SEQUENCE LISTING
Submitted with this application is a compact disc containing a SEQUENCE LISTING in a file entitled “V116.5T25 seq list” (524 KB, file created Nov. 17, 2004), the material contained in the compact disc being incorporated herein by this reference in its entirety. There are two identical compact discs submitted with this patent application (i.e., “Copy 1” and “Copy 2”), one being a copy of the other and each containing the single file “V116.5T25 seq list” (524 KB, file created Nov. 17, 2004).
TECHNICAL FIELD
The present invention relates generally to biotechnology, and, more particularly, to the use of a genome wide expression profiling technology in combination with the detection of the presence of secondary metabolites of interest to isolate genes that can be used to modulate the production of secondary metabolites in organisms and cell lines derived thereof.
BACKGROUND
Terrestrial micro-organisms, fungi, invertebrates and plants have historically been used as sources of natural products. However, apart from several well-studied groups or organisms, such as the actinomycetes, which have been developed for drug screening and commercial production, production problems still exist. For example, the antitumor agent taxol is a constituent of the bark of mature Pacific yew trees and its usage as a drug agent has caused concern about cutting too many of these trees and causing damage to the local ecological system. Taxol contains 11 chiral centers with 2048 possible diastereoisomeric forms so that its de novo synthesis on a commercial scale is unlikely. Furthermore, certain compounds appear in nature only when specific organisms interact with each other and the environment. Pathogens may alter plant gene expression and trigger synthesis of secondary metabolites such as phytoalexins that enable the plant to resist attack. Moreover, a lead compound discovered through random screening rarely becomes a drug because its bioavailability may not be adequate. Typically, a certain quantity of the lead compound is required so that it can be modified structurally to improve its initial activity. However, current methods for synthesis and development of lead compounds from natural sources, especially plants, are relatively inefficient. Other valuable phytochemicals are quite expensive because they are only produced at extremely low levels. These problems also delay clinical testing of new compounds and affect the economics of using these new sources of drug leads. The problems of obtaining useful metabolites from natural sources in high quantities may potentially be circumvented by cell cultures. For example the culture of plant cells has been explored since the 1960' as a viable alternative for the production of complex phytochemicals of industrial interest. However, despite promising features and developments, the production of plant-derived pharmaceuticals by plant cell cultures has not been fully commercially exploited. The main reasons for this reluctance are economical ones based on the slow growth and the low production levels of secondary metabolites by such plant cell cultures. However, little is known about how plants synthesize secondary metabolites and very little is known about how this synthesis is regulated. Certainly there is a need for a method to obtain higher levels of valuable secondary metabolite. The latter may include the identification of biosynthetic genes and regulatory genes involved in secondary metabolite biosynthetic pathways. Although genome sequencing of many organisms is now advancing at a frenetic pace, the metabolic pathways of most of the natural products are not understood. Traditional textbook representations of metabolic pathways neither capture the full number of potential network functions nor the network's resilience to disruption. Whereas algorithmic approaches to these latter problems have been proposed, many aspects of metabolic network function remain to be clearly delineated. Numerous studies have investigated the enzymes and regulatory factors controlling biosynthesis of specific secondary metabolites but little is known about the genetics controlling the quantitative and qualitative natural variation in secondary chemistry (QTL-approach, Kliebenstein et al. (2001) Genetics 159: 359, isolation of expressed sequence tags, Shelton et al. (2002) Plant Science 162, 9, Lange et al. (2000) Proc. Natl. Acad. Sci. 97, 2934, a proteomics approach, Decker et al. (2000) Electrophoresis 21, 3500).
DISCLOSURE OF THE INVENTION
In the present invention, we provide a method that follows a genome wide approach and correlates gene expression with the production of secondary metabolites. Thus, through the combination of metabolic profiling and cDNA-AFLP based transcript profiling of elicited tobacco cells we have isolated genes that are involved in the production of alkaloids and phenylpropanoids. These genes can be used to modulate the production of secondary metabolites in plant cells.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1: Semi-hypothetic scheme of the biosynthesis of nicotine alkaloids in Nicotiana tabacum leaves and BY-2 cells
FIG. 2: The growth curve of tobacco BY-2 cells, determined by packed cell volume (PVC)
FIG. 3: Molecular formulas of the tobacco alkaloids detected from BY-2 cells after elicitation with methyl jasmonate
FIG. 4: Nicotine and anabasine content [ug/g (d.w.)] after elicitation with 50 μM MeJA. Each sample was pooled together from three replicate shake flasks
FIG. 5: Anatabine and anatalline contents [ug/g (d.w.)] after elicitation with 50 μM MeJA. Each sample was pooled together from three replicate shake flasks
FIG. 6: Time-course of the accumulation of alkaloids in elicited BY-2 cells. Logarithmic scale
FIG. 7: The content of methyl putrecine in free pool of tobacco BY-2 cells.
FIG. 8: The content of polyamines (mean, SD, n=3) in free pool of tobacco BY-2 cells
FIG. 9: The content of soluble conjugated polyamines (mean, SD, n=3) in tobacco BY-2 cells
FIG. 10: The content of insoluble conjugated polyamines (mean, SD, n=3) in tobacco BY-2 cells
FIG. 11: Functional analysis. Nicotine content in elicitated (50 μM MeJA) BY-2 cells (N=3)
FIG. 12: Functional analysis. Anabasine content in elicitated (50 μM MeJA) BY-2 cells (N=3)
FIG. 13: Functional analysis. Anatabine content in elicitated (50 μM MeJA) BY-2 cells (N=3)
FIG. 14: Functional analysis. Anatalline (1 & 2) content in elicitated (50 μM MeJA) BY-2 cells (N=3)
DETAILED DESCRIPTION OF THE INVENTION
There has always been interest in natural products for flavourings for food, perfumes, pigments for artwork and clothing, and tools to achieve spiritual enlightenment. Especially plant derived drugs are among the oldest drugs in medicine. For example alkaloids are originally described as structually diverse class of plant derived nitrogenous compounds, which often possess strong physiological activity. Plants synthesize alkaloids for various defence-related reactions, for example, actions against pathogens or herbivores. Over 15.000 alkaloids have been identified from plants. Alkaloids are classified into several biogenically related groups, but the enzymes and genes have been partly characterised only in groups of nicotine and tropane alkaloids, indole alkaloids and isoquinolidine alkaloids (Suzuki et al., 1999). Nicotine and tropane alkaloids share partly the same biosynthetic pathway. Many plants belonging to, for example, the Solanaceae family have been used for centuries because of their active substances: hyoscyamine and scopolamine. Also other Solanaceae plants belonging to the genera Atropa, Datura, Duboisia and Scopolia produce these valuable alkaloids. In medicine they find important applications in ophthalmology, anaesthesia, and in the treatment of cardiac and gastrointestinal diseases. Although a lot of information is available on the pharmacological effects of tropane alkaloids, surprisingly little is known about how plants synthesize these substances and almost nothing is known about how this synthesis is regulated. Nicotine is found in the genus Nicotiana and also other genera of Solanaceae and is also present in many other plants including lycopods and horsetails (Flores et al., 1991). Saitoh et al. (1985) performed an extensive study of the nicotine content in 52 of the 66 Nicotiana species and concluded that either nicotine or nornicotine is the predominant alkaloid in the leaves, depending on the species. However, in roots nicotine dominates in almost all species. In callus cultures, the nicotine content is mostly remarkably lower than in intact plants. The highest production has been found in the BY-2 cell line: 2.14% on dry weight basis which resembles the nicotine content in intact tobacco plants (Ohta et al., 1978). Although much is known of the alkaloid metabolite content in different organs of tobacco, surprisingly little is known about the biosynthesis, metabolism and regulation of various nicotine alkaloids in tobacco callus and cell cultures.
Many approaches have been developed to overcome the common problem of low product yield of alkaloid-producing plant cell cultures. One approach is the addition of elicitors. Elicitors are compounds capable of inducing defence responses in plants (Darvil and Albersheim, 1984). Other approaches to increase the product yield of secondary metabolites comprise the screening and selection of high-producing cell lines, the optimisation of the growth and product parameters and the use of metabolic engineering (Verpoorte et al., 2000). However, metabolic engineering implies detailed knowledge of the biosynthetic steps of the secondary metabolite(s) of interest. Progress in the elucidation of the biosynthetic pathways of plant secondary products has long been hampered by lack of good model systems. In the past two decades plant cell cultures have proven to be invaluable tools in the investigation of plant secondary metabolite biosynthetic pathways. The tobacco BY-2 (Nicotiana tabacum var. “Bright Yellow”) cell line is a very fast growing and highly synchronisable cell system and thus desirable for investigation of various aspects of plant cell biology and metabolism (Nagata and Kumagai, 1999). In the present invention the formation of various nicotine related alkaloids in tobacco BY-2 cells was taken as an example for the isolation of genes involved in the biosynthesis of alkaloids, phenylpropanoids and other secondary metabolites. We have used a genome wide approach and isolated genes which expression correlated with the occurrence of alkaloids and/or phenylpropanoids.
In one embodiment, the invention provides an isolated polypeptide modulating the production of at least one secondary metabolite in an organism or cell derived thereof selected from the group consisting of (a) polypeptide encoded by a polynucleotide comprising SEQ ID NO: 1, 2, 3, through 609, 610, 611 or SEQ ID NO: 612, 613, 614, through 869, 870, 871 of the accompanying and incorporated herein by reference SEQUENCE LISTING, (b) a polypeptide comprising a polypeptide sequence having a least 60% identity to at least one of the polypeptides encoded by a polynucleotide sequence having SEQ ID NO: 612, 613, 614 through 869, 870, 871, (c) a polypeptide comprising a polypeptide sequence having a least 90% identity to at least one of the polypeptides encoded by a polynucleotide sequence having SEQ ID NO: 1, 2, 3 through 609, 610, 611 and (d) fragments and variants of the polypeptides according to (a), (b) or (c) modulating the production of at least one secondary metabolite in an organism or cell derived thereof.
In another embodiment, the invention provides an isolated polypeptide according to wherein the polypeptide sequence is depicted in SEQ ID NO: 872, 873, 874 through 894 or 895 and polypeptide sequences having at least 90% identity to SEQ ID NO: 872, 873, 874 through 894 or 895.
In another embodiment, the invention provides an isolated polynucleotide selected from the groups consisting of (a) polynucleotide comprising a polynucleotide sequence having at least one of the sequences SEQ ID NO: 1, 2, 3 through 609, 610, 611 or SEQ ID NO: 612, 613, 614 through 869, 870, 871; (b) a polynucleotide comprising a polynucleotide sequence having at least 60% identity to at least one of the sequences having SEQ ID NO: 612, 613, 614, . . . , 869, 870, 871; (c) a polynucleotide comprising a polynucleotide sequence having at least 90% identity to at least one of the sequences having SEQ ID NO: 1, 2, 3 through 609, 610, 611; (d) fragments and variants of the polynucleotides according to (a), (b) or (c) modulating the production of at least one secondary metabolite in an organism or cell derived thereof.
Accordingly, the present invention provides 611 polynucleotide sequences (SEQ ID NO: 1, 2, 3 through 609, 610, 611) derived from tobacco BY2-cells for which a homologue exists in other species and 260 polynucleotide sequences (SEQ ID NO: 612, 613, 614 through 869, 870, 871) derived from tobacco BY2-cells for which no homologue exists in other species. As used herein, the word “polynucleotide” may be interpreted to mean the DNA and cDNA sequence as detailed by Yoshikai et al. (1990) Gene 87:257, with or without a promoter DNA sequence as described by Salbaum et al. (1988) EMBO J. 7(9):2807.
As used herein, “fragment” refers to a polypeptide or polynucleotide of at least about 9 amino acids or 27 base pairs, typically 50 to 75, or more amino acids or base pairs, wherein the polypeptide contains an amino acid core sequence. If desired, the fragment may be fused at either terminus to additional amino acids or base pairs, which may number from 1 to 20, typically 50 to 100, but up to 250 to 500 or more. A “functional fragment” means a polypeptide fragment possessing the biological property able to modulate the production of at least one secondary metabolite in an organism or cell derived thereof. In a particular embodiment the functional fragment is able to modulate the production of at least one secondary metabolite in a plant or plant cell derived thereof. The term ‘production’ includes intracellular production and secretion into the medium. The term ‘modulates or modulation’ refers to an increase or a decrease. Often an increase of at least one secondary metabolite is desired but sometimes a decrease of at least one secondary metabolite is wanted. The decrease can for example refer to the decrease of an undesired intermediate product of at least one secondary metabolite. With an increase in the production of one or more metabolites it is understood that the production may be enhanced by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or at least 100% relative to the untransformed plant or plant cell which was used to transform with an expression vector comprising an expression cassette further comprising at least one polynucleotide or homologue or variant or fragment thereof of the invention. Conversely, a decrease in the production of the level of one or more secondary metabolites may be decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or at least 100% relative to the untransformed plant or plant cell which was used to transform with an expression vector comprising an expression cassette further comprising at least one polynucleotide or homologue or variant or fragment thereof of the invention. The terms ‘identical’ or percent ‘identity’ in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e. 70% identity over a specified region), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using sequence comparison algorithms or by manual alignment and visual inspection. Preferably, the identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides or even more in length. Examples of useful algorithms are PILEUP (Higgins & Sharp, CABIOS 5:151 (1989), BLAST and BLAST 2.0 (Altschul et al., J. Mol. Biol. 215: 403 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information www.ncbi.nlm.nih.gov. In the present invention the term ‘homologue’ also refers to ‘identity’. For example a homologue of SEQ ID NO: 1, 2, 3 through 609, 610 or 611 has at least 90% identity to one of these sequences. A homologue of SEQ ID NO: 612, 613, 614 through 869, 870 or 871 has at least 60% identity to one of these sequences.
According to still further features in the described preferred embodiments, the polynucleotide fragment encodes a polypeptide able to modulate the secondary metabolite biosynthesis, which may therefore be allelic, species and/or induced variant of the amino acid sequence set forth in SEQ ID NO: 1-871. It is understood that any such variant may also be considered a homologue.
The present invention accordingly provides, in one embodiment, a method for modulating the production of at least one secondary metabolite in biological cells or organisms, such as plants, by transformation of the biological cells with an expression vector comprising an expression cassette that further comprises at least one gene comprising a fragment, variant or homologue encoded by at least one sequence selected from SEQ ID NO: 1-871. With “at least one secondary metabolite” it is meant one particular secondary metabolite such as for example nicotine or several alkaloids related with nicotine or several unrelated secondary metabolites. Biological cells can be plant cells, fungal cells, bacteria cells, algae cells and/or animal cells. In a particular preferred embodiment the biological cells are plant cells. Generally, two basic types of metabolites are synthesised in cells, i.e. those referred to as primary metabolites and those referred to as secondary metabolites. A primary metabolite is any intermediate in, or product of the primary metabolism in cells. The primary metabolism in cells is the sum of metabolic activities that are common to most, if not all, living cells and are necessary for basal growth and maintenance of the cells. Primary metabolism thus includes pathways for generally modifying and synthesising certain carbohydrates, amino acids, fats and nucleic acids, with the compounds involved in the pathways being designated primary metabolites. In contrast hereto, secondary metabolites usually do not appear to participate directly in growth and development. They are a group of chemically very diverse products that often have a restricted taxonomic distribution. Secondary metabolites normally exist as members of closely related chemical families, usually of a molecular weight of less than 1500 Dalton, although some bacterial toxins are considerably longer. Secondary plant metabolites include e.g., alkaloid compounds (e.g., terpenoid indole alkaloids, tropane alkaloids, steroid alkaloids), phenolic compounds (e.g., quinines, lignans and flavonoids), terpenoid compounds (e.g., monoterpenoids, iridoids, sesquiterpenoids, diterpenoids and triterpenoids). In addition, secondary metabolites include small molecules, such as substituted heterocyclic compounds which may be monocyclic or polycyclic, fused or bridged. Many plant secondary metabolites have value as pharmaceuticals. Examples of plant pharmaceuticals include, for example, taxol, digoxin, scopolamine, diosgenin, codeine, morphine, quinine, shikonin, ajmalicine and vinblastine.
In another embodiment, the invention provides a recombinant DNA vector comprising at least one polynucleotide sequence, homologue, fragment or variant selected from at least one of the sequences comprising SEQ ID NO: 1-871. The vector may be of any suitable type including, but not limited to, a phage, virus, plasmid, phagemid, cosmid, bacmid or even an artificial chromosome. The at least one polynucleotide sequence preferably codes for at least one polypeptide that is involved in the biosynthesis and/or regulation of synthesis of at least one secondary metabolite (e.g., a transcription factor, a repressor, an enzyme that regulates a feed-back loop, a transporter, a chaperone). The term “recombinant DNA vector” as used herein refers to DNA sequences containing a desired coding sequence and appropriate DNA sequences necessary for the expression of the operably linked coding polynucleotide sequence in a particular host organism (e.g., plant cell). Plant cells are known to utilize promoters, polyadenlyation signals and enhancers.
In yet another embodiment, the invention provides a transgenic plant or derived cell thereof transformed with the recombinant DNA vector.
A recombinant DNA vector comprises at least one “Expression cassette”. Expression cassettes are generally DNA constructs preferably including (5′ to 3′ in the direction of transcription): a promoter region, a polynucleotide sequence, homologue, variant or fragment thereof of the present invention operatively linked with the transcription initiation region, and a termination sequence including a stop signal for RNA polymerase and a polyadenylation signal. It is understood that all of these regions should be capable of operating in biological cells, such as plant cells, to be transformed. The promoter region comprising the transcription initiation region, which preferably includes the RNA polymerase binding site, and the polyadenylation signal may be native to the biological cell to be transformed or may be derived from an alternative source, where the region is functional in the biological cell.
The polynucleotide sequence, homologue, variant or fragment thereof of the invention may be expressed in for example a plant cell under the control of a promoter that directs constitutive expression or regulated expression. Regulated expression comprises temporally or spatially regulated expression and any other form of inducible or repressible expression. Temporally means that the expression is induced at a certain time point, for instance, when a certain growth rate of the plant cell culture is obtained (e.g., the promoter is induced only in the stationary phase or at a certain stage of development). “Spatially” means that the promoter is only active in specific organs, tissues, or cells (e.g., only in roots, leaves, epidermis, guard cells or the like). Other examples of regulated expression comprise promoters whose activity is induced or repressed by adding chemical or physical stimuli to the plant cell. In a preferred embodiment the expression is under control of environmental, hormonal, chemical, and/or developmental signals. Such promoters for plant cells include promoters that are regulated by (1) heat, (2) light, (3) hormones, such as abscisic acid and methyl jasmonate (4) wounding or (5) chemicals such as salicylic acid, chitosans or metals. Indeed, it is well known that the expression of secondary metabolites can be boosted by the addition of for example specific chemicals, jasmonate and elicitors. In a particular embodiment the co-expression of several (more than one) polynucleotide sequence or homologue or variant or fragment thereof, in combination with the induction of secondary metabolite synthesis is beneficial for an optimal and enhanced production of secondary metabolites. Alternatively, the at least one polynucleotide sequence, homologue, variant or fragment thereof is placed under the control of a constitutive promoter. A constitutive promoter directs expression in a wide range of cells under a wide range of conditions. Examples of constitutive plant promoters useful for expressing heterologous polypeptides in plant cells include, but are not limited to, the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues including monocots; the nopaline synthase promoter and the octopine synthase promoter. The expression cassette is usually provided in a DNA or RNA construct which is typically called an “expression vector” which is any genetic element, for example, a plasmid, a chromosome, a virus, behaving either as an autonomous unit of polynucleotide replication within a cell (i.e. capable of replication under its own control) or being rendered capable of replication by insertion into a host cell chromosome, having attached to it another polynucleotide segment, so as to bring about the replication and/or expression of the attached segment. Suitable vectors include, but are not limited to, plasmids, bacteriophages, cosmids, plant viruses and artificial chromosomes. The expression cassette may be provided in a DNA construct which also has at least one replication system. In addition to the replication system, there will frequently be at least one marker present, which may be useful in one or more hosts, or different markers for individual hosts. The markers may a) code for protection against a biocide, such as antibiotics, toxins, heavy metals, certain sugars or the like; b) provide complementation, by imparting prototrophy to an auxotrophic host: or c) provide a visible phenotype through the production of a novel compound in the plant. Exemplary genes which may be employed include neomycin phosphotransferase (NPTII), hygromycin phosphotransferase (HPT), chloramphenicol acetyltransferase (CAT), nitrilase, and the gentamicin resistance gene. For plant host selection, non-limiting examples of suitable markers are β-glucuronidase, providing indigo production, luciferase, providing visible light production, Green Fluorescent Protein and variants thereof, NPTII, providing kanamycin resistance or G418 resistance, HPT, providing hygromycin resistance, and the mutated aroA gene, providing glyphosate resistance.
The term “promoter activity” refers to the extent of transcription of a polynucleotide sequence, homologue, variant or fragment thereof that is operably linked to the promoter whose promoter activity is being measured. The promoter activity may be measured directly by measuring the amount of RNA transcript produced, for example by Northern blot or indirectly by measuring the product coded for by the RNA transcript, such as when a reporter gene is linked to the promoter. The term “operably linked” refers to linkage of a DNA segment to another DNA segment in such a way as to allow the segments to function in their intended manners. A DNA sequence encoding a gene product is operably linked to a regulatory sequence when it is ligated to the regulatory sequence, such as, for example a promoter, in a manner which allows modulation of transcription of the DNA sequence, directly or indirectly. For example, a DNA sequence is operably linked to a promoter when it is ligated to the promoter downstream with respect to the transcription initiation site of the promoter and allows transcription elongation to proceed through the DNA sequence. A DNA for a signal sequence is operably linked to DNA coding for a polypeptide if it is expressed as a pre-protein that participates in the transport of the polypeptide. Linkage of DNA sequences to regulatory sequences is typically accomplished by ligation at suitable restriction sites or adapters or linkers inserted in lieu thereof using restriction endonucleases known to one of skill in the art.
In a particular embodiment the polynucleotides or homologues or variants or fragments thereof of the present invention can be introduced in plants or plant cells that are different from tobacco and the polynucleotides can be used for the modulation of secondary metabolite synthesis in plants or plant cells different from tobacco.
The term “heterologous DNA” and or “heterologous RNA” refers to DNA or RNA that does not occur naturally as part of the genome or DNA or RNA sequence in which it is present, or that is found in a cell or location in the genome or DNA or RNA sequence that differs from that which is found in nature. Heterologous DNA and RNA (in contrast to homologous DNA and RNA) are not endogenous to the cell into which it is introduced, but has been obtained from another cell or synthetically or recombinantly produced. An example is a gene isolated from one plant species operably linked to a promoter isolated from another plant species. Generally, though not necessarily, such DNA encodes RNA and proteins that are not normally produced by the cell in which the DNA is transcribed or expressed. Similarly exogenous RNA encodes for proteins not normally expressed in the cell in which the exogenous RNA is present. Heterologous DNA or RNA may also refer to as foreign DNA or RNA. Any DNA or RNA that one of skill in the art would recognize as heterologous or foreign to the cell in which it is expressed is herein encompassed by the term heterologous DNA or heterologous RNA. Examples of heterologous DNA include, but are not limited to, DNA that encodes proteins, polypeptides, receptors, reporter genes, transcriptional and translational regulatory sequences, selectable or traceable marker proteins, such as a protein that confers drug resistance, RNA including mRNA and antisense RNA and ribozymes.
In yet another embodiment, the invention provides for a method to identify genes which expression modulates the production of at least one secondary metabolite in an organism or cells derived thereof comprising the steps of (a) performing a genome wide expression profiling of the organism or cells on different times of growth, (b) isolating genes which expression is co-regulated either with the at least one secondary metabolite, or with a gene known to be involved in the biosynthesis of the secondary metabolite, (c) analysing the effect of over- or under-expression of the genes in the organism or cell on the production of the at least one secondary metabolite and (d) identifying genes that can modulate the production of the at least one secondary metabolite.
The wording “performing a genome wide expression profiling” means that the expression of genes and/or proteins is measured. Preferably, the expression is measured on different times of growth, on different treatments and the like. Usually a comparison of the expression is made between two or more samples (e.g., samples that are treated and non-treated, induced or non-induced). Gene expression can be measured by various methods known in the art comprising macro-array technology, micro-array technology, serial analysis of gene expression (SAGE), cDNA AFLP and the like. With array technology complete genes or parts thereof, EST sequences, cDNA sequences, oligonucleotides are attached to a carrier. Protein expression can be measured through various protein isolation, protein profiling and protein identification methods known in the art. The analysis of the effect of over- or under-expression of genes in for example plants or plant cells can be carried out by various well-known methods in the art.
In a further embodiment, the invention provides a method where the performance of the genome wide expression profiling is preceded by the step of inducing the production of the at least one secondary metabolite in the organism or cell derived thereof. The wording ‘inducing the production’ means that for example the cell culture, such as a plant cell culture, is stimulated by the addition of an external factor. External factors include the application of heat, the application of cold, the addition of acids, bases, metal ions, fungal membrane proteins, sugars and the like. One approach that has been given interesting results for better production of plant secondary metabolites is elicitation. Elicitors are compounds capable of inducing defence responses in plants (Darvil and Albersheim, 1984). These are usually not found in intact plants but their biosynthesis is induced after wounding or stress conditions. Commonly used elicitors are jasmonates, mainly jasmonic acid and its methyl ester, methyl jasmonate. Jasmonates are linoleic acid derivatives of the plasma membrane and display a wide distribution in the plant kingdom (for overview see Reinbothe et al., 1994). They were originally classified as growth inhibitors or promoters of senescence but now it has become apparent that they have pleiotropic effects on plant growth and development. Jasmonates appear to regulate cell division, cell elongation and cell expansion and thereby stimulate organ or tissue formation (Swiatek et al., 2002). They are also involved in the signal transduction cascades that are activated by stress situations such as wounding, osmotic stress, desiccation and pathogen attack (Creelman et al., 1992; Gundlach et al., 1992; Ishikawa et al., 1994). Methyl jasmonate (MeJA) is known to induce the accumulation of numerous defence-related secondary metabolites (e.g., phenolics, alkaloids and sesquiterpenes) through the induction of genes coding for the enzymes involved in the biosynthesis of these compounds in plants (Gundlach, et al., 1992; Imanishi et al., 1998; Mandujano-Chávez et al., 2000). Jasmonates can modulate gene expression from the (post)transcriptional to the (post)translational level, both in a positive as in a negative way. Genes that are upregulated are e.g., defence and stress related genes (PR proteins and enzymes involved with the synthesis of phytoalexins and other secondary metabolites) whereas the activity of housekeeping proteins and genes involved with photosynthetic carbon assimilation are down-regulated (Reinbothe et al., 1994). For example: the biosynthesis of phytoalexins and other secondary products in plants can also be boosted up by signal molecules derived from micro-organisms or plants (such as peptides, oligosaccharides, glycopeptides, salicylic acid and lipophilic substances) as well as by various abiotic elicitors like UV-light, heavy metals (Cu, VOSO4, Cd) and ethylene. The effect of any elicitor is dependent on a number of factors, such as the specificity of an elicitor, elicitor concentration, the duration of the treatment and growth stage of the culture.
Generally, secondary metabolites can be measured, intracellularly or in the extracellular space, by methods known in the art. Such methods comprise analysis by thin-layer chromatography, high pressure liquid chromatography, capillaryelectrophoresis, gas chromatography combined with mass spectrometric detection, radioimmuno-assay (RIA) and enzyme immuno-assay (ELISA).
In yet another embodiment, the method to identify genes which expression modulates the production of at least one secondary metabolite in an organism or cells derived thereof is used to identify genes that are involved in the alkaloid biosynthesis.
The definition of “Alkaloids”, of which more than 12,000 structures have been described already, includes all nitrogen-containing natural products which are not otherwise classified as peptides, non-protein amino acids, amines, cyanogenic glycosides, glucosinolates, cofactors, phytohormones or primary metabolites (such as purine and pyrimidine bases). The “calystegins” constitute a unique subgroup of the tropane alkaloid class (Goldmann et al. (1990) Phytochemistry, 29, 2125). They are characterized by the absence of an N-methyl substituent and a high degree of hydroxylation. Trihydroxylated calystegins are summarized as the calystegin A-group, tetrahydroxylated calystegins as the B-group, and pentahydroxylated derivates form the C-group. Calystegins represent a novel structural class of tropane alkaloids possessing potent glycosidase inhibitory properties next to longer known classes of the monocyclic pyrrolidones (e.g., dihydroxymethyldihydroxy pyrrolidine) pyrrolines and piperidines (e.g., deoxynojirimycin), and the bicyclic pyrrolizidines (e.g., australine) and indolizidines (e.g., swainsonine and castanospermine). Glycosidase inhibitors are potentially useful as antidiabetic, antiviral, antimetastatic, and immunomodulatory agents.
In another embodiment, the method to identify genes which expression modulates the production of at least one secondary metabolite in an organism or cells derived thereof is used to identify genes that are involved in the phenylpropanoid biosynthesis. “Phenylpropanoids” or “phenylpropanes” are aromatic compounds with a propyl side-chain attached to the aromatic ring, which can be derived directly from phenylalanine. The ring often carries oxygenated substituents (hydroxyl, methoxyl and methylenedioxy groups) in the para-position. Natural products in which the side-chain has been shortened or removed can also be derived from typical phenylpropanes. Most plant phenolics are derived from the phenylpropanoid and phenylpropanoid-acetate pathways and fulfil a very broad range of physiological roles in plants. For example polymeric lignins reinforce specialized cell wall. Closely related are the lignans which vary from dimers to higher oligomers. Lignans can either help defend against various pathogens or act as antioxidants in flowers, leaves and roots. The flavonoids comprise an astonishingly diverse group of more than 4500 known compounds. Among their subclasses are the anthocyanins (pigments), proanthocyanidins or condensed tannins (feeding deterrents and wood protectants), and isoflavonoids (defensive products and signalling molecules). The coumarins, furanocoumarins, and stilbenes protect against bacterial and fungal pathogens, discourage herbivory, and inhibit seed germination.
In yet another embodiment, the isolated polynucleotides of the invention, or homologues, or variants, or fragments thereof are used to modulate the biosynthesis of secondary metabolites in an organism or cell derived thereof. In a particular embodiment the isolated polynucleotides, homologues, variants or fragments thereof are used to modulate the biosynthesis of secondary metabolites in plants or plant cells derived thereof.
In yet another embodiment, the polynucleotides comprising SEQ ID NO: 10, 11, 19, 20, 35, 40, 41, 47, 65, 67, 70, 88, 89, 97, 98, 101, 102, 103, 106, 107, 108, 117, 118, 120, 121, 123, 124, 126, 128, 130, 131, 132, 136, 137, 142, 143, 144, 145, 146, 147, 148, 152, 154, 155, 159, 160, 161, 162, 163, 175, 176, 177, 181, 182, 183, 189, 197, 202, 207, 208, 209, 210, 217, 219, 220, 221, 233, 235, 236, 237, 239, 240, 241, 242, 243, 244, 261, 262, 264, 265, 268, 70, 272, 273, 274, 278, 279, 299, 300, 302, 303, 304, 305, 306, 316, 317, 318, 320, 321, 326, 329, 331, 332, 333, 334, 341, 344, 348, 349, 350, 351, 354, 355, 356, 358, 372, 373, 374, 375, 377, 382, 390, 391, 392, 395, 403, 405, 406, 414, 417, 418, 419, 420, 424, 430, 434, 439, 440, 441, 445, 446, 456, 463, 478, 485, 491, 497, 507, 508, 510, 518, 519, 527, 529, 531, 532, 534, 567, 569, 570, 575, 577, 579, 587, 593, 594, 598, 599, 601, 603, 608, 612, 613, 618, 619, 620, 628, 636, 642, 643, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 670, 671, 674, 675, 676, 677, 679, 680, 682, 683, 695, 696, 700, 701, 703, 707, 709, 710, 711, 712, 714, 719, 724, 727, 729, 732, 734, 735, 740, 741, 744, 746, 748, 749, 750, 751, 753, 754, 755, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 772, 777, 784, 794, 809, 810, 811, 816, 817, 822, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 850, 854, 855, 856, 858, 859, 861, 864, 865, 488, 489 and/or 490 or fragments or homologues thereof can be used to modulate the biosynthesis of alkaloids in an organism or cell derived thereof. In a particular embodiment the polynucleotides or fragments or homologues thereof can be used to modulate the biosynthesis of alkaloids in plants or plant cells derived thereof. The expression of the latter collection of SEQ ID Numbers correlates with the production of alkaloids in plants.
In yet another embodiment, the polynucleotides comprising SEQ ID NO: 3, 4, 5, 7, 15, 17, 21, 23, 29, 30, 32, 33, 39, 42, 44, 45, 46, 48, 49, 50, 51, 8, 61, 62, 72, 74, 79, 84, 92, 94, 95, 104, 105, 125, 134, 150, 170, 171, 179, 180, 184, 194, 195, 200, 201, 203, 204, 205, 213, 214, 215, 218, 245, 249, 250, 251, 252, 254, 255, 266, 275, 276, 281, 282, 285, 286, 287, 289, 291, 298, 301, 308, 309, 310, 311, 312, 313, 315, 319, 323, 324, 335, 343, 361, 363, 364, 370, 379, 380, 383, 384, 385, 386, 398, 401, 402, 407, 415, 416, 423, 432, 433, 437, 443, 444, 447, 448, 450, 451, 452, 455, 457, 460, 461, 462, 471, 474, 486, 487, 493, 494, 499, 500, 501, 502, 503, 504, 505, 506, 517, 522, 523, 524, 526, 528, 538, 541, 543, 544, 545, 546, 547, 553, 554, 555, 562, 568, 571, 572, 578, 580, 581, 582, 588, 605, 607, 616, 617, 621, 626, 627, 637, 638, 641, 644, 650, 651, 665, 666, 667, 681, 684, 685, 691, 697, 698, 704, 708, 713, 720, 721, 728, 730, 736, 745, 752, 756, 771, 776, 778, 782, 783, 792, 793, 795, 797, 798, 799, 800, 801, 808, 815, 818, 819, 820, 821, 835, 842, 843, 844, 845, 848, 851, 852, 853, 862, 868, 488, 489 and/or 490 or fragments or homologues thereof can be used to modulate the biosynthesis of phenylpropanoids in an organism or cell derived thereof. In a particular embodiment the polynucleotides or homologues or fragments derived thereof can be used to modulate the biosynthesis of phenylpropanoids in plants or plant cells derived thereof. The expression of the latter collection of SEQ ID Numbers correlates with the production of phenylpropanoids in plants.
The present invention can be practiced with any plant variety for which cells of the plant can be transformed with an expression cassette of the current invention and for which transformed cells can be cultured in vitro. Suspension culture, callus culture, hairy root culture, shoot culture or other conventional plant cell culture methods may be used (as described in: Drugs of Natural Origin, G. Samuelsson, 1999, ISBN 9186274813).
By “plant cells” it is understood any cell which is derived from a plant and can be subsequently propagated as callus, plant cells in suspension, organized tissue and organs (e.g., hairy roots). In the present invention the word “plant cell” also comprises cells derived from lower plants such as from the Pteridophytae and the Bryophytae.
Tissue cultures derived from the plant tissue of interest can be established. Methods for establishing and maintaining plant tissue cultures are well known in the art (see, for example, Trigiano R. N. and Gray D. J. (1999), “Plant Tissue Culture Concepts and Laboratory Exercises”, ISBN: 0-8493-2029-1; Herman E. B. (2000), “Regeneration and Micropropagation: Techniques, Systems and Media 1997-1999”, Agricell Report). Typically, the plant material is surface-sterilized prior to introducing it to the culture medium. Any conventional sterilization technique, such as chlorinated bleach treatment can be used. In addition, antimicrobial agents may be included in the growth medium. Under appropriate conditions plant tissue cells form callus tissue, which may be grown either as solid tissue on solidified medium or as a cell suspension in a liquid medium.
A number of suitable culture media for callus induction and subsequent growth on aqueous or solidified media are known. Exemplary media include standard growth media, many of which are commercially available (e.g., Sigma Chemical Co., St. Louis, Mo.). Examples include Schenk-Hildebrandt (SH) medium, Linsmaier-Skoog (LS) medium, Murashige and Skoog (MS) medium, Gamborg's B5 medium, Nitsch & Nitsch medium, White's medium, and other variations and supplements well known to those of skill in the art (see, for example, Plant Cell Culture, Dixon, ed. IRL Press, Ltd. Oxford (1985) and George et al., Plant Culture Media, Vol 1, Formulations and Uses Exegetics Ltd. Wilts, UK, (1987)). For the growth of conifer cells, particularly suitable media include 1/2 MS, 1/2 L. P., DCR, Woody Plant Medium (WPM), Gamborg's B5 and its modifications, DV (Durzan and Ventimiglia, In Vitro Cell Dev. Biol. 30:219-227 (1994)), SH, and White's medium.
In a particular embodiment, the current invention can be combined with other known methods to enhance the production and/or the secretion of secondary metabolites in plant cell cultures such as (1) by improvement of the plant cell culture conditions, (2) by the transformation of the plant cells with a transcription factor capable of upregulating genes involved in the pathway of secondary metabolite formation, (3) by the addition of specific elicitors to the plant cell culture, and 4) by the induction of organogenesis.
The term “plant” as used herein refers to vascular plants (e.g., gymnosperms and angiosperms). The method comprises transforming a plant cell with an expression cassette of the present invention and regenerating such plant cell into a transgenic plant. Such plants can be propagated vegetatively or reproductively. The transforming step may be carried out by any suitable means, including by Agrobacterium-mediated transformation and non-Agrobacterium-mediated transformation, as discussed in detail below. Plants can be regenerated from the transformed cell (or cells) by techniques known to those skilled in the art. Where chimeric plants are produced by the process, plants in which all cells are transformed may be regenerated from chimeric plants having transformed germ cells, as is known in the art. Methods that can be used to transform plant cells or tissue with expression vectors of the present invention include both Agrobacterium and non-Agrobacterium vectors. Agrobacterium-mediated gene transfer exploits the natural ability of Agrobacterium tumefaciens to transfer DNA into plant chromosomes and is described in detail in Gheysen, G., Angenon, G. and Van Montagu, M. 1998. Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In K. Lindsey (Ed.), Transgenic Plant Research. Harwood Academic Publishers, Amsterdam, pp. 1-33 and in Stafford, H. A. (2000) Botanical Review 66: 99-118. A second group of transformation methods is the non-Agrobacterium mediated transformation and these methods are known as direct gene transfer methods. An overview is brought by Barcelo, P. and Lazzeri, P. A. (1998) Direct gene transfer: chemical, electrical and physical methods. In K. Lindsey (Ed.), Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, pp. 35-55. Hairy root cultures can be obtained by transformation with virulent strains of Agrobacterium rhizogenes, and they can produce high contents of secondary metabolites characteristic to the mother plant. Protocols used for establishing of hairy root cultures vary, as well as the susceptibility of plant species to infection by Agrobacterium (Toivounen L. (1993) Biotechnol. Prog. 9, 12; Vanhala L. et al. (1995) Plant Cell Rep. 14, 236). It is known that the Agrobacterium strain used for transformation has a great influence on root morphology and the degree of secondary metabolite accumulation in hairy root cultures. It is possible that by systematic clone selection e.g., via protoplasts, to find high yielding, stable, and from single cell derived-hairy root clones. This is possible because the hairy root cultures possess a great somaclonal variation. Another possibility of transformation is the use of viral vectors (Turpen T H (1999) Philos Trans R Soc Lond B Biol Sci 354(1383): 665-73).
Any plant tissue or plant cells capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with an expression vector of the present invention. The term ‘organogenesis’ means a process by which shoots and roots are developed sequentially from meristematic centers; the term ‘embryogenesis’ means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include protoplasts, leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristems, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyls meristem).
These plants may include, but are not limited to, plants or plant cells of agronomically important crops, such as tomato, tobacco, diverse herbs such as oregano, basilicum and mint. It may also be applied to plants that produce valuable compounds, for example, useful as for instance pharmaceuticals, as ajmalicine, vinblastine, vincristine, ajmaline, reserpine, rescinnamine, camptothecine, ellipticine, quinine, and quinidine, taxol, morphine, scopolamine, atropine, cocaine, sanguinarine, codeine, genistein, daidzein, digoxin, calystegins or as food additives such as anthocyanins, vanillin; including but not limited to the classes of compounds mentioned above. Examples of such plants include, but not limited to, Papaver spp., Rauwolfia spp., Taxus spp., Cinchona spp., Eschscholtzia californica, Camptotheca acuminata, Hyoscyamus spp., Berberis spp., Coptis spp., Datura spp., Atropa spp., Thalictrum spp., Peganum spp.
In yet another embodiment, suitable expression cassettes comprising the nucleotide sequences of the present invention can be used for transformation into other species (different from Tobacco). This transformation into other species or genera (different from the genus Nicotiana) can be carried out randomly or can be carried out with strategically chosen nucleotide sequences. The random combination of genetic material from one or more species of organisms can lead to the generation of novel metabolic pathways (for example through the interaction with metabolic pathways resident in the host organism or alternatively silent metabolic pathways can be unmasked) and eventually lead to the production of novel classes of compounds. This novel or reconstituted metabolic pathways can have utility in the commercial production of novel, valuable compounds.
The recombinant DNA and molecular cloning techniques applied in the below examples are all standard methods well known in the art and are, for example, described by Sambrook et al. (1989) Molecular cloning: A laboratory manual, second edition, Cold Spring Harbor Laboratory Press. Methods for tobacco cell culture and manipulation applied in the below examples are methods described in or derived from methods described in Nagata et al. (1992) Int. Rev. Cytol. 132, 1.
The invention is further explained with the aid of the following illustrative examples.
EXAMPLES
1) Nicotine Alkaloids
First, the identification of various tobacco alkaloids: nicotine, nornicotine, anatabine, myosmine, anabasine and N′-formylnornicotine was determined from leaves, where the occurrence of alkaloids is abundant. Identification was based on the GC-MS spectra and literature (see, FIG. 3). There were no alkaloids detected in the control samples of BY-2. Elicitation of BY-2 cells by methyl jasmonate leads to a marked increase in nicotine, anabasine, anatalline, and especially in anatabine content, the latter clearly being the main component (FIGS. 4 & 5). To our knowledge, this is the first time that besides nicotine, these other alkaloids has been detected in tobacco BY-2 cell cultures.
Elicitation with methyl jasmonate seems to induce the pathway through nicotinic acid (FIG. 1). Especially the concentration of anatabine was raised, which according to literature based on biosynthetic studies, is simply derived from nicotinic acid, but neither through the arginine pathway, which leads to nicotine, nor via the lysine pathway which, in turn, leads to anabasine. The elicited BY-2 samples also contained increased amounts of two isomeric alkaloids with m/z 239 as the molecular ion. It is called anatalline and it has been discovered earlier only in the roots of N. tabacum, and never in cell cultures. Yet it was not detected in tobacco leaves. Anatalline is composed of three pyridine ring units of which one has no double bonds (2,4-bis-3′-pyridyl-piperidine). Based on the mass spectra, anatalline may not be derived from anatabine, but rather from anabasine. This is also in accordance with the information found in the literature. In the growth medium of BY-2 cells no alkaloids could be detected.
The elicitation with methyl jasmonate induces the accumulation of various nicotine alkaloids. The accumulation of alkaloid metabolites in the cells started after 14 hours and reached their maximum levels towards the end of the experimental period (FIG. 6). The accumulation of nicotine and anatabine started to take place after 14 and 24 hours, respectively. The contents of anabasine, and two isomers of anatalline in the cells increased only after 48 hours. The maximum concentration of nicotine was only 4% (on dry weight basis) of that of the main alkaloid anatabine, which reached the highest concentration of 800 μg/g (d.w.). The time-course of the onset of nicotine accumulation is in accordance with the data reported by Imanishi et al. (1998), who studied only nicotine alkaloid pattern after elicitation. Anatabine and nicotine are synthesized first, while anabasine and anatalline, which follow exactly the similar time-course patterns, accumulate later (FIG. 6).
Instead of nicotine, the level of alkaloids on the other branch of the biosynthetic pathway, for example, anatabine and anatalline was remarkably raised, both branches competing for the supply of nicotinic acid. This was the first time that anatalline was found to be synthesised in the cell suspension cultures of tobacco. The result indicates that nicotine, having two precursors, nicotinic acid and N-methylpyrrolinium, might not be synthesised if the latter is a limiting factor. Thus the pathway from nicotinic acid is directed towards the other biosynthetic routes (see FIG. 1).
2) Polyanines
The detection of various polyamines in BY-2 cells including spermidine, spermine, putrescine and methylputrescine were detected by HPLC (Scaramagli et al., 1999). In free pool there were no significant changes between elicited and control samples, except for methyl putrescine which accumulates dramatically in elicited cells (FIG. 7, FIG. 8). Soluble conjugates, which are amines conjugated with phenolic acid, mainly cinnamic acid derivatives did not change much except for methyl putrescine, which accumulates in elicited cells from 12 hours onwards (FIG. 9). Insoluble conjugates which are mainly polyamines associated in cell walls showed that especially putrescine and also methyl putrescine accumulate in elicited cells (FIG. 10). In short, it seems that elicitor treatment induces the accumulation of intermediates putrescine and methyl putrescine in nicotine pathway.
3) Sesquiterpenes
The preliminary experiment indicated the presence of various oxygenated sesquiterpenoid alkaloids, detected in the elicitated cells of tobacco BY-2. Presumably they are structurally aristolochene-like sesquiterpenes, with the molecular weight of 224. Aristolochenes are compounds found in the early steps of the biosynthetic pathway of sesquiterpenes, for example, capsidiol, lubimine, solavetivone, phytuberin and phytuberol.
4) Phenylpropanoids
TLC analysis of BY-2 cells and culture filtrates clearly shows that apart form nicotine, jasmonates also are able to induce the production of (several) phenylpropanoid-like substances.
5) Quantitative Analysis of Jasmonate-Modulated Gene Expression
By using the combination of metabolic profiling and cDNA-AFLP based transcript profiling of jasmonate-elicited tobacco BY-2 cells we were able to build an ample inventory of genes involved in plant secondary metabolism and other jasmonate-regulated cellular events. The growth curve of tobacco BY-2 cells is shown in FIG. 2. The culture was inoculated as every 7th day subculturing, 1:100. The growth reached the exponential phase in 6 days. Stationary phase was obtained after 10 days. The gene platform that was generated correlates also with earlier reports and reviews on jasmonate-modulated cellular and metabolic events, pointing to the accuracy and the reliability of the profiling analysis. Examples are the observed up-regulation of genes involved in the biosynthesis of jasmonates (an auto-regulatory event) and genes involved in defense responses such as proteinase inhibitors and transposases. At the same time numerous novel genes, either without existing homologues or with homologues of known or unknown function, were identified as jasmonate responsive and correlates with the production of alkaloids and phenylpropanoids. Some of them point to cellular or metabolic events that have been not related with jasmonates before.
Tobacco BY-2 cells were elicited with 50 μM methyl jasmonate and transcript profiles were compared with the transcript profiles of DMSO-treated cells. Quantitative temporal accumulation patterns of approximately 20,000 transcript tags were determined and analyzed. In total, 591 differential transcript tags were obtained. Sequencing of the PCR products gave good-quality sequences for approximately 80% of the fragments. To the remaining 20%, a unique sequence could not unambiguously be attributed because the fragments were contaminated with co-migrating bands. These bands have been cloned and PCR products from four individual colonies were sequenced. For most of these fragments, two to three different sequences were obtained from the individual colonies. Homology searches with the sequences from the unique gene tags revealed that 64% of these tags displayed similarity with genes of known functions, and 18% of the tags matched a cDNA or genomic sequence without allocated function. In contrast, no homology with a known sequence was found for 18% of the tags.
By average linkage hierarchical clustering of the expression profiles, the genes could be grouped in two main clusters: induced and repressed by jasmonate elicitation. The group of jasmonate repressed genes comprises ca. 18% of the isolated gene tags. The vast majority of jasmonate modulated genes is upregulated by jasmonate elicitation and can be subdivided in three categories: early induced (within 1 hour after the elicitation), intermediate (after two to 4 hours) and late induced (after 6 hours or more). These subcategories respectively comprise ca. 31%, 27% and 24% of the isolated gene tags.
Among the early induced subgroup figure, all the genes that are known to be involved with nicotine biosynthesis in Nicotiana species, i.e., arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and quinolate phosphoribosyltransferase (QPRT). The fourth gene known to be involved in nicotine biosynthesis, putrescine methyl transferase (PMT), could not be picked up with the cDNA-AFLP method used here as its nucleotide sequence does not harbor a BstYI restriction site. Nonetheless, RT-PCR analysis clearly shows that PMT expression is also upregulated as early as one hour after jasmonate treatment and thus demonstrates the co-regulation of the PMT gene(s) with the other nicotine metabolic genes mentioned above. Interestingly, two other gene tags coregulated with the above mentioned genes show homology with putative (amine) oxidases and potentially encode the still undiscovered methyl putrescine oxidase (MPO). Other gene tags that are found in this subgroup are the genes involved with jasmonate biosynthesis such as allene oxide synthase, allene oxide cyclase, 12-oxophytodienoate reductase and lipoxygenases.
In the subsequent induction wave (within two to four hours) another group of genes is found that putatively encode enzymes involved in flavonoid metabolism. Amongst these figure phenylalanine ammonia-lyase, chalcone synthase-like proteins, isoflavone synthase-like proteins, leucoanthocyanidin dioxygenase-like proteins and various cytochrome P450 enzymes.
6) Functional Analysis of Candidate Genes.
Selected genes were introduced in appropriate vectors for over-expression and/or down-regulation using the Gateway™ technology (InVitrogen Life Technologies). To this end a set of Gateway compatible binary vectors for plant transformation was developed (Karimi et al., 2002). For over-expression the pK7WGD2 vector is used in which the gene is put under the control of the p35S promoter. Down-regulation is based on the post-transcriptional gene silencing effect (PTGS, Smith et al., 2000) and to this end the pK7GWIWG2 is used. For plant cell transformations the ternary vector system (van der Fits et al., 2000) was applied. The plasmid pBBR1MCS-5.virGN54D was used as a ternary vector. The binary plasmid was introduced into Agrobacterium tumefaciens strain LBA4404 already bearing the ternary plasmid by electro-transformation. For hairy root transformation the binary plasmid was introduced in the Agrobacterium rhizogenes strain LBA9402.
Fresh BY-2 culture was established before the transformation with the particular construct. Five-day-old BY-2 was inoculated 1:10 and grown for three days (28° C., 130 rpm, dark). The liquid culture of Agrobacterium tumefaciens transformed with pK7WGD2-GUS, pK7WGD2-NtCYP1 (insert from SEQ ID No 465) or pK7WGD2-NtORC1 (insert from SEQ ID No 285) was established two days before the transformation of BY-2. A loopfull of bacteria from the solid medium was inoculated in 5 ml of liquid LB medium with the antibiotics (rifampicin, gentamycin, streptomycin and spectinomycin). The culture was grown for two days (28° C., 130 rpm).
The transformation of BY-2 was performed in empty petri dish (Ø4.6 cm) with the cocultivation method. Three-day-old BY-2 (3 ml) was pipetted into plate and either 50 or 200 μl of bacterial suspension was added. The plates were gently mixed and left to stand in the laminar bench in the dark for three days. After cocultivation the cells were plated on the solid BY-2-medium with the selections (50 μg/ml kanamycin, and 500 μg/ml vancomycin and 500 μg/ml carbenicillin to kill the excess of bacteria). The plates were sealed with millipore tape and incubated at 28° C. in the dark for approximately two weeks after which the calli became visible. The transformation was visualised by checking the expression of GFP (green fluorescent protein) under the microscope.
The suspension culture of the transformed BY-2 was started by taking a clumb of calli (appr. Ø 1 cm) into 20 ml liquid BY-2 medium with the selection. After several subcultures the suspension volume was increased. When the growth of the culture reached the normal growth pattern of BY-2 (subculturing every 7th day), the elicitation experiment was performed as described earlier. Before washing the culture in the beginning of the experiment, the selection (kanamycin) was still present. The density of the culture as well as the GFP expression and viability of the cells were checked before starting the experiment.
The nicotine alkaloids were detected 24 h and 48 h after elicitation with MeJA (50 μM). Trace amounts of nicotine was detected in all samples and no effect of transformed constructs (pK7WGD2-NtCYP1 and pK7WGD2-NtORC1) compared to the control (pK7WGD2-GUS) was observed (FIG. 11). Anabasine concentration increased in a function of time and a marked increase compared to the control was observed with pK7WGD2-NtORC1-transformed line, bearing the ORCA homologue gene (FIG. 12). Considering the major alkaloid anatabine, no difference in alkaloid accumulation was observed 24 h after elicitation, but at 48 h both transformed constructs, bearing either cyclophilin or AP2 transcription factor, showed clear increase in anatabine levels compared to the control (FIG. 13). The two anatalline isomers followed the similar pattern as anatabine, the transformed lines bearing the putatively functional constructs accumulated notably higher levels of both isomers than the control line (FIG. 14). The overall levels of accumulated alkaloids were in each transformed line lower than in untransformed BY-2, suggesting that the transformation protocol itself might have an inhibitory effect on alkaloid production. The effect of excess of antibiotics possibly still present during the elicitation is also to be tested for their contribution to lower accumulation of alkaloids. However, these results indicate that the above mentioned constructs had a considerable positive effect on the alkaloid accumulation compared to the control line, bearing no functional construct.
7) Isolation of Full-Length Genes and Homologues
- MAP3 (SEQ ID NO: 285 and SEQ ID NO: 872): sequence information for an AP2-domain transcription factor, induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 3e-22):
- emb|CAB96899.1| AP2-domain DNA-binding protein [Catharanthus roseus]
- emb|CAB93940.1| AP2-domain DNA-binding protein [Catharanthus roseus]
- gb|AAM45475.1| ethylene-responsive element binding protein 1 [Glycine max]
- ref|NP—182011.1| putative ethylene response element binding protein (EREBP) At2g44840 [Arabidopsis thaliana]
- pir∥T02432 ethylene-responsive transcription factor ERF1 [Nicotiana tabacum]
- pir∥T07686 transcription factor Pti4 [Lycopersicon esculentum]
- C330 (SEQ ID NO: 148 and SEQ ID NO: 873): sequence information for an AP2-domain transcription factor induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found:(lowest blastx 2e-27):
- ref|NP—199533.1| ethylene responsive element binding factor 2 (EREBP-2) [A. thaliana]
- dbj|BAA87068.2| ethylene-responsive element binding protein1 homolog [Matricaria chamomilla]
- gb|AAF63205.1| AF245119—1 AP2-related transcription factor [Mesembryanthemum crystallinum]
- pir∥T07686 transcription factor Pti4 [Lycopersicon esculentum]
- pir∥T02590 ethylene-responsive element binding protein [Nicotiana tabacum]
Both MAP3 and C330 encode transcription factors belonging to the AP2-domain transcription factor family, to which also for instance the ORCA genes belong, known to regulate the jasmonate responsive biosynthesis of terpenoid indole alkaloids in Catharanthus roseus (Memelink et al., Trends Plant Sci. 2001, 6(5):212-219). Since both MAP3 and C330 are induced before or concomitantly with the nicotine biosynthetic genes PMT, ADC, ODC, QPRT, AP and SAMS, this clearly mirrors a potential role as activators of nicotine biosynthesis for these genes. This was confirmed by assessment of nicotine alkaloid accumulation levels (for MAP3 and reporter gene expression analysis (for C330).
- C484a (SEQ ID N° 275 and SEQ ID NO: 874): a C3HC4-type RING zinc finger protein induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 8e-30)>
- ref|NP—181135.2| putative RING zinc finger protein At2g35910 [A. thaliana]
- ref|NP—196267.1| C3HC4-type RING zinc finger protein At5g06490 [A. thaliana]
Zinc finger proteins can be transcriptional regulators reported to interact for instance with the promoter regions of some genes involved in the biosynthesis of terpenoid indole alkaloids in Catharanthus roseus (Ouwerkerk et al., Mol. Gen. Genet. 1999, 261(4-5):610-622). They can also interact with components of the SCF (Skp1/Cullin/F-box protein)-type E3 ubiquitin ligase complex involved in protein degradation (e.g., Liu et al, Plant Cell 2002, 14(7):1483-1496). Such a complex has shown to be of extreme importance in jasmonate-mediated signaling cascades (Turner et al., Plant Cell. 2002, 14 Suppl:S153-S164) and thus participates as well in the regulation of plant secondary metabolism.
C360 (SEQ ID NO: 180 and SEQ ID NO: 875): sequence information for a protein with similarity to the putative protein At4g14710 [A. thaliana] induced after 4 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 2e-87)>
- ref|NP—567441.1| Expressed protein At4g14710 [A. thaliana]
- ref|NP-567443.1| Expressed protein At4g14716 [A. thaliana]
- ref|NP—180208.1| unknown protein At2g26400 [A. thaliana]
- pir∥T02918 probable submergence induced, nickel-binding protein 2A [Oryza sativa]
- dbj|BAB61039.1| iron-deficiency induced gene [Hordeum vulgare]
- >pir∥T02787 probable submergence induced protein 2 [Oryza sativa]
This protein contains an ARD/ARD′ family motif, found in two acireductone dioxygenase enzymes (ARD and ARD′, previously known as E-2 and E-2′) from Klebsiella pneumoniae. The two enzymes share the same substrate, 1,2-dihydroxy-3-keto-5-(methylthio)pentene, but yield different products. ARD′ yields the alpha-keto precursor of methionine (and formate), thus forming part of the ubiquitous methionine salvage pathway that converts 5′-methylthioadenosine (MTA) to methionine. This pathway is responsible for the tight control of the concentration of MTA, which is a powerful inhibitor of polyamine biosynthesis and transmethylation reactions [1,2]. ARD yields methylthiopropanoate, carbon monoxide and formate, and thus prevents the conversion of MTA to methionine. The role of the ARD catalysed reaction is unclear: methylthiopropanoate is cytotoxic, and carbon monoxide can activate guanylyl cyclase, leading to increased intracellular cGMP levels (Duai et al., J. Biol. Chem. 1999, 274(3):1193-1195; Dai et al., Biochemistry 2001, 40(21):6379-6387). This family also contains other members, whose functions are not well characterized. The gene isolated here might probably regulate/interact with polyamine biosynthesis and thus nicotine biosynthesis, for which polyamines are precursors.
- C165 (SEQ ID NO: 64 and SEQ ID NO: 876): sequence information for a putative ligand-gated ion channel protein induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 2e-80)>
- ref|NP—172012.1| putative ligand-gated ion channel protein At1g05200 [A. thaliana]
- ref|NP—565743.1| putative ligand-gated ion channel protein At2g32390 [A. thaliana]
- dbj|BAC57657.1| putative ionotropic glutamate receptor homolog GLR4 [Oryza sativa (japonica cultivar-group)]
- dbj|BAC10393.1| putative ligand-gated channel-like protein [Oryza sativa (japonica cultivar-group)]
Ligand-gated ion channels are important players in plant hormone induced signaling cascades. They have been found to be involved for instance in abscisic acid signalling (Pei et al., Nature 2000, 406(6797):731-734; Walden, Curr. Opin. Plant Biol. 1998, 1(5):419-423). Abscisic acid, as well as ethylene and jasmonates have also been proposed to play a role in wound signalling, which in many plants leads to the induction of plant secondary metabolic pathways (Leon et al., J. Exp. Bot. 2001 52(354):1-9).
- C353a (SEQ ID NO: 172 and SEQ ID NO: 877): sequence information for a GTP-binding protein induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-102)>
- emb|CAA69701.1| small GTP-binding protein [Nicotiana plumbaginifolia]
- emb|CAC39050.1| putative GTP-binding protein [Oryza sativa]
- dbj|BAA76422.1| rab-type small GTP-binding protein [Cicer arietinum]
- emb|CAA98160.1| RAB1C [Lotus japonicus]
- pir∥B38202 GTP-binding protein YPTM2 [Zea Mays]
- dbj|BAA02116.1| GTP-binding protein [Pisum sativum]
- emb|CAA98161.1| RAB1D [Lotus japonicus]
- gb|AAF65510.1| small GTP-binding protein [Capsicum annuum]
- emb|CAA98162.1| RAB1E [Lotus japonicus]
- ref|NP—193486.1| ras-related small GTP-binding protein RAB1c At4g17530.1 [A. thaliana]
- MT101 (SEQ ID NO: 355 and SEQ ID NO: 878): Sequence information for a GTP-binding-like protein induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-177)>
- ref|NP—195662.1| GTP-binding-like protein; protein id: At4g39520.1 [A. thaliana]
- dbj|BAC22346.1| putative GTP-binding protein [Oryza sativa (japonica cultivar-group)]
GTP-binding proteins have been reported to be involved in the induction of phytoalexin biosynthesis in cultured carrot cells (Kurosaki et al., Plant Sci. 2001 161(2):273-278) and in the fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures (Zhao & Sakai, J. Exp. Bot. 2003, 54(383):647-656). They are supposed to interact with receptors, kinases and phosphatases amongst others and as such participate in many stimulus induced signaling pathways in plants (Clark et al., Curr. Sci. 2001, 80(2):170-177), and possibly as well in the onset of secondary metabolite biosynthetic pathways.
- T21 (SEQ ID NO: 465 and SEQ ID NO: 879): Sequence information for a cyclophilin induced after 8 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 4e-78)>
- gb|AAA63543.1| cyclophilin [Lycopersicon esculentum]
- >pir∥CSTO peptidylprolyl isomerase (EC 5.2.1.8) [Lycopersicon esculentum]
- >pir∥T50771 peptidylprolyl isomerase (EC 5.2.1.8) [Solanum tuberosum subsp. tuberosum]
- emb|CAC80550.1| cyclophilin [Ricinus communis]
- gb|AAB51386.1| stress responsive cyclophilin [Solanum commersonii]
- pir∥T50768 cyclophylin [Digitalis lanata]
Cyclophylins or FK506-binding proteins belong to the large family of peptidyl-prolyl cis-trans isomerases, which are known to be involved in many cellular processes, such as cell signalling, protein trafficking and transcription (Harrar et al., Trends Plant Sci 2001, 6(9):426-431), and as such might be involved in regulating plant secondary metabolism.
- C476a (SEQ ID NO: 264 and SEQ ID NO: 880): sequence information for a MAP kinase induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 2e-75)>
- ref|NP—177492.1| MAP kinase At1g73500 [A. thaliana]
- ref|NP—173271.1| MAP kinase kinase 5 At1g18350 [A. thaliana]
- ref|NP—188759.1| MAP kinasekinase 5 At3g21220 [A. thaliana]
- ref|NP—175577.1| MAP kinase kinase 4 (ATMKK4) At1g51660 [A. thaliana]
- gb|AAG53979.1|AF325168—1 mitogen-activated protein kinase 2 [Nicotiana tabacum]
MAP kinases have been reported to be both differentially induced by defense signals such as nitric oxide, salicylic acid, ethylene, and jasmonic acid as to represent key components of the signaling cascades induced by these defense signals (e.g., Petersen et al., Cell 2000, 103(7):1111-1120; Kumar & Klessig, Mol. Plant Microbe Interact. 2000, 13(3):347-351; Seo et al., Science. 1995, 270(5244):1988-1992), and as such might be involved in the activation of plant secondary metabolism.
- MC204 (SEQ ID NO: 315 and SEQ ID NO: 881): sequence information for a sequence with similarity to the putative protein At5g47790 [A. thaliana] induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-111)
- dbj|BAC22308.1| OJ1136_A10.4 [Oryza sativa (japonica cultivar-group)]
- ref|NP—199590.1| unknown protein At5g47790 [A. thaliana]
This protein contains a Forkhead-associated (FHA) domain. The forkhead-associated domain is a phosphopeptide recognition domain found in many regulatory proteins. It displays specificity for phosphothreonine-containing epitopes but will also recognize phosphotyrosine with relatively high affinity. It spans approximately 80-100 amino acid residues folded into an 11-stranded sandwich, which sometimes contain small helical insertions between the loops connecting the strands. The domain is present in a diverse range of proteins, such as kinases, phosphatases, kinesins, transcription factors, RNA-binding proteins and metabolic enzymes which take part in many different cellular processes, such as signal transduction, vesicular transport and protein degradation (Durocher et al., Mol. Cell 1999, 4(3):387-394; Hofmann & Bucher, Trends Biochem. Sci. 1995, 20(9):347-349), and as such might regulate plant secondary metabolism.
- T323 (SEQ ID NO: 509 and SEQ ID NO: 882): Sequence information for a putative endo-1,4-beta-glucanase induced after 10 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 2e-84)>
- emb|CAD41248.1| OSJNBa0067K08.12 [Oryza sativa (japonica cultivar-group)]
- ref|NP—176738.1| glycosyl hydrolase family 9 (endo-1,4-beta-glucanase) At1g65610 [A. thaliana]
- ref|NP—199783.1| cellulase [A. thaliana]
- emb|CAB51903.1| cellulase; endo-1,4-beta-D-glucanase [Brassica napus]
- pir∥T07612 cellulase [Lycopersicon esculentum]
The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses (Ellis et al., Plant Cell 2002, 14(7):1557-1566). CEV1 encodes a cellulose synthase. The cev1 mutant has constitutive expression of stress response genes and has increased production of jasmonate and ethylene. Conversely, as such glucanase and cellulase-like proteins might participate in the onset of plant secondary metabolism by providing cell wall derived molecules, necessary to elicit secondary metabolic pathways.
- T464 (SEQ ID NO: 595 and SEQ ID NO: 883): Sequence information for an epimerase/dehydratase-like protein induced after 10 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 0.0)>
- gb|AAM08784.1|AC016780—14 Putative epimerase/dehydratase [Oryza sativa]
- ref|NP—198236.1| epimerase/dehydratase-like protein At5g28840.1 [A. thaliana]
It has been shown that phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid (Tamogami et al., FEBS Lett. 1997, 412(1):61-64). MJM tag T464 encodes the homologue of the GDP-mannose 3″,5″-epimerase of A. thaliana, a key enzyme of the plant vitamin C pathway (Wolucka et al., Proc. Natl. Acad. Sci. USA 2001, 98(26):14843-14848). Consequently, increased ascorbate production might stimulate alkaloid and phenylpropanoid biosynthesis as well, and plant secondary metabolism in general.
- C127 (SEQ ID NO: 38 and SEQ ID NO: 884): Sequence information for an auxin-responsive GH3-like protein induced after 2 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-180)>
- ref|NP-200262.1| auxin-responsive-like protein At5g54510 [A. thaliana]
- ref|NP—194456.1| GH3 like protein At4g27260 [A. thaliana]
- dbj|BAB92590.1| putative auxin-responsive GH3 [Oryza sativa (japonica cultivar-group)]
- gb|AAD32141.1|AF 123503—1 Nt-gh3 deduced protein [Nicotiana tabacum]
- dbj|BAB63594.1| putative auxin-responsive GH3 protein [Oryza sativa (japonica cultivar-group)]
- ref|NP—179101.1| putative auxin-regulated protein At2g14960.1 [A. thaliana]
- pir∥S17433 auxin-regulated protein GH3 [Glycine max]
- C175 (SEQ ID NO: 71 and SEQ ID NO: 885): Sequence information for an auxin-responsive GH3-like protein induced after 2 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx)
- ref|NP—200262.1| auxin-responsive-like protein At5g54510 [A. thaliana]
- ref|NP—1194456.1| GH3 like protein At4g27260 [A. thaliana]
- dbj|BAB92590.1| putative auxin-responsive GH3 [Oryza sativa (japonica cultivar-group)]
- gb|AAD32141.1|AF123503—1 Nt-gh3 deduced protein [Nicotiana tabacum]
- dbj|BAB63594.1| putative auxin-responsive GH3 protein [Oryza sativa (japonica cultivar-group)]
- ref|NP—179101.1| putative auxin-regulated protein At2g14960.1 [A. thaliana]
- pir∥S17433 auxin-regulated protein GH3 [Glycine max]
The Arabidopsis jasmonate (JA) response mutant jar1-1 is defective in the gene JAR1, one of 19 closely related Arabidopsis genes that are similar to the auxin-induced soybean GH3 gene. Analysis of fold predictions for this protein family suggested that JAR1 might belong to the acyl adenylate-forming firefly luciferase superfamily. These enzymes activate the carboxyl groups of a variety of substrates for their subsequent biochemical modification. An ATP-PPi isotope exchange assay was used to demonstrate adenylation activity in a glutathione S-transferase-JAR1 fusion protein. Activity was specific for JA, suggesting that covalent modification of JA is important for its function. Six other Arabidopsis genes were specifically active on indole-3-acetic acid (IAA), and one was active on both IAA and salicylic acid. These findings suggest that the JAR1 gene family is involved in multiple important plant signaling pathways (Staswick et al., Plant Cell 2002, 14(6):1405-1415). The MJM genes C127 and C175 cluster together with the Arabidopsis genes At5g54510 and At4g27260, of which the protein products display activity on IAA. They might participate in the conversion of free, active IAA in inactive storage forms or conjugates, and as such relieve the inhibitory effect of active auxins on secondary metabolism, shown for instance for nicotine production in tobacco cells (Imanishi et al., Plant Mol. Biol. 1998, 38(6):1101-1111) and terpenoid indole alkaloid production in Catharanthus roseus cells (Gantet et al., Plant Cell Physiol., 1998, 39(2):220-225).
- T424b (SEQ ID NO: 570 and SEQ ID NO: 886): sequence information for an auxin-induced reductase-like protein induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-144)>
- pir∥S16390 auxin-induced protein PCNT115 [Nicotiana tabacum]
- ref∥NP—564761.1| auxin-induced protein At1g60710 [A. thaliana]
- ref∥NP—176268.1| auxin-induced protein At1g60690 (aldo/keto reductase family) [A. thaliana]
- pir∥T12582 auxin-induced protein [Helianthus annuus]
- ref∥NP—176267.1| auxin-induced protein At1 g60680.1 [A. thaliana]
- ref|NP—172551.1| putative auxin-induced protein [A. thaliana]
This gene might encode a reductase protein capable of reducing free, active IAA into the inactive form indole-ethanol (Brown & Purves, J. Biol. Chem. 1976, 251(4):907-913). As such, it might also be involved in the relieve of the inhibitory effect of active auxins on secondary metabolism, shown for instance for nicotine production in tobacco cells (Imanishi et al., Plant Mol. Biol. 1998, 38(6):1101-1111) and terpenoid indole alkaloid production in Catharanthus roseus cells (Gantet et al., Plant Cell Physiol., 1998, 39(2):220-225).
- T164 (SEQ ID NO: 446 or SEQ ID NO: 887): sequence information for a probable glutathione S-transferase induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-115)>
- emb|CAA56790.1| auxin-regulated par glutathione S-transferase protein STR246C [Nicotiana tabacum]
- pir∥JQ1606 multiple stimulus glutathione S-transferase response protein [Nicotiana plumbaginifolia]
This GST protein is induced also by auxins and might be involved in the transport of IAA-conjugates, detoxification of secondary metabolites or even in functions distinct from conventional GSTs (as suggested by some characteristics of parA, Takahashi et al., Planta 1995, 196(1):111-117) such as an involvement in transcriptional regulation.
- MAP2 (SEQ ID NO: 284 and SEQ ID NO: 888): sequence information for a protein with similarity to the putative protein At5g28830 [A. thaliana] induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 3e-82)>
- ref∥NP—198235.1| putative protein At5g28830 [A. thaliana]
This protein contains a Ca-binding EF-hand motif. The EF-hands can be divided into two classes: signaling proteins and buffering/transport proteins. The first group is the largest and includes the most well-known members of the family such as calmodulin, troponin C and S100B. These proteins typically undergo a calcium-dependent conformational change which opens a target binding site. The latter group is represented by calcium binding D9k and do not undergo calcium dependent conformational changes. As calmodulins and Ca-molecules have been postulated to be involved in jasmonate signaling cascades (Leon et al., J. Exp. Bot. 2001, 52(354):1-9; Yang & Poovaiah, J. Biol. Chem. 2002, 277(47):45049-45058), possibly connected to the onset of secondary metabolic pathways (Memelink et al., Trends Plant Sci. 2001, 6(5):212-219), they might be involved in nicotine alkaloid or phenylpropanoid biosynthesis as well.
C1 (SEQ ID NO: 8 and SEQ ID NO: 889): Sequence information for a 1,4-benzoquinone reductase-like induced after 12 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 5e-79)>
- ref|NP—200261.1| quinone reductase At5g54500.1 [A. thaliana]
- emb|CAD31838.1| putative quinone oxidoreductase [Cicer arietinum]
- gb|AAD38143.1|AF 139496—1 unknown [Prunus armeniaca]
- ref|NP—194457.1| quinone reductase family protein At4g27270.1 [A. thaliana]
- gb|AAG53945.1|AF304462—1 quinone-oxidoreductase QR2 [Triphysaria versicolor]
- dbj|BAB92583.1| putative 1,4-benzoquinone reductase [Oryza sativa (japonica cultivar-group)]
This reductase-like protein might be directly and actively involved in the biosynthetic pathway of one of the nicotine alkaloids.
- T210 (SEQ ID NO: 466 and SEQ ID NO: 890): Sequence information for a protein with similarity to the putative protein P0638D12 [Oryza sativa] induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 5e-60)>
- dbj|BAB55502.1| P0638D12.10 [Oryza sativa (japonica cultivar-group)]
- ref|NP—565816.1| expressed protein At2g35680 [A. thaliana]
- gb|AAK31276.1|AC079890—12 unknown protein [Oryza sativa]
- ref|NP-200472.1| putative protein At5g56610 [A. thaliana]
This protein contains a dual specificity protein phosphatase motif. Ser/Thr and Tyr dual specificity phosphatases are a group of enzymes (EC: 3.1.3.16) removing the serine/threonine or tyrosine-bound phosphate group from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase (Fauman & Saper, Trends Biochem. Sci. 1996, 21(11):413-417). As such, they might be involved in the regulation of plant secondary metabolic pathways.
- C112 (SEQ ID NO: 22 and SEQ ID NO: 891): Sequence information for a protein with similarity to the putative protein At3g11810 [A. thaliana] induced after 12 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 1e-10)
- ref|NP—187787.1| unknown protein At3g11810 [A. thaliana]
- ref|NP—178432.1| unknown protein; protein id: At2g03330.1 [A. thaliana]
This protein contains a TonB motif. In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space. These substrates are either poorly permeable through the porin channels or are encountered at very low concentrations. In the absence of tonB these receptors bind their substrates but do not carry out active transport (Buchanan et al., Nat. Struct. Biol. 1999, 6(1):56-63.). As such, this protein might be involved in the jasmonate-induced signaling cascades and thus in the regulation of plant secondary metabolic pathways.
- C454 (SEQ ID NO: 244 and SEQ ID NO: 892): Sequence information for sequence a putative phosphatase 2C induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 4e-85)>
- ref|NP—180455.1| unknown protein At2g28890 [A. thaliana]
- ref|NP—563791.1| expressed protein At1g07630 [A. thaliana]
- ref|NP—195860.1| putative protein At5g02400 [A. thaliana]
- gb|AAO65883.1| putative protein phosphatase 2C [Oryza sativa (japonica cultivar-group)]
- ref|NP—187551.1| unknown protein At3g09400 [A. thaliana]
- ref|NP—182215.2| unknown protein; protein At2g46920 [A. thaliana]
- T172 (SEQ ID NO: 450 and SEQ ID NO: 893): Sequence information for a protein phosphatase 2C induced after 4 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-104)>
- ref|NP—177421.1| protein phosphatase 2C (AtP2C-HA) At1g72770 [A. thaliana]
- ref|NP—173199.1| protein phosphatase 2C At1g17550 [A. thaliana]
- dbj|BAC05575.1| protein phosphatase 2C-like protein [Oryza sativa (japonica cultivar-group)]
- ref|NP-200515.1| protein phosphatase 2C, ABI2 At5g57050.1 [A. thaliana]
- ref|NP—194338.1| protein phosphatase ABI1 At4g26080 [A. thaliana]
Phosphatases have been postulated as important participants in the jasmonate modulated signaling cascades (Leon et al., J. Exp. Bot. 2001, 52(354):1-9) and as such represent potential powerful master regulators of plant secondary metabolism. T172 shows most homology to a group of 4 Arabidopsis PP2C phosphatases to which also ABI1 and ABI2 belong, acting in a negative feedback regulatory loop of the abscisic acid signalling pathway (Merlot et al., Plant J. 2001, 25(3):295-303). C454 shows most homology to a group of 5 Arabidopsis PP2C phosphatases to which also POLTERGEIST belongs, encoding a PP2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems (Yu et al., Curr Biol. 2003, 13(3):179-188). Both the T172 and C454 sequences are truncated clones and still lack the N-terminal sequence. However, the clones available cover the region corresponding to truncated mutant versions of both ABI (Sheen, Proc. Natl. Acad. Sci. USA 1998, 95(3):975-980) and Poltergeist phosphatases (Yu et al., Curr Biol. 2003, 13(3):179-188) that were shown to confer constitutive activity and thus are very well suitable for metabolic engineering purposes.
- C477 (SEQ ID NO: 266 and SEQ ID NO: 894): Sequence information for a putative zinc transporter induced after 4 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx e-121)>
- gb|AAL25646.1|AF197329—1 zinc transporter [Eucalyptus grandis]
- ref|NP—182203.1| putative zinc transporter At2g46800 [A. thaliana]
- gb|AAK91869.2| putative vacuolar metal-ion transport protein MTP1 [Thlaspi goesingense]
- gb|AAK91871.2| putative vacuolar metal-ion transport protein MTP1t2 [Thlaspi goesingense]
- ref|NP 191440.1 | zinc transporter-like protein At3g58810 [A. thaliana]
- gb|AAK69428.1|AF275750—1 zinc transporter [Thlaspi caerulescens]
Divalent cations are important both as cofactors for biosynthetic enzymes and as active participants in elicitor induced biosynthesis of plant secondary metabolites. For instance calcium molecules and transporters/channels have been shown to mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures (Zhao & Sakai, J. Exp. Bot. 2003, 54(383):647-656). Zinc cations as well might be involved, either as a cofactor in enzymes or zinc finger proteins or as a secondary signal molecule, in elicitor-mediated induction of tobacco secondary metabolism.
- C331 (SEQ ID NO: 149 and SEQ ID NO: 895): Sequence information for a protein with similarity to the putative protein At3g62270 [A. thaliana] induced after 12 hour by methyl jasmonate in tobacco BY-2 cells.
Best Homologues found: (lowest blastx 7e-13)>
- ref|NP—191786.1| putative protein; protein At3g62270 [A. thaliana]
- ref|NP—182238.2| putative anion exchange protein At2g47160 [A. thaliana]
- ref|NP—187296.2| unknown protein At3g06450 [A. thaliana]
This protein harbours a HCO3-transporter motif and might thus function as an anion exchanger. Bicarbonate (HCO3-) transport mechanisms are the principal regulators of the internal pH of animal cells. As intracellular pH shifts have been shown to be part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids biosynthesis in cultured cells of Eschscholtzia californica (Viehweger et al., Plant Cell 2002, 14(7):1509-1525; Roos et al., Plant Physiol. 1998, 118(2):349-364), this anion exchanger encoded by C331 might be involved in regulating tobacco secondary metabolism.
8) Use of a Reporter Plant Cell Line as a Tool for Functional Analysis to Accelerate the Identification of Genes with a Role in Secondary Metabolism
The PMT gene encodes the enzyme putrescine N-methyltransferase, catalysing the first committed step in the production of nicotinic alkaloids. Transcripts of Nicotiana sp. PMT genes are reported to be up regulated by methyl jasmonate. When the flanking regions of Nicotiana sylvestris PMT genes were fused to the β-glucuronidase reporter gene and introduced into N. sylvestris, the reporter transgenes were found to be inducible by methyl jasmonate treatment (Shoji et al., Plant Cell Physiol. 2000, 41(7):831-839). We have applied this knowledge and constructed a new reporter construct, called pHGWFS7-ppmt2, harbouring a EGFP-GUS fusion reporter gene (in Gateway® vector pHGWFS7; Karimi et al., Trends Plant Sci. 2002, 7(5):193-195), driven by the NsPMT2 promoter. To this end, primers were designed for the Adapter attB PCR protocol (InVitroGen) to amplify the NsPMT2 5′flanking region covering nucleotides −1713 to +3 (Table 3).
The pHGWFS7-ppmt2 construct was subsequently introduced in the ternary Agrobacterium tumefaciens transformation system, LBA4404.pBBR1-MCS-5.virGN54D (van der Fits et al., Plant Mol. Biol. 2000, 43(4):495-502), allowing efficient transformation of tobacco BY-2 cell cultures. Different independent transgenic lines were established and the jasmonate inducibility of the promoter in these transgenic BY-2 cells was confirmed (Table 4).
These transgenic reporter cell lines are used as a tool to identify potential master regulatory genes of plant secondary metabolism (and speed up this process). Overexpression of a single gene most often does not affect significantly the final production levels of the target metabolite(s). Therefore, when accumulation levels are employed as the only criteria to evaluate the potential involvement of regulatory genes in plant secondary metabolism, one might easily miss eventually promising candidates.
To illustrate the potential of this approach, BY-2-pmt2 cell line 7 was double transformed with the pK7WGD2-C330 construct, harbouring the MJM tag with SEQ ID No 148, an AP2-domain transcription factor encoding gene (also designated as C330 in this application), driven by the constitutive p35S promoter. Expression analysis of the reporter proteins demonstrated clearly that overexpression of the C330 gene induces the NsPMT2 promoter, without the necessity to use elicitors like methyl jasmonate (Table 5).
In a next step, we evaluated if there was a correlation between the GUS-activity in the BY-2 reporter cell line (line 7) and nicotine alkaloid accumulation. Table 6A shows a perfect correlation between GUS expression and nicotine alkaloids (as measured for nicotine, anatabine and anabasine). Table 6B shows the nicotine alkaloid content of the BY-2 reporter cell line (line 7) super-transformed with an expression vector comprising the C330 gene (SEQ ID NO: 148). Measurements in tables 6A and 6B were carried out in the presence or absence of synthetic auxins. “−2,4 D” means in the absence of dichlorophenoxy-acetic acid. “NAA” means in the presence of alfa-naphtalene-acetic acid. “DW” means dry weight, “MeJA” is with the addition of the elicitor methyl jasmonate, “DMSO” means with the addition of dimethylsulfoxide instead of MeJA.
9) Functional Analysis in Hairy Roots of Hyoscyamus muticus
Sterilized leaves of H. muticus were infected with a recombinant Agrobacterium rhizogenes strain (LBA9402) transformed with an expression vector comprising the C330 gene (SEQ ID NO: 148). As a negative control we compared the infection with the LBA9402 wild type strain. The hairy roots appeared in the infected sites approximately 3 weeks after infection. The different root clones were separated and they were grown on plates in B50 medium added with cefotaxim to kill the excess of Agrobacteria. The hairy roots transformed with C330 (4 clones: A, B, C and D) and the control LBA9402 (one clone) were accurately weighed and the same amount was added into each of the flasks (50+3 mg) then 20 ml B50 medium was added. For each of the clones three flasks were prepared. After growing for 21 days (16 h light, 8 h dark, 21° C.), the roots were filtered and lyophilized. The tropane alkaloid extraction and analysis was performed by a modified method of Fliniaux et al. (1993) J. Chromatography 644: 193. For analysis the three flasks of each clone were pooled together and 50 mg dry weight (DW) was withdrawn for an extraction. For the GC-MS analysis, the samples were evaporated to dryness and 50 μl of CH2Cl2 was added. The injected volume was 3 μl. The whole sample set was analysed in exactly the same way, which makes it possible to compare between the samples. In our analysis the hyoscyamine content was measured as the sum of hyoscyamine and its isomer littorine, because of the difficult separation of these isomers in analytical systems. We observed no significant changes in the growth pattern between the transformed and untransformed roots. The contents of hyoscyamine in the hairy roots after 21 d was calculated and it was found that the hyoscyamine content was on average 25-fold higher in transformed roots compared to control roots, varying from 12-fold (clone C) to 62-fold (clone B). In addition to possessing extremely high hyoscyamine content, in the chromatogram of clone B also several (5-10) new peaks were found which are currently being identified.
Materials and Methods
Alkaloid Analysis
Nicotiana tabacum BY-2 cells were cultured in modified Linsmaier-Skoog (LS) medium (Linsmaier & Skoog, 1965), as described by Nagata & Kumagai (1999). First, the growth curve of BY-2 cell culture was determined (FIG. 2) and the late exponential phase was used in elicitation experiments. Since the ability of high auxin concentration to inhibit the biosynthesis of nicotine is well known (Hibi et al., 1994; Ishikawa, et al., 1994), the six-day-old culture was prior elicitation washed and diluted 10-fold with fresh hormone free medium. After 12 hours, the cells were treated with methyl jasmonate (MeJA). MeJA (cis-form, Duchefa M0918) dissolved in dimethyl sulfoxide (DMSO) and was added to the culture medium at a final concentration of 50 μM. Same amount of DMSO alone served as a control. Samples for cDNA-AFLP analysis were taken at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 24, 36, 48, and 98 hours after jasmonate addition or at 0, 2, 4, 6, 8, 10, 12, 14, 16, 24, 36, 48, and 98 hours after DMSO addition, respectively. For alkaloid analysis, the samples were taken at 0, 12, 14, 24, 48 and 98 hours. Three replicate shake flasks pooled together yielded the total culture volume of 75 ml. After filtering (Miracloth) under vacuum the cells were lyophilized. Lyophilized cell samples were extracted for GC-MS analysis by a modified method described by Furuya et al. (1971). Cells were weighed and 25 μg of internal standard (5α-cholestan) was added. The samples were made alkaline with ammonia (10% (v/v), 1 ml) and water (2 ml) was added. Alkaloids were extracted by vortexing with 2 ml of dicloromethane. After 30 min the samples were centrifuged (2000 rpm, 10 min) and the lower organic layer was separated and transferred into glass vials. The samples were concentrated to 50 μl and 3 μl aliquots were injected to GC-MS. In some cases (for derivatization of free fatty acids and more polar compounds) the samples were silylated prior to GC-MS analysis. After evaporation to dryness, 25 μl of dichloromethane was added and silylation was performed by N-methyl-N-(trimethylsilyl)-trifluoro-acetamide (Pierce, Rockford, USA) at 120° C. for 20 min.
Analysis of Polyamines
Approx. 200 mg FW cells were homogenised using a mortar and pestle with 10 vol 4% (v/v) perchloric acid (PCA), and the homogenate left on ice for 60 min then centrifuged at 20 000 g for 30 min. The pellets were washed twice by resuspending in PCA and centrifugation at 15 000 g for 5 min. The washed pellets were resuspended in the original volume of PCA. Aliquots (0.3 ml) of the supernatants and resuspended pellets were hydrolysed by adding an equal volume of 12 N HCl at 110° C. overnight in order to release PCA-soluble and -insoluble conjugates, respectively. Hydrolysed samples were taken to dryness and resuspended in 0.3 ml 4% PCA. Aliquots (0.2 ml) of the supernatants and of the hydrolysed supernatants and pellets were derivatised with dansyl chloride (Sigma) after alkalinisation with 1.5 M Na2CO3 (1 h at 60° C.), and dansylated amines extracted in toluene. Standard putrescine, methylputrescine, spermidine and spermine solutions (1 mM in 4% PCA) were subjected to the same procedure. Samples were injected into a fixed 20-PI loop of an HPLC (Jasco) for loading onto a reverse-phase C18 column (Spherisorb S5 ODS2, 5-μm particle size 4.6×250 mm. Phase Sepand eluted with a programmed acetonitrile-water 5-step gradient as follows: 60 to 70% acetonitrile in 5.5. min, 70 to 80% in 1.5 min, 80 to 100% in 2 min, 100% for 2 min, 100 to 70% in 2 min and 70 to 60% in 2 min, at a flow rate of 1.0 ml min−1. Eluted peaks were detected by a spectrofluorometer (excitation 365 nm, emission 510 nm), and their retention times and areas recorded and integrated by an attached computer using the Borwin 1.21.60 software package.
Analysis of Sesquiterpenes
The sesquiterpenoid alkaloids were detected by GC-MS. The extraction was performed as described in the section of alkaloid analysis. The preliminary identification is based on the MS fragmentation pattern.
Detection of Phenylpropanoids by TLC
Phenylpropanoids (coumarins and flavonoids) were extracted from elicited BY-2 cells or form the culture filtrate as described by Sharan et al. (1998). The methanol solutions obtained were concentrated and evaluated qualitatively by TLC using silica gel plates with fluorescent indicator UV254 (Polygram® SIL G/UV254, Macherey-Nagel, Düren, Germany) developed with ethylacetate:methanol:water (75:15:10). Spots were visualized under UV260 after staining with AlCl2 (by spraying with a 1% ethanolic solution).
RNA Extraction and cDNA Synthesis
Total RNA was prepared by LiCl precipitation (Sambrook, 1989). Starting from 5 μg total RNA, first-strand cDNA was synthesized by reverse transcription with a biotinylated oligo-dT25 primer (Genset, Paris, France) and Superscript II (Life Technologies, Gaithersburg, Md.). Second-strand synthesis was performed by strand displacement with Escherichia coli ligase (Life Technologies), DNA polymerase I (USB, Cleveland, Ohio) and RNAse-H (USB).
cDNA-AFLP Analysis
500 nanograms of double-stranded cDNA was used for AFLP analysis as described (Vos et al., 1995; Bachem et al., 1996) with modifications. The restriction enzymes used were BstYI and MseI (Biolabs) and the digestion was performed in two separate steps. After the first restriction digest with one of the enzymes, the 3′ end fragments were collected on Dyna beads (Dynal, Oslo, Norway) by their biotinylated tail, while the other fragments were washed away. After digestion with the second enzyme, the released restriction fragments were collected and used as templates in the subsequent AFLP steps. The adapters used were as follows: for BstYI, 5′-CTCGTAGACTGCGTAGT-3′ (SEQ ID NO:_) and 5′-GATCACTACGCAGTCTAC-3′ (SEQ ID NO:_), and for MseI, 5′-GACGATGAGTCCTGAG-3′ (SEQ ID NO:_) and 5′-TACTCAGGACTCAT-3′ (SEQ ID NO:_); the primers for BstYI and MseI were 5′-GACTGCGTAGTGATC(T/C)N1-2-3′ (SEQ ID NO:_) and 5′-GATGAGTCCTGAGTAAN1-2-3′ (SEQ ID NO:_), respectively. For preamplifications, an MseI primer without selective nucleotides was combined with a BstYI primer containing either a T or a C as nucleotide at the 3′ extremity. PCR conditions were as described (Vos et al., 1995). The obtained amplification mixtures were diluted 600-fold and 5 μl was used for selective amplifications using a 32P-labeled BstYI primer and the Amplitaq-Gold polymerase (Roche Diagnostics, Brussels, BE). Amplification products were separated on 5% polyacrylamide gels using the Sequigel system (Biorad). Dried gels were exposed to Kodak Biomax films as well as scanned in a phospholmager (Amersham Pharmacia Biotech, Little Chalfont, UK).
Quantitative Measurements of the Expression Profiles and Data Analysis
Scanned gel images were quantitatively analyzed using the AFLP QuantarPro image analysis software (Keygene N. V., Wageningen, N L). This software was designed for accurate lane definition, fragment detection, and quantification of band intensities. All visible AFLP fragments were scored and individual band intensities in each lane were measured. The raw data obtained were first corrected for differences in total lane intensities which may occur due to loading errors or differences in the efficiency of PCR amplification with a given primer combination for one or more time points. The correction factors were calculated based on constant bands throughout the time course. For each primer combination, a minimum of 10 invariable bands were selected and the intensity values were summed per lane. Each summed value was divided by the maximal summed value to give the correction factors. Finally, all raw values generated by QuantarPro were divided by these correction factors. A coefficient of variation (CV) was calculated by dividing the maximum value across the time course by the minimum value. This CV was used to establish a cut-off value and expression profiles with a CV less than 4.0 were considered to be constitutive throughout the time course. Although differential and constant bands can be discriminated by visual scoring, QuantarPro-mediated analysis is more sensitive and reliable. As such, transcript tags that had been identified as jasmonate-modulated after visual scoring were excluded from the final data set because they had a CV lower than our threshold level. Vice versa additional jasmonate-modulated transcripts were identified that had been missed by the visual scoring. Subsequently, each individual gene expression profile was variance-normalized by standard statistical approaches as used for microarray-derived data (Tavazoie et al., 1999). For each transcript, the mean expression value across the time course of the DMSO-treated samples was subtracted from each individual data point after which the obtained value was divided by the standard deviation. The Cluster and TreeView software (Eisen et al., 1998) was used for average linkage hierarchical clustering.
Characterization of AFLP Fragments.
Bands corresponding to differentially expressed transcripts were cut out from the gel and the DNA was eluted and reamplified under the same conditions as for selective amplification. Sequence information was obtained by direct sequencing of the reamplified PCR product with the selective BstYI primer or after cloning the fragments in pGEM-T easy (Promega, Madison, Wis.) and sequencing individual clones. The sequences obtained were compared against nucleotide and protein sequences in the publicly available databases by BLAST sequence alignments (Altschul et al., 1997).
Isolation of Full-Length cDNA Clones.
Two strategies were followed to obtain full-length cDNA clones corresponding to the short sequence tags isolated in the cDNA-AFLP analysis. In the first method the use of gene-specific primers, RT-PCR, 5′- and 3′-RACE (InVitroGen Life Technologies) techniques were combined to yield a full-length cDNA clone. For the second strategy a cDNA library from elicitor treated BY-2 cells was generated in the pCMV-SPORT6 vector (Gateway™, InVitrogen Life Technologies) using a mixture of samples taken at different time points after jasmonate elicitation. This library was screened by PCR or colony hybridization using gene-specific primers or probes respectively.
TABLE 1
|
|
Sequences with homology to known gene
Seq codeSEQUENCEAnnotationSEQ ID N°
|
BAP1aTTATCTCGGCGGCGAATCTACCCCACTCTTCGAAGAenvelopeSEQ ID N° 1
TAACGCTCATTTTGTTACCATACTCACCTCTCTGAApolyprotein like
CAAACACACAAATACACACGAACTCACAGTCCAAAprotein
TAGCTAAAACAAAGGTTTTTGAATTGAAATTGAAG
CTCAGATC
|
BAP1bGATCCTCTGAGGCTATTATGCTTGCTGGATTAGCTTglutamateSEQ ID N° 2
TCAAGAGAAAATGGCAAAATAAAACGAAAGCCCAdecarboxylase
AGGCAAGCCCTGTGACAAGCCCAATATTGTCACTG
GTGCCAATGTCCAGGTGTGGTTGGGGCAAATTCGCC
GCCGAGATA
|
BAP2GATCCAGACCATGCACACAAACACAAGATAGAAGabscisic stressSEQ ID N° 3
AAGAGATAGCAGCAGCTGCTGCAGTTGGGGCAAATripening protein
TCGCCGCCGAGATA
|
BAP4aCAGAGCATGCACACAAACACAAGATAGAGGAAGAabscisic stressSEQ ID N° 4
GATAGCAGCTGCTGCTGCAGTTGCGTAGACGGCGTripening protein
AGTGATCCAGAGCATGCACACAAACACAAGATAGA
GGAAGAGATAGCAGCTGCTGCTGCAGTTTGGGGCAA
ATTCGCCGCCGAGATCAG
|
BAP4bGAGAAGACCA AGAAGAAGCA AAGGAAGAATAP2-domain DNA-SEQ ID N° 5
CTTTATAGGG GAATCCGACA GCGTCCATGGbinding protein
GGAAAATTCG CCGCCGAGAT GAG
|
BMAP1AGGAGCTGAACACACACCAACACCAACACTAACAputative proteinSEQ ID N° 6
GGAGCTCCGTGGAGCACTGGCTTATTCGATTGTCATAt1g52200 [A.
TTTGGACCAAACTAATGCTACTACGACAGCATTTTTAthaliana]
CCTTGTGTGACATGTGGACCGTCGGCTGCATA
|
BMAP2aCTAGTTTGGAATATGAGTTCTCTGCTCTTCGAGAAGputative potassiumSEQ ID N° 7
CCACAGAATCTGGATTTACATATTTGCTTGGACATGtransporter
TGGACCGTCGGCTGCAT
|
C1GGGGGAGAAG CGAAGGTCTA AATCTAACCA1,4-benzoquinoneSEQ ID N° 8
AATCCCCAAA ATGGCTACCA AAGTTTACATreductase-like
CGTATACTAT TCAATGTATG GTCATGTGGA
GAAACTAGCA GAAGAGATAA AGAAAGGGGC
AGCTTCTGTT GAAGGAGTTG AAGCTAAATT
GTGGCAAGTA CCTGAAACGC TGTCGGAAGA
TGTGCTAGCA AAAATGAGTG CACCTCCAAA
GAGTGATGTG GCTGTTATAA CACCTCAAGA
GCTTGCTGAA GCAGATGGTA TCATTTTTGG
ATTCCCTACG AGATTCGGAA TGATGGCTGC
TCAGTTTAAA GCATTCCTTG ATGCAACTGG
AGGTCTATGG AGAACACAAC AACTAGCTGG
CAAGGCTGCC GGCATATTCT ATAGCACTGG
ATCCCAAGGC GGTGGCCAAG AAACTACACC
GTTGACTGCG ATAACTCAGC TTGTTCACCA
CGGGATGATC TTTGTACCTA TCGGATACAC
ATTCGGTGCT GGTATGTTTG AAATGGAGAA
AGTGAAAGGA GGAAGTCCAT ATGGGGCGGG
AACATTTGCT GGGGATGGCT CGAGACAGCC
ATCCGATCTT GAATTGCAGC AGGCGTTTCA
CCAAGGTAAA TACATTGCCG GTATTGCCAA
GAAACTCAAG GGTGCAGCCT AATTTCTCTC
CTGCAAAGAT AATCTTTGCA TTCACACATT
TCTTATAAAA TTTGAAAAAA GTACAAAATT
TATCTTTGTG ATTGTTGAAG TCTTTTTTTT
TTCCTTTATT GGGTATGAAA TCTCATCTAT
ATGTGTCTGA TTCACAGTAA TTGTGTGTGT
CAAAAGTACC AAATTGTGTT TTAAAATGGT
TGCAAATACA A
|
C10GATCCCAGAA TAGCGTTGAG ATAGATGATCcystatinSEQ ID N° 9
TTGCACGTTT TGCTATCCAA GATTATAACA
AAAAACAGAA TGCTCTTTTG GAGTTTGGAA
AGGTTGTGAA TGTGAAACAA CAGGTAGTTG
CTGGAACCAT ATACTATATA ACACTCGAGG
CAATTGAGGG CGGAAAGAAG AAAGTATATG
AAGCCAAGAT ATGGGTTA
|
C101GATCCAATCG TTGGAATTTT GACAAGGCATchloride channelSEQ ID N° 10
GACTTTATGC CAGAGGATAT AAAGGGACTGprotein C1C-1
TACCCACATT TGGTCCATCA CAAGTAGCAG
AGAGAAGCTA GCTCTTCCAA CAGGCAATCG
GGCAACCATT ATTTGGGGAG TGTTATACAC
ACATTCCACA TTGAGCTCTG TACACAATCT
TCCCAAATTT TCTCATTGAC AAAATTGAAT
TTAGTAGTCT CAATTAGAGC AAAAATTCTC
CCTTACTTTG AATTGTTGAA CTTTCTTGTT
TTTGGTGGTT TA
|
C102TGACGATGAG TCCCGAGTAA ACAAAATTGCputative proteinSEQ ID N° 11
CATCTCCATC ACATCCTAGT GACACTAGTTAt5g47690 [A.
CACAGAGTTT GGCATCATGG ATGTCCAGACthaliana]
AATTGTGTAG ACCGACTGAA ATATGTCTGT
TTATGAACTA AACACAAACT AATGACTTTC
CTACATGTGG CGCTAATTGA AGAGAAGAGA
TCCAAATACC CGTTATGAAG GCATATCAAC
ACTACTACCA ATGAGTGTAT GGAACTTATA
GAGCATTTAT CATCCTCTTC ATCTCAGTGG
ACCTCCTTGG ATCACTACGC AGTCA
|
C104GATCCAAGTG ACACCACTAA GCAACAATGAmethylcrotonoyl-SEQ ID N° 12
CTATAGAGTT GAAGTCAATG GTCTAAGCCTCoA carboxylase
GAATGTCTGC TTGGCTGCTT ATTCCAAGGA
TCAAATTGAG CATATTCACA TCTGGCAGGG
CAACTGCCAG CATCACTTCA AACAAAGGAT
GGGCCTTGAA ATCTTTGATG ATGATGAAAC
GATAGACAAG CCTGCTCGCA TGGCAACATC
TTATCCTTCT GGCACAGTGG TTGCACCCAT
GGCTGGTCTA CTGGTTTA
|
C105GATCCAAGAA GAGAAAATGT CTGGTGAAGA40S ribosomalSEQ ID N° 13
GGCTGTTGTT GCTGAGACCC CAGCTCCCGCprotein S12
TGCCGCTCTT GGTGAGCCCA TGGATATCAT
GACGGCATTG CAACTTGTCC TCAGGAAATC
ACGGGCTCAT GGTGGGTTAG CTAAAGGCCT
TCACGAGGGT GCAAAGGTCA TCGAGAAGCA
TGCTGCCCAA CTTTGTGTAT TGGCAGAGGA
CTGCGACCAA CCAGACTATG TGAAATTGGT
CAAAGCGCTA TGTGCTGATC ACAATGTTA
|
C106GATCCAACCCAATAACACCTTCAAATGCCACATGGputative proteinSEQ ID N° 14
TCCAGCTGAATGTTTTTTGGACACTTTAGAGGGTTGAt1g07080 [A.
TGCAATTTGATGCCTGGCCAGATTTGAATGAACATTTthaliana]
TCCTTTCATTTACTGTGTGGAAAGTTTGGTCTACCA
TAAGAATTATACCCAGTGGGAAACATGTTTTTGAAA
AACTGAATTTGAAGGCAAAGCTTGTTA
|
C107TTTGAACCCTGATAACAAAGCTGGGAGGATTACAA3-deoxy-D-arabino-SEQ ID N° 15
AATTTACCAGAATGGGAGCAGAGAACATGAGGGTTheptulosonate 7-
Aphoshate synthase
|
C108AATTACAATA CTTATAGTTT CGATGGAAAGputative proteinSEQ ID N° 16
AAGAAGCTTG TGCTTTCTAC AACTAGCTGGAt1g54320 [A.
ATTGGCGGAA AGAATGATTT TCTTGGTATTthaliana]
GCTTATCTTA CTGTAGGTGG ATTGTGTTTC
TTTCTGGCCA TGGCTTTCAC GATCGTGTAT
CTAGTTAAGC CAAGGCAGCT TGGAGATCCA
ACATACTTTG CGTGGAACCG GAACCCGGGA
GGTAACTAGT ATGCAAATGA AGTCTTTTGG
CTTGAGCGCT TTACCATCTA AGGTTGATGT
TGACAAAGCT TGTGTCTTGT AGCAGCTATC
TGTCTACAAG TTCTTTTTTT TTGAAATGTT
CTGCATATAC TTTTAAACTC AATTTGCTAG
GAAAACAATG ATATGTAATG AAGTATTTTC
CCTTTGTTAA GTGTTTATCC AAAATTATGT
ATGTACAATG GAAGTAATTG CTTAAAGGAC
TTGAATGATG CC
|
C109GATCCAAGTGCGGACGGTGTTCACCATGTAAACCGputative proteinSEQ ID N° 17
GTTCGAGTCTCCGTTCAACCTGGTTTTACCTCTACTAt3g22820 [A.
TTAGAGTACTACCCTGAAGCTTTGGAGGTGCAAGTGthaliana]
TCGCAACAAACTCTTCATGCCTTA
|
C11GATCCCACAA TATTCATATG TAACTCCGACputative proteinSEQ ID N° 18
GAAATGGAAT TTGGTGACGT GGTTTCAGCCAt2g23690 [A.
ATAAGTGCCG ACGAGGAGCT TCAACCGGGTthaliana]
CAACTTTACT TTGCGTTGCC TTTGAGCAAT
CTGAAACGTA GGCTTCAGGC TGAGGAAATG
GCAGCATTAG CCGTTA
|
C110bTAAGGCTCTCTTCAGAAGCTACGTGTGCCGATGATCCTR1-like proteinSEQ ID N° 19
CCAATTTCTTGGATCkinase
|
C110cTAAGGTGGTTGAGTTTGAACTTCCACGGCAACAATputative proteinSEQ ID N° 20
GTATAGTCTACTTGGATCAt2g46260 [A.
thaliana]
|
C111GATCCAAGAA TAAAGGGTCT ATTTTTTCACputative proteinSEQ ID N° 21
CAAACAACAT TCAGTATTGG CTTGTCCAAAAt2g46750 [A.
GTAAAAAACT TTATACAAGA TGTGCAAAAAthaliana]
CTTGTGGTTT TACAGCCTAA GGCATTATGT
GGTTTAGACC TATACAGTGG AATCCTAATG
AGGTATGTCA CAGCTTCAAA TGCTTACTTG
GGACATCAAG AAGATGCAGT GGATTTTGAT
ATAACATATT ATAGAAGCAA AAATCCATTG
ACTCCTAGGT TATATGAAGA TATTCTTGAA
GAAATAGAGC AAATGGCGAT GTTCAAATAT
GGAGCAGAAC CTCACTGGGG GAAGAATCGT
AATGTGGCAT TCATTGATGT GATTA
|
C112TAGCGGATAACAATTTCACACAGGAAACAGCTATGmyosin-heavy-chainSEQ ID N° 22
ACCATTAGGCCTATTTAGGTGACACTATAGAACAAkinase-like protein
GTTTGTACAAAAAAGCAGGCTGGTACCGGTCCGGA
ATTCCCGGGATTTCTTCTTCATCATCGATTTTTAGCT
CAAATGTCGTCTGCTTCTACAGAAAATCGTAGCCTT
TGGACAGAGATCCGAGAATCAATAAGGAGCATATT
GAAAGCTAATTGTGGCCATTTTCATACTCTTTTTAT
CCTCTTCCTCTTGCCTATCTTTTTCTCTCTCGTCGTT
TATCCTTCTTTCCACCTTGCCCTCTTTCATCCGGACT
ATGATTTCACTCAACCAGTTCAATTTTCACACTTTT
TAAGTTCACACTTCGAAATTATTGTACCCATAGTAT
TTACTCTGTTTCTGGTCCTCCTTTTCCTCTGTGCTGT
AGCCACGATACATACAGCGCGCTTCATGTATCCTA
TGGTAGACCTATCAACCTCGTTTCCTCTATTAAATC
TATCAGAAATTCCTTCTTCCCCCTTCTCTCCACCTTT
ATCGTTTCGCATACCATTTTCATTTCAATCGCTCTC
GTTTTCTCCCTTGTCTTGGTTTTTTTAGTCCAGGTTC
TTCAAACTCTTGGATTAATTGAACTAAAATACGACT
CGAATCATTTCTTGTTTTTGGTTATTCCCGCGTTGAT
TGTGCTCGTGCCAGTTTTGATATGGTTGCAGGTTAA
TTGGTCATTAGCTTATGTGATAGCAGTAGTCGAATC
GAAATGGGGTTTCGAAACACTAAGGAGAAGTGCCT
ATTTGGTAAAGGGGAAGAGATCGGTAGCTTTGTCG
ATGATGCTGTTATACGGGCTTTTGATGGGAATAATG
GTGGTTTTAGGTGCCATGTATTTAGTCATTATGGAT
GCAGCGAAGGGTCGTCAATGGAGAAGTTCAGGGGT
AATATTACAGACTGCTATGAGTTTCAATAACTAGCT
ATCTCATGATGAGTCAATTTCTTGTGGGGAATGTTG
TTTTATATCTGCGTTGCAACGACTTGAATGGTGAAA
AATTGCCCTTGGAAATCGAGCATCTTCTTCTTCATC
AATCTTTAGCTAATGATCACCCACCTCCAATGTTGT
CAGCTTCAACGAAAAATCTTAGCCTATGGACAGAG
GTCGTAGAATCAGCAATGAGCATATTCAAAGCCAA
TTCTGGCCATTTCCATGCTCTTTCAATCCTCTTCCTC
TTGCCTATCTCTTTCTTTCTCGTCGTGTATCCTTCTT
TCCACCTTGCTCTCTTTCATCCGAACTATGATTTCAT
CAGTTTCGCTCAACGCCATCTTTTCCTTTCAAATTTC
GAAATTATTGTACCAACATCGTACTCTTTGTTTTTG
GTCCTCCTTTTCCTATGCGCCGTAGCCACAACTACA
TATAGCGCGGTTCATGCATCCTATAGTAGACCTATA
AACCTCGTTTTGTCGATAAAATCGATCAGAAAGTCT
TTGTTCCCCCTTCTCTCCACCTTACTCGTTTCGCATA
CCATTTTCATTTCAATCACTCTTGTTTTCACCCTAGT
CTTGACTATTTTAGTTTCAAATTCTTCAACCTCTCGG
ACTAATTGAAATCAAATACGATTCGGATCACTTCTT
GCTTTTGGCTATTCCTGCTTTGGTAGTGCTCGTGCC
AGTTCTGCTATGGCTACATGTTAACTGGTCATTAGC
TTATGTGATAGCAGTAATTGAATCGAAATGGGGTT
ACGAAACATTGAGGAGAAGTTCCTATTTTGGTGAAG
GGGCAAAGATGGGTAGCTTTTGGGATATATTTTATA
TTACGGGCTTTCAATGGGAATAATGATGGTTTGTGG
TTCAATGTTTTTTGTCATTATGGGTGTAGCGAAGGG
TAATAAGTGGAGGAGCTTGGACGTGATACTGCAGA
CTGCGCTAGTTTCAGTGATGGGATATCTGACGATG
AATCAATATCTTGTGGCGAACGTGGTTTTGTATATG
AAATGCAAGGATTTGAGCGTTGAAAAATTGCAGTC
GGAAACTGGAGGCGAGTACGTTCCCCTGCCCTTGG
ATGAGAAGAATCAAGCTATTTGAATAATLTGTAAAC
AGTGAATCTGGTAGGCTATTTGTGTAACACTTCCTT
TGATTAATGCTTTGTACGAGTATAATGTTTGGTTGTC
TTTGTAGAAAGTTAAACGTGTGTGCTAAATGTTCTG
CTCGTCTTTCCTGTTTGTTGAATATTTGAATAAAAAC
|
C114GATCCAAAAGTATGCACGATCTTTCAAGCCATGATdiacylglycerolSEQ ID N° 23
AATCATGATGGTGATGATGGGGATAGTGGTGAAGAkinase
GGATTCGGTTGTGGAAGAGCAGAGGAAGTTTGGGG
CAGCAGACACATTTCAAAATTTCCTGATGAAGTTTGAC
ATTTCTCATCTCAGTTGATTCTGTTATCTCTCGTCGT
TCAAAATTTTGCTTTCTACTACAACCTCCATATTA
|
C116aGATCCAAGATGGGAAGAGGATTTTACTTTTTGTGTTTGputative calciumSEQ ID N° 24
GAGGAGCCTCCTGTGAATGATAGGCTGCATTTGGAlipid binding protein
AGTTCTCAGCACCTCAATGAGGATTGGCCTATTGCA
TCCTAAGGAGGTATTGGGTTATATTGATATAAGCCT
TTCCGATGTTGTTA
|
C116bGATCCAAGCCAAAGTTGGAACAAGGCTCTCAAACTsubtilisin-like serineSEQ ID N° 25
ATCACAAATAGCATCGACCAAGAAGGAGTTTGAAGprotease
CGCTTGGTGTTTTATTTTCTAGTCATTATTATATGAG
TACAATGACAATATGAACAATAAAGTATTGTATAG
TATGGTTTTATATTA
|
C117aTAATGCCTAAAGTGTCATCTTATAATGCTTTGGATChomeodomainSEQ ID N° 26
ACTTGTCATTATTTTCTTCAACTTACACTCAGTTATTprotein
GGATC
|
C117cGATCCAAGTTGTGGCGGCAAGTTGGCGAGTCGTTTputative DNA-SEQ ID N° 27
Abinding protein
|
C117dGATCCAAGTTCTTTGAGCAGGGTCTAAATAATCTATputative proteinSEQ ID N° 28
CATTGGAGGAAAAGGCCAACCGGAAGGATTCGGCP0410E01 [Oryza
GATATTAsativa]
|
C118cGATCCAAGCAGATATTGAGATGAAATGTTTTCAGTputative eukaryoticSEQ ID N° 29
TTGATCGGTGTTATTCACATTAtranslation initiation
factor 2 alpha
|
C118dGATCCAACGAAAAACAAGAAGCGCCCTGATTTTGTputative celluloseSEQ ID N° 30
GAAGGATCGACGTTGGATTAsynthase
|
C119GATCCACAATCTCTTGGAATGGATTGCAGTGACACputative ABCSEQ ID N° 31
TATTCTCGGAAATCCAACAGAATGTGAACTATACAtransporter
AAGCCCTTGGAAGTACAATTCACAACAACTTGTCT
GGCTTTAGCGAGAATACTGTTAGAAAATCCATCTA
TACTGATATCGTAGTGTTTA
|
C12GATCCCAACT ATTGACACCA TACCCCGGAAaldehyde oxidaseSEQ ID N° 32
TTTCAACGTT CATTTGGTAA ACAGCGGACA
TCATGAAAAA CGGGTTCTCT CTTCCAAAGC
ATCTGGTGAA CCGCCACTGC TATTGGCAGC
TTCAGTCCAT TGTGCAACAA GAGCAGCCGT TA
|
C120TAACGAAGTTGCCAAGGGTTTTGGTGGATC40S ribosomalSEQ ID N° 33
protein S2
|
C121GATCCACACCCACATGTGCTACTCCAACTTCAACGmethionine synthaseSEQ ID N° 34
ACATTATCCACTCCATCATAGACATGGATGCTGATG
TGATCACCATTGAGAACTCACGTTCTGATGAGAAA
CTCCTCTCAGTTTTCAGGGAGGGAGTGAAGTACGG
AGCTGGCATTGGTCCCGGTGTCTATGACATCCACTC
TCCAAGAATACCATCCACAGAGGAGCATAGCTGAT
GAGGTTA
|
C124bGATCCACTAATTATTGGAACACAAGTAAAGCCACGmembrane proteinSEQ ID N° 35
CGATGAATTGTTTTGGTTTGGGAAACCGAAGATACMlo4
TATTACGGTTA
|
C125TTACGTTTCTGTTTCTGAGTCTGGTTCTCAGGACTmethionine synthaseSEQ ID N° 36
CATCGTCAAGAACTCACGTTCTGATCAGAAACTCCT
CTCAGTTTTCAGGGAGGGAGTGAAGTACCGGAGCT
GGCATTGGTCCCGGTGTCTATGACATCCACTCTCCA
AAGAATACCATNCACAGAGGAGATAG
|
C126TAAGCCCGCACGAGAAGGTGATTTGGAGGGAATTCcathepsin B-likeSEQ ID N° 37
CACTTCTAACTCATCCTAAACTTTCGGAGCTACCAAcysteine proteinase
AAGAGTTTGATGCACGAAAAGCTTGGCCTCAATGT
AGCACTATCGGAAGAATTCTGGATCAGGGACATTG
CGGTTCTTGTTGGGCTTTTGGTGCTGTTGAATCGTT
GTCTGATCGTTTCTGTATCCATCACAACTTGAATAT
CTCTCTGTCTGTAAATGATCTGCTAGCATGCTGTGG
CTTTTTATGTGGATC
|
C127AGCAGGCTGGTACCGGTCCGGAATTCCCGGGATTGauxin-responsiveSEQ ID N° 38
TGTGTACAAATTACTAATATAGTTTCTTCACAATTAGH3-like protein
TGGAAAGAAACGTAGCTAATGAGGCACCAAAGGC
CACAATAATGGCGGAGGATTACAAGAAGGATCTTG
AGTTCATTGAAGAGGTGACTAGCAATGTTGATGAG
GTCCAAATGAGAGTTCTTGCTGAAATCCTCTCCCAG
AATGCACATGTTGAGTACTTGCAACGCCATAATCTC
AATGGCAGCACTGATAGAGAGACATTCAAGAAAGT
CGTACCTGTCATCACTTATGAAGATATTCAGCCTGA
TATCAAACGCATAGCCTATGGTGATAAATCTCCTAT
CCTCTGCTCCCAACCCATCTCTGAATTATTGTCAAG
TTCTGGCACCTCTGGAGGGGAGAGCAAATTGATAC
CAACAACAGAGCCAGAGATTGGGAAGAGACTACA
GCTTCACAAACTTGTGATGTCTGTGTTGAGCCAAGT
GGCTCCAGATTCTGGAAAGGGCAAAGGAATGTATT
TCATGTTCATAAGCCCTGAACAAAAGACCCCAGGA
GGATTATAGCTCGCTTTCTTACAACTAGTTATTTAC
AATAGTCCTTACTLTCAACTACAGTCGTCTTCATAAC
CCCCATTGTAACTACACTAGTCCAACTGCAGCCATT
CTCTGCCCAGACTCTTACCAAAGCATGTATTTCCCAA
ATGCTTTGTGGCCTCTGCCAAAACAACCAAGTCCTC
CGTGTTGGCTCCTTTTTTGCGACCAGCTTCGTTCGT
GCCATCCGATTCCTGGAGAAGCACTGGTCTCTACTT
TGTAACGATATCCGAAGCGGAACCATTAACACTCA
AATAACTGATCCTTTAGTGAGAGAGGCAGTGATGG
AAGTCCTCAAACCTGACCCAACATTAGCTGATTTC
TTGAGGTTGAATGCACCAAAGATTCATGGCAAGGG
ATCATCACTAGGTTATGGCGTAATACCAAGTATGT
GGATGTTTATTGTGACTGGATCCATGTCACAATATAT
ACCGATACTTGATTATTACAGCAACAATCTCCCTCT
TATCAGTACTCTGTATGCTTCCTCGGAAAGCCACTT
TGGAATCAACTTGAACCCTTTTTGTAAGCCCAGTGA
TGTCTCTTACACCCTTATTCCCACCATGTGCTATTTT
GAGTTCTTACCGTATCGCGGAAACAGTGGAGTCAT
TGATTCTATATCCATGCCCAAGTCGCTTAATGAGAA
AGAACAACAACAATTGGTTGATTTGGCTGATGTCA
AGATTGGCCAGGAGTACGAGCTTGTTGTTACCACA
TATTCTGGACTCTACAGATATAGAGTCGGTGATGTG
CTTCAGGTTGCTGGATACAAGAACAACGCGCCTCG
ATTCAACTTCCTATGCCGGGAAAATGTAGTCTTGAG
TATTGGTGCTGACTTCACTAATGAAGTTTGAGCTACA
AAACGCAGTGAAAAATGCAGTGGGCAATCTGGTGC
CATTTGATTCTCAGGTAACCGAGTACACCAGCTATG
TCGATATTACCACCATTCCAAGCCACTATGTCATAT
TCTGGGAACTGAATGCGAATGACTCTACCCTGGTTC
CTCCTTTCAGTCTTTGAAGATTGTTGCCTCACAATTG
AAGAATCTCTTAACTACTTCTACCGCGAGGGCCGT
GCGTCTAATGAATCCATCGGGCCTCTAGAAATTAG
GGTGTTGGAAATTGGAACTTTTGACAAGCTCATGG
ACTACTGCATGAGCTTAGGTGCTTCCATGAACCAAT
ACAAGACGCCCCGCTGTTTGAAATATGCACCCCTT
ATTGAGCTATTGAACTCTAGGGTCGTGTCCAGCTAC
TTCAGTCCCATGTGTCCAAAATGGGTTCCTGGCTAC
AAGAAATGGGACGGCAACAATTAAATGTCAAACTT
CCGATTTCCCTGCTTGTACCTTCATTCACTATCCAG
AAAAAAGACAACCATTTGTGGATTATTTAGTCAAT
CGTCATCCTAGCTAAGTTAGTCTTTCGTGAACATGG
TATGGATTTGTATTTGTCACAAATAAAATATGGCAC
TTTTTATTTTCAAAAAAAAAAAAAAA
|
C129bGATCCACCAAGAAGAAAGCATATGGTGTATCTTGGactin related proteinSEQ ID N° 39
AGGTGCGGTTCTGGCAGGAATTATGAAGGATGCCC
CTGAGTTTTTGGATCAATAGACAAGATTATTTAGAA
GAGGGAGTTGCTTGCTTA
|
C130GATCCACACAAAGCAGCTAGAGTTTGGTTAGGCACputative AP2SEQ ID N° 40
ATTTGATACAGCTGAAGCTGCCGCTAGAGCTTATGdomain containing
ATGAAGCTGCTCTTCGATTCAGAGGAAACAGAGCTprotein
AAGCTCAATTTCCCCGAAAATGTCCGCTTATTACCA
CAACAACAACAACAATATCAACCCACAACAAGATC
AGCC ATTCCAGCT
CCTCAGCAGCTTCACAATTCCCATTA
|
C131TAATCCTTTG AGCGAACGTA TAGTGGAGCTH+-transportingSEQ ID N° 41
TCAATATGAT ATACGACTGA AATTAGGAGCATP synthase
CTTGATGCCT AAGGAGAGTG CCCAAAAAGTprotein 6
TTTGGAAGCT TCCGAAGCTT TACATGGGGA
AAGCAACAAT ATCGCCTTTC TTGAATACCT
TTTGGAAGAT TTGCAGCAAA ACGGAGTAGG
GGGAGAAGCC TATAAAGATG CGGTGGATC
|
C133GATCCACAAGTGATCCATCATTCTAAAGGCCATACputative proteinSEQ ID N° 42
CATACCAAAATTAGATGATAGCAGCCTTGAAATAAAt4g24380 [A.
TGCTTGGGTTTATTGAAAAAATTCAAAACCTGTGAthaliana]
GACTGCACGAGGAATTA
|
C134GATCCACACCCCATATTGTTCACGCTCACCTCACTGputative proteinSEQ ID N° 43
ACGAGCCACCATTAPH1760 [P.
horikoshii]
|
C135aGATCCAGTATTTGATAGTAGAAATGTCGCGTAAGGhigh affinity sulfateSEQ ID N° 44
AATTTCCAAAAACTATATTCTTCGAATTTTCTGTCCtransporter
CTGAGGTTTTCATTGAGTAACTTGATTCTTGCTCTC
TTGCAGCTGTTACTGATATAGATACAAGTGGAATTC
ATTCCTTAGAGGATTTGTTTA
|
C135bGATCCAGGAAGTTGGAAGATATTGGTAATCAGTACNBS-LRR typeSEQ ID N° 45
TTTGATGAGTTACTATCAAGGTTTTGCTTCCTAGATresistance protein
GTGGTACAAGCTTTTGATGGAGAAATATTGGCTTGT
AAGTTACACAATCTTGTGCATGATCTTGCACAGTCA
GTGGCAGGTTCTGAATGTTTA
|
C136GATCCAGGTA GTTTCAAGAC ATTTGATCTTPeroxidaseSEQ ID N° 46
AGCTATTACA AGCTTCTGCTCAAAAGGAGA
GGCCTATTCC AATCTGATGC AGCTTTA
|
C137GATCCAGGAA AGGAGCATTG AGAAGGTGTATobaccoSEQ ID N° 47
AAATGGATAT TGTGATATCTCAAAGGCCCCretrotransposon
TCAGGTATGG CACTTTGTTT ATtol
|
C140TGACTGCGTAGTGATCCAGGCAGCACTGGCTGAGTglutaredoxinSEQ ID N° 48
GGACTGGTCAGCGCACTGTGCCAAACGTCTTGATT
GGCGGGAAGCACATTGGTGGCTGCGACGCCACAAC
TGCGTTGCACAGGGAAGGGAAGCTTGTTCCTCTGC
TAACTGAGGCTGGAGCACTTGCTAAATCTTCTTCTG
CTTAGAGGATCAAATAGTCAGTTGTTTTTTTTAGTA
AATCAGTCTCGTGAACTTA
|
C143CCTGACTCGGTTTCGTGATGCTAGCTCGTGAACCAATputative chorismateSEQ ID N° 49
CATTTCCTCGAACCGACCGGCCATTCAAAACAAGCAmutase/prephenate
TCGTATTCGCACATCACGAAGGAACAAGCGTCCTTdehydratase
TTCAAAGTTCTATCGGCGTTTGCATTCAGAAACATA
AGCTTA
|
C144TAAGCAAAAGAAACTCCAAGTATAGCACCCACAGAcaudal proteinSEQ ID N° 50
TGAGAAATGGGGCTCACCAAAACAATCCTCTCAAA
CCAACAATACCTCAACCGTCGAGTGGCGTCTCAAC
ACCTGGATC
|
C145GATCCAGGTG GCTTGACCAT TCTCCTGCCGleucoanthocyanidinSEQ ID N° 51
GACCAGGACG TCGCCGGCCTTCAGGTCCGCdioxygenase-like
CGCAACCGCG ATTTGGATCAC TGTAAAGCCAprotein
GCTTCTCATGCTTTCATTTGT CAATATAGGT
GATCAGATTC AGGTATTA
|
C147bTAATCAGGGGCAATGTTGCTGTGCTGGATCaldehydeSEQ ID N° 52
dehydrogenase
|
C147cGATCCCCTCATCAAGGCCAATGACACCATTAribosomal proteinSEQ ID N° 53
S4
|
C149TGTGATCACAATTGAGAACTCACGTTCCAATGAGAmethionine synthaseSEQ ID N° 54
AGCTCCTCTCAGTTTTCAGGGAGGGAGTGAAGTAT
GGTGCTGGAATTGGCCCTGGTGTCTACGACATCCA
CTCTCCAAGAATACCATCAACCGAAGAAATTGCTG
ATAGAGTGAACAAGATGCTTGCTGTTCTTGACACC
AACATCTTGTGGGTCAACCCTGACTGTGGTCTCAAG
ACCCGCGAGT
|
C150CCAGGTGGTTTACATACAAAACATATTCCAGCTGTCputativeSEQ ID N° 55
AGCAGTTTACAGGAGCATATAGTTCGGAATCCAACaminotransferase-
ACAGGCAAGATATAATAGTACAGAGGCATCTTTGClike protein
AAAATGATATTCCAGCAACTGATAATAGAGGGTTT
AGGGGTCATGATATGTTGGCACCCTTCACTGCTGG
GTGGCAAAGTACTGATGTGGATC
|
C157GATCCACAGA AATAGGAGGA AAAAATGAGAputative proteinSEQ ID N° 56
AAATATCTTC TGCTTAGAGTGTTGTCAAAGAt1g31040 [A.
CTTTTGCCCT CACTGCCTTC CTTCTCATCAthaliana]
TTTTTGTCCTCTTCTCTTGG TCTCTCTCTG
TATAATTATG TAGTAGATAA AAGC
|
C159GATCCACAAC AATGCATCAC AACTATGGATputative protein 103SEQ ID N° 57
TCCAATTATT CGATTTTTTC TTTCCCTCGC[Nicotiana tabacum
AATATGATCT Achloroplast]
|
C15bGATCCCACAAATGGAGGGTATATTTGACAACTATTTChaperoninSEQ ID N° 58
CCGTGAAGCGTCAGATTGTTA
|
C16TTGATTCGGATTGAGGGAGTGAATACTAAAGAAGAputative ribosomalSEQ ID N° 59
AGTGGATTGGTACTTAGGAAAGCGTCTGGCTTATAprotein
TTTACAAGGCCAAAACAAAGAAGAATAATTCAGCA
TTATCGTTGTATTTGGGGTAAAGTTTGTAGGCCACA
TGGTAACAGTGGTGTTGTTA
|
C160GATCCAGGTCTGGTTTTATGATATTGAAATGAAGGAsubtilisin-like serineSEQ ID N° 60
TTACGTGAATTTTCTTTGCGCCATTGGTTATGACCCproteinase
CAAAAGGATTTCACCGTTCGTGAAAGATACTTCTTC
GTGAATTTGCAGTGAAAAGAGTTTTAGTTAGTCCAG
GGGATTTGAATTATCCGTCGTTCTCAGTTGTTTTTA
GCAGTGAGAGTGTGGTAAATAC
|
C162aGATCCAGCACCATGAATACATGGGCTTCGAGAACCputative proteinSEQ ID N° 61
GCAAATATGATCCTTAAt2g25740 [A.
thaliana]
|
C162bGATCCACAGAGTATTTGCAGCCAAGAGTCGTAGAGAputative proteinSEQ ID N° 62
ACGGATCAGTGAACGCCTTAAt5g37800 [A.
thaliana]
|
C163GATCCAGACC CAACAAAGAT GAATGTGCCTglycosylated gagSEQ ID N° 63
TTTGTCGAGA AAAAGGGCACTGGAAGAAAAprotein
GACTGTCCGA AGTTGAAGAA TAAGGCCAAA
TATAATAATGGAAAGGCCAT TATGGATTGA
AATGTAGCTG ATTGTGATGA
TTCAGACTTTCTCATTA
|
C165TGCATCCAAC GCGTTGGGAG CTCTCCCATAputative ligand-SEQ ID N° 64
TGGTCGACCT GCAGGCGGCC GCGAATTCACgated ion channel
TAGTGATTAG CGGATAACAA TTTCACACAGprotein
GAAACAGCTA TGACCATTAG GCCTATTTAG
GTGACACTAT AGAACAAGTT TGTACAAAAA
AGCAGGCTGG TACCGGTCCG GAATTCCCGG
GATTTTTTAT TCTTTCAGGT TTAGTTTCTC
AACAATGTTT TTGGCACACA GAGAAAACAC
AATGAGCACC TTGGGACGCT TAGTGCTCAT
CTTCTGGCTC TTTGTCGTTC TAATTATCAA
TTCGAGCTAT ACAGCTAGCT TGACATCTAT
CCTGACGGTG CAGCAGCTGT CTTCAGGAAT
TCAAGGAATT GACAGTTTAA TTTCAAGTAG
TGATCAAATA GGAGTCCAGG ATGGGTCATT
TGCATATAAT TACCTCATTG AAGAGCTAGG
TGTTTCAGAA TCACGGCTTC GTATATTGAA
AACTGAAGAT GAATATGTCA GTGCCCTCGA
GAAAGGTCCA CATGGTGGTG GTGTTGCTGG
CATTGTCGAC GAGCTCCCTT ATGTTGAGCT
CTTCTTATCC AACAACAAAT GCATATTCAG
GACAGTAGGG CAGGAGTTCA TAAAGGGCGG
ATGGGGCTTT GCATTTCAAA GGGACTCTCC
GCTGGCTGTT GATCTGTCAA CTGCAATTCT
TCAACGGTCA GAGAACGGTG AACTCCAAAG
GATTCATGAC AAATGGCTAA CGAACAACGG
ATGCTCTTCA CAAAACAACC AAGCTGATGA
TACTCAGCTT TCTCTCAAGA GCTTCTGGGG
CCTATTTCTC ATATGCGCCA TTGCTTGCGT
CCTTGCTCTT ATAGTGTTTT TCTGCAGGGT
ATACTGTCAA TTCCGGAGGT ATCACCCCGA
GCCAGAGGAG CCGGAGATCA GTGAACCTGA
ATCTGCACGA CCTAGTAGGC GTACCCTCCG
CTCTGTTAGT TTTAAGGACT TGATAGACTT
TGTCGATAGA AGAGAAAGTG AAATTAAGGA
AATACTCAAG CGTAAGAGTA GTGATAACAA
GAGACATCAA ACTCAGAACT CAGATGGGCA
GCCGAGCTCG CCTGTTTGAA ACAAAAATTT
GTGGTCGGGT TTGTTAGCTC TTGCTCAATA
CACTTATGGT TGATATGTAA ATGATGCATG
TACAATTTTA TTGTTGAATT ACCTCATTTC ACAC
|
C166GATCCATCGTCTTGCTCGCTATTACAAGAAAACAA40s ribosomalSEQ ID N° 65
AGAAGCTCCCACCTGTCTGGAAATACGAATCAACCprotein S13
ACTGCTAGCACGCTTGTGGCTTAGGGTGAGCCTTG
GGCTGGAGTAGTTTTGGCTGATGGCAATATGTTGTT
TTCTCGTGTCATGAATTACTTTGTTACTCAGGACTCA
TCGAAGCTCCACTCGTTCTGCTCGGTGACCTCGTCG
TCGTTGTCGTGTTTA
|
C169GATCCATGCA GCAATCAAGC GCTTTGAAGTGlutathione S-SEQ ID N° 66
TGACATGAAT CAATTCCCCA CTCTGTTGAGtransferase
GGTATTTGAG GCTTACCAAG AGCTGCCTGC
TTTCCAGGAT GCTATGCCAG AAAAGCAGCC
TGATGCCACT GCCTGAGGCA AGAATCTCAG
GCTATCCATC TCCTTGAAAG TTCCCTTCTC
AAACCGTTGA CATACCTGCT GGACTTGCAT
TTCGGAGAAT TGTTAGCTTT TTCTATTTCT
AAAGGCATTA TGACAAGGAT GAGGATGGCG
CCTGGTTTCT TCAGGCTAGA
|
C17GATCCCAACC AGTGCTGCTC CGCCGTGGTGputative proteinSEQ ID N° 67
CTATCCATCT CCGCCCCGAT TGACGCCGTGAt2g38310 [A.
TGGTCCCTAG TCCGCCGTTT CGACAACCCGthaliana]
CAAGCGTACA AGCATTTCCT TA
|
C170aGATCCATGGC GGCTGTTCAC TCAGTCCTCCputative glycosylSEQ ID N° 68
GCCACGCGTC CTGTCCAGAACACGTCTTCTtransferase ?
TCCACTTCAT CGCCGCTGAG TTCGACGCGA
CGAGCCCGCG AGTTTTGACA AAGCTGGTCC
GATCCATTTT CCCTTCGCTC AACTTCAAAG
TCTACATTTT CAGAGAAGAC ACAGTCCTAA
ATCTCATCTC TTCATCGATC CGACAAGCTC
TCGAAAACCC GTTA
|
C170bGATCCATTTT GCCGACTTCC CTTGCCTACAprobableSEQ ID N° 69
TTGTTCCATC GACCAGAGGCTGTTCACCTTcytochrome P450
GGAGACCTGA TGCGGTTATG AGTACGACCGmonooxygenase
GGCGTGGACG GCACTCGGTC CTCCGGATTT
TCAAGGGCCG CCGGGGGCGC ACCGGACACC
ACGCGACGTG CGGTGCTCTT CCAGCCGCTG
GACCCTAGCC TCCGACTGAG TCGTTTCCAG
GGTGGGCAGG CTGTTA
|
C174GATCCATGAA CCCTGCAAGG GCATTTGGGCbeta-tonoplastSEQ ID N° 70
CTGCTCTCGT CGGCTGGAGGTGGAGGAACCintrinsic protein
ACTGGATTTA CTGGTTGGGC CCTTTTGTGG
GTGCAGCCTT GGCTGGACTT ATCTACGAGT
ATGGAATCAT ACAGCATGAG GCCGTTCCGC
GCCCGACCAC CCATCAGCCA TTGGCACCAG
AAGATTACTA AATGCACTTC GATAGCAGTC
TTCCATTTGT GAATAAGAGA GGATTGTGCT TA
|
C175ACAGCTATGACCATTAGGCCTATTTAGGTGACACTauxin-responsive-SEQ ID N° 71
ATAGAACAAGTTTGTACAAAAAAGCAGGCTGGTAClike protein
CGGTCCGGAATTCCCGGGATGTACAAATTACTAAT
ATAGTTTCTTCACAATTATGGAAAGAAGCGTAGCT
AATGAGGCACCAAAGGCCACAATAATGGTGGAGG
ACTACAAGAAGAATCTTGAGTTCATTGAAGAGGTG
ACTAGCAATGTTGATGAGGTCCAAATGAGAGTTCT
TGCTGAAATCCTCTCCCAGAATGCACATGTTGAGT
CTTGCAACGCTATAATCTCAATGGCCGCACTGATA
GAGAGACATTCAAGAAAGTCGTACCTGTCATCACT
TATGAAGATATTCAGCCTGATATCAAACGTATAGC
CTATGGTGATAAATCTCCTATTCTCTGCTCCCAACC
CATCTCTGAATTATTGTCAAGTTCTGGCACGTCTGG
AGGGGAGAGCAAATTGATACCATCAACAGAGGCA
GCGCTTTGGGAGGAGATTACAGCTTCTAAAACTTCT
GATGTCTGTGATGAGCCAAGTGGCTCCAGATTTTG
GAAAGGGTAAAGGAATGTATTTCATGTTTCATAAGT
TCTGAACAGAAGACCCCAGGAGGATTACTAGCACG
CTTTTTTACAACTAGTTTTTACAAGAGTCCTTATAT
CAACTGCGGATACCCCTGCAGGAAATTCACTAGTC
CAACGGCAACCATTCTTTGCCAAGACTCTTACCAA
AGTATGTACTCGCAAATGCTCTGTGGCCTCTGCCAA
AACCAAGAAGTCCTCCGTGTTGGCTCGCTTTTTGCA
ACCGGCTTCATTCGTGGCATCCGTTTCTTGGAGAAG
CATTGGTCTCTACTTTGTAACGATATGCGAAACGGA
ACCATTAACACCCAAATTACAGATCCTTCAGTGAG
AGAAGCAGTGATGGAAATCCTCAAACCTGACCCAA
ATTAGCTGATTTTCATTGAGGCTGAATGCAGCAAA
GACTCATGGCAAGGAATCATCACTAGGTTGTGGCC
TAATACCAAGTATGTGGATGCTATTTTGACTGGATC
CATGTCACAATATATACCGATACTTGATTATTACAG
CAATAGCCTCCCTCTTATCAGTACTTTGTATGGTTC
CTCAGAATGCCACTTTGGAATCAACTTGAACCCTTT
TTGTAAGCCCAGTGAAGTCTCTTACACCCTTATTCC
CACCATGTGCTATTTTGAGTTCTTACCATATCACGG
AAATAGTGGAGTCATTGATTCTATCTCCATGCCTAA
GTCGCTTAATGAGAAAGAACAACAACAATTGGTTG
ATTTGGCTGATGTCGAGATTGGCCAGGAGTACGAG
CTTGTTGTTACCACATATTCTGGACTCTACAGATAT
AGAGTCGGTGATGTGCTTCGGGTTGCTGGATACAA
GAACAACGCGCCTCGATTCAACTTCCTATGCCGGG
AAAATGTAATCTTGAGCATTGGTGCTGACTTCACTA
ATGAAGTTGAGCTACAAAACGCAGTGAAAAATGCA
GTGGGCAATCTGATGCCATTTGATTCTCAGGTAACC
GAGTACACCGGCTATGTCGATATTACCACCATTTCC
AGCCACTATGTCATATTCTGGGAGCTGAATGCGAA
TGACTCTACCCCAGTTCCTCCTTCAGTCTTTGAAGA
TTGCTGCCTCACAATTGAAGAATCTCTTAACTACTT
CTACCGCGAGGGCCGTGCGTCTAATGCATCCATCG
GGCCTCTAGAAATTAGGGTGGTGGAAATTGGAACT
TTTGACAAGCTCATGGACTACTGCAGTAGCTTAGGT
GCTTCCATGAACCAATACAAGACACCCCGTTGTGT
CAAATATGCACCCCTTATTGAGCTATTGAACTCTAG
GGTCGTCTCCAGATACTTCAGTCCCATGTGTCCAAA
ATGGGTTCCTGGCTACAAGAAATGGAACAACACCA
GTTAAATGTCAAGCTTCCAATTTCTCTACTTGAAGC
TTCATTCTCTATCCCGAAAAAAGACAACCATTTGTG
GATTATTTAGTCAATCGTCATCCTAGCTAAGTTGGT
CTTTCGTGAACATGGTATGGATTTGTATTTGTCACA
AATAAAATGTGGCACTTTTTATTTCTGTAATGGTTT
TATTGTGTCAAGTAGTTTAGTGCAAAGACGAGGAG
AAGAAGTCAAAAGAGAGGTTTGGTAGACACTTTTA
GTGCCCATATTATGTTGGTGGTTTCACTTGTCTTTTC
TATTGCATTTGTGAAGTCTGCTATATAATAAACATC
CCGGCATCT
|
C177GATCCATGGC TCGGTTTTGG GCTAAATATGglutathione S-SEQ ID N° 72
TTGACGATAA GTCATATAATACCTGGAATGtransferase
TGTTTATGCA ACACTGGAGT C
|
C178TGGAACGGCGCTCCTTATTTGAGGAAAGTGGACCTauxin-inducedSEQ ID N° 73
CAGAAACTATTCTGCATACCAGGAGCTCTCTTCTGCprotein IAA4
TCTACGAAGAAAGATGTTTACCTGTTTTACTATTGG
TCAATATGGATC
|
C18GATCCCAACG CATCAGGGTG AGTCCTTCAARNA-binding-likeSEQ ID N° 74
AAACACCAGT GAGGCCACGA CTTCCCCGTGprotein
CCATGATGCA GTAACCGATG CTTGTTCTCA
TGACATGGAA AGAGTTCAGG AAAGCCTTCT
TGGAAGACTT GAGGTCACCA TGGGAAGGCG
AAACGAAATT CTGTTTCAGT AATTTCCACC
TTTCTTTTCT TTTTTCTTTC TGTATTGCCA
ACACAGTAAC TTTATTGGTA CTGAACATGG
CATTA
|
C180bTAAGGCTACAAGCGTAACTTTTAGTGATAGATCATferredoxin-NADPSEQ ID N° 75
CATGGATCoxidoreductase
|
C181aTAAGGCTACAAGCGTAACTTTTAGTGATAGATCATferredoxin-NADPSEQ ID N° 76
CATGGATCoxidoreductase
|
C182GATCCATCAG TTGCTTCTAT AAAGCCATTGpatatinSEQ ID N° 77
GACGTCAAAC AAGTTTTGCTGCTCTCATTA
GGGACTGGCA CTACTGCAGA TTTTGCTGGG
ACATACACAG CAAAGGAGGC AGATAATTGG
GGTCTTGTTT CCTGGCTATT TCATAATAAT
TCGAACCCTC TTATTGAAAT GTCATCTGAA
GCAAGTGTTA TTATGAATGAT TATTACATC
GCCACCATCT ATCGCGCTCT TGGTGCTGAA
ACGAATTA
|
C183aGATCCATCAA ACAAATCTGT GTCTGCAGGCauxin induced like-SEQ ID N° 78
AGCTCTTCTA ATAAGATCAGACAAATAGTTprotein
AGGCTTCAAC AGCTCCTCAA GAAATGGAAG
AAGATAGCAGCTGCCTCCCC CTCCTCCACC
CACCTCCATA ACAACCTCCT
CAGTATAAACAACAGCACAA GCAGCAGCAC
CAAAAGCATC AATAAGTTCC
TCAAGAAAACCCTTTCATTC TCGGAAAAGG
ACAGATCATC ACCTGCAGAG GTATGCAGCATTA
|
C185cGATCCACCAA AACCCTCGGC AACTTCGTTArRNA intron-SEQ ID N° 79
CTCAGGACTC ATCAGACTGA GAGCTCTTTCencoded homing
TTGATTCTAT GGGTGGTGGT GCATGGCCGTendonuclease
TCTTAGTTGG TGGAGCGATT TGTCTGGTTA
|
C2GATCCCAGAAGTTAGGACATACGTCCCTAACGTTGlipase-like proteinSEQ ID N° 80
TCGCGGGGATTATGAGAGGCATCAAAGATGTGATTT
CAGCTCGGAGCCACGCGCTTTTTGGTTCCAGGAATT
ACCCACTCGGGTGCTTGCCGCTGTATCTCACATCA
TTTCCTGATAATAATACAGGCGCGTACGACCAAAT
GGGTTGCTTGAGGAACTACAATGACTTCGCTTCGT
TCATAATAGATACGTGAGCAGGGCTATCGCGAATC
TGCAGCGCGAATTCCCGAATGTTAGCATTGTGTAC
GGGGATTTCTATGGTTCCCTTTTGACAGTTATGCGC
AGTGCTTCTTCCTTTGGATTTGACCAGAACACGTTG
CTTAGTGCATGTTGTGGAACTGGAGGGAGGTATAA
CTTTA
|
C201aGATCCCGAAT GACGACAAGC TTCAATCCATputative proteinSEQ ID N° 81
TACTGTAAAT GGTAGCAAAA TCCTACCCGAAt5g44670 [A.
TTGGGGATAC GGTAGAGTTT ATACTGTTTTthaliana]
AGTTATCAAT TGCACTTTCC CTATTCCAGT
TGGTACTGAA AATGGAGGAA AACTCGTAAT
TCATGCCGCT ACTAACGGCG GCGGGGACAC
TAAATTCAAC ACCGCCGACA CTTTCGTAGG GTTA
|
C201bGATCCACCTG CCCTTTCAGA TGAGTCAATCN-carbamyl-L-SEQ ID N° 82
ACTAAGGCGA CAGAATTAGC ATGTCAACAGamino acid
CTGAATTTGA CTCGCAAGAG AATGATTAGTamidohydrolase
CGAGCCTATC ATGACTCCCT GTTTATGGCA
AGAATATCCC CGATGGGCAT GATATTCATT
CCTTGTTACA AGGGATATAG CCATAAGCGT
GAAGAGTTTT CATCTGTTGA CGATATCGCG
AACGGGGTAA AAGTTCTAGC GTTGACTCTT
GCCAAGTTAT CTCTCTCATA ATCCCTTA
|
C202TTATAGATCAGAAATTTGAAGCCGGAGAAAATGGCdihydrolipoamideSEQ ID N° 83
GATAGGGAGCTTAGCAAGAAGAAAGACCACAACAdehydrogenase
ATTTTATCTTCCAGATATCTCTATAGCACATCCAAA
TATTCATTTTCTCTCAGCAGAAATTACTCTTCGGGA
TC
|
C203GATCCCGAGT TGTACGCATG AGCTCGCAAAcarbonic anhydraseSEQ ID N° 84
AGATCAAAGC CCAAAGTTTC TCGTATTCGC
CTGCTCCGGC TCCACCAGCT GTGCCC
|
C207bGATCCCTATC CAATAGATAT GGAATTTCGAchlorophyll aSEQ ID N° 85
CCACCTTGTA TAGTTCTATC AACCATTGGAoxygenase
ATCTCAAAGC CAGGCAAGTT GGAAGGGCAG
AGTACCAAAG AGTGCTCTAC ACACCTACAC
CAACTTCATG TATGTTTACC TGCATCTAAA
CAGAAGACAA GGTTGTTATA TAGGATGTCA
CTGGATTTTG CTCCCGTGCT AAAACACATC
CCTTTCATGC AATACGTGTG GAGGCATTTT
GCTGAACAGG TTA
|
C207cGATCCCTGAT GCATATGAGC GGCTGCTTCTlysyl-tRNASEQ ID N° 86
TGATGCTATA GAAGGTGAAA GGCGGCTTTTsynthetase
CATCCGCAGT GATGAGCTGA ATGCTGCTTG
GTCTCTTTTC ACACCAGTGT TACTCAGGAC
TCATCAACAA GCATGAACTT TGCAATGCAT
ACACTGAATT GAATGACCCT GTTGTCCAAC
GCCAGCGTTT TGCTGATCAA CTCAAGGATC
GACAATCAGG TGACGATGAA GCTATGGCAC
TGGATGAGAA CTTTTGTACA GCTCTTGAAT
ATGGATTACC TCCTACTGGT GGTTGGGGAT
TGGGTATTGA CCGACTTGCG ATGTTTGTTA
|
C208GATCCCCACC ATCAGGTATT CCGAGCCGCAtranslationSEQ ID N° 87
ATAGGTGAAC CGGACCCTCT TGAAGATCATelongation factor
CGTATTCGAG ACCACCCCAA ACGACCCCTClike protein
GTTCGATGTT GTTCTTCATT CCAACAACTG
CTTCCAGCAG CCTAACGCCG GACACACGCA
CACACGCACC AACAGGTCGT CGTTCTTCCA
CACAAACCCG CCGGAACGGA CTCCTTCTCC
ACCCAGAACA GACCCAGACC G
|
C212GATCCCTATG AACGAGCTTT AGCTCGTTCCauxin-inducedSEQ ID N° 88
TGGGCTAATT Tglutathione S-
transferase
|
C213bTAACAACGCAACCACACAGAATCGATCGTTACATAA3 [NicotianaSEQ ID N° 89
AAGGGATCtabacum]
|
C214aGATCCCTTGG ATGGTACTTG TTGGTGAACGhistidyl-tRNASEQ ID N° 90
CGAACTTAGC GAAGGAGTTG TAAAATTGAAsynthetase
GGATGTGTTT GCAGCTATTG ATTATGAAGT
CCCCAGAGGT AACCTTGTGA ACGATTTATG
CAGAGGATTA GGCATGTAAT ATCTCAAGTT
ATTAGTATTG TTAGATTGAT ACAAGAATGC
TTTTTTGGGG GGTGGGGGTT A
|
C214bTAAGCGCAGA TGATAATGGT GAAGGGGGTApotassiumSEQ ID N° 91
CATTCGCTCT TTACTCTTTG CTGTGTAGACtransporter
ATGCAAAGTT TAGTCTACTT CCCAACCAAC
AGGCAGCAGA TGAGGAGCTA TCTGCTTACA
AATATGGATT CTCCGGGCAG TCGGCATCTT
GTTTACCATT GAAGAGATTT CTTGAGAAGC
ATAAGAAGTC ACGCACAATA CTGCTTATTG
TTGTATTGTT AGGTGCTTGT ATGGTCATAG
GAGATGGTGT TCTGACTCCT GCAATGTCAG
TTATATCATC AATATCAGGG ATC
|
C215GATCCCTCTC TATTTGCATA AATGTTGATGputative proteinSEQ ID N° 92
GATTTGAAGC AATGTTTTTC ATAGGAGTAAAt4g25640 [A.
ATGCTGCTAT AAGTGTTCGT GTCTCAAATGthaliana]
AGCTTGGGCT AGGACGTGCC AGGGCAACCA
AGTATAGCGT CTGTGTCACA GTGTTTCAGT
CGCTTCTCAT TGGGATAGTA TGCATGATTG
TAGTATTGGC AGTAAGAAAT CATCTGGCCA
TTCTTTTCAC AAACAGCAAG GTTCTGCAAC
GTCCCGTACC TGACCTGGCT TGGCTTGTAG
GAATAA
|
C216bGATCCCTAGG CATAAAACAA TGAGCAACGCputative proteinSEQ ID N° 93
CGCAAGAGAT ATACGGAATC GCTGACCCCCAt2g20240 [A.
GAAAATTTTG ATCATTTTCA TTCTCTGATTthaliana]
TTGAAAGAAT AGCAGCGCCG TTTTTGGAGC
TTGGCAAACC GGACCCCATC CCCCTTTTTG
TCGTCGTCTT TCTCAAACCA GACTCCCCTC
CCTGATCATT TTTTCTTCTG GGAAAACAAA
GCAGCATTTC CATGGTTTTG GCTTTA
|
C217GATCCCTCAA GTTGCACTTT GAATATGCTT60S ribosomalSEQ ID N° 94
GTAATAAATA GAAGTAATAT AACAGTGCTTprotein L13a
TGTTCTCCAA GGCTTCAAGG TGTGACCATG
TTGGATACAA TCTGAAAGTT GTGTTCCAAT
CCACGTGATC TTTCTGGCTG TACACGCTAA
TCCACCAGAC AACTTGCTTA CTCAGGACTC
ATCAACTCGC CATTATTGCT CCAATCAAGT
ACTGAAGTCT AAATATAGTT GTTTGAAGTA
CAATTTTGCT GGAGATTGAT GTTTTGGCTT A
|
C22GATCCAACTTACGACATAGGCCTATTGGAATTGGAribonucleotideSEQ ID N° 95
GTTCAGGGTCTTGCAGACACATTCATGTTGCTTGGCreductase
ATGGCATTTGATTCTCGGGAGGCTCAGCAGCTAAA
CAAGGACATATTTGAGACAATATACTACCATGCAT
TA
|
C220TAGTGCTATGGCTGTGGACTCAGGTGCATTTGTACAputative F1-ATPSEQ ID N° 96
CAAAGAGGTATGAATGTACTAAAAATGTCACAGTCsynthase subunit
TCCCGCACTTCATATTCATCATTTTTGAAAGCGAGGalpha
GGAAGGGATC
|
C224aGATCCCTTTA CATCATCCAC ATATAATTCAseven in absentia-SEQ ID N° 97
TTCTCAATTC CCATCTTCAA AATCACCCCT TAlike protein
|
C224bGATCCCTGGC GACAAGCAAT GGAACAACATauxin-responsiveSEQ ID N° 98
GAATTGAATA GCCAATTTCT GTTAGTACCGH3-like protein
|
C227aGATCCCTTCT TTCATATCTG AGATTCAAGClipaseSEQ ID N° 99
TGCAATCTGG GGCATATACA ATAACGGTGG
GAAGAATTTC TGGGTTCATA ACACAGGACG
CTTGGGTTGT TTGCCACAGA GGCTTGCCAC
AAGAAATGGG AGCAATTTGA ACGATTATGG
ATGCATTA
|
C227cGATCCCTGTGGCTAGACTAACTGGCCGAGAGGGTTmitochondrialSEQ ID N° 100
AGCGAGGTTCCTGCTATGGTGAAGTGAAAGATCTTATPase subunit 9
TCACTATAGTGGGAAGAAGACAGGTGGGAGCGAG
CGGAGCGAGAGCAAAGCAAGCTCTAGTGGTGGGTT
GTCTTCGCGGTCCCATTA
|
C228aGATCCCTTCA ACGGCGTTGC TTGCTGATGGarginineSEQ ID N° 101
TGTCCGTGAG GCTGCTCAGA TTTATTGTGA ATTTAdecarboxylase
|
C228bGATCCCTACG AACTCGGGAA ATGGGCCAGTputative proteinSEQ ID N° 102
CTTTCAGCTA TTTGATTAGA ATAATCACACAt3g59770 [A.
CGATTAthaliana]
|
C230TAATCCATGT CAAACTCGAC TTTTTGCAGCB12D proteinSEQ ID N° 103
CGTAGGCGTT GCTGTAGGGA TC
|
C232TAAACGTGAA TATCGGATTA CACCTCCGCCproline-rich cellSEQ ID N° 104
TCCGCTGTCA ACACAAGTGG GAGACATTCCwall like-protein
TCGAAGCACA TTCAACTTTG ATTTTGACTT
TGAGGGAAAG ATTCTGGCCG AAGCAGAAAA
GGAAAGCCAG AATTGGAGCA GGCTAGGGCT
GGAA
|
C237bGATCCCGTCT ACCTTATTCT TTTCAGCAGCputative proteinSEQ ID N° 105
CGCAACAGGC AAGTTTTTGC ACCATCTGTT TAAt1g22750 [A.
thaliana]
|
C238aGATCCGTCAA GTTTGCATGG TGGTTGCCCTprolyl 4-SEQ ID N° 106
GTGATTAhydroxylase
|
C238bGATCCCGTAG AAAATGCTTC TTTTATGCCTcytochrome c-typeSEQ ID N° 107
TGGGTATTTA TATTATAATT TTCATTTTTTbiogenesis protein
GGTGTTTAGG ATTA
|
C238cGATCCCGATGTGATTCATAACTTTCATCACACCCCTvestigial protein ?SEQ ID N° 108
CTCAATATCTTCAGCTGAAATTTGTTACTCCATTTA
|
C23bGATCCCACCTCAGGAAAAAAAATCTGCTACGTGCAcellulose synthaseSEQ ID N° 109
GTTTTCCACAAAGGTTTGATGGGATTGATCGTCACG
ACAGATACTCAAACAGAAATGTCGTATTCTTTGAT
ATTA
|
C24TAAAGCAACA AAATCAATTC ACAGCACCTCamino acid transportSEQ ID N° 110
ACTTTAGTGT AAGCAAGAAT CAAAAAGCAArelated protein
GTTGCAGGTA CAAATTCCAT AGTGCCAGCT
GACCTACCAA AGTTGGGCAT AGCCCATAAC
AATGTCAACA TTCTCAAAAG AAGATAAAAT
CACATCTGTG TTCAACCACA TCATTGAATA
TCAAAAGATA TAAGAACCTA TAAGCTGGGC
GTTCTTGTTC CTTTTTTCCC TTTTGATGAA
GGTATCTCTC CTATAAGGGT GGGGGGATC
|
C25TTCAACAGAA GAACTCCATC ATCAGCCACTproline rich proteinSEQ ID N° 111
GAGGAGAGAA CGCCCAACCC CTGGACAAAA
TAGAAAACAC ACAATATTGG CCGCGGACCC
CAACTTCAAA AACAGAAATC GACCTTACCC
AATTCCCAAT TTCCAAGAGC CTCTCACGCA
CACACACCCC TGAAACCTAG TAAAAATAGA
AGGTCTTTGC ACAAAACAAC ATCTCCAAAT
GGCTCA
|
C28aGATCCCCTGA ATATTGGGTA GCTGTTGTTAT48 protein [TupaiaSEQ ID N° 112
CTCAGGACTC ATCACATGCA GAGGTATCGCherpesvirus]
GTGTTTGGAT TGTGTTA
|
C28bGATCCCCTGA ATATTGGGTA GCTGTTGTTA50S ribosomalSEQ ID N° 113
CTCAGGGCTC ATCGAAAGAA CCCCTCATCGprotein
GTTGTTTATC TGGTTTA
|
C29aGATCCCCCTGAGTTCGCCAAGGACTTACTGCCCAAheat shockSEQ ID N° 114
GTATTTCAAGCACAATAACTTCTCCAGCTTCGTTCGtranscription factor
TCAGTTA
|
C3CATAAGGAGC AGCTGATCGG AGTCCAAAGANADPHSEQ ID N° 115
GAATTCGAGA TGCTATAGCA CATATGAAAToxidoreductase
TCTGGGTAGC TCTGTTGTGT AAGGTGTTCThomolog
GTACAATGAC AAACAGGATT TGTGATATTC
GTTGTGTAAA AGGCAGCA
|
C30AGGTATTACA AAACGCATGG GGAGTAGTAGputative proteinSEQ ID N° 116
TACAAGGGAA AGGGGTAGAA TGTTCACCAGAT5g05250 [A.
CTTGTTATTT GTTGAAGACG AGTAGAGTTGthaliana]
GTGCTGGTTT AGGAATGGGA TTGTTTTGCA
CTCATTTCTG TTTAGCAAGA GTACAGAATT
TTAGGG
|
C301TACCCGAAATCCGAACTCTTGCTCCGAATCAAGCCornithineSEQ ID N° 117
AATGTTCGACGGCAACGCGAGGTGCCCAATGGGTCdecarboxylase
CAAAATACGGCGCGCTTCCAGAAGAAGTCGAGCCG
CTGCTCCGGGCAGCTCAGGCCGCCCGGCTCACCGT
CTCCGGTGTCTCCTTCCACATCGGCAGCGGAGATG
CCGATTCAAACGCTTATCTCGGCGCCATAGCCGCG
GCTAAGGAAGTGTTTGAAACAGCTGCTAAACTCGG
TATGTCGAAAATGACTGTTCTAGACGTCGGCGGCG
GGTTTACATCCGGCCACCAGTTCACAACCGCCGCC
GTCGCTGTTAGATCAGCTTTA
|
C303GTGGATGAAATAATGGTCATGAGTTTTTCAAATCTGputative proteinSEQ ID N° 118
TAGACTGGGATCTGATTATGCAACTTCCCAGGCCAkinase
CCGCTTATACCTGTGCCGCACTGACGAGAATGTGA
ATATTATGGAGGGAAATGAAGAAATTGCTGTGGAA
TTATTTCGAACAGGGAGTGTTTA
|
C304TAAACCAAAA GCAACTGAAC TCAAGGGCCAF1-ATPase alphaSEQ ID N° 119
CCTCTGAGAG TGAGACATTG TATTGTGTCTsubunit
ATGTAGCGAT TGGACAGAAA CGCTCAACTG
TGGCACAATT AGTTCAAATT CTTTCAGAAG
CGAATGCTTT GGAATATTCT ATTCTTGTAG CAGCC
|
C305aGATCCGAGGAAGACGAGACAGAAACACCAGCGGAheat shock proteinSEQ ID N° 120
TACTTCAACAGAATCAGATGCAGGCTCTGCTGAAG
TCTCAGAGGCACAAGTCGTCGAGCCATCAGAAGTA
AGGACCGAGAGCAACGATTATTGGGAGTGATTTA
|
C305bTATACAGGAC AACGACGACG ATGAGTCCTGlatex-abundantSEQ ID N° 121
AGTAATCAAC CGTTTCGGAT TTTCTGAGGAprotein
AGATATTACT GTACTAATTG ATACTGATGA
TTCTTACACA CAACCAACTG GTCGGAATAT
ACGTAAAGCT TCGTCGGATC
|
C306GTACTCGCGGAGAGGACTATGAATCTGACGATGGGputative proteinSEQ ID N° 122
GTGGAATCATGGGCCAAATAGTTCGACATCCGAATAt1g26460 [A.
GGGCACAGAGTAACCGTGTGGAACATGCTGTTTAthaliana]
|
C308GATCCGAAAGCATCACCCGAAATCCGAACTGTTGCornithineSEQ ID N° 123
TCCGCATCAAGCCCATGCTCGACGGCAACGCGAGAdecarboxylase
TGCCCAATGGGCCCGAAATACGGCGCGCTTCCAGA
AGAAGTCGACCCGCTGCTCCGGGCAGCTCAAGCCG
CCCGTCTCACCGTATCCGGCGTCTCATTCCACATCG
GTAGCGGAGATGCCGATTCAAACGCTTATCTCGGC
GCCATAGCCGCGGCTAAGGAAGTGTTTTGAAACAGC
TGCTAAACTCGGGATGTCGAAAATGACTGTTCTAG
ACGTCGGTGGCGGGTTTACATCCGGCCACCAGTTC
ACAACCGCCGCCGTCGCCGTTA
|
C309ACATGGAGGTGCTTATATTGTGAGACACGCCGCGAS-adenosyl-L-SEQ ID N° 124
ATAGCGTGGTCGCAGCAGGACTTGCTCGCCGCTGCmethionine
ATTGTGCAGGTTTCTTATGCTATCGGTGCGGCTGTAsynthetase
CCACTGTGCGTGTTTGTTGACACTTACAAAACTGGA
ACAATTCCAGACAAGGATATTTTGGCTCTGATCAA
GGAGAACTTTGACTTCAGGCCTGGAATGATGTCAA
TCAATCTTGACTTGTTA
|
C31GATCCCCTAT TGACTGCCTC TTGCTCTTGCputative proteinSEQ ID N° 125
ACTTGCATAT ACGCTTATAT TCAGGAATATAt1g71240 [A.
GCTGTCTTAT GTTTTCCCAG CAATCTTGATthaliana]
TGTCTTGGCT GCTGGCATGT TATTACTTTA
|
C310GATCCGACTT GCTTTGTCTC TTCGGACGAG40S ribosomalSEQ ID N° 126
TTACTCAGGA GCATATGAAA AGGAATGTTGprotein S5
CCATACTTTT GAGTAGCAGG AAATTTAGGA
TCAGTAAAAG AGGCTTACTC AGGACTCATC
GTCAGGCTGT TGATATTTCT CCACTTCGCC
GTGTTA
|
C311AAACATGAGGACAAACTTAACATGAGGGGGATGCputative heat shockSEQ ID N° 127
AGGTTCGGACGAAGTCTAATGAGGTACAAGAAGTCprotein
GAGGCATCAGAAGTAAGGACCGAGAGCAACGATT
ATTGGGAGTGATGGTTA
|
C312TAAGCCCCCA AACTAGAGTC TCCTCAGCTCreceptor-like proteinSEQ ID N° 128
CTAATCTTTG GCCTAAGAGT ATTTTGGTTGkinase
TCAGAAATAC TTCAGCGCTG CTTTTTTTAC
AAGAAAGTGG AAATTTGGTT TATGGTAACT
GGGGTAGTTT CTTGAATCCA ACTGACACAT
ATCTGCCAAA CCAGAACATC AATGGCTCAA
ATGCAACTTC CAGTAATGGA AAATCCAG
|
C313aGATCCGAGAC ATCCAGCCGA GTCCACAAATputative pyruvateSEQ ID N° 129
GCAACCGATG AGTCAGTATT GAAGGTTGCAkinase
CTGGACCATG GGAAAACAGC AGGTGTTATA
AAGCCACATG ACCGAGTTGT TGTTTTCCAG
AAAGTTGGTG ACTCATCTGT GGTGAAGATT
ATTGAGCTTG AGAATTAGGT TTGTACATCT
TTGTATGTTT CAATTGGCTG ACATTCTTAG CTTA
|
C314bGATCCGAAAA AGAACAAGAC CAAAAGGTCTputative proteinSEQ ID N° 130
TGAAAAAGAG AGTGACGAGC AGAAGAGAGGKIAA0565 [Homo
AAACAGAAAA TACACAAAAA TTGGGAAGGCsapiens]
AAAATAGTGA AATCTCCCAC AAATTTCAGC
CTAAAACTAG CTTA
|
C314cGATCCGATGG GAAGACCCGG TATGAGGATTcalmodulinSEQ ID N° 131
TCATTGCCGG GATGGTTGCC AAGTGATTTT
TGCATGTGAT TTGCATCTCA GGCTATATTA
TTCATAGCAG TGAAAGAAGA GCTGACTTTT
TCCCTTTGTA GCTTTA
|
C316AGGTCTATTTTTTCACCAAACAACATTCAGTATTGGputative oxidaseSEQ ID N° 132
CTTTGTCCAAAGTAAAAAACTTTATACAAGATGTGC
AAAAACTTGTGGTTTTACAGCCCAAGGCATTATGT
GGTTTAGACCTATATAGTGGAATCCTAATGAGGTA
TGTCACGGTTTCAAATGCTTACTTGGGACATCAAGA
AGATGCAGTGGATTTTTGATATTACATATTATAGAA
GCAAAAATCCATTGACTCCTAGGTTATATGAAGAT
ATTCTTTGAAGAAATAGAGCAAATGGCAATGTTCAA
ATATGGAGGAGAGCCTCACTGGGGGAAGAATCGTA
ATGTGGCTTTCATTGATGTGATTA
|
C320TAATGGGGGAGGCTATAGCTACAATGAATCAAATGubiquitin-specificSEQ ID N° 133
GAGGAAAATTTGGGTCCACAGTTATCTGGTCTTGTCprotease-like protein
GGGTCGGATC
|
C322TGCCCTGTTTATCGCTGCACTTTTCCCGAGATACATRING-H2 zincSEQ ID N° 134
CCGCTACCGCATCTTCACTAACGGTAACAGCATCCTfinger protein-like
CCAAACACTTTCCACGCGCCGCCGCCCTTCTGCTGC
AACACGTGGACTCGACAATTCGGTCATCGACACTT
TCCCCACCTTTTGCATACGCCGAAGTGAAGGATCAT
CATATTGGCAAGGGTGGTTTGGAGTGCGCAGTATG
CTTGAACGAGTTTGAAGACGACGAAAAGCTGCGGT
TGATCCCAAAGTGTGATCACGTGTTCCACCCTGAAT
GCATCGGTGCTTGGCTCAAGTCTCACGTCACTTGCC
CCGTTTGTCGAGCTGACCTTACTACTCCTCAACCTG
ATGTTA
|
C323ATCCCCATTGGCCTAGTTGGTTCTATGGTGATTACTamino acid transportSEQ ID N° 135
ACCACTATATACTGTATATTTGGCTATAACGCTCTGTprotein AAT1
CTTTATGCAGCCTTATCAGAACATTGATCCTAATGCT
CCGTTTTCTGTGGCGTTCAAAGCTGTTGGATGGAGT
TGGGCGCAATACATTGTGGCTGCAGGTGCATTGAA
AGGAATGACATCTGTATTGCTTTGTAGGCGCGGTTG
GTCAGGCGCGTTATCTCACTCACATTGCACGGACTC
ACATGATGCCTCCTTGGTTTTCCTATGTTGATGCAA
AAACAGGAACGCCCGTTA
|
C324aGATCCGGAGA GCCAAACATT TACGTAGTTT1-SEQ ID N° 136
TCATCATCAT GAAATGGTTA CCTGAAACGAaminocyclopropane-
TTGTCAGATT CTGTAATTTT GCTGAGTATA1-carboxylate
CAGAAGACAA TTTTGCATAT AGTGCTTCAToxidase
GCTCTTACAG TTTGTATGGA TCATTGTTCC
TTATCGTTTT ATAATGTATT GTATCATTTT
ATGAATTCAA TGTTTGGATA GATTTGTATT
GTTTGTTATT GTTA
|
C324bGATCCGGGGGTGTAGTTTGGATTGAATTGAACGGGGputative proteinSEQ ID N° 137
AAGTGCATGAGTTTATTGCGTTTGATGGTTCACATGAt2g29760 [A.
CTAAGTCTGAATACATTTACACCGTTTTAGATAACCthaliana]
TAGTCGGTCAAATACAACACATTTACTATTTTTCCAG
ATGCTGATTCTTTAGTTCTTGAGAATAGCTGAAAGT
AATCAGAGTTTTAGATATGCTGAACTTCCAATACAG
CCTTAGTTA
|
C325TTCACGATATCGAAACTAGCGATTACGTGAATTTCCputative subtilisin-SEQ ID N° 138
TATGCTCCATTGGCTATGACGGCGACGATGTCGCClike serine
GTGTTTCGTGAGAGATTCTTCTCGAGTGAATTGCAGTproteinase
GAACAGAATTTGGCTACTCCAGGAGACCTGAATTA
CCCGTCGTTCTCTGTTGTTTTTACCGGTGATAGTAA
CGGTGTGGTTA
|
C326aGATCCGGGAA TATCGTCTAG AAGAACTCCTanionic peroxidaseSEQ ID N° 139
CCATCGCAAC CATCAACTCA GCCAGAGGTT
TTGAAGTCAT AGAACAAGCT AAACAAAGAG
TAAAAGATAC TTGTCCCAAC ACGCCTGTAT
CTTGCGCAGA CATCTTAGCT ATTGCTGCTC
GTGATTCTGT TGTTTA
|
C326bTAACAGAAGAAGAAGAGATGCCGGCCCTAGGTTGTarginineSEQ ID N° 140
TGCGTAGACGCTACTGTTTCCCCTCCTCTCGGCTATdecarboxylase
GCCTTCTCTCGGGATAGCTCTCTTCCCGCGCCGGAG
TTCTTTTACCTCCGGCGTACCTCCTACAAACTCCGCC
GCCGGTTCCCATTGGTCTCCGGATC
|
C326cGATCCGGGCCGGTTCGGGTTTCGTCAACTTTACTTGAputative proteinSEQ ID N° 141
ATCCGGAAATGTGCTTCCCATTACTCAGGACTCATCAt5g66860 [A.
GTTAAACTAAGAAGTAAGATGACTGTACTAGCACTthaliana]
CCTATAACTAAAAAGTAACTAGACTCATTCATCAA
TATCACTCGCTCTCTCTCTGGTTA
|
C327aGATCCGGGTTGTATTAGATATGGTTTATTACGTTAcytochrome bSEQ ID N° 142
TTTTGTACTTTATTTTGAACTTCATTTCTGTTTGATT
GGTTCTACTAATTTGAATTGGTTACTCAGGACTCAT
CAGTCCAGTGGTTCAGTGCCTAGTTTTCAAATTGAA
GGTCGGGTGTTA
|
C327bGATCCGGCAT GTCTGCTCGA CAAATGGGGA60S ribosomalSEQ ID N° 143
GGGAGCTGCT ATTAGTATAC TCAGGACTCAprotein L21
TCACGAAAAG GCAACCCCTA GGACCCAAAC
CAGGTTTCAT GGTTGAAGGC GCTACATTGG
AGACTGTTAC CCCCATACCA TATGATGTGG TTA
|
C328aGATCCGTCGG TCAGAGTGGG AGGGGCCCGCputative proteinSEQ ID N° 144
AAGCACATGT CGAAAATCAG GATTGATGTCAt4g24290 [A.
AATGCTGATC AGCACCCCTT TCAGTACGAAthaliana]
ACTAAATCAA CCACAGAAGC CAGCTAAGGT
GGACCTGAAC TCCGCAGTTT ATCCTGGCGG
TCCACCTTCA CCGGCAAGGG CGCCAAAGAT
GTCGCACTTT GTCGATACAA CAGAAATGGT
AAGAGGACCT GAGGAGTCAC CTGGCTACTG
GGTGGTAACT GGTGCAAAGC TATGTGTAGA
AGATAGTAGG ATAAGAATGA AAGTGAAGTA
CTCGCTCTTA
|
C328bGATCCATGCT TGGTGGTATT GGTTCTACCAputative proteinSEQ ID N° 145
TAGCTCAAGG GATGGCCTTT GGTACTGGAAAC087851 [Oryza
GTGCTGTGGC ACACAGGGCT GTAGATGCGGsativa]
TCATGGGTCC ACGCACCATT CAACACGAAA
CTGTTGCTTC CGAGGTACCT GCTGCAGCAG
CAGCTCCTAC AACCATCGGT GCTGGGTCTG
ATGCTTGCAG TATGCACTCT AAAGCGTTCC
AAGACTGCAT CAATAGCTCT GGAAGCGACA
TTGGCAAGTT TCAATTCTAC ATGGATATGT
TGCCCGAGTG CAGGAGGAAC TCAATGCTGA
ATGCTTA
|
C329aGATCCGGCTA TGTTGCTGAT CAATCTGGTTputative proteinSEQ ID N° 146
ATGGCATGGT TGATCCTTCT CAGCATTATTAt3g63460 [A.
ATCCGGAGCA ACCATCCAAG CCGCAGCCAAthaliana]
GCATTTCGAA CAGTCCCTAT GCCGAGAA
|
C329bATGGTTACTGGTTTCTATAGCCAAAAGCAAAGAGGambiguous hitSEQ ID N° 147
CTTTGGTGAGAAAGATGAAGCTTTTTGGAGGGTAT
TGCTGCGTTTTTTTTGTTTGGCTTCTCTCCGGATC
|
C330ACGGGGGGGG GGGGGGGGGG GGACTTGAAGethylene-responsiveSEQ ID N° 148
ACTGGGAAGC TCCATTAACG AGCTCCGACAelement binding
ACTCAACAGC CTCTGATTTA AGCCGAAGCAfactor
ATAGCATTGA GTCCAACATG TTTCCTAATT
GCTTGCCCAA TGAATATAAT TATACAGCTG
ATATGTTTTT TAACGATATC TTTAATGAAG
GCATTGTTGG CTATGGATTT GAGCCAGCTT
CTGAATTTAC ACTCCCCAGT ATCAAATTGG
AGCCAGAAAT GACTGTACAA TCACCTGCAA
TATGGAATTT ACCGGAGTTT GTGGCGCCGC
CGGAGACGGC GGCGGAGGTG AAACTGGAAC
CACCGGCGCC GCAAAAGGCA AAGCATTATA
GGGGAGTGAG AGTGAGGCCG TGGGGGAAGT
TTGCAGCGGA AATTAGGGAT CCGGCAAAGA
ATGGGGCAAG GGTGTGGCTG GGTACGTATG
AGACGGCAGA GGACGCAGCG TTTGCTTATG
ACAAGGCGGC GTTTCGCATG CGGGGGTCAC
GTGCATTGCT TAATTTCCCG TTAAGGATTA
ATTCTGGTGA GCCTGATCCC ATTAGAGTTG
GTTCTAAAAG GTCATCAATG TCGCCGGAGT
ATTCTTCTTC TTCATCGTCG TCGGCGTCGT
CGCCGAAGAG GAGGAAGAAG GTATCTCAAG
GGACGGAGCT AACGGTGTTA TAGGTCCCAA
CTGGGTTCTG TGTAGTGATT AAGAAAAATA
GAATTAGTCG AGGGAATTTG TTTTTTACTT
GGCTGAAGTA ATGAATTTGT TATTTATTTA
TTTTTTGACT GTGGTTGAAA TTGAATCAAA
AAAAAAAAAA AAAAAGTACT AGTCGACGCG
TGGCCTAGTA GTAGTAGA
|
C331GGGTGACACT ATAGAATACT CAAGCTATGCputative proteinSEQ ID N° 149
ATCCAACGCG TTGGGAGCTC TCCCATATGGAt3g62270 [A.
TCGACCTGCA GGCGGCCGCG AATTCACTAGthaliana]
TGATTAGCGG ATAACAATTT CACACAGGAA
ACAGCTATGA CCATTAGGCC TATTTAGGTG
ACACTATAGA ACAAGTTTGT ACAAAAAAGC
AGGCTGGTAC CGGTCCGGAA TTCCCGGGAT
GTGTCCTTTT CCCAATGTTG ATCATGCTGC
TTGTCCCAGT GCGCCAGTAT TTGCTTCCCA
AGTTTTTCAA AGGAGGACAT TTGCAAGATT
TAGACGCTGC AGAATACGAA GAAGCTCCTG
CAATAGCTTA CAATATGTCC TATGGAGATC
AAGATCCTCA GGCAAGACCT GCCTGCATTG
ATAGTAGTGA AATTCTTGAT GAGATAATCA
CAAGAAGCCG TGGGGAGATC CGGCATCCAT
GCAGCCCAAG AGTGACTAGT TCCACTCCTA
CCAAACTTGA GGAAATCAAG TCTATGCACA
GCCCACAGTT AGCACAAAGG GCTTACAGTC
CAAGAGTCAA TGTACTAAGA GGAGAAAGGA
GCCCCAGATT GACGGGCAAG GGACTTGGAA
TAAAGCAAAC TCCTAGCCCC CAGCCATCTA
ATCTGGGTCA AAATGGTCGT GGTCCGTCTT
CTACCTAG
|
C332GAGATGTCGTTTCTTGGAATTCCGATGGGACGGCGputative heat shockSEQ ID N° 150
TTTGTTGTGTGGCAGCCGGCGGAATTTGCTAGAGAtranscription factor
TTACTTCCAACTCTCTTCAAACATAGCAACTTCTCC
AGCTTTGTCCGGCAGCTCAATACCTATGTATGTTAT
CCTTCTATTTACTGTCTAAAAAAATTTATTCTTATTC
CGTGTTTGCATTA
|
C333GATCCGATGA AAACGATGTC GTTGTAATCGferricSEQ ID N° 151
GCGGTGGTCC CGGCGGCTAT GTGGCGGCGAleghemoglobin
TCAAGGCCGC TCAGCTCGGG CTGAAAACTAreductase
CTTGTATTGA GAAACGTGGT ACCCTCGGTG
GTACTTGCCT TA
|
C334GGGGCAAGGGAGTGGCTGGGTACGTATGAGACGGethylene responsiveSEQ ID N° 152
CGGAGGACGCAGCGTTGGCATACGACAAGGCGGCelement binding
GTTTCGCATGCGGGGGTCACGTGCATGGATTAfactor
|
C335cGATCCGTCAA AACCCTCGGC AACTTTGTCA40S ribosomalSEQ ID N° 153
AGGCAACCTT TGATTGTTTAprotein S2
|
C336aGATCCGTTCG TGTATCCTGT GTTTCAAGCTcytochrome P450SEQ ID N° 154
GGACCTAGGG TTTGTTTAGG GAAGGAAATG
GCATTCTTGC AGATGAAGAA GGTGGTTGCC
GGAGTTCTAC GGCGGTTTAG GGTGGTTCCG
GTGGTGGAAA AAGGTGAAGA GGAGCCAGTG
TTGATAGCTT ACCTTACTAC TAGGATGAAG
GGTGGTTTCT TGGTGAGGAT TGAGCAAAGG
ACAAATTGAT AGGACCCACA CTCCCTTCCC
TTACAATAAT AAAATCTCCG TTA
|
C336bGATCCGTACT GTACTTTTGA GCATTCAAGCubiquitinSEQ ID N° 155
ACTTTTGAGT GCTCCAAACC CGGATGATCCconjugating enzyme
ACTCTCTGAA AACATTGCAA AGCACTGGAA
GTCAAATGAG GCTGAAGCTG TTGAAACGGC
CAAGGAGTGG ACACGCCTAT ATGCTAGTGG
TGCATGAAGA CATAGCAACG AGATATTCAA
AAATAACAAA AATTATGGAA TGTATTCTAT
TGACTTGCTT ATCAATATGA CACTTCGGAC
GGCTGTTA
|
C338GGGAGGGGCCCGCAAGCACATGTCGAAAATCAGGputative proteinSEQ ID N° 156
ATTGATGTCAATGCTGATCAGCACCCCTTTCAGTACAt4g24290 [A.
GAAACTAAATCAACCACAGAAGCCAGCTAAGGTGGthaliana]
ACCTGAACTCCGCAGTTTATCCTGGCGGTCCACCTT
CACCGGCAAGGGCGCCAAAGATGTCGCACTTTGTC
GATACAACAGAAATGGTAAGAGGACCTGAGGAGT
CACCTGGCTACTGGGTGGTAACTGGTGCAAAGCTA
TGTGTAGAAGATAGTAGGATAAGAATGAAAGTGAA
GTACTCGCTCTTA
|
C339TAAGCAGCTC AATTCCGATC TTCACTGGTCputative serine-richSEQ ID N° 157
TGAGACGGCC CTCTGTTCAA GTACCCCTTCprotein
TTCTACTCGA GCCTCGGCAG AGCCTTTTTG
ATCTCATTCG TATTCTAAGG AATTCTAAAG
GACTCTTTCA TATTGCACCG GAGCTGGAAA
AGATTGGACT ATTCCCTAGC GAGACAACA
|
C34AACATTCGCATTAGCAACAAAACATTCCTACACATambiguous hitSEQ ID N° 158
CGTAACAGAATCAAGCATTCATAATATTGTAATAG
AACCAAAACAAAATGAAAGAAGTAATTCACCACCA
AAAATGGAAACCTCGAACCAGACCAGAAAACCTG
CCAGAACCGCAACAAAACTCCACAACGGGCCTCAT
CGGCACCTCAGATTTGCTCGATTTCTTTTGGAGATG
CGACTGCGTG
|
C341aGATCCGTGGC TCTAAGGCTC GGCTCAACTTputative ethyleneSEQ ID N° 159
GCCTCACTTAresponse element
binding protein
|
C341bGATCCGTGAT GGACTTCTTC AGGCTTCTGThypersensitive-SEQ ID N° 160
TTAGCTTAinduced response
protein
|
C347aGATCCGCAAG GGACCTGCAC CATATAATCTporinSEQ ID N° 161
GGAGGTGCCT ACTTATAGTT TCCTGGAAGA
GAACAAGTTA CTTATTGGTT ACTCAGGACT
CATCGTAGAC TGCGTAGTGA TCTTCTGTAC
AGGGACTATG TCAGTGACCA TAAGTTCACC
GTCACTACCT ATAGCTCAAC CGGAGTGGCT
ATTACCTCAT CTGGTCTGAA GAAAGGTGAA
TTATTCTTAG CCGACGTTA
|
C347bGATCCGCCCAGGTCAAGATGTTACTGTACGAACAGcytoplasmicSEQ ID N° 162
AAACTGGAAAATCCTTCACTTGCACAGTGCGGTTCaconitate hydratase
GACACCGAGGTGGAGTTGGCTTATTTCAACCATGG
AGGTATTCTGCCATATGTCATTCGTCAGTTGACTAA
GCAATAAGGGACCGTTTTGATAATTTGGCCACCTTC
ACGAGCTGCTGGTGCTTA
|
C348TAACCCCAAA AAGACGAATA TTGTGGTGTTputative ribosomalSEQ ID N° 163
CTAACAGCGG CAGATCAAAG AAGAACTTGAprotein
TGAGCGAAAT CCGCTGACAA AAAAAAGAGA
ACTTTTTGAA TTCCGATGCC TAGCGTCCCC
TGATAACCTA GGATTAGTGG TGATAGGGCT
GATGTGGTAT CTCGGAAACT GGGATTTGAT
GGTATCTGTA GAGCGGATC
|
C349aGATCCGCATG ACCTTTGTGA GCAACACCCTarogenateSEQ ID N° 164
GATGTTATTC TCCTTTGTAC TTCAATTATAdehydrogenase
TCTACTGAAC CTGTCCTTAG ATCACTCCCT
ATTCAAAGGC TAAAAAGAAA CACATTGTTT
GTTGATGTTT TGTCTGTTA
|
C349bTAACATTCCC AGCAATCGAT CACAACTACAputative membraneSEQ ID N° 165
AGAAGAGCAA AATAACTATG AGAAGATGTTprotein
ATCTTCAGCA AATTCAGTCA GACCCATTCT[Saccharomyces
TATTACTCCA TTATGTGCCG CTTGCGCAAGcerevisiae]
CCCACAGGCA GTGGCGGATC
|
C349cGATCCGCAAA AATCAGAACC TGGAACAATCnucleosideSEQ ID N° 166
AGAGGTGAGT TAGCTGTTGT AGTCGGAAGGdiphosphate kinase
AACATCATCC ATGGAAGCGA TGGACCCGAG
ACTGCCAAGG ATGAGATCAA ACTATGGTTC
AAACCAGAAG AGTTGGTTA
|
C350TTCTCAGCCAGCCGTGGAACTACAAAGGCCACTCCputative proteinSEQ ID N° 167
ATCTAAGGCAAAGTATAGACCTCTGGAGACAAGGGAt3g52110 [A.
GTATCCTTCAAGAACTGGAACAGAGCAGCAATGAAthaliana]
GAGAAGAGAAAGGAAGATCAAGGGAAGATGATGA
GTAATAATCAACAAGGACAGAGAGGTGGTGCTATT
GTTGCTGAAAAAGAAGCTGCTGCTAGAGCTTTGGA
TGTCTTCTGGTTCTTGAAACCTTGCACTCTTTCCAG
CTGAAATGGTCAAAGCCCACTGCTGCAGAACATTT
CATGAAGTGATTCTTTCATACTTA
|
C351aTGACTGCGTAATGATCCGCTATLTTCCACACAGAGGstromalin 3SEQ ID N° 168
ACACCTATTGGACAATCTTCCACCCTTCCATTTCTG
CCGACAGTGTTGAGCTCAAAGAACGGCAAAGGAA
AAATGACCCCACTCAATTCCAAACTTCAGTTCGTCA
CTTTTCCTCTAAGCAACCCAATTAGCTTA
|
C351bGATCCGCCAA AAATACAATA ATTATGAAGGambiguous hitSEQ ID N° 169
ATGCGACACG CACACCGAGA CATTTTCGGA
GAGTGCGAGC AACATAGGTT GGAATATTTA
CAGCCTTAGG AGGCTTCAGG AATAATGTAT
AACAACGTTT TCTTTATTGC TTTATTTTCA
CTTCTCTTA
|
C352bTAAGGGTTCA ACCTTTAGTT CTTACGATTGmuconateSEQ ID N° 170
CGTACCCATT GCATTGGAAT TATACGTAGGcycloisomerase
TGGAAACCTT GGATTCCCAG CATAGGCGGA TC
|
C352cTGACTGCGTA GTGATCCACC AAAACCCTTG40S ribosomalSEQ ID N° 171
GCAACTTCGT TAprotein S2
|
C353aATGAATCCAG AATACGACTA TCTTTTCAAGGTP-bindingSEQ ID N° 172
CTTTTGCTTA TTGGAGATTC TGGTGTTGGCprotein
AAATCATGTC TCCTCTTGAG ATTTGCTGAT
GATTCATATC TTGAGAGTTA CATTAGTACC
ATTGGTGTTG ACTTTAAAAT CCGCACAGTT
GAGCAGGATG GGAAAACCAT TAAACTTCAA
ATTTGGGATA CTGCTGGTCA AGAACGTTTT
AGGACAATTA CCAGCAGCTA CTATCGCGGT
GCTCACGGCA TAATTGTTGT CTATGATGTA
ACCGATCAAG AGAGTTTCAA TAATGTCAAG
CAATGGTTGA GTGAAATTGA TCGATATGCA
AGTGATAATG TGAACAAACT TCTTGTCGGA
AATAAGTGCG ATCTCACAGC GCAGAAGGTA
GTTTCCACAG AGATAGCTCA GGCTTTTGCT
GATGAGATCG GCATTTCCTT CATGGAAACT
AGTGCGAAAA ATGCCACCAA TGTGGAACAG
GCTTTCATGG CTATGGCTGC TTCAATCAAG
AACAGAATGG CAAGCCAACC AGCATCAAGC
AATGCACGGC CTCCAACTGT GCAGATCCGC
GGACAACCTG TCAACCAGAA GAGCGGTTGC
TGCTCATCTT AA
|
C353bGATCCACCAAAACCCTTGGCAACTTTCGTTTA40S ribosomalSEQ ID N° 173
protein S2
|
C354AATACGATCCCACTATACATATCGATATACATAGputativeSEQ ID N° 174
AGATTCACCGACTACATTTCAGCCATCCAGCGATCoxidoreductase
CTGATCTATTTGAAAATTGTTAGAATTGATATATCC
ATATATCATATTTCTGCGGGCATAAGAGTTTTTTCC
TTTATGTTCGGTGGAAATCACATGTTATACTATATT
CCAATAAATAGATATCTGTGTTATGATACAAGTCC
ACGTTTTCAAAAAAAAATGGATGAGATTGGGTCCC
AGCGGATC
|
C355aGATCCGCCGC TAACACCTAA AACACCCCCCprotein kinaseSEQ ID N° 175
TCCCTTGAAG CTTCTTCTTC TTCGAACCCA
CCCACCTCGG CCGTTACCCC TCCTATTA
|
C356aGATCCGCAAC TAATGCTCTT ATCGGTGCAGglutamate/aspartate-SEQ ID N° 176
TCAGTGCTAT AATTTTCTGT GGATACATTGbinding peptide
TATATGACAC AGACAACCTG ATTA
|
C356bGATCCGCCGC TAACACCTAA AACACCCCCCextensinSEQ ID N° 177
TCCCTTGAAG CTTCTTCTTC GAACCCACCC
GCCTCGGCCG TAACCCCTCC TATTA
|
C358GATCCTAGTT TGGAATATGA GCTCTCTGCTputative potassiumSEQ ID N° 178
CTTCGAGAAG CCACAGAATC TGGATTTACAtransporter
TATTTGCTTG GACATGGGGA CGTGAGGGCG
AAGAAAAACT CTTGGTTCAT CAAGAAACTG
TCAATAAATT ACTTCTATGC ATTCATGAGG
AAGAACTGTA GAGGAGGCGC TGCAACAATG
CGTGTTCCTC ACATGAATAT TATCCAGGTG
GGAATGACAT ACATGGTTTG ATCTTGGTAC
CATTTAGCTT CTTGCTGGCC TTGTAAGTGC
TGCATTA
|
C359CTGTACAAGTGATGAAGTGCCCTTCACGGTTTCCTCAtSIK-like proteinSEQ ID N° 179
TGCAAGAACCAGTGGCAGTTGGTGGTAAACATATGkinase
TCAAAGTCTCCAAGTATGACTGGAATCATCACCCCT
GCGCCAAGGTTGAGTTTCTCCCCTTCCTTACCTATC
ACCCGAGGATCGGCTTCTCCCTCAAAGTCTTCTACG
CAGCCCTCGTCTCGTCCTTCATTA
|
C360CCACGCGTCC GCCGAAATTC TGAAGCAATAputative proteinSEQ ID N° 180
ACAAAGAATG GGTTGCATCG AAAAGGATCCAt4g14710 [A.
AGGAGAGGAC GTCGTACAGG CATGGTACATthaliana]
GGATGACAGC GATGAGGACC AGAGGCTTCC
CCATCACCGT GAGCCAAAGG AATTTGTGTC
TCTTGACAAA CTTGCTGAGC TTGGAGTGCT
CAGCTGGAGA CTTGATGCTG ACAATTATGA
GACAGAGGAG GAGTTGAAGA AAATTCGGGA
AGCTCGTGGC TATTCTTACA TGGATTTCTG
TGAGGTTTGC CCTGAGAAAC TACCGAATTA
TGAGGAGAAA ATCAAGAACT TTTTTGAAGA
ACACCTGCAC ACCGACGAAG AGATCCGTTA
CTGTGTTGCA GGAAGTGGTT ATTTTGATCT
CCGGGATCGG AATGATGCTT GGATTCGTGT
CTGGGTAAAG AAAGGTGGAA TGATTGTTCT
GCCTGCTGGA ATTTATCACC GCTTCACACT
TGATTCAGAC AATTACATTA AGGCAATGCG
ACTCTTTGTT GGTGACCCAA TTTGGACTCC
ATACAATCGC CCACATGACC ATCTCCCTGC
AAGGAAAGAA TATATTGAAT CGTTTATCCA
AGCAGAAGGC GCTGGCCGTG CAGTTAATGC
TGCTGCTTAA ATTTACTAGA GGCGAAGAAG
TTGAAATCCT TATAGGCTGT AATAAATGTT
ACCATATGAT GGTTGTGTGG TTCCTGAAGT
GTGCGCCTGG CTCAGCTTGT TGAATGTTGT
AATTCGAGCA CTAAATAAAT CTCCTATGGG
GATATTGAAC TTAATAGTTA TATACACCTG
GAGTCTATGT TGTGAATTTA AACATTTGTG
CATGTCGAGT GGTACAATAT TTCCTGTTTC
GGGGCGTAAT TAGCTCTGCC ATTTTTGTTG
TTGGATTGCA ATGACCTTGA ACTTCTTGAA
CTTAAAAAAA AAAAAAAAA
|
C364aGATCCGGGTC ACTTCCCTAC ATTGGGTGGCprobableSEQ ID N° 181
AAGTGATGCT TTATTAGTGC TTTTCTCCCAtranscription factor
CGTCCAAGAG GCAAATTGAC TGAAAAATAA
|
C364bGATCCTCAAG CATTTATTCG CCACTTTTACheme oxygenaseSEQ ID N° 182
AACACATACT TTGCGGATTC AGATGGAGGT
CGCATGATAG GGAGAAAGGT GGCTGAAAAG
ATACTCTGAC TGCGTAGTGA TCCGGCTATG
TTGCTGATCA ATCTAGTTAT GGCATGGTTG
ATCCTTCTCA GCATTATTAT CCGGAGCAAC
CATCCAAGCC GCAGCCAAGC ATTTCGAACA
GTCCTTATGC TGAGAATTAT CAACAACCAT
|
C364cGATCCTCAAG CATTAATTTG CCACTTTTACheme oxygenaseSEQ ID N° 183
AACACATACT TTGCGCATTC AGCTGGAGGT
CGCATGATAG GAAGAAAGGT GGCTGAAAAA
ATACTCAACA AGAAAGAGCT GGAATTCTGA
CTGCGTAGTG ATCTTGGAGT GAATATGGAC
GAGGACTACT TACTGCGAAA TGCTAGTAGT
CGGTAATTCT TCTTCCTCTG TTGATGCTGT
GGAGAGAGCT AGAGCGTGGG G
|
C365TTGACAGGATCGATCATGCCAAATTCTTCATCATCTputative proteinSEQ ID N° 184
TCTTCGCTAATTCCAAACGAGTCCACGCTGATGGAAt1g26190 [A.
AGAGCTATCTAATGTTGCACCTGGACAACGTCAAAthaliana]
TTATACATCAGTTGGACAATCTTAGCAATCTTCTTC
GCGACAGGCTAGGAGAACAATCTCGGCAATCAAGA
AAAAGCAAGAGAAGAGATATTACCGATATTTGATTC
GATCAGAGTGCCTCTCATTGTAACCTTAGCAGTTGG
TGGATTGGGATTATTTTTGTTTA
|
C366aGATCCGGGAA GTTTGGTCCG ATAATATTGACCR4-associatedSEQ ID N° 185
TTCTGAATTT GAGCTTATAC GAACAGCTATfactor
TGATCAGTAC CCTTACATCT CAATGGATAC
TGAATTCCCG GGCGTTATTT TCAAGCCGGA
GGTTTGGTCT TTCCAGCAAA ATCGCCGGCG
ACATGGACAA CATTATAAGT TGTTACTCAG
GACTCATCAA CTAATGAGGA AACCGCGAAA
TCTGTATACT TTCTAAAACC CCAAAAGGTT
TGCTCTTTCA GTTTTA
|
C366bTAAAGCTAGC GGGGTTAGTG ATATCCTTGT6-phosphogluconateSEQ ID N° 186
TGACCAGTCC GTGGATAAGA ATCAGTTGATdehydrogenase
TGACGATGTG AGAAAGGCAC TTTATGCATC
CAAAATATGT AGCTATGCTC AGGGCATGAA
TTTGATAAGG GCAAAGAGCG TTGAAAAAGG
ATGGGATTTG AAACTAGGGG TGCTTGCTAG
GATTTGGAAG GGTGGTTGTA TTATCCGTGC
TATATTTTTG GATCGCATCA AGGGGGCTTA
TGACAGAAAC CCGGATC
|
C367GATCCGGCAT GTTTTTTTAC TCAGGACTCAambiguous hitSEQ ID N° 187
TCGTTAAAGA ATCAAAGGTT CAAGTGAAAT
CATGCCCCGT GCTCCTAAAG TACGCTTTCA
TATTTGGGAA CACTTTGAGG TGAAAGAAGA
TAACGGAGAA GTTCGCAAAG TAAAGTGCAA
GCAATGTGGT CCAGTCTATA ATTTCATCCA
AAGAGGGATG GCACATATTG TTTA
|
C368bGATCCCGAGC AGGAGAGCGA TAACATTGTTankyrin like proteinSEQ ID N° 188
TTAGTCGTGC AAAAGAAGTT GTGGCTCACA
AGTGGAAGCA TCAGAGATAC AGAATAGACA
GTAGAGTTTG AACACTTCTT CCTGACTCTG
CCTTTAGGGA
|
C369GATGAAGAAGCTGCAATTGCTTATGATAAAGCGGCethylene-responsiveSEQ ID N° 189
TTATCCAATGCGCGGTCCAAAGGCTCATTTAtranscription factor
|
C4GTTTGACAAT GCCTACTTCA AAAATTTACAperoxidaseSEQ ID N° 190
GCAAGGTATG GGACTATTCA CATCATGATC
AAGTGCTTTA CACGGACGGG CGGTCCAAGG
GAACTGTCGA CATTTGGGCT AGTAACTCAA
AAGCATTCCA AAACGCATTC GTCACTGCAA
TGACAAAGCT GGGCCGTGTT GGTGTGAAAA
CTGGGAGGAA TGGAAATA
|
C401GATCCTATAG CCAACCTAAC AATTTACCCCputative proteinSEQ ID N° 191
TCTTCGGATC GGTTCTTGTT GGAAAAGATTAt2g44230 [A.
CAAAAGGAGA CGCGCTAAAG ATCCCAATTGthaliana]
ACTATACACT TGTATGGAGT AGTGAGAACT
TGAATATCAA GCAGGATAGT GTTGGCTATA
TTTGGATGCC AATTCCTCTT GAAGGCTATA
AAGCCGTAGG CCACGTTGTA ACAACGTCGC
CTCAAAAGCC TTCTCTTGTC ATAATTCGTT
GAGTTCGTTA TATTTTA
|
C402GGTGCTTATATTGTTAGACAGGAGGCAAAGAGTGGS-adenosyl-L-SEQ ID N° 192
GGGCGCCTCAGGACTTGCTCGCCGTTGTCCTGTGCAmethionine
GGTTCCTTATGCTATCGGTGTGGCTGAACCACTTTCsynthetase
CGTGTTTGTTGACACTTACAAGACTGGAACAATTCC
AGACAAGGATATTTTGGCTCTGATCAAGGAGAACT
TTGACTTCAGGCCTGGAATGATGTCAATCAATCTTG
ACTTGTTA
|
C408ATGCTCTTCTCCTATTCATTTGACTCACAATGTATCbeta-glucan bindingSEQ ID N° 193
CTCCATAATTTCTAATGGATTCTCGGGTGTAATACGprotein
AATTGCTCTCTTGGCTAATTCTGATCGCCAATGTGA
GAAAATTCTTGATCAGTACAGCTCGGCTTATCCCGT
GTCTGGAAGTGCAACTTTGAGGCCTTTTGGTCTTAG
TTACAAATGGGATGTGAACGGTAAAGGCAAGTTTGC
TTATGCTTGCTCATCCTCTACATCGCCGACTTCTTTC
AACAGCAGATTCTTCAGTAACTATTTTGGATGATTT
CAAGTATAGGAGCATGGATGGTGAGCTTTGTTGGCG
TTGTTGGAAATTCGTGGGAGCTTGAAACGGATTCA
ATTCCAATATCATGGCATTCGGTTA
|
C409aGATCCTACTAAGGTGGACATGAGTGGTGCTTATATTS-adenosyl-L-SEQ ID N° 194
GTTCGACAGGCAGCAAAGAGTGTGGTCGCCTCAGGmethionine
ACTTGCTCGCCGCTGTATTGTGCAGGTTTCTTATGCsynthetase
TATCGGTGTGGCTGAACCACTTTCCGTGTTTGTTGA
CACTTACAAGACTGGAACAATTCCAGACAAGGATA
TTTTGGCTCTGATCAAGGAGAACTTTGACTTCAGGC
CTGGAATGATGTCAATCAATCTTGACTTGTTA
|
C409bGATCCTCTGA GGCTATTATG CTTGCTGGATglutamateSEQ ID N° 195
AGCTTTTCAA GAGAAAATGG CAAAATAAAAdecarboxylase
TGAAAGCCCA AGGCAAGCCC TGTGACAAGC
CCAATATTGT CACTGGTGCC AATGTCCAGG
TGTGTTGGGA GAAATTTGCA AGGTATTCTG
AAGTGGAGCT AAAGGAAGTA AAGTTGAGTG
ATGGATACTA TGTGATGGAC CCTGAGAAAG
CTGTGGAAAT GGTGGATGAG AACACAATTT
GTGTAGCTGC TATGTTGGGT TCCACACTCA
ATGAGATAAA TTTGAAGATG TTTA
|
C410GATCCTCAAG GCCCCAAAAT TTGATATCGG40S ribosomalSEQ ID N° 196
CAAGCTGATG GAGGTTCATG GTGACTATTCprotein S3a
AGAAGATGTT GGCGTGAAGT TGGATCGACC
AGCTGATGAG ACCGTTGCTG AGGCAGAACC
TGAGATTCCT GGAGCTTAGA CTTGTTTGAT
TTGGATTCTG TCTGAATATG GTGCTTGTCT
TCTAAATTTA TGAATTTGTT TTAGTTGAGG
TGTCAAAGGC GCGGCCTAAC AAAATATTGG
ATATCTTTCT TTGGTTACGT TTGATGTTA
|
C414cTAAGCATACA TAGAAGTTAC ACTGCTTTCADNA polymerase ?SEQ ID N° 197
TCTCACTCGT TGTAGTGCAG ATCATACACT
GGCTATCTTT AGCACCTAGA GAATGAAGCA
TCATCTGATG CCTTTACTGA ATTTGCTTTT
CAAAACTTCC TGTAATTGCT AGGATC
|
C417aTAAGCACCGTTTAGGAGATTTATTCTACCGTTTGGTvacuolar H+-SEQ ID N° 198
GTCCCAAAAGTTCGAGGATCATPase
|
C418CCTTGGTGGAGCTTGCGGTTACGATAACCCTTATGexpansinSEQ ID N° 199
ACGCCGGATTTGGAGTAAACACAGCGGCATTGAGT
AGCGCACTGTTCAGAAATGGAGAAGCTTGTGGAGC
TTGCTACACAGTAAGATGCAACCGCAAACTCGATC
GTAAGTGGTGCCTCCCACATGGGGCCGTCACTGTG
ACGGCCACCAATTTTTGCCCTCCGAACAACCACGG
AGGGTGGTGTGATGCACCACGACAACACTTTGACA
TGTCCATGCCCGCTTTCCTTCGCATTGCTCGACAAG
GCAATGAAGGCATTGTTCCTATTCTCTACAAAAGG
GTGTCATGTAGGAGAAGAGGAGGAGTACGTTTCAC
ATTA
|
C419GGATATGAGCTCTCTGCTCTTCGAGAAGCCACAGAputative potassiumSEQ ID N° 200
ATCTGGATTTACATATTTGCTTGGACATGGGGACGTtransporter
GAGGGCGAAGAAAAACTCTTGGTTCATCAAGAAAC
TGTCAATAAATTACTTCTATGCATTCATGAGGAAGA
ACTGTAGAGGAGGCGCTGCAACAATGCGTGTTCCT
CACATGAATATTATCCAGGTGGGAATGACATACAT
GGTTTGATCTTGCTGCCATTTAGCTTCTTGCTGGCC
TTGTATGTGCTGCATTA
|
C420CAAGTGGACAGAAGTGGTGCTTATGTTTGTGAGACAS-adenosyl-L-SEQ ID N° 201
GGCAGCAAAGAGTGTGGTTGCTGCAGGACTTGCTCmethionine
GCCGCTGTATTGTCCAGGTTTCTTATGCAATTGGTGsynthetase
TGGCAGAACCACTCTCCGTGTTTGTTGACACTTACA
AAACCGGAACCATTTCCAGACAAGGATATTCTGGCT
CTGATCAAGGAGAACTTTGACTTCAGGCCTGGAAT
GATGGCAATTA
|
C421CCAATCCGATATAGCCGATGGCTTCCATGAATATacyl-CoA oxidaseSEQ ID N° 202
ATTAGGCCACTACTCAAGCAGCAACTGCATACTGC
TCGACTGTGAAGGAGAGTTGCATATATTTATAGC
TGTTGTATTGTGCTGTGCCAATAAACTAAAATTGA
AATATCATCTTTCTTTTGGATGATGGCCTCCTTTAT
GACTTACATAGCGGTGATTA
|
C422GACAAAACACTTGGATCCTGACAATTATCTGCTGAputative annexinSEQ ID N° 203
TACCCAGCACTAGGAATGTTCATCAGCTTAGAGCA
ACTTTTGAGTGCTATAAGCAAAATTACGGATTCTCC
ATCGACCAGGACATTA
|
C423aACTAGTGATTGACTGCGTAGTGATCCTGCTGGTCCGspermidine synthaseSEQ ID N° 204
GCTCAAGAGCTTGTGGAAAAACCATTCTTTGCAAC
GATAGCAAGGGCATTA
|
C423bACTAGTGATTGACTGCGTAGTGATCCTAAGAAAATputative proteinSEQ ID N° 205
TGCCCGTGTGATGGACCGACGACTTGAAGGTGAATkinase
ACCCGATTA
|
C425GGTGCTATTACAATTTTGGACACATCAAGTGATCCAvacuolar H(+)-SEQ ID N° 206
AGGACACTTGCTGTTGCTTGCTATGATCTATCACAGATPase subunit-like
TTCATTCAGTGCCATTCTGCTGGGCGAATCATAGTGprotein
AATGACCTCAAAGCTAAGGAGCGCGTAATGAAACT
GTTGAACCACGAGAATGCAGAGGTCACAAAAAATG
CCTTACTCTGTATCCAAAGGCTTTTCCTAGGTGCCA
AGTATGCTAGCTTTTTGCAGGTTTA
|
C426aGATCCTCAAG GCCCCTAAGT TTGATATTGG40S ribosomalSEQ ID N° 207
CAAGCTGATG GAGGTTCATG GTGATTATTCprotein S3a
AGAAGATGTT GGTGTGAAGT TGGATCGGCC
AGTTGATGAG ACAGTGGCAG AGGCAGAACC
CGAGGTTCCT GGAGCGTAGA CTCGTTTCGT
GCTTCCGAAA TATGTGTTCG AATATGGTGA
TAGTCTTTAG AGCCTCACAT TGTTTA
|
C426bGATCCCACCAGATCAGCAGAGGCTCATATTTGCTGubiquitinSEQ ID N° 208
GTAAGCAGCTGGAGGATGGGCGCACCCTTGCAGAT
TACAATATCCAAAAGGAATCCACACTCCACCTTGT
GCTTCGCCTTCGTGGTGGTGACTATTGAGGATTGAA
GTGCTGCTGCTGGGGTTTTACATAAGATGCCTGCTT
CTTTGTTCTAATGGTTCTGTTGTTA
|
C428aGATCCTGATG TTACTGCCCG CCCTAAAGCTputative proteinSEQ ID N° 209
CTTGAGTGCA ATCTCATCTT TAAt1g27760 [A.
thaliana]
|
C428bGATCCTCCAA GGAGATAGCT TTGGCATCTCputative proteinSEQ ID N° 210
ATTTTCTTGG AATTTTGGCT TTAAt3g09350 [A.
thaliana]
|
C429GATCCTGCTGGTTGGCTAGAATGGGATGGTAATTTTputativeSEQ ID N° 211
GCTTTApectinesterase
|
C430GCTCATTACAATTTTGGACACATCAAGTGATCCAAvacuolar H(+)-SEQ ID N° 212
GGACACTTGCTGTTGCTTGCTATGATCTATCGCAGTATPase subunit-like
TCATTCAATGCCATTCTGCTGGGCGAATTATAGTGAprotein
ATGACCTCAAAGCTAAGGAGCGCGTAATGAAACTG
TTGAACCACGAAAATGCAGAGGTCACGAAAAATGC
CTTACTCTGTATCCAAAGGCTTTTCCTAGGTGCAAA
GTATGCTAGCTTTTTGCAGGTTTAGTTCTCATCGAA
GGGTTTGATTGTTCAGACGATGAAAACTAGACATA
TCTTGTTATTTCATTGAAACAAAAGGAGTTTGATCG
TGTTCGTGTTA
|
C431aGATCCTGCAC GTCTGCCTGC TTTTCATTGTmonodehydroSEQ ID N° 213
TGTGTCGGTA CGAATGAGGA AAGGTTGACCascorbate
CCGAAGTGGT ACAAGGAACA TGGCATTGAAreductase
TTGGTCCTTG GAACTCGTGT AAAATCAGCT
GACGTGAGAC GGAAGACACT GTTGACTGCA
ACTGGTGAGA CCATAACCTA CAAGATTCTC
ATAGTGGCAA CTGGTGCTCG GGCTTTGAAG
CTTGAAGAGT TTGGAGTGAG TGGATCAGAT
GCTGATGGTG TATGTTATTT ACGAGATTTG
GCTGATGCAA ACAGGCTGGT TA
|
C431bGATCCTCTGAGGCTATTATGCTTGCTGGATTAGCTTglutamateSEQ ID N° 214
TCACGAGAAAATGGCAAAATAAAATGAAAGCCCAdecarboxylase
AGGTAAGCCCTGTGACAAGCCCAATATTGTCACTG
GTGCCAATGTCCAGGTGTGTTGGGAGAAATTTGCA
AGGTATTTTGAAGTGGAGCTAAAGGAAGTAAAGTT
GAGTGATGGATACTATGTGATGGACCCTGAGAAAG
CTGTGGAAATGGTGGATGAGAACACAATTTGTGTA
GCTGCTATCTTTGGGTT
|
C432AAACCGGTGCGATTTGAAAATACTGCTGGCGATCTisoflavone synthase-SEQ ID N° 215
TACAGGAAAATCACTATCAGGTCATTCCTTTCGGTTlike protein
CAGCAACAAGAATGTGTCCAGGGAATGTCGATGGG
TTGAGTTA
|
C433bGATCCTGCTGTAATGGGAATTGGCCCAGCCGTTGC3-ketoacyl-CoASEQ ID N° 216
GATACCAGCTGCTGTTAthiolase
|
C434aTAAGCAGCGATGACCTCTTTGAAAGTGGAAGCTCAputative proteinSEQ ID N° 217
AGTGATGATGCTGATGACGAGTTGACTGATAAAAGAT5g43720 [A.
TGCAAGAGAACAAGCTTCTAGTACATCAGTGAAAGthaliana]
CAGCTTTCTAGCATGTCCAGCGATGAAAAAAATCAG
AGGCAAATATCCGCCCGTGCTCTAATGCCACCACC
TCGTCCTTCGAGCAAGTCATTTAGTCATTCAGTAAA
TAAAAAATCACGGTTTGGAGGATC
|
C435bGATCCTCAAAATGGACTGTCAAGGAAGTTGCTGAAmutator transposaseSEQ ID N° 218
TGTGTTACTCAGGACTCATCAAGCGGGGAAATAAA
AAAGAAGCAAAACAGATGCTCCATATGCAAAACG
ACTAGCCACAAAAGAACTACTTGCAAGAAGAGAAC
TGAAGGAACAAGCAACTCCATTGTGGCTTA
|
C436aTAAGGCATCA TATATACATC ATCTCGATGCporinSEQ ID N° 219
ATTGAAGAGG AGTGCTGCTG TGGGTGTAAT
CACTAGAAGG TTCTCTTCAA ATGAGCACAC
ATTTACAGTT GGAGGATCC
|
C436bTAAGCATGGAAACCGCCTTTGTCCTATCTGCAGATGretroelement polSEQ ID N° 220
CAAATGGAAGGAAATCCCTCTCCAATTTCCCACCTTpolyprotein
CAGTACTGATGTAAACGGTATCAATAATCCCGCG
|
C438GTTTAAGACATTTGATCTTAGCTACTTCAAGCTTTTperoxidaseSEQ ID N° 221
GCTCAAGAGGAGAGGTCTGTTCCAATCTGATGCAG
CCTTA
|
C439aGATCCTGAGA AAGCTGTAGA AATGGTGGATglutamateSEQ ID N° 222
GAGAACACTA TTTGTGTAGC TGCTATCTTGdecarboxylase
GGTTCCACCC TTACTCAGGG GTCATCAATC
ACTAGT
|
C439bGATCCTCCAA ACCTGAAGAC CAATGCAGTCputative proteinSEQ ID N° 223
GAACAACCAG AATGCAAGGG AGAGAAGGTTAt4g09150 [A.
GATCTGTTCT TAthaliana]
|
C441aGATCCTCAGCAATTCTAATGGTTCACAAGGCCAGANa+/H+ antiporterSEQ ID N° 224
AAGAACGGGCTTCCCTTTTGGAATAAAGGACAAGT
AGGGGAATCGAACCAAGTCATTGTAGCATTTGAGA
CATTCGGACAACTCAGTAAGGTGTCAATTCGACCA
CAACTGCAATCTCCGCTATGACAAGTATGCACGA
GGACATAATTGCTAGCGCGGAGAGAAAAAGAGTTT
CAATGATAATTTTACCGTTCCATAAACATCAGAGA
ATTGGCGGACAATTTGAAACGACACGAGCTGATCT
TAGACTTGTCAATCGAAGAGTTCTACAACACGCAC
CATGTTCTGTTAGCATATTA
|
C441bTGATGTTGAT ATCGCGACTC ATATACATGTputative proteinSEQ ID N° 225
CAAGGATGAT GGACCTAAAA GGAGTATACTAt5g04740 [A.
GCATGTTGAA ACTGCTGATC GATCTGGTTTthaliana]
GCTGGTGGAA GTCGTCAAAA TAATGGCTGA
CATTAGCATT GATGCTGAAT CAGGAGAGAT
TGATACAGAA GGTCTAGTTG CGAAGGGCAA
GTTCTATGTC AGTTACAGAG GGGCAGCATT
ACTCAGGACT CATCGATGAG TCCTGAGTAA
CCACAAATGC CAAACCAAAA GAGCCAATAA
ATTATACCTT ACATTGAACT GCCATTCTCA
AAAAATGGCA CTANGAACTA ATACACACTG
TTCGTTGATG GGGTAAAGCA AAAAAATAGG
CAAATACTAG GGGAACCATA CAACATCAGC
CTAGATACTA TGCAGTTAGT CAGGTTCCTC
CATCCTTGTA CCCCCAGCAT CAGCTTCAGG ATC
|
C442ATGTTGGACAACCTTTAGCTCAGTTACTTTATCACTcytochrome P450SEQ ID N° 226
TCGATTGGAAACTCCCTAATGGACAAACTCACCAA
AATTTCGACATGACTGAGTCACCTGGAATTTCTGTT
ACATGAAAGGCTGATCTTATTATGATTGCCACTCCT
GCTCATTCTTGATTA
|
C443aGATCCTAGTTTGGAATATGAGCTCTCTGCTCTTCGApotassiumSEQ ID N° 227
GAACCCACAGAATCTGGATTTACATATTTGCTTGGtransporter
CATGGGGACGTGAGGGCGAAGAAAAACTCTTGGTT
CATCAAGAAACTGTCAATAAATTACTTCTATGCATT
CATGAGGAAGAACTGTAGAGGAGGCGCTGCAACA
ATGCGTGTTCCTCACATGAATATTATCCAGGTGGG
ATGACATACATGGTTTGATCTTGGTACCATTTAGCT
TCTTGCTGGCCTTGTAAGTGCTGCATTA
|
C443bGATCCATGCA GATATTCCAT GGGGCGATTTglyceraldehyde-3-SEQ ID N° 228
AGGTGCAGAT TATGTTGTTG AATCTTCTGGphosphate
TGTTTTCACA ACCGTTGAGA AGGCTTCAGCdehydrogenase
ACATAAGAAG GGTGGTGCAA AAAAGGTCGT
AATCTCAGCT CCATCAGCTG ATGCACCTAT
GTTTGTGGTA GGAGTGAATG AGAGAACTTT
CAAAACCACC ATGGATGTTG TTTATAATGC
TAGCTGTAGT ACCAATTGCC TTGCTCCCCT
TGCCAAGGTG GTTCATGAGG AGTTTGGCAT
TGTTGAAGGA TTA
|
C444GATCCTCAAG CATTTATTTG CCACTTTTACheme oxygenase 1SEQ ID N° 229
AACACATACT TTGCGCATTC AGCTGGAGGT
CGCATGATAG GGAGAAAGGT GGCTGAAAAG
ATACTCAATA AGAAAGAGCT GGAATTCTAC
AAATGGGACG GTGACCTTTC TCAGCTGCTG
CAGAATGTTA GAGAGAAGCT GAATAAAGTT
GCAGAAAACT GGACTAGAGA GGAGAAGAAT
CATTGTTTGG AAGAGACGGG GAAGTCATTTC
AAGTTCTCAG GGGAAATCCT CCGATTA
|
C445GATCCTCTCA TCATTGTCCA GGAGGTCTGTputative inorganicSEQ ID N° 230
TGCTGCTCAC CCTTGGCACG ATCTTGAGATpyrophosphatase
TGGACCTGAA GCTCCAAAGG TTTTCAATGT
TGTCATTGAG ATTACAAAAG GTAGTAAAGT
CAAATACGAG CTTGACAAGA AAACTGGTCT
CATTA
|
C446aTAATGGAAGA TGCACCACTG GAATGAGCAAcytochrome cSEQ ID N° 231
AGAAAAGTTA GGTCATTTTA TGACTTGCTGoxidase subunit 5c
GAGAAAGGTG AAATAAGTTT AGTCGCAGAA
GAATAATTTT TCGAGGATC
|
C446bTAATGGATGATACTGCTGAGGCAAAAGCTTGTCAAputative proteinSEQ ID N° 232
GACGAAGTGAATGCTATTCTGGGAGAGAAGCTATCAt5g09260 [A.
TGCTGATTATGAAGAGGAAGTTTTAGCACAATTTGthaliana]
AGGATC
|
C447GATCCTCATGACATATGTGAACAACATCCTGACATarogenateSEQ ID N° 233
CGTCGTACTCTGCACTTTCCATTAdehydrogenase
|
C448GATCCTGGTC GCCTGACAGG CAAGAGAGATcatalase 3SEQ ID N° 234
TTATCTGCAG ATGGATTA
|
C449aGATCCTGCTG TTTTTACTGG GGATACATTGglyoxalase IISEQ ID N° 235
TTTATTGCTG GTTGTGGTAA GTTTTTTGAA
GGCAGTGCAG AACAAATGTA TCAGTCACTG
TGTGTGACAC TAGGTTTCTT GTCAAAGCCA
ACTCGGGTGT ATTGTGGCCA TGAGTACACA
GTAAAAAATT TGCAGTTTGC TTTA
|
C449bGATCCTGAGG GTGCTCATTA CAATTTTGGAvacuolar H(+)-SEQ ID N° 236
CACATCAAGT GATCCAAGGA CACTTGCTGTATPase
GCTTTGCTAT GATCTATCGC AGTTCATTCA
ATGCCATTCT GCTGGGCGAA TTATAGTGAA
TGACCTCAAA GCTAAGGAGC GCGTAATGAA
ACTGTTGAAC CACGAAAATG CAGAGGTCAC
GAAAAATGCC TTACTCTGTA TCCAAAGGCT
TTTCCTAGGT GCAAAGTATG CTAGCTLTTT
GCAGGTTTAG TTCTCATCGA AGGGTTTGAT
TGTTCAGACG ATGAAAACTG GACATATCTT
GTTATTTCAT TGAAACAAAA GGAGTTTGAT
CGTGTTCGTG TTA
|
C449cTGACTGCGTAGTGCTCCTGACGGTTATTGGATCGAGglyoxalase ISEQ ID N° 237
ATTTTTGGCACTAAACCTATCAAAGAAGTTGCTGAT
GCTGCTTCTTGATTCAGGGGCTCTTCGAGTGTCTAT
CACGAGTGTTGATCAACTCAGCTATCTGTTGAAGA
GAGAGTTTCTCGTAAACAGCGTTTTCTTTCCAGGTTA
|
C450GATCCTGGTG TTAGCAACAA TGAAGATGAGputative protein 66bSEQ ID N° 238
GATGTTGAGG ATATCAATGT TGCAGAGGAC[Daucus carota]
GATATGATGG ATGATGTGCT TGACGTGGAT
GATAATAACC AGAGGAGTGA TGAAATTGTA
AAAGTTGAAG CCGGTAATGG TAGTACACAG
ATTGATCAGC AGAAGATATG CATCTCTTAT
CTCTATTAAA GGTTTAGTTT GTGTTTA
|
C451aGATCCTGCTG TAATGCCAAT TGGCCCAGCC3-ketoacyl-CoASEQ ID N° 239
GTTGCGATAC CAGCTGGTGT TAthiolase
|
C452aGATCCTGATAGAACTGAATCCGAGGATTCTGATGAputative SR proteinSEQ ID N° 240
TTCAATATAGCCGAGGACATTTTTCAGCAGACAAT
GATTAGTTAGCTACAAAAGCTGTTTTTGGCAAGTG
GTTACCAAGTCTCCGCCATTGATATAGTTACTTCAT
GGTTA
|
C452bGATCCTGTTT GTGGAAGTGC CCATTGTGCTPHZF-like proteinSEQ ID N° 241
TTGGCTCCTT ATTGGCATAA AAAGCTTGGC
AAATGTGACT TTGTTGCTTT AGCGGCCTCA
ACTAGAGGTG GCGTTGTGAA CGTGCATCTA
GACGAGGAGA ATCAGAGGGT ACTTCTGAGA
GGGAAAGCTG TTGTTGTTAT GGAAGGTACT
CTTCTAGTTT A
|
C452cGATCCTGAAC TTCCCCCTGA AATGAGAGAAmitochondrialSEQ ID N° 242
GCTCATCGTT ACAAGCTTTC AAAATTGCCAribosomal protein
AGGAACAGTT CTTTTACCCG AATCAGAAATS14
CGGTGCGTTT TCACTGGTCG GCCACGTGCT
GTGTATGAGA AGTTTAGAAT GTCGCGTATT
GTGTTCCGTG GTTTGGCTGC TCGCGGTGCT
TTGCAAGGTG TTTA
|
C453TTTCATACCATGGCGATTTGAAAATACATCTGTTTGAcytochrome P450SEQ ID N° 243
TCTTACGGGAAATCACTATCAGTTCATTCCTTTTGG
TTCAGGAAGAAGAATGTGTCCTGGAATGTCGTTTG
GTTTA
|
C454ACAGCTATGA CCATTAAGCC TATTTAGGTGputativeSEQ ID N° 244
ACACTATAGA ACAAGTTTGT ACAAAAAAGCphosphatase 2C
AGGCTGGTAC CGGTCCGGAA TTCCCGGGAT
CTCTCAGTTT TTTTCATCCA TTCCTCTTCA
GCCAATCCCA AGAGGGTCAT CATTTGCAGC
TTCTACTATT CATTCAGGCC CTATCCCGGC
CCGTATTTCT AGTACGTACC CTTGCTCGGG
CCCGATCGAG AGGGGATTCA TGTCCGGCCC
GATTGAGCGG AGCTTCACCT CGGGCCCGTT
GGAGAACCAG TATGATCATA TCCAAAGGTA
CAAGCCCAAG TCCAAGAAAT GGGGTTTAAT
TAAAAGTTTA AAGAAAGTGT TGTCAAATTC
CTTTTTGGGG TTTAATAAAG AAATGAATTT
GGTAGAGAAG AATAATAATA ATGAAGTTAA
TGTTCAAGGG AGTAATAGTC ATCATAGTAA
TGTTGGAAAT AGTTTGAGTA GTCAGAATAG
TTTGGTTGAT GATGATGATG AGGGAAATGA
CTCATTTAGA GGCCAAAATG TGCAATGGGC
TCAAGGTAAA GCAGGGGAAG ACAGAGTACA
TGTTGTGATT TCTGAGGAAC ATGGTTGGGT
TTTTGTAGGG ATATATGATG GATTTAATGG
ACCTGATGCT ACTGATTTTC TGTTAAACAA
TCTTTATTCA AATGTCTATA AAGAACTCAA
GGGATTGCTA TGGAATGATA AGTTAAAAAC
CCCCAAGAAT TCGACGAGCA ACGAGACTGT
TCCGTTAAGA AACTCGGGTT TTAAGGTGGA
ACATTTTGTT CAAAATCAAG AATTAGATCA
GAGGGAGAAA CTTGATGGGG TTGTTGGTGT
TGACCATTCT GATGTATTGA AGGCTTTATC
TGAAGGGTTG AGGAAAACCG AGGCGTCGTA
TTTGGAGATT GCTGATATGA TGGTAAAGGA
GAATCCTGAA TTGGCTTTAA TGGGATCTTG
TGTTTTAGTA ATGTTGCTTA AAGATCAGGA
TGTTTATTTG TTGAATGTTG GAGATAGTAG
AGCTGTTTTA GCTCAAAATC CTGAGTCTGA
TATTTCTATT AGCAAATTGA AAAGGATAAA
TGAGCAGAGT GTAAATAGCA TTGATGCACT
CTATCGAGCT GAATCTGATC GCAAACATAA
TCTAATTCCT TCTCAACTTA CTATGGATCA
TAGCACATCT ATTAAAGAGG AAGTAATTAG
GATTAGAAGT GAGCATTTGG ATGATCCTTT
CGCGATTAAA AATGATAGAG TGAAAGGTTC
CTTGAAAGTT ACTCGAGCTT TCGGGGCAGG
ATATCTCAAA CAGCCCAAGT GGAATAATGC
ACTTCTAGAG ATGTTCAGAA TTAACTACAT
TGGGAATTCG CCTTACATCA ACTGTTTACC
ATCGCTTTAC CACCACACTC TTGGTTCGAG
AGACAGATTT TTGATCTTAT CATCTGATGG
TCTTTACCAA TACTTCACAA ATGAAGAAGC
AGTCTCAGAA GTAGAGACCT TTATGTCTAT
ATTCCCCGAG GGAGATCCTG CACAACATCT
CGTCGAAGAA GTGTTATTCA GAGCTGCTAA
GAAAGCTGGA TTGAACTTCC ATGAGTTGCT
CGATATACCT CAAGGAGATC GTAGGAAGTA
CCATGATGAT GTTTCAATTA TCATTTTGTC
CTTCGAAGGA AGGATATGGA AATCATCGTT
GTAAATCAGC TAGACACAGG AATTTTTATA
TTTTACCCTC AGAAATCAGG AAAAAAAGAA
AGTACATAGA AAAAATCGAG CTAATTTTGC
TGTTAACCGT TGTTTACCCA ATTTTAGCAG
TAGTGTTTAT AGTATACAGT CTAGGCTGCT
CGATAAAAGA TAGCGAGGCT GAGGTTTCTT
GATCCAGAGA TTGTAAAATT GCCAATAAAC
TTATAACAAC CCCTGCCTCT TCTACATTCA
AATGTTATTA GGACATGGTA AGTTTTGTAA
CAGATGGTGC TCCTTGTATA CATTCTGGAG
TTCCATTTCA CAAAAAAAAA AAAAAAAAAA
AAAAAAAAAA AAAA
|
C456AAACCGGTTGCGATTGGAAAATACTTCTGGTGCTCTisoflavone synthase-SEQ ID N° 245
TACAGGAAAATCACTATCAGGTCATTTCCTTTCGGTTlike protein
CAGGAAGAAGAATGTGTCCAGGGAATGTCGTTGGG
TTTAGTTA
|
C457TCGGGTATTG AAGCACAAGA ATGGGAAGTTacetyl Co-ASEQ ID N° 246
GGGTGTTGCA GGAATCTGCA ATGGGGGAGGacetyltransferase
AGGCGCATCT GCTCTTGTTG TAGAGCTCAT
GCCTATAAGG ATGGTGGCAC GTTCATCGCT
TTGAAACTGG AATAGTTTGT ACTATATTTA
CGTCTAGCTG CTGCACAGTT GCATGCCTGC
TGAGTTCTGC CACATTGCGT CAAAAGTAGT
GAGGTATCTG AATGCTTGTA TCCATTATGT
AAAACCATAT AAGCAATAAC CTAATAATAC
CATGAAAATC GAGCAAACAC TTGTTTCCCT TA
|
C458aGATCCTGGAG AATACTGGAG AGCTGTGATGspecific tissueSEQ ID N° 247
AACGATGAGC CAATGCCTGA AGCAATCAAAprotein
CATCTTATGC CTCAGCATTC TGTTCCTCTC
TCCATAGAGA AAACTGATTG TTACACATTA
CCTTCTACTG GAGGTGAAGC CTTTGAACCA
AGGCCTAATC TATCTGTCTA CCACGATGAC
GCCAAGCTGA AAGAAGCTGA GAAATTATTA
TTTATGAAAG ATTTTGAGCC AAGGCCTACT
ATAACTGGTT ATCATAATAA TGATGCTGGT CTTA
|
C458bGATCCTGTAA TGAAGGAAGA AATTGACAGGSKP1-like protein ?SEQ ID N° 248
GAGGTTGAGG ATTTTGCTAG GAGACTGAAC
TCTGTTTGGC CAGAAAGAAT GCAGGAGATT
TTGTCTTTGG GTCAAGAGAG GAGGCCTGTA
CCACTATCTG TGAATGGGAA TGGTTCCCTA
AAGAGATATA CGGGTTTGGA TGGGAGATAA
TGGTTCAAAT GGTGGATGAT GAATCTTTTG
GCTTCAGTCG AGCTTACTCA GGACTCATCA
TCACTGGTTT TGTTATTACA TAGTGTGTTT GCTTA
|
C461GATCCTGATCCTAGACATTATTTACCTCTTTACCTTgene feebly proteinSEQ ID N° 249
AGACCAGCAACCTGATATGTTTTATAGGATGTGCA
CTTTGTAACCTTTGTATGAGATGAATATGTAACATG
GTGTACGTAAAGTTTGAAAGTATAATATGTAAGAT
CACGTAAATCTATAGGTAAGGCTTA
|
C462GATCCTGGTAGTTTCAAGACATTTGATCTTAGCTACputative peroxidaseSEQ ID N° 250
TTCACAGCTTTTGCTCAAGAGGAGAGGTCTGTTCCA
ATCTGATGCAGCCTTA
|
C463aGATCCTGAGA AAGCTGTAGA AATGGTGGATglutamateSEQ ID N° 251
GAGAACACTA TTTGTGTAGC TGCTATCTTGdecarboxylase
GGTTCCACCC TTA
|
C463cGATCCTGGAT GCAGGCGGGT TTTTATCTAGADP-ribosylationSEQ ID N° 252
TTATTTTTTT CTTCTCAAGT CAGTGTGGTTfactor
ATGAACATCT CCTTTA
|
C464GATCCTGATAAACCAACATTATCGTAGAGAATGTTThistamine-releasingSEQ ID N° 253
TCTCTGTTTCTCCCTCTGAAGAACTTGCTTAfactor homolog
|
C465TAATCCAAAGTAGCAGATAATATCATAAATGCGCGputative proteinSEQ ID N° 254
GAAGAACAACCCAACACAGCTCGATACCAGGGTGTkinase
CACTAGTCAAGAGCATCTATAAAACATAATACAAG
TCTGAAGAGTCTATAACTATTACAAATGTCTGATAC
AAGATAGAAATGATAAAGAGGGAGAAACACATGA
CTACGGACATCAAACAACTACCTCGTGGTCTCTAA
ATGTGCTAGGAGCTCTCAACTTACACTTGCAGGATC
|
C466GAAGCTGGGCACAATGAGCCTAGCTTGGTAGCAAGputativeSEQ ID N° 255
ACTTGTGAACTTACTCAGATACTATGCTGCTGGGCTtranscription factor
CGATTCTATTGGTTTCAGCCTTCCACCATACAGCCCSCARECROW
TTGCAGGATTA
|
C467ATCCTGTAG AGAAGGGATA TGTGGGTCCTsuccinateSEQ ID N° 256
GTGCTATGAA TATTGATGGT TGCAATGGACdehydrogenase iron-
TTGCTTGTTT GACTAAGATC GATTCGGGTGprotein subunit
CTGAATCGAC GACTACGCCG TTGCCACATA
TGTTTGTGAT TA
|
C469aGATCCTCTAC ATGAAAATGC AAATTTCATGputative proteinSEQ ID N° 257
AATGTGAAAT GGTATACTTT GCTTCGTAAGAT5g08550 [A.
TATGGACTCT CTACAGATGA AAATCCAAATthaliana]
AGCTTTGATG ACGCTGATGC CAATCCTGTT
CAATTGGTGG TGAAACTTGC AATGGCCATT
CTACATAACC GGTTAGCTCA GTGCTGGGAT
GTGTTTAGCA CCCGTGAGAC ACAGTGTGCT
GTATCTGCCA TAAATCTGTT GTTA
|
C469bGATCCCAAGA GACTGGTTGA ATACTACAAAputative glutathioneSEQ ID N° 258
AACCGTTTTA TGGCCTAGAA TTTCAAAACGS-transferase
GTTTGTCAAC CATTGGTGAA ACTGCGAATG
AAGCACGCGC TGTATAAGTA TGTCATGGAG
TTCTACAGAA TTGTTGATTA GTAATAGATA
AATAAATTGG TCATGTCCTT TTTTTTATCT
GTAGAATTGT GAATTATTTT TGGGGTTTGG
TGTTTATGCT AGGGACTTGG ATTA
|
C471aGATCCTTTTCTGAAAAAATTCTTTTTCCAACGGTTTAChexose transporterSEQ ID N° 259
AAGAGAACAAAGGATCAAGGATTGAACAGTAATT
ACTGCAAGTATGATAATCAAGGGCTGCAGCTATT
ACTTTCATCTTTATATCTGGCCGGTTTA
|
C471bGATCCTTACAGGTGGTTCAGTCATAGAATCTGAGGaldehydeSEQ ID N° 260
GTAACTTTGTGCATCCAACAATTGTTGAAATATCTTdehydrogenase
CAAAAGCTGAAGTTTGTGAAGGAAGAATTGTTTGCT
CCAGTTCTTTATGTAATGAAGTTTA
|
C472GATCCTTCAC TGTGTAATCA AACAAAAAGAquinolinateSEQ ID N° 261
TGTAAATTGC TGGAATATCT CAGATGGCTCphosphoribosyltrans
TTTTCCAACC TTATTGCTTG AGTTGGTAATferase
TTCATTATAG CTTTGTTTTC ATGTTTA
|
C474TGCGTAATCAAACAAAAAGATGTAAATTGCTGGAAquinolinateSEQ ID N° 262
TATCTCAGATGGCTCTTTTCCAACCTTATTGCTTGAphosphoribosyltrans
GTTGGTAATTTCATTATAGCTTTGTTTTCATGTTTCAferase
TGGAATTTGTTACAATGAAAATACTTGATTTATAAG
TTTGGTGTATGTAAAATTCTGTGTTA
|
C475TAACGTTGGTTCTCCAAGGGGAATTTCAGGCGAGCputative lipidSEQ ID N° 263
GAGGCAGTGACATGCAGTGCCTCGCAGCTAAGTGAtransfer protein
GTGTGTGGGGGCGGTGACGTCGTCACAGGCACCAT
CTTCGGCATGTTGCAGCAAAATGAGGGACCAACAG
CCTTGTCTGTGTGGGTACATGAAGGATC
|
C476aTGTCTGGATC AAACCTTGCT GCCCCATATCMAP kinaseSEQ ID N° 264
CTCTCTCCTT CCTAACATGG TGGGGTGGCT
ATGTCTGTCC CCACTATTCC CACGTGCTTT
CTCCTCCCCA CTTATATAAA CACAAATTTC
ACTGAAGAGG AGAAGAATCC ATTTCCATTC
CAACAAATCC AAACGGACCC GACCCGATTC
ACCCCACCAC ATGGCCTTAG TCCGAGAACG
TCGACAGCTC AATCTCAGAC TTCCCTTGCC
GGAACCCTCC GAACGCCGCC CTCGTTTCCC
CTTACCCCTC CCTCCTTCCA TCTCCACCAC
CACAACTGCT CCTACCACTA CTATCTCCAT
CTCGGAACTC GAAAAGCTTA AGGTTCTCGG
TCACGGAAAC GGCGGAACTG TGTACAAAGT
CCGCCACAAA CGCACATCCG CAATCTACGC
TCTCAAAGTC GTTCACGGCG ATAGCGACCC
CGAGATTCGC CGTCAAATCC TCCGTGAAAT
CTCCATCCTT CGCCGGACGG ATTCTCCTTA
CGTCATCAAG TGCCACGGTG TCATCGACAT
GCCCGGCGGC GACATCGGTA TCCTTATGGA
GTACATGAAC GTCGGCACAC TAGAAAGTCT
TTTAAAATCA CAAGCAACTT TCTCCGAACT
TAGCTTAGCA AAAATCGCTA AGCAAGTACT
TAGCGGACTC GACTACTTAC ACAATCACAA
AATCATTCAC AGAGATTTAA AACCTTCGAA
CCTTCTAGTA AATCGCGAGA TGGAAGTAAA
AATCGCCGAT TTCGGAGTGA GTAAAATCAT
GTGCAGGACT TTAGATCCTT GCAATTCATA
CGTTGGAACT TGTGCTTATA TGAGCCCAGC
AAGGTTTGAT CCAGACACTT ATGGAGTTAA
CTACAACGGT TACGCAGCTG ATATTTGGAG
TTTGGGCTTG ACTTTAATGG AACTATATAT
GGGCCACTTT CCGTTCTTGC CACCTGGACA
GAGACCGGAC TGGGCTACGC TAATGTGCGC
CATATGCTTC GGTGAGCCGC CCAGTTTGCC
TGAAGGGACG TCGGGAAATT TCAGAGATTT
TATCGAGTGT TGTTTACAGA AAGAGTCCAG
TAAAAGGTGG AGCGCTCAGC AACTTTTGCA
ACATCCGTTT ATACTGAGCA TCGATTTGAA
GTCCACGTAA AAAGGGACAG AGCAAAGCTG
AAGACTGGGA AATTGAATAG TTCCGAGTTG
TTTGTAAATA GAGAACGGGA CCTTCTTTTT
TTTTTTGAAC TTTTTGGGTT AACTTTTTTG
TATATTCTTC AACTATGAAT CTGTGAAATC
AGAATCATTC TCTGTATCTG GAAAAAGTGC
CCATTTTCCA TAGCAAAAAA AATCATCTGT
GGAATTTTGA GACTTAATGA ATTCAATCTT
TTTCCAACAA AAAAAAAAAA
|
C476bGATCCTCGTG AGGTTGCTGC TGCTAAAGCAsuccinyl-CoA ligaseSEQ ID N° 265
GATTTGAATT ATATTGGCTT GGATGGAGAA
ATTGGTTGCA TGGTTA
|
C477CCAGCTATGA CCATTAGTGC CTATTTAGGTputative zincSEQ ID N° 266
GACACTATAG AACAAGTTTG TACAAAAAAGtransporter
CAGGCTGGTA CCGGTCCGGA ATTCCCGGGA
TTTTTTCTAT TCCGTGATCC CCTTTATCTC
TTCCCCTTTT TCTCCTTTTT CTTCTTCGTT
TAGGTATATA CCCCATATAT ATAGCCTATA
AACCATATAG CTATATAAAA CTCTACATCT
ATTTTGAGAA TTTGATGATT TGGGTCGGCT
AAAAATACAA TCTTTTTAAT ACTCTTTTGA
AATCTTGGCA CAAATTTGTG AGATGGAGAC
GCAGAACCTG GAACGTGGAC ATGTAATTGA
GGTACGTTGT GACATGGCAG CTCAAGAAAA
GGGGACTAAA ATCTGTGGTT CAGCACCGTG
TGGATTCTCA GATGTTAACA CCATGTCTAA
GGATGCACAG GAGAGATCAG CATCCATGAG
GAAACTTTGC ATCGCGGTTG TCCTCTGCAT
CATATTTATG GCTGTTGAGG TTGTTGGTGG
TATTAAAGCC AACAGTCTGG CAATATTGAC
CGACGCTGCT CATCTACTAT CAGATGTTGC
AGCTTTTGCA ATATCCTTGT TTTCACTCTG
GGCAGCAGGA TGGGAAGATA ATCCACGCCA
GTCCTATGGG TTTTTCAGAA TCGAGATACT
CGGGGCATTA GTTTCTATCC AAATGATATG
GATTCTAGCT GGGATCCTTG TTTATGAAGC
CATTGCTCGA CTTATTCATG ATACAGGTGA
AGTTCAAGGC TTCCTCATGT TTGTGGTGTC
TGCATTTGGA TTAGTAGTGA ACCTCATCAT
GGCACTCTTG TTAGGTCATG ATCATGGCCA
CGGCCACGGC CATGGCCACA GCCACGGTCA
TGACCATGAA CACGGCCATA ATCATGGCGA
GCATGCTCAT AGCAATACTG ATCATGAGCA
CGGCCATGGT GAGCATACGC ATATACATGG
AATTAGCGTT AGCCGACACC ATCACCATAA
TGAGGGACCT TCGAGCCGAG ATCAACACTC
GCACGCACAT GATGGAGATC ACACCGTGCC
TCTACTTAAG AATTCATGTG AGGGTGAAAG
TGTATCAGAA GGTGAAAAGA AAAAGAAGCC
CCAGAACATA AATGTTCAGG GAGCTTATCT
TCATGTAATC GGAGATTCTA TTCACAGCAT
AGGGGTGATG ATTGGGGGAG CTATTATATG
GTATAAACCA GAGTGGAAAA TCATCGATCT
AATTTGCACT CTCATTTTCT CTGTAATTGT
GCTCGGGACA ACCATTAGGA TGCTTCGGAG
TATTCTTGAA GTATTAATGG AGAGTACGCC
CAGAGAAATT GATGCAACAA GGCTCCAGAA
GGGGCTCTGT GAGATGGAGG ACGTTGTCCC
AATCCATGAA TTGCACATAT GGGCAATTAC
AGTCGGCAAA GTGCTCCTGG CTTGCCATGT
CAAGATTAAG TCCGACGCTG ATGCTGACAC
GGTGCTGGAT AAGGTGAT
|
C478ATATGTTACAGGGTCCATGCAGAGCGCTATTTGGCTsucrose transportSEQ ID N° 267
GATCTGTCCGGCGGAAAAGCCGGGAGGATGAGAAprotein
CATCAAAGGCCTTCTTCTCCTTCTTCATGGCCGTCG
GAAACGTCCTCGGTTACGCCGCCGGTTCCTACTCCC
GCCTCTACAAAATCTTCCCCTTCTCTAAAACCCCAG
CCTGTGACATCTACTGCGCCAACCTCAAATCATGTT
TCTTCATCGCCGTCTTCCTTCTACTCAGCTTA
|
C479TGTGTAATCAAACAAAAAGATGTAAATTGCTGGAAputative proteinSEQ ID N° 268
TATCTAGATGGCTCTTTTCCAACCTTATTGCTTGAGAAK58573
TTGGTAATTTCATTATAGCTTTGTTTTCATGTTTCAT[Acidianus sp.]
GGAATTTGTTACAATGAAAATACTTGATTTATAAGT
TTGGTGTATGTAAAATTCTGTGTTACTTCAAATATT
TTGAGATGTTGAATATCATGTTCTTA
|
C480TCCAAGAGTCTACCACGAGCTAATTCCGAATGTAGgamma-SEQ ID N° 269
TTCTGTACGAGAACTGGACGTGCATCGATGGCGATglutamyltransferase-
CATATTGAACTCTCGGACGAGAAAAAGGCATTTCTlike protein
TGGAAGAGAGGGGTCATCAACTCGAGGCACATAAC
GGAGGAGCCATCTGTCAGCTAATTGTTCAAAACCT
TCCAAATTCTCCCTTA
|
C481GATCCTTCAC TGTGTAATCA AACAAAAAGAquinolinateSEQ ID N° 270
TGTAAATTGC TGGAATATCT CAGATGGCTCphosphoribosyltrans
TTTTCCAACC TTAferase
|
C482GATCCTTGGC AGACAAACAG GGTCGAAAGCputative proteinSEQ ID N° 271
GGGCTTGTGT CACGTACTGC ATCACTTACAAT4g27720 [A.
TTTTGAGCTG TATGACCAAA CATTCTCCTCthaliana]
AGTACAAAAT TTTGATGTTG GGCCGTATAT
TAGGAGGAAT TGCCACCTCT CTCCTATTCT
CAGCCTTTGA ATCTTGGCTT GTTGCAGAGC
ATAATAAGAG GGGTTTTGAT CAACAATGGC
TATCATTA
|
C483aGATCCTTTGG GCAAAGGTCG AGATGGAACTreceptor-like proteinSEQ ID N° 272
GCTTTCTCTC AGGAAGTATT TGAGAGCTTTkinase
ATGTTCAATT TGGATGAAGT TGAGTCTGCT
ACACAGTATT TTTCAGAGGC AAATTTGTTA
GGGAAGAGTA ATTTCACAGC CGTTTATAAA
GGGACACTGA GGGATGGGTC TTCTGTTGCT ATTA
|
C483bGATCCTTTAC AAACAGAGTA GAAAGATGCAmutator-likeSEQ ID N° 273
GTGAGACATG AATTACATTG ATTTTGGTTTtransposase
TGGCATTCTT TTCTCGCAAG ATATGTTGTA
AGCATAGTAT CAGTAGGTCA TTATTCCGAT
TTTCCCCTCA ATTGGGGAAA GGGAGGAGGT
GTGTGACCTT GGTCACGGTT GTACCATTA
|
C483cGATCCTTGGGCCCGATGTCCATGAGGTGGATTACGdelta-1-pyrroline-5-SEQ ID N° 274
TTGCATGGGTTTGTGATCAAGATGCATATGCATGTAcarboxylate
GTGGTCAGAAGTGTTCAGCTCAATCAATATTGTTCAdehydrogenase
TGCATGAGAATTGGGGTAGAAGCTCTCTCTTAGAC
AAAATGACCGAGCTTGCTGCAAGAAGAAAGTTGGA
TGATTA
|
C484aAAAACATCAT GAATAACACC ACCTTTTCCGC3HC4-type RINGSEQ ID N° 275
TCCAAATTTC CGACACCGGA GGTTTCCTCGzinc finger protein
GATCGGGAAA AATCGGAGGA TTCGGCTACG
GAATTGGTGT TTCAGTAGGT ATTCTTATTT
TAATTACAAC AATAACCCTC ACTTCCTATT
TTTGTACTCG AAATCAAACA TCAGAGTTAC
CAACAAGAAG ACAAAGAACA ATTAATCGAA
ACGAGCTTTC TGGACATTGT GTGGTTGATA
TTGGGCTCGA TGAAAAAACC CTTTTGAGTT
ATCCCAAGTT GTTGTACTCT GAAGCTAAGG
TCAATCATAA GGACTCAACA GCTAGTTGTT
GTTCCATATG TTTAGGAGAT TACAAGAAAA
AAGACATGCT TCGATTGTTG CCAGATTGTG
GACATTTGTT TGACTTGAAA TGTGTGGATG
CTTGGCTCAT GTTGAATCCA AGTTGTCCAG
TTTGTAGAAC ATCTCCATTG CCAACACCAC
AATCTACTCC TTTGGCTGAG GTTGTTCCTT
TGGCAACTAG ACCTTTGGGA TGA
|
C484bGATCCTTGTG CCCCTTCCGG AGCCAGAAGCkataninSEQ ID N° 276
AAGGTGCGCC ATGTTTGAAG AATTACTACC
ATCACTGCCT GAAGAGGAGT CACTTCCATA
TGATTTATTG GTAGAAAAGA CAGAAGGTTT
TTCCGGTTCT GATATTCGGT TGTTGTGCAA
GGAGGCTGCC ATGCAACCAT TA
|
C485CTTGGTAGTGCGCTTGGGCTGTTCGGTGTTATTGTGputative vacuolarSEQ ID N° 277
GGAATTATTATGTCAGCTCAAGCATCTTGGCCATCCATP synthase
AAGGGTGCGTAAGGCTTCATATTATGTGCTTGCTATproteolipid subunit
TGCTCCGGACTCATCA
|
C5GATCCCAAAA ATAAGTACCA ACTTCTTTGCambiguous hitSEQ ID N° 278
TATGGTTTTT TGTGGAGAAC ATTTCACATC
TTTTTCCCTG GGGATATATA CTGTCCTGTC
ATTGAATCTA ACAATGTCTT CTTCAACTTT
CTTGGCCGCT CACTCCCCTC TGCTCAGCCT
CCCCCACAAC CTTCTAAGAA AACAAACAAA
ACACAAAATA CTCAATCAGC AGGTGGTTTA
|
C6GATCCCAAAG AAAGAATGCC AATTTCGGATtransposase-likeSEQ ID N° 279
TACGGTCCTA ATATTCGAGA CGAAGTAAGGprotein
AGATATTATA TAAACAAAGG GCCTTGTCAA
CCGATTGGTC ATGCGTTTCC TAAAACTAAG
ATTGGGAGTA AAATGCGTCC ATTTAGTCCC
ACTTGGTTTA
|
C7GATCCCATCG ATTATTTGGT TTTCCGGTGAputative proteinSEQ ID N° 280
GGATTCAATC CATCGAGGTT CCATCGTGGTAT5g44010 [A.
CTCCGGCTTA CGGTCTATTT GTGTTCAACTthaliana]
ATAGTGTCGC ATTTTTCTTG TAAACTAGTT
GGAATATCTT TA
|
C8aGATCCCAATT TTTCAGAATT GCTACTCTCAphosphate/phosphoSEQ ID N° 281
GTATTGTCTT TTGTGGGTCT GTTGTGGGTGenolpyruvate
GCAATATTTC TTTAtranslocator-like
protein
|
C8cGATCCCATTA TATCCTACCG CAATTTTTCAputative proteinSEQ ID N° 282
GGGTGAAATT GATGGTGAAG GGATGAGTTTAt1g10410 [A.
TGTCTTGTAC TTTAthaliana]
|
C9GTGCTGTTCC AAGTAATGCC TCTGACAATGpyrophosphate-SEQ ID N° 283
TATATTGCAC GCTTCTTGCT CAAAGTTGTGdependent
TTCATGGAGC AATGGCAGGG TCCACAGGTTphosphofructo-1-
ACACCTCGGG GCTTGTCAAC GGTCGCCAGAkinase-like protein
CTTATATTCC ATTCAATCGT ATAACCGAGA
AGCAAAATAT GGTGGTTATA ACTGACAGGA
TGTGGGCACG TCTTCTTTCG TCAACCAATC
AGCCAAGCTT CTTGTGCCCG AAAGATGCTT
GAAGAGGTTA
|
MAP2ACAGCTATGA CCATTAGGAC CTATTTAGGTputative protein [A.SEQ ID N° 284
GACACTATAG AACAAGTTTG TACAAAAAAGthaliana]
CAGGCTGGTA CCGGTCCGGA ATTCCCGGGA
TGTTACTTGA CGTGTTTTCT TTTCTTTTAC
TCTCCGCCAA TTCAAGACTT CTCAAAGTAC
TTTCTCATCT AAAGCAAAAT GTCCGACGGA
GGATTAACGG TTTTGGACGG ATCACAGCTG
AGAGCCGTCA GCCTATCGTT ACCGTCATCG
GACGGCAGCT CAGTCACCGG AGCTCAGCTT
CTCGATTTCG CTGAATCCAA AGTCTCAGAG
TCGCTCTTCG GCTTCTCATT GCCGGATACT
CTCAAGTCCG CCGCTCTCAA ACGCCTCAGC
GTCGCCGATG ACCTTAATTT CCGCCGTGAA
CAGCTCGATC GTGAAAATGC CTCGATCATT
CTCCGAAATT ACGTCGCTGC CATTGCAGAC
GAACTCCAAG ATGATCCTAT AGTCATTGCA
ATTTTGGATG GGAAAACTCT TTGTATGTTT
TTGGAAGATG AAGACGACTT TGCCATGTTG
GCTGAGAATC TTTTCACTGA TTTAGACACA
GAAGATAGAG GAAAGATCAG AAGAAATCAA
ATACGGGATG CTCTCATTCA TATGGGTGTT
GAAATGGGAA TTCCTCCTCT TTCAGAGTTT
CCTATACTAA GTGACATTTT AAAGAGGCAT
GGAGCTGAAG GAGAGGACGA ACTGGGGCAA
GCCCAATTTG CACATTTACT TCAGCCTGTG
CTTCAGGAGC TGGCAGATGC TCTTGCTAAG
AACCCTGTGG TTGTAGTGCA GAAAATCAAG
ATCAATAATG GTTCCAAATT AAGAAAGGTT
TTGGCTGATG AAAAGCAACT AAGTGAGACA
GTAGAGAAGA TAATGCAGGA AAAGCAGGAT
GAGAAGGATA GTCTAAGTAA CAAAGATGCC
ATTCGGTGTT ATCTCGAGAA AAATGGAGCA
TCATTGGGCT TGCCACCTCT GAAGAATGAT
GAAGTGGTGA TTCTTCTATA CGACATTGTA
TTAGGTGATA TAGAAAATGG AAAGACCGAT
GCAGCATCAG ATAAGGATGA AATCTTGGTT
TTCCTGAAGG ATATCCTTGA GAAATTTGCA
GCTCAACTTG AAGTTAACCC AACTTTCCAT
GATTTTGACA ATTGAAGTTA TATACACCCT
CTCAAGATAA GTTATACCAG AAAGATCATA
TATATGTATT TTAGCCTTTG CTTTTGGTGC
CAAGGCAACT TATAGTGTTT AATTTTTATA
TTGTAGAATA ACAAGTATTC ATGAGACAGA
TAAATCAAAC CCATTTCATT TGCATTTCAA
AAAAAAAAAA GGGCGGCCGC TCTAGAGTAT
CCCTCGGGGG GCCCAAGCTT ACGCGTACCC
AGCTTTCTTG TACAAAGTGG TCCCTATAGT
GAGTCGTATT ATAAGCTAGA CACA
|
MAP3aATCCAGAATT AATAAACCCT AGTAAGTGAAethylene-responsiveSEQ ID N° 285
AGTGAAAGAA ACTACTCATC CAAATATCTAtranscription factor
TAGAAAAGTA AATGAATCCC GCTAATGCAA
CCTTCTCTTT CTCTGAGCTT GATTTCCTTC
AATCAATAGA AAACCATCTT CTGAATTATG
ATTCCGATTT TTCTGAAATT TTTTCGCCGA
TGAGTTCAAG TAACGCATTG CCTAATAGTC
CTAGCTCAAG TTTTGGCAGC TTCCCTTCAG
CAGAAAATAG CTTGGATACC TCTCTTTGGG
ATGAAAACTT TGAGGAAACA ATACAAAATC
TCGAAGAAAA GTCCGAGTCC GAGGAGGAAA
CAAAGGGGCA TGTCGTGGCG CGTGAGAAAA
ACGCGACACA AGATTGGAGA CGGTACATAG
GAGTTAAACG GCGGCCGTGG GGGACGTTTT
CGGCGGAGAT AAGGGACCCG GAGAGAAGAG
GCGCGAGATT ATGGCTAGGA ACTTACGAGA
CCCCAGAGGA CGCAGCATTG GCTTACGATC
AAGCCGCTTT CAAAATCCGC GGCTCGAGAG
CTCGGCTCAA TTTTCCTCAC TTAATTGGAT
CAAACATTCC TAAGCCGGCT AGAGTTACAG
CGAGACGTAG GCGTACGCGC TCACCCCAGC
CATCGTCTTC TTCATGTACC TCATCATCAG
AAAATGGGAC AAGAAAAAGG AAAATAGATT
TGATAAATTC CATAGCCAAA GCAAAATTTA
TTCGTCATAG CTGGAACCTA CAAATGTTGC
TATAACTGTA TTTAATTTGG AAGGAATTAA
TTAAGGTTAT TCTATGTCTT TGTATTAGAA
TTTAGAATAA TTCCCTAAAG CTCCTGAAGA
ACGAAACTTG TAAACATCTC TCTGTCTCCG
TATCATGTTC TAATTTAACA TGAAATTACA
TGAGCGCAAA AAAAAAAAAA AAAA
|
MAP3bTTGGGGGAGG TTCGCGGCGA AGATAAGGGAAP2-domain DNA-SEQ ID N° 286
CCCGGAGAGA AGAGGCGCGA GATTATGGCTbinding protein
AGGAACTTAC GAGACCCCAG AGGACGCAGC
ATTGGCTTAC GATCAAGCCG CTTTCAAAAT
CCGCGGCTCG AGAGCTCGGC TCAATTTTCC
TCACTTA
|
MAP3cTTGGGGGAGG TTCGCGGCGG AGATGGAAGCputative proteinSEQ ID N° 287
ACTTATGGAG GCCAAAGGGG TGAGCAAGTAAt5g28830 [A.
TATCGAAGTG CCAGGTGCTC TCCTTCCCCAthaliana]
GGAAGAGTAT CCTGAAATAG TTGCAGAACA
GCTTTACAGG TTTCTGCAAG AGAAGTTTGA
GCTTCAGGCT TA
|
MAP4bTTGGGGGAGG TTCGCGGCGG AGATGCACTCcalmodulin-relatedSEQ ID N° 288
CGTTATGAAG GGCATTGGAG AGAAGTGTTCprotein
GCTTA
|
MAP5GGCCGTGGGGGAGGTTTGCGGCTGAAATAAGGGACAP2-domain DNA-SEQ ID N° 289
CCGGAGAGAAGAGGCGCGAGATTATGGCTAGGAAbinding protein
CTTACGAGACCCCAGAGGACGCAGCATTTGGCTTAC
GATCAAGCCGCTTTCAAAAGCCGCGGCTCGAGAGC
TCGGCTCAATTTTCCTCAC
|
MC101TAAAGGCGCC GACTATGCTG CATCATTCTGputative proteinSEQ ID N° 290
GGCTGAGGTA TTTGATGGGG TGAGGCAGAGAt3g06150 [A.
AGGGTTGACA CCACCAGAAG TAATATATAGthaliana]
GACCACAGTCACCACAGGCG GATACGCTAG
AAGATTGGCA TTCAATCCAA ATAAAATGGA
GGCCTTCAAT GGGGTAGTCT TGGATAAGTT
GAGGGCATAT GGTTTAGTTG ATCGCGTCAT
TGATGATTTC GACATGACTT ATCCTTGGCA
CTATGATAACCGATGCAATG ACGGGGTGCA
TTATGGCCGT GCTCCTGCCA AG
|
MC102TAAAGGTGGA GAATATTTTG GTGATGGGACcarbonic anhydraseSEQ ID N° 291
ACAGCTGCTG TGGAGGTATA AAAGGACTCA
TGTCTATCCC TGATGATGGC TCCATAGACA
GTCATTTCAT CGAAGAATGG GTCAAAATCT
GTTTGATATC AAAGGCAAAG GTAAAGAGAG
AACATGGCGA CAAGGATTTC ACTGAACAAT
GTACAATATT GGAGAAGGAGGCAGTAAATG
AATCACTAGC CAACTTACTG ACATATCCAT
TTGTGAGGGA AGCTGTG
|
MC104TAACCTTGGA AAGACATGGG AGAAGCTGCAP40-like 40SSEQ ID N° 292
AATGGCTGCG AGGGTTATTG TTGCTATTGAribosomal protein
GAATCCAAAG GACATAATTG TGCAATCAGC
CAGGCCCTAT GGCCAGAGAG CTGTCTTGAA
GTTTGCTCAA TACACTGGCG CAAGTGCCAT
TGCTGGCCGT CACACTCCCG GTACTTTTAC
CAACCAGCTT CAGACTTCAT ACAGTGAGCC
CCGACTCCTC ATTCTCACTG ACCCAAGAAC
TGATCACCAG CCTATCAAGG AAGCTGCACT
TGGGAACATC CCTACTATGG CTTTCTGTGA
CACTGATTCA CCGATGCGCT ATGTTGACAT
TGGTATCCCT GCCAATAACA AAGGGAAGCA
CAGTATCGGT GTTCTTTTCT GGCTCTTAGG
AAGGATGGTA CTGCAGATGC GCGGTAGCAT
TCCTCAGGGA CACAA
|
MC105TAACAGACGT TGATGATATG ATGTTATGGGalanine acetylSEQ ID N° 293
CAGGCGACGA TCGAGTAACT AGGACCATCCtransferase-like
GATGGAAAAC TTTGACCTCG AAAGAAGAGGprotein
CATTGGCCTT CATCAAGGAA GTGTGTATAC
CTCACCCCTG GCGTCGATCA ATATGCATCG
ATGACCGATC GATCGGGTTT GTATCAGTAT
TTCCTGGATC AGGTTATGAT AGAAGCCAAG
GTGTCATAGG ATATGATATT GCAGTTGAAT
ATTGGGGGCA GGGGATTGCT ACAAATGCTA
TCAAAATGAC AATCCCTCAA GTGTACAATA
ACTTTCGTGA AATAGTAAGG CTTCAGGCAT
TAGCTAATGT TAAGAATAAG GCATCCCAAA
GGGTGTT
|
MC106AATTCCCCCATGTGCATGCCTGAGTGCACAAACAGputative lateSEQ ID N° 294
GAAGGCGAATTGCAATCACCCCGGAGCAGCATGCTembryogenesis
TGGATCprotein
|
MC107aTAACCCAATTTTGTTGCCAAAGAAAACTGGAGGTGhistone H2A-likeSEQ ID N° 295
AAAAGGCTGGCAAAGAACATAAATCTCCTTCCAAAprotein
GCAACCAAATCTCCTAAGAAGGCTTAGATTTAGTG
GCTGTTATAAGCCTCTTGCTTTTCTATCTTTATTTGG
ATC
|
MC107bTAACACGGGAATGATACCAGAGATACAGGCTACAGproline transportSEQ ID N° 296
TCAGACCACCTGTAATTGAGAACATGTTGAAAGCTprotein
CTGTTCTTTCAGTTCACAGTGGGAGTTGTGCCCTTG
CATGCTGTTACTTATATAGGTTATTGGGCTTATGGA
TC
|
MC108TAACAACCCC ATTTGGAATA GCACTTGGAAputative metalSEQ ID N° 297
TTGGTTTATC AAAAGTGTAT AGTGAAAATAtransport protein
GTCCAACAGC ACTA
|
MC109CGTTCGTGGGACCTACAAGGGGCGCGAGGGCAAAGputative 60SSEQ ID N° 298
TCGTTCAAGTGTACCGTCTGAAATGGGTAATTCACAribosomal protein
TTGAACGCAGTAACACGTGAGAAGGTTACTC
|
MC113AGTAAAGGTG CAGAATATTT TGGTGATGGGputative carbonicSEQ ID N° 299
ACACAGCTGC TGTGGAGGTA TAAAAanhydrase
|
MC114cGATCCAGCAG AGTCGGAGGT TGCCGGATTTputative beta-SEQ ID N° 300
CCTTCAGAGT GTAAACTTGA AGTACGTTAketoacyl-CoA
synthase
|
MC115TAAGCACCCT AGTATTTCTG CATACATGGGputativeSEQ ID N° 301
ATCAAGACTC GCTGGGAAAG TTTTGGCAACDihydroorotase
CTTTGTGCGC GGAAATCTTG TATACAAGGA
GGGAAATCAT GCTTCTCTTG CATGTGCTCT
CCCAATTCTG CATAGATAGT TAGTGCATGA
GCCTATCAGT AACTCCACCA ACTTACCATA
TATCATCCAA ATTATTTCTT CTGTGCAATC
TTCATGTTCT TTGTTGTGTC CCTTTGACAT
TCTTGGAGAT GACCATATGG CATGATATAC
AGATGGAATT GGTGACTTCC ATCATTT
|
MC116TAAGCAACCC GAAACCCGAT CCGAACCATTputative proteinSEQ ID N° 302
CAACTCGGAC TAAGTCGGTT CGGACCGAGGAt1g71780 [A.
TTCCGGAGGT CAAGGTCCAC CTGTATCGGCthaliana]
AAGGCAAGGG TCCTATCGAC GAATTCACGA
TGCCCTTAGG TGGATGGGAC CAGGATCAGC
TGGAGGTTCG TGAAATTCTC GACAAATACG
GGTTCAAATC GGTCTATGCA TTCAAACCGG
ATACGGGTCG GGGCGTTCCC ATCAGATTCA
ACCCCCGTAA CGGCCGATCT A
|
MC118TAAGGTATTT GTGAAGTCTT ACTATTTTCCN-acetyl-gamma-SEQ ID N° 303
ACAAGGAGAG ACTGCTTCAA GATTTTTTGTglutamyl-phosphate
GGAAGAGTTT TGTTTGCTGA GTTTGTAATTreductase like
TCTGTAGAAG TATTCCCGTG TATCCTGGCGprotein
TAGTTTTCAG ACGTACCCTA TATTTGATTG
CTAATTTTAT GCCTCAGAAG GAGATTATGT
GCCATAGATA AAGTTGAACA GGGGGGTGGA TC
|
MC121aAGTCCTATGTGATTGCAAGAGACCGATTTCTTGTTCputative arginineSEQ ID N° 304
AAAATGGAAAAATGTTTCCTGGTGGCGGAAGAATAmethyltransferase
CACATGGCACCATTTAGTGACGAATATTTGTATATG
GAAATAGCAACTAAGGCGACCTTTTGGCAGCAACA
AAACTACTTTGGGGTTGACTTGACACCCTTGCACGG
ATC
|
MC121bGCGACTTCCGCTTTCGGTACAGTGCAATCTTCTACC6,7-dimethyl-8-SEQ ID N° 305
TCGTGCAACAACTGTAAATCCCACACAACTGCACTribityllumazine
CTCCTCTTTACTCTTTGTCTCTGCCTTTCCACAGACAsynthase
AAGCATAACCTCTTCACCTGCACTATCATTCACCCA
ATCTCAAGGTTTAGGGTCTGCAATTGAGAGACATT
GCGACCGGTCGGATC
|
MC123TAAGCAAAGA GAGGCAGCTT GGTTTGCTGGputative proteinSEQ ID N° 306
TTCTGTGAGA TCAAGACTAC AGTATTTGGGAt2g46580 [A.
GCCCACTCCA GGACTTCCTT CTCTAGATGAthaliana]
GCAACCATTG CACGACTCGT TGGATC
|
MC124CGGGCCCAATTTGCCCTATAGTGAGTCGTATTAAAputative proteinSEQ ID N° 307
AGCAGGCAAGCCTGTTGGTGGGTTCAAGATAGGTAAt1g50570 [A.
GACAATCTGGGGAATGGACGGGTTAAAATTTTCATthaliana]
CCGTACTTCCATCAGAGAGTTATCTTACATGCAGG
TTTTTCTCTGCAAGGAAACATGGGTTGGTGGATGCT
GTTGTGAGATGTAAAAGCTCCGAGCGGACAGCTGT
TGTCGCCCTTCCTGGTGGAATTGGTACCCTTGACGA
GATTTTTGAGATTATGGCTTTGAT
|
MC125aTAATCTCAAT GCATCTTTGT TTGTTTGAATacyl carrier proteinSEQ ID N° 308
TTGTTCATCA AAATCAAAGG TACACTTGCT
CCTTGTCATT TGACTAGTTC AAGGTTGTAG
AATTTTGATC CTCTTGAGAG AGGCAATAAT
CAGACTCTTT GGAAGACCAG TTGCTCAGGC
TTTGCCATTG AGGATTATAT CATCCTTTTG
TTGCTTTTCT GGAAGACATG ACTCAGTATT
TATTCTGTTG CCGTCYLTCC TCTTATAATA
TTCGAATGCC ACAAATTCAA GCTTGGTTTG
ATTGTTGCAC TGATTTGAAA AATCTGTCTA
GTCTGGCTCA TGAACTTGTG AAGCTGATGC
TGGATC
|
MC125bTAATACAGAA GCCTTACTCT ATTGTGTACTputative proteinSEQ ID N° 309
TCCATTCTGC TGCAACCTTA CAGATTCAACAt1g69340 [A.
CAGATCTAGG ATTGATGAAG AGAATACAACthaliana]
AAATACTCGG TCGCAAGCAC CAGCGCAACC
TTCATGCGAT ATATGTTCTT CACCCTACTT
TTGGACTGAA GAGTGCAATA GTTGCACTAC
AGCTCTTTGT GGATTATGTG GTATGGAAAA
AAGTAGTGTA TGTAGATCGT CTTCTGCAAC
TATTCCGCTA TGTTCCTCGT GAACAGCTAA
CCATCCCAGA TTTTGTATTC CAGCATGATT
TGGAAGTAAA TGGAGGGAAG GGCCTAATTG
TGGATC
|
MC126TAATGGATGC TGCAACGCAA GGTGCCCTACputative proteinSEQ ID N° 310
AAGCAGGGAA GCCTGTTGGT GGGTTCAAGAAt1g50570 [A.
TAGGTAGAGA AGCTGGGGAA TGGACGGCTTthaliana]
CAAATTTTCA TCCGTACTTG CCATCAGAGA
GTTATCTTAC ATGCAGGTTT TTCTCTGCAA
GGAAACATGG GTTGGTGGAT GCTGTTGTGA
GATGTAAAAG CTCCGAGCGG ACAGCTGTTG
TCGCCCTTCC TGGTGGAATT GGTACCCTTG
ACGAGATTTT TGAGATTATG GCTTTGATTC
AACTCGAACG AATTGGATC
|
MC129TAAGCAACCC GAAACCCGAT CCGAACCATTputative proteinSEQ ID N° 311
CAACTCGGAC TAAGTCGGTT CGGACCGAGGAt1g71780 [A.
TTCCGGAGGT CAAGGTGATG AGTCCTGAGTthaliana]
AATGACAACA ATATAGCATC ATTGGTAGG
|
MC130aGATCCAAGAAGCTCTTTTGCCTAGCCTTATGAGTAAG protein betaSEQ ID N° 312
TTTTATGTTTCCTTCTGTGTTTTTCTTACAGATCTTTsubunit-like protein
TCCGCAGTAGAAGTTTTGTTTGGATTA
|
MC130bTGAGTATGTG GTGTGTTTGT CCAAAAGGTAputative proteinSEQ ID N° 313
GATTTATTGA AAAGTATCAA GCAGCTCAAGAT3g45540 [A.
TGTAGATGTG GTCATCTAAC AAATGGTGGA TCthaliana]
|
MC203TAAAGGTGCA GAATATTTTG GTGATGGAACcarbonic anhydraseSEQ ID N° 314
ACAGGTGCTG TGCAGGTATA AAAGGACTCA
TGTCTATCCC TGATGATGGC TCCATAGACA
GTCATTTCAT CGAAGAATGG GTCAAAATCT
GTTTGATATC AAAGGCAAAG GTAAAGAGAG
AACATGGCGA CAAGGATTTC GG
|
MC204ATGTATGGTA GATCAGGGCT TGATCGATTTputative proteinSEQ ID N° 315
AAGAAAGCTC AGTCATTGGA GCCATTTCAGAT5g47790 [A.
GTGTCTGCGA ATTCAGCTGC TAAACCAGCAthaliana]
TTGCAGCCTA CTACAAAGGC GGTTACACAT
CCTTTTCCAG CATATGCACA ATCCACAACA
TCTCATCAAC AAACTCAATA CGTAAATCCA
CAACCTGCTT TGCAGAAATC CGTGGCGGCA
GATGCAACCG CTTCTACAGT GCCAACTCAT
CATGTCACTC ATGGAGGGGG ACAATCAACT
TGGCAGCCTC CTGATTGGGC TATTGAGCCA
CGTCCAGGAG TTTATTATCT TGAGGTGATC
AAGGATGGTG AGGTACTCGA TCGAATTAAT
TTGGATAAGC GAAGGCATAT CTTTGGACGG
CAGTTTCATA CTTGTGATTT TGTCCTTGAT
CATCAGTCAG TCTCACGCCA GCATGCTGCT
GTGATTCCTC ACAAAAATGG AAGCATTTAT
GTGATTGATT TAGGATCTGC ACATGGAACA
TTTGTAGCAA ATGAGAGGCT AACAAAGGAT
TCCCCTGTCG AACTTGAGCC CGGACAATCT
TTGAAGTTGG CTGTATCAAC AAGGCCTTAC
ATCTTGAGAA GGAACAATGA TGCTCTCTTC
CCTCCTCCAC GGCAACTGGC AGAAATAGAT
TTCCCGCCAC CTCCAGATCC TTCAGATGAG
GAAGCTGTTT TGGCTTATAA CACCTTTTTA
AACCGCTATG GGCTTATAAG GCCTGATTCA
TTGTCAAAAT CAACAGTATC AACTAGTGGG
GAGGATGTCA ACTATTCATC TGACAGGCGC
GCGAAAAGAA TTAGGAGAAC AAGTGTGTCA
TTTAAAGATC AGGTTGGAGG AGAGCTAGTT
GAAGTTGTTG GTATTTCGGA TGGAGCAGAT
GTGGAGACAG AACCTGGTCC ATTGGGTGTG
AAAGAAGGAA GTCTTGTCGG AAAATATGAG
TCCCTAATAG AACCTACAGT GATACCGAAA
GGGAAAGAAC AGTCCTCTGT AAAGGATGCC
ACCGTTACCC GAACAGGTGT ATCGGACATA
CTTCAACAGG TATTGTCCAA GGTGAAAAAT
CCGCCGAAGG GTGGAATTTA CGACGATCTT
TATGGAGAAT CAGCTCCTGC TAAAGGGGGA
TTTTGGGCAT ATTCTGATTC CAGTCAAACA
GCTTCTACTA ACGACGCTAA AGGAGACTCC
CCTTGTTCTT TACGCAGAAT CTTTGGACAT
ATCTCAAACA ATGTAGACGA CGATACCGAT
GATTTGTTTG GATAG
|
MC205TAAAGCAGAT TTGCTCAACA TTACTCAACTputative proteinSEQ ID N° 316
TTCTGAGTAT AGAAAAGAAG CAAt3g11030 [A.
thaliana]
|
MC207aGAGTCCTATGTGATTGCAAGAGACCGATTTCTTGTTputative arginineSEQ ID N° 317
CAAAATGGAAAAATGTTTCCTGGTGTCGGAAGAATmethyltransferase
ACACATGGCACCATTTAGTGACGAATATTTGTATAT
GGAAATAGCAAATAAGGCGACCTTTTGGCAGCAAC
AAAACTACTTTGGGGTTGACTTGACACCTTTGCACG
GATG
|
MC207bACTCTCTCTTCCACTGCTCAGACAACAATCGAAATTheat shock proteinSEQ ID N° 318
GATTCTCTGTATGAGGGGGTTGACTTTTATCCTACC70
ATTACTCGTGCTAGATTCGAGGAGTTGAACATGGA
TC
|
MC209TAACAAAACAAGCAGTGGCAAGGAGTTCCCAGTGAEEF53SEQ ID N° 319
CAGCTTTTGTATTCGCAAGTCCTAAAGTTGGGGATC
|
MC210bTAACGAAGAAAACAACAACAACAATAACAACAACputative proteinSEQ ID N° 320
AACAACAAGCCCAGTGTAATCCCACACGTAGGGATAT3g24200 [A.
Cthaliana]
|
MC212TAAGGAGGCT GTAGAATTGA TCAATGGGAGquinolinateSEQ ID N° 321
GTTTGATACG GAGGCTTCAG GAAATGTTACphosphoribosyl
CCTTGAAACA GTACACAAGA TTGGACAAACtransferase
TGGTGTTACC TACATTTCTA GTGGTGCCCT
GACGCATTCC GTGAAAGCAC TTGACATTTC
CCTGAAGATC GATACGGAGC TCGCCCTTGA
AGATGGAAGG CGTACAAAAC GAGCATGAGC
GCCATTACTT CTGCTATAGG GTTGGAGTAA
AAGCAGCTGA ATAGCTGAAG GGTGCAAATA
AGAATCATTT TACTAGTTGT CAAACAAAAG
ATCTTGGGAC GGTGAGCTCC GTTTGTGGGA TC
|
MC214TAAGGTAAGG CACAATAATG TCGTTCCTATputative pyruvateSEQ ID N° 322
GATGGCTTTG GGAGTCCAAC AACTCAAGAAdehydrogenase
AGATTGGCCT AAAGTTGATT ATGAGGATTTkinase
GAGAGAAATA CACCAAT
|
MC215TAAGCCCGAG AGGTTTCTTG GCTCGAAAATcytochrome P450SEQ ID N° 323
AGATGTGAAA GGGCAGCATT ATGAGCThydroxylase
|
MC216TAACGACTGC AGAATCATCT ATATACGAAGputative proteinSEQ ID N° 324
TGCTTGAATC CCATGGATTG CCAATGGGTTAt3g07460 [A.
TACTTCCAAA AGGTGTGAAG AATTTCACATthaliana]
TAGACAATTC GGGGAAATTT GTAGTCCATT
TGGATCAAGC TTGCAATGCT AAATTCGAGA
ATGAGTTTCA CTATGATAGG AATGTATCGG
GTACAATAAG TTACGGACAG ATCCATGCAC TTT
|
MC219GGAATCGAACTAATCGCATCGGAAAACTTCACATCglycineSEQ ID N° 325
ATTCGCCGTAATTGAAGCTCTCGGCAGTGCCTTAhydroxymethyltrans
ferase
|
MC220GATCCCTATTTTACAAGAGTGCATTGATGCCATCACputative proteinSEQ ID N° 326
TGAACACCAAAGGCTTCTGTCCTTAAt1g07970 [A.
thaliana]
|
MC222TAATAGGTAT AGCATGCCAC AAATCTGGAGambiguous hitSEQ ID N° 327
TTGAGGTGGT TATTCTTATA CCCCCAAATG
CCCCCAGCAT AGCAGCTTAT GGTTCCATTG
TTGTTGT
|
MC223TAATGAGACAATGAGATTATACCCTCCGATACCACcytochrome P450SEQ ID N° 328
TTTTATTGCCTCATTATTCAACTAAAGATTGTATT G
|
MC225TATTGGTACGTCGTAAAATGTGACCGGAAAACCAApolygalacturonaseSEQ ID N° 329
CCGGATTAinhibitor
|
MC302CCCCTATATT TTTCCCCTAT ATCTTTTTCT CCTCCCpoly(A)-bindingSEQ ID N° 330
protein
|
MC304TAACGACTGC AGAATCATCT ATATACGAAGputative proteinSEQ ID N° 331
TGCTTGAATC CCATGGATTG CCAATGGGTTAT3g07470 [A.
TACTTCCAAA AGGTGTGAAG AATTTCACATthaliana]
TAGACAATTC GGGGAAATTT GTAGTCCATT
TGGATCAAGC TTGCAATGCT AAATTCGAGA
ATGAGTTTCA CTATGATAGG AATGTATCGG
GTACAATAAG TTACGGACAG ATCCATGCAC
TTTCAGGAAT TGAGGCTCAA GATTTGTTTC
TATGGTTTCC AGTGAAGGAT ATTCGGGTTG
ATATACCCAG TTCTGGTTTG ATTTACTTCA
ACGTTGGCGT TGTATCTAAG CAATTCTCTT
TGTCTTCATT TGAGACTCCT AGGGATTGTA CTG
|
MC305bTAACATTGTT TACAGAAGAA AAGCAGGGGGPlastid-specific 30SSEQ ID N° 332
TTATGGACTT ATTATTCCCA AGGAAGATGGribosomal like
TAAGACAAAG TTAGAGCCTG TGGAGGTTGAprotein
ACTAGAGAAA GAAACGTCGA TGGCAGAATA
GAAGGAATTG ATGAAAAGTG ATTAGTTAGT
GACCGAGTAC ATTTACTTTG CGTTACGATC
ACTTTTGTAG AGAAGGTTTT CTGCTTGAGG
ATGTTTTTGC ACCCATCATC TGCGACAGAC
TGACGGAGCA CTACGCA
|
MC306bTAACCATGCTCTTACAGGATTCTTTTGAGGATGACAkinesin like proteinSEQ ID N° 333
AGGCCAAAATTCTCATGATACTGTGTGCGAGCCCG
GATC
|
MC307TAAGGCTGCT GGTGAAAGAA GTGGCGGATCputative proteinSEQ ID N° 334
TCTCGATGGT GTAGCATTTC TCCTAAGTTCAt2g44090 [A.
AGATTTCCTT GGTGATCCAG CTGCAACTTAthaliana]
TGCGGTCGCC GACAGCATCG CTAAGTCGGA
TGACGAGGCT GTCGCTCCTG AGCTCAGGTC
TTTCCTTCGG GAGCATTGGT CGGAAGCTGC
TTTCTCAGAC GGGCTTAGGC AAGGACAAGA
ACACTACTTG AATATCGTGC GTATTTTGAA
ATGGGGGGAA
|
MC308TTGGCAGTGAGATTTTTGCGAATGATTGAGGCTGCTputative Pto kinaseSEQ ID N° 335
GTCATCTTGTGTGCGCCACTCATGCTTCAAAGAGACinteractor
CAGCAATGGGACAGGTAACACTTGTTCCATTTTATT
GAATGAAAACCTATGCCAGAAACGCCCTTA
|
MC309aTAATGGTCTA GCATCGGAGG ATGCTCTGGGpolyproteinSEQ ID N° 336
ATTTCTTGAG GAGTGTTACT GCATTCTCCG
TACTATGGGT ATCTCAGGAT CGAGCGGGTT
TTCTTTCACT ACTTTCCAAC TTCGAGGAGT
CGCGTATGAT TAGTGGCACA CCTATGAGTT
AGACAGTCCA GATGAGGCTG CTTCACTAAC
TTGGGCTCAG TTTTCGGAGC ACTAC
|
MC309bGATCCGAGCA TTGTGGAGGC ACTATTTCCAADP-ribosylationSEQ ID N° 337
GAACACTCAG GGTCTCATTT TTGTGGTTGAfactor-like protein
TAGCAATGAC AGAGACCGTG TCGTGGAGGC
AAGAGATGAA TTGCACAGGA TGTTGAACGA
GGATGAGCTT CGGCATGCTG TGCTGCTTGT
TTTTGCTAAC AAACAAGATC TTTTCCGCAG
TAGAAGTTTT GTTTGGATTA
|
MC310aGATCCGCCGCACAGACCAAAACACCGCCCAGCGTAzinc finger likeSEQ ID N° 338
GGCTTTTCATCTTCGTCAATATTAGCAAATTAGAACprotein
CCCCACCCATTCTCTTCTTTTTCAACAACAGCCAAC
CCTCAGCTGCCGACACACACGCACAGTCGCCGATG
GACAGAGAATCAGCGAATGCCATAGCCATTTGCTGC
CTCTGCTTCTTCCCATTA
|
MC310bAATGAAAGAATGTTGGAGTCCTATGTGATTGCAAputative arginineSEQ ID N° 339
GACACCGATTTCTTGTTCAAAATGGAAAAATGTTTCmethyltransferase
CTGGTGTCGGAAGAATACACATGGCACCATTTAGT
GACGAATACTTGTATATGGAAATAGCAAATAAGGC
GACCTTTTGGCAGCAACAAAACTACTTTGGGGTTG
ACTTGACACCTTTGCACGGATC
|
MC311aGATCCGACCA AGGCGTCTTA GCATTGAAGGeukaryotic initiationSEQ ID N° 340
CCTTGAAGCT TTCCGATTCT TTCATGGAACfactor 3H1 like
TCTACAAGAG TAACAACTTT ACTGGAGAGAprotein
AGTTGAGGGA AAAGACTCTT TCATGGGTCG
ACATCTTTGA AGAGATACCG ATTA
|
MC401CAGAATCATC TATATACGAA GTGCTTGAATputative proteinSEQ ID N° 341
CCCATGGATT GCCAATGGGT TTACTTCCAAAt5g19850 [A.
AAGGTGTGAA GAATTTCACA TTAGACAATTthaliana]
CGGGGAAATT TGTAGTCCAT TTGGATCAAG
CTTGCAATGG TAAATTGGAG AATGAGTTTC
ACTATGATAG G
|
MC402GATCCTACAATCAACCTGAGAACATGCATAATTTAputative beta-1,3-SEQ ID N° 342
TGTTTTCTTGTAGTGTTTTTCTGATCTGATGAAGGTTTglucanase
AGCTACACACCAAGTTTTCTTTTCATTTGCTAACAC
CAATGTTCCCACTGAAATGTGGGACAAAAGTAGGA
AGCAAAGGGTGAGAGCTGCTTTA
|
MC404TAACTTCAAT GCGACCAGTG GTGCTCGGATnucellin-likeSEQ ID N° 343
AATACCTCGT TTGGCTCTAG GGTGTGGATAprotein
TGATCAGTTA CCTGGTCAAT CTCATCATCC
TTTAGATGGA GTGCTTGGCC TTGGGAAAGG
AAAAGCCAGC ATTGTGTCTC AGCTTCACAG
CAAGGGTTTG GTGCGGAATG TGGTAGGCCA
TTGCTTGAGT GGCACAGAAG TAGGTTTTCT
CTTCTTT
|
MC405TAACGAGTAT GGCGAAGCCT ATGAATCCCANADHSEQ ID N° 344
TGCTGAGTTT CGTTAGTTCA AGGCCAGGATdehydrogenase
GGGTCATGCT CTCAAGTTAC TCGTGTATGAsubunit 1-like
TTTTTTTTAG TCTTGGCAAA TTTTTATGCGprotein
AGTCTCACCA AAAGATGCAT GTGTGTGTA
|
MC406aGATCCTAGCATTTGAGAAGTTCCTTGAAGAAAACCtrehalose-6-SEQ ID N° 345
CATACTGGCGTGATAAAGTGGTTTTGCTGCAAATTGphosphate synthase
CTGTGCCAACAAGAACAGATGTTCCTGAATACCAA
AAACTTACTAGTCAGGTTCATGAGATTGTTGGACG
CATCAATGGCCGGTTGGAACTTTGACTGCAGTGCC
TATTCATCATCTGGATCGATCTCTTGACTTTCATGC
ATTATGTGCACTATATGCTGTAACTGATGTAGCGCT
GGTTTACCTCCTTA
|
MC406bTAAGGGGTTTTGAGTTTTGTTTACTACTACCACTGCNicotiana tabacumSEQ ID N° 346
TCTCAGAAAAAATGGATTTGATAGTCTAGTTTTTTARENT3 repetitive
CACAAACTCTTTTCAAACTATGTCAAGCACTCTCACsequence
ATATACTCTTTAGAATACTAGGTTCTGCCCCTCTTGT
GTGAGCTTTGCCTTGGGACCCTTGAGCTCTCTCTGA
ACTTGGACACATAAGAGCTGGTCCTTCCATACTAC
ACTTACTCTTGGTTATGCAATCTGGGTGTGAGCACT
ACCTAGGATC
|
MC406cTAAGGGAGCT GTTCCAGTTC CAGAGTCAGT60S ribosomalSEQ ID N° 347
GCTGAAGAAG CAAAAGAGGA GTGAGGAATGprotein L7
GGCCCTTGCA AAGAAACAAG AGCTTGAAGG
TGCAAAGAAG AAGAGTTCCG AGAACCGGAA
ATTGATCTAC AACAGAGCTA AGCAGTATGC
TAAGGAATAT GAGCAGCAGG ATAAGGAGTT
GATTTGCTTG AAGCGCGAGG GTAGATTGAA
GGGTGGTTTC TATGTTGACC CTGAGGCAAA
GTTGTTGTTC ATCATTAGGA TC
|
MC407TAAGGCAGAG ATGTTCTTTG ATAGAGGAGAputativeSEQ ID N° 348
ATTGCTTGGA GGCCTTGTGA AAGGAGAAAGpathogenesis related
CAATGGTGAA TTGGCATTGG CTGCTTCAAAprotein
ATGTCCTTTC ATGAAATAAG AGCAAAACCA
GCAACTGCTG CTTATTTTCA AGACAAGATC
TCAAGAAAG
|
MC408TAAGCAGGGG AGGAAGTACT GCAAAATTGGcytosolic pyruvateSEQ ID N° 349
TGGCCAAGTA CAGACCTGGA ATGCCTATATkinase
TGTCGGTGGT TGTCCCCGAG ATCAAAACTG
ATTCTTTTGA TTGGACTTGC AGTGACGAGT
CTCCAGCAAG GCATAGCCTT ATATTCAGGG GAT
|
MC409TGTATAACCTTTTTGATGTCTCAATTCTTATGCTCTTputative proteinSEQ ID N° 350
ATGAATAATACATAACAATTGCCACGAAATTTTCTAt1g80220 [A.
GAAAGAATAGGTGGCTTAthaliana]
|
MC410TAATGTTTGG CTACTCTTCT GTACAGCTTCputative proteinSEQ ID N° 351
CAACATTGGA CAAGGATAAC CTCCGCGGTGAt4g28910 [A.
TGGCtTCTCA TCTTCAACAG CTTCACCCTTthaliana]
CCCATGGAAG AGGTCCTCTG GGTTCAGATA
TGCAGAAAGA TGGACCAAAT ATTTCTCAAG
CTACTACGTC ATCTATTCCG CACAAGTCAT
CTGATTCTGT ACAATATGAT GGGAGGGCAA
TGGAGCATGT GAAAGGCAAT GGGAGACAGC
ATAAGGCAGA AGAAACTTCC AATTCTCGAG
GGGAGGAAAA TGTGAAAGGA AGCAACATAA
GCTTCAGGGC AAAAGACCCT CCTGACCAGC
CCAGAGCAGA AGCAGTTCCT TCTAATTTTC
AACTATTAGG CCAGGTCTTG CTGCAGAT
|
MC412TAATCGCATT GAAGCACGGA GTGAGCAGTTRNA polymerase I,SEQ ID N° 352
TGACATGTAC ATGCTGTTGG ATGTGAACACII and III 16.5 kDa
TGAGATATAT CCTATGCGCG TCAAAGAGAAsubunit
ATTTATGATG GTTTTAGCAT CTACTTTGAA
CTTGGATGGG ACACCAGATA CTGGTTATTT
CATTCAGGGT AACAAGAAAT CACTTGCTGA
CAAGTTCGAA TATGTC
|
MC413TACCTGTGGTTGGATCGGTATAGTCGCCACGGTCACputative esteraseSEQ ID N° 353
TCGCTTGACCTACTGTCACTGGGCTACCTAAAGTCA
ACACCACGTTATTACCCACTACCGGAACACCGGTT
ACAGTCACCAATTGACCACCAGCAGTCACTGTAAA
GCTACCTGTTGTTGGCAAGTGCAGTGGATTA
|
MC414TAACGAGTAT GGCGAAGACT ATGAAGCCCAputative calciumSEQ ID N° 354
TGATGAGTTT CGTTAGTTCA AGGCTAGGATbinding protein
GGGTCATGCT ATCAAG
|
MT101ATGAGAGTTC GAATCCACCA AACAATGGCGGTP-binding-likeSEQ ID N° 355
ACCGTTATGC AGAAAATCAA AGATATCGAAprotein
GATGAGATGG CTAAGACCCA AAAGAACAAA
GCTACTGCTC ATCATCTCGG TTTGTTAAAG
GCAAAACTGG CAAAACTTCG AAGGGAGCTT
CTTACACCTA CATCAAAAGG TGGTGGTGGA
GCTGGAGAAG GTTTTGATGT TACAAAAAGC
GGTGATGCAA GAGTGGGTTT AGTGGGCTTT
CCTTCAGTTG GAAAGTCGAC ACTCTTGAAC
AAATTGACTG GAACTTTTTC TGAGGTTGCT
TCATATGAAT TTACCACCTT AACGTGCATT
CCTGGTGTCA TCATGTATCG AGGAGCTAAA
ATCCAGTTGT TGGATCTCCC AGGAATTATT
GAGGGTGCCA AGGATGGAAA AGGTAGAGGA
AGGCAGGTTA TCAGTACTGC AAGGACTTGC
AATTGTATAC TTATTGTTCT TGATGCAATA
AAACCAATTA CTCACAAACG TCCCATCGAG
AAAGAGCTTG AGGGATTTGG CATCAGGTTG
AACAAGGAAC CACCTAATCT GACATTCAGG
AGGAAAGAGA AGGGTGGGAT CAATTTAACA
TCAACAGTGA CCAATACTCA TTTAGACCTC
GACACCGTAA AGGCCATATG CAGCGAATAC
AGAATACATA ATGCTGATGT TCATCTTAGG
TATGATGCAA CTGCTGATGA CCTTATTGAT
GTCATTGAAG GCAGTAGAGT ATACACACCT
TGCATCTATG TTGTGAACAA AATTGATCAA
ATCCCAATGG AAGAGCTGGA GATTCTGGAT
AAACTTCCCC ATTATTGTCC GATCAGTGCT
CATTTGGAAT GGAATCTTGA TGGCTTGCTG
GAGAAGATTT GGGAATATCT CAGTCTAACC
CGTATATACA CTAAGCCGAA GGGAATGAAT
CCAGACTATG AGGATCCAGT AATTCTATCA
TCAAAGAGGA GGACAGTGGA GGACTTCTGC
GACAGAATCC ACAAGGATAT GGTTAAACAA
TTCAAATATG CGCTGGTTTG GGGTTCAAGT
GCAAAACACA AACCTCAGAG GGTGGGCAGG
GAACATGAAC TAGAAGATGA AGACGTCGTC
CAAATCATCA AGAAGGTGTG A
|
MT102TAAAAGGGAG AGAGCAGAAC GTGAGGCTTTubiquinol--SEQ ID N° 356
GGGAGCTTTG CCTCTCTATC AGCGGACAATcytochrome-c
TCCATGAAGA AATCAAATCT CCCTTGAAGCreductase-like
TTTTTCGATT GAGAATAATT ACTGTGTTGCprotein
TTGTAGATGA GCTTTGCCTC TGTATCAGTC
GTACAATTCC ATGAAGAAAT CGAATCTCCC
TATAAGTTTT TC
|
MT103TAGCAACTTTGACAGGTGTCAATGTCGGTGACAATpathogenesis relatedSEQ ID N° 357
GCAACAGCACAACGAGGTGATTATGCCTTCAGTTTlike-protein
CACAGTAAATTGATCGATATTGGGCTATCGATCAA
TATGCCTTCAGTTTCAGAGTAAATTGATCGATATTG
GGCTATCTTTGTTTCTGAAGCTGCATTGTTGAATCT
TTTCATCGGATATCCTTCTTGTTGTTCATTCTGTAGC
CTAGCTAATTGTGGACTTTCTATTATCGTGTCTTTTT
CGTAATATTGCAAGATC
|
MT104aACAACAATCGAAATTGATTCTCTGTATGAGGGCCTTheat shock proteinSEQ ID N° 358
GACTTTTATCCTACCATTACTCGTGCTAGATTCGAG70
GAGTTGAACATGGATC
|
MT106aGATCTAGTGG CCGGTGAATC ACTGATCAAAribosomal proteinSEQ ID N° 359
GAGCAGATTT TAGAGAGATT CTTCATCGAT
CTAGTGGCCG GTGAATCACT GATCAAAGAG
CGAGCAGCCG GCAGGTTTAG CCAGAACTCG
TCGATCAC
|
MT106bGATGAGTCCTGACTAAACTAATCGATTTGGGTGGCputative ubiquinoneSEQ ID N° 360
AATGATAGAAGGTAGTCGTCTTCGGTTGAAAGGGTbiosynthesis protein
GGCAGCAGGCTGCTGTTGCAGTTGGTTCTGCATTTG
GGGCGTTGCTAGATCA
|
MT108TAACCACAGA TTTCTCAAGC TGAATCATCAwater channelSEQ ID N° 361
TGTAGCAAAG ATCAAAAprotein
|
MT109TAACGTGCTC GGAGAACCTG TATP synthase betaSEQ ID N° 362
subunit
|
MT110TAAGGAGTTG TCACTGGAGC AGGAATCGTTputative proteinSEQ ID N° 363
CATCGTAAAG AGTGACCCCA AAAGCTCAGGAt1g79140 [A.
TACCAAGAGA AAAAAAGGGA GTGCCTCATTthaliana]
AGAGCATATT AGTACGGGGT CTGACCTTGA
TTTCACTGCT CAAATTGATG AAAATGATGT
TAGAAAGAAA CTCTCTGAGC ATTACTTGCT
GCTTCATGAC ATAGCTGAAA ATGAAAGAGT
AAGAGGGGAA TTGGCTCGGA CAACATTGTC
TCTGAAGCTG CACGAACAAT ATAAAAAGCA
GAAGAAAAGA AGAACATAGT AGGCATCTG
|
MT111TAAGAGCTGT GGAAAAGGTC TGTTGGAATCputative annexinSEQ ID N° 364
TATTCTGAAG GTGGTTATCT GGTGCATTGA
TTCACCAGAG AAACATTTTG CTGAGGTTGT
CAGAGCCTCG ATTGTCGGGA TAGGAACTGA
TGAGGATTCT CTAACAAGAG CCATTGTAGC
TCGAGCTGAA GTTGATATGA TGAAAGTAAG
GGGAGAGTAT TTCATCGCGA ACAAGACCAG
TCTTGATAAT GCAGTTATTG GTGATACATC
AGGTGATTAC AGGAAGTTCC TGATGACACT
|
MT112TAAGGGCTTC ACAAATGTGA ATCTCAAAACglucose-1-SEQ ID N° 365
TACGTGTATC CTGGCATTGC AGAAAAAAGCphosphate
AGCTATGCTA GCAGGTTTTT TAGCGCCTCAcytidylyltransferase
AGCATGAGCA ATATGAATTG TTCCAGTTCTlike protein
ATGGCATGTC ATGTTATTAT ATCTTCACGC
CGATGACAAA ATAATTGAAT GCAGGAAGAA
GCTCCTGGTG CTGCCAGAGT ACAAGTTTAC
GACTATTTCA A
|
MT113aGATCTACAGTGTTTTTCAGGCTTCAAATTCATCAACputative DNASEQ ID N° 366
ATCTCACAAAGGAGCTGTTGCTGTTAGGCAGCCTTreplication licensing
ATATTAGAGTTGTTGGAATGGAAGAAACGAATGAGfactor
GCCAATTCTCGAGGGTCAGCCAACTTCACAGTAGA
TGAGAAAGAAGAATTTCAGAAATTTGCATCCGATA
AGGATGCTTATGAAAAGATATGCTCAAAGATTGCT
CCCTCAATATTTGGGCATGTTGATGTAAAGAAAGC
TGTAGCATGCCTTTTATTTGGAGGGTCAAGGAAGTT
CTTGCCCGATGGTGTAAGATTA
|
MT113bGATCTACCAA CCTGAAAATC TGACGCATCCputative proteinSEQ ID N° 367
CCCCATGCTG CCCATTCAGG CATAGGCCTGAt1g07990 [A.
TCTCCAAAGG GGTCATCATT GTCTGACGTCthaliana]
TCAAAGCGGG AGAAACCCAT GTCATCTGAC
ACACCTGCTT TCTCGCTTTG TTGACTGAAG
TTACCACCAT TGACAGAATC CAATCCACTA
ACAGCATTTG AAGTAGAAGT GGGTGTTGCA
TCTGTAGAAT TTTTGCTCTC AGCCAATTCG
TCCTCCTCTC CTACTACTAC CTCGTCATCA
CTATTGCTAT TCCCATCATT TGATGTTCCA TTA
|
MT113cGATCTATCAGCAAAAGGAAATCTCTTGTGTATGTTTputative proteinSEQ ID N° 368
ATACTTATAAGATTCAAGATGCTGATCTATTGCAAGAT3g10420 [A.
TTGCAACTGTTATGGGGCTTGACGAAGAAGTTGAAthaliana]
GTAACAGATGATATTGGTATTGCGGATGCTATTCTA
GCATCTAGTGCTGAAATGAAGCAGAATCCTTGGAT
TCGTAGTGTTGCCAAATCTCATCAAGTTTCTGTCTT
TGTTGTAAAGTCAAGTACCATGGCCCAAATGGTGA
AAGCTATCCGTATGATTCTTGGAATGGATTCCATTC
ACTCAAAACAGCCATTA
|
MT114TAATAACAACGAGAGCAGTCACATCATTCATGTTC26S proteasomeSEQ ID N° 369
CTGCTGGTCCTAATGCTCTCTCTGATGTGCTTATAAregulatory subunit
GTACTCCTATTTTCACTGGTGATGGTGAGGGTGGAAS5A
GTGGATTTGCAGCAGCAGCTGCAGCGGCTGCCGCT
GGTGGAGTGTCTGGGTTTGACTTTGGTGTAGATC
|
MT115bGGGATGGAGAGAAATTTTCTCAAGTATGTGTACTGGfatty acidSEQ ID N° 370
TCAAATGGTAAGGAGACAGATGATCCAACTGCGAAhydroperoxide lyase
TGATAAACAGTGTCCTGGTAAAGATC
|
MT202ACCCCGGCTCGAACAGGAGGAGTACGCCATGCTAAputative proteinSEQ ID N° 371
TGTGCCTTGGATGATCCACATATAAAGGTCAGGCGrps12 [Oenothera
CCGATGAGCACATTGAACTATCCATGTGGCTGAGAelata subsp.
GCCCTCACAGCCCAGGCACAACGACGCAATTATCAhookeri]
GGGGCGCGCTCTACCACTGAGCTAATAGCCCGACG
TGCGAGCCTCCCACTGGGGGCCCGCTATGCCAAAA
GCGAGAGAAACCCCATCCCTCTCTTTCCTTTTTTCG
CCCCCATGTCGCCACACGGGGGGAACATGGGGACG
TAAAAAAGGGGGGCCTATCAACTTGTTCCGACCTA
GGATAATAAGCTCATGAGCTTGGTCTTACTTCACCG
GCGAGAAAGGAAAGAAGACTTCCATCTCCAA
|
MT203aGATCTCCATCCAGTAATTGACCTCAAAATGTAAGCmaturase-likeSEQ ID N° 372
CCAACAAAAAAAAAAAAAAAAACCTTGCCCCTCATprotein
TAACCCTCCAAATTGGGGAAATAACGGGGGGCGGG
ATTTTCCTCACAGTGGTCACTTGAAAATCCAAAAA
ATGGCCGATCGGGTGTACCTAAAAGGGGGATAATG
TCGGCCTACCAGGCATGTGTTGGCTAAGTTCCCTTT
TCACATGAAATCCCATTCTTCATACCCTTCTTTTGCT
TTTCCCACAGTTTCATAATTGGCCTTATAAACATGT
TTTTGTTTTTTTTTTGCCCCGGCTTTTTTTTAACTGG
CATGGGCTTCCTTTTT
|
MT203bTAAACGAAGA TGAGAAGAAA CTGTAACTTGputative proteinSEQ ID N° 373
GAGCTCACGC TTATGCCTCC TTCTTTTTCTAt2g34600 [A.
TTTTCTCCTA AGAATTGCAC TACCCCTTACthaliana]
TTCTCAACGG ATAGGGAGGA TAAAGAAAGC
ACAGAAGAGA AACAACCACA GCAGCTAACA
ATATTTTACA ATGGAAAATT TGTGGTTTCT
GATGCTACTG AACTTCAGGC TAAAGCAATA
ATATATCTGG CAAGTAGAGA AATGGAGGAG
AAAACAAAAA TCCGGTCACC AATTTCAGAA
TCATCATCAC CAATTTCAGA GCCTTTCATCA
CCATTTTTAC AATCTCCAGC TTCTGATCTTT
TCTATGAAGA GATC
|
MT204TAAAGTACTA ATTCCTATTT ACAATGCTCAprotein kinase-likeSEQ ID N° 374
CTGCAGTATT TCTGAGCAGG CTCTTTTCTAprotein
ATTTAGTATC AGCTGAGTTT TTGCTTATGT
TTACTTTTTA CTCAGGCAAG GTTCTTCTTT
CAACAATTGA TATCAGGGGT TAGCTACTGC
CATTTC
|
MT205TAAACTCGGC ACCTCCACCA ACTCCAAGTCallene oxide cylaseSEQ ID N° 375
ATTTTACTGC AAGAGCCAGA GCGGCTCAAC
TGATTCCTAA ACAACTAAAG TTCAAGAGGT
AAGTG
|
MT207TAACGTGACG GATTCGCAGC TGTACGATCTpoly(A)-bindingSEQ ID N° 376
GTTCAACCAA GTCGGTCAGG TTGTTTCGGTprotein
TAGGGTTT
|
MT208TAAGCACATA ACCTACCTTA TTGAGCAGAA60S ribosomalSEQ ID N° 377
CAAAGCACAG TTGGTGGTTA TTGCTCATGAprotein L7A
TGTGGACCCA ATAGAGTTAG TCGTGTGGCT
GCCAGCATTG TGCAGAAAGA TGGAAATTCC
GTACTGCATC GTGAAGGGAA AAGCACGTTT
AGGATCGATC GTGCACAAGA AAACTGCTTC
GGCTCTATGC TTGACAACTG TGAAAAATGA
AGATAAAATG GAGTTCAGCA GAATTTTGGA
GGCAATCAAG GCAAACTTCA ATGACAAGTA
TGAGGAAAAC AGAAAGAAAT GGGGCGGTGG
TGTCATGGGA TCCAAATCAC AAGCCAGAAC
CAAGGCGAAA GAGAGGGTTC TCGCCAAGGA
AGGAGGACAG AGAATGAACT AGAGCTTCTA
TTTTATGTTG CTGTTTGGGT TAGACCTACA
AATTTTGTGT TTTTGATTCG C
|
MT209bTAAGGTTCGA TGACGCTAGG ATTATAAGGATyl-copia-likeSEQ ID N° 378
AGATTTGTAT GTTATTACCG AATGTTGTTCretrotransposon
CGAGTCCCGG ATGAGATC
|
MT210aGATCTCGTCGCCTTCCACGTCTATTCCTTCAGCTGTputative proteinSEQ ID N° 379
TTCCTCTTTTCTAGCCTCATTGCTTTGTGCCTTAAT5g05950 [A.
thaliana]
|
MT211TAATCGTGGA ACAGGTCAGA TTATTCCAACtranslationSEQ ID N° 380
TGCACGACGT GTAGCCTACT CTTCTTTCCTElongation Factor
TATGGCGACA CCCAGGCTTA TGGAACCTGT2-like protein
GTATTATGTG GAGATCCAAA CACCCATGGA
TTGTCTCTCT GCTATATACA CCGTGTTGTC
TCGCAGGCGT GGACATGTTA CTGCTGATGT
TCCTCAACCT GGGACACCTG CCTACATCGT
CAAGGCATTT TTACCTGTGA TCGAGTCCTT
TGGTTTCGAA ACCGACTTGA GGTATCACAC
CCAAGGGCAG GCGTTTTGTC TTTCAGTGT
|
MT212TAATCAGACT AGTGTCCGGG ACCAGGTCCTlipase-like proteinSEQ ID N° 381
TGAAGAGGTA AAAAGATTGG TTGAGGAATA
TAAGAATGAA GAGGTGAGCA TAACAGTAAC
CGGCCATAGC CTAGGTGCAT CACTTGCAAC
CCTAAATGCA GTTGACATAG CTTTCAATGG
AGTCAACAAA ACAAGCGAAG GCAAGGAATT
TCAAGTGACA GCTTTTGCAT TCGCAAGT
|
MT214aACAACTGTGT GGATTGTTTT AGCCCAACCCputativeSEQ ID N° 382
TGTTATphytosulfokine
peptide precursor
|
MT301bTAAAGTCCCTGTCAGATATCTGAAGGAAGATAAACputative GDP-SEQ ID N° 383
CTCACGGGTCTGCTGGTGGCCTTTATTATTTCAGAAmannose
ATTTGATCATGGAGGAACTTCCGTCTCACATTTTTCpyrophosphorylase
TGCTAAACTGCGACGTGTGCTGCAATTTTCCACTGC
CAGAGATGCTTGTTGCCCATAGAAGATATGGTGGA
ATGGGTACATTGCTAGTTATCAAGGTTTCGGCTGAA
TCAGCCAACCAGTTTGGAGAGTTGGTTGCAGATC
|
MT301cTAAAAACAGG TGCAAGCATC CCATAGTGATputative proteinSEQ ID N° 384
TGTAGTTGAG ATGGACCGCA TATTGCGGCCAt1g19430 [A.
TGGTGGTTGG GCAATTATAC GTGACAAGGTthaliana]
CGAAATACTT GATCCGCTAG AGAGTATACT
GAGAAGCTTG CATTGGGAGA TACGAATGAC
ATTCGCAAAA GATAAGGAAG GCATCCTTTG
TGCACAAAAG ACCATGTGGA GACCTTGATG
AATGGAGCAA ATCTTTCGCT TTCCATTTTC
CAGATC
|
MT302aGATCTAATAC CAGTATTCAG TTGTGGAAGTcalmodulin-likeSEQ ID N° 385
AATCTCTTCG AGATTCprotein
|
MT302bATGGTAAGGAGACAGATGATCCAACTGCGAATGATdivinyl etherSEQ ID N° 386
AAACAGTGTCCTGGTAAAGATCsynthase like
protein
|
MT303CTTATTATGCTTTTGCTCGTTTASEQ ID N° 387
|
MT305aGATCTGGTAA TTTTGGAAGG GATGGGCCGAputative proteinSEQ ID N° 388
TCTTTGCATA CCAACTATAA TGCAAAGTTCC42D8.3
AAATGTGATG CTCTAAAGCT TGCTATGGTG[Caenorhabditis
AAGAATCAGC GGTTGGCACA AAAGTTGGTT Aelegans]
|
MT305bGATCTGTACA TGTCATCGAC ATTACTAAGAputative proteinSEQ ID N° 389
GTTGCTGGTG AACACAACTC TGTTGTAGCAAt2g32340 [A.
GTTGTTGGGA AGGGTCACCT GCGTGGAATCthaliana]
AAGAAGAACT GGAAACAACA CATTGAGGTT A
|
MT306aTGCGTCTGGCTATGGAAGTTTTGGACCATCTTCTTGpolygalacturonaseSEQ ID N° 390
GTCAAACATTTTCGGGTTGTGGCAAACATTCTTCAGinhibiting like
TCACCTGAGAAATCTAGTGGTTTTTGAAATGATAGTprotein
TAACCTTGTAGTTACTCAAGACTCA
|
MT307aTAACTGAACT TGGATTTTCG CAAGACGGTThypothetical protein-SEQ ID N° 391
ATCAGTTATT TTGTGATAGT CAAAGTGCTAcommon tobacco
TCCACCTTGC GAAGAACGCC TCATTCGATTretrotransposon
CCAGATCTtol
|
MT307aTAACCACACCCCAAATAGACCCGTCATTCTTCAACambiguous hitSEQ ID N° 392
CAGCACCCCACCCCCGAGTCATCTCCTTCGTCGAAC
CTCCAGCGACCACTCCCTGAGCCAGATC
|
MT308aTAAACAGAAG ATAGCTGATG AAATACTAGCputative proteinSEQ ID N° 393
AACTTTGAGA GGTGTCAATG TCGGTGACAAAT4g09810 [A.
TGCAACAGCA CAACGAGGTG ATTATGCCTTthaliana]
CAGTTTCAGA GTAAATTGAT CGATATTGGG
CTATCGATCA ATATGCCTTC AGTTTCAGAG TA
|
MT308bTAACCGGGATGCATTTTGCCACAACAACCTTGATGputative proteinSEQ ID N° 394
ACTATTGTTCTTAGGTGGCTCGGATACATCCAAGCTAt4g33380 [A.
TCTCATTTACCCCTTCCAGATCthaliana]
|
MT309TAAGGCACCA TCAGTTTTTG ATATCAAGAA40S ribosomalSEQ ID N° 395
TGTTGGCAAA ACCCTCGTTA CTAGGACTCAprotein S3a
GGGTACCAAG ATTGCTTCAG AGGGCCTAAA
GCATAGAGTA TTTGAAGTGA GTCTGGCTGA
TCTTCAAAAG GATGAGGATC AGGCTTTCAG
GAAGATCAGG TTGAGAGCTG AGGATGTGCA
AGGAAAGAAT GTCCTCACAA ACTTCTGGGG
GATGGATTTC ACAACAGACA AGTTGAGGTC
ACTGGTTCGC AAATGGCAGA CTTTGATTGA
GGCCCATGTA GATGTCAAAA CTACAGACAG
CTATACCTTG AGGATGTTCT GCATTGCTTT
TACAAAGAAG CGTCCAAACC AGCAGAAGCG
TACGTGTTAT GCTCAGAGCA GCCAGATCCG
TCAGATC
|
MT311aAGAACCTAACAATCTTTACAACCTTCACTCTTACAAputative ribosomalSEQ ID N° 396
ACACTCTGGGCTAGCAAACAAGAAAACTGCGACTAprotein L28
TCCAGGCTGAGGGGAAAGATAACTCTGTGGTGCTT
GCCACATCGAAGACCAAGAAGCAAAACAAGCCTTC
AACTTTGCTGAACAAATCTGTGATGAAGAACGAAT
TCCCCAGAATGACCAAGGGTGTAACCAACCAGGGT
GCAGACAACTACTACAGGCCAGATC
|
MT311bTAAGGATAGG ATTGGTTATA GTATGATTACcytosolic cysteineSEQ ID N° 397
GGATGCTGAG GAGAAAGGCC TGATCAAACCsynthase
TGGCGAGAGT GTCCTCATTG AACCTACAAG
TGGAAACACT GGAGTAGGAT TGGCATTTAT
GGCTGCTGCT AAAGGCTACA AACTCATCAT
AACGATGCCT TCTTCAATGA GTCTTGAGAG
GAGAATTATT CTGCGTGCTC CTGGTGCTGA
GTTGGTGCTT ACAGATC
|
MT401CTGAGTAAAG GGAATCAAAT ATGAAGCAAAprobable glutathioneSEQ ID N° 398
GGAGGAAAAC TTATCTGATA AAAGCCCTTTS-transferase PARA
GCTTCTGGAG ATGAACCCTG TTCACAAAAA
GATCCCTATT TTGATTCACA ATAGTAAAGC
CATTTGTGAG TCTCTAAACA TTCTTGAGTA
CATTGATGAA GTCTGGCATG ACAAATGTCC
ATTACTTCCT TCTGATCCTT ACGAAAGGTC
ACAAGCCAGA TTCTGGGCCG ACTATATTGA
CAAGAAGATA TATAGGACAG GAAGAAGAGT
GTGGAGCGGT AAAGGTGAAG ATCAAGAAGA
AGCAAAGAAG GAATTCATAG AAATACTCAA
GACTTTGGAA GGAGAGCTTG GAAATAAAAC
TTACTTTGGT GGTGATAATC TGGGTTTTGT
GGATGTGGCT TTGGTTCCCT TTACTAGTTG
GTTTTATTCT TATGAGACTT GTGCAAGCTT
TAGTATAGAA GCAGAGTGTC CAAAGCTGGT
GGTATGGGCA ACAACATGTA GGAGAGCGAG
AGTG
|
MT402bCAAAATCCAGCCCCATAACTCCACCACGTATTCGAmyocyte enhancerSEQ ID N° 399
GTCTTGCCGACGAGCTTTCCGTTAGTAGATCfactor 2A like
protein
|
MT402cTGTACACTGGTCAGTTTATTTACTGCGGTAAAAAA60S ribosomalSEQ ID N° 400
GCTAATCTAATGGTGGGTAATGTGTTGGCACTTAGprotein L2
ATC
|
MT403aTAAACAGAAGATAGCTGATGAAATACTAGCAACTTputative proteinSEQ ID N° 401
TGAGAGGTGTCAATGTCGGTGACAATGCAACAGCAAT4g33380 [A.
CAACGAGGTGATTATGCCTTCAGTTTCAGAGTAAAthaliana]
TTGATCGATATTGGGCTATCGATCAATATGCCTTCA
GTTTCAGAGTAAATTGATCGATATTGGGCTATCTTT
GTTTCTGAAGCTGCATTGTTGAATCTTTTCATCGGA
TATCCTTCTTGTTGTTCATTCTGTAGCCTAGCTAATT
GTGGACTTTCTATTATCGTGTCTTTTTCGTAATATTG
CAAGATC
|
MT403bGATCTTGGAG ATGGCTTCAT GCAGCGAAGAGPAA1-likeSEQ ID N° 402
CCGTGTTTAT TGTCCACTTT TGGGGTGCCGprotein
TTGTAACATT GCTTCCGCAC TTTCTGTCTC
TAGTACCAGA TTCCGCACCT CTGACCAACC
TCATAACCTG GATCATGCTT TCAGCGTCCA
GTCTCTTGAT CTGACAAGTG ATTCTGGGTT
CCTCCTTGAG TCTTCCATCC ATGACCCATA
CTCGAGGAAT GGAATGGACT CTTTTGAAAT
CAGTGACAAT TGCTGGTGCC TGTACTGGAC
TTTGCATAAT GTCAGTC
|
MT407TGAGTCTTGA GTAATGCATA TATATAGCACprobable glutathioneSEQ ID N° 403
AGGAAGAAGA GTGTGGAGCG GTAAAGGTGAS-transferase PARA
AGATCAAGAA GAAGCAAAGA AGGAATTCAT
AGAAATACTC AAGACTTTGG AAGGAGAGCT
TGGAAATAAA ACTTACTTTG GTGGTGATAA
TCTGGGTTTT GTGGATGTGG CTTTGGTTCC
CTTTACTAGT TGGTTTTATT CTTATGAGAC
TTGTGCAAAC TTTAGTATAG AAGCAGAGTG
TCCAAAGCTG GTGGTATGGG CAAAAACATG
TATGGAGAGC GAGAGTGTCT CAAAGTCCCT
TCCTCATCCT CACAAGATC
|
MT409GGATGGAGAGAAATTTCTCAAGTATGTGTACTGGTallene oxideSEQ ID N° 404
CAAATGGTAAGGAGACAGATGATCCAACTGTGAATsynthase
GATAAACAGTGTGCTGGTAAAGATC
|
MT410aCTGTGTTTTA TATGTTCTTT GAGCAATATCputative proteinSEQ ID N° 405
TGCAGCATAT GGAGGACAGC CCTAATTAAt1g42470 [A.
thaliana]
|
MT410cTAATCTGGAT GCAATTGAAG CCCTTGCCACputative NADH-SEQ ID N° 406
GGACAACATT GTGTCAAAAG ATGCTTTGACubiquinone
TTTTGAAGAT CACTTCGCAG Toxireductase
|
T1GATCTCAGAAGTTAGGACATACGTTCCTAACGTTGTlipase-like proteinSEQ ID N° 407
CGCTGGGATTATGAGAGGCATCAAAGATGTGATTC
AGCTCGGAGCCACGCGCTTTTTGGTTCCAGGAATTT
ACCCACTCGGGTGCTTGCCGCTTTATCTCACATCAT
TTCCTGACAATAATACAGGCGCGTACGATCAAATG
GGTTGCTTGAGGAACTACAACGAGTTCGCTTCGTAT
CATAATAGATACGTGAGCAGAGCTATCGCGA
|
T101ATCCAGACAAACGACCTGAAATGGATGAGGTAGTGkinase like proteinSEQ ID N° 408
AAATTGGTGGAAGCAATTGACACGAGCAAAGGAG
GAGGGATGATACCCGAAGACCAAGCTGGTGGCTGT
TTCTGCTTTGCTCCTACCAGGGGTCCATAATCTCTC
TTTACTATATTTTTCTTTAGCCCCGTTGGATGGTTACT
TAAGACTCAT
|
T103TAAGGATGTC AAAGGTTGTG ATGATGCTAAcell division proteinSEQ ID N° 409
GCAAGAGCTT GAGGAGGTTG TTGAGTACCTFtsH protease-like
CAAAAATCCT GCTAAGTTCA CTCGGCTTGG
GGGAAAGTTG CCGAAGGGCA TTCTTTTGAC
TGGAGCTCCT GGAACAGGAA AAACCCTCCT
TGCCAAGGCT ATCGGTGGAG AAGCAGGGGT
GCCTTTCTTT TATAAGGCAG GCTC
|
T104ACTGGGAAAAAACCTGATCTATTGATTCAGCTTCCTheat shock proteinSEQ ID N° 410
AATCCACCGAGGAGTCCTGCTGCTCAAGCAGTGAA101
AAAGATGAGGATTGAAGAAATAGTGGACGATGAT
GAAATGGAATACTGCTGAGGCCGTAAAATCACTGG
GGTAAAATGAAGAGAAGAATACTTCACTTA
|
T106TTCGGCGAGA TGTTGATCAA TTTCGTACCGfructokinaseSEQ ID N° 411
ACGGTCTCCG GCGTTTCCCT TGCCGAGGCT
CCGGGGTTCT TGAAGGCTCC GGGCGGTGCA
CCGGCAAACG TCGCCATCGC AGTGACTAGG
CTGGGGGGAA AGTCGGCGTT CGTCGGGAAA
CTCGGCGACG ATGAGTTCGG CCACATGCTC
GCCGGGATAC TCAAACAAAA CGGCGTCCAA
GCCGACGGGA TCAGCTTCGA CAAGGGCGCG
AGAACGGCGT TGGCGTTCGT GGCTCTACGC
GCCGACGGAG AGCGTGAGTT CATGTTCTAC
AGGAATCCCA GTGCCGATAT GCTGCTCACT
CCCGACGA
|
T107TAAACCCAGA GACCTACCAA CTTTTTGACG5′-adenylylsulfateSEQ ID N° 412
CAGTAGAGAA GCACTATGGA ATCCGCATTGreductase
AGTACATGTT CCCTGATGCA GTTGAAGTTC
AGGCCTTAGT AAGGAACAAG GGCCTCTTCT
CTTTCTACGA AGATGGCCAC CAAGAGTGCT
GCCGTATAAG GAAAGTTCGA CCTGTTGAGG
AGAGCACTCA AAGGCTTTAC GTGCGTGGAT
CACAG
|
T109AGCTCTCTGGGTCCCTACCGACGCTGAGGTGCGAAsmall subunitSEQ ID N° 413
AGCATGGGGAGCGAACAGGATTAGATACCCTGGTAribosomal RNA
CTCCATGCCGTAAACGATGAGTGTTCGCCCTTGGTC
TACGCGGATCAGGGGCCCAGCTAACGCGTGAAACA
CTCCGCCTGGGGAGTACGGTCGCAAGACCGAAACT
CAAAGGAATTGACGGGGGCCTGCACAAGCGGTGG
AGCATGTGGTTTA
|
T112GATCTTACTGATGATATTGTTTCTGAATATAGGAACanionic peroxidaseSEQ ID N° 414
AGTCCTCGCGCATTTGCCTCTGATTTTGCTGCTGCT
ATGATTAGAATGGGAGATATTAGTCCCCTAACTGG
TCAAAATGGGATCATAAGAACTGTCTGCGGCTCCC
TAAATTGATCATTCAAAAGCTTATTACATGTATTTT
GTATTTATTTGATTCTTTA
|
T113aGATCTCATGG CGAAAGCAAG CTATGTGCTTputative proteinSEQ ID N° 415
ATAATTGTAT TGGTGTATTC TGACATACCGAt1g57600 [A.
CGGATTGAAG TTGTTCTAAT TTTATAGGAAthaliana]
CTATGATTTG ATTTTAGGCA TTTGTAACTG
GAGAAAGATG AATTGTATAA ATAATAACTT
CAGCTGGAGC TCGTATCATG TATCATTTA
|
T113bGATCTATGGTTTTGTCTTGGAACTCAAGCACAAGCTauxin-regulatedSEQ ID N° 416
TGGTCTTGCTTGAACAAGAAACACTTCTTACCTACTglutathione-S
GCAGAAACCAATCATGTCCTTCGTCCCTAGTTGTTCtransferase
AAGCATCAATTTATCAATATTGTTGCTACTCTGTCT
ATAAATTTTATGGTTTGGTGTAATTTAGTCTTTA
|
T116aGATCTACAAGGGATTTTGGTGAGAGTACAAAAGGAputative proteinSEQ ID N° 417
GATGCATGCATCTTTTGTGTGGCTATTTCAGCAAGTAt1g07280 [A.
ATTTTCACATACACCTACTTTAthaliana]
|
T116bGATCTACAGG ATGGTTTTGG CAAATCATGGputative proteinSEQ ID N° 418
AACTCAAAGT TATTGTCAAA GATTATCAAGAT3g58130
GAGGAAATTG CCAATTGTGA TATTTGATTG GTTTA(permease-like)
[A. thaliana]
|
T117aGATCTACGAA GCCTCTATTG AATGTTATATzinc finger-likeSEQ ID N° 419
GAACTGAAGT ATGATGTTCT TGCTTTAprotein
|
T119ACATTCTGAGAATGTTGAATTGGATAAAGTGAACCgalactinol synthaseSEQ ID N° 420
TTGTACACTATCGTGCAGCGGGATCAAAGGCATGG
AGGTACACAGGGAAAGAAGAAAATATGCAAAGGG
AGGACATAAAATTACTGGTGAAGAAGTGGTGGGAC
ATTTACAAGGACGAATCATTGGACTACAAGAATGC
GGGTGCTGTTA
|
T12GATCTCATAA GTCGATTGCC AACTTTCAAAzinc-finger likeSEQ ID N° 421
TACAGGACCG GATTCTTCTC GAAGAAAAAGprotein
AAAATGGGAG AGTGTGTTAT ATGTTATGCT
GCATACAGAA GCGGAGATAT GTTGACCACT
TTACCTTGTG CACACATGTT TCATTCAGAA
TGTATAAACC GCTGGCTTA
|
T121GATCTACATT AGTAACCCTG AGATCACAGTputative peroxidaseSEQ ID N° 422
GCCCAAAAAA TAGCAAAATC GATTCAGCTG
TCTATTTCTC ACCAGGATAT GGTTCTAACT
ACACATTCTC CAATACATTC TATGAAAAAG
TTGTTGCTCA CGAATCTGTT CTTAGAGTTG
ATCAGCAACT ATCATATGGA GCTGACACAA
GTGAACTAGT TA
|
T123GGCACTCTCACAGAATTCTGCACCTCATCAAGCTGTMobl-like proteinSEQ ID N° 423
CCAACAATGTCTGCAGGGCCAAAGTCCGAGTATCG
TTGGCCTGATGGAGTTA
|
T124TAACAGAAGC GCGACATTTT GGACACAAGAreceptor-like proteinSEQ ID N° 424
TTTGACGAAC CATATTACTT GGACAGGTTC
CATATCCAAA TACAAGTGAA CTTCTCTATA
CAGCT
|
T126TAAGACAAGT CTTAGTGGAT CATGCCCTATphenylalanineSEQ ID N° 425
CGAATGGCGA CATGGAGAAG AATTGTAGCAammonia-lyase
CTGCAATTTT CCATAAAATC AGTGCAGTTT
GAGGAAGAAT TGAAGATTGT TTTGCTTAAG
GAAATGGAGA GTGCTAGATG TAAGTTGGAG
AACGGCAAGC CCACAATT
|
T13GACTGCGTAGTGATCTCAGAACCAGTCATTCTGTGTmethionine S-SEQ ID N° 426
TGCTTTGCTTGGAGGATTGTATCTGAAGATGCTTACmethyltransferase
AGCTGGAATTAGTTTTGGATTTTCTGCCTCTAGACCA
TCCTGCTTTA
|
T130TAAGGTTGAG TGCACAATAC CAAAGGACGANADH-glutamateSEQ ID N° 427
TGGCTCGTTG GCAACTTTTT TGGATTCAGGdehydrogenase
|
T133TAATCGGGAA ATAATGGCAG ATGCTGAATARNA-bindingSEQ ID N° 428
CAGGTGCTTC GTCGGTGGGG GAGCATGGGCprotein
TGGCACCGAC CAAACACTTG GGGATGCTTT
TTCTCAGTAC GGTGAAAT
|
T139CAGTCAGGGGGGCATGGCTACAATGTCCCGGAGAAputative globalSEQ ID N° 429
GAGTATGCTTTAGAAGTGAAACTATCAGAGATGCCGtranscription
GGAAGTTTACCTGTTGCGGCTCAGGCTCCTGTATCTGregulator
CCATGGCTTTTCAAAGAACATCATTTGAAACAGCTTA
GAGCACAATGTCTTGTGTTTTTGGCTTTTAGGAATG
GTTTA
|
T14GATCTCAATC AGAGAGCAAT GGCACGTTTCglutathione S-SEQ ID N° 430
TGGGCTAACT TTTTGGATGA AAAGTGTTTGtransferase
CCAAAGATGA AGGAACTTTG TTATGAAAGC
AACAATGAAG TAAGGGAGAA AGCCAGGGGA
GAACTTCATG AACTCCTTA
|
T141aGATCTAGCAT GTGTCACTTA TTTGTATTTGGTP-bindingSEQ ID N° 431
TCTCTAGACC TATGCAATTC AGCAGTTCTCprotein
CTTTTGGGGA ACAACTCTTC TAAGCGCATA
CTATCAGTTG ATTTC
|
T142CCCATCGTCGAATTGTCCATGCTGCTGATATGACTL-aspartate oxidase-SEQ ID N° 432
GGCAGAGAGATTGAAAGAGCCTTATTAGAGGCAGTlike protein
GTTTA
|
T144GACACCATTGCTTTTTACAGAGTGCAGTGTCATCTGputativeSEQ ID N° 433
CAAAATATTTCATTCGACACGTTTCAAATCAAAACcyclopropane-fatty-
ACCCTGACTCGAGCTCGTCGGAACATCTCTCGTCACacyl-phospholipid
TATGACCCGAGTAATGAACTCTTCTCGCTATTCCTAsynthase
GATCAGACAATGACATACTCATGTGCAATTTTCAA
GAGTGAAGAGGAAGACTTGAAAGTTGCACAGGAG
AGGAAAATTTCTCTTCTCATTGAAAAGGCAAAAGT
TAGCAAGGAACACCACATTCTAGAGATAGGATGTG
GTTGGGGAAGTTTGGCCGTGGAAGTTGTTA
|
T145GATCTAGTGT CGTGGTCCCT CGGAATTTCAputative E2SEQ ID N° 434
GATTACTTGA GGAACTTGAA CGCGGTGAAAubiquitin-
AGGGTATTGG AGATGGGACC GTGAGCTATGconjugating enzyme
GGATGGATGA TGGAGATGAT ATTTATATGC
GTTCCTGGAC TGGCACCATT ATTGGTCCTC
ACAATTCCGT TCATGAAGGT CGCATTTATC
AGTTGAAGTT ATTCTGCGAC AAAGATTATC
CAGAGAAGCC ACCAAGT
|
T146AATGGGTGCAAGTGTGGATCAAACTGCACCTputative type IISEQ ID N° 435
metallothionein
|
T147aTAACATAAAACTAAAAACAGATAAGGTTCATATCAputative proteinSEQ ID N° 436
CACAAGCAAGAAATCCCAAAAGGAGGGTTCACCTCOSJNBb0072E24
ACAAGTATAACAAACTTGAACATACAATTCCAAAC[Oryza sativa]
ACTTGCTTTCTTTCAATCATTCTTGCCTGAAACATTT
CCAGGAACATTCAAAACACTAGATC
|
T148CTTATTATGTGGACAATTCTGAACCACAGTGGACAputative membraneSEQ ID N° 437
CCTTGGTTGGTTCCAATGATTGTGGTTGCCAATGTAprotein
GCCATGTTTATTGTAATCATGTTCGTTACTCA
|
T149aGATCTAGGTA CATTGAGCTA TTTCCTTCACribonucleoprotein-SEQ ID N° 438
AGCCAGATGA AGCTAGACGA GCCGAGTCAAlike protein
GGTCACGACA GTGATGCTAA TTATTTCTGG
CGGAGCATTT TTAGGCATCA TATATTTCGT
CCACCTCTTC TCTTGGGGAT ATTGTAGCAG TTGTT
|
T150GATCTAGGAA GAGAGAGAGA GAGGGAGCTGserine/threonineSEQ ID N° 439
ACCCATAACT CAGGCAGTTG ATCGGAAAAGprotein kinase
AGATGGGGTG GTCGTTCTCG GGGTTGAATG
CTTTATGCGA CGCCGTTA
|
T151aGATCTAGACA GAGAGGGCAG CCAACTTCAAprohibitin-likeSEQ ID N° 440
CATTGCTCTA GATGATGTGT CCATAACAAGprotein
CCTGACTTTT GGAAAGGAAT TTACAGCTGC
AATTGAAGCA AAACAAGTGG CTGCTCAAGA
AGCTGAAAGA GCAAAGTTTG TTGTGGAAAA
AGCTGAGCAA GATAAGCGAA GTGCTGTTAT
CAGAGCTCAG GGTGAGGCTA AGAGTGCCCA
GCTTATTGGT CAAGCGATTG CCAATAATCC
GGCATTTCTC ACACTCAGGA AAATCGAAGC
AGCAAGAGAG ATTGCCCAGC CTCTCTCACA
TGCAGCAAAC AAGGTGTACT TGAG
|
T151bGATCTAGGAA ACTTTCCCGT CACTTTTTTGambiguous hitSEQ ID N° 441
CCCAAATTCT TGAAGCTCCA ACCACTACCA
CCTCACAATA CTTATATCAA TGGATAGAGC
TCCTCAAGAC CTAGCTATTG ATGCCAATTT
TACCATGAAA ATCCGGCGAT CAAAATCCGG
CCAAATTCCG GCGACCTCCC CGAACACCCT
CTTTTGGCAT ACCACCATTT TTTCGGCCAC
TTGAATTATA AAATGGTAAT TTTCGGACCA
TGTAAACTCA TAAAATCGAG TTGGAATGAA
AGATAATGAC GCTGAGAAAT ATTAGTAGCT
|
T153TAAGCATATA GCTTTTCCTT CTGAGCCAGGlectin-like proteinSEQ ID N° 442
ATCACACTTC ACACTAACCG AATCTCGCAT
AGAATCCATA AATGAAGAAA GCATCTCAAT
TGGAGAAAAG TTTGTTTTCC CGGGGAATTT
GCTTGTCAAC GAAATTCCAC TCATAAGTAG
GTTCACATCG TGATCTAAGT TCCATTTCCC
ATCGAGAGGT GAGTGATACT GGTAGGAGAG
TCCTATTCTT CTCCTTGGGT TATGAAAGAA
TTCAATAGCT CCGGGCTCCC TCACTGC
|
T154TAAGGCTGCC TACGAAGCAA TCTCAGATTTputative reverseSEQ ID N° 443
TACATGCAAT AAAAAAGACT ACTCTTGGCTtrancriptase
CTGGAAAATC AACTCCCTAA ACAAATTGAA
ATATCTCCTC TGGACAATCA TTTGGGACAG
GTTACCCACA AAGCATATGG GGGCCAAAAG
AGGGATTTGC CATGACGACA CTTGTAACAT
ATGTAATAGG GAGCCTAAGA ACATAGAACA
|
T158GGGCAAACGTGCTGGGAATAAATCTGAATGTGCCAglycine-rich proteinSEQ ID N° 444
CTCTCTCTTAGCCTTGTTCTCAACAACTGTGGAAGG
AATCCTCCTACTGGCTTCACTTGCTAAGCGCAAGTA
CCCGATTA
|
T160bGATCTCTTGC CTCGTGCAGA CATGCTTGATputativeSEQ ID N° 445
TCTCGTCCTT TGGCCACTCC TCTTACTAGTretroelement pol
GGTACCGAGC TTCCCAATGA CTGCGTAGTGpolyprotein
ATCTAGGGCG GGTTCTGTTG ATGTGTACAT
ATAATAAGAT CACATCTAGA TTATGGATTC
TCTTTGAGGA TAAGTTTCAC TTTTTGTTCC
TACCTTTTTG TAGTAAATTT
|
T164AGGCTGGTACCGGTCCGGAATTCCCGGGATATCGTpar peptideSEQ ID N° 446
CGACCCACGCGTC
CGATATTCTCAAACAAAAAGAATGGAGAGCAACA
CGTGGTTCTGCTAGATTTCTGGCCAAGCTCTTTTGG
TATGAGGCTAAGAATTGCATTGGCCTTAAAGGGAA
TCAAATATGAAGCAAAGGAGGAAAACTTATCTGAT
AAAAGCCCTTTGCTTCTGGAGATGAACCCTGTTCAC
AAAAAGATCCCTATTTTGATTCACAATAGTAAAGC
CATTTGTGAGTCTCTAAACATTCTTGAGTACATTGA
TGAAGTCTGGCATGACAAATGTCCATTACTTCCTTC
TGATCCTTACGAAAGGTCACAAGCCAGATTCTGGG
CCGACTATATTGACAAGAAGATATATAGCACAGGA
AGAAGAGTGTGGAGCGGTAAAGGTGAAGATCAAG
AAGAAGCAAAGAAGGAATTCATAGAAATACTCAA
GACTTTGGAAGGAGAGCTTGGAAATAAAACTTACT
TTGGTGGTGATAATCTGGGTTTTGTGGATGTGGCTT
TGGTTCCCTTTACTAGTTGGTTTTATTCTTATGAGAC
TTGTGCAAACTTTAGTATAGAAGCAGAGTGTCCAA
AGCTGGTGGTATGGGCAAAAACATGTATGGAGAGC
GAGAGTGTCTCAAAGTCCCTTCCTCATCCTCACAAG
ATCTATGGTTTTGTCTTGGAACTCAAGCACAAGCTT
GGTCTTGCTTGAACAAGAAACACTTCTTACCTACTG
CAGAAACCAATCATGTCCTTCGTCCCTAGTTGTTCA
AGCATCAATTTATCAATATTGTTGCTACTCTGTCTA
TAAATTTTATGGTTTGGTGTAATTTAGT
|
T168GATCTATCCA TGGAGTGAAT TTCGCATCAGputative lipaseSEQ ID N° 447
GTGGAGCTGG CTGTTTA
|
T17GATCTCAATG GTGAATTGAC CTTGAAACAAannexinSEQ ID N° 448
GTAGTTCAAT GCCTTTGCTC ACCTCAATCC
TACTTCAGCA ACATTTTGAT CGCGTCCTTA
|
T171ATGGACATTTGTGTACGAGAAGAAACCTGAAGAAAwound-inducedSEQ ID N° 449
CCCCAGAGCCTCTCGTTTTGTTGGCTTATGCCCTACvacuolar membrane
ATGTGACCAAAGATGTAGAGAGTCACCTTCTCAAGprotein Sn-1
TAATCTAATCTATGCTATTCAATGGTTCATAGCCAT
ATATATATGTATGTTA
|
T172TGGGAGCTGAAAATGGCCTGATTGTTAGCGATAGCprotein phosphataseSEQ ID N° 450
ATCATTCAGGGAAATGAAGAAGACGAGATTTTATC2C
TGTTGGAGAGGATCCTTGTGTAATTAATGGGGAGG
AGTTGTTGCCACTGGGCGCTAGCTCGGAGTTGAG
TGCCAATTGCTGTTGAAATCGAGGGTATTGACAAT
GGTCAAATACTTGCCAAAGTCATAAGTTTGGAGGA
AAGGAGTTTTGAGAGAAAGATCAGTAATCTGTCCG
CCGTTGCTGCTATCCCAGATGATGAAATTACTACTG
GCCCTACGCTAAAGGCATCCGTAGTGGCTCTTCCGT
TGCCTAGTGAGAATGAACCTGTCAAAGAAAGTGTC
AAGAGTGTGTTTGAATTGGAATGCGTGCCACTCTG
GGGCTCTGTATCTATCTGTGGAAAGAGACCAGAGA
TGGAGGATGCTCTTATGGTTGTTCCTAATTTCATGA
AAATACCTATCAAAATGTTTATTGGTGATCGTGTGA
TTGACGGACTAAGTCAACGTTTGAGTCACCTGACA
TCTCATTTTTATGGTGTATATGATGGTCATGGAGGA
TCTCAGGTTGCGGATTATTGCTGCAAACGCATTCAT
TTAGCATTAGTTGAGGAGTTAAAACTTTTCAAAGAT
GATATGGTGGACGGGAGTGCAAAGGACACACGTCA
GGTGCAGTGGGAGAAGGTCTTTACTAGTTGCTTTCT
CAAGGTTGACGATGAAGTTGGGGGGAAAGTGAAC
AGTGATCCCGGTGAAGACAACATAGATACCACTAG
CTGCGCCTCTGAACCTATTGCCCCGGAAACTGTGG
GGTCCACTGCGGTTGTAGCGGTGATATGTTCATCTC
ATATTGTAGTTTCTAATTGTGGGGATTCAAGAGCAG
TCCTTTATCGTGGCAAAGAAGCAATGGCACTGTCA
ATTGATCATAAACCAAGCAGAGAAGATGAGTATGC
TAGAATTGAAGCATCTGGTGGCAAGGTCATTCAGT
GGAATGGACATCGTGTTTTTGGCGTCCTTGCAATGT
CAAGATCTATTGGTGACAGATACTTGAAACCATGG
ATTTATACCCGAACCAGAAATTATGTTTGTACCACG
AGCCAGAGAAGACGAATGCCTAGTTTTAGCTAGTG
ACGGGTTGTGGGATGTCATGTCAAATGAGGAAGCT
TGTGAAGTAGCTAGACGACGAATTCTGCTATGGCA
CAAAAAGAATGGGACTAATCCTCTGCCGGAAAGGG
GCCAAGGAGTTGATCCTGCTGCACAAGCAGCAGCA
GAGTATCTCTCGACGATGGCTCTTCAAAAAGGTAG
CAAAGACAATATATCTGTGATTGTGGTGGACCTTA
AAGCTCAAAGGAAGTTCAAGAGCAAATGTTAAGAG
ATGACAATGTTCACCCGCACTTTGGTTTTTAGTATA
AATCTATATACGGCTATGGGGTATAATCTCATTATT
ACATAACTCGGTCCATCCATTTTTTTATGGGCTTAA
GGTCTGTGTATGAGAATAGTGTTTAGCATGTATTTA
TAGAAAAACAGTTTAACAAATGACGTTTATCCAAA
TTTTTGGTGTTGTTATGCCAGCAAGTGGCTATGTAA
ATTGAGCATGTTGTAGCAATATCAAAGATGCAAGT
TCTTTGTTTAAAAAAAAAAAAAAAAAAA
|
T177aTGACTGCGTAGTGCTCTATATGGCAATAGATTTGAAleucine-rich repeatSEQ ID N° 451
GGCAACATTCCCAAGCCTTTTGCTAAATTGAAGTCTprotein
CTTAGATTTTTGCGGTTA
|
T177cGATCTATACCAGAAGGAGCTGTTGTATGTAATGTG60S ribosomalSEQ ID N° 452
GAGCATAAAGTGGGAGATCGTGGTGTTTTTGCTAGprotein L2
ATGCTCTGGTGATTATGCCATTGTTATCAGCCACAA
CCCTGATAATGGTACCACTAGGGTTA
|
T178CTGGAATCAATTGCTTCCTCTGCGGTGCGGGCAGCpyruvate kinase-likeSEQ ID N° 453
GATTAprotein
|
T18TCAAAAACAA CTTTTATTGT GTTCATGGTTpathogenesis-relatedSEQ ID N° 454
TTAGCCGTGG CCCATTCTTC ATTAGCCCAAprotein
AACACTCCCA AAGATATCGT TATTGTCCAC
AACAAAGCCC GTGCAGAAGT TGGTGTCCCA
CTCCCACCAT TA
|
T2TGAGTGAGCT TCATTATCTA CAAGCTTCCAputative cytochromeSEQ ID N° 455
TTTATGAAAG TATGAGACTT TACCCTCCTAP450
TCCAATTTGA TTCAAAGTTT TGTTTAGAAG
ATGATATTTT ACCTGATGGG ACTTTTGTGA
AGAAAGGAAC AAGGGTTACG TATCATCCTT
ATGCAATGGG AAGAATGGAA GAATTATGGG
GTTGTGATTT
|
T20GATCTCATTTCGATCCTCACCACCCTCATCTGGCTA13-lipoxygenaseSEQ ID N° 456
GCTTCAGCACAACATGCTTCGCTGAATTTCGGCCAG
TACCCATACGGCGGCTACGTCCCCAATCGGCCACC
TCTCATGCGTAGATTA
|
T201GATCTCGCTT CGGGATCATT CCCCAAGAGCMRP-like ABCSEQ ID N° 457
CAGTCCTTTT TGAAGGAACT GTGAGAAGCAtransporter
ACATTGACCC CATTGGACAA TATTCAGATG
ATGAAATTTG GAAGAGCCTC GAACGCTGCC A
|
T203TCATCGAAATAATGAGTCACCATTGATATCGACACchloroplast putativeSEQ ID N° 458
ATCTCCGATCGCCAAACGCTCGGGAGTTCCTCTATprotein 1708
CAATCCTTTTCCTTCTTCTTGTTGCTGGATATCTCGT[Nicotiana tabacum]
TCGTACACATATTGTCTTTGTTTCCCGGGCCTCTAG
TGAGTGACAGACAGAGTTCGAAAAGGTCAAATCTT
TGATGATTCCATCATCTATGATTGAGTTGCGAAAAC
TTCTGGATAGGTATCCTACATCTGAACCGAATTCTT
TCTGGTTA
|
T204GATCTCGAGC TCAGATTACA AAGCAAATCAputative proteinSEQ ID N° 459
AGCATTTGTT TGGCAAGGAA CTAGAAATCGAt3g46190 [A.
GAACCGCGAA AATGACAACC TCTTGAACCGthaliana]
AAACCCATTG ATAAAACCTC GACAAACCTC
ACCTACCTCA ACTCCCATGC TTTATGGTTG
TGTTTTTTGG TAGAAGAAAT GGTGTTTCGG
AGCTAAAGTG AGGAGCTGTT TCGAACAAGG
CTTCAGCTGC GTTATTGACT GATTTTTTGG
TGAGTTTCGG GGTTA
|
T205aAGATGTGACAGCCCGTTAGATTTACGTCATAAGAGputative apoptosisSEQ ID N° 460
GGCTGGCGTCGAGCCGCTTGGATAGATTTGATCGAinhibitor like
CCCCAGGTGCATCCTTGGGGAATTCCTGTGTTCGTprotein
CAAGGTCTAAGCCGATTTATTCCTGGCCGGACGT
CGACAGGTTTTGAGGGAAGTGACTGACCCGAGATC
|
T205bGATCTCGAAC TAGCGATCTC AAATTTCACCaklanonic acidSEQ ID N° 461
TCCAGTTCCA CCGAAAATTA CCGTTCTGCTmethyltransferase
TGTGAAGCTA CTACTAGCAC GATTCCCGAAlike protein
GAAGTGGAAA CCGGACTTGT TGTCGGTGGG
CCCCATGGAC CGCCGCCAGG ACTCGCTGGA
AGATTATTAC TCTGCCGTTT TCAA
|
T206aGCTATAAACCAGACACAAATATCTCCATCTGGGAGnon-photosyntheticSEQ ID N° 462
GCAGCATACCAATCTGAAGGTGCATTTCTTGACGAferredoxin
CGATCAAATGGAGAAGGGTTATTTGCTGACTTGTA
TTTCATACCCGAGCATC
|
T207bTAACGATGTC AAAAAATTTC TGTCGGAGACphosphatidylinositol-SEQ ID N° 463
AGAATCAGAG ATTATAATCC TCGAGATCspecific
phospholipase-like
protein
|
T208TGAGTAACGTGAGGGAAACTGCTCTTCCTTCAGTAputative proteinSEQ ID N° 464
ATTGCACAATACCCCGAGATCAT4g02990 [A.
thaliana]
|
T21TATCGATTAT TCATACAGTG AGAGCATAGCcyclophilinSEQ ID N° 465
TTAAAAACTC CACAGAAATT TCTAGAAGAG
AGTGAGAGAT GGCAAATCCT AAGGTTTTCT
TCGACCTTAC CGTCGGCGGT CTACCGACCG
GCCGTGTGGT GATGGAGTTG TTCAACGATG
TAGTTCCGAA AACAGCGGAT AACTTCCGAG
CACTCTGTAC CGGAGAGAAA GGCGTCGGAA
AGTCCGGCAA GCCGTTACAC TACAAAGGAT
CATCATTTCA CCGTGTGATT CCTGGATTTA
TGTGTCAAGG AGGTGATTTC ACTGCTGGAA
ACGGTACCGG CGGTGAATCG ATCTACGGCG
CCAAATTCGC CGACGAGAAT TTCGTTAAAA
AGCATACTGG ACCTGGAATT CTCTCTATGG
CCAATGCTGG ACCTGGAACT AACGGATCTC
AGTTTTTCAT CTGTACGGCC AAAACCGAGT
GGCTTGATGG GAAACACGTG GTGTTTGGTC
AAGTTATTGA AGGAATGGAC GTGATTAAGA
AAGTGGAAGC CGTTGGATCT AGCTCCGGCA
GGTGCTCGAA GCCCGTTGTG ATTGCTGACT
GTGGTCAACT CTCTTAGATT ATTAATCGTA
TCAATTAATG TTAATGATGA TCTAGTCTAG
TTAACTATGT GATCGCAGTG TACTGATTTG
CTGGTTTTCG TTTTTTTTTT AGCCTTTTCC
TTTTTGAGAT TGTGGGTCGG GTTTCGGGCG
TACTGTGTCG GGTCTTTACT GTAATTGGTG
GTGTTTACTA CTACCAGTGC ATGTTGGAAT
TGGAATAAGA TTAGATTTCT CGGTTTAAAA
AAAAAAAAAA AAAAAA
|
T210ACAGCTATGACCTTAGGCCTATTTAGGTGACACTAputative proteinSEQ ID N° 466
TAGAACAAGTTTGTACAAAAAAGCAGGCTGGTACCP0638D12 [Oryza
GGTCCGGAATTCCCGGGATCTCAAAAAACACGATCsativa]
AATGATCCGTACAACTCTCTCTTATCGAGTCCTCT
ATTTCCAATAATCACCAAATTACCCCACAAGTTTT
CGATTGGATCAATTTAGTGTTTGATCTTTAGCTGT
TCTGATCAGTTTATTAGTGGAAATGAAGATAGTGG
ATTTGGATGAGTCGTTAATGGAAAGTGATGGCAAT
TGTGTAAATACTGAGAAACGGTTGATTGTTGTTGG
TGTTGATGCTAAAAGAGCGTTGGTCGGAGCCGGGG
CTCGGATCCTTTTTTACCCGACCCTTTTATACAAT
GTTTTCCGCAACAAAATTCAATCGGAGTTCAGATG
GTGGGATCAAATTGATCAGTTTCTCCTCCTTGGAG
CAGTTCCATTTCCCTCGGATGTCCCTCGGTTGAAG
CAGCTTGGCGTTGGTGGTGTAATAACACTGAATGA
ACCTTATGAAACTTTGGTACCATCATCATTGTACC
ATGCCCATGGGATAGACCATCTCGTTATTCCTACC
AGAGATTATCTTTTTGCACCCTCTTTCGTGGATAT
AAATCGAGCAGTAGATTTTATTCACAGGAATGCGT
CCATTGGCCAGACTACGTATGTACATTGCAAAGCC
GGAAGGGGAAGGAGCACAACCGTTGTGCTTTGCTA
TTTGGTGGAATATAAGCACATGACTCCTCGTGCTG
CCCTTGAATTCGTCCGCTCCAGAAGACCTCGAGTT
TTATTGGCTCCTTCTCAATGGAAGGCTGTTCAAGA
ATTCAAGCAGCAAAGAGTGGCATCTTATGCGCTCT
CTGGTGATGCTGTATTGATCACTAAAGCAGATCTC
GAAGGCTATCATAGTTCTTCTGATGATAGTCGCGG
TAAGGAACTGGCCATTGTGCCTCGAATAGCAAGAA
CACAGCCGATGATAGCTAGATTATCCTGCCTCTTT
GCATCCTTGAAAGTATCAGATGGTTGTGGACCTGT
TACCAGGCAACTGACCGAGGCACGTGCCTGCTAAT
CGCAAACTCATCAGCAGCAGCTACCTTGTACAGAA
GACCACTGCTTAAATAAGGTCAGAAAGAGTCTTAT
ATCTTTGAATCTGTGCTTCAGAGTGAACATCAAGG
GATTATGAATAGAAAAAAACAGCTGAAGAGTACTT
CAACATTGTGTAAACATGTTCAGAGTATGACTACT
GTGGTCATTAGTAAATATTGCATAATTATACTCTT
CCCATAATAAAGGGCGGGTATACAGACTTATTCTG
AGAAAAAAAAAAAAAAAAAAA
|
T211TAAGGCAGAA AATAAACTCC TATTGCTTTGbeta(1,3)-glucanaseSEQ ID N° 467
ATGTGCATGT TACAGTATAT GTTACAAAAGregulator
AAAAACTTTC TGTTTATATA GTAGGAGAGT
TTCATCCCTA GTATAAGTCT AAAAAGGTAA AAAT
|
T213CACTCTCTCTTAGCCTTGGTCTCAACAACTGTGGAAputativeSEQ ID N° 468
GGAATGCTCCTACTGGCTTCACTTGCTAAGCGGAAstrictosidine
GTACCCGATTACTCAGGACTCATCATCTACCAGCGsynthase
CAGGCAATTTGTTGCTGCGACTGCAAGTGGAGATA
AGACAGGCAGGCTGATGAAATATTATAAACCAACA
AAAGAAGTAACAGTTGCACTAGGAGGCCTA
|
T214GATCTCGGATTTCTTATTTCATTGCCCTCTTCCTTTAputative proteinSEQ ID N° 469
TTCCTCACTGGCTGTTCGTATTAP0501G01 [Oryza
sativa]
|
T216TAAACAATGT TCAGCCTTTC GTTGCAAGTTamidophosphoSEQ ID N° 470
ATAAATTTGG ATCAGTTGGT GTTGCCCACAribosyltransferase
ATGGCAATTT TGTGAATTAC CTAGCTCTTC
GTGCTGAACT TGAGGAAGAC GGGGCAATTT
TCAAGACTAG TTCTGAGACT GAGGTGGTTC
TTCACCTTAT TGCTAGATCA AAGAAGGAGC
TTTTTCTTTT GAGGATT
|
T217GATCTAGTGT CATGGTCCCT CGGAATTTCAputative E2SEQ ID N° 471
GATTACTTGA GGAACTTGAA CGCGGTGAAAubiquitin-
AGGGTATTGA AAATGGGACC GTGAGGTATGconjugating enzyme
GGATGGATAA TGCAAATTAT ATGTATATGC
GTCCCTGGAC TGGCCCCACT ATTGGCCCTC
AGGATTCCGT TGACTGCGTA GTGATCTGTA
ACTGCCGAAG ATATCATCTT GCCGCCTCAT
GTAGAAAT
|
T22GATCTCACTC CAAATCACAA TCTCCGCCGTputative proteinSEQ ID N° 472
CTGATCCAAT CATGGTGCAC ATTAAt2g35930 [A.
thaliana]
|
T220CATCCATCATTATCTTAGGTACACCCGTCCAGCCAGglucose 6SEQ ID N° 473
GCAACCCTCTTGGAGCTGCCATTGCAATTCTTGGAAphosphate/phosphate
CTGTCTTGCATTCACAGGCAAAACAGTGAAGAGTGtranslocator
GAATTTATATATCGCGCAGGAAAGGTGTCGGAGAG
AACCGAGAGGTGTTGAGAAAACGTATCCCATAATC
CTGAATCTACCCTTACTTGAGGTGGAACATGAAAC
TTATTAGTATGTACATAGCAATAATGGGTTACTCAA
GACT
|
T221ACTTTGGTACTCCACGTTGTGGGACCTACTGGTGGAputativeSEQ ID N° 474
TTGGCTACCCCACTTGTCCAAGATTTTGAACGCCAAstrictosidine
CCTCTTCTCTTTCACAAATGATCTGGACATTGATGACsynthase
GACGACGATATTATTTACTTCACGGATACAAGCAC
AATCTACCAGCGCAGGCAATTTGTTGCTGCGACTG
CAAGTGGAGATAAGACAGGCAGGCTGATGAAATAT
AATAAATCAACAAAAGAAGTAACAGTTGCACTAGG
AGGCCTAGCTTTTGCAAATGGTGTAGCCTTACTCAG
GACTCATCAC
|
T222aGATCTCTCCA ATTTCCTCTT CACTGTCGGTputative proteinSEQ ID N° 475
GCCAGAATCC CTGCTCAAGT CTTTGGTTCAAt3g56950 [A.
ATTACTGGGG TTAGGCTCAT CATTGCAGCAthaliana]
TTTCCAAACA TAGGACGAGG ACCTCGTTTG
ACCATTGACA TCCACCGAGG TGCACTGATT
GAAGGGTGCT TGACATTTGC GATTGTTACC
ATTTCACTTG GACTTTCCAG AAGAAGTCGT
|
T222bGATCTCTTGC CTCGTGCAGA CATGCTTGATretrotransposon-SEQ ID N° 476
TCTCGTCCTT TGGCCACTCC TCTTACTAGTlike protein
GGTACCGAGC TTCCCAAGTT GGATGTCACT
TCCCTCTCTG ATCCCACCTA TTTCATTCTT
CTATTGAGTC GGCTAACTGT AACTATAAGC
TACACGCCTC GAACTCGTAT AAAGATTCTT
CCTCTAGGGC CTCCTTTCAC CTT
|
T222cCGACAGAGAGCAGCCCTGAATCTTTGGCTATGTCAputative nucleicSEQ ID N° 477
ACTCCGTTCCTACACATTTCTCGTCCTCTTTCTCCACacid binding protein
ACGAGTACAACCATAAGCCTTATAAATACTGAAAT
CTCATCAATAGCTGTGACTTGTAATTGACTAACTAA
GCCCATGGCTTCCAACTCTTCCTCCCATAGCCCTCG
CACCGTCGAAGAGATC
|
T225GTGATCTCTTGCTGTATCAAGAGGTATTGGAGATCAprotein phosphataseSEQ ID N° 478
GTGTCTTA2C
|
T227TAATCCAAAC AAAACTTCTA CTGCGAAGAAribosomal proteinSEQ ID N° 480
GGTCCGCGGT GTAAAGAAGA CCAAGGCTGGS19
TGATGCTAAG AAGAAATAAG TCTTATGCAA
ACAAAAATCT CAATTTGGGA TTCTTTTGGT
GGCCTATGTA TTTGTCTTGT GGTACTGTTG
ATTTTGACTT TGATTTTGGG GCGATTCAGT
TATCTTCCCA TGGGGATATC TCATGGAAGG
CTTAGAGTAC TTGAGAGTTC TATTAGTTAG T
|
T228GGCCTTATTCTTTTGCTTTCAGGATTCATCTTACCACputative proteinSEQ ID N° 481
CTACTGATGGCATCGCGCATCATCGACGATCCCTCTAt5g05740 [A.
GTGTTCCACGAATCATTTCTAGCTGGCGGTATAGCCthaliana]
AAGCTTATTCTAGGAGATGCTCTCAAGGAAGGAAC
TCCTATATCAGTAAATCCGCTTGTCATATGGGCCTG
GGCTGGACTTCTCATTA
|
T229aGATCTCTAGC ACAAAAACGA CCCCCCCCGTnucleoporin-likeSEQ ID N° 482
TAGTCATCTT CTCCAGACAA TCCCTAAGTCprotein
GACGAGTAGC TGCTGCCTCG TCCTTCACTG
AGCATCCAAA GTCCAAACGC CGCTGCTTTC
GTCTTCAACC CATCGTCCAA CTTCACGTCG
|
T25TAAATGGAGCAAGGCTAAGCTTGTCTGGTGATCACputativeSEQ ID N° 483
CAGCTCAGTAATGCTGGCCTTGCTGTATCCCTTTGTfolylpolyglutamate
AAAAGTTGGCTTAGAAGTACAGGAAACTGGAAAAsynthetase
GGCTGTTTGAAGATGCATATGAGAAAGATGGTCTA
CCAGAGGAATTCCTGAGGGGTCTTTCAGCTGCACG
TCTTTTCTGGCAGGGGTCAGATTGTTGTTGACCCTCT
GATCAACACATCTGGAGGACATAAAAGGTTGTCAG
GAGATC
|
T27GATCTCCCAA TACTGACCGG GGGATAGGAAtransposase-likeSEQ ID N° 484
GTCCATTGCG AGAATATAGC CCTAATATACprotein
GAGATGAACT TAGAAGACGT TATATTCAAA
TGGGACCTTG CCAGCCTACG AGTCATGATT
TTCCTAAAAC TAAGTTTGGG AAGACAATGC
GTCAGTTTTA TCCTGGTTGG TTTTA
|
T28GATCTCCTAG GAGTGTTAGT GACAAAGATAnicotinicSEQ ID N° 485
GCCCACGTTC TGTGTTTTTG GATCGCAGTTacetylcholine
CATCGTCAAA TTCTAGGCGT AGTTCTAGTGreceptor epsilon
GTACTAGTTC CGAAGCATCC GTACAGTAGC TTTAsubunit
|
T3TGAACCCTTT TTGATGGACT TAAGGGAATAputative proteinSEQ ID N° 486
ATTTGGTGAC CCAATCTTCC TCCTCTTGGAP0529E05 [Oryza
CTTCAATTTG GACCACCATA TAATTGTAAAsativa]
ATTTGGACAA TTTATTTCCT TTGGTCTTGA
GCTCTTCCTC TACAATTGAA AGCTTCTTTA
TTTGCCATTG AAGTCTAGCA ACCTTAGTAG GCAA
|
T30GATCTCCCAG AAGGGGTCCA AAGCATCATTputative proteinSEQ ID N° 487
GCAGATTCTA GTGAATGTGT GTCAATGGGGAt2g35930 [A.
GAGGAACAGA GTGAAAGCGG CGGAGACTGAthaliana]
CGCGGTTAGA
|
T302aTAAAGCCACAGACAAGACCAACTACATTGGTGCTAputative proteinSEQ ID N° 488
ATGATCTTCAAGCTACCTACTCTCTCTATCCAGGAAAt1g76660 [A.
GTCCTGCTACTACTCTCAGATCACTACGCAGTCAATthaliana]
CCCGCG
|
T302bGATCTGGATT TACCTCCACC TCCCAGGCCTsplicing factorSEQ ID N° 489
GGTTTTCCAT CTGTTAGGCC ACTACCTCCA
CCTCCTGGGC TTGCGCTGAA TATTCCTAGG
CCTCCTAATA CAGTCCAGTA TTCCACCTCC
ACCAGTGCTG GGGTTGCTGC TCCACCTCGA
CCTCCTATGG TTACTCAGGG GTCATCAATC
ACTAGT
|
T302cACTAGTGATTGACTGCGTAGTGATCTGACTTGTCCGpectinSEQ ID N° 490
CTTTGTATAGATGTGACmethylesterase
|
T303bCGAGTTGAATGAATCAAAGCAAGACGAAGTCAGCAcysteine-rich proteinSEQ ID N° 491
GTCCTCGCTCTTGAATCAGATC
|
T305GATCTGAGGAGAGTTTGCATTTTGGATTTGCGCACGarabinogalactan-SEQ ID N° 493
AGATGTTTATGATTCTAGGATTTATTTTAGTCATCTprotein
TACTCGGCTGATGTTTATTCGCTTTTGTGACTTTTAC
TCGTGGGCGGTGGTGACCGCGTACATGCTATTTATT
TGATTTTTACTATGGTTATTGTTTATTGTTA
|
T308aGATCTGATCC AGCAGTTGTT CTTGCATTTGputative proteinSEQ ID N° 494
ATATTCAGTG TAATATTGAA TCATTTTATCBAC19.2
AAGTTATCGT TGCTGTCCCT TTTCTTGGTA[Lycopersicon
ATCCAGTTGT CTGCTTTGAG ATTTACTCTTesculentum]
CTGAATCAAA ATCTTGGAGT TGCTCTTCTT
CAGACTGTAT TGAGTTGGAA AATAGCACAA
GTCCTCTAAT CTTTGATA
|
T309ATGGGAACGGCTTCCTGGTTGCACTTGTTGGTACGGputative proteinSEQ ID N° 495
ACTCTCTTATGGAGTTTTGACTGGTACTTCCCTTGTT4933419D20 [Mus
CCCCTGTACTTATTCCTAATACTCCAGGAAATATTGmusculus]
CGTCACTTGGCTTA
|
T311ATAAACAGCCTTGGATGATTCTTGCTGCTCATCGTGputative proteinSEQ ID N° 496
CCCTTGGTTACTCCGCTAATGATTGGTATGCTAAGGAJ271664 [Cicer
AAGGCTCATTTGAAGAGCCCATGGGAAGGGAGCACarietinum]
TTGCACAAACTCTGGCAGAAATATAAGGTTGATAT
GGCATTTTATGGGCACGTCCATAACTATGAAAGAG
TTTGCCCAATTTACCAGAATCAATGTGTGAACAAG
GAGACATCACACTACTCGGGCGTAGTGAAAGGAAC
AATTCATGTTGAAGTTGGGGGAGGAGGAACCCTTT
TGAATAAATT
|
T313aGATCTGAGACCGGGGTTTATCGAGACTGAGTTTTATphospholipase DSEQ ID N° 497
ACTTCTCCTCAAGTGTTCCATTA
|
T314CTAAGGGTGCTGCCAGCTTTACCTCCCAAGTCATCAelongation factor-1SEQ ID N° 498
TCATGAACCATCCAGGACCGATTGGAAATGGATATalpha
GCTCCAGTGCTTGACTGCCACACCTTCCACATTGCT
GTCAAGTTTGCAGAAATTTTGACCAAGATCGACAG
GCGTTCTGGTAAGGAGATTGAGAAGGAGCCCAAGT
TCTTGAAGAATGGTGATGCTGGTATGGTTA
|
T315aGATCTATGGT TTTGTCTTGG AACTCAAGCAPROBABLESEQ ID N° 499
CAAGCTTGGT CTTGCTTGAA CAAGAAACACGLUTATHIONE S-
TTCTTACCTA CTGCAGAAAC CAATCATGTCTRANSFERASE
CTTCGTCCCT AGTTGTTCAA GCATCAATTTPARA
ATCAATATTG TTGCTACTCT GTCTATAAAT TTT
|
T315bGATCTTGATA ACAAACGTAA TACTAACATGputative proteinSEQ ID N° 500
AAACAAGCTA ATGGAACACA AAATTTACAGAt2g44270 [A.
AGCAAACAGT GTGGAAGCTT GGACTTTTGAthaliana]
ATCATCATAT AACTGTATAA TCGTTGTATA
ATTCTCAGTG GTGATCATTG CGATCT
|
T319aGATCTTGCCATCACAGAAAAGGATCATTCTGGGCGRNase NGR2SEQ ID N° 501
CATGAGTGGGAAAAACATGGGACATGTGCTTATCC
AGTTGTCCATGATGAATATGAGTTCTTTTTGACTAC
GCTGAATGTTTACTTCAAGTATAATGTTACAGAAGT
TGTGCTTGAAGCTGGATATGTACCATCAGATTCCG
TAAGTATCCATTACGAGGCATCATTTCATCAATTGA
AAATGCTTTCCATGCAACCCCA
|
T319bGATCTCATCA TGAATGTTGG TACTGGTGGC60S acidicSEQ ID N° 502
GGTGGTGCTG CAGTTGCTGT TGCTGCTCCCribosomal protein
ACTGGTGGTG CCAGTGCCGG TGCTGCAGCTP1-like protein
GCTGCCCCTG CTGCGGAGGA AAAGAAGGAA
GAGCCTAAGG AAGAAAGTGA TGACGACATG
GGATTCAGTC TGTTTGATTA GGAGCTCCTT
TCAGTATGAT ATTTGGTTCT TTTTTAGAGA ATTG
|
T32TAACACAGAG AAAGTAGAAG AAACTACAAASGP1 monomericSEQ ID N° 503
ACAAGGACAA CAACAACATG CCAAGAATGGG-protein like
ATCATCATAT GGTCTATTTC CTTCATTATGprotein
ATGATCCTGA TGACGACCCA TCTTCTTCTT
TGACCTTGAG ATATGAACCT TCTTCTAAGT
CTTGGGAGAT C
|
T320aGATCTCCCTA CCGGTGGGCT TGCTAACGTCphosphoglycerateSEQ ID N° 504
GCTGCAACCT TTATGAATCT GCATGACTACmutase
GAGACACCAA GCGATTACGA GCCAAGCTTG
ATTGAGGTTG TTGACAACTA GATATCTCAG
AGAATTTAGG AGGGTTGAAA TTTTGGCGCA
AGTTGGAAAG TGATAATGAC TACATTCTAT
ACTCTTTCCA GTCTATTTGA ATAAGACATT
TTTTTGAGCT TATATTA
|
T320bAGTGATCTCCATCGTGACCTTGGTTTTGATAAGAAAplexus-like proteinSEQ ID N° 505
GAAGCAGCTGCTCCCTTCCTTCTCCACTCCCAGCAT
CAAGCACATTCCTTAGCACAATCAACCAGTCAACA
ACCACCCCAAAACAACCTGCAAAACTCAGCAAAAT
TCCACCCAAAAACTCCTAGAAGCGCAGTACTTCAG
CTCCAGAAAGTCATGAAAACGCAGTTGTAGCACCG
TCCCTTTTAGCACCCTTA
|
T320cTAAGGGTGCTAAAAGGGACGGTGCTACAACTACGTcollagen-likeSEQ ID N° 506
TTTCATGACTTTTTGGAGCTGAAGTATTTTGCTTCTTprotein
GGAGTTTTTGGATGGAAATTTTGCTGAGTTTTGGAG
GTTGTTTTGGGGTGGTTGTTGGCTGGTTGATTGTGC
TAAGGAATGTGCTTGATGCTGGGAGTGGAGAAGGA
AGGGAGAAGCTGCTTCTTTCTTATCAAAACCAAGG
TCCCGATGGAGATC
|
T321TAAGGAAAAT AAATGACATG CATTTAGAACputative proteinSEQ ID N° 507
CAATATTCAA GAACAGTGAG TTTATCATCTAt2g11600 [A.
CTCAAAACAT AAACAAAATG AACTTGGCTTthaliana]
CAAATAATCC TTGAACAAAA TAGGGAGATC
|
T322aGATCTCGAGAGAATTTATGGCTTCACTCCAAGAAAputative proteinSEQ ID N° 508
CCCTCGTGCTGTAAAGCCACCTGATCATTACATAGAAt5g22210 [A.
ATACATGCGCTTAthaliana]
|
T323ACAGCTATGACCATTAGGCCTATTTAGGTGACACTcellulaseSEQ ID N° 509
ATAGAACAAGTTTGTACAAAAAAGCAGGCTGGTAC
CGGTCCGGAATTCCCGGGATGAACATGAGAGGGAA
ACCAAGGCTACTGGTTAATCTCTCAACCATTTGACT
TTGATCACCAATTAAGCTCAGATACAATGCACTCA
GCAAATCATTGGGGAGGATCATTAGAAATCGCGAA
CACCGGCGATTCAACGGCGGAGGAATATGACCGGA
GTCGGAATTTGGATTGGGACAGAGCATCAGTAAAT
CATCATCAAAAACAACAACAGTATAATAACTACGA
TCAATATTCTCATCGGCATAATTTAGATGAAACGC
ACAGAGTTGGTTATTAGGTCCGCCGGAGAAGAAGA
GAAGAAATACGTCGATTTAGGATGTATTTGTTTGC
AGCAGAAAAGCATTCAAATATACTATTTATGGAAT
TATTATCGCTTTTCTCGTTATCGCTCTGCCTACGATT
ATCGCCAAGTCTTTGCCTAAGCATAAAACTCGGCCT
TCTCCTCCTGATAATTACACTATTGCCCTTCACAAG
GCTCTCCTCTTCTTCAACGCTCAAAAATCTGGAAAA
TTGCCAAAAAACAATGAGATTCCATGGAGAGGAGA
CTCAGGTTTACAAGATGGATCAAAACTCACAGACG
TTAAAGGAGGGTTGATTGGAGGGTATTATGATGCT
GGAGATAACACAAAATTTCACTTTCCAATGTCATTT
GCAATGACAATGTTGAGTTGGAGTGTCATTGAATA
TGAACACAAGTACAGAGCCATTGATGAGTATGATC
ATATCAGAGATCTCATCAAATGGGGCACTGATTAC
TTGCTTCGTACTTTCAACTCCACTGCCACTAAAATT
GACAAAATTTATAGCCAGGTTGGTGGTTCTCTAAA
CAATTCAAGAACACCAGATGATCACTACTGCTGGC
AAAGGCCAGAAGACATGAACTATGAACGCCCTGTT
CAAACAGCTAATTCGGGGCCTGATCTTGCCGGTGA
AATGGCAGCAGCATTGGCTGCAGCCTCCATAGXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXXXXXACGTAGGAACTG
TGGCCCTCGCTATATCTCCTTGGATATTCTTCGCCG
TTTTGCCACTTCCCAGATGAATTATATTTTAGGTGA
CAATCCCTTGAAGATGAGCTATGTAGTAGGGTATG
GAAACAAATTCCCAAGGCATGTACATCATAGGGGT
GCATCAATACCCTCTGGTAAAACAAAGTACTCATG
CACTGGAGGTTGGAAATGGAGAGATACCAAAAATC
CGAATCCTCACAATATTACAGGAGCTATGGTAGGA
GGACCTGATAAGTTTGATAAGTTCAAAGACGCGCG
CAAAAATTTCAGCTATACAGAGCCAACACTAGCAG
GAAATGCAGGACTAGTTGCTGCACTGGTTTCTTTAA
CTAGCAGTGGTGGCTATGGTGTTGACAAAAATGCC
ATTTTCTCAGCTGTTCCACCCTTATATCCAATGAGT
CCACCCCCACCTCCCCCATGGAAACCATAATGTGC
AAATTTTGCCTTGAAAACCTGCAGCAGCTTAAATTT
TGCCTATATTTGGCTGGCTATATCCATGTACAAAA
TTTCGAGAATAAAGAGTTGTTGTAACTCTGTTTATC
TTATGACTCCGCGGCTTAATAAAATTCTTGCATTAA
TTTCTTTTTAAAAAAAAAAAAAAAAAA
|
T324aGATCTATCAA GTTTGCATGG TGGGTGCCCTputative prolyl 4-SEQ ID N° 510
GTGATTAhydroxylase alpha
subunit
|
T327CTACCGAAGGGTACCTTGCAGAAGAAGGGGAGGAexpansinSEQ ID N° 511
ATAGATTTACAATCAATGGGCACTCTTACTCCAAC
TTGGTTCCCGTGACCAATGTTGGAGGTGCAGGAGA
TGTAAGATCATTGTACATCAAGGGTTCAAGAACTC
AGTGGCAACCAATGTCAAGAAATTGGGGCCAAAAT
TGGCAGAATAACGCTTACCTCAATGGCCAAAGCTT
ATCTTTCAAAGTCACCACAAGTGATGGTCGCACTG
TGTTTCTTATAATGCAGCTCCTCATTCCTGGTCCTTT
GGCCAGACTTTTACTGGAGGACAGTTCCGTTA
|
T328CCCTTATTGAGCAAAATCTCGAAGCTTGGGGGTAAeukaryoticSEQ ID N° 512
GGTATCTTCAGCCTCTTCGGTTCCGGAAGTGCCACTtranslation initiation
GTGCCAGCCTGTTCCAGCCTTGGAAAAGCTTGCAAfactor 3
CTCTGAGGTTGCTCCAGCAGGTATCTCAGGTGTACC
AGACAATCCAGATTGGTAACCTGTCTAAGATGATC
CCATTCATTGACTTTGCTGCTATTGAGAAGATCGCT
GTTGATGCTGTTAGACATAATTTTGTTGCCGTTA
|
T330TAACCCCAAA GTTCAAGCAT CTATTGCTGCBTF3b-likeSEQ ID N° 513
AAACACATGG GTCGTTAGTG GTTCCCCCCAtranscription factor
GACAAAGAAA TTGCAGGATA TCCTTCCTCA
AATTATTCAC CAATTGGGTC CTGATAATTT
GGAGAATTTG AAGAAGTTGG CTGAGCAGGT
CCAGAAGCAG GGTGCTGCTG CAGGTACAGG
TGAGGCTGCA GGTGCGGCCG CAGCACAGGA AG
|
T331TTCCAAAAGTACAACAGGTGTTAGAAGTGCGTTCGRNA polymeraseSEQ ID N° 514
GTTGATTCAATATCCATGAATCTAGAAAACAGGATbeta″
TGAGGGCTGGAACAAATGTATAACAAGAATTCTTG
GAATTCCTTGGGGATTCTTGATTGGTGCTGAGCTAA
CTATAGCGCAAAGCCGAATCTCTTTGGTTACTCAGG
ACTCATCAAGAGACCCCCCGGGGAATCCCGAGAAT
TCTTGTTATACATTTGTTCCAACCCTCAATCCTCTTT
TT
|
T332bGATCTGGGTG AGGCAAAGAA AATTCTTGGClight harvestingSEQ ID N° 515
ATGGAGATAA TTAGAGATAG ACATTCAAAGchlorophyll a/b-
AAACTCTGTT TATCTCAGAA AGAATATTTGbinding
AAGCGAGTAC TACAACGTTT TGGCATAGAT
GACAAGACTA AGCCAGTTAG TACTCCACTT
GCTCCCCATG TTA
|
T333bCCAGCCGCAC CCTCACCACC AAAACTCCATputative outer-SEQ ID N° 516
CGTCGGACCT CCCTTCACTA CGCAATAGCCmembrane protein
ATAAATGAAA CTTCACCTCA CACATGCCCT
AAGCTCTTCT TCTTCATTGA CAGACCCAGA TC
|
T335bGATCTGGAAC ATGACACAGC TGAGGCGTCTdisease resistanceSEQ ID N° 517
GCGTCTACTG AGTAGAAACT ATTTGTGTAAlike protein
GCCTAAA
|
T336aGATCTGGAAA CCCCAAAAGT ATAGAAGCAAambiguous hitSEQ ID N° 518
TTCTTGAGGT TGAGGATATC ATATAAACTA
CTGTACCATT GGATTTCTTT CCATAATTCT
TGAGGTTGAA TATCTCAGGC AATCTTTGAT
TCATATGGGA A
|
T336cGATCTGGGGA ATACTGACTT AGTGACTTACputative proteinSEQ ID N° 519
AATGTTATGA TGAACCTATA TGCTAAAATGAt5g09450 [A.
GGAGACCTTG AGAAACTACA GTCGTTAGTGthaliana]
CAAGAGATGG AAGATAAGGG AATTGC
|
T337TAAGGAGAAA CAGAGAAGGA AACTACTGAGputative proteinSEQ ID N° 520
AAATGATAAT GCAGAAAACA CACCAATACTAt3g52110 [A.
thaliana]
|
T339TGGTGTCGGAAGAATACACATGGCACCATTTAGTGputative arginineSEQ ID N° 521
ACGAATATTTGTATATGGAAATAGGAAATACGGCGmethyltransferase
ACCTTTTGGCAGCAACAAAACTACTTTGGGGTTGA
CTTGACACCTTTGCACAGATC
|
T340GGTTTCATCACTGGTTTTGACTTTGGAGCTTGATTTprolineSEQ ID N° 522
AGTGGAGTTTTCATGCATAGAAATTTCTGAATTTCTdehydrogenase like
TCTATTGGAAGCTTGAAGAATAGGAGAAGAGGCGTprotein
TCCTTTTCCTTGCCTATGTTTTCTCCTCAATCTCCTC
CCCTTTTCATTCTCTGTTTTTCCGTCTTTCCCCAGAT
C
|
T341TAATGGAGGGCAAGCTGAGGAGTGGAACTACTCTCthymidylate kinaseSEQ ID N° 523
ATTGTTGATCGCTATTCTTATTCTGGGGTGGCATTT
TCATCTGCCAAGGGACTTGATATTGAATGGTGTAA
GGCCCCAGAAATAGGATTGTTAGCTCCAGATC
|
T349TGCCAACAGTTCTATGCACATTGGAGATGTCACAAputative proteinSEQ ID N° 524
TCCCATATCAAATTGCACAAACAGGGCTCTGGGATAT4g24350 [A.
TGGCTGAAACCAAATGCAACTCTGGAACCAAATGAthaliana]
TTTTGCTCAATTTGATTTCAAGAATTATAATGTGCC
AAAAGGAGGGGATAACAAGTTGGGGCGTGTTGGTT
ATAGCACGGAGCAGTTTTACTCAACTTCAGGGGAG
GTCAATGTACCTCAGAGACCAGTTTGGTTTA
|
T35GATCTCCGTC CGAGTGAATA ATGCATTTCTputative proteinSEQ ID N° 525
TTTGGCAGGC AATGAAGAGA ATCGGGTGGAAt1g70660 [A.
TCAAAAAGGT TTGGTTCTGA AATGTTGTATthaliana]
TTTGTAACTG GAGATTGGAG AAAGAACATT
GTAGATGAAA ATGTATATAG CCTTATTGCT
CAGATAGTAG CAACTGTTGT CTTA
|
T351aTTTTCGACAAGCTTGATGAAGATGGTGATGGATTAputative proteinSEQ ID N° 526
GTAAGTTTAGGTGAACTCAAAGGCCTTCTTGATAACG14861
GATTGGAGCTTGTACAGATCACTACGCAGTCATAA[Drosophila
GATCmelanogaster]
|
T352GATCTGTTGA TGCAGATATG TGGCATGGGAserine/threonineSEQ ID N° 527
ATCAGGATTT GCTATCCTCA AACAATGTCAkinase-like protein
CAATCAGTGT ACTAATA
|
T353bGATCTGTCAT TGATGTTCAT TACTACAATCglucan 1,3-beta-SEQ ID N° 528
TTTTCTCTGG CATGTTTAglucosidase
|
T354TGTCACAATTCCATCTCAAGTCGCTCCAACTGGGCTputative proteinSEQ ID N° 529
ATGGGATTGGCTGAAACCAAATGCATCTCTGGAACAT4g24350 [A.
CAAATGATTTTGCTTAATTTGATTCCAAGAATTATAthaliana]
GTGCACCAAAAGGAGGGGATAACAAGTTGGGGCG
TGTTGGGTATAGCACTGAACAGTTTTATTCAACTT
|
T356TAACTGAGGC ACAAATGATT GACCACATGTglycineSEQ ID N° 530
CAAAATTAGC TTCAATGAAT AAGGTTTTCAdecarboxylase
AGTCATATAT TGGGATGGGA TATTATAACAmulti-enzyme
CTTTTGTACC ACCTGTTATT TTGAGGAATAcomplex P subunit
TTATGGAGAA TCCTGCTTGG TATACTCAGT
ATACTCCTTA TCAGGCTGAG ATTTCGCAGG
GACGTCTCGA GTCCCTGCTA A
|
T357CCATTCTTCTCATTTCTGATGTATTTGGATATGAAGendo-1,3-1,4-beta-SEQ ID N° 531
CTCCACTTTTGAGGAAGATAGCAGATAAAGCCGCAD-glucanase
GCTGCAGGGTACTTGGTGGTTGTTCCTGATTTCTTC
TATGGTGAACCTCTTGATCGCGAGAAACATAACGT
ACAGACATGGTTA
|
T36TGACGTGCGT AGAGATCTCC GAGATTATCTputative proteinSEQ ID N° 532
AGATAGTTTC CATGGGCTGG GACTTTTCCTAT5g13800 [A.
CTTCCCACCA CTATCAGAAA GCTCACAGAAthaliana]
CTTGTATGGC AGAAAATTAG TGCTCCCGAG
AGCATTGCGG AGGTGCTTA
|
T361TAAGCACCAC AATTTGCAGC TGTTACCAGTphotosystem II D2SEQ ID N° 533
CGATCGCGAT CGCGCCTACA TGCGCAGACTprotein
TCCACATCTG TACCATTGTA CCATAGTAAC
CTTGTTCTGT CTCTTTGTTC ACTTAGAAAT
GCTATAAATA CTGCATACAG ATGACTATAC
ACATTAGCTG ACGCTTGATC ATTCATTGAG
GAACCTTGTG GTTTCCACAA TTTTTCACTA
AGCAGTCGGC ACATGATGTG TTAGTCAATC
CCATATGGCA CTCAAATACT GTGTGCCGTA
CATATGGAAT AGGGAACTAA GAGAGTTACA
TACGGGAGAT CAATAAGGGC TCAGCAACAG
GAGTGTCTTC A
|
T362ACGATGTGCT CCCGGTCCCG AGTGTCTCGC14-3-3 like proteinSEQ ID N° 534
GCAGTGTGTC ATCCTCAAAA CCAGCCTTGG
GTAAAAATGA CAGGTAGGAT GACAATGTTA
TGTTATTGTT GGACTTGTGG GAAGTAGTTT
GGTCCTTTGA ACTTTGTTGC CGGAAAAGCT
ATCTAAAGCA CTTTCTGATT TGGGCTTTCA
GGACTTCAGG TCATTTATTC CGCCTTA
|
T364aGATCTGTGGA AAAGGAAAGC TGGAGAAACTNADHSEQ ID N° 535
TGCTGTGCTG TAATTTATGT ACAGTGCTATdehydrogenase-like
TTGGCTGCTC AACTAAGATT GTTTTGATTCprotein
TCTCTTAGTC TTATGTTATC TTTTTTCTTG
AAAATCCTTG CTTTTTCTTT CTTCTCTTGG
AGTTGGGGGT CAATATCCTT TGTTTGTGGT G
|
T364cGATCTGTGGA ATGCAATTGG TTCGTAATATB12D-like proteinSEQ ID N° 536
CTGCGGCAAC CCTGAAGTCA GGGTGACCAA
GGAAAACAGG GCAGCAGGGG TACTGGACAA
TTTTTCAGAA GGGGAGAAAT ATGCTGAGCA
TGCTCTTAGG AAGTTTGTCC CCTTCTGTAA
AGTTAGCATT TTCTTCTGCT TCCCCGTTTT
|
T365aGATCTGTCGA ACCAGAGTTG GAAATGGAGGputative proteinSEQ ID N° 537
AAGAGGATGA TCCTTATCCT CCATCCACTGAt4g11570 [A.
TGGCCGTTGA TGATGGTTTC TGGTAACATCthaliana]
TCTGCAATGT ACAGTAGTTG TGCTTACTCA
GGACTGATCG TCTAAGGACT TTTATGAGAC
ATTCTCGTGT GTTACAATAC AAATATGACA
TCTTTGCCTT A
|
T366cGATCTGTACA AGCAAGACTG GATTGGGAGAphospholipase DSEQ ID N° 538
GGAGGACTAT GCGAATGATG TACACTGACA
TAATTCAAGC TCTAAAAGTA AAGGGAATTG T
|
T367GATCTGTTCT TCAATATAAC AGAACGTCTTputative proteinSEQ ID N° 539
TTTTCCTTAORF 1901
[Nicotiana tabacum
plastid]
|
T368TAATGCTCTC TCTGCACATA CTGGTACATAputative glyoxalaseSEQ ID N° 540
AATAATAATA TTACAAAAAA GGATTTTTAC
GGTATGTTTG GGTTGTTGGA AAAGGGGTCT
AAATTTATGA GGGGTAAAAT CACTCTTTTT
GCCGACAATA TCACTCAAAA ACAAATATCT
ATCATGTCCA AAGCTAAATT TTCCATCATC
AGAGATTCCA CTTCTCGTGA GCAGTTCATA
TTTGCACCTC TGCTTCCATT TTCGTGAATG
AAATTAGGCA TTGT
|
T369GTAATATCTGCGGCAACCCTGAAGTCAGGGTGACCB12D proteinSEQ ID N° 541
AAGGAAAACAGGGCAGCAGGGGTACTGGACAATT
TTTCAGAACGGGAGAAATATGCTGAGCATGCTCTT
AGGAAGTTTGTCCGAAACAAGTCTCCGGAGATTAT
GCCATCTATCAACGGCTTCTTTAGCGATCCAAAGTG
AAGTTTGACATGGATTA
|
T37GATCTCCAAG CCTAGCTCCA GCACCAGCACfasciclin-likeSEQ ID N° 542
CAGGTCCCGA ATACACAAAC CTAACCGACTarabinogalactan-
TACTCTCCGT TGCTGGCCCT TTCCACACATprotein 7
TCCTTA
|
T370aGAAAAAGGGA GAAAAAGACT ACACTTAGGAputative ankyrinSEQ ID N° 543
GCACGTTATT CGCCTATTTG AAGCTAAAAAprotein
CCTACCCCCA CATCTGAAAA GATCGGGAAT
CGAGGATATA TACAGATC
|
T370bGATCTGTCAA AGGCCAAGTA TTTCACAGATputative acetone-SEQ ID N° 544
GAAGGGTTTG GATCAGTGAA GAGAGTTTACcyanohydrin lyase
ATTGTGTGCA CAGAGGATAA ATGGATACCA
GAAGAATTCC AACGATGGCA AATTGACAAC A
|
T372bTAATGCACCA CTAAACAAGC ATGATAGGAGputative 12-SEQ ID N° 545
TACTTTCTAT ATGACAGATCoxophytodienoate
reductase 2
|
T372cGATCTGGAAA GGTGGGTGTA TTATCAGGGC6-phosphogluconateSEQ ID N° 546
AGTGTTCTTG GATCGGATTAdehydrogenase
|
T39GGATCTCCAAC TGAAATGAAA TGAAGAGGAAmaturaseSEQ ID N° 547
GACGATGAGT CCTGAGTAAT GTCAGGGGAG
GAGGACTTGG GATCGCGTAA AACACAGACA
TCGCCATTGC AGACGAATTC GCCAGAGTCT
GAGGACTCAG GTGAGAAGCA GCTACAGAAG
TTGAACAAAG CCATAGTAGG AATTGAACCT
AAGTAAATTA TATATCCCGA TCAAAGAGCT
GACGAAAGGA ATGAGCAGAA CGTGGAGTGT
AGTGGATATT ATTCGACTAA CGAAGACTCT
TGGAATAGTT AGAGTAAAAA GTTCCCAAGA
GAGCGTCTTT ATGGCGCGCG TCAATCACAT
ACAACAAGGA TCAAGGGAGA TCACTACGCA
GTCAA
|
T401TAACACATAC ACACGCATAA CTCACGAAGTiron(III) ABCSEQ ID N° 548
GGCACGTGTA AAAAAGAATT CCATCGAAGTtransporter-like
GTTCGAAATT CAAAGGACAC AAAAATCTCTprotein
CTCTAAAAAT TCTTGAAAGA GCTGGTGGAT
GAAACAGATT CTCTTACAAA CACTTTCAAT
TCAGACGTAC GATAATTAGC GTGAAGACTT
GAAAAGTAGC CACTGCAAAG GAAATGATCC
CATTACTGTT AACAAAGGCA TATTC
|
T402AGAAAAAGTCCGATCACCGGGCGAGGAGTCCGACphenylalanineSEQ ID N° 549
AAAGAGTCCACACGCAATGTGCAATGGACAAATCAammonia lyase
TTGATCCAATGTTGGAGAGTCTCAAGAGCTGGAAT
GGTGCTCCTCTTCCTATCTGTTAGTTGTTTTGCTTGAT
TTCGCGCGGCGGGAACTTTTGTTA
|
T404GATATTCTTGGTGGAGTTTTAGCTGCGTTATGATACfatty acid 9-SEQ ID N° 550
TTTTGAAATTGAATTTGGAAAGCTCCTGCTTGGTTChydroperoxide lyase
TAAGGTGACTTTCAAGTCAGTAACCAAGGCAACGT
CTTA
|
T405aGATCTTAGGG CAGGGCATGA ACAAAGTCTAlipoic acid synthase-SEQ ID N° 551
TCTGTGCTTAlike protein
|
T405bGATCTTAGAG TGTCTAGGGT TGGGCCAGGAputative proteinSEQ ID N° 552
GGGTCTCTTAtRNA-Ile [Spinacia
oleracea]
|
T406GGACCTGATACGGATACGACAGCCTTTTGGGAGTCputative proteinSEQ ID N° 553
GGCGCAACATAGGCCCTTTGTTCTCCAAAACTATACAt2g36290 [A.
TCTGGGGCTTGTTTAGTATTGGATTCAATGACTCTTthaliana]
TGTTATTGTACAAATTTGAATATTTGTCAATATTAT
CAAATGATTGTTTAGTTGCTTTATTCAAGTAATGAA
TGGTTATGTGTTA
|
T407GTTTGAAGATGAAACGTTTGATTTGGAATTTTCTCCputative proteinSEQ ID N° 554
TGTTTTTGACCCCGCGCTTTATCCGGAGAAATATGTAt1g24480 [A.
GTCGGAGATCGAACGGACGTTGAAGGCCGGAGGGthaliana]
TTTGTGTTTTGCACGTGGCGTTATCTAGACGGGCTG
ATAAGTATTCGGCGAACGATTTGTACAGTGTTGAG
CCGTTGAAGAAACTGTTTA
|
T408GATCTTGAGT TCAATTCCAA AGCCATTTACuracil transporter-SEQ ID N° 555
CATTATTTAC AACAATGCTT GGTTCTTTAGlike protein
CTTGTTTTTA GCAGGGGGAC TTTATTGTAT
TCTTTCATAT TTGAAGGGGA AAAAGAAAAA
TCAAAAGCAC GTAAATCCTT TGCTGCCTAA
TGCATCTTAG TGATGTCTCT
|
T409aGCGCGAAACGCGCTATCTGTCGGGGTTCCCCCGAChemolysinSEQ ID N° 556
CCTTAGGATCGACTAACCCATGTGCAAGTGCCGTTC
ACATGGAACCTTTCCCCTCTTCGGCCTTCAAGGTTC
TCATTTGAATATTTGCTACTACCACCTAGATC
|
T409bGATCTTGGCC TGTTGACAGA TTTAGCCGTTputative proteinSEQ ID N° 557
TTTCATATAA ACTCCAATAG ATTTTCAGGCAt1g49490 [A.
ACTATCCCAA AATCCTTTTC TAAGCTCCAAthaliana]
CTTCTCTATG AACTTGACGT GAGTAACAAT
CTTTTGTGTG GTGAATTTCC TTCGG
|
T409cGATCTTGGAC CCAGAAATAT GCCATGGGATubiquitinSEQ ID N° 558
GAAAACATTT GGCTTTACTC CCATGAACATconjugating enzyme
CGGGCCTTTA TGCTATAGTA GTAAATAAAA
ATAGGCGCGG AGCACAATTT TCTGATATTG
GTGTCTTTTG TTATCTGACG TTGTGTC
|
T410GAGAGAGCTAGAGCGTGGCGTGAAATGTATTTCTTberberine bridgeSEQ ID N° 559
GCATAACTATGATAGGTTGGTTCenzyme
|
T411cTCTTGACCAA GATTGACAGG CGTelongation factor-1SEQ ID N° 560
alpha
|
T414GATCTTGAAGACTTCTGTGCTTTCCTTTAGTGGCTThexamericSEQ ID N° 561
TTGTTGTGCTCTGTGTTTApolyubiquitin
|
T418TCTTCCTCTGTTGATGCTGTGGAGAGAGCTAGAGCGberberine bridgeSEQ ID N° 562
TGGGGTGAAAAGTATTTCTTGCATAACTATGATAGenzyme
G
|
T419TGCAGCGATTGCTGGGTTTGAGGTAACTGTCTTGGcollagen-likeSEQ ID N° 563
CTTAGTAATGCAATTAGTAGTGTCAGACCCTTGTACprotein
TAGCTCCGGAACATGAATCTTATATGTATTTATTCA
AAGAACATTGCGACAAATCTTTGTTATGAATTGTCT
TTCTGTGCGTTGTATGTTTCCTTTGGGTGTATTTCGT
ACGAAGGAAATATTTTCCACGAAAAATATTTCCTA
GAAAATAAATGGTTTGCTTA
|
T420aGATCTTGCAC TGTAAACACA GTACTTTGGAputative proteinSEQ ID N° 564
ATACAATTCA ACTTCTGTTT CCTAAAGAAAAt3g27330 [A.
TAGAAGCAAG AAAAGCAGCT GGAGCTTTGAthaliana]
ATAGTAGAGA AGCTCGACGC AAAAGTCCAG
TAAGAGCTGC TACAGCTCAT TCTAACATCT
CTAGCAGCAG AAT
|
T420bGATCTTGGCT GCAAGTGGGT CATTCTTGGTputativeSEQ ID N° 565
CATTCGGAGA GGAGACATGT AATTGGAGAAtriosephosphate
AATGATGAAT TTATCGGCAA GAGGGCTGGGisomerase
TATGCTTTGA GGCAAGGTGT TGGTGTTATA
GCCTGTATTG GAGAGC
|
T421TGTGTTAGGCTTGGCAAAGCCGAAACCCTTCCCAChigh-affinity nitrateSEQ ID N° 566
AGCCATTGTGGCCATCCTCTTGTTCTCCCTTGGAGCtransporter
TCAAGCTGCATGTGGCGCTACCTATGGTGTCATCCC
TTTCGTGTCGCGAAGATGACTAGGCTTA
|
T422cGATCTTGCCA TGGACGTAAT TATCAACAGCwound-inducedSEQ ID N° 567
AGCCATATTG GGTCCTGWRKY-type
transcription factor
|
T423TGACTGCGTAGTGATCTTGATGGTGAATTGACCTTGannexinSEQ ID N° 568
AAACAAGTTGTTCAATGCCTTTGTTCACCTCAAGCC
TACTTCAGCAACATATTGATCGCGTCCTTA
|
T424aGATCTTGAAT ACTATTCGAA ATTCAGAAGAH+-transportingSEQ ID N° 569
ACTGCGTGGA GGGGCTATTG AACAACTCGAATP synthase I
AAAAGCTCGT TCTCGCTTAC GGAAAGTAGA
AAGCGAAGCC GAGCAGTTTC GAGTGAATGG
ATACTCTGAA ATAGAACGAG AAAAATTGAA
TTTGATTA
|
T424bACAGCTATGA CCATTAGGCC TATTTAGGTGauxin-inducedSEQ ID N° 570
ACACTATAGA ACAAGTTTGT ACAAAAAAGCprotein
AGGCTGGTAC CGGTCCGGAA TTCCCGGGAT
GAAATCACAA CAATGGCCAA AGAGGGAACA
AAAGTGCCAA GAATCAAATT GGGTTCACAG
GGGCTAGAAG TGTCAGCTCA AGGACTTGGT
TGTATGGGTA TGTCCGCTTT TTATGGGCCG
CCCAAACCCG AGCCCGATAT GATCCAACTC
ATTCACCATT CCATCAACTC TGGTGTCACC
TTTCTTGATA CATCAGATGT GTATGGGCCC
CACACCAATG AAATCCTACT TGGCAAGGCG
TTGAAGGGAG GGGTGAGAGA ACGAGTTGAG
TTAGCAACAA AATTTGGAGC TATTTTTGCA
GATGGAAAGA TAAAAGTGTG TGGAGAGCCA
GCCTATGTAA GGGCAGCATG CGAGGCTAGC
TTAAAGCGAC TTGATGTTGA CTGCATTGAC
TTGTACTACC AGCACCGAAT TGATACACGC
GTGCCTATTG AAGTCACGGT TGGAGAACTT
AAGAAGCTGG TTGAAGAGGG TAAAATAAAA
TATATAGGTC TATCCGAGGC ATCAGCATCG
ACGATTAGAA GAGCACATGC AGTTCATCCA
ATAACAACAG TACAATTAGA ATGGTCTCTA
TGGTCTAGAG ATGTAGAGGA AGAAATAATC
CCTACTTGCA GAGAACTCGG TATTGGGATT
GTGGCATACA GTCCACTAGG ACGGGGATTT
TTGTCATCCG GTCCAGAGCT GCTTGAAGAT
TTGTCAAGTG AAGATTTCCC AAAGCATCTC
CCAAGGTTCC AGGCTGATAA TCTTGAGCAT
AACAAAATAT TATATGAAAG AATTTGTCAA
ATGGCGGCAA AGAAGGGATG TACGCCATCT
CAACTAGCCT TGGCTTGGGT ACATCACCAA
GGAAATGATG TGTGCCCCAT CCCAGGTACC
ACAAAGATCG AAAACCTCAA CCAAAACATT
GGAGCTTTGT CAATTAAGTT AACAACAGAA
GACATGGTGG AACTTGAATA CATTGCTTCA
GCTGATGCAG TCAAAGGTGA AAGAGATGCT
TCTGGTGCAA ATCACAAAAA CTCTGATACT
CCACCATTGT CAACTTGGAA GGCTACGAGA
TAAGATTTTC GCGCACTTTC CACGTTACAA
TGTATCTGAA ACATGTTCTT GTTGGAAATA
GTAAATATTA TAAAAGTTTA AACAAGTGTC
TAGGCTCATT TGTACTGTCG AGTCATCCCA
GAATATTCAC TAATCATTGT TCATATAACT TG
|
T426bAGTGATCCTC AAGCATTAAT TTGCCACTTTheme oxygenaseSEQ ID N° 571
TACAACACAT ACTTTGCGCA TTCAGCTGGA
GGTCGCATGA TAGGAAGAAA GGTGGCTGAA
AAAATACTCA ACAAGAAAGA GCTGGAATTC
TGACTGCGTA GTGATCTTGG AGTGAATATG
GACGACGACT ACTTACTGCG AAATGCTAGT
AGTCGGTAAT TCTTCTTCCT CTGTTGATGC
TGTGGAGAGA GCTAGAGCGT GGGG
|
T426cGATCCGGGTC ACTTCCCTAC ATTGGGTGGCprobableSEQ ID N° 572
AAGTGATGCT TTATTAGTGC TTTTCTCCCAtranscription factor
CGTCCAAGAG GCAAATTGAC TGAAAAATAA
|
T429cGATCTTCTAACAGTAAATGAAATATGTTGCGACAChelicase-like proteinSEQ ID N° 573
ATTTAGAGAATCTGCAGAAAAAAGAGGGTTGTTAC
ATTGTGATAACAACTTTGATTGAATGTATGTTAGAG
GCTGCATGTTATCAAATGCCTTATAGTTTA
|
T430CCTACATTGGTCCTCGCCATAACGTATTGGATGACAputative ABCSEQ ID N° 574
GGGCTAAAGCCCCAACTCTAGCCATTCCTTTTGACAtransporter
CTGCCCGGCCTGCTGAGCTATGTGATTGTTTCACAA
GGCCTCCGGTTAGCCCTTGGCGCCTTGATCATGGAT
GCTAAACAAGCTTCAACTGTGGTCACTGTCACCAT
GCTAGCATTCGTTCTAACAGGAAGGTTCTACGTGC
ATAAAGTGCCAGCTTGTGTAGCTTGGATTA
|
T431GACTGGAATGGCTGATCGTAAGATCGCAATGCCAGbeta-glucosidaseSEQ ID N° 575
ATGCCATCCCGGATCGTCAGAGAGTGAACTTTTATClike protein
GTGGGCACCTTTCGGCAGTTCAAGAAGCCATAGAG
CTCGGTGTGAAGATTA
|
T432aGATCTGCAAA CAATGACTGG AAATCTCTTAphospholipase D-SEQ ID N° 576
CTCAGGTAAA GGAGGTAGGA ATATATCTCGlike protein
CTGGTTGCTC AGATATAGCA AAAAAGGTTG
AAATCTACTA TGACAACCTT TGGAAACTTG
CCCACCTTGA TGTTCCAGCT TACACAAGAT
CAGTTTGGGA TTCACAGTGG CAGATTA
|
T434AATACGACTC ACTATAGGGC GAATTGGGCCputative SGP1SEQ ID N° 577
CGACGTCGCA TGCTCCCGGC CGCCATGACGmonomeric G-
GCCGCGGGAA TTCGATTCTG ATCTCGGCGGprotein
CGAATTTGCC CCAACTGCAG CAGCAGCTGC
TATCTCTTCC TCTATCTTGT GTTTGTGTGC
ATGCTGTGGA TCAGTACCCC GTCTACGCAA
CTGCAGCAGC AGCTGCTATC TCGTCCTNTT
GCTGACTGCG TAGTGATCTT CAAGTTCATT
ACAGCAAAGC TCTTCAATTT GCCATGGACA
TTGGAGCGTA ACCTTACCAT TGGAGAACCA
ATTATTATTT TTAGGTTT
|
T436aGATCTTCACA GTAGCATCAG GTCATACTGAsubtilisin-likeSEQ ID N° 578
CAGGTGGTTT TCCGGGACTC TGACACTGGGproteinase
AAGTGGTCTA AAGATTA
|
T438cGATCTTCAAA TTTCTTTGAT TCTAAAGTAAN-SEQ ID N° 579
TGAAAGAAGC ATTAhydroxycinnamoyl/
benzoyltransferase
|
T439GATCTTTACG GGCCCTATTT ATTCTTCAAAacyl CoA reductaseSEQ ID N° 580
GGAATATTTG ATGACATGAA CACAGAAAAA
TTACGTAGAG CAGCGAAGGA GGCTGGTATT
GAAATAGACG TGTTCAATTT TGATCCCAAG
AGCATCAACT GGGAGGATTA TTTTATGGAC
ACTCACGTAC CTGGCGTTGT AAAATATGTA TTTA
|
T440GATCTTGGAG TGAATATGGA CGACGACTACberberine bridgeSEQ ID N° 581
TTACTGCGAA ATGCTAGTAG TCGTAATTCTenzyme
TCTTCCTCTG TTGATGCTGT GGAGAGAGCT
AGAGCGTGGG GTGAAATGTA TTTCCTGCAT
AACTATGATA GGTTGGTTA
|
T441aGATCTATACC AGAAGGAGCT GTTGTATGTA60S ribosomalSEQ ID N° 582
ATGTGGAGCA TAAAGTGGGA GATCGTGGTGprotein L2
TTTTTGGTAG ATGCTCTGGT GATTATGCCA
TTGTGATCAG CCACAACCCT GATAATGGTA
CCACTAGGGT TA
|
T442AAAACACCAATTGTCTGTAAACCTTCAGAAATCGCripening-relatedSEQ ID N° 583
CATTGAACGCGCTTTAhydrolase-like
protein
|
T443CCTAAATCTATCAATATGGATGAAAGTTTGGGGGTcytochrome P450SEQ ID N° 584
TACAGCGAGAAAACGCCACTCTTTGAAAGTAATAChydroxylase
CAAAAAAGGCTTGAGAACTTACGTATTTGAGTTTTC
ATAGTTATGTTTTGTGCATATTTTCTTACTTATATTT
GGAGTAAACCAGTATTCCTGTTGTGTTATGAACAA
GTTGTAGTGCTGCCTACTGGAGTTTGTGTTA
|
T446aGATCTTTACA AGGCAGCCGG GGGATTCAAGreceptor like proteinSEQ ID N° 585
GTCAGTGAAC TAATTGGAGT TGGAGGCTTTkinase
GGTGCTGTTT ATAAGGGTAT TTTGCCTACT
AATGGAGCTG AGGTTGCGGT GAAGAGGATA
GCAAGCAATT CTCTTCAAGG AATGAGAGAA
TTTGCAGCGG AGATTGAAAG CTTAGGCAGG TTA
|
T446bCGACTGGGTAGGGATCTTTGAAGCCGCTAGCAATClipoxygenase ASEQ ID N° 586
GAACTAAGTTTGCCACATCCAGATGGTGACCAATT
TGGTGGCATTAGGAAAGTGTATACCCCAGCTGATC
AAGGTGCCGAGGGCTCCATCTGGGAACTGGCTAAA
GCTTATGTTGCAGGGAATGACTCAGGTGTTCATCA
ACTAATTAGTCATTGGTTA
|
T447GATCTTTGCAAGGATTTCTGCAAAAGAGAAAGAATputative proteinSEQ ID N° 587
AGAATTCAAGCAACTTCCCCATATCATCACTAGCTAt2g34600 [A.
CTAACAATTATATTACTAATAATATGTGATGATCTTthaliana]
CTATTTCTTTTTACTTTCATTATTTTACTTCTCCTAG
TGTGGCTA
|
T448GATCTTGGAGTGAATATGGACGACGACTACTTACTberberine bridgeSEQ ID N° 588
GCGAACTGCTAGTAGTCGTAATTCTTCTTCCTCTGTenzyme
TGATGCTGTGGAGAGAGCTAGAGCGTGGGGTGAAA
TGTATTTCTTGCATAACTATGATAGGTTGGTTA
|
T449GATCTTTTCT GGCCAACTCG GGAACCTACAputative integralSEQ ID N° 589
GCTTGCAGCA GCCTCTCTTG GCAATCAAGGmembrane protein
CATCCAATTA TTTGCTTATG GCCTTATGCT
AGGAATGGGC AGTGCAGTGG AAACGCTTTG
TGGCCAAGCA TATGGAGCTC ACAGATATGA
AATGCTAGGA GTCTACCTGC AAAGAGCAAC
AGTAGTACTT TCCTTA
|
T454GATCTGTGGA ATGCAATTGG TTCGTAATATB12D proteinSEQ ID N° 590
CTGCGGCAAC CCTGAAGTCA GGGTGACCAA
GGAAAACAGG GCAGCAGGGG TACTGGACAA
TTTTTCAGAA GGGGAGAAAT ATGCTGAGCA
TGCTCTTAGG AAGTTTGTCC GAAACAAGTC
TCCGGAGATT ATGCCATCTA TCAACGGGTT
CTTTAGCGAT CCAAAGTGAA GTTTGACATG
GATTA
|
T455AGTAATCCCA AAGTTTATCA ATCTAGCCATputative dTDP-D-SEQ ID N° 591
GAGGGGGAAG CCTCTTCCTA TTCACGGAGAglucose 4,6-
TGGTTCAAAT GTTAGAAGTT ATTTGTACTGdehydratase
TGAGGATGTT GATGCGGCTT TCGAGGTTGT
TCTTCACCGA GGAGAGGTTG GTCATGTTTA
TAACATTGGA ACTAAGAAAG AGAGCAGGGT
GATTGATGTT GCCAAAGAGC ACTACGCAGT CG
|
T461AAGATTGCGA GAAGTCAAAG AACTGAGGTCputative 6-SEQ ID N° 592
TTTTGATGTT TTCTTTTTAT TTGACCTAATphosphogluconate
TGCCTAAGGT TCTTCCCGTC ATTGAATCTGdehydrogenase
GGAGGCTAGA TTCTGTAGTA TCTGTCATGT
GGTCGCTCAA ATGTTGGAAC TTTACCTATA
TTGTTGTGAA GCCTATTTGT ATCTTTA
|
T463aGATCTTAAGT TATAAGTACG TTTCTTTTATchaperone GrpESEQ ID N° 593
TATTTTCTAT ATtype 2
|
T463bGATCTCACCG GGAAAGTGCA CCAGCTGCCAputative proteinSEQ ID N° 594
TGCTGTATCA AGTTCAAt2g39440 [A.
thaliana]
|
T464TAGCGGATAA CAATTTCACA CAGGAAACAGepimerase/dehySEQ ID N° 595
CTATGACCAT TAGGCCTATT TAGGTGACACdratase-like
TATAGAACAA GTTTGTACAA AAAAGCAGGCprotein
TGGTACCGGT CCGGAATTCC CGGGATCTCT
TTCTAATCTC TCCGCTGCCT CACTTTTCTC
CTCCAAATTT TTAGAGAATG GGAAGCTCAG
GTGGCATGGA CTATGGTGCT TACACCTATG
AGAATCTTGA GAGGGAACCT TACTGGCCAA
CCGAGAAGCT CCGTATTTCC ATTACTGGGG
CCGGAGGATT TATTGCTTCC CACATTGCTC
GTCGTTTGAA GAGCGAGGGC CACTACATAA
TTGCCTCCGA TTGGAAGAAG AATGAGCACA
TGACAGAAGA TATGTTCTGT CATGAGTTTC
ATCTTGTGGA TCTTAGGGTT ATGGATAATT
GCTTGAAGGT TACAAAAGAT GTTGATCATG
TCTTCAACCT TGCTGCTGAT ATGGGTGGCA
TGGGCTTCAT TCAGTCTAAC CATTCTGTTA
TTTTCTATAA CAACACTATG ATCAGTTTCA
ACATGATGGA AGCTGCTCGG ATTAATGGTG
TCAAAAGGTT CTTCTATGCA TCTAGCGCTT
GCATTTACCC CGAGTTCAAA CAACTTGAAA
CAAATGTCAG TTTGAAAGAA TCTGATGCAT
GGCCAGCAGA GCCTCAAGAT GCTTACGGCT
TGGAGAAGCT TGCGACCGAA GAGTTGTGCA
AGCATTACAA CAAAGATTTT GGAATTGAAT
GTTGTATTGG AAGGTTCCAT AACATCTATG
GTCCATTTGG AACTTGGAAA GGTGGAAGGG
AAAAAGCTCC TGCCGCGTTT TGTAGAAAAG
CCCAAACTGC AGTAGATAAG TTTGAAATGT
GGGGAGATGG ACTTCAACCA CGTTCATTCA
CCTTCATTGA TGAGTGTGTT GAAGGGGTTC
TCAGATTGAC AGAGTCTGAC TTCCGGGAGC
CAGTGAATAT TGGAAGTGAT GAGATGGTGA
GCATGAATGA CATGGCTGAG ATGGTTATTA
GCTTTGAGGA CAAGAAGCTT CCTGTCCACC
ACATTCCTGG CCCAGAAGGT GTTAGTGGTC
GCAACTCAGA CAACACCCTT ATAAAAGAGA
AGCTTGGTTG GGCTCCGACA ATGAGATTGA
AGGATGGTTT GAGAATTACA TACTTCTGGA
TCAAGGAGCA GATCGAGAAA GAGAGATCTC
AAGGAGTTAA TATTGCAAAT TATGGATCGT
ATAAGGTGGT GGGCACTCAA GCTCCAGTTG
AACTCGGTTC CCTTCGTGCT GCTGATGGCA
AGGAATAAGT TCATCCCTTC TATTAATTGG
AAGCCAAATC ACTGCTATGA CATTGCTGCT
TTATTAATAT GGTTGTCGTA GGTGAATGTG
TTAAATTTTC AGTAATTGTT GGCTTTTCTT
GGTTTTGAAT CTTGTAATTT AAGCCCCTTG
GCTTGTGGGG GGGATGGTTG GATGCTTCAG
CTGTATTTAT CAGTTGTTTG AGAAGATCTA
TATATGATAA TCCAATAATT GGCAAAC
|
T465TAATGGCAAA GGGATACAAC CAAAAGAAGGputativeSEQ ID N° 596
GTATTGATTA TCAAGGAACA TTCTCATCCGretroelement pol
TGGTGAAGAT GGTTACTGTA AGAGGACTACpolyprotein
GCAGTCA
|
T8TAAACGTGGT GGATGTTTCT TATGGAGGAGputative polypeptideSEQ ID N° 597
AGAATGGTTT CAATCAAGCA ATTGAGTTGTchain release factor
CTGCTGAGAT C
|
T9GCATCAGGAA CACACAAGAG AATACTGTATputative adenosineSEQ ID N° 598
TACACAGGGT GCTGATCCAG TTGTTGTTGAkinase
TGAGGATGGG AAGGTGAAAT TGTTCCCAGT
TATTCCTTTG CCAAAAGAGA AACTTGTTGA
CACCAACGGT GCTGGTGATG CATTTGTGGG
AGGATTCCTT GCACAGTTAG TCCAAGGAAA
ACCTATTGCA GATTGTGTCA AAGCAGGGTG
TTATGCATCG AATGTCATCA TCCAAAGGTC
TGGTTGAACA TACCTTAAGA AGCCCGATTT
TGAATCACGG ATATTTCCAT
|
C168TGCAAAATGT TTGCACCTGA AAGAACACATputative proteinSEQ ID N° 599
TGTCCTTGAT GGATCAt3g52140 [A.
thaliana]
|
C187bTAATCACAAA GGGTTGCTCA TCATAACTAAputative proteinSEQ ID N° 600
TAGCTATGCA GTGATTGAGA CAAAGAATGAP0469E09 [Oryza
TGGATCsativa]
|
C20TAATCCAAGT CCCTAGCATA AACACCAAACputative glutathioneSEQ ID N° 601
CCCAAAAATA ATTCACAATT CTACAGATAAS-transferase
AAAAAAGGAC ATGACCAATT TATTTATCTA
TTACTAATCA ACAATTCTGT AGAACTCCAT
GACATACTTA TACAGCGCGT GCTTCATTCG
CAGTTTCACC AATGGTTGAC AAACCGTTTT
GAAATTCTAG GCCATAAAAC GGTTTTTGTA
GTATTCAACC AGTCTCTTGG GATC
|
C307TAAAGCAAAG ACGTGGTTAC TACAATCTACmetapyrocatechase-SEQ ID N° 602
TTATGCATCA TAGAACTAAT GCATTCTCAAlike protein
AAGTGTATGG GGTCCTCGGA TC
|
C427bTAAACAATAT TTGTAACATA AAAGTTTCATputative proteinSEQ ID N° 603
CTGCTAAAAT TGTGTGGAAG TGAGTACAGTAt5g12080 [A.
TTCTATTTGG AGGATCACthaliana]
|
T108TAAACAGTGA TGATGATGAT GTGGGCATCTputative proteinSEQ ID N° 604
CTGATGAAGA TGAAGAATAT TTCAGAAAGCP0698A04 [Oryza
CTCAGGGCAA GCAAAAGAAT AGGGGTGGGCsativa]
ATAGTGTAAA ATCTACCAGA GAAATTAGGT
TTCTTGCTAC ATGTGCTCGA CGAAAAAGGG
GTAGAACATC ATATGAAGAG GAAGAATCAT
CAGAACATGA TTTCTGAAAA
|
T114aTAAAGTTAGA TGGAAACGAA CCTTTGCTTGguanine nucleotide-SEQ ID N° 605
TAGCATTATG CATGGTAATA TTATATTGTTexchange-like
CACTACACGT TCCTGATGTA GACCCACCTTprotein
CAAAAACGGG AGAGCGATCA TGTAGATCAA
TACGCAGTC
|
T147bTAACAGCATG TTCATTTTCA ATAACTCCTGputative AthilaSEQ ID N° 606
TAATGCCTAT TCAACAAATG AAGTTTGAGCretroelement protein
ATCAGTTGTT TCAGTGGATG CAGATGCATC
TTTAGCTTCC GATGTGCCAG TTGATGATTT
TCCTGCACCA CCCGTAATAA ATTTGGTAAT
CAAATCTTCT AGATC
|
T42TAATCATAAA GTTTTGAGGA AGCACCTCAAputative glucan 1,3-SEQ ID N° 607
AAGATCAACT TGTAACAGCA TTGTGGAGAT Cbeta-glucosidase
|
T207aTAACGATGTC AAAAAATTTC TGTCGGAGACphosphatidylinositol-SEQ ID N° 608
AGAATCAGAG ATCATAATCC TCGAGATCspecific
phospholipase-like
protein
|
T325bTAAACGAGCA AAAGAATAAT AAGGGACTTAurdineSEQ ID N° 609
GCATACTGGT AGCAAGAACC CCAGATCphosphorylase like
protein
|
T365bTAAGCCGTAC ATCAAATTGG TATATATTGGtranscription factorSEQ ID N° 610
TCACTCACAA AAGACTTTCT GTACCCTAACrush 1 alfa like
CTTGCCAATG GAAGTGGGCA ATGGTAAATTprotein
CGTGCGAGAA TCAAATTTCG ACAGATC
|
MC311bGATCCGGAAC GAAGGCGATG AACCTGACTCputative bZIPSEQ ID N° 611
GATCGGAATA TAATATCACC GCAAATGACCtranscriptional
TCGACTCTCA AATGGCGACC TTGACCGCGAactivator
AACTACAATG ATTCAAACTC GAAAAATGCT
CAATGATGTT CAACCTGCTT TATTA
|
TABLE 2
|
|
|
Sequences with no homology
|
Seq
Anno-
|
code
SEQUENCE
tation
SEQ ID N°
|
|
C103
GATCCAAGATAGCCCTATAGGCGTCCGCATTCCCTGGCATCTC
No hit
SEQ ID N° 612
|
CCTCCATCCTTTCATCCTGTTTCATTTATGTAATTCAGAAACAG
|
GGTTGTATTTATTTTTGGACCTTGTTTGTAGTATTCCTAGACCG
|
TTTGTGAAGTTGTGACACCAGTTTTGGGTAGTATTTGTTTA
|
|
C110a
GATCCAAGTTGTAAACATTGTGGAAATGGAACATGTAATATAT
No hit
SEQ ID N° 613
|
ATAATGCTTA
|
|
C115
GATCCAAAGGTACGGCTTAGCAAAATTACAGACATGATCTCGC
No hit
SEQ ID N° 614
|
TTCACACATTTCCAGAGGCAACAGTAGAAGAAAGATACCATAT
|
TGGAGAGCTAAAGGTTTTATAAAAAGTTGAAGAAGGTTTATAT
|
TAGCCTCATCTACAATCCTGTTGCAGAGATCAACTAAGTGACT
|
TGAAATGCTTTTGTAGACCATTA
|
|
C117b
GATCCAACACGCAACTGTGAGTATTTTTGAAGAGCTCGAACAA
No hit
SEQ ID N° 615
|
TATAGAAATTAGAAGTT CACTTTATAT TTGATTA
|
|
C118a
GATCCAAGGAGGGTGGTGTAGCGCCTTCACGTCAAAAGACTA
No hit
SEQ ID N° 616
|
ATGAAGTTGTCATTA
|
|
C118b
GATCCAACAGCTCAACAATGAAAGAAACAAAGCAAAAGATAA
No hit
SEQ ID N° 617
|
TCTTTTTTTCATTA
|
|
C154
GATCCACGGCTATAGGTGATGACGATGGCATTGAGATACCTTC
No hit
SEQ ID N° 618
|
AGGTTTATTCGAAGGTAGAATCAGTCAAACGCA
|
|
C124a
GATCCACCACAACCCACATTTGATTTGATAGCTCAATCTAAAT
No hit
SEQ ID N° 619
|
TGGAAGCAATAGAGGTAATATTTAGGGAGCACCAGTTA
|
|
C155
GATCCACCAAAACCCTTGGCAACTTCGTTACTCAGGACTCATC
No hit
SEQ ID N° 620
|
ACACCAATCCATCCCGAACTTGGTGGTTA
|
|
C129a
GATCCACCATTTGGGAATTTGCTGCAATGTAGGGAAAAGAAAC
No hit
SEQ ID N° 621
|
AAAAATTGAAATGTCACACACTGACTGAGGTAATTACAAAATT
|
ATCATTGATCTTTACATTCAAAGTGGCTTA
|
|
C156a
CGACTGCGTAGTGCTCCACTTACCATAGTTTGAGCACGATAGA
No hit
SEQ ID N° 622
|
CATTCCGGGATCATCTAGTAAGGATCGCTCATTCAGGAGTTGC
|
TTA
|
|
C156b
GATCCACAAGACATGTTCACCACCAACCGGGTACATGTACCAC
No hit
SEQ ID N° 623
|
GATGTTTTGACAAAATGTTGTGATTTTTTTGCTTA
|
|
C156c
TTGGGCAGTAATACGCTAATCAGAGATTAAGCAGCATAAACAT
No hit
SEQ ID N° 624
|
ATGAGGCTGATATAGTTATTGTCGCCCACTTAGGGGAAGTTTA
|
|
C158
GATCCACAAA ATCAAACGGA CTATAACAAA TCCAAAACCC
No hit
SEQ ID N° 625
|
TAAGTTTTGAATCTGAAATT CGGGTATAAA AACCCTAGGG
|
ATAGCAAGAA ACGGGGA
|
|
C138a
GATCCAGACAAAACACCTTTGTTATGCTCAGGGTTGAGTAGTT
No hit
SEQ ID N° 626
|
TA
|
|
C138b
GATCCAGGTACCTCAGAGCGAGCTGGGCATTAGGTGACTGTTT
No hit
SEQ ID N° 627
|
A
|
|
C146
TGACTGCGTAGTGCTCCAGGGTACAGACGTACAGTCCTTATTC
No hit
SEQ ID N° 628
|
ATTCTTCACTTA
|
|
C147a
GATCCAGCACATGCAGAACAACTCATCCCATTA
No hit
SEQ ID N° 629
|
|
C171
GATCCATCCA AATGAGTCGG TGTTAGGAGA ATAGCTGATA
No hit
SEQ ID N° 630
|
TACTAACTGCCTTGAACTTTG CCTTCAGCTT GCAGCTCCTC
|
TGCATGTAGT GAGGAAGCTA ATGCAGCTCC ATTTCCATGA
|
ACCATAACAT TGTCACTTCG TGGGATGATATGTGCTTTGA
|
CCATGGTAGC ATGAGGGACA AAATTCTTCA TTGCGTTA
|
|
C179
GATCCCATTGTTGTCATAAGCGAGACAGAAGAAAAATATCAGT
No hit
SEQ ID N° 631
|
CTTTTGAGGATTGTCCTGGTTTATCT
|
|
C180a
GATCCATTACAACAGATAAATTGCAGTGTTCTGTTGGCTTA
No hit
SEQ ID N° 632
|
|
C181b
GATCCATATTCATGTATACAATACACTCATCTGGCCTTA
No hit
SEQ ID N° 633
|
|
C181c
GATCCATAGGAGGGAAAGTCTGATGCCAGCGCCGCCTTA
No hit
SEQ ID N° 634
|
|
C183b
GATCCATGAA AGCTAGGTTG AAGATTTGTA TCAAAAAGGG
No hit
SEQ ID N° 635
|
GGCATGATGAATTGAGCATA AAGTTTGCTG CTTCTTGCTG
|
ATGATAGGGG GGAGTGAGCTTTGGCTTGCG TTATTTGTCC
|
TAACTAGCCA ATGGTCTTCT GGTGGCTTCTGGTGATTGGC
|
TAAGTCAAAG CCATGGTAGA TTATTTGTTG
|
CTGGATTGTGCTAAGTGTGC AGTTGGAACA TGTACTGGAG
|
AAAAAACTTT GAGGTGTTGATTA
|
|
C184
GATCCATTGA ATTTCCAGAA GTGCCCTTAC AACAGCAACA
No hit
SEQ ID N° 636
|
GCAACTGCCCCTGTTGCATA AAGAACAACG GCAGCCATCT
|
GAGTCTTTGA GAGTAACAATTGAGGAAAAT GCTCCTATTA
|
TAGAAGAGGG CCCTGCATC
|
|
C185a
GATCCATTCAATTTGTGGAAGCTGTGGTATATTGGACGTTTATG
No hit
SEQ ID N° 637
|
AATGGTACGTTCCTTAGTTCTGCCTTA
|
|
C185b
GATCCATGGTTTTGTACTTCGTATGATTTTGAATTACATCTGCT
No hit
SEQ ID N° 638
|
GATTA
|
|
C187a
GATCCATAAAGTTACTTGATATGCCATCCTGTCCAGCTATAGA
No hit
SEQ ID N° 639
|
GGAGTATCAAATTGAAGCATTA
|
|
C187c
GATCCATGGC CATTATTTTC GCTGTATTAC ACATCCATCA
No hit
SEQ ID N° 640
|
ATAAAGGTCCGATTTCTCCG TATTA
|
|
C13
CACAAACAAA TAAAGCTATT GTCATTCATT ACTCGAAAAA
No hit
SEQ ID N° 641
|
GAAAGTACAA CATATCAAAG AGCGATGACA CAAATTATCA
|
GTGATCTCCT ACTGATTCAC AAACCAACTT GTGTTA
|
|
C14a
GATCCCAAAG TAAACAAGCT AGCCACAAAA AGTGCAATTC
No hit
SEQ ID N° 642
|
TTGATGTATA GCAGAAAACC CCTTGTTA
|
|
C14b
GATCCCACTGGAAGAAGCTGAGTTACTCAGGACTCATCAGGA
No hit
SEQ ID N° 643
|
GGTGTGGCTGTGTTA
|
|
C15a
GATCCCATGA ATTGTGCTGT GACTCAGGAC TCATCATCAT
No hit
SEQ ID N° 644
|
TGACAGCTGC TGTTA
|
|
C23a
GATCCCAATT GTAAGTTCAT GTAAATGTAC ATCATCGTTA
No hit
SEQ ID N° 645
|
TTTTTTTGCA GGTGCCAAAT TTTCACATAC AGCACCTTGC
|
CTCGTATCTT TTGTCTGATC TTATATTA
|
|
C29b
GATCCCCAACCGCCATGTTGACTTGAATCAAACAAAAAAAAAT
No hit
SEQ ID N° 646
|
TGAACAGTTACTAAGTACTTTATAGAGGGCGTTA
|
|
C32
TGACTGCGTA GTGATCCCCC ATTATGACCA AGTTTGGCAT
No hit
SEQ ID N° 647
|
ACATTGTAAC TGAGATATCA TACACTCACA TATTGAAGAG
|
TTATCCTTTT TTAGCTTCAT AAATTGATTC ATTTTGCTTA
|
CTCAGGACTC ATCGTCA
|
|
C33
GATCGACTGCGTAGTGATCCCCTCCTGCTGATGAAGTGACCGA
No hit
SEQ ID N° 648
|
AAATTGCTTAGTGGCATAGCGAAAAAGGCAAGGCGCTTA
|
|
C35
GATCCCCCAA AAATATACTA TTTTGATGGA TTCGTCACAT
No hit
SEQ ID N° 649
|
ACTAGTAATA TTTTTGAAGA ATTCGGGCAA CCTAGAGTAC
|
GAGTGTATTT GTCCATTA
|
|
C36
GATCCCCAAG TATACTCATG TATACGTGGA CGTCAAGTAA
No hit
SEQ ID N° 650
|
TAAAGTGACT CGAAAGTCAA ATGTCGAACC CACAGATACT
|
TACATTA
|
|
C237a
GATCCCGAAC ATTCGATTGG TGAGTTTATG CAGCAGATGT
No hit
SEQ ID N° 651
|
GTACAGTGTA CTTTGTTTA
|
|
C204a
GATCCCGGCCACTTTTTAGCTTA
No hit
SEQ ID N° 652
|
|
C204b
GATCCCGACCAAACTTATACTTATGAATTAGTCCCTTA
No hit
SEQ ID N° 653
|
|
C205a
GATCCCTAAC CTTGTATTAT GCGGCTGTGA CCCGGTTGAT
No hit
SEQ ID N° 654
|
ATTTATGACC ATTTCTAGTG TGATTCCGTG TTA
|
|
C205b
GATCCCTGAC CACCGAAAAC CAGCTCCCAT TCACCTCCGA
No hit
SEQ ID N° 655
|
TCTCACACGA AAACAGACCC CTTA
|
|
C205c
GATCCCTGGAGCTGCGAACACGCCTTATGCGTTCGGTCTATTC
No hit
SEQ ID N° 656
|
TCAGTCCTCCTTGTCGTCCTAGGCATCGTGCTCATTGCTGTTGG
|
CTTGCTATACCTCGGGTTA
|
|
C206
GATCCCTAGT AGGAATGCTT GTTTGCATCA CGTGCATTTG
No hit
SEQ ID N° 657
|
ACTTTGGGGA CTCAACACAG GGGTTGGGTT CGTCTAGGAC
|
AGGTGCACCC AAAATAACAG CTCCATCTTG A
|
|
C207a
GATCCCTAGT AGGAGCGCTT GTTTGTATCA CGTGCTTTTG
No hit
SEQ ID N° 658
|
ACTTAGGGAA CTCAACACAT GGGTTGGGTC CGTCTAGGAC
|
ATGTTTACCC GAAACAAAAG ACCATCCTGA TGCATCTTAC
|
CTGCTACGTG TGCATTTATT TGTTTCGGCT TGTTTGTTGA
|
CCGGTTA
|
|
C209
GATCCCTAGT AGGAACGTTT GCTTGCATCA TGTGCATTTG
No hit
SEQ ID N° 659
|
ACTTAGGGGA CTCAACACAG GGGTTGGGTC CGTCTAGGAC
|
AGGTGTACCC GAAATAAAGG CCATCTTCAT ACATCTTACC
|
TACTATGTGT GCATTTATTT CCGGC
|
|
C213a
GATCCCTTTC TCTCAGCTTT CTCCCCCCAA GTCTTGAAAT
No hit
SEQ ID N° 660
|
GGTTA
|
|
C216a
GATCCCTAGTAGGAACGTTTGTTGTATCACGTGCATTTGACTTA
No hit
SEQ ID N° 661
|
GGGGGCTCAACACAGGGGTTGAGTCCGTCTAGGACAAGTGTA
|
CCCAAAAATAAAAGACCATCCTGAGGTATCCTATGTGCTACAT
|
GCTGCAATCTTCAAGGGTGAAAAGGATCATTGGCGGATCAAT
|
GATGGTTA
|
|
C222
GATCCCTTTT GTAACGACCC ATCACGTGGT CGCCCCCTCA
No hit
SEQ ID N° 662
|
GGATAATGTC TATGCTTTCA AATGCTCTCT TTACTACTCC
|
GCCTTACTCA GGAC
|
|
C227b
GATCCCTAAG CTTTTCACTC ACGTTAGTGA TAGGTGTTTA
No hit
SEQ ID N° 663
|
GATAGAGTGA TTTGTGGTAG TTGAAGTTTG AGTTGAGGTT
|
ATTTGAGCAA TGACTCATGT GTGTTTCTCC TTTGTAAGTA
|
ATCTGCCTTG TTTGCTGCAG TTACATAGAA CTCACATTA
|
|
C229
GATCCCTTAC AAATGACCAG CTGGTTTCAG ATTACTCAGG
No hit
SEQ ID N° 664
|
ACTCATCATC ATTA
|
|
C231a
GATCCCTTAC AAATGACCAG CTGGTTTCAG ATTA
No hit
SEQ ID N° 665
|
|
C231b
GATCCCTAAT TATTGATGTT TTTTGTTGAT TA
No hit
SEQ ID N° 666
|
|
C231c
GATCCCTGGT CTGGGATTCT AGAAGTGCAT TA
No hit
SEQ ID N° 667
|
|
C302
ATAATAGCTGAACAAAGTGATAAAAATCTATGTATCATAAGCG
No hit
SEQ ID N° 668
|
GGGACTGCTCCTTTCAACTGGAGCTTTCACACCGCTGTATCTTC
|
TTCAACATGTTCTATTCCCCTATTGGTTATTATAGTCCTGTGAG
|
AAGCATTTTCCAGGAAATAGATCATGTTTTGCTTTA
|
|
C313b
GATCCGAGGG TAGTTTTTCG GTGTTTAGAT ACTCTATATA
No hit
SEQ ID N° 669
|
CTTGTTTCTC CAATCCCAAG AGAAGATCGT TCGAGTTCAA
|
CAGTCAGGCG TCCACCTGCA GAATGCGAGT CAACAGTCCA
|
AGGTTATCAA CAGAAGTTAG TCACAATAAA GAAAAAGAGA
|
GACAGGCAAG AAGTAAATCC AAATGCAGAA GTTGATGAAA
|
GATGTGAACT GCTTA
|
|
C314a
GATCCTGAAACTGGATATCGACTGATAAATTATCATCAACGTT
No hit
SEQ ID N° 670
|
TTTGCTTGTGTACCATTTCTTTTCCGTAAAAGACATACTGCTTA
|
GTTTTTATGGTCCTACATTCACTGGGGCATAGCGGCAGACTCC
|
CTTA
|
|
C315
ACGGGGTAGCCTGATAGAGAAGGGACCGCTCTTAGAGGGATG
No hit
SEQ ID N° 671
|
ACCAGGGAAGCTTATGCCCTTA
|
|
C317
ACACATGCTCAAAGGAAAGGCGCGACCCCAGCGAATACCGAT
No hit
SEQ ID N° 672
|
GGAGTTTCTGCGCTCCAATGCACTCTAAGGACGTGGAAACTCC
|
ATGCTCGGGTATGGGCGAGTCTTGCATTACTCACAGACTCATC
|
GGCACCATTA
|
|
C318
GAGAGATTGGAGGTCAACTTCGTCAGATAATCACGAGGAAAG
No hit
SEQ ID N° 673
|
ACCAGCAACTACAAGAGACACAAATAGGTCATCAAGACGCAT
|
GCCTAGCTCCTTCTTGTTCAGGCATTA
|
|
C321a
CGACTGCGTAGTGCTCCGAATTGGAGTATTTTTTTGCTAAGTTT
No hit
SEQ ID N° 674
|
TTCTTTGGGTCAGAGCTTGTTGTCGCATTA
|
|
C321b
GATCCGATAG TAAAACCAAA TTACTCAGGA CTCATCGTCA
No hit
SEQ ID N° 675
|
TTA
|
|
C321c
GATCCGAATTGAAGTATTTTTTTGCTAAGTTTTTCTTTGGGTCA
No hit
SEQ ID N° 676
|
GTGCTTGTTGTCGCATTA
|
|
C342
TTGAATACAAAATCAAGTAGCCGAAGGCTTTAATTGTGAGCCG
No hit
SEQ ID N° 677
|
GTCAAGTTCAGCAATACTCAGCTGCGCAAAGCCGTAGAGTGG
|
ATCAAAATGCAACAATTTCCAGTACTACAGAACAATTATTTCC
|
TGTACCTTCATTTA
|
|
C343
GATCCGCCTC TGGATCTAAG TGGATATGTA CCACTCCCTT
No hit
SEQ ID N° 678
|
TACTAGGCAG AACCAAATTC TTCGCTAGCT GATAACTGGT
|
CTCATTGTAT TTCCTCTTTA A
|
|
C344
TGTCGTTCCCCTTCATGTGGTTTCTGGGAGCCTATCTTGATCTT
No hit
SEQ ID N° 679
|
TA
|
|
C347c
GATCCGCCCTGGCCTGTAAGACTGAAACTACTTTTTGACCTAC
No hit
SEQ ID N° 680
|
CGAGTAGAAGTCAAGTATCTAACGTACTAAACCCTCTTGTCAG
|
TTTTTTCCTCGTTATTGATTCTCTTGTATGAACAGGACACTATA
|
GACGCCAGTCCCAGTGATTTGATTTTCGACGCAAATCCAGCTC
|
CACATATTGATCAAAATGGCATGGAGCTTCAAGAACTGAACAC
|
CAGGCCTCATCTTGTTA
|
|
C352a
GATCCGCGAG AATGCTGCTG CTTGTTAGTG TCTGTTTGTG
No hit
SEQ ID N° 681
|
ATTTGCATAG CTTTTGATAT CTTATCTTAT TGGTACCTGA
|
CCATTAGTCT TA
|
|
C355b
GATCCGCAAG TATACTCATG TATACGTGGA CGTCAAGTAA
No hit
SEQ ID N° 682
|
TAAAGTGACT CGAAAGTCCA ATGTCGAACC CACAGATACT
|
TACATTA
|
|
C356c
GATCCCAAGAGTAGCTGCCTTTTAGACGGTGTGATCTAATCGT
No hit
SEQ ID N° 683
|
GTGTTTGACTCTATTATGATACCTTCATCTGCTGCATTA
|
|
C357a
GATCCGCCTG GCTCCAAAGC AGAATTTTTG TTGAATCGGT
No hit
SEQ ID N° 684
|
TGTATGCTGT TGTCCGCATT A
|
|
C357b
GATCCGCCCCTGCATTCGTGTCAAGTTTCTAAAGCGAGTTTTCA
No hit
SEQ ID N° 685
|
AATAATTGCTCTGGTATTA
|
|
C335a
GATCCGTCCCTATCCCTGCCTAGTCTATTTCTTTCCTGGATACT
No hit
SEQ ID N° 686
|
GCATTTA
|
|
C335b
GATCCGTGGT TATGCCTCCA CACCTTCTGA AGTAAAAGGT
No hit
SEQ ID N° 687
|
CCCTGTTTTA
|
|
C337
GAAAGGATCACGGATTGGAGCTGTGTCTATCTTGTTATAAGGA
No hit
SEQ ID N° 688
|
TTGTGTTGTAATAAATAAGTTCACATGGTTA
|
|
C340
GGCCCTTCTTCTTGCTATTTTATTGTTAGCTGATATTGCTGCTTT
No hit
SEQ ID N° 689
|
GATTGGCTTTCTAAAAATTGTAAAATGCATATTCACGCTCGAA
|
TTTTCAGAGATGTATTTTGGGTGATTGCTTTGTTTATTTTGAGA
|
AGTAGAGATATTGAATTCCACCTTA
|
|
C368a
AACCGGAGATGAATCAACGACGAACTTTGATTGTCCACAAATT
No hit
SEQ ID N° 690
|
TGTCCGAGAACGAATCTCTCACCAAGATAACTTGACGTCGAAA
|
ACGACTACGAACGGACGACCAAAGAAGGTGGTCGTTTGGCAT
|
CGTTTA
|
|
C405
ATCCTTTCCTTTTTGTTCGCGTCATGTTTCAACCGAGCCTAATA
No hit
SEQ ID N° 691
|
GTTCTAGGATTCGGTTCTTCTTTCATTAGTTCCCCAAAAATCTG
|
AATTTTACTACTAAGAACTTCATACGAGTTGGTTTA
|
|
C406
GATCCTATTC GTACGTTTTT TTGAAGCCAT AGTACCAGAA
No hit
SEQ ID N° 692
|
TCTATTGTCA TAGGTTTTTT GAGTTTGTTT TTCTTTTATT
|
GCTGTTAGAA TCATATGTTC GGGTGTGACT AAGATAACTG
|
CTTAGTGTCT TTTA
|
|
C411a
GATCCTAGAG AGAGAAAGAG AAAGAGATAG CAGTTGAGTA
No hit
SEQ ID N° 693
|
AAGGAGAGAG TCCTGTTTGT TGAAGCTGTA ATGTAAAACG
|
CGTTCTCCCC CTTCCCGCTC TGCTGGTTA
|
|
C411b
CGCGTTGGGAGCTCTCCCTATGGTCGACCTGCAGGCGGCCGCG
No hit
SEQ ID N° 694
|
AATTCACTAGTGATATCGAATTCCCGCCGCCGCCATGGCGGCC
|
GGGAGCATGCGACGTCGGGCCCCATTCGCCCTATAGTGAGTCG
|
TATTAA
|
|
C414a
GATCCTGGTGTATACGCTTCACCTCGTCCAAGATACTACTGATT
No hit
SEQ ID N° 695
|
GTGGAAAGTGCATGAAAGTCAAAAACACTACTATTTGATACTC
|
ACTTGTATTGTTTTACTATAGAATCAAATGGTGTTAGTATGAAG
|
TGAGGGGCTGCTTA
|
|
C414b
GATCCTAACA CAAAGATTTC GTGATGGTTT TGACCTATGC
No hit
SEQ ID N° 696
|
TCGCAACCTT AGACCTCAAC CTCATTGACT CTTATCATCA
|
GTGTATTGTG TTGTACAAGT ATGTGATTCT ATTATCACAA
|
ATGTGTTTCA GTTTCTCCTT TTGCTTA
|
|
C415
TATATTGGGC ATTGGGTCGC ATGTTGCAGG CTGCCATGCC
No hit
SEQ ID N° 697
|
CCATGGCTTC GGTGTGTAGT GATCAGAATT CATATTAGGT
|
CTCAACAATG TGCAGCCTGC TATGTAGCCA CAAATGACTT
|
ATAGCCGCCT TA
|
|
C416
AAGCTCGGTGTGAGAGCATACACTGGTGCTCATTACTATGTAC
No hit
SEQ ID N° 698
|
TCTGGCTTA
|
|
C417b
ACTAGTGATTGATGACCCCTGAGTAAGGCGCTTTCAGTGAGAT
No hit
SEQ ID N° 699
|
TCAACAATTAGGACTAAGCGTTACACTCTAGGATCACTACGCA
|
GTCAATCCCGCG
|
|
C427a
GATCCTCAAG CGAATGGGGT CTTCTTGTTG TTTACAAGAG
No hit
SEQ ID N° 700
|
TAAGGGCCCA GAACTTTTTA GCCACCATAG TTGTTTA
|
|
C428c
GATCCTCCAAGCAAAATAATTGAAAAGGAGGTGGTAGCTGGT
No hit
SEQ ID N° 701
|
CCATCCTTTA
|
|
C433a
GATCCTCAAAGTTTATGTGTTGTTTATTTATATCATTTTTTCTCG
No hit
SEQ ID N° 702
|
ATAGTTA
|
|
C434b
GATCCTCATTCATGGAATGGCTTGTTTCTGAGCAATTTGTTGCT
No hit
SEQ ID N° 703
|
GTACCCACTTCACCGCTTGCAAAAGACATGAGCCTGTTGGAAA
|
AAATTTACGATTCTATCCTTGTGATGGTGAAAGTATTCATTTAT
|
GATAAATCTACCACTTTTGATTGAATTTCACGATCCAAAATAA
|
AGGATGGTGTTGCATACTATAAGATTTTAGTTTGGAGATCGGT
|
TTCCCTATTGATCTTA
|
|
C435a
GATCCTACAT GAACGTGAAA TGCATTGTAC GTAAGGCTGC
No hit
SEQ ID N° 704
|
CATTTTTTTT TACTTTCTTG TGAACCTACT AGGAAGTTGG
|
TTGTGGACTT TATAATATGA TTCCAAGAAG ATAATACTGT
|
TGAAAGCAGC GGGGGAAGAT CTACCAAGCA ATGCATAACA
|
AGAAAAGGTG CCTTA
|
|
C437
GATCCTGTCCTGATGAAAAGTCATTGGGAATAGTTCCATGTAC
No hit
SEQ ID N° 705
|
AATTGGCAATTTGGAGCACAATGAACTGGATTCATGTACTAGT
|
TCTGTTTCGGCCTTA
|
|
C440
GATCCTGATA AACCAACATT ATCGTAGAGA ATTTTTCTCT
No hit
SEQ ID N° 706
|
GTTTCTCCCT CTGAAGAACT TGCTTA
|
|
C451b
GATCCTGGTG TATACGCTCC ACCTCGTCCA AGATACTACT
No hit
SEQ ID N° 707
|
GATTGTGGAA AGTGCATGAA AGTCAAAAAC ACTACTATTT
|
GATACTCACT TGTATTGTTT TACTATAGAA TCAAATGGTG
|
TTAGTATGAA GTGAGGGGCT GCTTTA
|
|
C463b
GATCCTGCTTTCCACTAAAAGCTTGTGAACTTTTGGCCTAAACT
No hit
SEQ ID N° 708
|
CTTTGTTGCTCAATGATATCATCTGCTTA
|
|
C468
CGACTGCGTAGTGATCCTGCAGTTGATCCTATTGCTTATACAA
No hit
SEQ ID N° 709
|
GCCTTGTTTTTACTGTCACTTTCTTTGCGGGTACATTCCAAGCT
|
GCATTTGGCCTATTA
|
|
C470a
GATCCTTGCATGTTAGTTTACAATATTCTCAAATTACTCAGATG
No hit
SEQ ID N° 710
|
TAGTTTACTTTTTCTGTTTCTTTTTCCTCTAGTAAGTATATAAGT
|
TATTTGTTGGAATAAACTCTAGAATGCTTGCTTCTTTATGGCAT
|
ATATTAGCACCTACTTTA
|
|
C470b
TAAACCCAAA ATTGAAAACC AGCTGACACT ACTCGAGTTT
No hit
SEQ ID N° 711
|
TTTGTTTTTT TGTTTTCTAG TTTTGAATAT CCTATCAGTA
|
TGTGTATTTT CAGTATTTTT GATGCAGAGA AAATGAGTTT
|
TCAAAATCTG GTTTTCTAGT GAAGGAAGGA TC
|
|
C473
GATACAACGTGATATATTGACAGAATTGTGTTTCGGTTATCAT
No hit
SEQ ID N° 712
|
ATAAACATTATATAGGTTCTGCTTA
|
|
T114b
GATCTACCG TGTGTGCTTC TTAGCCTATT GAAAATCGGA
No hit
SEQ ID N° 713
|
TTGCATTTTG CTCTAGGCTT ATGATCTTGT TTTAGCTTGC
|
TCCTATTGGT GTTTATTTTT TACTATGTTT TATGTATTA
|
|
T117b
GATCAACCAT GTGTGATTCT CAGTAAATCC GATTGCATAA
No hit
SEQ ID N° 714
|
TATATTTTGG ATAGTTTA
|
|
T120
AGTTTGCTTTACGAGATTTCCTAGTTATTATCCTTTGAGTCTGT
No hit
SEQ ID N° 715
|
TGTTCTTTTTTATATCGACTTTTACCTTCTAGTTTTGCACAACAA
|
TGTCTAGCTTTTTTTGTTATTGCCCTTTCTATTTTGTATTTGAAA
|
AGGTGTGTTA
|
|
T125a
GATCTACCAACTCGGGGGTTTATTTACTGTCATTCGTTACTCAT
No hit
SEQ ID N° 716
|
GACTCATCA
|
|
T125b
GATCTACCAACTCGGAGGTTTATTTACTGTCATTCGTTACTCAG
No hit
SEQ ID N° 717
|
GACTCATCA
|
|
T131
GATCTACCGTGTGTGCTTCTTAGCCTATTAAAAATCGGATTGCA
No hit
SEQ ID N° 718
|
TTTTGCTCTAGGCTTA
|
|
T136
ACTAGTGATTGACTGCGTAGTGATCTACGTTGCGTTTGGTTGG
No hit
SEQ ID N° 719
|
ATGAAAATAGTTGTGGCATACACTTTCTTTTCATGATTTTGGAT
|
TA
|
|
T138a
GATCTACAAA CTTGCAGAGG TGAGAGCAAC ATGGATTTAT
No hit
SEQ ID N° 720
|
CCTTTTCCTT GGATTATTTA
|
|
T138b
GATCTACAAA CTTGCAGAGG TGAGAGCACC ATGGATTTAT
No hit
SEQ ID N° 721
|
CCTTTTCCTT GGATTATTA
|
|
T141b
GATCTAGTAT GTAATTTCTC TAGTACCATA TTTGCGATTT
No hit
SEQ ID N° 722
|
TCCCATTATC TTTGTTTGTA GTCTGTATAT TATAGTAAGA
|
AATTGAATAA CAAAAGACAT AGAAA
|
|
T149b
GATCTAGAAATATATACCTTGGAGTTTCAGAGCTAACACACGC
No hit
SEQ ID N° 723
|
AGAATTGGGGTTGTAAATAGTGCAAGTAGCAAATCTGTAATAA
|
TTGTTTAGTGTACTCATCACCCTTCTGCTAGTTCAAAGTGGCTC
|
AGTTCAATACAAATTCAAAACTTTTGTTA
|
|
T160a
GATCTGATAT TGCAGGTTTA GCCAAATCAT GGTCTCTCTT
No hit
SEQ ID N° 724
|
GGGCTGGCTG GAGTCCTCCG ACCTAGATNA AGTCCCTGAC
|
TGCGTAGTGA TCTAGGGCGG GTTCTGTTGA TGTGTACATA
|
TAATAAGATC ACGTCTAGAT TATGGATTCT CTTTGAGGAT
|
AAGTTTTACT TTTTGTTCCT ACCTTTTTGT AGTAA
|
|
T169
AATTGGTGGACAGTATTATAGGCTCAAATATAGGCGAATGCCT
No hit
SEQ ID N° 725
|
TCGAGCCCCCAACTGCACTGAAAGTCAGAACAATGACTTCAAA
|
GGCACCCCTTGGAACTATATACAACATGTGCAATGCAAACTTG
|
TGTTTGAGTGTGAAATACCATGGATGCAAGTTATCTTTTGAGCT
|
TACTCTTCTATTTCATTCATTTCTGTAATGTCCTGAATACAATCT
|
TATATTCTGCCTAGTAGAGAAGCCCTTCCTCCCCTCTCTTATGT
|
TGTTA
|
|
T173
CGATACTCCAGCAAAGAAGAGAAAAAGCCAGTTTTGGCATCA
No hit
SEQ ID N° 726
|
AGGGTTCAAATCGAAGTTCCAAGAGTAGTATTTTTCCTCAGAT
|
AACTACTGATAGTGATCTTTGGGTGGAGGCTCATATTTAGAGG
|
GATATCTTTATCTAGCACAACTGGATGTCACACTGATAGTGAT
|
CTTTCTTGGGTTGTTCTTGTGGAGGAAATTCACCTTGCGATTC
|
CTTA
|
|
T174
GGTTCATACAGTCCAAGACTTATGTGATCTAAATCCAGAATCG
No hit
SEQ ID N° 727
|
TAGTAGCTGATTCAAAGTCGCGTGAACAACTTCTTCCATGCTC
|
CCAGACTGTACAGAAACTGTTGCAGACCTTCACCTTA
|
|
T177b
GTGCTCTATCCCCACAAAATTCCATTTTTCTTCACCTTAGCTTC
No hit
SEQ ID N° 728
|
TTTATTTTGGCCGTAGAAACCAGTAGCTCATAGCTATGTGAAC
|
CCTCTTCCCTTACCACCTTA
|
|
T7
GATCTCACCC GGTGCTGCTC CAAGGCAACT CAATAATCAA
No hit
SEQ ID N° 729
|
AGAAGAAAAT GAAGTGGTCC TCTTGCTGGA AATACAATTA
|
CTGTCGTTTC GATTTA
|
|
T10
GATCTCATCT CAACAGCGGA CATGAACAAG CACATACTTT
No hit
SEQ ID N° 730
|
GCCCTAATAT TGAAGTGGAC AGTTGGTTA
|
|
T26
GATCTCCATC GATCGAGTCA GAAAGATCAT TGTACATGTG
No hit
SEQ ID N° 731
|
CCAATTAGTA ACCAGTGTTT AGATCAACTA TGGTGTTATT
|
TTTGGGTCTT ATGTTGAATA ATTATTTGAA GCTTTAGTAC
|
ATTTGATGTT GTAATTGTGG AGTACTTGTA TTTTTTATAC
|
AATATCTTTT ATGTTTA
|
|
T31
GATCTCCTACAGTCCTTGCACGTTTATCTTTTTGTTTCTTCTTTT
No hit
SEQ ID N° 732
|
TGGGATTTA
|
|
T34
GATCTCCTCCAAAATCCTTGTAAGAAATAATGCTACAAGCTTA
No hit
SEQ ID N° 733
|
TGAATCCATTTTCTGGTTA
|
|
T40
GATATTAAAATGAGGAGATTTACCACTCTCTTGACTATGTATA
No hit
SEQ ID N° 734
|
CTAATGAAATTATCTCCATATTGAATGGGGATGTAATACCTTT
|
GTCTCTTGATTACTCAAGACTTAT
|
|
T202
GATCTCGGCA TGTATCAAGT CAAGACCGGT TGATTAGCCA
No hit
SEQ ID N° 735
|
ATCAGGAGAT TTCCTTCTGT ATTTA
|
|
T206b
GATCTCGGAG TGAATATGGA CGACGACTAC TTACTGCGAA
No hit
SEQ ID N° 736
|
ATGCTAGTAG TCGTAATTCT TCTTCCTCTG TTGATGCTGT
|
GGAGAGAGCT AGAGCGTGGG GTGAAATGTA TTTC
|
|
T209
GCTTGAAGACTAACTTGGAAACCATGCTTTCGCCCTCTAACCC
No hit
SEQ ID N° 737
|
AGCTTTTAACCAAAACTGTCTGGAACAGCTGCTTTCAAGCATC
|
AAGAATTGATGATGCCCCCCTTAGGACAGCAACTGGGCCCCCG
|
GTAAATGGAACGGGCTGGAAAGAAACAACAATAGCAACTCCT
|
TCTAAAACCCCAGGGAAAGGGGAGATAGAAAGACTATTCACT
|
ACAGCGGAGAGAGTCTATTTGATGGTAAGAGCTATAGGAGCC
|
CTACTTA
|
|
T218a
GATCTCTGGT TCAAACTAGA TTCTGGTTCA ATTTTGGTTC
No hit
SEQ ID N° 738
|
GCTTTA
|
|
T218b
GATCTCTTGAGAGAGAAGTCGTATGGTCAGTGATTTCCAGTTA
No hit
SEQ ID N° 739
|
GTTTA
|
|
T219
GATCTCTAGT AGGAACGTTT GCTTGCATCA TGTGCATTTA
No hit
SEQ ID N° 740
|
|
T223
TTCTCCTTATCATCACTAGTTTAGTTCCATTTGTACATACCTTTT
No hit
SEQ ID N° 741
|
GTAATTCGCGGGGAGAAAATTGGATAGGTGGATTACTAAGCAT
|
AACACTACTGTATCACTTA
|
|
T224
ACACATTGTTCGGAGCCCAATTGCTGTGAGATTCCTCTTTTTCT
No hit
SEQ ID N° 742
|
AGAAAAAGGAAATGATGGCGCTAATCTCAGCGACATGCTGAT
|
TTTTCATTTGTAATAAAACATTTTCACATCATTTTTGCTTA
|
|
T229b
AGTTGGACGATGGGTTGAAGACGAAAGCAGCGGCGTGTGGAC
No hit
SEQ ID N° 743
|
TTTGGATGTTCACTGAATGACGAGGCAGCAGCTGCTCGTCGAC
|
TTAGGGATTGTCTGGAGAAGATGACTAACGGGGGGGGTCGTTT
|
TTGTGCTAGAGATCACTACGCAGTCAGGAAGTGACTGACCCC
|
|
T230
GTGATCTCTCTTGAAATCTATAATGAGACGTTGACAGAAATAA
No hit
SEQ ID N° 744
|
GCAATAGATGTGTTATGAGATGTGTTTTCCGCTCTCATTA
|
|
T231
GATCTCTATT GAATATGGAA TTGAAGATAT GATTTGTTCT
No hit
SEQ ID N° 745
|
TGTTGTATTT ATGTCCAGAT TTCGTGTATT A
|
|
T303a
ACTAGTGATTGACTGCGTAGTGATCTGATTCAAGAGCGAGGAC
No hit
SEQ ID N° 746
|
TGCTGACTTCGTCTTGCTTTTGGTCCATTCAACTCGTTTA
|
|
T304b
GATCTGAGGTTGCTGATTTAGATTATGATGACTTTGAGGCTGA
No hit
SEQ ID N° 747
|
CTTTCAGGTCTTTA
|
|
T306
GATCTGATAACAGGGTTGGGCTAAAAGAAGCCAAACAGTTGTT
No hit
SEQ ID N° 748
|
GATGGCTTAGCTAGAATATAGGTTATTGAAAGTTT
|
|
T307a
GATCTAGGTG CTTCTGGATA ATCTACACGA ACTTCTGGTT A
No hit
SEQ ID N° 749
|
|
T307b
TGACTGCGTATTGATCTGAGCAAGCAGTACAGTACAATGATTG
No hit
SEQ ID N° 750
|
GAATATTGTTA
|
|
T307c
GATCTGATGC TGAGAAATGA GACGGGGTCG TTTGGTAGTT A
No hit
SEQ ID N° 751
|
|
T308a
GATCTGATAT TGCAGGTTTA GCCAAATCAT GGTCTCTCTT
No hit
SEQ ID N° 752
|
GGGCTGGCTG GAGTCCTCCG ACCTAGATGA AGTCCCTTCT
|
GATAACGGAG TTGGTGTTCC TGCTTGTGCC ACGGAGCAAG
|
GACTAGACTG ATCAATTGCA TTAGTGGATT CAAAAATTTC
|
GATCTCACTG ACTGAATCAA GAAGCATGTC AAGCT
|
|
T310a
GATCTGACTA CTCTGGATTC ATTACTAGTA ATATGATTT
No hit
SEQ ID N° 753
|
|
T310b
GATCTGACTA CTCTGGATTC ATTACTAGTA ATTGATTTT
No hit
SEQ ID N° 754
|
GTATTGAAAC CAGAGAGA
|
|
T313b
GATCTGATTCATGTTCCCACATGATACGTAGGCAACCCACATC
No hit
SEQ ID N° 755
|
AGGTTCGATCACCATTA
|
|
T315c
GATCTGGCCG GCTAAACTAA TATTGGCGCC ACCACTTCCT
No hit
SEQ ID N° 756
|
CAAACTTTAT CTTCTCTGTT ATTGGCCAGA AGAGAGAGAC
|
CTGGCTGGAT TTTTACTCTT TCTGGCAGTC TTTGTGATTT
|
TCTCTCTATG ATTCGCTGGA GAATATATTT TTCCAGTGAC
|
CTTTTGTGCA TGATATTTA
|
|
T316a
GATCTAGCAT CCAATGGACC AAGTTCTCTG GTGACAGCCA
No hit
SEQ ID N° 757
|
ATTATTGTGA ACGCTTCTTC TGGTTGAGTT GCTGGTTATA
|
CTAGGTAGTT CTCTGTATAC CAGCTCCTTG TTA
|
|
T316b
GATCTATGTG GCTATGATTT TTGCTTAGTA GTTGAATTGT
No hit
SEQ ID N° 758
|
ATTATTTTCA TTCTGCAATC AAGTACTGCT ATCTTTTATT
|
TCTCGGTTTT CATCAAATGT TTGCTCTTCC TTA
|
|
T317a
GATCTCATGA ATGCATAGTA GAATACTGTT GTCTTTGCTT
No hit
SEQ ID N° 759
|
ATGTTA
|
|
T317b
GATCTGGGGT TCGCAGCAAC TTTTGAAGAA GAAGAAACTT
No hit
SEQ ID N° 760
|
AGGTTTA
|
|
T322b
GATCTAGGAGTTTGTCATCTAAGTAAATCAGTTTTGTATCCTTG
No hit
SEQ ID N° 761
|
ATTTTTGCCATACAGAGAGACCAGGGTAAAATGCGCTTA
|
|
T322c
GATCTGTGTGCCTAATGATTTTTGCCTAGTAGATGGATTATATT
No hit
SEQ ID N° 762
|
ATTTTCATTCTGCAATCAAGTAATACCTATCTTTTATTA
|
|
T324b
GATCTGGTGG CTATTCTTCC TCAAGGTCCT CGATTA
No hit
SEQ ID N° 763
|
|
T324c
GATCTACGAA ACGGTGTGTT GTATTCTTGT TCATTA
No hit
SEQ ID N° 764
|
|
T325a
GATCTGGTAA CGGATTTGGC TCCGTTGGAG TCGGACAAAA
No hit
SEQ ID N° 765
|
ACACTCTCAG CTTTA
|
|
T326a
GATCTGGGCA TGAGGTTCGC AAGCATGTCA TGTTATTGAA
No hit
SEQ ID N° 766
|
ATCTGCATTT A
|
|
T326b
GATCTGGGCA TGAAGTCTTC AAGCATGTCA TGTTATTGAA
No hit
SEQ ID N° 767
|
ATCTGCATTT A
|
|
T332a
GATCTGGGTC TGTCAATGAA GAAGAAGAGC TTAGGGCATG
No hit
SEQ ID N° 768
|
TGTGAGGTGA AGTTTCATTT ATGGCTATTG CGTAGTGAAG
|
GGAGGTCCGA CGATGGAGTT TTGGTGGTGA GGGTGCGGCT
|
GGTGTGAAGA TGGAGCTAGG TTCTAGGTTT TTTTTGGTGT TA
|
|
T333a
GATCTGGGTC TGTCAATGAA GAAGAAGAGC TTAGGGCATG
No hit
SEQ ID N° 769
|
TGTGAGGTGA AGTTTCATTT ATGGCTATTG CGTAGTGAAG
|
GGAGGTCCGA CGATGGAGTT TTGGTGGTGA GGGTGCGGCT
|
GGTATGGAGA TGGAGCTAGG T
|
|
T333c
GATCTGATCC AGCAGTTGAT CTAGCATTTC ATATTCAGTG
No hit
SEQ ID N° 770
|
TAATGACTGC GTAGTGATCT GGGTCTGTCA ATGAAGAAGA
|
AGAGCTTAGG GCATGTGTGA GGTGAAGTTT CATTTATGGC
|
TATTGCGTAG TGAAGGGAGG TCCGACTATG CAGTTTTGGT
|
GGTGAGGG
|
|
T335a
GATCTGGTGC GTAGTAACCT GTGCTTTGTT CGAATTCGAG
No hit
SEQ ID N° 771
|
GTGCAATCAC ATTCAAGGAA AAATAATATA ATACAAACGA
|
CTTTTTCTTT TTCTACCTTG CTTCAATTTT TACTTCGTAT
|
ATCATAAATT AGTGGTTTAT TTGTTATGTT TCATCACGTT
|
TTGATAATTT TATTGATTA
|
|
T336b
GAATCCACCTACCTAATAGCAAGAACAATTGAATTTGACCGAA
No hit
SEQ ID N° 772
|
CAGAGTTCTGAAATTGAGGGGAAGCCCCAACACCGTCTCCCTC
|
CCCGCTAATTCCATTTCTCTAAATTACA
|
|
T338a
GATCTGGGGAAAAAGGGAAACAAAAAAAAAAGCAGAGAAGG
No hit
SEQ ID N° 773
|
AAATCTGCCGCCTCCCTAAATGACTAACTCCTCCTTA
|
|
T338b
GATCTGGGTG AAAAGTCAGA AAGCAGCAAA GCAATGTTCT
No hit
SEQ ID N° 774
|
TTTCTTCCCA AGACGCAACA ACTCAATAGC CATGAAAACG
|
CATTGCTTA
|
|
T338c
GATCTGGGGG AAAAGCCAGA GAGCAGCAAA GCAACGTCCC
No hit
SEQ ID N° 775
|
TTTCTTCCCA AAATGCAGTA GCTCAATAGC CATGAAAACT
|
CACTCCTTA
|
|
T343
GATCTGGAGATGCAATTTTTGATAACCAGCAGTTCTATTCAATT
No hit
SEQ ID N° 776
|
TTGTGCAGTCCTTGCTGGTTGTTTCTTTCTCCATTTTTTTTTGTT
|
CTTGTGAACCATTA
|
|
T345
ATTGGGCTCCACTGCTATAGGCGCCTGCTGCAGTTTCGGTATC
No hit
SEQ ID N° 777
|
AGACAACTTGTCTGATTTTGATGGCATTACTCAG
|
|
T346
GATCTGGAGA TCAGGAAATG TTCTAAAATC TCCCTCAATT
No hit
SEQ ID N° 778
|
ACGCTCTTGG GCTCTTGATT TTAGGTGCTC TTGGTCATCC
|
ATTA
|
|
T350a
GATCTGTTCA AGTTGGCCGA TTAGTCCATC CTTTTTACTG
No hit
SEQ ID N° 779
|
AATAACATAC AACTTTGTGC TTCTTTTTAC ATGAATAAAA
|
TACTAGAGAT GTCTTTTCTC AACATTGTT
|
|
T350b
GATCTGTAGA GAAGGCTCGC TCCTAAATTA TATTTCTTTC
No hit
SEQ ID N° 780
|
ATTTACCTTT TCTTTCTGCT AATTTCCTTT TCCGTGGTCT
|
CTTTTACTTT TTTCTTGGGA GGGGAAGATG GGAGTGGGGT
|
GTCACCTTCC CTTGTC
|
|
T350c
GATCTGTGAG ACTTAGTAAG AAGCATGGCT GGTTTTTCAT
No hit
SEQ ID N° 781
|
ATGTACAGCC CATCTCATTT TAGTGTAGAA TAAGCATGAG
|
GTATGGTTCA TACGCTAATA GCACATTGAA TGGTAAATTT
|
TAGGTTTCC
|
|
T351b
GATCTGTAAA TATGTTACAT ATTAGGAGTA TAATGTTTTC
No hit
SEQ ID N° 782
|
ATTACTAAAG CATGTAAATA TGTTGCTCCG GGCTTTGGTC
|
TATTAGTAAG AGCGCAATGC GTA
|
|
T353a
GATCTGTCAT TGATGTTCAT TACTCCAATC TTTTCTCTGA
No hit
SEQ ID N° 783
|
CATGTTTA
|
|
T358
GATCTGTAAA TATGTTACAT ATTAGGAGTA TAATGTTTTC
No hit
SEQ ID N° 784
|
ATTACTAAAG CATGTAAATA TGTTGCTCCG GGCTTTGGTC
|
TATTAGTAAG AGCGCAATGC GTA
|
|
T359a
CCATCAGCTAAATTATCTCGAATTTCAATAGTGGTACTCAC
No hit
SEQ ID N° 785
|
|
T359b
CATCTGTAAA TATGTGACTG ACTGCGTAGT GATCTGTGGA
No hit
SEQ ID N° 786
|
AACTGCTGAT CCGGTAATTC TCAGAGA
|
|
T359c
GATCTGTACT GTACATGTCA AAAAGGGAC
No hit
SEQ ID N° 787
|
|
T360a
GATCTGTGAG GGG
No hit
SEQ ID N° 788
|
|
T360b
GATCTGTTGA GAAATATGCT AATAA
No hit
SEQ ID N° 789
|
|
T360c
GATCTGTCAA AGGCCAA
No hit
SEQ ID N° 790
|
|
T364b
GATCTGTGGA AAAGGAAAGC TGGAGAAACT TGCTGTGCTG
No hit
SEQ ID N° 791
|
TAATTTATGT ACAGTGCTAT TTGGCTGCTC AACTAAGATT
|
GTTTTGATTC TCTCTTAGTC TGATGTTATC TTTTCTCGTG
|
ACAATCCTTC CTTTTTCTTT CTTCTCTTGG AGTTGGGGGG
|
TCAATATCCT TTGTTTGTGG TG
|
|
T366a
GATCTGTCGA AATTTGATTC TCGCACGAAT TGTACCATTG
No hit
SEQ ID N° 792
|
CCCACTTCCA TTGGCAAGGT TAGGGTACAG AAAGTCTTTT
|
GTGAGTGACC AATATATA
|
|
T366b
GATCTGTGAA TATGTTGCTA TTATATTTAC GCACATCTTA
No hit
SEQ ID N° 793
|
GATTTCGCTT TTCTTTCTGT TCTGAATCTC T
|
|
T371
TTTATCCGCACGAGGCTTCTGGAATGTAATGGCAGCTGATACA
No hit
SEQ ID N° 794
|
TTGATGTAAATGTAATGCATTGTGCTTCTCAACCAAAGTACAC
|
TTCCGGGGAGGTCATTA
|
|
T372a
TGACTGCGTAGTGCTCTGTGAGAGGCCATTTGGATCATATATG
No hit
SEQ ID N° 795
|
TTGCTATCCATTGCATTA
|
|
T462
GCTAAATGATTTCTAATGGGATGGGCATGCTCCCCACTGCTCT
No hit
SEQ ID N° 796
|
ATGATTTATTATAGTCATACTCTGTTTCGTACCTGGCCGCTAGC
|
CTTTCGCTTCCTCCTTGTACTAGATTTTGACCTTGAATTCCCCCT
|
GAAAGCGAGAACGCACTATATGCCTTTA
|
|
T403a
GATCTTATAG CTAGATGTTG GGTTTTGACA ATTGAACTCT
No hit
SEQ ID N° 797
|
TATCATTGTA TTTGAGTTTG GACTGTCATG ATGAAACTTG
|
ATGAAAACCT GCTTAGTCGA ATCAGTAGCA AAAT
|
|
T403b
GATCTTGGAG TGAATATGGT CGACGACTAC TTATTGCGAA
No hit
SEQ ID N° 798
|
ATGCTAGTAG CAGTAGTCCT TCTTCCTCTG TTGATGCTGT
|
GAAGAGAGCT AGAGCG
|
|
T403c
GATCTTAGAG TGAATATGGA CGACGACTAC TTACTGCGAA
No hit
SEQ ID N° 799
|
ATGCTAGATA GTCGTAATTC TTCTTCCTCT
|
|
T466a
GATCTTATAT GAGCTATGTC AATTTTGATC GGCTTCTTCT
No hit
SEQ ID N° 800
|
GGATTA
|
|
T466b
GATCTTATAT GAGCTATGTC AATTTTGATC GGCTTCTTCT
No hit
SEQ ID N° 801
|
GGATTA
|
|
T429a
GATCTTCCAG GATTATTATT GTCTTCCGCT GCGTGTTACG
No hit
SEQ ID N° 802
|
AACACCTATA CGCAATCGTA CATTATGGAC CATAAAACCG
|
ATCCCCCTAA TCTTGAATAA AAAATCCATG CTATTTTTTG
|
TTGTCATTCC ATTTA
|
|
T429b
GATCTGGCTGATAGTGCAAAAGATTCAACTATTATTGACATAT
No hit
SEQ ID N° 803
|
GTTGCAACATGTACCATGTGTGGTTTGATCATGGCGCCTAGA
|
TGGAAGTGATGCTATAGTAAATAGACTTCACTTGTTTCATGCT
|
ACTTA
|
|
T432b
GATCTTCAAC TATCTCAACT GCTGTAGTGC AAAAGCTTGA
No hit
SEQ ID N° 804
|
AGTTCATGGG ATTGATTTGT TCCAACTTGT TTGTAATGAT
|
AAATATATCA ATGTGATTTC TCCTATATAT GTTTTGAGGG
|
ACTTTTCCAA GAAAAAGGAA AAGTGTGGAT TTTATGATTG
|
TGGTGACTGG TAATTA
|
|
T432c
TGACTGCGTCTTGATCTTCAACTATTTCAACTGCTGTAGTGCAA
No hit
SEQ ID N° 805
|
AAGGTGAACTTCATGGGATTGATTTGCTCCAACTCGTTTGTAA
|
TGATAAATATATCAATGTGATTTCTCCTATATATGTTTTGAGGG
|
ACTTTTCCAACAAAAAGGAAAAGCGTGGATTTTATGATTGTGG
|
TGACTGGTAATTA
|
|
T433a
GATCTTCCAG AACAGCCATC CACC
No hit
SEQ ID N° 806
|
|
T433b
GATCTTCCAG AACAGCCATC CACCAGTGTA AACAAATACA
No hit
SEQ ID N° 807
|
AATCAAGGTC CCAATGATGA ATGTGTTCA
|
|
T436b
GATCTTCCAAAATACAGCTAGGAACTAACCACTCAATAGATCA
No hit
SEQ ID N° 808
|
TCTCCAATAAATTTTGCGCCTTCCTTCCTTATTA
|
|
T437
TAGGGAATAGGAAGATGTACAAGAGGCAATATGGAGCACAAT
No hit
SEQ ID N° 809
|
GAACTGGATTCATCTACTATGTTCTTTCGGCCTTA
|
|
T438a
GATCTACATG TCTAATGTAG TTGGGGATTT ACCTTATCCT TA
No hit
SEQ ID N° 810
|
|
T438b
GATCTTCTGCAAAGGTAGCAGCTTCCTACTAACCAGATATTA
No hit
SEQ ID N° 811
|
|
T411a
TGTATTTCTGCGGCGGGGGGGGGGGGACCTTTGAAAATACCAA
No hit
SEQ ID N° 812
|
AAACACCCCTTATTTGCCCATTGATTTTGGTTTTAAAAATCA
|
|
T411b
GATCTTGCAT GAATACGGAA TATATACTTT GTGCACCGAA
No hit
SEQ ID N° 813
|
GTGCCCTTCC CTTCTTGGTT GCTA
|
|
T416
GATCTTTGGGTTCTCATGGATCGTGGGGACTATGAACTTTGAAA
No hit
SEQ ID N° 814
|
GGGCTTTA
|
|
T417
GACTACTTACTGCGAAATGATAGTAGTAGTAATTCTTCTTCCTC
No hit
SEQ ID N° 815
|
TGTTGATGCTGCGGAGAGACCTAGAGCGTGCCGTGAAATGTAT
|
TTCTTGCATAACTATGATAGGTTGGTTA
|
|
T422a
CATATGGACCAAACTTGTTCTGAGTTTTTGCTAGATTGAGACTG
No hit
SEQ ID N° 816
|
CATGGTCCTCTC
|
|
T422b
GATCTTGCCA TGGACTAATT ATCAACAGCA GCCATATTGG G
No hit
SEQ ID N° 817
|
|
T426a
GATCTTGGAG TGAATATGGT CGACGACTAC TTATTGCGAA
No hit
SEQ ID N° 818
|
ATGCTAGTAG CAGTAGTCCT TCTTCCTCTG TTGATGCTGT
|
GGAGAGAGCT AGAGCGTGGG GTGAGA
|
|
T428a
GATCTTGGAG GAATAGAAAG AGCGTTGTAT ATTGCTCGCA
No hit
SEQ ID N° 819
|
CTTTCTATAG TTTTGATTA
|
|
T428b
GATCTTGGAG TAATACAAAT AACGTTGTAT ATTGCTCGCA
No hit
SEQ ID N° 820
|
CTTTCAATAG TTTTGATTA
|
|
T441b
GATCTTTGGACAAAGTTTGGGGAAATGATTGCTCTGCTCTTT
No hit
SEQ ID N° 821
|
GTTGTTGGTTA
|
|
T450a
GATCTTTGCATAGTTCGGAAAAATCGAGAATAGACTAAATAAA
No hit
SEQ ID N° 822
|
CTAACGTTCTCTTTTTTCTTTCTTTCTCTTTTTTTTTTTACCTTA
|
|
T450b
GATCTTTGCGTAGTTCGAGAAGATCGAGAATAAAGGAAACAA
No hit
SEQ ID N° 823
|
ACTAACGTTCTAATTTTCTTTTCTTTTTTTTTCTTTTTTTACCTTA
|
|
T452a
GATCTTTGCGTGTTGCACTACAGATTTTTAGGACCTTCTGACTT
No hit
SEQ ID N° 824
|
GTTA
|
|
T452b
GATCTTTCAG TGTTGTACTC TTCCCTGCTT TA
No hit
SEQ ID N° 825
|
|
T456
GATCTAAGTAGAGCAGGGTTCTAGATGCCTAGGATGCTTTCTT
No hit
SEQ ID N° 826
|
GGGTGAATCTGCCTTTTCCTCTTGCTGCCTATCTCTGTGGCAGC
|
TCCAGAGAATGGTGATTGTCTGTTGTTTGAAGCTGCATTA
|
|
T459a
GATCTTTGATATTGGTAGCTTGTGAGTTGAAGACTAAGGCTTA
No hit
SEQ ID N° 827
|
TTAGTAAAAATAATACATGTATTAGCCTTTGTATTA
|
|
T459b
GATCTTTAGA GAACTATAAG TTTTACTTCT GTTTCTTGAC
No hit
SEQ ID N° 828
|
CGTTTTTGAT TTTGTGTTAT TGAGATATAC TTGCAATTAC
|
TCAGGACTCA
|
|
T460a
GATCTTTACTTGATTGCTACTCCTTGTGTCGCGTCTTGATTA
No hit
SEQ ID N° 829
|
|
T460b
GATCGTTACT TGATTGCTAC TCCTTGTGTC GCGTCTTGAT TA
No hit
SEQ ID N° 830
|
|
MC103
TAAACATGCG GAAGTCCAAA GATAATACCA CTACCTAGCC
No hit
SEQ ID N° 831
|
CACATTGATC CGGTGTCACA AGTCAAGAGC CTCTAATACA
|
AGTCTGAACG ACCTAATACA TAAATAATCT AGGAATGTGG
|
AAAGTAATAA GATATGAAGG AGCAATCCGG GTCTACGGAT
|
TACATGCAGC TACTTCGATA ACTCCGGCAA ATG
|
|
MC114a
TAACGTATCA GCTTTGTTTT TTCCACGGTT CCACCTAAGT
No hit
SEQ ID N° 832
|
AGCTATGTTT CTTGGATC
|
|
MC114b
TAACTAAGGGAAAGAAGAGAAGAACAGAAATGACCTATAGCT
No hit
SEQ ID N° 833
|
ACATTAGGCATGGATC
|
|
MC119
TAAGAGGAGT GCAGCTTTTG CTCAAGTTTC AGATTCTCAG
No hit
SEQ ID N° 834
|
CCCATAACAC ATCCTGAGAC TCTTGTTTGT GAGAACAAAC
|
AACTTCATTC TGAAGGAGGG GTTCCCAGTA TTACCAAGGA
|
GCAGTTTGAT CAGCCTTTGA CTCTTCTTCA ACAGTCCAAA
|
GTCTCAC
|
|
MC130c
TAATGAGGATGTGGTGGCTCTGTACAAAAGGTAGACTGATTGA
No hit
SEQ ID N° 835
|
GAAGTATCAAACAGCTCAAGTGTAGATGTGGTCATCTAACAAA
|
TGGTGGATC
|
|
MC202
TAAACATACAATGACTGGGCTGTTATAGCAGGGGTTTCGGGAC
No hit
SEQ ID N° 836
|
TTCTTTTGTTGGGTTTGTTTTGTTCAAGTTAGTAGTGAAGTTCA
|
GCTCGAGTTCAACTCTTATCTGGACTCTATTGCTTTGGGATC
|
|
MC210a
TAACAATCAG ACTGCATCAA ATTTCTACCT AGGCCTACAA
No hit
SEQ ID N° 837
|
TAATTTGAGT GTGGTCATGG GATGGGATC
|
|
MC301
TAAACGATGC CCAACGACCA CCTTCTTTGG TCGTCCGTTC
No hit
SEQ ID N° 838
|
GTAGTCGTTT TCGACGTCAA GTTATCTTGG TGCGAGATTC
|
GTTCTCGGAC AGATTTGTTT ACAATCAAAG TTCGTCGTTG
|
ATTCATCTCC GGTTAGTTGT TTTTGAGTTT TATTTTTGTC CAA
|
|
MC305a
TAACTGAACT TTATATAAAC TGTGCCGACA CCCTTCTCTC
No hit
SEQ ID N° 839
|
TTCACCTCCG GGGATGTGCT TACTGGTTGA GACTCCCTAT
|
TCTGTTAGTG TCATACCTTG AAATAAGAAA GAGGCCGGAC
|
AAGTTACGAA GCCAGATGGC CTTTTGGTTC CCGGTAAGTT
|
GCCCCCTCCT CGACTCGAGT TGTCCGCTCG GGTACATAGT
|
CTAAAACACT GACCCAGGTT TTGAACATAG AATAACGTGA
|
CTTCATGCCG GATC
|
|
MC306a
TAACATGTTGGACGCGGATATACCTGTTCCAAATATACCAGAG
No hit
SEQ ID N° 840
|
AGACCAATTTCTCTCATTGCGGATC
|
|
MT104b
AAGTCATAAAGAGGACTGAAAATTGCCAGAACCCTGAAGGAG
No hit
SEQ ID N° 841
|
CTCCAGGATGACATCTGGCCAGAGCCTACTTGCTGCTGGGGCT
|
GCACAAGCTGGGGGATC
|
|
MT115a
GTAATTGCTCATGTCCTATGCCTTTGGAAAGACATCCAAATGG
No hit
SEQ ID N° 842
|
CTATGAGATTATATGCCCTCGTTAGACTTTGCCGGCAGATC
|
|
MT116
AACATGTACC GGGATTCTCA AAGAAACAAG TCATAGCTAC
No hit
SEQ ID N° 843
|
ACCAGATGTT GATCATGTTC TTTTAGGAAT CTCGAAGAGA
|
TTACTTCC
|
|
MT117a
TAATGTTATG ACTTGTGGGA GGGATTGTGT TTACAATGAT
No hit
SEQ ID N° 844
|
TGTAAAGATG ATTGTTGGAT TTGCTGTAGA TGTGTTAGAT C
|
|
MT117b
TAATGTAGGT ATTGTGGGGT GGTAGTGGTT GGAGCTTCGA
No hit
SEQ ID N° 845
|
GAATTTGGGC AAAAAAGTGA CGGGAAAGTT TTCTAGATC
|
|
MT118
GAAGAACGGGATTCAAAAGGTAATTTCATTACTCAG
No hit
SEQ ID N° 846
|
|
MT209a
TAAGGACGAG GAGGTAAAGG GGATTATTGG GTGTTAGTGT
No hit
SEQ ID N° 847
|
GGGGTCAAGG AGACAGGCTA GGGCTTGGAG GGGAGATC
|
|
MT210b
TAAGGGAAAA GATAATTTTA CTCCAGGACC AGAAGAAACT
No hit
SEQ ID N° 848
|
CAAAGACTGG TATGGAAAAT TTTGAGATC
|
|
MT213
GTCCCGAACTGTGCGTCTAGGCGGGTGGGGACACGGGGAGAA
No hit
SEQ ID N° 849
|
GGGGCACGATGGTTTTACCCAGGTTGGGGCCCTTTGGAGGGGG
|
GTAAAACCCTCCTCCTGGTTGATTACTCAGGGCTCATT
|
|
MT214b
TTTAACCCAACCCTGTTATCAG
No hit
SEQ ID N° 850
|
|
MT301a
TAAACAGCCCGAAAATCACCCAAAGACACTCTCTAAACTATCC
No hit
SEQ ID N° 851
|
AAAACATCGGCTTTGAATCACCCCAAAACCACGTTTTACGCAG
|
CTAAAATACAGCACTAAACTCCCCAAAAAAGGGTCGATGTCG
|
CACCATATTTGTCAACAAACAGAGCTTCGCTTCAACTGTATAA
|
GATCACTCACGTTCAGTCGCGTTTTTTTTTTTAGTTGGGTTCAA
|
GGTTTCCGACGTGGGTCTCGGGTCAGTAGTTTGTTTGTACGAA
|
AGTTTTAGCAGATC
|
|
MT303a
AAGTGGCACTTTA
No hit
SEQ ID N° 852
|
|
MT303a
CTTATTATGCTTTTGCTCGTTTA
No hit
SEQ ID N° 853
|
|
MT304a
TAACGATTAT CCGTTTGGAA ACACTAGCAA AACCTGACGC
No hit
SEQ ID N° 854
|
CGGGACTCGC GAAAAATCGG AATAAGCCAA CAGGAATTCG
|
TAGACCAAAA CTCGAACATA CGGGGAACCT CAAATCCTCG
|
AACGCGGACC AGATC
|
|
MT304b
TAACATACAGTACGAATTTTGTTACTTTATTACTTTGACAGCAA
No hit
SEQ ID N° 855
|
TGCAAGGGAAAGCAGCCACAAGTTGGTAAGAAATAAAAAAA
|
GGCCAAGAACACTAGTTGATGAGGATGTTGAGGACACCATGG
|
CCAGATC
|
|
MT304c
TAACCAACTGAAACAAAACTGACACTATCATTGCATACAACCT
No hit
SEQ ID N° 856
|
ACTGTCTACTATTGTTTTAAGTTTCTCTTCATTTTGTATTTTGAT
|
GTAATTGTATTATGGGACCACGTTTGTCACCGACCCTCTCCAG
|
ATC
|
|
MT305c
TAACAACCAGAGTTCAAACGATAAAAGGGTGTGGTTGATTTAT
No hit
SEQ ID N° 857
|
ACCCAACCCACTGAAACTTGAAAAATATACACTACTAGTCAAG
|
CCATCAAGCAATCCAGAAATGCAGAGGAGCCCAGATC
|
|
MT306b
GCGTAGTGCTCTGTCGCTAATGGGGTTTATGCTGCGATTTTTCT
No hit
SEQ ID N° 858
|
TTCCTGTCAAAAACTATGTGGACTAGGAGTGGAGTGCGTCCTC
|
TACAACAATATCTGAGTTACATCCGATCGGGTCACTCAAGACT
|
CA
|
|
MT306c
TAACGGAAGGAGAAAGGTGGATATTATTGTGGTGTGGCCTTTT
No hit
SEQ ID N° 859
|
GTCTTTGGTTTTCTATTCTATTGAGCCCTAAAAATAGTGATATC
|
TTGGTCTGATGTTCCCTGTTGCAGATC
|
|
MT308c
TAACCTTTTT TAGCAAGTAA TTAGATTACT AATTTCATTT
No hit
SEQ ID N° 860
|
TTTAAAAACG GTTACCCGGA GTTTTCTTTT TTTTTTTTTA
|
CACTTGCCAG ATC
|
|
MT312
TAAGGGTGAG CATGGAACTC GGGTGATATG GTAGCCTGTG
No hit
SEQ ID N° 861
|
AA
|
|
MT313
TAATGCTGAT GA
No hit
SEQ ID N° 862
|
|
MT402a
GGTGAATTGGCATTGGCTGCTCCAAAATGTCCTTCCATGAAAT
No hit
SEQ ID N° 863
|
AAGAGCAATACCAGCATCTGCTGCTTATTTTCAAGACAAGATC
|
|
MT408
TAATGTGTAA TCAGTAGCAT CTATGTGCAA CTTTGATGGT
No hit
SEQ ID N° 864
|
TTTTGTCACA TCCAAGTAGT GAACACATTC ATCATTGGGA
|
CCCTGATTTG TATTTGTTT
|
|
MT410b
TAATTGTATA TGAGTAACAA AAAAGAGTTA GTTGTATTTT
No hit
SEQ ID N° 865
|
ACTTTATCAC CGATTTCCCG AACTACGCAA GATC
|
|
MAP1
CTGCCACCTCCAATCTCCAGGCATATACAGTCGCCAATTGCTT
No hit
SEQ ID N° 866
|
CTCCTCTTCCTATGTGTGCCTCTTCAAGTTCATGTACATGATCC
|
ATCTTCCTCTAATTTCTCTGGGCAAGATAATCATAACTATATCT
|
TCACAACCTGAATCTAACTCCTCTGACCAAGATATACCAAAAC
|
CCATCTCCAATTTTGAACCATATCCATATCC
|
|
MAP4a
TTGGGGGAGG TTTGCGGCGG AGATAAAATG AAAAAAAAGA
No hit
SEQ ID N° 867
|
AATGGAAGTG AACTTGAAGT TA
|
|
BMAP2a
TAAGGTTCAAAGCCAGCTATTACAGTTAGTTGTGTGAGCTTAT
No hit
SEQ ID N° 868
|
TCGCTCAACCTTAGCGGTAGGACATCTGGTGCGTCGGCTGCAT
|
|
BMAP3
CTCCGACTCGATGTTGTCCTTGGATTTGGATTCCGGAGAGATC
No hit
SEQ ID N° 869
|
AAATGGTACAAACAGCTTGGAGGATATGACATCTGGACCGTCG
|
GCTGCATA
|
|
T304a
GATCTGAGGT TGCTGATTTA GATTATGATG ACTTTGAGGC
No hit
SEQ ID N° 870
|
TGACTTTCAG GTCTTTA
|
|
T226
GATCTCTA GTGTGAGTCA AAAATGATCA TAATATGAGT
No hit
SEQ ID N° 871
|
TTTGCCGGAG GCTTGGTTCA ATGAAAAATC GTTGTTTCAG
|
TTGAGGTTCA TTCTTTTTTA CTGTTTCGCT CCTAATAAAT
|
TTTTATTGTC AGTTGTCTTC TGATTTTTGC TGTTTTGTCC
|
TATTCATTGT TGTGTTAGTA TTTTTGTTGA ATGTTGCATT
|
GTTTTCTTTG TTTGAAAATT TCAATACGTT GGCCCTATCC
|
TATTTTTGTA ATTTGTTTGG ATTATAATTG TATTGGTGTA
|
GAAGATAAAA TTGTTCCATT A
|
|
TABLE 3
|
|
|
Primers used to amplify the NsPMT2 promoter
|
Primer Code
Sequence
|
|
FwP ALGG52
5′-AAAAAGCAGGCTCGAGGAGTGGAATACGAACAAA-3′
|
|
RvP ALGG53
5′-AGAAAGCTGGGTTTTCCAAATTAAACTAAGCAAATTG-3′
|
|
TABLE 4
|
|
|
Jasmonate induction of the NsPMT2 promoter in
|
transgenic BY-2 cell line 7, represented as
|
GUS activity in units/mg protein/minute.
|
Time (h)
+DMSO
+MeJA
|
|
0
0.2 ± 0.3
0.8 ± 1.0
|
4
0.2 ± 0.3
2.0 ± 0.3
|
8
0.2 ± 0.3
6.4 ± 0.3
|
14
0.2 ± 0.3
29.1 ± 1.9
|
24
2.9 ± 0.6
92.2 ± 6.4
|
|
TABLE 5
|
|
|
Induction of the NsPMT2 promoter in transgenic BY-2 cell
|
line 7, double transformed with pK7WGD2-C330, represented
|
as GUS activity in units/mg protein/minute.
|
Line
Time (h)
+DMSO
+MeJA
|
|
BY-2 line 7
0
0.0 ± 0.0
0.0 ± 0.0
|
24
0.9 ± 0.1
399.0 ± 56.4
|
48
6.0 ± 0.8
663.0 ± 33.6
|
BY-2 line 7-C330
0
0.9 ± 0.1
1.0 ± 0.1
|
24
6.4 ± 0.1
276.7 ± 55.9
|
48
128.6 ± 0.3
347.8 ± 2.0
|
|
TABLE 6
|
|
|
A: Measurement of nicotine alkaloids in BY-2 reporter cell
|
line in the presence and absence of synthetic auxins, in
|
the presence and absence of MeJA. B: Measurement of nicotine
|
alkaloids in BY-2 reporter cell line supertransformed with
|
an expression vector comprising C330, in the absence of
|
2,4D, without and with the elicitor MeJA.
|
Reporter cell line (line
|
7) + expression vector
Anatabine
Anabasine
Nicotine
|
comprising the C330 gene
mg/g DW
Mg/g DW
mg/g DW
|
|
−2,4D + DMSO
0 h
0.036
ND
0.010
|
24 h
0.018
ND
0.005
|
48 h
0.115
0.003
0.271
|
−2,4D + MeJA
0 h
0.038
ND
0.008
|
24 h
2.065
0.099
0.271
|
48 h
3.541
0.297
0.283
|
|
TABLE 7
|
|
|
Seq code
SEQUENCE
SEQ ID N°
|
|
|
MAP3
MNPANATESF SELDFLQSIE NHLLNYDSDF SEIFSPMSSS
SEQ ID N° 872
|
NALPNSPSSS FGSFPSAENS LDTSLWDENF EETIQNLEEK
|
SESEEETKGH VVAREKNATQ DWRRYIGVKR RPWGTFSAEI
|
RDPERRGARL WLGTYETPED AALAYDQAAF KIRGSRARLN
|
FPHLIGSNIP KPARVTARRS RTRSPQPSSS SCTSSSENGT
|
RKRKIDLINS IAKAKFIRHS WNLQMLL
|
|
C330
MFPNCLPNEY NYTADMFFND IFNEGIVGYG FEPASEFTLP
SEQ ID N° 873
|
SIKLEPEMTV QSPAIWNLPE FVAPPETAAE VKLEPPAPQK
|
AKHYRGVRVR PWGKFAAEIR DPAKNGARVW LGTYETAEDA
|
AFAYDKAAFR MRGSRALLNF PLRINSGEPD PIRVGSKRSS
|
MSPEYSSSSS SSASSPKRRK KVSQGTELTV L
|
|
C484a
MNNTTFSDPN SDTGGFLGSG KIGGFGYGIG VSVGILILIT
SEQ ID N° 874
|
TTTLTSYFCT RNQTSELPTR RQRTINRNEL SGHCVVDIGL
|
DEKTLLSYPK LLYSEAKVNI KDSTASCCSI CLADYKKKDM
|
LRLLPDCGHL FHLKCVDPWL MLNPSCPVCR TSPLPTPQST
|
PLAEVVPLAT RPLG
|
|
C360
MGCIEKDPRE DVVQAWYMDD SDEDQRLPHH REPKEFVSLD
SEQ ID N° 875
|
KLAELGVLSW RLDADNYETD EELKKIREAR GYSYMDFCEV
|
CPEKLPNYEE KIKNFFEEHL HTDEEIRYCV AGSGYFDLRD
|
RNDAWIRVWV KKGGMIVLPA GIYHRFTLDS DNYIKAMRLF
|
VGDPIWTPYN RPHDHLPARK EYIESFIQAE GAGRAVNAAA
|
|
C165
MFFAHRENTM STLGRLVLIF WLFVVLIINS SYTASLTSIL
SEQ ID N° 876
|
TVQQLSSGIQ GIDSLISSSD QIGVQDGSFA YNYLIEELGV
|
SESRLRILKT EDEYVSALEK GPHGGGVAGI VDELPYVELF
|
LSNNKCIFRT VGQEFIKGGW GFAFQRDSPL AVDLSTAILQ
|
RSENGELQRI HDKWLTNNGC SSQNNQADDT QLSLKSFWGL
|
FLICAIACVL ALIVFFCRVY CQFRRYHPEP EEPEISEPES
|
ARPSRRTLRS VSFKDLIDFV DRRESEIKEI LKRKSSDNKR
|
HQTQNSDGQP SSPV
|
|
C353a
MNPEYDYLFK LLLIGDSGVG KSCLLLRFAD DSYLESYIST
SEQ ID N° 877
|
IGVDFKIRTV EQDGKTIKLQ IWDTAGQERF RTTTSSYYRG
|
AHGIIVVYDV TDQESFNNVK QWLSEIDRYA SDNVNKLLVG
|
NKCDLTAQKV VSTEIAQAFA DEIGIPFMET SAKNATNVEQ
|
AFMAMAASIK NRMASQPASS NARPPTVQIR GQPVNQKSGC
|
CSS
|
|
MT101
MRVRIHQTMA TVMQKIKDIE DEMAKTQKNK ATAHHLGLLK
SEQ ID N° 878
|
AKLAKLRREL LTPTSKGGGG AGEGFDVTKS GDARVGLVGF
|
PSVGKSTLLN KLTGTFSEVA SYEFTTLTCI PGVIMYRGAK
|
IQLLDLPGII EGAKDGKGRG RQVISTARTC NCILIVLDAI
|
KPITHKRPIE KELEGFGIRL NKEPPNLTFR RKEKGGINLT
|
STVTNTHLDL DTVKAICSEY RIHNADVHLR YDATADDLID
|
VIEGSRVYTP CIYVVNKIDQ IPMEELEILD KLPHYCPISA
|
HLEWNLDGLL EKIWEYLSLT RIYTKPKGMN PDYEDPVILS
|
SKRRTVEDFC DRIHKDMVKQ FKYALVWGSS AKHKPQRVGR
|
EHELEDEDVV QIIKKV
|
|
T21
MANPKVFFDL TVGGLPTGRV VMELFNDVVP KTADNFRALC
SEQ ID N° 879
|
TGEKGVGKSG KPLHYKGSSF HRVIPGFMCQ GGDFTAGNGT
|
GGESIYGAKF ADENFVKKHT GPGILSMANA GPGTNGSQFF
|
ICTAKTEWLD GKHVVFGQVI EGMDVIKKVE AVGSSSGRCS
|
KPVVIADCGQ LS
|
|
C476a
MALVRERRQL NLRLPLPEPS ERRPRFPLPL PPSISTTTTA
SEQ ID N° 880
|
PTTTISISEL EKLKVLGHGN GGTVYKVRHK RTSAIYALKV
|
VHGDSDPEIR RQILREISIL RRTDSPYVIK CHGVIDMPGG
|
DIGILMEYMN VGTLESLLKS QATFSELSLA KIAKQVLSGL
|
DYLHNHKIIH RDLKPSNLLV NREMEVKIAD FGVSKIMCRT
|
LDPCNSYVGT GAYMSPARFD PDTYGVNYNG YAADIWSLGL
|
TLMELYMGHF PFLPPGQRPD WATLMCAICF GEPPSLPEGT
|
SGNFRDFIEC CLQKESSKRW SAQQLLQHPF ILSIDLKST
|
|
MC204
MYGRSGLDRF KKAQSLEPFQ VSANSAAKPA LQPTTKAVTH
SEQ ID N° 881
|
PFPAYAQSTF SHQQTQYVNP QPALQKSVAA DATASTVPTH
|
HVTHGGGQST WQPPDWAIEP RPGVYYLEVI KDGEVLDRIN
|
LDKRRHIFGR QFHTCDFVLD HQSVSRQHAA VIPHKNGSIY
|
VIDLGSAHGT FVANERLTKD SPVELEPGQS LKLAVSTRPY
|
ILRRNNDALF PPPRQLAEID FPPPPDPSDE EAVLAYNTFL
|
NRYGLIRPDS LSKSTVSTSG EDVNYSSDRR AKRIRRTSVS
|
FKDQVGGELV EVVGISDGAD VETEPGPLGV KEGSLVGKYE
|
SLIEPTVLPK GKEQSSVKDA TVTRTGVSDI LQQVLSKVKN
|
PPKGGIYDDL YGESAPAKGG FWAYSDSSQT ASTNDAKGDS
|
PCSLRRIFGH ISNNVDDDTD DLFG
|
|
T323
MHSANHWGGS LEIANTGDST AEEYDRSRNL DWDRASVNHH
SEQ ID N° 882
|
QKQQQYNNYD QYSHRHNLDE TQQSWLLGPP EKKKKKYVDL
|
GCIVCSRKAF KYTIYGIIIA FLVIALPTII AKSLPKHKTR
|
PSPPDNYTIA LHKALLFFNA QKSGKLPKNN EIPWRGDSGL
|
QDGSKLTDVK GGLIGGYYDA GDNTKFHFPM SFAMTMLSWS
|
VIEYEHKYRA IDEYDHIRDL IKWGTDYLLR TFNSTATK1D
|
KLYSQVGGSL NNSRTPDDHY CWQRPEDMNY ERPVQTANSG
|
PDLAGEMAAA LAAASIXXXX XXXXXXXXXX XXXXXXXXXX
|
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
|
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
|
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
|
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
|
XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX
|
XXXXXXXXXX XRRNCGPRYI SLDILRRFAT SQMNYILGDN
|
PLKMSYVVGY GNKFPRHVHH RGASIPSGKT KYSCTGGWKW
|
RDTKNPNPHN ITGAMVGGPD KFDKFKDARK NFSYTEPTLA
|
GNAGLVAALV SLTSSGGYGV DKNAIFSAVP PLYPMSPPPP
|
PPWKP
|
|
T464
MGSSGGMDYG AYTYENLERE PYWPTEKLRI SITGAGGFIA
SEQ ID N° 883
|
SHIARRLKSE GHYIIASDWK KNEHMTEDMF CHEFHLVDLR
|
VMDNCLKVTK DVDHVFNLAA DMGGMGFIQS NHSVIFYNNT
|
MISFNMMEAA RINGVKRFFY ASSACLYPEF KQLETNVSLK
|
ESDAWPAEPQ DAYGLEKLAT EELCKHYNKD FGIECCIGRF
|
HNIYGPFGTW KGGREKAPAA FCRKAQTAVD KFEMWGDGLQ
|
PRSFTFIDEC VEGVLRLTES DFREPVNIGS DEMVSMNDMA
|
EMVISFEDKK LPVHHIPGPE GVSGRNSDNT LIKEKLGWAP
|
TMRLKDGLRI TYFWIKEQIE KERSQGVNIA NYGSYKVVGT
|
QAPVELGSLR AADGKE
|
|
C127
MERNVANEAP KATIMAEDYK KDLEFIEEVT SNVDEVQMRV
SEQ ID N° 884
|
LAEILSQNAH VEYLQRHNLN GSTDRETFKK VVPVITYEDI
|
QPDIKRIAYG DKSPILCSQP ISELLSSSGT SGGESKLIPT
|
TEPEIGKRLQ LHKLVMSVLS QVAPDSGKGK GMYFMFISPE
|
QKTPGGLIAR FLTTSYYNSP YFNYSRLHNP HCNYTSPTAA
|
ILCPDSYQSM YSQMLCGLCQ NNQVLRVGSF FATSFVRAIR
|
FLEKHWSLLC NDIRSGTINT QITDPLVREA VMEVLKPDPT
|
LADFIEVECT KDSWQGIITR LWRNTKYVDV IVTGSMSQYI
|
PILDYYSNNL PLISTLYASS ESHFGINLNP FCKPSDVSYT
|
LIPTMCYFEF LPYRGNSGVI DSISMPKSLN EKEQQQLVDL
|
ADVKIGQEYE LVVTTYSGLY RYRVGDVLQV AGYKNNAPRF
|
NFLCRENYVL SIGADFTNEV ELQNAVKNAV GNLVPFDSQV
|
TEYTSYVDIT TLPSHYVIFW ELNANDSTLV PPSVFEDCCL
|
TIEESLNYFY REGRASNESI GPLEIRVLEI GTFDKLMDYC
|
MSLGASMNQY KTPRCLKYAP LIELLNSRVV SSYFSPMCPK
|
WVPGYKKWDG NN
|
|
C175
MERSVANEAP KATIMVEDYK KNIEFIEEVT SNVDEVQMRV
SEQ ID N° 885
|
LAEILSQNAH VEYLQRYNLN GRTDRETFKK VVPVITYEDI
|
QPDIKRIAYG DKSPILCSQP ISELLSSSGT SGGESKLIPS
|
TEAALGRRLQ LLKLLMSVMS QVAPDFGKGK GMYFMFISSE
|
QKTPGGLLAR FFTTSFYKSP YINCGYPCRK FTSPTATILC
|
QDSYQSMYSQ MLCGLCQNQE VLRVGSLFAT GFIRGIRFLE
|
KHWSLLCNDI RNGTINTQIT DPSVREAVME ILKPDPKLAD
|
FIEAECSKDS WQGIITRLWP NTKYVDAILT GSMSQYLPIL
|
DYYSNSLPLI STLYGSSECH FGINLNPFCK PSEVSYTLIP
|
TMCYFEFLPY HGNSGVIDSI SMPKSLNEKE QQQLVDLADV
|
EIGQEYELVV TTYSGLYRYR VGDVLRVAGY KNNAPRFNFL
|
CRENVILSIG ADFTNEVELQ NAVKNAVGNL MPFDSQVTEY
|
TGYVDITTIP SHYVIFWELN ANDSTPVPPS VFEDCCLTIE
|
ESLNYFYREG RASNASIGPL EIRVVEIGTF DKLMDYCSSL
|
GASMNQYKTP RCVKYAPLIE LLNSRVVSRY FSPMCPKWVP
|
GYKKWNNTS
|
|
T424b
MAKEGTKVPR IKLGSQGLEV SAQGLGCMGM SAFYGPPKIPE
SEQ ID N° 886
|
PDMIQLIHHS INSGVTFLDT SDVYGPHTNE ILLGKALKGG
|
VRERVELATK FGAIFADGKI KVCGEPAYVR AACEASLKRL
|
DVDCIDLYYQ HRIDTRVPIE VTVGELKKLV EEGKIKYIGL
|
SEASASTIRR AHAVHPITTV QLEWSLWSRD VEEEIIPTCR
|
ELGIGIVAYS PLGRGFLSSG PELLEDLSSE DFPKHLPRFQ
|
ADNLEHNKIL YERICQMAAK KGCTPSQLAL AWVHHQGNDV
|
CPIPGITKIE NLNQNIGALS IKLTTEDMVE LEYIASADAV
|
KGERDASGAN HKNSDTPPLS TWKATR
|
|
T164
MESNNVVLLD FWPSSFGMRL RIALALKGIK YEAKEENLSD
SEQ ID N° 887
|
KSPLLLEMNP VHKKIPILIH NSKAICESLN ILEYIDEVWH
|
DKCPLLPSDP YERSQARFWA DYIDKKIYST GRRVWSGKGE
|
DQEEAKKEFI EILKTLEGEL GNKTYFGGDN LGFVDVALVP
|
FTSWFYSYET CANFSIEAEC PKLVVWAKTC MESESVSKSL
|
PHPHKIYGFV LELKHKLGLA
|
|
MAP2
MSDGGLTVLD GSQLRAVSLS LPSSDGSSVT GAQLLDFAES
SEQ ID N° 888
|
KVSESLFGFS LPDTLKSAAL KRLSVADDLN FRREQLDREN
|
ASIILRNYVA AIADELQDDP IVIAILDGKT LCMFLEDEDD
|
FAMLAENLFT DLDTEDRGKI RRNQIRDALI HMGVEMGIPP
|
LSEFPILSDI LKRHGAEGED ELGQAQFAHL LQPVLQELAD
|
ALAKNPVVVV QKIKINNGSK LRKVLADEKQ LSETVEKIMQ
|
EKQDEKDSLS NKDAIRCYLE KNGASLGLPP LKNDEVVILL
|
YDIVLGDIEN GKTDAASDKD EILVFLKDIL EKFAAQLEVN
|
PTFHDFDN
|
|
C1
MATKVYIVYY SMYGHVEKLA EEIKKGAASV EGVEAKLWQV
SEQ ID N° 889
|
PETLSEDVLA KMSAPPKSDV AVITPQELAE ADGIIFGFPT
|
RFGMMAAQFK AFLDATGGLW RTQQLAGKPA GIFYSTGSQG
|
GGQETTPLTA ITQLVHHGMI FVPIGYTFGA GMFEMEKVKG
|
GSPYGAGTFA GDGSRQPSDL ELQQAFHQGK YIAGIAKKLK
|
GAA
|
|
T210
MKIVDLDESL MESDGNCVNT EKRLIVVGVD AKRALVGAGA
SEQ ID N° 890
|
RILFYPTLLY NVFRNKIQSE FRWWDQIDQF LLLGAVPFPS
|
DVPRLKQLGV GGVITLNEPY ETLVPSSLYH AHGIDHLVIP
|
TRDYLFAPSF VDINRAVDFI HRNASIGQTT YVHCKAGRGR
|
STTVVLCYLV EYKHMTPRAA LEFVRSRRPR VLLAPSQWKA
|
VQEFKQQRVA SYALSGDAVL ITKADLEGYH SSSDDSRGKE
|
LAIVPRIART QPMIARLSCL FASLKVSDGC GPVTRQLTEA RAC
|
|
C112
MSSASTENRS LWTEIRESIR SILKANCGHF HTLFILFLLP
SEQ ID N° 891
|
IFFSLVVYPS FHLALFHPDY DFTQPVQFSH FLSSHFEIIV
|
PIVFTLFLVL LFLCAVATTT YSALHVSYGR PINLVSSIKS
|
IRNSFFPLLS TFIVSHTIFI SIALVFSLVL VFLVQVLQTL
|
GLIELKYDSN HFLFLVIPAL IVLVPVLIWL QVNWSLAYVI
|
AVVESKWGFE TLRRSAYLVK GKRSVALSMM LLYGLLMGIM
|
VVLGAMYLVI MDAAKGRQWR SSGVILQTAM SSITSYLMMS
|
QFLVGNVVLY LRCNDLNGEK LPLEIEHLLL HQSLANDHPP
|
PMLSASTKNL SLWTEVVESA MSIFKANSGH FHALSILFLL
|
PISFFLVVYP SFHLALFHPN YDFISFAQPH LFLSNFEIIV
|
PTSYSLFLVL LFLCAVATTT YSAVHASYSR PINLVLSIKS
|
IRKSLFPLLS TLLVSHTIFI SITLVFTLVL TILVQILQPL
|
GLIEIKYDSD HFLLLAIPAL VVLVPVLLWL HVNWSLAYVI
|
AVIESKWGYE TLRRSSYLVK GQRWVAFGIY LYYGLSMGIM
|
MVCGSMFFVI MGVAKGNKWR SLDVIIQTAL VSVMGYLTMN
|
QYLVANVVLY MKCKDLSVEK LQSETGGEYV PLPLDEKNQA
|
LE
|
|
C454
SQFFSSIPLQ PIPRGSSFAA STIHSGPIPA RISSTYPCSG
SEQ ID N° 892
|
PIERGFMSGP IERSFTSGPL ENQYDHIQRY KPKSKKWGLI
|
KSLKKVLSNS FLGFNKFMNL VEKNNNNEVN VQGSNSHHSN
|
VGNSLSSQNS LVDDDDEGND SFRGQNVQWA QGKAGEDRVH
|
VVISEEHGWV FVGIYDGFNG PDATDFLLNN LYSNVYKELK
|
GLLWNDKLKT PKNSTSNETV PLRNSGFKVE HFVQNQELDQ
|
REKLDGVVGV DHSDVLKALS EGLRKTEASY LEIADMMVKE
|
NPELALMGSC VLVMLLKDQD VYLLNVGDSR AVLAQNPESD
|
ISISKLKRIN EQSVNSIDAL YRAESDRKHN LIPSQLTMDH
|
STSIKEEVIR IRSEHLDDPF AIKNDRVKGS LKVTRAFGAG
|
YLKQPKWNNA LLEMFRINYI GNSPYINCLP SLYHHTLGSR
|
DRFLILSSDG LYQYFTNEEA VSEVETFMSI FPEGDPAQHL
|
VEEVLFRAAK KAGLNFHELL DIPQGDRRKY HDDVSIIILS
|
FEGRIWKSSL
|
|
T172
GAENGLIVSD SIIQGNEEDE ILSVGEDPCV INGEELLPLG
SEQ ID N° 893
|
ASSELSLPIA VEIEGIDNGQ ILAKVISLEE RSFERKISNL
|
SAVAAIPDDE ITTGPTLKAS VVALPLPSEN EPVKESVKSV
|
FELECVPLWG SVSICGKRPE MEDALMVVPN FMIUPIKMFI
|
GDRVIDGLSQ RLSHLTSHFY GVYDGHGGSQ VADYCCKRIH
|
LALVEELKLF KDDMVDGSAK DTRQVQWEKV FTSCFLKVDD
|
EVGGKVNSDP GEDNIDTTSC ASEPIAPETV GSTAVVAVIC
|
SSHIVVSNCG DSRAVLYRGK EAMALSIDHK PSREDEYARI
|
EASGGKVIQW NGHRVFGVLA MSRSIGDRYL KPWIIPEPEI
|
MFVPRAREDE CLVLASDGLW DVMSNEEACE VARRRILLWH
|
KKNGTNPLPE RGQGVDPAAQ AAAEYLSTMA LQKGSKDNIS
|
VIVVDLKAQR KFKSKC
|
|
C477
METQNLERGH VIEVRCDMAA QEKGTKICGS APCGFSDVNT
SEQ ID N° 894
|
MSKDAQERSA SMRKLCIAVV LCIIFMAVEV VGGIKANSLA
|
ILTDAAHLLS DVAAFAISLF SLWAAGWEDN PRQSYGFFRI
|
EILGALVSIQ MIWILAGILV YEAIARLIHD TGEVQGFLMF
|
VVSAFGLVVN LIMALLLGHD HGHGHGHGHS HGHDHEHGHN
|
HGEHAHSNTD HEHGHGEHTH IHGISVSRHH HHNEGPSSRD
|
QHSHAHDGDH TVPLLKNSCE GESVSEGEKK KKPQNINVQG
|
AYLHVIGDSI HSIGVMIGGA IIWYKPEWKI IDLICTLLFS
|
VIVLGTTIRM LRSILEVLME STPREIDATR LQKGLCEMED
|
VVPIHELHIW AITVGKVLLA CHVKIKSDAD ADTVLDKV
|
|
C331
MLIMLLVPVR QYLLPKFFKG AHLQDLDAAE YEEAPAIAYN
SEQ ID N° 895
|
MSYGDQDPQA RPACIDSSEI LDEIITRSRG EIRHPCSPRV
|
TSSTPTKLEE IKSMHSPQLA QRAYSPRVNV LRGERSPRLT
|
GKGLGIKQTP SPQPSNLGQN GRGPSST
|
|
REFERENCES
- Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).
- Bachem, C. W. B. et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9, 745-753 (1996).
- Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868 (1998).
- Nagata, T., Nemoto, Y. & Hasezawa, S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 132, 1-30 (1992).
- Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning, A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; 1989).
- Sharan, M., Taguchi, G., Gonda K., Jouke, T., Shimosaka, M., Hayashida, N. & Okazaki, M. Effects of methyl jasmonate and elicitoron the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. Plant Science 132, 13-19 (1998).
- Smith, N. A., Singh, S. P., Wang, M., Stoutjesdijk, P. A., Green, A. G. & Waterhouse, P. M. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319-320 (2000).
- Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. Systematic determination of genetic network architecture. Nature Genet. 22, 281-285 (1999).
- Van der Fits, L., Deakin, E. A., Hoge, J. H. & Memelink J. The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol. Biol. 43, 495-502 (2000).
- Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414 (1995).
- Creelman, R. A:, Tierney, M. L. & Mullet, J. E. (1992): Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci., 89:4938-4941.
- Darvil, A. G. & Albersheim, P. (1984): Phytoalexins and their elicitors—a defence against microbial infections in plants. Annu. Rev. Plant Physiol. 35: 243-275.
- Flores, H. E., Protacio, C. M. & Signs, M. W. (1991): Plant nitrogen metabolism. Recent Adv. Phytochem., 23: 329.
- Furuya, T., Hisashi, K. & Syono, K. (1971): Regulation of nicotine biosynthesis by auxins in tobacco callus tissues. Phytochemistry, 10: 1529-1532.
- Gundlach, H., Mueller, M. J., Kutchan, T. M. & Zenk, M. H. (1992): Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci., 89: 2389-2393.
- Hibi, N., Higashiguchi, S., Hashimoto, T. & Yamada, Y. (1994): Gene expression in tobacco low-nicotine mutants. Plant Cell, 6:723-735.
- Imanishi, S., Hashizume, K., Nakakita, M., Kojima, H., Matsubayashi, Y., Hashimoto, T., Sakagami, Y., Yamada, Y. & Nakamura, K. (1998): Differential induction by methyl jasmonate of genes encoding ornithine decarbocsylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol. 38:1101-1111.
- Ishikawa, A., Yoshihara, T. & Nakamura, K. (1994): Jasmonate-inducible expression of a potato cathepsin D inhibitor-GUS gene fusion in tobacco cells. Plant Mol. Biol., 26:403-414.
- Linsmaier, E. M. & Skoog, F. (1964): Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant., 18: 100-127.
- Mandujano-Chavez, A., Schoenbeck, M. A., Ralston, L. F., Lozoya-Gloria, E. & Chappell, J. (2000): Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by methyl jasmonate and fungal elicitor. Arch. Biochem. Biophys. 381: 285-294.
- Nagata, T. & Kumagai, F. (1999): Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Methods Cell Sci. 21: 123-127.
- Ohta, S., Matsui, O. & Yatazawa, M. (1978): Culture conditions for nicotine production in tobacco tissue culture. Agric. Biol. Chem., 42: 1245-1251.
- Reinbothe, S., Mollenhauer, B. & Reinbothe, C. (1994): JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6: 1197-1209.
- Scaramagli, S., Franceschetti, M., Michael, A. J., Torrigiani, P. & Bagni N. (1999): Polyamines and flowering: spermidine biosynthesis in the different whorls of developing flowers of Nicotiana tabacum L., Plant Biosystems, 133: 229-237.
- Strunz, G. M. & Findlay, J. A. (1985): Tobacco Alkaloids, Related Compounds, and Other Nicotinic Acid Derivatives. In: A. Brossi (Ed.) The Alkaloids, Chemistry & Pharmacology, vol 26. Academic Press, New York, pp. 121-151.
- Suzuki, K., Yun, D. J., Chen, X.-Y., Yamada, Y. & Hashimoto, T. (1999): An Atropa belladonna hyoscyamine 6β-hydrolase gene is differentially expressed in the root pericycle and anthers. Plant Mol. Biol., 40: 141.
- Swiatek, A., Lenjou, M., Van Bockstaele, D., Inzé, D. & Van Onckelen, H. (2002): Differential effect of jasmonic acid and abscisid acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol. 128: 201-211.
- Verpoorte, R., van der Heijden, R. & Memelink, J. (1998): Plant biotechnology and the production of alkaloids: prospects of metabolic engineering. In: The Alkaloids, Chemistry and Pharmacology, vol 50. G. A. Cordell (Ed.), Academic Press, New York, pp. 453-508.
- Verpoorte R. (2000) Secondary metabolism. Metabolic Engineering of Plant Secondary Metabolism. In: Verpoorte R and Alfermann A W, editors. Kluwer Academic Publishers, Dordrech-Boston-London, pp. 1-29.