



8893
10113
6482
4013
11697
6646
7815







404:
10847
2334
10082
10701
2901
11454
6589
5539
10131
6475
2653
10407



4346
9358
3370
3643
685
3626
10187
1272
7016
3516
12325
8216



1736
7213
12278
12341










405:
4331
4736
7999
9625
7541
3731
10849
4158
11047
2576
2894
9714



4155
10797
3770
8814
594
3515
7669
7539
7108
1782
5440
12122



7376
5681
4269
10893
8383
2313
9571
9251
793
5819
2865
11777



11121
10635
4551
8870
7765
6238
1046
8072
6340
5533
8503
3172



9743
9558
7818
2335
4582
2249
4863
7646
6380
2304
9881
1855



5057
11868
9613
2480
8523
10079
10398
6542
4114
8769
8798
4484



2217
6122
4417
2193
4381
10252
4498
11771
5626
7095
3326
7825



11761
12245
6606
3489
1155
10949
5767
7861
11486
9381
4554
2297



11621
12066
10744
8732
5582
6819
9146
11127
4109
515
550
5855



4340
1648
10402
11498
9972
4832
3467
5797
2114
3395
9179
538



5186
810
3386
1331
631
9471
6946
11710
8206
2521
3777
9766



1713
3653
1921
6656
9947
8993
11250
11151
10497
6934
2737
6862



11088
3984
7363
10282
743
9608
3919
1981
7086
1454
4396
5114



10991
4459
7881
6848
2296
8912
1805
3511
8065
1761
7132
6910



10730
5195
3930
9587
3635
1390
3281
9154
12431
5562
2544
11742



904
5957
8429
7356
9493
881
10094
1121
5637
7367
5392
898



9656
6463
3636
11365
2616
8771
11943
8085
8559
11564
4481
10783



8994
2809
9583
9144
8425
2285
11557
4876
12312
4919
7482
8180


406:
12179
1132
4407
8525
8006
6599
6212
6582
6696
10015
8938
12040



7174
5901
5443
8772
2754
1018
701
4168
3866
2830
7410
8541



4867
12127
4786
2881
993
1626
10257
590
4613
3686
8232
10988



8611
6659
11951
11970
5790
694
1950
8687
3243
1611
5068
2583



3374
11300
4978
3290
4685
9245
8524
3226
3564
8297
5791
10743



5514
12404
4160
10761
6264
3455
7381
4530
7088
11724
1340
12221



3372
2172
9900
3009
6215
8149
5967
4031
516
2159
6152
2119



7625
5636
11581
10329
3927
6951
5300
1666
5792
7176
1908
8776



10334
7755
4489
4839
7621
3504
11772
2455
1709





407:
5164
1712
2856
7349
10914
10129
568
7679
2988
11811
1995
11589



10850
4503
1298
1746
8590
10650
7429
10880
3268
11798
7896
3503



10856
11820
7004
4010
6035
12068
5519
12333
1022
2020
5260
8174



1100
6002
852
2265
1280
6971
6023
3217
9083
2999
3784
5278



5773
11107
2778
9893
1283
4999
9158
4760
6513
10372
4789
8368



7638
5532
1078
3476
2773
6243
7947
7219
3013
4542
7485
5050



10180
2741
9397
7909
12344
8653
8161
7700
6270
10424
9386
12053



2551
4239
7195
5742
2563
10387
9943
10591
12293
8401
598
10190



1518
3262
8393
9357
3753
10634
8622
792
5503
6749
5779
9627



8899
894
3609
868
2666
8379
7943
6084
8171
5415
10619
5830



8058
11606
6777
5615
8744
8385
6352
5732
565
3042
4825
6372



11714
8638
9414
6904
4707
3698
10607
3354
3248
11099
7933
2618



7997
9721
5710
7081
1067
12401
11254
3611
5832
6837
3494
8037



4520
10630
9206
9326
10451
1194
12033
1368
10356
3752
2069
4191



11510
2671
4989
805
7527
10679
2579
9477
4068
9127
5744
2044



3843
7704
8248
1156
6991
12007
10035
5766
4610
11421
7453
8264



2829
2728
5859
4491
4669
6872
10873
11437
4497
1179
6983
809



680
11745
10224
2441
1029
3485
10593
8293
11196
4444
787
9912



3466
12067
11522
11328
11168
10705
3103
11637
7146
7013
12203
7272



11183
8872
2339
3689
4671
6439
1564
2891
2326
10816
2058
9167


408:
6842
10832
1752
6874
7594
7652
10728
8591
5091
1745




409:
3390
11580
1139
2740
3398
7297
8096
11461
1994
9590
10039
4519



1327
5914
1924
498
2711
11643
2492
10450






410:
2556
8787
2810
2752
4019
849
2525
848
543
10440
5587
2687



10565
7329
4633
10365
1469
1013
9911
6199
5552
7253
3387
6581



6753
2212
7451
10191
9661
10472
8604
3947
1318
10341
3903
4192



782
4804
4555
7605
3606
5072
11652
11756
10926
3556




411:
10755
6544
11218
10912
3778
8555
12233
12167
9791
6623
10444
9588



10369
5824
9682
7746
5706
11642
9212
4935
5697
8715
5283
11315



4900
12457
858
10937
9530









412:
4734
2240
9031
2437
8481
8643
4962
4203
7203
10390
10086
5814



11371
10513
9742
10945
9859
1632
1615
7063
11339





414:
7193
8549
8168
5092
8861
11989
11947
11178
5786
2453




415:
6653
6714
9983
4083
3854
2748
7708
9764
5629
981
3439
10469



7346
4782
12349
3163
8949
3899
5805
10540
5864
6450
7761
12090



5874













416:
1842
3162
8971
3427
6054
10217
8729
1754
6622
7952
9382
11862



7142
634
7239
8770
4506
8586
1200
6367
2113
12058
3323
6474



3605
8047
4705
8976
2623
6722
2275
9503
11414
7230
487
7173



6327
7450
1086
11139
10969
7580
6856
10788
9715
4755
2923
11730



12425
3020
5599
9044
7078
10584
11212
10871
2684
1969
5930
6055



4070
639
11128
1295
7529
2775
2543
11636
6598
1208
6425
11359



3998
6252
8348
11758
8667
7592
6546
11716
6560
10277
7395
10601



9873
5107
10240
5208










417:
6345
1856
10958
11096
10013
593
11755
7187
6816
10906
1199
5652



8452
7056
3701
11373
3562
12181
2950
10597
8606
5254
8728
4082



1210
7300
3896
12382
9952
788
11241
10507
11750
3136
6728
9465



3722
12351
6337
3008
6858
573
10437
1050
3645
9808
9256
2509



11883
4020
11479
3254
9727
4044
12460
2628
12255
8136
5704
7735



9066
7332
5711
4229
1182
1576
3656
11805
11485
6960
6101
2011



8111
6996
4209
7129
12307
481
8243
5287
7912
10962
703



418:
3811
5219
1679
4621
4127
10675
6404
5800
3921
6511
9681
903



10538
3558
4466
6175
10545
5132
2921
5857
12143
7941
7286
11968


419:
3771
8363
9548











420:
1485
4911
7178
9071
11509
6647
1721
4460
947
513
2348
7249



11150
11747
2997
11191
11443
3662
8453
2753
11791
6481
11420
5483



10462
4788
4507
8877
4008
11334
8575
6731
9135
6192
2317
608



5979
3055












421:
4414
9504
1165
5341
9784
11748
9107
10327
1525
12240
10723
1910



11286
6078
6558
9736
7526
9617
6173
5966
5586
6120
2380
9205



6319
7575
10097
11594
8356
9671
2500
4722
2986
4959
6245
3949



11353
2855
9054
2577
7071
5896
11794
11561
7197
4389
7336
1643



1201













422:
6674
12454
8443
3602
3012
6541
10495
6389
2952
9267
11311
12145



10737
9521
3700
3883
6429
4242








423:
3471
3462
11861
2211
7320
5075
4333
1836
6400
5796
4892
647



3269













424:
5926
9559
5422
9498
5418
11106
3035
6102
6592
2150
8390
6071



7591
11796
9586
11310
4368
5758
588
2542
1781
12236
9803
7747



10979
927
7683
3965
4678
5214
2604
8270
3304
5616
10831
2393



8080
4535
3410
7371
11565
2493
7055
9785
2720
5980
10682
7295



10506
2982
10793
6985
8126
6218
11609
12193
2042
12304
2254
11445



7375
2510
8946
885
6891
9150
10623
9341
8952
10725
6292
8420



4743
1894












425:
3122
11494
10549
2650
1897
3804
5390
1379
3184
3716
2654
10037



1473
9971
2731
5778
4313
6129
9561
10606
10693
8120
4938
4049



4060
4413
3409
3015
2351
1939








426:
11847
2995
4737
7277
3895
5688
1959
4452
843
6336
3128
11563



2964
10486
7718
8069
12080
6015
8205
10512
2963
888
9812



427:
10318
1515
1150
11130










428:
9750
6331
3027
10875
3668
7005
9306
12430
6106
9190
654
1670



9862
10048
4319
7716
5492
6892
9026
6462
6737
6645
4749
10098



12000
547
7562
6456










429:
6568
8052
10608
1308
9065
8831
7384
8709
7350
4327
10609
12288



9820
4100
4795
11684
7622
9929
1098
3192
4059
9182
8353
9417



7137
5152
11660
2940
11467
2933
6145
5109
4388





430:
8584
2261
7656
2018
11538
9342
12107
12164
6293
7936
1661
11624



4853













431:
9116
2171
7602
8690
9883
4473
6085
10435
6301
2203
9928
7190



10147
10470
1862
2182
932
3025
12251
8266
7662
4231
8640
12434



2151
4372
1033
9126
9810
3495
509
7612
5354
10770
10651
987



9365
4813












432:
7570
5554
4754
8362
2230
8469
9220
3329
6080
4356
9349
7994



5043
887
9216
8097
4101
3358
10171
3190
10790
1501
501
2633



8399
9527
6324
3571
7233
5016
1930
1811






433:
1616
6093
10298
1333
9124
11229
6566
6576
11833
11357
8833
6618



841
5759
1301
4182
6040
11022
8365
7079
6280
10112
7920
4834



4980
3886
8075
5735
8404
1617








434:
4462
1934
5148
10841
4816
5523
7587
9228
2939
4241
10393
11815



3818
4301
11539
1425
3957
11067
6304







435:
7874
3332
1892
10839
1297
5020
4526
2872
6273
7274
6987
11568



2916
5869
4913
5518
8150
7269
4374
7658
5945
5159
6063
4277



3391
8028
9423
9197
2132
1694
3525
11460
1307
7893
12353
5297



10567
12185
11482
4069
10140
6113
4710
8613
942
9030
12386
1875



7823
6994
10615
1377
3165
1422
2346
944
7149
4721
9942
3253



9534
8437
9109
6583
8269
5181
3727
2785
11616
10928
6013
3851



6779
11345
3888
8115
12234
1593
11166
5064
9064
8068
2920
11723



1292
3068












436:
6347
3468
11338
11409
12270
6989
2546
5731
6603
9120
10134
11132



8045
3411
9970
4217
8868
6022
11364
7706
8499
10764
2259
8466



2660
11256
10381
4994
10726
7766
2412
6096
5641
505
7223
9020



3178
1876
7265
3623
6409
508
507
1016






437:
684
7280
11639
2549
7965
8231
10595
7331
6105
8144
9633
2093



9958
4276
11512
2675
4465
7787
11641
10917






438:
9852
9813
3420
3677
6942
3277
6017
791
7627
11435
3897
5927



4207
7673
10919
8597
10213
7914
825
6981
4752
4018
4039
11441



9737
9811
643
4090
4666
4546
6461
2864
1198
10505
1414
8510



1332
9632
6508
9748
5207
7702
3747
12087
3357
9406
3417
4104



3657
3772
11104
8237
8514
8436
2571
4116
3922
8122
6209
10639



693
732
4062
7892
686
3094
3499
3000
2167
6655
1509
10401



1427
1579
2802
9356
8013
6206
3904
7261
9433
934
510
6382



8330
9157
10376
9699
832
1479
7796
2553
7440
3791
1738
5177



7444
12266
3261
1236
5344
3157
5577
4289
9028
2374
9986
4510



5313
12252
4434
9805
4625
2489
1554
2057
8415
7724
6950
3790



10071
1888
10647
2936
9844
6590
642
5953
9569
11882
6358
2897



2797
5667
3259
1008
2009
9475
11260
1252
8074
3306
4480
6785



10892
7801
2478
12060
10181
10457
11313
11251
10961
5398
11091
1021



8867
11189
2479
1526
2174
11424
6658
4950
11613
12337
2055
4096



11784
5724
6115
11058
9979
6460
5035
6730
4923
6381
6683
3081



6021
11093
12172
6580
7672
6698








439:
9050
1624
11490
9137
4683
1472
11419
11201
12153
11407
2333
8918



12149
10769
2801
9090
6033
5211
11474
12365
5630
12100
6330
2526



2036













440:
5951
3216
9673
4696
9814
3530
10953
5785
720
6518
1693
11588



10246
7120
5040
10911
11834
8071
11378
3196
5717
9753
5644



441:
7707
8538
2341
7194
5074
5690
2147
2538
9725
10428
4880
5920



10970
6335
7744
8342
11672
5446
6675
8117
1618
6922
6664
1708



10501
3809
2321
1477
3404
8823
5288
1911
4926





442:
11879
6492
3887
756
4733
6158
1728
5673
5481
11069
12381
1890



1649
2930
2784
6431
1020
3078
9576
3232
7334
2622
4189
8439



3249
3593
4179
4841
5713
12338
10718
6823
6695
3315
6663



443:
2994
605
1631
6296
1844
11844
3084
9395
1933
8702
7786
11988



2128
10660
5251
6665
7785
5248
9981
11142
4174
3452
3303
12156



4698
12118
2699
12096
7773
10611
2953
5956
12178
12170
5672
9916



7788
4953
11739
4556
6260
11846
3109
8488
8674
9574
8624
3734



11566













444:
11436
9600
4036
2771
1190
6072
6982
2138
5753
5102
4767
7415



9797
5570
7192
1387
4343
2370
5680
10618
5872
3634
11291
10696



1986
9618
10628
10894
1404
5877
9827
6200
1273
9615
2105
6034



10168
4940
1734
8417
8948
3019
8808







445:
5898
11158
5363
4614
479
7670
4772
679
6014
3641
11608
11120



8644
8810
9334
12142
6025
10895
5777
923
11900
9914
580
1904



3473
8157
9546
10735
1346
4635
12408
5326
10987
4765
12292
2408



3705
11060
920
10127
11506
11960
6468
2264
2469
7344
5771
9604



2225
2423
5614
6255
4052
3890
5154
4753
2006
4144
913
1893



11578
1641
10844
7418
4406
8743
3664
7010
6263
9188
8333
11184



3586
7119
4592
10897
1543
4041
3967
10446
6161
8214
9019
8506



8178
8166
2609
6272
11990
10220
10720
4720
1372
8999
5687
1064



2764
7876
2726
10484
8618
8445
878
11391
5389
1532
4482
2194



5970
2854
1329
5025
8114
12116
540
8209
6786
1605
3796
9500



6774
2846
6204
7569
9752
3423
2248
2665
8972
12410
8446
3821



8648
9439
6312
733
11327
2605
8876
10319
7537
5908
4987
9013



3443
9602
12276
7661
1274
10200
5396
11003
10042
11749
8121
11076



9974
11026
1419
10891
1463
5977
2460
6881
10165
3756
2451
5549



1517
2237
9215
4893
6903
10551
603
8871
3933
7551
7660
6459



2448
10902
11799
12162
11708
5866
3938
11582
5019
9219
1223
2361



3750
10152
5770
8615
4412
7727
1552
5097
10590
6782
9346
10110



8347
1399
4798
8063
10203
7369
3212
3929
4222
2932
2814
2808



4003
6572
10580
7424
7144
10581
8029
614
12041
9422
11418
7355



4890
9654
3858
6591
526









446:
2763
11630
10646
5423
8132
999
1338
3592
12392
1695
1880



447:
5756
4298
9204
3118
7348
2187
6044
11528
3135
8988
3176
11446



4858
5386
6613











449:
12062
3366
9305
2281
4123
4637
8367
769
2719
4653
1084
7458


450:
12147
9257
3555
5006
5380
3990
699
7196
8444
1317
486
5669



9008
10806
1852
3245
1913









451:
7961
6784
10385
12354
865
6268
12456
4879
11331
1843
3415
3457



8727
9428
4065
1063
1920
845
10276
6165
12385
11052
4847
4310



4673
2038
4649
9641
2122
7093
11894
3047
6855
561
8107
4273



7069
9794
9178
12356
1917
6681
10830
10176
11333
7035
11763
2291



9680
10796
6237
2745
8942
1107
5551
2354
8913
5062
2272
10205



6966
8747
11111
5876
5902
9949
12045







452:
6394
10174
11264
2929
1796
12463
7434
9390
4194
2477
11245
3690



1838
5530
1929
9136
7237
989
11473
6317
11703
7760
2499
9922



7259
6310
2561
2364
10199
11466
796







453:
6394
10174
11264
2929
1796
12463
9390
7434
4194
2477
11245
5530



1838
1929
7237
989
7421
9348
1044
4048
10219
9509
8398
5286



5871
11487
980
7210
816
796








454:
6625
1795
11957
10600
4695
8786
1854
826
8093
5089
8783
5261



542
6979
12146
11354
11208
4567
3736
3070
3227
2154
7613
9181



2375
7852
10957
10358
4616
8853
2165







455:
11314
10125
5372
1221
9486
8375
5654
7809
1768
3229
4762
10599



4701













456:
8762
11259
9107
10327
1525
10723
11286
8082
8795
7526
1751
9617



6173
10210
8996
5165
9994
10981
2651
8924
5646
10734
1043
6503



7160
674
10942
6208
2500
2232
5435
8003
7775
7197
11386
9614



7336
4389
1201











457:
6933
2534
5034
10920
4668
801
7463
9241
4122
10093
8480
1669



4875













458:
12340
917
2331
6174
4354
1998
5058
11006
9105
6744
12417
3551



10011
2512
3369











459:
1750
2582
939
7800
4167
10863
1778
3187
3119
8688
9519
7715



3465
8518
7218
3654
9851
3214
9839
8754
11131
3785
10516
5456



1066
9161
2498
7968
4449
8957
11214
11622
11993
12161




460:
3393
11215
6311
8704
11428
12454
7996
9854
1062
3012
10737
12145



4242













461:
1596
11261
12367
6847
9799
1697
3584
4419






462:
2559
3211
8719
9526
912
8678
9169
529
7339





463:
8985
11453
9101
1592
996
9514
8633
664
10466
11427
8230
2310



3910
4193
2788
12130
1565
10560
8540
6384
11084
4965
9345
1623



3579
12441
9119
1042
3490
8581
6214
7907






464:
5490
9114
10657
1047
9324
2641
3532







465:
5468
6657
4173
4351
1080
4899
8973
2817
10047
7847
1370
2389



11692
10139
7089
6369
5848
9153
2447
6533
10312
3428
12166
7229



12336
1718
4369
11599
3520
1903
12300
1482






466:
1224
5723
2541
11729
5963
4598
5738
2220
8201
5996
11234
5067



943
2089
10322











467:
11200
7567
3580
4845
2181
10852
549
2202
11686
1089
7836
9898



1118
4587
4761
11028
7798
9104
8548
7649
5889
1358
3846
12287



10700
8601
5442
2137
10267
7042
2634
760
1406
9108
5922
3789



6004
4198
10766
2454
3807
12306
12290
11237
9088
7917
9288
7212



11361
1586
3575
1993
5292
10350
12258
2782
5845
8104
4936
9246



10103
7474
1873
6809
9171
12400
6038
9410
2560
5403
2736
8012



1197
1859
4317
1762
11062
1788
1589
8632
12112
7865
2796
10617



1478
3978
7405
8958
12158
4314
1096
3383
6169





469:
6501
9978
9506
8048
6041
11554
7940
1311
761
9444
1675
9956



8980
3509
8369
7051
10464
4793
9243
11137
9702
650
2162
2318



8547
5167
2224
3189
11426
11921
12073
5571
10065
11294
1231
1534



12094
1787
5994
2871
3170
9945
1211
6776
5232
9755
3346
4529



7769
10952
2907
4108
1825
8189
9705
2337
5815
6517
2024
9712



7508
10391
12009
7433
2870
5210
5086
1723
1765





470:
5084
11194
9575
8315
3179
1987
11812
3976
3760
2762
779
4164



11691
10789
12264
5656
10659
2104
11167
8323
4400
10935
5221
5623



921
3463
10656
10670
4215
5379
2522
6418
982
7059
3322
7858



9733
8620
6578
6976
10694
5052
2725
5937
3180
5594
11700
8684



4226
10509
12384
11783
11615
3194
8836
3058
4838
1075
589
6318



12032
4746
6787
9636
2112
12444
5488
10076
9098
4011
2926
4776



8892
12036
1627
1229
7868
12227
4806
3425
3106
5517
5569
2805



6222
1072
3265
7386
6709
4420
8943
8561
11384
4492
6943
7513



5489
11412
5620
935
4602
3992
12126
4524
5295





471:
4125
2643
8914
5741
7486
11181
7454
1438
9051
5051
7954
6066



1495
10258
12409
2931
2998
7574
8519
10264
7534
797
3773
10985



4080
10803
2516
7845
10965
4601
5002
7211
11852
3999
6602
11085



5772
3149
11134
10624
1896
11243
5259
3993
4281
1326
4033
3299



1465
9045












473:
1243
1128
2040
10378
8222
10746
10012
7467
5079
1528
11934
8515


474:
6601
527
2379
10196
6137
8682
4571
5965
1720
11962
7324
6890



2000
3989
9528
2837
979
1830
4658
5140
12206
7572
11257
3730



3247
9845
5430
6818
11818
9582
1443
9531
2032
12196
8459
12235



1905
7764
7158
3049
7860
6184
10022
5125
11754
776
11248
1635



11123
3134
3576
12200
1437
2294
10118
5180
4802
2992
6519
5231



2482
11465
7884
2815
6520
12103
10061
758
8634
12134
2903
10025



5634
5303
4014
11481
2853
4147
5919
1025
8579
11370
10373
9451



7816
8473
6909
2056
1942
5495
9556
941
11202
3129
11586
7180



4318
8652
1094
12057
8148
3547
1039
1685
7743
3838
11056
11872



3487
6540
4865
2136
12002
1735
7894
5527
9635
6171
3419
11976



11116
4202
2787
3857
11185
8493
7897
9631
2132
5397
11537
4725



9882
10003
7886
11920
8820
1566
8009
6859
5036
1810
6339
5982



10204
6829
5887
11503
1164
4505
10947
7478
11732
2729
11967
6906



1181
12106
7401
8306
4315
3213
2969
11177
10260
11850
5333
4769



3231
10237
11065
11935
2196
9700
8932
1776
4348
10232
2954
9540



9284
6427
11488
1448
5878
4288
11911
1606
5899
2216
4930
828



8456
8300
12173
1581
3969
3308
3733
8146
4107
318
318
10810



10688
7258
3755
6413
3072
2938
1958
2013
3222
7116
9552
6743



3633
5410
10967
9652
3051
4884
6438
2195
3521
715
11816
5080



6811
11824
6148
7701
2120
2012
10779
7038
2714
1004
8131
3368



8676
2320
7910
10733
11153
5976
2606
1254
10261
10527
6399
7022



2373
12098
10524
11061
2677
2819
8155
8898
4897
3568
2061
2343



4454
5367
5900
8137
9016
5191
9012
754
8169
1230
4040
9541



8193
5427
7697
3237
10536
3816
7388
5399
11230
4472
3241
2168



4442
3086
3186
1691
2369
9347
4435
6197






475:
2644













476:
12084
6235
4759
10347
8520
3926
9058
7491
1621





477:
12177
6814
4681
6355
5964
1174
7480
2252
11814
11423
4309
10760



10292
8167
9787
1400
10173
5931
4566
772
6147
5362
2160



478:
8803
12320
5017
819
1756
7073
10263
8731
3488
5675
2434
11042



2673
2990
11910
11377
1682
12429
12056
4814
742
2402
12165
7948



11221
10036
10314
10977
4596
1323
10078
7929
3624
6883
3114
10477



3389
8708
5663
6480
3774
3454
9482
11666
5598
6307
9709
5580



4619
5929
3207
12379
6931
5030
938
7247
12101
7031
4907
11965



10984
6905
6496
673
2777
5113
1378
10218
1124
4266
12160
10249



6752
4932
11395
11015
5999
10641
6043
1035
12446
4184
9645
10931



3873
12330
5943
5657
6916
7389
2698
3762
12075
9802
12250
5548



6053
6457
11456
1634
12220
4794
8173
4037
6420
926
7361
2588



7618
11802
10825
10443
7699
1560
11556
1176
8791
7303
9298
2851



9247
11674
2279
8498
4791
8531
6303
635
1977
9577
5776
8512



10792
7667
9612
3405
4341
7959
10860
3622
6528
8313
7205
4064



9631
9594
968
10331
7018








Claims
  • 1. Transgenic seed for a crop, wherein the genome of said transgenic seed comprises trait-improving recombinant DNA for expressing a bacterial phytochrome protein.
  • 2. Transgenic seed according to claim 1, wherein said protein provides improved tolerance to cold stress, improved tolerance to water deficit stress, improved tolerance to reduced nitrogen availability stress or increased yield.
  • 3-4. (canceled)
  • 5. A transgenic seed of claim wherein said DNA is derived from a Pseudomonas florescens.
  • 6. (canceled)
  • 7. Transgenic seed according to claim 1, wherein (a) said crop is susceptible to a yield-limiting environment; and(b) transgenic plants grown from said transgenic seed of claim 1 thrive in said yield-limiting environment.
  • 8. Transgenic seed according to claim 7, wherein said yield-limiting environment is cold stress, water deficit stress or nitrogen availability stress.
  • 9-12. (canceled)
  • 13. Transgenic seed for a crop, wherein the genome of said transgenic seed comprises trait-improving recombinant DNA from a gene for a protein having amino acid sequence with at least 90% identity to a consensus amino acid sequence in the group consisting of a consensus amino acid sequence for SEQ ID NO: 240 and homologs thereof through a consensus amino acid sequence for SEQ ID NO: 478 and homologs thereof, but excluding SEQ ID NO:391 and homologs thereof.
  • 14. Transgenic seed according to claim 13, wherein said protein has an amino acid sequence selected from the group consisting of SEQ ID NO: 240 through SEQ ID NO: 390, SEQ ID NO: 392 through SEQ ID NO: 478.
  • 15. Transgenic seed according to claim 13, wherein said recombinant DNA is used to produce said protein.
  • 16. Transgenic seed according to claim 13, wherein said recombinant DNA is used to suppress the level of an endogenous protein.
  • 17. Transgenic seed according to claim 13, wherein (a) said protein has the function of a specific protein that has been demonstrated in a model plant with efficacy for an improved trait as compared to a plant without said recombinant DNA wherein said specific protein and trait, are as indicated in Table 5; and(b) transgenic plants grown from said transgenic seed exhibit said improved trait
  • 18. Transgenic seed according to claim 15, wherein said protein provides the trait indicated in Table 5 for a model plant-expressed protein which has an amino acid sequence which was used with homologs to build said consensus amino acid sequence and wherein transgenic plants grown from said transgenic seed exhibit an improved trait which was demonstrated in the model plant expressing said model plant-expressed protein
  • 19. Transgenic seed according to claim 13, wherein transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA.
  • 20. Transgenic seed according to claim 13, wherein (a) said crop is susceptible to a yield-limiting environment; and(b) transgenic plants grown from said transgenic seed thrive in said yield-limiting environment.
  • 21. Transgenic seed according to claim 20, wherein (a) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of water deficit stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 268 through 294, 298, 345 through 357, 359, 367 through 369, 374, 398 through 424, 435, 439, 463 through 478, and homologs thereof;(b) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of heat stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 268 through 294, 298, 347, 359, 367-369, 435, and homologs thereof.(c) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of high salinity stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 298, 424, 439, 463 through 478, and homologs thereof;(d) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of cold stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 240 through 267, 276, 277, 298, 346, 366, 367, 434, and homologs thereof;(e) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of reduced nitrogen availability stress and said protein has the function of the protein with amino acid sequence of SEQ ID NO: 315 through 344, 364, 370 through 373, 438, and homologs thereof;(f) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of shade stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 295 through 314, 370, 427, 436, 437, and homologs thereof.
  • 22. A recombinant DNA construct comprising a promoter functional in a plant cell operably linked to trait-improving recombinant DNA from gene for a protein having an amino acid sequence with at least 90% identity to a consensus amino acid sequence in the group consisting of a consensus amino acid sequence for SEQ ID NO: 240 and homologs thereof through a consensus amino acid sequence for SEQ ID NO: 478 and homologs thereof, but excluding SEQ ID NO:391 and homologs thereof.
  • 23-25. (canceled)
  • 26. A method of facilitating production of a crop comprising providing to a grower of said crop transgenic seed of claim 13.
  • 27. A method according to claim 26, wherein transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA.
  • 28. A method according to claim 26, wherein (a) said crop is susceptible to a yield-limiting environment; and(b) transgenic plants grown from said transgenic seed thrive in said yield-limiting environment.
  • 29. A method according to claim 28, wherein (a) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of water deficit stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 268 through 294, 298, 345 through 357, 359, 367 through 369, 374, 398 through 424, 435, 439, 463 through 478, and homologs thereof;(b) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment heat stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 268 through 294, 298, 347, 359, 367 through 369, 435, and homologs thereof;(c) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of high salinity stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 298, 424, 439, 463 through 478, and homologs thereof;(d) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of cold stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 240 through 267, 276, 277, 298, 346, 366, 367, 434 and homologs thereof;(e) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of reduced nitrogen availability stress and said protein has the function of the protein with amino acid sequence of SEQ ID NO: 315 through 344, 364, 370 through 373, 438 and homologs thereof;(f) transgenic plants grown from said seed exhibit increased yield as compared to similar plants without the recombinant DNA when said plants are grown in a yield-limiting environment of shade stress and said protein has the function of the protein with an amino acid sequence selected from the group consisting of SEQ ID NO: 295 through 314, 370, 427, 436, 437 and homologs thereof.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims the benefit of priority to U.S. patent application Ser. No. 11/087,099, filed Mar. 22, 2005, which claims benefit of U.S. provisional application Ser. No. 60/556,841, filed Mar. 25, 2004, which applications are incorporated herein by reference and made a part hereof in their entirety, and the benefit of priority of each of which is claimed herein.

Provisional Applications (1)
Number Date Country
60556841 Mar 2004 US
Continuations (1)
Number Date Country
Parent 11087099 Mar 2005 US
Child 13999189 US