Genes and uses thereof to modulate secondary metabolite biosynthesis

Information

  • Patent Application
  • 20060041962
  • Publication Number
    20060041962
  • Date Filed
    November 16, 2004
    20 years ago
  • Date Published
    February 23, 2006
    18 years ago
Abstract
The present invention relates to the use of a genome wide expression profiling technology in combination with the detection of the presence of secondary metabolites of interest to isolate genes that can be used to modulate the production of secondary metabolites in organisms and cell lines derived therefrom.
Description
SEQUENCE LISTING

Submitted with this application is a compact disc containing a SEQUENCE LISTING in a file entitled “V116.5T25 seq list” (524 KB, file created Nov. 17, 2004), the material contained in the compact disc being incorporated herein by this reference in its entirety. There are two identical compact discs submitted with this patent application (i.e., “Copy 1” and “Copy 2”), one being a copy of the other and each containing the single file “V116.5T25 seq list” (524 KB, file created Nov. 17, 2004).


TECHNICAL FIELD

The present invention relates generally to biotechnology, and, more particularly, to the use of a genome wide expression profiling technology in combination with the detection of the presence of secondary metabolites of interest to isolate genes that can be used to modulate the production of secondary metabolites in organisms and cell lines derived thereof.


BACKGROUND

Terrestrial micro-organisms, fungi, invertebrates and plants have historically been used as sources of natural products. However, apart from several well-studied groups or organisms, such as the actinomycetes, which have been developed for drug screening and commercial production, production problems still exist. For example, the antitumor agent taxol is a constituent of the bark of mature Pacific yew trees and its usage as a drug agent has caused concern about cutting too many of these trees and causing damage to the local ecological system. Taxol contains 11 chiral centers with 2048 possible diastereoisomeric forms so that its de novo synthesis on a commercial scale is unlikely. Furthermore, certain compounds appear in nature only when specific organisms interact with each other and the environment. Pathogens may alter plant gene expression and trigger synthesis of secondary metabolites such as phytoalexins that enable the plant to resist attack. Moreover, a lead compound discovered through random screening rarely becomes a drug because its bioavailability may not be adequate. Typically, a certain quantity of the lead compound is required so that it can be modified structurally to improve its initial activity. However, current methods for synthesis and development of lead compounds from natural sources, especially plants, are relatively inefficient. Other valuable phytochemicals are quite expensive because they are only produced at extremely low levels. These problems also delay clinical testing of new compounds and affect the economics of using these new sources of drug leads. The problems of obtaining useful metabolites from natural sources in high quantities may potentially be circumvented by cell cultures. For example the culture of plant cells has been explored since the 1960' as a viable alternative for the production of complex phytochemicals of industrial interest. However, despite promising features and developments, the production of plant-derived pharmaceuticals by plant cell cultures has not been fully commercially exploited. The main reasons for this reluctance are economical ones based on the slow growth and the low production levels of secondary metabolites by such plant cell cultures. However, little is known about how plants synthesize secondary metabolites and very little is known about how this synthesis is regulated. Certainly there is a need for a method to obtain higher levels of valuable secondary metabolite. The latter may include the identification of biosynthetic genes and regulatory genes involved in secondary metabolite biosynthetic pathways. Although genome sequencing of many organisms is now advancing at a frenetic pace, the metabolic pathways of most of the natural products are not understood. Traditional textbook representations of metabolic pathways neither capture the full number of potential network functions nor the network's resilience to disruption. Whereas algorithmic approaches to these latter problems have been proposed, many aspects of metabolic network function remain to be clearly delineated. Numerous studies have investigated the enzymes and regulatory factors controlling biosynthesis of specific secondary metabolites but little is known about the genetics controlling the quantitative and qualitative natural variation in secondary chemistry (QTL-approach, Kliebenstein et al. (2001) Genetics 159: 359, isolation of expressed sequence tags, Shelton et al. (2002) Plant Science 162, 9, Lange et al. (2000) Proc. Natl. Acad. Sci. 97, 2934, a proteomics approach, Decker et al. (2000) Electrophoresis 21, 3500).


DISCLOSURE OF THE INVENTION

In the present invention, we provide a method that follows a genome wide approach and correlates gene expression with the production of secondary metabolites. Thus, through the combination of metabolic profiling and cDNA-AFLP based transcript profiling of elicited tobacco cells we have isolated genes that are involved in the production of alkaloids and phenylpropanoids. These genes can be used to modulate the production of secondary metabolites in plant cells.




BRIEF DESCRIPTION OF THE FIGURES


FIG. 1: Semi-hypothetic scheme of the biosynthesis of nicotine alkaloids in Nicotiana tabacum leaves and BY-2 cells



FIG. 2: The growth curve of tobacco BY-2 cells, determined by packed cell volume (PVC)



FIG. 3: Molecular formulas of the tobacco alkaloids detected from BY-2 cells after elicitation with methyl jasmonate



FIG. 4: Nicotine and anabasine content [ug/g (d.w.)] after elicitation with 50 μM MeJA. Each sample was pooled together from three replicate shake flasks



FIG. 5: Anatabine and anatalline contents [ug/g (d.w.)] after elicitation with 50 μM MeJA. Each sample was pooled together from three replicate shake flasks



FIG. 6: Time-course of the accumulation of alkaloids in elicited BY-2 cells. Logarithmic scale



FIG. 7: The content of methyl putrecine in free pool of tobacco BY-2 cells.



FIG. 8: The content of polyamines (mean, SD, n=3) in free pool of tobacco BY-2 cells



FIG. 9: The content of soluble conjugated polyamines (mean, SD, n=3) in tobacco BY-2 cells



FIG. 10: The content of insoluble conjugated polyamines (mean, SD, n=3) in tobacco BY-2 cells



FIG. 11: Functional analysis. Nicotine content in elicitated (50 μM MeJA) BY-2 cells (N=3)



FIG. 12: Functional analysis. Anabasine content in elicitated (50 μM MeJA) BY-2 cells (N=3)



FIG. 13: Functional analysis. Anatabine content in elicitated (50 μM MeJA) BY-2 cells (N=3)



FIG. 14: Functional analysis. Anatalline (1 & 2) content in elicitated (50 μM MeJA) BY-2 cells (N=3)




DETAILED DESCRIPTION OF THE INVENTION

There has always been interest in natural products for flavourings for food, perfumes, pigments for artwork and clothing, and tools to achieve spiritual enlightenment. Especially plant derived drugs are among the oldest drugs in medicine. For example alkaloids are originally described as structually diverse class of plant derived nitrogenous compounds, which often possess strong physiological activity. Plants synthesize alkaloids for various defence-related reactions, for example, actions against pathogens or herbivores. Over 15.000 alkaloids have been identified from plants. Alkaloids are classified into several biogenically related groups, but the enzymes and genes have been partly characterised only in groups of nicotine and tropane alkaloids, indole alkaloids and isoquinolidine alkaloids (Suzuki et al., 1999). Nicotine and tropane alkaloids share partly the same biosynthetic pathway. Many plants belonging to, for example, the Solanaceae family have been used for centuries because of their active substances: hyoscyamine and scopolamine. Also other Solanaceae plants belonging to the genera Atropa, Datura, Duboisia and Scopolia produce these valuable alkaloids. In medicine they find important applications in ophthalmology, anaesthesia, and in the treatment of cardiac and gastrointestinal diseases. Although a lot of information is available on the pharmacological effects of tropane alkaloids, surprisingly little is known about how plants synthesize these substances and almost nothing is known about how this synthesis is regulated. Nicotine is found in the genus Nicotiana and also other genera of Solanaceae and is also present in many other plants including lycopods and horsetails (Flores et al., 1991). Saitoh et al. (1985) performed an extensive study of the nicotine content in 52 of the 66 Nicotiana species and concluded that either nicotine or nornicotine is the predominant alkaloid in the leaves, depending on the species. However, in roots nicotine dominates in almost all species. In callus cultures, the nicotine content is mostly remarkably lower than in intact plants. The highest production has been found in the BY-2 cell line: 2.14% on dry weight basis which resembles the nicotine content in intact tobacco plants (Ohta et al., 1978). Although much is known of the alkaloid metabolite content in different organs of tobacco, surprisingly little is known about the biosynthesis, metabolism and regulation of various nicotine alkaloids in tobacco callus and cell cultures.


Many approaches have been developed to overcome the common problem of low product yield of alkaloid-producing plant cell cultures. One approach is the addition of elicitors. Elicitors are compounds capable of inducing defence responses in plants (Darvil and Albersheim, 1984). Other approaches to increase the product yield of secondary metabolites comprise the screening and selection of high-producing cell lines, the optimisation of the growth and product parameters and the use of metabolic engineering (Verpoorte et al., 2000). However, metabolic engineering implies detailed knowledge of the biosynthetic steps of the secondary metabolite(s) of interest. Progress in the elucidation of the biosynthetic pathways of plant secondary products has long been hampered by lack of good model systems. In the past two decades plant cell cultures have proven to be invaluable tools in the investigation of plant secondary metabolite biosynthetic pathways. The tobacco BY-2 (Nicotiana tabacum var. “Bright Yellow”) cell line is a very fast growing and highly synchronisable cell system and thus desirable for investigation of various aspects of plant cell biology and metabolism (Nagata and Kumagai, 1999). In the present invention the formation of various nicotine related alkaloids in tobacco BY-2 cells was taken as an example for the isolation of genes involved in the biosynthesis of alkaloids, phenylpropanoids and other secondary metabolites. We have used a genome wide approach and isolated genes which expression correlated with the occurrence of alkaloids and/or phenylpropanoids.


In one embodiment, the invention provides an isolated polypeptide modulating the production of at least one secondary metabolite in an organism or cell derived thereof selected from the group consisting of (a) polypeptide encoded by a polynucleotide comprising SEQ ID NO: 1, 2, 3, through 609, 610, 611 or SEQ ID NO: 612, 613, 614, through 869, 870, 871 of the accompanying and incorporated herein by reference SEQUENCE LISTING, (b) a polypeptide comprising a polypeptide sequence having a least 60% identity to at least one of the polypeptides encoded by a polynucleotide sequence having SEQ ID NO: 612, 613, 614 through 869, 870, 871, (c) a polypeptide comprising a polypeptide sequence having a least 90% identity to at least one of the polypeptides encoded by a polynucleotide sequence having SEQ ID NO: 1, 2, 3 through 609, 610, 611 and (d) fragments and variants of the polypeptides according to (a), (b) or (c) modulating the production of at least one secondary metabolite in an organism or cell derived thereof.


In another embodiment, the invention provides an isolated polypeptide according to wherein the polypeptide sequence is depicted in SEQ ID NO: 872, 873, 874 through 894 or 895 and polypeptide sequences having at least 90% identity to SEQ ID NO: 872, 873, 874 through 894 or 895.


In another embodiment, the invention provides an isolated polynucleotide selected from the groups consisting of (a) polynucleotide comprising a polynucleotide sequence having at least one of the sequences SEQ ID NO: 1, 2, 3 through 609, 610, 611 or SEQ ID NO: 612, 613, 614 through 869, 870, 871; (b) a polynucleotide comprising a polynucleotide sequence having at least 60% identity to at least one of the sequences having SEQ ID NO: 612, 613, 614, . . . , 869, 870, 871; (c) a polynucleotide comprising a polynucleotide sequence having at least 90% identity to at least one of the sequences having SEQ ID NO: 1, 2, 3 through 609, 610, 611; (d) fragments and variants of the polynucleotides according to (a), (b) or (c) modulating the production of at least one secondary metabolite in an organism or cell derived thereof.


Accordingly, the present invention provides 611 polynucleotide sequences (SEQ ID NO: 1, 2, 3 through 609, 610, 611) derived from tobacco BY2-cells for which a homologue exists in other species and 260 polynucleotide sequences (SEQ ID NO: 612, 613, 614 through 869, 870, 871) derived from tobacco BY2-cells for which no homologue exists in other species. As used herein, the word “polynucleotide” may be interpreted to mean the DNA and cDNA sequence as detailed by Yoshikai et al. (1990) Gene 87:257, with or without a promoter DNA sequence as described by Salbaum et al. (1988) EMBO J. 7(9):2807.


As used herein, “fragment” refers to a polypeptide or polynucleotide of at least about 9 amino acids or 27 base pairs, typically 50 to 75, or more amino acids or base pairs, wherein the polypeptide contains an amino acid core sequence. If desired, the fragment may be fused at either terminus to additional amino acids or base pairs, which may number from 1 to 20, typically 50 to 100, but up to 250 to 500 or more. A “functional fragment” means a polypeptide fragment possessing the biological property able to modulate the production of at least one secondary metabolite in an organism or cell derived thereof. In a particular embodiment the functional fragment is able to modulate the production of at least one secondary metabolite in a plant or plant cell derived thereof. The term ‘production’ includes intracellular production and secretion into the medium. The term ‘modulates or modulation’ refers to an increase or a decrease. Often an increase of at least one secondary metabolite is desired but sometimes a decrease of at least one secondary metabolite is wanted. The decrease can for example refer to the decrease of an undesired intermediate product of at least one secondary metabolite. With an increase in the production of one or more metabolites it is understood that the production may be enhanced by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or at least 100% relative to the untransformed plant or plant cell which was used to transform with an expression vector comprising an expression cassette further comprising at least one polynucleotide or homologue or variant or fragment thereof of the invention. Conversely, a decrease in the production of the level of one or more secondary metabolites may be decreased by at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or at least 100% relative to the untransformed plant or plant cell which was used to transform with an expression vector comprising an expression cassette further comprising at least one polynucleotide or homologue or variant or fragment thereof of the invention. The terms ‘identical’ or percent ‘identity’ in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e. 70% identity over a specified region), when compared and aligned for maximum correspondence over a comparison window, or designated region as measured using sequence comparison algorithms or by manual alignment and visual inspection. Preferably, the identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides or even more in length. Examples of useful algorithms are PILEUP (Higgins & Sharp, CABIOS 5:151 (1989), BLAST and BLAST 2.0 (Altschul et al., J. Mol. Biol. 215: 403 (1990). Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information www.ncbi.nlm.nih.gov. In the present invention the term ‘homologue’ also refers to ‘identity’. For example a homologue of SEQ ID NO: 1, 2, 3 through 609, 610 or 611 has at least 90% identity to one of these sequences. A homologue of SEQ ID NO: 612, 613, 614 through 869, 870 or 871 has at least 60% identity to one of these sequences.


According to still further features in the described preferred embodiments, the polynucleotide fragment encodes a polypeptide able to modulate the secondary metabolite biosynthesis, which may therefore be allelic, species and/or induced variant of the amino acid sequence set forth in SEQ ID NO: 1-871. It is understood that any such variant may also be considered a homologue.


The present invention accordingly provides, in one embodiment, a method for modulating the production of at least one secondary metabolite in biological cells or organisms, such as plants, by transformation of the biological cells with an expression vector comprising an expression cassette that further comprises at least one gene comprising a fragment, variant or homologue encoded by at least one sequence selected from SEQ ID NO: 1-871. With “at least one secondary metabolite” it is meant one particular secondary metabolite such as for example nicotine or several alkaloids related with nicotine or several unrelated secondary metabolites. Biological cells can be plant cells, fungal cells, bacteria cells, algae cells and/or animal cells. In a particular preferred embodiment the biological cells are plant cells. Generally, two basic types of metabolites are synthesised in cells, i.e. those referred to as primary metabolites and those referred to as secondary metabolites. A primary metabolite is any intermediate in, or product of the primary metabolism in cells. The primary metabolism in cells is the sum of metabolic activities that are common to most, if not all, living cells and are necessary for basal growth and maintenance of the cells. Primary metabolism thus includes pathways for generally modifying and synthesising certain carbohydrates, amino acids, fats and nucleic acids, with the compounds involved in the pathways being designated primary metabolites. In contrast hereto, secondary metabolites usually do not appear to participate directly in growth and development. They are a group of chemically very diverse products that often have a restricted taxonomic distribution. Secondary metabolites normally exist as members of closely related chemical families, usually of a molecular weight of less than 1500 Dalton, although some bacterial toxins are considerably longer. Secondary plant metabolites include e.g., alkaloid compounds (e.g., terpenoid indole alkaloids, tropane alkaloids, steroid alkaloids), phenolic compounds (e.g., quinines, lignans and flavonoids), terpenoid compounds (e.g., monoterpenoids, iridoids, sesquiterpenoids, diterpenoids and triterpenoids). In addition, secondary metabolites include small molecules, such as substituted heterocyclic compounds which may be monocyclic or polycyclic, fused or bridged. Many plant secondary metabolites have value as pharmaceuticals. Examples of plant pharmaceuticals include, for example, taxol, digoxin, scopolamine, diosgenin, codeine, morphine, quinine, shikonin, ajmalicine and vinblastine.


In another embodiment, the invention provides a recombinant DNA vector comprising at least one polynucleotide sequence, homologue, fragment or variant selected from at least one of the sequences comprising SEQ ID NO: 1-871. The vector may be of any suitable type including, but not limited to, a phage, virus, plasmid, phagemid, cosmid, bacmid or even an artificial chromosome. The at least one polynucleotide sequence preferably codes for at least one polypeptide that is involved in the biosynthesis and/or regulation of synthesis of at least one secondary metabolite (e.g., a transcription factor, a repressor, an enzyme that regulates a feed-back loop, a transporter, a chaperone). The term “recombinant DNA vector” as used herein refers to DNA sequences containing a desired coding sequence and appropriate DNA sequences necessary for the expression of the operably linked coding polynucleotide sequence in a particular host organism (e.g., plant cell). Plant cells are known to utilize promoters, polyadenlyation signals and enhancers.


In yet another embodiment, the invention provides a transgenic plant or derived cell thereof transformed with the recombinant DNA vector.


A recombinant DNA vector comprises at least one “Expression cassette”. Expression cassettes are generally DNA constructs preferably including (5′ to 3′ in the direction of transcription): a promoter region, a polynucleotide sequence, homologue, variant or fragment thereof of the present invention operatively linked with the transcription initiation region, and a termination sequence including a stop signal for RNA polymerase and a polyadenylation signal. It is understood that all of these regions should be capable of operating in biological cells, such as plant cells, to be transformed. The promoter region comprising the transcription initiation region, which preferably includes the RNA polymerase binding site, and the polyadenylation signal may be native to the biological cell to be transformed or may be derived from an alternative source, where the region is functional in the biological cell.


The polynucleotide sequence, homologue, variant or fragment thereof of the invention may be expressed in for example a plant cell under the control of a promoter that directs constitutive expression or regulated expression. Regulated expression comprises temporally or spatially regulated expression and any other form of inducible or repressible expression. Temporally means that the expression is induced at a certain time point, for instance, when a certain growth rate of the plant cell culture is obtained (e.g., the promoter is induced only in the stationary phase or at a certain stage of development). “Spatially” means that the promoter is only active in specific organs, tissues, or cells (e.g., only in roots, leaves, epidermis, guard cells or the like). Other examples of regulated expression comprise promoters whose activity is induced or repressed by adding chemical or physical stimuli to the plant cell. In a preferred embodiment the expression is under control of environmental, hormonal, chemical, and/or developmental signals. Such promoters for plant cells include promoters that are regulated by (1) heat, (2) light, (3) hormones, such as abscisic acid and methyl jasmonate (4) wounding or (5) chemicals such as salicylic acid, chitosans or metals. Indeed, it is well known that the expression of secondary metabolites can be boosted by the addition of for example specific chemicals, jasmonate and elicitors. In a particular embodiment the co-expression of several (more than one) polynucleotide sequence or homologue or variant or fragment thereof, in combination with the induction of secondary metabolite synthesis is beneficial for an optimal and enhanced production of secondary metabolites. Alternatively, the at least one polynucleotide sequence, homologue, variant or fragment thereof is placed under the control of a constitutive promoter. A constitutive promoter directs expression in a wide range of cells under a wide range of conditions. Examples of constitutive plant promoters useful for expressing heterologous polypeptides in plant cells include, but are not limited to, the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high-level expression in most plant tissues including monocots; the nopaline synthase promoter and the octopine synthase promoter. The expression cassette is usually provided in a DNA or RNA construct which is typically called an “expression vector” which is any genetic element, for example, a plasmid, a chromosome, a virus, behaving either as an autonomous unit of polynucleotide replication within a cell (i.e. capable of replication under its own control) or being rendered capable of replication by insertion into a host cell chromosome, having attached to it another polynucleotide segment, so as to bring about the replication and/or expression of the attached segment. Suitable vectors include, but are not limited to, plasmids, bacteriophages, cosmids, plant viruses and artificial chromosomes. The expression cassette may be provided in a DNA construct which also has at least one replication system. In addition to the replication system, there will frequently be at least one marker present, which may be useful in one or more hosts, or different markers for individual hosts. The markers may a) code for protection against a biocide, such as antibiotics, toxins, heavy metals, certain sugars or the like; b) provide complementation, by imparting prototrophy to an auxotrophic host: or c) provide a visible phenotype through the production of a novel compound in the plant. Exemplary genes which may be employed include neomycin phosphotransferase (NPTII), hygromycin phosphotransferase (HPT), chloramphenicol acetyltransferase (CAT), nitrilase, and the gentamicin resistance gene. For plant host selection, non-limiting examples of suitable markers are β-glucuronidase, providing indigo production, luciferase, providing visible light production, Green Fluorescent Protein and variants thereof, NPTII, providing kanamycin resistance or G418 resistance, HPT, providing hygromycin resistance, and the mutated aroA gene, providing glyphosate resistance.


The term “promoter activity” refers to the extent of transcription of a polynucleotide sequence, homologue, variant or fragment thereof that is operably linked to the promoter whose promoter activity is being measured. The promoter activity may be measured directly by measuring the amount of RNA transcript produced, for example by Northern blot or indirectly by measuring the product coded for by the RNA transcript, such as when a reporter gene is linked to the promoter. The term “operably linked” refers to linkage of a DNA segment to another DNA segment in such a way as to allow the segments to function in their intended manners. A DNA sequence encoding a gene product is operably linked to a regulatory sequence when it is ligated to the regulatory sequence, such as, for example a promoter, in a manner which allows modulation of transcription of the DNA sequence, directly or indirectly. For example, a DNA sequence is operably linked to a promoter when it is ligated to the promoter downstream with respect to the transcription initiation site of the promoter and allows transcription elongation to proceed through the DNA sequence. A DNA for a signal sequence is operably linked to DNA coding for a polypeptide if it is expressed as a pre-protein that participates in the transport of the polypeptide. Linkage of DNA sequences to regulatory sequences is typically accomplished by ligation at suitable restriction sites or adapters or linkers inserted in lieu thereof using restriction endonucleases known to one of skill in the art.


In a particular embodiment the polynucleotides or homologues or variants or fragments thereof of the present invention can be introduced in plants or plant cells that are different from tobacco and the polynucleotides can be used for the modulation of secondary metabolite synthesis in plants or plant cells different from tobacco.


The term “heterologous DNA” and or “heterologous RNA” refers to DNA or RNA that does not occur naturally as part of the genome or DNA or RNA sequence in which it is present, or that is found in a cell or location in the genome or DNA or RNA sequence that differs from that which is found in nature. Heterologous DNA and RNA (in contrast to homologous DNA and RNA) are not endogenous to the cell into which it is introduced, but has been obtained from another cell or synthetically or recombinantly produced. An example is a gene isolated from one plant species operably linked to a promoter isolated from another plant species. Generally, though not necessarily, such DNA encodes RNA and proteins that are not normally produced by the cell in which the DNA is transcribed or expressed. Similarly exogenous RNA encodes for proteins not normally expressed in the cell in which the exogenous RNA is present. Heterologous DNA or RNA may also refer to as foreign DNA or RNA. Any DNA or RNA that one of skill in the art would recognize as heterologous or foreign to the cell in which it is expressed is herein encompassed by the term heterologous DNA or heterologous RNA. Examples of heterologous DNA include, but are not limited to, DNA that encodes proteins, polypeptides, receptors, reporter genes, transcriptional and translational regulatory sequences, selectable or traceable marker proteins, such as a protein that confers drug resistance, RNA including mRNA and antisense RNA and ribozymes.


In yet another embodiment, the invention provides for a method to identify genes which expression modulates the production of at least one secondary metabolite in an organism or cells derived thereof comprising the steps of (a) performing a genome wide expression profiling of the organism or cells on different times of growth, (b) isolating genes which expression is co-regulated either with the at least one secondary metabolite, or with a gene known to be involved in the biosynthesis of the secondary metabolite, (c) analysing the effect of over- or under-expression of the genes in the organism or cell on the production of the at least one secondary metabolite and (d) identifying genes that can modulate the production of the at least one secondary metabolite.


The wording “performing a genome wide expression profiling” means that the expression of genes and/or proteins is measured. Preferably, the expression is measured on different times of growth, on different treatments and the like. Usually a comparison of the expression is made between two or more samples (e.g., samples that are treated and non-treated, induced or non-induced). Gene expression can be measured by various methods known in the art comprising macro-array technology, micro-array technology, serial analysis of gene expression (SAGE), cDNA AFLP and the like. With array technology complete genes or parts thereof, EST sequences, cDNA sequences, oligonucleotides are attached to a carrier. Protein expression can be measured through various protein isolation, protein profiling and protein identification methods known in the art. The analysis of the effect of over- or under-expression of genes in for example plants or plant cells can be carried out by various well-known methods in the art.


In a further embodiment, the invention provides a method where the performance of the genome wide expression profiling is preceded by the step of inducing the production of the at least one secondary metabolite in the organism or cell derived thereof. The wording ‘inducing the production’ means that for example the cell culture, such as a plant cell culture, is stimulated by the addition of an external factor. External factors include the application of heat, the application of cold, the addition of acids, bases, metal ions, fungal membrane proteins, sugars and the like. One approach that has been given interesting results for better production of plant secondary metabolites is elicitation. Elicitors are compounds capable of inducing defence responses in plants (Darvil and Albersheim, 1984). These are usually not found in intact plants but their biosynthesis is induced after wounding or stress conditions. Commonly used elicitors are jasmonates, mainly jasmonic acid and its methyl ester, methyl jasmonate. Jasmonates are linoleic acid derivatives of the plasma membrane and display a wide distribution in the plant kingdom (for overview see Reinbothe et al., 1994). They were originally classified as growth inhibitors or promoters of senescence but now it has become apparent that they have pleiotropic effects on plant growth and development. Jasmonates appear to regulate cell division, cell elongation and cell expansion and thereby stimulate organ or tissue formation (Swiatek et al., 2002). They are also involved in the signal transduction cascades that are activated by stress situations such as wounding, osmotic stress, desiccation and pathogen attack (Creelman et al., 1992; Gundlach et al., 1992; Ishikawa et al., 1994). Methyl jasmonate (MeJA) is known to induce the accumulation of numerous defence-related secondary metabolites (e.g., phenolics, alkaloids and sesquiterpenes) through the induction of genes coding for the enzymes involved in the biosynthesis of these compounds in plants (Gundlach, et al., 1992; Imanishi et al., 1998; Mandujano-Chávez et al., 2000). Jasmonates can modulate gene expression from the (post)transcriptional to the (post)translational level, both in a positive as in a negative way. Genes that are upregulated are e.g., defence and stress related genes (PR proteins and enzymes involved with the synthesis of phytoalexins and other secondary metabolites) whereas the activity of housekeeping proteins and genes involved with photosynthetic carbon assimilation are down-regulated (Reinbothe et al., 1994). For example: the biosynthesis of phytoalexins and other secondary products in plants can also be boosted up by signal molecules derived from micro-organisms or plants (such as peptides, oligosaccharides, glycopeptides, salicylic acid and lipophilic substances) as well as by various abiotic elicitors like UV-light, heavy metals (Cu, VOSO4, Cd) and ethylene. The effect of any elicitor is dependent on a number of factors, such as the specificity of an elicitor, elicitor concentration, the duration of the treatment and growth stage of the culture.


Generally, secondary metabolites can be measured, intracellularly or in the extracellular space, by methods known in the art. Such methods comprise analysis by thin-layer chromatography, high pressure liquid chromatography, capillaryelectrophoresis, gas chromatography combined with mass spectrometric detection, radioimmuno-assay (RIA) and enzyme immuno-assay (ELISA).


In yet another embodiment, the method to identify genes which expression modulates the production of at least one secondary metabolite in an organism or cells derived thereof is used to identify genes that are involved in the alkaloid biosynthesis.


The definition of “Alkaloids”, of which more than 12,000 structures have been described already, includes all nitrogen-containing natural products which are not otherwise classified as peptides, non-protein amino acids, amines, cyanogenic glycosides, glucosinolates, cofactors, phytohormones or primary metabolites (such as purine and pyrimidine bases). The “calystegins” constitute a unique subgroup of the tropane alkaloid class (Goldmann et al. (1990) Phytochemistry, 29, 2125). They are characterized by the absence of an N-methyl substituent and a high degree of hydroxylation. Trihydroxylated calystegins are summarized as the calystegin A-group, tetrahydroxylated calystegins as the B-group, and pentahydroxylated derivates form the C-group. Calystegins represent a novel structural class of tropane alkaloids possessing potent glycosidase inhibitory properties next to longer known classes of the monocyclic pyrrolidones (e.g., dihydroxymethyldihydroxy pyrrolidine) pyrrolines and piperidines (e.g., deoxynojirimycin), and the bicyclic pyrrolizidines (e.g., australine) and indolizidines (e.g., swainsonine and castanospermine). Glycosidase inhibitors are potentially useful as antidiabetic, antiviral, antimetastatic, and immunomodulatory agents.


In another embodiment, the method to identify genes which expression modulates the production of at least one secondary metabolite in an organism or cells derived thereof is used to identify genes that are involved in the phenylpropanoid biosynthesis. “Phenylpropanoids” or “phenylpropanes” are aromatic compounds with a propyl side-chain attached to the aromatic ring, which can be derived directly from phenylalanine. The ring often carries oxygenated substituents (hydroxyl, methoxyl and methylenedioxy groups) in the para-position. Natural products in which the side-chain has been shortened or removed can also be derived from typical phenylpropanes. Most plant phenolics are derived from the phenylpropanoid and phenylpropanoid-acetate pathways and fulfil a very broad range of physiological roles in plants. For example polymeric lignins reinforce specialized cell wall. Closely related are the lignans which vary from dimers to higher oligomers. Lignans can either help defend against various pathogens or act as antioxidants in flowers, leaves and roots. The flavonoids comprise an astonishingly diverse group of more than 4500 known compounds. Among their subclasses are the anthocyanins (pigments), proanthocyanidins or condensed tannins (feeding deterrents and wood protectants), and isoflavonoids (defensive products and signalling molecules). The coumarins, furanocoumarins, and stilbenes protect against bacterial and fungal pathogens, discourage herbivory, and inhibit seed germination.


In yet another embodiment, the isolated polynucleotides of the invention, or homologues, or variants, or fragments thereof are used to modulate the biosynthesis of secondary metabolites in an organism or cell derived thereof. In a particular embodiment the isolated polynucleotides, homologues, variants or fragments thereof are used to modulate the biosynthesis of secondary metabolites in plants or plant cells derived thereof.


In yet another embodiment, the polynucleotides comprising SEQ ID NO: 10, 11, 19, 20, 35, 40, 41, 47, 65, 67, 70, 88, 89, 97, 98, 101, 102, 103, 106, 107, 108, 117, 118, 120, 121, 123, 124, 126, 128, 130, 131, 132, 136, 137, 142, 143, 144, 145, 146, 147, 148, 152, 154, 155, 159, 160, 161, 162, 163, 175, 176, 177, 181, 182, 183, 189, 197, 202, 207, 208, 209, 210, 217, 219, 220, 221, 233, 235, 236, 237, 239, 240, 241, 242, 243, 244, 261, 262, 264, 265, 268, 70, 272, 273, 274, 278, 279, 299, 300, 302, 303, 304, 305, 306, 316, 317, 318, 320, 321, 326, 329, 331, 332, 333, 334, 341, 344, 348, 349, 350, 351, 354, 355, 356, 358, 372, 373, 374, 375, 377, 382, 390, 391, 392, 395, 403, 405, 406, 414, 417, 418, 419, 420, 424, 430, 434, 439, 440, 441, 445, 446, 456, 463, 478, 485, 491, 497, 507, 508, 510, 518, 519, 527, 529, 531, 532, 534, 567, 569, 570, 575, 577, 579, 587, 593, 594, 598, 599, 601, 603, 608, 612, 613, 618, 619, 620, 628, 636, 642, 643, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 670, 671, 674, 675, 676, 677, 679, 680, 682, 683, 695, 696, 700, 701, 703, 707, 709, 710, 711, 712, 714, 719, 724, 727, 729, 732, 734, 735, 740, 741, 744, 746, 748, 749, 750, 751, 753, 754, 755, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 772, 777, 784, 794, 809, 810, 811, 816, 817, 822, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 850, 854, 855, 856, 858, 859, 861, 864, 865, 488, 489 and/or 490 or fragments or homologues thereof can be used to modulate the biosynthesis of alkaloids in an organism or cell derived thereof. In a particular embodiment the polynucleotides or fragments or homologues thereof can be used to modulate the biosynthesis of alkaloids in plants or plant cells derived thereof. The expression of the latter collection of SEQ ID Numbers correlates with the production of alkaloids in plants.


In yet another embodiment, the polynucleotides comprising SEQ ID NO: 3, 4, 5, 7, 15, 17, 21, 23, 29, 30, 32, 33, 39, 42, 44, 45, 46, 48, 49, 50, 51, 8, 61, 62, 72, 74, 79, 84, 92, 94, 95, 104, 105, 125, 134, 150, 170, 171, 179, 180, 184, 194, 195, 200, 201, 203, 204, 205, 213, 214, 215, 218, 245, 249, 250, 251, 252, 254, 255, 266, 275, 276, 281, 282, 285, 286, 287, 289, 291, 298, 301, 308, 309, 310, 311, 312, 313, 315, 319, 323, 324, 335, 343, 361, 363, 364, 370, 379, 380, 383, 384, 385, 386, 398, 401, 402, 407, 415, 416, 423, 432, 433, 437, 443, 444, 447, 448, 450, 451, 452, 455, 457, 460, 461, 462, 471, 474, 486, 487, 493, 494, 499, 500, 501, 502, 503, 504, 505, 506, 517, 522, 523, 524, 526, 528, 538, 541, 543, 544, 545, 546, 547, 553, 554, 555, 562, 568, 571, 572, 578, 580, 581, 582, 588, 605, 607, 616, 617, 621, 626, 627, 637, 638, 641, 644, 650, 651, 665, 666, 667, 681, 684, 685, 691, 697, 698, 704, 708, 713, 720, 721, 728, 730, 736, 745, 752, 756, 771, 776, 778, 782, 783, 792, 793, 795, 797, 798, 799, 800, 801, 808, 815, 818, 819, 820, 821, 835, 842, 843, 844, 845, 848, 851, 852, 853, 862, 868, 488, 489 and/or 490 or fragments or homologues thereof can be used to modulate the biosynthesis of phenylpropanoids in an organism or cell derived thereof. In a particular embodiment the polynucleotides or homologues or fragments derived thereof can be used to modulate the biosynthesis of phenylpropanoids in plants or plant cells derived thereof. The expression of the latter collection of SEQ ID Numbers correlates with the production of phenylpropanoids in plants.


The present invention can be practiced with any plant variety for which cells of the plant can be transformed with an expression cassette of the current invention and for which transformed cells can be cultured in vitro. Suspension culture, callus culture, hairy root culture, shoot culture or other conventional plant cell culture methods may be used (as described in: Drugs of Natural Origin, G. Samuelsson, 1999, ISBN 9186274813).


By “plant cells” it is understood any cell which is derived from a plant and can be subsequently propagated as callus, plant cells in suspension, organized tissue and organs (e.g., hairy roots). In the present invention the word “plant cell” also comprises cells derived from lower plants such as from the Pteridophytae and the Bryophytae.


Tissue cultures derived from the plant tissue of interest can be established. Methods for establishing and maintaining plant tissue cultures are well known in the art (see, for example, Trigiano R. N. and Gray D. J. (1999), “Plant Tissue Culture Concepts and Laboratory Exercises”, ISBN: 0-8493-2029-1; Herman E. B. (2000), “Regeneration and Micropropagation: Techniques, Systems and Media 1997-1999”, Agricell Report). Typically, the plant material is surface-sterilized prior to introducing it to the culture medium. Any conventional sterilization technique, such as chlorinated bleach treatment can be used. In addition, antimicrobial agents may be included in the growth medium. Under appropriate conditions plant tissue cells form callus tissue, which may be grown either as solid tissue on solidified medium or as a cell suspension in a liquid medium.


A number of suitable culture media for callus induction and subsequent growth on aqueous or solidified media are known. Exemplary media include standard growth media, many of which are commercially available (e.g., Sigma Chemical Co., St. Louis, Mo.). Examples include Schenk-Hildebrandt (SH) medium, Linsmaier-Skoog (LS) medium, Murashige and Skoog (MS) medium, Gamborg's B5 medium, Nitsch & Nitsch medium, White's medium, and other variations and supplements well known to those of skill in the art (see, for example, Plant Cell Culture, Dixon, ed. IRL Press, Ltd. Oxford (1985) and George et al., Plant Culture Media, Vol 1, Formulations and Uses Exegetics Ltd. Wilts, UK, (1987)). For the growth of conifer cells, particularly suitable media include 1/2 MS, 1/2 L. P., DCR, Woody Plant Medium (WPM), Gamborg's B5 and its modifications, DV (Durzan and Ventimiglia, In Vitro Cell Dev. Biol. 30:219-227 (1994)), SH, and White's medium.


In a particular embodiment, the current invention can be combined with other known methods to enhance the production and/or the secretion of secondary metabolites in plant cell cultures such as (1) by improvement of the plant cell culture conditions, (2) by the transformation of the plant cells with a transcription factor capable of upregulating genes involved in the pathway of secondary metabolite formation, (3) by the addition of specific elicitors to the plant cell culture, and 4) by the induction of organogenesis.


The term “plant” as used herein refers to vascular plants (e.g., gymnosperms and angiosperms). The method comprises transforming a plant cell with an expression cassette of the present invention and regenerating such plant cell into a transgenic plant. Such plants can be propagated vegetatively or reproductively. The transforming step may be carried out by any suitable means, including by Agrobacterium-mediated transformation and non-Agrobacterium-mediated transformation, as discussed in detail below. Plants can be regenerated from the transformed cell (or cells) by techniques known to those skilled in the art. Where chimeric plants are produced by the process, plants in which all cells are transformed may be regenerated from chimeric plants having transformed germ cells, as is known in the art. Methods that can be used to transform plant cells or tissue with expression vectors of the present invention include both Agrobacterium and non-Agrobacterium vectors. Agrobacterium-mediated gene transfer exploits the natural ability of Agrobacterium tumefaciens to transfer DNA into plant chromosomes and is described in detail in Gheysen, G., Angenon, G. and Van Montagu, M. 1998. Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications. In K. Lindsey (Ed.), Transgenic Plant Research. Harwood Academic Publishers, Amsterdam, pp. 1-33 and in Stafford, H. A. (2000) Botanical Review 66: 99-118. A second group of transformation methods is the non-Agrobacterium mediated transformation and these methods are known as direct gene transfer methods. An overview is brought by Barcelo, P. and Lazzeri, P. A. (1998) Direct gene transfer: chemical, electrical and physical methods. In K. Lindsey (Ed.), Transgenic Plant Research, Harwood Academic Publishers, Amsterdam, pp. 35-55. Hairy root cultures can be obtained by transformation with virulent strains of Agrobacterium rhizogenes, and they can produce high contents of secondary metabolites characteristic to the mother plant. Protocols used for establishing of hairy root cultures vary, as well as the susceptibility of plant species to infection by Agrobacterium (Toivounen L. (1993) Biotechnol. Prog. 9, 12; Vanhala L. et al. (1995) Plant Cell Rep. 14, 236). It is known that the Agrobacterium strain used for transformation has a great influence on root morphology and the degree of secondary metabolite accumulation in hairy root cultures. It is possible that by systematic clone selection e.g., via protoplasts, to find high yielding, stable, and from single cell derived-hairy root clones. This is possible because the hairy root cultures possess a great somaclonal variation. Another possibility of transformation is the use of viral vectors (Turpen T H (1999) Philos Trans R Soc Lond B Biol Sci 354(1383): 665-73).


Any plant tissue or plant cells capable of subsequent clonal propagation, whether by organogenesis or embryogenesis, may be transformed with an expression vector of the present invention. The term ‘organogenesis’ means a process by which shoots and roots are developed sequentially from meristematic centers; the term ‘embryogenesis’ means a process by which shoots and roots develop together in a concerted fashion (not sequentially), whether from somatic cells or gametes. The particular tissue chosen will vary depending on the clonal propagation systems available for, and best suited to, the particular species being transformed. Exemplary tissue targets include protoplasts, leaf disks, pollen, embryos, cotyledons, hypocotyls, megagametophytes, callus tissue, existing meristematic tissue (e.g., apical meristems, axillary buds, and root meristems), and induced meristem tissue (e.g., cotyledon meristem and hypocotyls meristem).


These plants may include, but are not limited to, plants or plant cells of agronomically important crops, such as tomato, tobacco, diverse herbs such as oregano, basilicum and mint. It may also be applied to plants that produce valuable compounds, for example, useful as for instance pharmaceuticals, as ajmalicine, vinblastine, vincristine, ajmaline, reserpine, rescinnamine, camptothecine, ellipticine, quinine, and quinidine, taxol, morphine, scopolamine, atropine, cocaine, sanguinarine, codeine, genistein, daidzein, digoxin, calystegins or as food additives such as anthocyanins, vanillin; including but not limited to the classes of compounds mentioned above. Examples of such plants include, but not limited to, Papaver spp., Rauwolfia spp., Taxus spp., Cinchona spp., Eschscholtzia californica, Camptotheca acuminata, Hyoscyamus spp., Berberis spp., Coptis spp., Datura spp., Atropa spp., Thalictrum spp., Peganum spp.


In yet another embodiment, suitable expression cassettes comprising the nucleotide sequences of the present invention can be used for transformation into other species (different from Tobacco). This transformation into other species or genera (different from the genus Nicotiana) can be carried out randomly or can be carried out with strategically chosen nucleotide sequences. The random combination of genetic material from one or more species of organisms can lead to the generation of novel metabolic pathways (for example through the interaction with metabolic pathways resident in the host organism or alternatively silent metabolic pathways can be unmasked) and eventually lead to the production of novel classes of compounds. This novel or reconstituted metabolic pathways can have utility in the commercial production of novel, valuable compounds.


The recombinant DNA and molecular cloning techniques applied in the below examples are all standard methods well known in the art and are, for example, described by Sambrook et al. (1989) Molecular cloning: A laboratory manual, second edition, Cold Spring Harbor Laboratory Press. Methods for tobacco cell culture and manipulation applied in the below examples are methods described in or derived from methods described in Nagata et al. (1992) Int. Rev. Cytol. 132, 1.


The invention is further explained with the aid of the following illustrative examples.


EXAMPLES

1) Nicotine Alkaloids


First, the identification of various tobacco alkaloids: nicotine, nornicotine, anatabine, myosmine, anabasine and N′-formylnornicotine was determined from leaves, where the occurrence of alkaloids is abundant. Identification was based on the GC-MS spectra and literature (see, FIG. 3). There were no alkaloids detected in the control samples of BY-2. Elicitation of BY-2 cells by methyl jasmonate leads to a marked increase in nicotine, anabasine, anatalline, and especially in anatabine content, the latter clearly being the main component (FIGS. 4 & 5). To our knowledge, this is the first time that besides nicotine, these other alkaloids has been detected in tobacco BY-2 cell cultures.


Elicitation with methyl jasmonate seems to induce the pathway through nicotinic acid (FIG. 1). Especially the concentration of anatabine was raised, which according to literature based on biosynthetic studies, is simply derived from nicotinic acid, but neither through the arginine pathway, which leads to nicotine, nor via the lysine pathway which, in turn, leads to anabasine. The elicited BY-2 samples also contained increased amounts of two isomeric alkaloids with m/z 239 as the molecular ion. It is called anatalline and it has been discovered earlier only in the roots of N. tabacum, and never in cell cultures. Yet it was not detected in tobacco leaves. Anatalline is composed of three pyridine ring units of which one has no double bonds (2,4-bis-3′-pyridyl-piperidine). Based on the mass spectra, anatalline may not be derived from anatabine, but rather from anabasine. This is also in accordance with the information found in the literature. In the growth medium of BY-2 cells no alkaloids could be detected.


The elicitation with methyl jasmonate induces the accumulation of various nicotine alkaloids. The accumulation of alkaloid metabolites in the cells started after 14 hours and reached their maximum levels towards the end of the experimental period (FIG. 6). The accumulation of nicotine and anatabine started to take place after 14 and 24 hours, respectively. The contents of anabasine, and two isomers of anatalline in the cells increased only after 48 hours. The maximum concentration of nicotine was only 4% (on dry weight basis) of that of the main alkaloid anatabine, which reached the highest concentration of 800 μg/g (d.w.). The time-course of the onset of nicotine accumulation is in accordance with the data reported by Imanishi et al. (1998), who studied only nicotine alkaloid pattern after elicitation. Anatabine and nicotine are synthesized first, while anabasine and anatalline, which follow exactly the similar time-course patterns, accumulate later (FIG. 6).


Instead of nicotine, the level of alkaloids on the other branch of the biosynthetic pathway, for example, anatabine and anatalline was remarkably raised, both branches competing for the supply of nicotinic acid. This was the first time that anatalline was found to be synthesised in the cell suspension cultures of tobacco. The result indicates that nicotine, having two precursors, nicotinic acid and N-methylpyrrolinium, might not be synthesised if the latter is a limiting factor. Thus the pathway from nicotinic acid is directed towards the other biosynthetic routes (see FIG. 1).


2) Polyanines


The detection of various polyamines in BY-2 cells including spermidine, spermine, putrescine and methylputrescine were detected by HPLC (Scaramagli et al., 1999). In free pool there were no significant changes between elicited and control samples, except for methyl putrescine which accumulates dramatically in elicited cells (FIG. 7, FIG. 8). Soluble conjugates, which are amines conjugated with phenolic acid, mainly cinnamic acid derivatives did not change much except for methyl putrescine, which accumulates in elicited cells from 12 hours onwards (FIG. 9). Insoluble conjugates which are mainly polyamines associated in cell walls showed that especially putrescine and also methyl putrescine accumulate in elicited cells (FIG. 10). In short, it seems that elicitor treatment induces the accumulation of intermediates putrescine and methyl putrescine in nicotine pathway.


3) Sesquiterpenes


The preliminary experiment indicated the presence of various oxygenated sesquiterpenoid alkaloids, detected in the elicitated cells of tobacco BY-2. Presumably they are structurally aristolochene-like sesquiterpenes, with the molecular weight of 224. Aristolochenes are compounds found in the early steps of the biosynthetic pathway of sesquiterpenes, for example, capsidiol, lubimine, solavetivone, phytuberin and phytuberol.


4) Phenylpropanoids


TLC analysis of BY-2 cells and culture filtrates clearly shows that apart form nicotine, jasmonates also are able to induce the production of (several) phenylpropanoid-like substances.


5) Quantitative Analysis of Jasmonate-Modulated Gene Expression


By using the combination of metabolic profiling and cDNA-AFLP based transcript profiling of jasmonate-elicited tobacco BY-2 cells we were able to build an ample inventory of genes involved in plant secondary metabolism and other jasmonate-regulated cellular events. The growth curve of tobacco BY-2 cells is shown in FIG. 2. The culture was inoculated as every 7th day subculturing, 1:100. The growth reached the exponential phase in 6 days. Stationary phase was obtained after 10 days. The gene platform that was generated correlates also with earlier reports and reviews on jasmonate-modulated cellular and metabolic events, pointing to the accuracy and the reliability of the profiling analysis. Examples are the observed up-regulation of genes involved in the biosynthesis of jasmonates (an auto-regulatory event) and genes involved in defense responses such as proteinase inhibitors and transposases. At the same time numerous novel genes, either without existing homologues or with homologues of known or unknown function, were identified as jasmonate responsive and correlates with the production of alkaloids and phenylpropanoids. Some of them point to cellular or metabolic events that have been not related with jasmonates before.


Tobacco BY-2 cells were elicited with 50 μM methyl jasmonate and transcript profiles were compared with the transcript profiles of DMSO-treated cells. Quantitative temporal accumulation patterns of approximately 20,000 transcript tags were determined and analyzed. In total, 591 differential transcript tags were obtained. Sequencing of the PCR products gave good-quality sequences for approximately 80% of the fragments. To the remaining 20%, a unique sequence could not unambiguously be attributed because the fragments were contaminated with co-migrating bands. These bands have been cloned and PCR products from four individual colonies were sequenced. For most of these fragments, two to three different sequences were obtained from the individual colonies. Homology searches with the sequences from the unique gene tags revealed that 64% of these tags displayed similarity with genes of known functions, and 18% of the tags matched a cDNA or genomic sequence without allocated function. In contrast, no homology with a known sequence was found for 18% of the tags.


By average linkage hierarchical clustering of the expression profiles, the genes could be grouped in two main clusters: induced and repressed by jasmonate elicitation. The group of jasmonate repressed genes comprises ca. 18% of the isolated gene tags. The vast majority of jasmonate modulated genes is upregulated by jasmonate elicitation and can be subdivided in three categories: early induced (within 1 hour after the elicitation), intermediate (after two to 4 hours) and late induced (after 6 hours or more). These subcategories respectively comprise ca. 31%, 27% and 24% of the isolated gene tags.


Among the early induced subgroup figure, all the genes that are known to be involved with nicotine biosynthesis in Nicotiana species, i.e., arginine decarboxylase (ADC), ornithine decarboxylase (ODC) and quinolate phosphoribosyltransferase (QPRT). The fourth gene known to be involved in nicotine biosynthesis, putrescine methyl transferase (PMT), could not be picked up with the cDNA-AFLP method used here as its nucleotide sequence does not harbor a BstYI restriction site. Nonetheless, RT-PCR analysis clearly shows that PMT expression is also upregulated as early as one hour after jasmonate treatment and thus demonstrates the co-regulation of the PMT gene(s) with the other nicotine metabolic genes mentioned above. Interestingly, two other gene tags coregulated with the above mentioned genes show homology with putative (amine) oxidases and potentially encode the still undiscovered methyl putrescine oxidase (MPO). Other gene tags that are found in this subgroup are the genes involved with jasmonate biosynthesis such as allene oxide synthase, allene oxide cyclase, 12-oxophytodienoate reductase and lipoxygenases.


In the subsequent induction wave (within two to four hours) another group of genes is found that putatively encode enzymes involved in flavonoid metabolism. Amongst these figure phenylalanine ammonia-lyase, chalcone synthase-like proteins, isoflavone synthase-like proteins, leucoanthocyanidin dioxygenase-like proteins and various cytochrome P450 enzymes.


6) Functional Analysis of Candidate Genes.


Selected genes were introduced in appropriate vectors for over-expression and/or down-regulation using the Gateway™ technology (InVitrogen Life Technologies). To this end a set of Gateway compatible binary vectors for plant transformation was developed (Karimi et al., 2002). For over-expression the pK7WGD2 vector is used in which the gene is put under the control of the p35S promoter. Down-regulation is based on the post-transcriptional gene silencing effect (PTGS, Smith et al., 2000) and to this end the pK7GWIWG2 is used. For plant cell transformations the ternary vector system (van der Fits et al., 2000) was applied. The plasmid pBBR1MCS-5.virGN54D was used as a ternary vector. The binary plasmid was introduced into Agrobacterium tumefaciens strain LBA4404 already bearing the ternary plasmid by electro-transformation. For hairy root transformation the binary plasmid was introduced in the Agrobacterium rhizogenes strain LBA9402.


Fresh BY-2 culture was established before the transformation with the particular construct. Five-day-old BY-2 was inoculated 1:10 and grown for three days (28° C., 130 rpm, dark). The liquid culture of Agrobacterium tumefaciens transformed with pK7WGD2-GUS, pK7WGD2-NtCYP1 (insert from SEQ ID No 465) or pK7WGD2-NtORC1 (insert from SEQ ID No 285) was established two days before the transformation of BY-2. A loopfull of bacteria from the solid medium was inoculated in 5 ml of liquid LB medium with the antibiotics (rifampicin, gentamycin, streptomycin and spectinomycin). The culture was grown for two days (28° C., 130 rpm).


The transformation of BY-2 was performed in empty petri dish (Ø4.6 cm) with the cocultivation method. Three-day-old BY-2 (3 ml) was pipetted into plate and either 50 or 200 μl of bacterial suspension was added. The plates were gently mixed and left to stand in the laminar bench in the dark for three days. After cocultivation the cells were plated on the solid BY-2-medium with the selections (50 μg/ml kanamycin, and 500 μg/ml vancomycin and 500 μg/ml carbenicillin to kill the excess of bacteria). The plates were sealed with millipore tape and incubated at 28° C. in the dark for approximately two weeks after which the calli became visible. The transformation was visualised by checking the expression of GFP (green fluorescent protein) under the microscope.


The suspension culture of the transformed BY-2 was started by taking a clumb of calli (appr. Ø 1 cm) into 20 ml liquid BY-2 medium with the selection. After several subcultures the suspension volume was increased. When the growth of the culture reached the normal growth pattern of BY-2 (subculturing every 7th day), the elicitation experiment was performed as described earlier. Before washing the culture in the beginning of the experiment, the selection (kanamycin) was still present. The density of the culture as well as the GFP expression and viability of the cells were checked before starting the experiment.


The nicotine alkaloids were detected 24 h and 48 h after elicitation with MeJA (50 μM). Trace amounts of nicotine was detected in all samples and no effect of transformed constructs (pK7WGD2-NtCYP1 and pK7WGD2-NtORC1) compared to the control (pK7WGD2-GUS) was observed (FIG. 11). Anabasine concentration increased in a function of time and a marked increase compared to the control was observed with pK7WGD2-NtORC1-transformed line, bearing the ORCA homologue gene (FIG. 12). Considering the major alkaloid anatabine, no difference in alkaloid accumulation was observed 24 h after elicitation, but at 48 h both transformed constructs, bearing either cyclophilin or AP2 transcription factor, showed clear increase in anatabine levels compared to the control (FIG. 13). The two anatalline isomers followed the similar pattern as anatabine, the transformed lines bearing the putatively functional constructs accumulated notably higher levels of both isomers than the control line (FIG. 14). The overall levels of accumulated alkaloids were in each transformed line lower than in untransformed BY-2, suggesting that the transformation protocol itself might have an inhibitory effect on alkaloid production. The effect of excess of antibiotics possibly still present during the elicitation is also to be tested for their contribution to lower accumulation of alkaloids. However, these results indicate that the above mentioned constructs had a considerable positive effect on the alkaloid accumulation compared to the control line, bearing no functional construct.


7) Isolation of Full-Length Genes and Homologues






    • MAP3 (SEQ ID NO: 285 and SEQ ID NO: 872): sequence information for an AP2-domain transcription factor, induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 3e-22):

    • emb|CAB96899.1| AP2-domain DNA-binding protein [Catharanthus roseus]

    • emb|CAB93940.1| AP2-domain DNA-binding protein [Catharanthus roseus]

    • gb|AAM45475.1| ethylene-responsive element binding protein 1 [Glycine max]

    • ref|NP182011.1| putative ethylene response element binding protein (EREBP) At2g44840 [Arabidopsis thaliana]

    • pir∥T02432 ethylene-responsive transcription factor ERF1 [Nicotiana tabacum]

    • pir∥T07686 transcription factor Pti4 [Lycopersicon esculentum]

    • C330 (SEQ ID NO: 148 and SEQ ID NO: 873): sequence information for an AP2-domain transcription factor induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found:(lowest blastx 2e-27):

    • ref|NP199533.1| ethylene responsive element binding factor 2 (EREBP-2) [A. thaliana]

    • dbj|BAA87068.2| ethylene-responsive element binding protein1 homolog [Matricaria chamomilla]

    • gb|AAF63205.1| AF2451191 AP2-related transcription factor [Mesembryanthemum crystallinum]

    • pir∥T07686 transcription factor Pti4 [Lycopersicon esculentum]

    • pir∥T02590 ethylene-responsive element binding protein [Nicotiana tabacum]

      Both MAP3 and C330 encode transcription factors belonging to the AP2-domain transcription factor family, to which also for instance the ORCA genes belong, known to regulate the jasmonate responsive biosynthesis of terpenoid indole alkaloids in Catharanthus roseus (Memelink et al., Trends Plant Sci. 2001, 6(5):212-219). Since both MAP3 and C330 are induced before or concomitantly with the nicotine biosynthetic genes PMT, ADC, ODC, QPRT, AP and SAMS, this clearly mirrors a potential role as activators of nicotine biosynthesis for these genes. This was confirmed by assessment of nicotine alkaloid accumulation levels (for MAP3 and reporter gene expression analysis (for C330).

    • C484a (SEQ ID N° 275 and SEQ ID NO: 874): a C3HC4-type RING zinc finger protein induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 8e-30)>

    • ref|NP181135.2| putative RING zinc finger protein At2g35910 [A. thaliana]

    • ref|NP196267.1| C3HC4-type RING zinc finger protein At5g06490 [A. thaliana]

      Zinc finger proteins can be transcriptional regulators reported to interact for instance with the promoter regions of some genes involved in the biosynthesis of terpenoid indole alkaloids in Catharanthus roseus (Ouwerkerk et al., Mol. Gen. Genet. 1999, 261(4-5):610-622). They can also interact with components of the SCF (Skp1/Cullin/F-box protein)-type E3 ubiquitin ligase complex involved in protein degradation (e.g., Liu et al, Plant Cell 2002, 14(7):1483-1496). Such a complex has shown to be of extreme importance in jasmonate-mediated signaling cascades (Turner et al., Plant Cell. 2002, 14 Suppl:S153-S164) and thus participates as well in the regulation of plant secondary metabolism.


      C360 (SEQ ID NO: 180 and SEQ ID NO: 875): sequence information for a protein with similarity to the putative protein At4g14710 [A. thaliana] induced after 4 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 2e-87)>

    • ref|NP567441.1| Expressed protein At4g14710 [A. thaliana]

    • ref|NP-567443.1| Expressed protein At4g14716 [A. thaliana]

    • ref|NP180208.1| unknown protein At2g26400 [A. thaliana]

    • pir∥T02918 probable submergence induced, nickel-binding protein 2A [Oryza sativa]

    • dbj|BAB61039.1| iron-deficiency induced gene [Hordeum vulgare]

    • >pir∥T02787 probable submergence induced protein 2 [Oryza sativa]





This protein contains an ARD/ARD′ family motif, found in two acireductone dioxygenase enzymes (ARD and ARD′, previously known as E-2 and E-2′) from Klebsiella pneumoniae. The two enzymes share the same substrate, 1,2-dihydroxy-3-keto-5-(methylthio)pentene, but yield different products. ARD′ yields the alpha-keto precursor of methionine (and formate), thus forming part of the ubiquitous methionine salvage pathway that converts 5′-methylthioadenosine (MTA) to methionine. This pathway is responsible for the tight control of the concentration of MTA, which is a powerful inhibitor of polyamine biosynthesis and transmethylation reactions [1,2]. ARD yields methylthiopropanoate, carbon monoxide and formate, and thus prevents the conversion of MTA to methionine. The role of the ARD catalysed reaction is unclear: methylthiopropanoate is cytotoxic, and carbon monoxide can activate guanylyl cyclase, leading to increased intracellular cGMP levels (Duai et al., J. Biol. Chem. 1999, 274(3):1193-1195; Dai et al., Biochemistry 2001, 40(21):6379-6387). This family also contains other members, whose functions are not well characterized. The gene isolated here might probably regulate/interact with polyamine biosynthesis and thus nicotine biosynthesis, for which polyamines are precursors.

    • C165 (SEQ ID NO: 64 and SEQ ID NO: 876): sequence information for a putative ligand-gated ion channel protein induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 2e-80)>
    • ref|NP172012.1| putative ligand-gated ion channel protein At1g05200 [A. thaliana]
    • ref|NP565743.1| putative ligand-gated ion channel protein At2g32390 [A. thaliana]
    • dbj|BAC57657.1| putative ionotropic glutamate receptor homolog GLR4 [Oryza sativa (japonica cultivar-group)]
    • dbj|BAC10393.1| putative ligand-gated channel-like protein [Oryza sativa (japonica cultivar-group)]


      Ligand-gated ion channels are important players in plant hormone induced signaling cascades. They have been found to be involved for instance in abscisic acid signalling (Pei et al., Nature 2000, 406(6797):731-734; Walden, Curr. Opin. Plant Biol. 1998, 1(5):419-423). Abscisic acid, as well as ethylene and jasmonates have also been proposed to play a role in wound signalling, which in many plants leads to the induction of plant secondary metabolic pathways (Leon et al., J. Exp. Bot. 2001 52(354):1-9).
    • C353a (SEQ ID NO: 172 and SEQ ID NO: 877): sequence information for a GTP-binding protein induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-102)>
    • emb|CAA69701.1| small GTP-binding protein [Nicotiana plumbaginifolia]
    • emb|CAC39050.1| putative GTP-binding protein [Oryza sativa]
    • dbj|BAA76422.1| rab-type small GTP-binding protein [Cicer arietinum]
    • emb|CAA98160.1| RAB1C [Lotus japonicus]
    • pir∥B38202 GTP-binding protein YPTM2 [Zea Mays]
    • dbj|BAA02116.1| GTP-binding protein [Pisum sativum]
    • emb|CAA98161.1| RAB1D [Lotus japonicus]
    • gb|AAF65510.1| small GTP-binding protein [Capsicum annuum]
    • emb|CAA98162.1| RAB1E [Lotus japonicus]
    • ref|NP193486.1| ras-related small GTP-binding protein RAB1c At4g17530.1 [A. thaliana]
    • MT101 (SEQ ID NO: 355 and SEQ ID NO: 878): Sequence information for a GTP-binding-like protein induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-177)>
    • ref|NP195662.1| GTP-binding-like protein; protein id: At4g39520.1 [A. thaliana]
    • dbj|BAC22346.1| putative GTP-binding protein [Oryza sativa (japonica cultivar-group)]


      GTP-binding proteins have been reported to be involved in the induction of phytoalexin biosynthesis in cultured carrot cells (Kurosaki et al., Plant Sci. 2001 161(2):273-278) and in the fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures (Zhao & Sakai, J. Exp. Bot. 2003, 54(383):647-656). They are supposed to interact with receptors, kinases and phosphatases amongst others and as such participate in many stimulus induced signaling pathways in plants (Clark et al., Curr. Sci. 2001, 80(2):170-177), and possibly as well in the onset of secondary metabolite biosynthetic pathways.
    • T21 (SEQ ID NO: 465 and SEQ ID NO: 879): Sequence information for a cyclophilin induced after 8 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 4e-78)>
    • gb|AAA63543.1| cyclophilin [Lycopersicon esculentum]
    • >pir∥CSTO peptidylprolyl isomerase (EC 5.2.1.8) [Lycopersicon esculentum]
    • >pir∥T50771 peptidylprolyl isomerase (EC 5.2.1.8) [Solanum tuberosum subsp. tuberosum]
    • emb|CAC80550.1| cyclophilin [Ricinus communis]
    • gb|AAB51386.1| stress responsive cyclophilin [Solanum commersonii]
    • pir∥T50768 cyclophylin [Digitalis lanata]

      Cyclophylins or FK506-binding proteins belong to the large family of peptidyl-prolyl cis-trans isomerases, which are known to be involved in many cellular processes, such as cell signalling, protein trafficking and transcription (Harrar et al., Trends Plant Sci 2001, 6(9):426-431), and as such might be involved in regulating plant secondary metabolism.
    • C476a (SEQ ID NO: 264 and SEQ ID NO: 880): sequence information for a MAP kinase induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 2e-75)>
    • ref|NP177492.1| MAP kinase At1g73500 [A. thaliana]
    • ref|NP173271.1| MAP kinase kinase 5 At1g18350 [A. thaliana]
    • ref|NP188759.1| MAP kinasekinase 5 At3g21220 [A. thaliana]
    • ref|NP175577.1| MAP kinase kinase 4 (ATMKK4) At1g51660 [A. thaliana]
    • gb|AAG53979.1|AF3251681 mitogen-activated protein kinase 2 [Nicotiana tabacum]

      MAP kinases have been reported to be both differentially induced by defense signals such as nitric oxide, salicylic acid, ethylene, and jasmonic acid as to represent key components of the signaling cascades induced by these defense signals (e.g., Petersen et al., Cell 2000, 103(7):1111-1120; Kumar & Klessig, Mol. Plant Microbe Interact. 2000, 13(3):347-351; Seo et al., Science. 1995, 270(5244):1988-1992), and as such might be involved in the activation of plant secondary metabolism.
    • MC204 (SEQ ID NO: 315 and SEQ ID NO: 881): sequence information for a sequence with similarity to the putative protein At5g47790 [A. thaliana] induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-111)
    • dbj|BAC22308.1| OJ1136_A10.4 [Oryza sativa (japonica cultivar-group)]
    • ref|NP199590.1| unknown protein At5g47790 [A. thaliana]

      This protein contains a Forkhead-associated (FHA) domain. The forkhead-associated domain is a phosphopeptide recognition domain found in many regulatory proteins. It displays specificity for phosphothreonine-containing epitopes but will also recognize phosphotyrosine with relatively high affinity. It spans approximately 80-100 amino acid residues folded into an 11-stranded sandwich, which sometimes contain small helical insertions between the loops connecting the strands. The domain is present in a diverse range of proteins, such as kinases, phosphatases, kinesins, transcription factors, RNA-binding proteins and metabolic enzymes which take part in many different cellular processes, such as signal transduction, vesicular transport and protein degradation (Durocher et al., Mol. Cell 1999, 4(3):387-394; Hofmann & Bucher, Trends Biochem. Sci. 1995, 20(9):347-349), and as such might regulate plant secondary metabolism.
    • T323 (SEQ ID NO: 509 and SEQ ID NO: 882): Sequence information for a putative endo-1,4-beta-glucanase induced after 10 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 2e-84)>
    • emb|CAD41248.1| OSJNBa0067K08.12 [Oryza sativa (japonica cultivar-group)]
    • ref|NP176738.1| glycosyl hydrolase family 9 (endo-1,4-beta-glucanase) At1g65610 [A. thaliana]
    • ref|NP199783.1| cellulase [A. thaliana]
    • emb|CAB51903.1| cellulase; endo-1,4-beta-D-glucanase [Brassica napus]
    • pir∥T07612 cellulase [Lycopersicon esculentum]

      The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses (Ellis et al., Plant Cell 2002, 14(7):1557-1566). CEV1 encodes a cellulose synthase. The cev1 mutant has constitutive expression of stress response genes and has increased production of jasmonate and ethylene. Conversely, as such glucanase and cellulase-like proteins might participate in the onset of plant secondary metabolism by providing cell wall derived molecules, necessary to elicit secondary metabolic pathways.
    • T464 (SEQ ID NO: 595 and SEQ ID NO: 883): Sequence information for an epimerase/dehydratase-like protein induced after 10 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 0.0)>
    • gb|AAM08784.1|AC01678014 Putative epimerase/dehydratase [Oryza sativa]
    • ref|NP198236.1| epimerase/dehydratase-like protein At5g28840.1 [A. thaliana]

      It has been shown that phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid (Tamogami et al., FEBS Lett. 1997, 412(1):61-64). MJM tag T464 encodes the homologue of the GDP-mannose 3″,5″-epimerase of A. thaliana, a key enzyme of the plant vitamin C pathway (Wolucka et al., Proc. Natl. Acad. Sci. USA 2001, 98(26):14843-14848). Consequently, increased ascorbate production might stimulate alkaloid and phenylpropanoid biosynthesis as well, and plant secondary metabolism in general.
    • C127 (SEQ ID NO: 38 and SEQ ID NO: 884): Sequence information for an auxin-responsive GH3-like protein induced after 2 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-180)>
    • ref|NP-200262.1| auxin-responsive-like protein At5g54510 [A. thaliana]
    • ref|NP194456.1| GH3 like protein At4g27260 [A. thaliana]
    • dbj|BAB92590.1| putative auxin-responsive GH3 [Oryza sativa (japonica cultivar-group)]
    • gb|AAD32141.1|AF 1235031 Nt-gh3 deduced protein [Nicotiana tabacum]
    • dbj|BAB63594.1| putative auxin-responsive GH3 protein [Oryza sativa (japonica cultivar-group)]
    • ref|NP179101.1| putative auxin-regulated protein At2g14960.1 [A. thaliana]
    • pir∥S17433 auxin-regulated protein GH3 [Glycine max]
    • C175 (SEQ ID NO: 71 and SEQ ID NO: 885): Sequence information for an auxin-responsive GH3-like protein induced after 2 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx)
    • ref|NP200262.1| auxin-responsive-like protein At5g54510 [A. thaliana]
    • ref|NP1194456.1| GH3 like protein At4g27260 [A. thaliana]
    • dbj|BAB92590.1| putative auxin-responsive GH3 [Oryza sativa (japonica cultivar-group)]
    • gb|AAD32141.1|AF1235031 Nt-gh3 deduced protein [Nicotiana tabacum]
    • dbj|BAB63594.1| putative auxin-responsive GH3 protein [Oryza sativa (japonica cultivar-group)]
    • ref|NP179101.1| putative auxin-regulated protein At2g14960.1 [A. thaliana]
    • pir∥S17433 auxin-regulated protein GH3 [Glycine max]

      The Arabidopsis jasmonate (JA) response mutant jar1-1 is defective in the gene JAR1, one of 19 closely related Arabidopsis genes that are similar to the auxin-induced soybean GH3 gene. Analysis of fold predictions for this protein family suggested that JAR1 might belong to the acyl adenylate-forming firefly luciferase superfamily. These enzymes activate the carboxyl groups of a variety of substrates for their subsequent biochemical modification. An ATP-PPi isotope exchange assay was used to demonstrate adenylation activity in a glutathione S-transferase-JAR1 fusion protein. Activity was specific for JA, suggesting that covalent modification of JA is important for its function. Six other Arabidopsis genes were specifically active on indole-3-acetic acid (IAA), and one was active on both IAA and salicylic acid. These findings suggest that the JAR1 gene family is involved in multiple important plant signaling pathways (Staswick et al., Plant Cell 2002, 14(6):1405-1415). The MJM genes C127 and C175 cluster together with the Arabidopsis genes At5g54510 and At4g27260, of which the protein products display activity on IAA. They might participate in the conversion of free, active IAA in inactive storage forms or conjugates, and as such relieve the inhibitory effect of active auxins on secondary metabolism, shown for instance for nicotine production in tobacco cells (Imanishi et al., Plant Mol. Biol. 1998, 38(6):1101-1111) and terpenoid indole alkaloid production in Catharanthus roseus cells (Gantet et al., Plant Cell Physiol., 1998, 39(2):220-225).
    • T424b (SEQ ID NO: 570 and SEQ ID NO: 886): sequence information for an auxin-induced reductase-like protein induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-144)>
    • pir∥S16390 auxin-induced protein PCNT115 [Nicotiana tabacum]
    • ref∥NP564761.1| auxin-induced protein At1g60710 [A. thaliana]
    • ref∥NP176268.1| auxin-induced protein At1g60690 (aldo/keto reductase family) [A. thaliana]
    • pir∥T12582 auxin-induced protein [Helianthus annuus]
    • ref∥NP176267.1| auxin-induced protein At1 g60680.1 [A. thaliana]
    • ref|NP172551.1| putative auxin-induced protein [A. thaliana]

      This gene might encode a reductase protein capable of reducing free, active IAA into the inactive form indole-ethanol (Brown & Purves, J. Biol. Chem. 1976, 251(4):907-913). As such, it might also be involved in the relieve of the inhibitory effect of active auxins on secondary metabolism, shown for instance for nicotine production in tobacco cells (Imanishi et al., Plant Mol. Biol. 1998, 38(6):1101-1111) and terpenoid indole alkaloid production in Catharanthus roseus cells (Gantet et al., Plant Cell Physiol., 1998, 39(2):220-225).
    • T164 (SEQ ID NO: 446 or SEQ ID NO: 887): sequence information for a probable glutathione S-transferase induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-115)>
    • emb|CAA56790.1| auxin-regulated par glutathione S-transferase protein STR246C [Nicotiana tabacum]
    • pir∥JQ1606 multiple stimulus glutathione S-transferase response protein [Nicotiana plumbaginifolia]

      This GST protein is induced also by auxins and might be involved in the transport of IAA-conjugates, detoxification of secondary metabolites or even in functions distinct from conventional GSTs (as suggested by some characteristics of parA, Takahashi et al., Planta 1995, 196(1):111-117) such as an involvement in transcriptional regulation.
    • MAP2 (SEQ ID NO: 284 and SEQ ID NO: 888): sequence information for a protein with similarity to the putative protein At5g28830 [A. thaliana] induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 3e-82)>
    • ref∥NP198235.1| putative protein At5g28830 [A. thaliana]

      This protein contains a Ca-binding EF-hand motif. The EF-hands can be divided into two classes: signaling proteins and buffering/transport proteins. The first group is the largest and includes the most well-known members of the family such as calmodulin, troponin C and S100B. These proteins typically undergo a calcium-dependent conformational change which opens a target binding site. The latter group is represented by calcium binding D9k and do not undergo calcium dependent conformational changes. As calmodulins and Ca-molecules have been postulated to be involved in jasmonate signaling cascades (Leon et al., J. Exp. Bot. 2001, 52(354):1-9; Yang & Poovaiah, J. Biol. Chem. 2002, 277(47):45049-45058), possibly connected to the onset of secondary metabolic pathways (Memelink et al., Trends Plant Sci. 2001, 6(5):212-219), they might be involved in nicotine alkaloid or phenylpropanoid biosynthesis as well.


C1 (SEQ ID NO: 8 and SEQ ID NO: 889): Sequence information for a 1,4-benzoquinone reductase-like induced after 12 hour by methyl jasmonate in tobacco BY-2 cells.


Best Homologues found: (lowest blastx 5e-79)>






    • ref|NP200261.1| quinone reductase At5g54500.1 [A. thaliana]

    • emb|CAD31838.1| putative quinone oxidoreductase [Cicer arietinum]

    • gb|AAD38143.1|AF 1394961 unknown [Prunus armeniaca]

    • ref|NP194457.1| quinone reductase family protein At4g27270.1 [A. thaliana]

    • gb|AAG53945.1|AF3044621 quinone-oxidoreductase QR2 [Triphysaria versicolor]

    • dbj|BAB92583.1| putative 1,4-benzoquinone reductase [Oryza sativa (japonica cultivar-group)]


      This reductase-like protein might be directly and actively involved in the biosynthetic pathway of one of the nicotine alkaloids.

    • T210 (SEQ ID NO: 466 and SEQ ID NO: 890): Sequence information for a protein with similarity to the putative protein P0638D12 [Oryza sativa] induced after 6 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 5e-60)>

    • dbj|BAB55502.1| P0638D12.10 [Oryza sativa (japonica cultivar-group)]

    • ref|NP565816.1| expressed protein At2g35680 [A. thaliana]

    • gb|AAK31276.1|AC07989012 unknown protein [Oryza sativa]

    • ref|NP-200472.1| putative protein At5g56610 [A. thaliana]

      This protein contains a dual specificity protein phosphatase motif. Ser/Thr and Tyr dual specificity phosphatases are a group of enzymes (EC: 3.1.3.16) removing the serine/threonine or tyrosine-bound phosphate group from a wide range of phosphoproteins, including a number of enzymes which have been phosphorylated under the action of a kinase (Fauman & Saper, Trends Biochem. Sci. 1996, 21(11):413-417). As such, they might be involved in the regulation of plant secondary metabolic pathways.

    • C112 (SEQ ID NO: 22 and SEQ ID NO: 891): Sequence information for a protein with similarity to the putative protein At3g11810 [A. thaliana] induced after 12 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 1e-10)

    • ref|NP187787.1| unknown protein At3g11810 [A. thaliana]

    • ref|NP178432.1| unknown protein; protein id: At2g03330.1 [A. thaliana]

      This protein contains a TonB motif. In Escherichia coli the TonB protein interacts with outer membrane receptor proteins that carry out high-affinity binding and energy-dependent uptake of specific substrates into the periplasmic space. These substrates are either poorly permeable through the porin channels or are encountered at very low concentrations. In the absence of tonB these receptors bind their substrates but do not carry out active transport (Buchanan et al., Nat. Struct. Biol. 1999, 6(1):56-63.). As such, this protein might be involved in the jasmonate-induced signaling cascades and thus in the regulation of plant secondary metabolic pathways.

    • C454 (SEQ ID NO: 244 and SEQ ID NO: 892): Sequence information for sequence a putative phosphatase 2C induced after 1 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 4e-85)>

    • ref|NP180455.1| unknown protein At2g28890 [A. thaliana]

    • ref|NP563791.1| expressed protein At1g07630 [A. thaliana]

    • ref|NP195860.1| putative protein At5g02400 [A. thaliana]

    • gb|AAO65883.1| putative protein phosphatase 2C [Oryza sativa (japonica cultivar-group)]

    • ref|NP187551.1| unknown protein At3g09400 [A. thaliana]

    • ref|NP182215.2| unknown protein; protein At2g46920 [A. thaliana]

    • T172 (SEQ ID NO: 450 and SEQ ID NO: 893): Sequence information for a protein phosphatase 2C induced after 4 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-104)>

    • ref|NP177421.1| protein phosphatase 2C (AtP2C-HA) At1g72770 [A. thaliana]

    • ref|NP173199.1| protein phosphatase 2C At1g17550 [A. thaliana]

    • dbj|BAC05575.1| protein phosphatase 2C-like protein [Oryza sativa (japonica cultivar-group)]

    • ref|NP-200515.1| protein phosphatase 2C, ABI2 At5g57050.1 [A. thaliana]

    • ref|NP194338.1| protein phosphatase ABI1 At4g26080 [A. thaliana]

      Phosphatases have been postulated as important participants in the jasmonate modulated signaling cascades (Leon et al., J. Exp. Bot. 2001, 52(354):1-9) and as such represent potential powerful master regulators of plant secondary metabolism. T172 shows most homology to a group of 4 Arabidopsis PP2C phosphatases to which also ABI1 and ABI2 belong, acting in a negative feedback regulatory loop of the abscisic acid signalling pathway (Merlot et al., Plant J. 2001, 25(3):295-303). C454 shows most homology to a group of 5 Arabidopsis PP2C phosphatases to which also POLTERGEIST belongs, encoding a PP2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems (Yu et al., Curr Biol. 2003, 13(3):179-188). Both the T172 and C454 sequences are truncated clones and still lack the N-terminal sequence. However, the clones available cover the region corresponding to truncated mutant versions of both ABI (Sheen, Proc. Natl. Acad. Sci. USA 1998, 95(3):975-980) and Poltergeist phosphatases (Yu et al., Curr Biol. 2003, 13(3):179-188) that were shown to confer constitutive activity and thus are very well suitable for metabolic engineering purposes.

    • C477 (SEQ ID NO: 266 and SEQ ID NO: 894): Sequence information for a putative zinc transporter induced after 4 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx e-121)>

    • gb|AAL25646.1|AF1973291 zinc transporter [Eucalyptus grandis]

    • ref|NP182203.1| putative zinc transporter At2g46800 [A. thaliana]

    • gb|AAK91869.2| putative vacuolar metal-ion transport protein MTP1 [Thlaspi goesingense]

    • gb|AAK91871.2| putative vacuolar metal-ion transport protein MTP1t2 [Thlaspi goesingense]

    • ref|NP 191440.1 | zinc transporter-like protein At3g58810 [A. thaliana]

    • gb|AAK69428.1|AF2757501 zinc transporter [Thlaspi caerulescens]

      Divalent cations are important both as cofactors for biosynthetic enzymes and as active participants in elicitor induced biosynthesis of plant secondary metabolites. For instance calcium molecules and transporters/channels have been shown to mediate fungal elicitor-induced beta-thujaplicin biosynthesis in Cupressus lusitanica cell cultures (Zhao & Sakai, J. Exp. Bot. 2003, 54(383):647-656). Zinc cations as well might be involved, either as a cofactor in enzymes or zinc finger proteins or as a secondary signal molecule, in elicitor-mediated induction of tobacco secondary metabolism.

    • C331 (SEQ ID NO: 149 and SEQ ID NO: 895): Sequence information for a protein with similarity to the putative protein At3g62270 [A. thaliana] induced after 12 hour by methyl jasmonate in tobacco BY-2 cells.


      Best Homologues found: (lowest blastx 7e-13)>

    • ref|NP191786.1| putative protein; protein At3g62270 [A. thaliana]

    • ref|NP182238.2| putative anion exchange protein At2g47160 [A. thaliana]

    • ref|NP187296.2| unknown protein At3g06450 [A. thaliana]

      This protein harbours a HCO3-transporter motif and might thus function as an anion exchanger. Bicarbonate (HCO3-) transport mechanisms are the principal regulators of the internal pH of animal cells. As intracellular pH shifts have been shown to be part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids biosynthesis in cultured cells of Eschscholtzia californica (Viehweger et al., Plant Cell 2002, 14(7):1509-1525; Roos et al., Plant Physiol. 1998, 118(2):349-364), this anion exchanger encoded by C331 might be involved in regulating tobacco secondary metabolism.


      8) Use of a Reporter Plant Cell Line as a Tool for Functional Analysis to Accelerate the Identification of Genes with a Role in Secondary Metabolism





The PMT gene encodes the enzyme putrescine N-methyltransferase, catalysing the first committed step in the production of nicotinic alkaloids. Transcripts of Nicotiana sp. PMT genes are reported to be up regulated by methyl jasmonate. When the flanking regions of Nicotiana sylvestris PMT genes were fused to the β-glucuronidase reporter gene and introduced into N. sylvestris, the reporter transgenes were found to be inducible by methyl jasmonate treatment (Shoji et al., Plant Cell Physiol. 2000, 41(7):831-839). We have applied this knowledge and constructed a new reporter construct, called pHGWFS7-ppmt2, harbouring a EGFP-GUS fusion reporter gene (in Gateway® vector pHGWFS7; Karimi et al., Trends Plant Sci. 2002, 7(5):193-195), driven by the NsPMT2 promoter. To this end, primers were designed for the Adapter attB PCR protocol (InVitroGen) to amplify the NsPMT2 5′flanking region covering nucleotides −1713 to +3 (Table 3).


The pHGWFS7-ppmt2 construct was subsequently introduced in the ternary Agrobacterium tumefaciens transformation system, LBA4404.pBBR1-MCS-5.virGN54D (van der Fits et al., Plant Mol. Biol. 2000, 43(4):495-502), allowing efficient transformation of tobacco BY-2 cell cultures. Different independent transgenic lines were established and the jasmonate inducibility of the promoter in these transgenic BY-2 cells was confirmed (Table 4).


These transgenic reporter cell lines are used as a tool to identify potential master regulatory genes of plant secondary metabolism (and speed up this process). Overexpression of a single gene most often does not affect significantly the final production levels of the target metabolite(s). Therefore, when accumulation levels are employed as the only criteria to evaluate the potential involvement of regulatory genes in plant secondary metabolism, one might easily miss eventually promising candidates.


To illustrate the potential of this approach, BY-2-pmt2 cell line 7 was double transformed with the pK7WGD2-C330 construct, harbouring the MJM tag with SEQ ID No 148, an AP2-domain transcription factor encoding gene (also designated as C330 in this application), driven by the constitutive p35S promoter. Expression analysis of the reporter proteins demonstrated clearly that overexpression of the C330 gene induces the NsPMT2 promoter, without the necessity to use elicitors like methyl jasmonate (Table 5).


In a next step, we evaluated if there was a correlation between the GUS-activity in the BY-2 reporter cell line (line 7) and nicotine alkaloid accumulation. Table 6A shows a perfect correlation between GUS expression and nicotine alkaloids (as measured for nicotine, anatabine and anabasine). Table 6B shows the nicotine alkaloid content of the BY-2 reporter cell line (line 7) super-transformed with an expression vector comprising the C330 gene (SEQ ID NO: 148). Measurements in tables 6A and 6B were carried out in the presence or absence of synthetic auxins. “−2,4 D” means in the absence of dichlorophenoxy-acetic acid. “NAA” means in the presence of alfa-naphtalene-acetic acid. “DW” means dry weight, “MeJA” is with the addition of the elicitor methyl jasmonate, “DMSO” means with the addition of dimethylsulfoxide instead of MeJA.


9) Functional Analysis in Hairy Roots of Hyoscyamus muticus


Sterilized leaves of H. muticus were infected with a recombinant Agrobacterium rhizogenes strain (LBA9402) transformed with an expression vector comprising the C330 gene (SEQ ID NO: 148). As a negative control we compared the infection with the LBA9402 wild type strain. The hairy roots appeared in the infected sites approximately 3 weeks after infection. The different root clones were separated and they were grown on plates in B50 medium added with cefotaxim to kill the excess of Agrobacteria. The hairy roots transformed with C330 (4 clones: A, B, C and D) and the control LBA9402 (one clone) were accurately weighed and the same amount was added into each of the flasks (50+3 mg) then 20 ml B50 medium was added. For each of the clones three flasks were prepared. After growing for 21 days (16 h light, 8 h dark, 21° C.), the roots were filtered and lyophilized. The tropane alkaloid extraction and analysis was performed by a modified method of Fliniaux et al. (1993) J. Chromatography 644: 193. For analysis the three flasks of each clone were pooled together and 50 mg dry weight (DW) was withdrawn for an extraction. For the GC-MS analysis, the samples were evaporated to dryness and 50 μl of CH2Cl2 was added. The injected volume was 3 μl. The whole sample set was analysed in exactly the same way, which makes it possible to compare between the samples. In our analysis the hyoscyamine content was measured as the sum of hyoscyamine and its isomer littorine, because of the difficult separation of these isomers in analytical systems. We observed no significant changes in the growth pattern between the transformed and untransformed roots. The contents of hyoscyamine in the hairy roots after 21 d was calculated and it was found that the hyoscyamine content was on average 25-fold higher in transformed roots compared to control roots, varying from 12-fold (clone C) to 62-fold (clone B). In addition to possessing extremely high hyoscyamine content, in the chromatogram of clone B also several (5-10) new peaks were found which are currently being identified.


Materials and Methods

Alkaloid Analysis



Nicotiana tabacum BY-2 cells were cultured in modified Linsmaier-Skoog (LS) medium (Linsmaier & Skoog, 1965), as described by Nagata & Kumagai (1999). First, the growth curve of BY-2 cell culture was determined (FIG. 2) and the late exponential phase was used in elicitation experiments. Since the ability of high auxin concentration to inhibit the biosynthesis of nicotine is well known (Hibi et al., 1994; Ishikawa, et al., 1994), the six-day-old culture was prior elicitation washed and diluted 10-fold with fresh hormone free medium. After 12 hours, the cells were treated with methyl jasmonate (MeJA). MeJA (cis-form, Duchefa M0918) dissolved in dimethyl sulfoxide (DMSO) and was added to the culture medium at a final concentration of 50 μM. Same amount of DMSO alone served as a control. Samples for cDNA-AFLP analysis were taken at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 24, 36, 48, and 98 hours after jasmonate addition or at 0, 2, 4, 6, 8, 10, 12, 14, 16, 24, 36, 48, and 98 hours after DMSO addition, respectively. For alkaloid analysis, the samples were taken at 0, 12, 14, 24, 48 and 98 hours. Three replicate shake flasks pooled together yielded the total culture volume of 75 ml. After filtering (Miracloth) under vacuum the cells were lyophilized. Lyophilized cell samples were extracted for GC-MS analysis by a modified method described by Furuya et al. (1971). Cells were weighed and 25 μg of internal standard (5α-cholestan) was added. The samples were made alkaline with ammonia (10% (v/v), 1 ml) and water (2 ml) was added. Alkaloids were extracted by vortexing with 2 ml of dicloromethane. After 30 min the samples were centrifuged (2000 rpm, 10 min) and the lower organic layer was separated and transferred into glass vials. The samples were concentrated to 50 μl and 3 μl aliquots were injected to GC-MS. In some cases (for derivatization of free fatty acids and more polar compounds) the samples were silylated prior to GC-MS analysis. After evaporation to dryness, 25 μl of dichloromethane was added and silylation was performed by N-methyl-N-(trimethylsilyl)-trifluoro-acetamide (Pierce, Rockford, USA) at 120° C. for 20 min.


Analysis of Polyamines


Approx. 200 mg FW cells were homogenised using a mortar and pestle with 10 vol 4% (v/v) perchloric acid (PCA), and the homogenate left on ice for 60 min then centrifuged at 20 000 g for 30 min. The pellets were washed twice by resuspending in PCA and centrifugation at 15 000 g for 5 min. The washed pellets were resuspended in the original volume of PCA. Aliquots (0.3 ml) of the supernatants and resuspended pellets were hydrolysed by adding an equal volume of 12 N HCl at 110° C. overnight in order to release PCA-soluble and -insoluble conjugates, respectively. Hydrolysed samples were taken to dryness and resuspended in 0.3 ml 4% PCA. Aliquots (0.2 ml) of the supernatants and of the hydrolysed supernatants and pellets were derivatised with dansyl chloride (Sigma) after alkalinisation with 1.5 M Na2CO3 (1 h at 60° C.), and dansylated amines extracted in toluene. Standard putrescine, methylputrescine, spermidine and spermine solutions (1 mM in 4% PCA) were subjected to the same procedure. Samples were injected into a fixed 20-PI loop of an HPLC (Jasco) for loading onto a reverse-phase C18 column (Spherisorb S5 ODS2, 5-μm particle size 4.6×250 mm. Phase Sepand eluted with a programmed acetonitrile-water 5-step gradient as follows: 60 to 70% acetonitrile in 5.5. min, 70 to 80% in 1.5 min, 80 to 100% in 2 min, 100% for 2 min, 100 to 70% in 2 min and 70 to 60% in 2 min, at a flow rate of 1.0 ml min−1. Eluted peaks were detected by a spectrofluorometer (excitation 365 nm, emission 510 nm), and their retention times and areas recorded and integrated by an attached computer using the Borwin 1.21.60 software package.


Analysis of Sesquiterpenes


The sesquiterpenoid alkaloids were detected by GC-MS. The extraction was performed as described in the section of alkaloid analysis. The preliminary identification is based on the MS fragmentation pattern.


Detection of Phenylpropanoids by TLC


Phenylpropanoids (coumarins and flavonoids) were extracted from elicited BY-2 cells or form the culture filtrate as described by Sharan et al. (1998). The methanol solutions obtained were concentrated and evaluated qualitatively by TLC using silica gel plates with fluorescent indicator UV254 (Polygram® SIL G/UV254, Macherey-Nagel, Düren, Germany) developed with ethylacetate:methanol:water (75:15:10). Spots were visualized under UV260 after staining with AlCl2 (by spraying with a 1% ethanolic solution).


RNA Extraction and cDNA Synthesis


Total RNA was prepared by LiCl precipitation (Sambrook, 1989). Starting from 5 μg total RNA, first-strand cDNA was synthesized by reverse transcription with a biotinylated oligo-dT25 primer (Genset, Paris, France) and Superscript II (Life Technologies, Gaithersburg, Md.). Second-strand synthesis was performed by strand displacement with Escherichia coli ligase (Life Technologies), DNA polymerase I (USB, Cleveland, Ohio) and RNAse-H (USB).


cDNA-AFLP Analysis


500 nanograms of double-stranded cDNA was used for AFLP analysis as described (Vos et al., 1995; Bachem et al., 1996) with modifications. The restriction enzymes used were BstYI and MseI (Biolabs) and the digestion was performed in two separate steps. After the first restriction digest with one of the enzymes, the 3′ end fragments were collected on Dyna beads (Dynal, Oslo, Norway) by their biotinylated tail, while the other fragments were washed away. After digestion with the second enzyme, the released restriction fragments were collected and used as templates in the subsequent AFLP steps. The adapters used were as follows: for BstYI, 5′-CTCGTAGACTGCGTAGT-3′ (SEQ ID NO:_) and 5′-GATCACTACGCAGTCTAC-3′ (SEQ ID NO:_), and for MseI, 5′-GACGATGAGTCCTGAG-3′ (SEQ ID NO:_) and 5′-TACTCAGGACTCAT-3′ (SEQ ID NO:_); the primers for BstYI and MseI were 5′-GACTGCGTAGTGATC(T/C)N1-2-3′ (SEQ ID NO:_) and 5′-GATGAGTCCTGAGTAAN1-2-3′ (SEQ ID NO:_), respectively. For preamplifications, an MseI primer without selective nucleotides was combined with a BstYI primer containing either a T or a C as nucleotide at the 3′ extremity. PCR conditions were as described (Vos et al., 1995). The obtained amplification mixtures were diluted 600-fold and 5 μl was used for selective amplifications using a 32P-labeled BstYI primer and the Amplitaq-Gold polymerase (Roche Diagnostics, Brussels, BE). Amplification products were separated on 5% polyacrylamide gels using the Sequigel system (Biorad). Dried gels were exposed to Kodak Biomax films as well as scanned in a phospholmager (Amersham Pharmacia Biotech, Little Chalfont, UK).


Quantitative Measurements of the Expression Profiles and Data Analysis


Scanned gel images were quantitatively analyzed using the AFLP QuantarPro image analysis software (Keygene N. V., Wageningen, N L). This software was designed for accurate lane definition, fragment detection, and quantification of band intensities. All visible AFLP fragments were scored and individual band intensities in each lane were measured. The raw data obtained were first corrected for differences in total lane intensities which may occur due to loading errors or differences in the efficiency of PCR amplification with a given primer combination for one or more time points. The correction factors were calculated based on constant bands throughout the time course. For each primer combination, a minimum of 10 invariable bands were selected and the intensity values were summed per lane. Each summed value was divided by the maximal summed value to give the correction factors. Finally, all raw values generated by QuantarPro were divided by these correction factors. A coefficient of variation (CV) was calculated by dividing the maximum value across the time course by the minimum value. This CV was used to establish a cut-off value and expression profiles with a CV less than 4.0 were considered to be constitutive throughout the time course. Although differential and constant bands can be discriminated by visual scoring, QuantarPro-mediated analysis is more sensitive and reliable. As such, transcript tags that had been identified as jasmonate-modulated after visual scoring were excluded from the final data set because they had a CV lower than our threshold level. Vice versa additional jasmonate-modulated transcripts were identified that had been missed by the visual scoring. Subsequently, each individual gene expression profile was variance-normalized by standard statistical approaches as used for microarray-derived data (Tavazoie et al., 1999). For each transcript, the mean expression value across the time course of the DMSO-treated samples was subtracted from each individual data point after which the obtained value was divided by the standard deviation. The Cluster and TreeView software (Eisen et al., 1998) was used for average linkage hierarchical clustering.


Characterization of AFLP Fragments.


Bands corresponding to differentially expressed transcripts were cut out from the gel and the DNA was eluted and reamplified under the same conditions as for selective amplification. Sequence information was obtained by direct sequencing of the reamplified PCR product with the selective BstYI primer or after cloning the fragments in pGEM-T easy (Promega, Madison, Wis.) and sequencing individual clones. The sequences obtained were compared against nucleotide and protein sequences in the publicly available databases by BLAST sequence alignments (Altschul et al., 1997).


Isolation of Full-Length cDNA Clones.


Two strategies were followed to obtain full-length cDNA clones corresponding to the short sequence tags isolated in the cDNA-AFLP analysis. In the first method the use of gene-specific primers, RT-PCR, 5′- and 3′-RACE (InVitroGen Life Technologies) techniques were combined to yield a full-length cDNA clone. For the second strategy a cDNA library from elicitor treated BY-2 cells was generated in the pCMV-SPORT6 vector (Gateway™, InVitrogen Life Technologies) using a mixture of samples taken at different time points after jasmonate elicitation. This library was screened by PCR or colony hybridization using gene-specific primers or probes respectively.

TABLE 1Sequences with homology to known geneSeq codeSEQUENCEAnnotationSEQ ID N°BAP1aTTATCTCGGCGGCGAATCTACCCCACTCTTCGAAGAenvelopeSEQ ID N° 1TAACGCTCATTTTGTTACCATACTCACCTCTCTGAApolyprotein likeCAAACACACAAATACACACGAACTCACAGTCCAAAproteinTAGCTAAAACAAAGGTTTTTGAATTGAAATTGAAGCTCAGATCBAP1bGATCCTCTGAGGCTATTATGCTTGCTGGATTAGCTTglutamateSEQ ID N° 2TCAAGAGAAAATGGCAAAATAAAACGAAAGCCCAdecarboxylaseAGGCAAGCCCTGTGACAAGCCCAATATTGTCACTGGTGCCAATGTCCAGGTGTGGTTGGGGCAAATTCGCCGCCGAGATABAP2GATCCAGACCATGCACACAAACACAAGATAGAAGabscisic stressSEQ ID N° 3AAGAGATAGCAGCAGCTGCTGCAGTTGGGGCAAATripening proteinTCGCCGCCGAGATABAP4aCAGAGCATGCACACAAACACAAGATAGAGGAAGAabscisic stressSEQ ID N° 4GATAGCAGCTGCTGCTGCAGTTGCGTAGACGGCGTripening proteinAGTGATCCAGAGCATGCACACAAACACAAGATAGAGGAAGAGATAGCAGCTGCTGCTGCAGTTTGGGGCAAATTCGCCGCCGAGATCAGBAP4bGAGAAGACCA AGAAGAAGCA AAGGAAGAATAP2-domain DNA-SEQ ID N° 5CTTTATAGGG GAATCCGACA GCGTCCATGGbinding proteinGGAAAATTCG CCGCCGAGAT GAGBMAP1AGGAGCTGAACACACACCAACACCAACACTAACAputative proteinSEQ ID N° 6GGAGCTCCGTGGAGCACTGGCTTATTCGATTGTCATAt1g52200 [A.TTTGGACCAAACTAATGCTACTACGACAGCATTTTTAthaliana]CCTTGTGTGACATGTGGACCGTCGGCTGCATABMAP2aCTAGTTTGGAATATGAGTTCTCTGCTCTTCGAGAAGputative potassiumSEQ ID N° 7CCACAGAATCTGGATTTACATATTTGCTTGGACATGtransporterTGGACCGTCGGCTGCATC1GGGGGAGAAG CGAAGGTCTA AATCTAACCA1,4-benzoquinoneSEQ ID N° 8AATCCCCAAA ATGGCTACCA AAGTTTACATreductase-likeCGTATACTAT TCAATGTATG GTCATGTGGAGAAACTAGCA GAAGAGATAA AGAAAGGGGCAGCTTCTGTT GAAGGAGTTG AAGCTAAATTGTGGCAAGTA CCTGAAACGC TGTCGGAAGATGTGCTAGCA AAAATGAGTG CACCTCCAAAGAGTGATGTG GCTGTTATAA CACCTCAAGAGCTTGCTGAA GCAGATGGTA TCATTTTTGGATTCCCTACG AGATTCGGAA TGATGGCTGCTCAGTTTAAA GCATTCCTTG ATGCAACTGGAGGTCTATGG AGAACACAAC AACTAGCTGGCAAGGCTGCC GGCATATTCT ATAGCACTGGATCCCAAGGC GGTGGCCAAG AAACTACACCGTTGACTGCG ATAACTCAGC TTGTTCACCACGGGATGATC TTTGTACCTA TCGGATACACATTCGGTGCT GGTATGTTTG AAATGGAGAAAGTGAAAGGA GGAAGTCCAT ATGGGGCGGGAACATTTGCT GGGGATGGCT CGAGACAGCCATCCGATCTT GAATTGCAGC AGGCGTTTCACCAAGGTAAA TACATTGCCG GTATTGCCAAGAAACTCAAG GGTGCAGCCT AATTTCTCTCCTGCAAAGAT AATCTTTGCA TTCACACATTTCTTATAAAA TTTGAAAAAA GTACAAAATTTATCTTTGTG ATTGTTGAAG TCTTTTTTTTTTCCTTTATT GGGTATGAAA TCTCATCTATATGTGTCTGA TTCACAGTAA TTGTGTGTGTCAAAAGTACC AAATTGTGTT TTAAAATGGTTGCAAATACA AC10GATCCCAGAA TAGCGTTGAG ATAGATGATCcystatinSEQ ID N° 9TTGCACGTTT TGCTATCCAA GATTATAACAAAAAACAGAA TGCTCTTTTG GAGTTTGGAAAGGTTGTGAA TGTGAAACAA CAGGTAGTTGCTGGAACCAT ATACTATATA ACACTCGAGGCAATTGAGGG CGGAAAGAAG AAAGTATATGAAGCCAAGAT ATGGGTTAC101GATCCAATCG TTGGAATTTT GACAAGGCATchloride channelSEQ ID N° 10GACTTTATGC CAGAGGATAT AAAGGGACTGprotein C1C-1TACCCACATT TGGTCCATCA CAAGTAGCAGAGAGAAGCTA GCTCTTCCAA CAGGCAATCGGGCAACCATT ATTTGGGGAG TGTTATACACACATTCCACA TTGAGCTCTG TACACAATCTTCCCAAATTT TCTCATTGAC AAAATTGAATTTAGTAGTCT CAATTAGAGC AAAAATTCTCCCTTACTTTG AATTGTTGAA CTTTCTTGTTTTTGGTGGTT TAC102TGACGATGAG TCCCGAGTAA ACAAAATTGCputative proteinSEQ ID N° 11CATCTCCATC ACATCCTAGT GACACTAGTTAt5g47690 [A.CACAGAGTTT GGCATCATGG ATGTCCAGACthaliana]AATTGTGTAG ACCGACTGAA ATATGTCTGTTTATGAACTA AACACAAACT AATGACTTTCCTACATGTGG CGCTAATTGA AGAGAAGAGATCCAAATACC CGTTATGAAG GCATATCAACACTACTACCA ATGAGTGTAT GGAACTTATAGAGCATTTAT CATCCTCTTC ATCTCAGTGGACCTCCTTGG ATCACTACGC AGTCAC104GATCCAAGTG ACACCACTAA GCAACAATGAmethylcrotonoyl-SEQ ID N° 12CTATAGAGTT GAAGTCAATG GTCTAAGCCTCoA carboxylaseGAATGTCTGC TTGGCTGCTT ATTCCAAGGATCAAATTGAG CATATTCACA TCTGGCAGGGCAACTGCCAG CATCACTTCA AACAAAGGATGGGCCTTGAA ATCTTTGATG ATGATGAAACGATAGACAAG CCTGCTCGCA TGGCAACATCTTATCCTTCT GGCACAGTGG TTGCACCCATGGCTGGTCTA CTGGTTTAC105GATCCAAGAA GAGAAAATGT CTGGTGAAGA40S ribosomalSEQ ID N° 13GGCTGTTGTT GCTGAGACCC CAGCTCCCGCprotein S12TGCCGCTCTT GGTGAGCCCA TGGATATCATGACGGCATTG CAACTTGTCC TCAGGAAATCACGGGCTCAT GGTGGGTTAG CTAAAGGCCTTCACGAGGGT GCAAAGGTCA TCGAGAAGCATGCTGCCCAA CTTTGTGTAT TGGCAGAGGACTGCGACCAA CCAGACTATG TGAAATTGGTCAAAGCGCTA TGTGCTGATC ACAATGTTAC106GATCCAACCCAATAACACCTTCAAATGCCACATGGputative proteinSEQ ID N° 14TCCAGCTGAATGTTTTTTGGACACTTTAGAGGGTTGAt1g07080 [A.TGCAATTTGATGCCTGGCCAGATTTGAATGAACATTTthaliana]TCCTTTCATTTACTGTGTGGAAAGTTTGGTCTACCATAAGAATTATACCCAGTGGGAAACATGTTTTTGAAAAACTGAATTTGAAGGCAAAGCTTGTTAC107TTTGAACCCTGATAACAAAGCTGGGAGGATTACAA3-deoxy-D-arabino-SEQ ID N° 15AATTTACCAGAATGGGAGCAGAGAACATGAGGGTTheptulosonate 7-Aphoshate synthaseC108AATTACAATA CTTATAGTTT CGATGGAAAGputative proteinSEQ ID N° 16AAGAAGCTTG TGCTTTCTAC AACTAGCTGGAt1g54320 [A.ATTGGCGGAA AGAATGATTT TCTTGGTATTthaliana]GCTTATCTTA CTGTAGGTGG ATTGTGTTTCTTTCTGGCCA TGGCTTTCAC GATCGTGTATCTAGTTAAGC CAAGGCAGCT TGGAGATCCAACATACTTTG CGTGGAACCG GAACCCGGGAGGTAACTAGT ATGCAAATGA AGTCTTTTGGCTTGAGCGCT TTACCATCTA AGGTTGATGTTGACAAAGCT TGTGTCTTGT AGCAGCTATCTGTCTACAAG TTCTTTTTTT TTGAAATGTTCTGCATATAC TTTTAAACTC AATTTGCTAGGAAAACAATG ATATGTAATG AAGTATTTTCCCTTTGTTAA GTGTTTATCC AAAATTATGTATGTACAATG GAAGTAATTG CTTAAAGGACTTGAATGATG CCC109GATCCAAGTGCGGACGGTGTTCACCATGTAAACCGputative proteinSEQ ID N° 17GTTCGAGTCTCCGTTCAACCTGGTTTTACCTCTACTAt3g22820 [A.TTAGAGTACTACCCTGAAGCTTTGGAGGTGCAAGTGthaliana]TCGCAACAAACTCTTCATGCCTTAC11GATCCCACAA TATTCATATG TAACTCCGACputative proteinSEQ ID N° 18GAAATGGAAT TTGGTGACGT GGTTTCAGCCAt2g23690 [A.ATAAGTGCCG ACGAGGAGCT TCAACCGGGTthaliana]CAACTTTACT TTGCGTTGCC TTTGAGCAATCTGAAACGTA GGCTTCAGGC TGAGGAAATGGCAGCATTAG CCGTTAC110bTAAGGCTCTCTTCAGAAGCTACGTGTGCCGATGATCCTR1-like proteinSEQ ID N° 19CCAATTTCTTGGATCkinaseC110cTAAGGTGGTTGAGTTTGAACTTCCACGGCAACAATputative proteinSEQ ID N° 20GTATAGTCTACTTGGATCAt2g46260 [A.thaliana]C111GATCCAAGAA TAAAGGGTCT ATTTTTTCACputative proteinSEQ ID N° 21CAAACAACAT TCAGTATTGG CTTGTCCAAAAt2g46750 [A.GTAAAAAACT TTATACAAGA TGTGCAAAAAthaliana]CTTGTGGTTT TACAGCCTAA GGCATTATGTGGTTTAGACC TATACAGTGG AATCCTAATGAGGTATGTCA CAGCTTCAAA TGCTTACTTGGGACATCAAG AAGATGCAGT GGATTTTGATATAACATATT ATAGAAGCAA AAATCCATTGACTCCTAGGT TATATGAAGA TATTCTTGAAGAAATAGAGC AAATGGCGAT GTTCAAATATGGAGCAGAAC CTCACTGGGG GAAGAATCGTAATGTGGCAT TCATTGATGT GATTAC112TAGCGGATAACAATTTCACACAGGAAACAGCTATGmyosin-heavy-chainSEQ ID N° 22ACCATTAGGCCTATTTAGGTGACACTATAGAACAAkinase-like proteinGTTTGTACAAAAAAGCAGGCTGGTACCGGTCCGGAATTCCCGGGATTTCTTCTTCATCATCGATTTTTAGCTCAAATGTCGTCTGCTTCTACAGAAAATCGTAGCCTTTGGACAGAGATCCGAGAATCAATAAGGAGCATATTGAAAGCTAATTGTGGCCATTTTCATACTCTTTTTATCCTCTTCCTCTTGCCTATCTTTTTCTCTCTCGTCGTTTATCCTTCTTTCCACCTTGCCCTCTTTCATCCGGACTATGATTTCACTCAACCAGTTCAATTTTCACACTTTTTAAGTTCACACTTCGAAATTATTGTACCCATAGTATTTACTCTGTTTCTGGTCCTCCTTTTCCTCTGTGCTGTAGCCACGATACATACAGCGCGCTTCATGTATCCTATGGTAGACCTATCAACCTCGTTTCCTCTATTAAATCTATCAGAAATTCCTTCTTCCCCCTTCTCTCCACCTTTATCGTTTCGCATACCATTTTCATTTCAATCGCTCTCGTTTTCTCCCTTGTCTTGGTTTTTTTAGTCCAGGTTCTTCAAACTCTTGGATTAATTGAACTAAAATACGACTCGAATCATTTCTTGTTTTTGGTTATTCCCGCGTTGATTGTGCTCGTGCCAGTTTTGATATGGTTGCAGGTTAATTGGTCATTAGCTTATGTGATAGCAGTAGTCGAATCGAAATGGGGTTTCGAAACACTAAGGAGAAGTGCCTATTTGGTAAAGGGGAAGAGATCGGTAGCTTTGTCGATGATGCTGTTATACGGGCTTTTGATGGGAATAATGGTGGTTTTAGGTGCCATGTATTTAGTCATTATGGATGCAGCGAAGGGTCGTCAATGGAGAAGTTCAGGGGTAATATTACAGACTGCTATGAGTTTCAATAACTAGCTATCTCATGATGAGTCAATTTCTTGTGGGGAATGTTGTTTTATATCTGCGTTGCAACGACTTGAATGGTGAAAAATTGCCCTTGGAAATCGAGCATCTTCTTCTTCATCAATCTTTAGCTAATGATCACCCACCTCCAATGTTGTCAGCTTCAACGAAAAATCTTAGCCTATGGACAGAGGTCGTAGAATCAGCAATGAGCATATTCAAAGCCAATTCTGGCCATTTCCATGCTCTTTCAATCCTCTTCCTCTTGCCTATCTCTTTCTTTCTCGTCGTGTATCCTTCTTTCCACCTTGCTCTCTTTCATCCGAACTATGATTTCATCAGTTTCGCTCAACGCCATCTTTTCCTTTCAAATTTCGAAATTATTGTACCAACATCGTACTCTTTGTTTTTGGTCCTCCTTTTCCTATGCGCCGTAGCCACAACTACATATAGCGCGGTTCATGCATCCTATAGTAGACCTATAAACCTCGTTTTGTCGATAAAATCGATCAGAAAGTCTTTGTTCCCCCTTCTCTCCACCTTACTCGTTTCGCATACCATTTTCATTTCAATCACTCTTGTTTTCACCCTAGTCTTGACTATTTTAGTTTCAAATTCTTCAACCTCTCGGACTAATTGAAATCAAATACGATTCGGATCACTTCTTGCTTTTGGCTATTCCTGCTTTGGTAGTGCTCGTGCCAGTTCTGCTATGGCTACATGTTAACTGGTCATTAGCTTATGTGATAGCAGTAATTGAATCGAAATGGGGTTACGAAACATTGAGGAGAAGTTCCTATTTTGGTGAAGGGGCAAAGATGGGTAGCTTTTGGGATATATTTTATATTACGGGCTTTCAATGGGAATAATGATGGTTTGTGGTTCAATGTTTTTTGTCATTATGGGTGTAGCGAAGGGTAATAAGTGGAGGAGCTTGGACGTGATACTGCAGACTGCGCTAGTTTCAGTGATGGGATATCTGACGATGAATCAATATCTTGTGGCGAACGTGGTTTTGTATATGAAATGCAAGGATTTGAGCGTTGAAAAATTGCAGTCGGAAACTGGAGGCGAGTACGTTCCCCTGCCCTTGGATGAGAAGAATCAAGCTATTTGAATAATLTGTAAACAGTGAATCTGGTAGGCTATTTGTGTAACACTTCCTTTGATTAATGCTTTGTACGAGTATAATGTTTGGTTGTCTTTGTAGAAAGTTAAACGTGTGTGCTAAATGTTCTGCTCGTCTTTCCTGTTTGTTGAATATTTGAATAAAAACC114GATCCAAAAGTATGCACGATCTTTCAAGCCATGATdiacylglycerolSEQ ID N° 23AATCATGATGGTGATGATGGGGATAGTGGTGAAGAkinaseGGATTCGGTTGTGGAAGAGCAGAGGAAGTTTGGGGCAGCAGACACATTTCAAAATTTCCTGATGAAGTTTGACATTTCTCATCTCAGTTGATTCTGTTATCTCTCGTCGTTCAAAATTTTGCTTTCTACTACAACCTCCATATTAC116aGATCCAAGATGGGAAGAGGATTTTACTTTTTGTGTTTGputative calciumSEQ ID N° 24GAGGAGCCTCCTGTGAATGATAGGCTGCATTTGGAlipid binding proteinAGTTCTCAGCACCTCAATGAGGATTGGCCTATTGCATCCTAAGGAGGTATTGGGTTATATTGATATAAGCCTTTCCGATGTTGTTAC116bGATCCAAGCCAAAGTTGGAACAAGGCTCTCAAACTsubtilisin-like serineSEQ ID N° 25ATCACAAATAGCATCGACCAAGAAGGAGTTTGAAGproteaseCGCTTGGTGTTTTATTTTCTAGTCATTATTATATGAGTACAATGACAATATGAACAATAAAGTATTGTATAGTATGGTTTTATATTAC117aTAATGCCTAAAGTGTCATCTTATAATGCTTTGGATChomeodomainSEQ ID N° 26ACTTGTCATTATTTTCTTCAACTTACACTCAGTTATTproteinGGATCC117cGATCCAAGTTGTGGCGGCAAGTTGGCGAGTCGTTTputative DNA-SEQ ID N° 27Abinding proteinC117dGATCCAAGTTCTTTGAGCAGGGTCTAAATAATCTATputative proteinSEQ ID N° 28CATTGGAGGAAAAGGCCAACCGGAAGGATTCGGCP0410E01 [OryzaGATATTAsativa]C118cGATCCAAGCAGATATTGAGATGAAATGTTTTCAGTputative eukaryoticSEQ ID N° 29TTGATCGGTGTTATTCACATTAtranslation initiationfactor 2 alphaC118dGATCCAACGAAAAACAAGAAGCGCCCTGATTTTGTputative celluloseSEQ ID N° 30GAAGGATCGACGTTGGATTAsynthaseC119GATCCACAATCTCTTGGAATGGATTGCAGTGACACputative ABCSEQ ID N° 31TATTCTCGGAAATCCAACAGAATGTGAACTATACAtransporterAAGCCCTTGGAAGTACAATTCACAACAACTTGTCTGGCTTTAGCGAGAATACTGTTAGAAAATCCATCTATACTGATATCGTAGTGTTTAC12GATCCCAACT ATTGACACCA TACCCCGGAAaldehyde oxidaseSEQ ID N° 32TTTCAACGTT CATTTGGTAA ACAGCGGACATCATGAAAAA CGGGTTCTCT CTTCCAAAGCATCTGGTGAA CCGCCACTGC TATTGGCAGCTTCAGTCCAT TGTGCAACAA GAGCAGCCGT TAC120TAACGAAGTTGCCAAGGGTTTTGGTGGATC40S ribosomalSEQ ID N° 33protein S2C121GATCCACACCCACATGTGCTACTCCAACTTCAACGmethionine synthaseSEQ ID N° 34ACATTATCCACTCCATCATAGACATGGATGCTGATGTGATCACCATTGAGAACTCACGTTCTGATGAGAAACTCCTCTCAGTTTTCAGGGAGGGAGTGAAGTACGGAGCTGGCATTGGTCCCGGTGTCTATGACATCCACTCTCCAAGAATACCATCCACAGAGGAGCATAGCTGATGAGGTTAC124bGATCCACTAATTATTGGAACACAAGTAAAGCCACGmembrane proteinSEQ ID N° 35CGATGAATTGTTTTGGTTTGGGAAACCGAAGATACMlo4TATTACGGTTAC125TTACGTTTCTGTTTCTGAGTCTGGTTCTCAGGACTmethionine synthaseSEQ ID N° 36CATCGTCAAGAACTCACGTTCTGATCAGAAACTCCTCTCAGTTTTCAGGGAGGGAGTGAAGTACCGGAGCTGGCATTGGTCCCGGTGTCTATGACATCCACTCTCCAAAGAATACCATNCACAGAGGAGATAGC126TAAGCCCGCACGAGAAGGTGATTTGGAGGGAATTCcathepsin B-likeSEQ ID N° 37CACTTCTAACTCATCCTAAACTTTCGGAGCTACCAAcysteine proteinaseAAGAGTTTGATGCACGAAAAGCTTGGCCTCAATGTAGCACTATCGGAAGAATTCTGGATCAGGGACATTGCGGTTCTTGTTGGGCTTTTGGTGCTGTTGAATCGTTGTCTGATCGTTTCTGTATCCATCACAACTTGAATATCTCTCTGTCTGTAAATGATCTGCTAGCATGCTGTGGCTTTTTATGTGGATCC127AGCAGGCTGGTACCGGTCCGGAATTCCCGGGATTGauxin-responsiveSEQ ID N° 38TGTGTACAAATTACTAATATAGTTTCTTCACAATTAGH3-like proteinTGGAAAGAAACGTAGCTAATGAGGCACCAAAGGCCACAATAATGGCGGAGGATTACAAGAAGGATCTTGAGTTCATTGAAGAGGTGACTAGCAATGTTGATGAGGTCCAAATGAGAGTTCTTGCTGAAATCCTCTCCCAGAATGCACATGTTGAGTACTTGCAACGCCATAATCTCAATGGCAGCACTGATAGAGAGACATTCAAGAAAGTCGTACCTGTCATCACTTATGAAGATATTCAGCCTGATATCAAACGCATAGCCTATGGTGATAAATCTCCTATCCTCTGCTCCCAACCCATCTCTGAATTATTGTCAAGTTCTGGCACCTCTGGAGGGGAGAGCAAATTGATACCAACAACAGAGCCAGAGATTGGGAAGAGACTACAGCTTCACAAACTTGTGATGTCTGTGTTGAGCCAAGTGGCTCCAGATTCTGGAAAGGGCAAAGGAATGTATTTCATGTTCATAAGCCCTGAACAAAAGACCCCAGGAGGATTATAGCTCGCTTTCTTACAACTAGTTATTTACAATAGTCCTTACTLTCAACTACAGTCGTCTTCATAACCCCCATTGTAACTACACTAGTCCAACTGCAGCCATTCTCTGCCCAGACTCTTACCAAAGCATGTATTTCCCAAATGCTTTGTGGCCTCTGCCAAAACAACCAAGTCCTCCGTGTTGGCTCCTTTTTTGCGACCAGCTTCGTTCGTGCCATCCGATTCCTGGAGAAGCACTGGTCTCTACTTTGTAACGATATCCGAAGCGGAACCATTAACACTCAAATAACTGATCCTTTAGTGAGAGAGGCAGTGATGGAAGTCCTCAAACCTGACCCAACATTAGCTGATTTCTTGAGGTTGAATGCACCAAAGATTCATGGCAAGGGATCATCACTAGGTTATGGCGTAATACCAAGTATGTGGATGTTTATTGTGACTGGATCCATGTCACAATATATACCGATACTTGATTATTACAGCAACAATCTCCCTCTTATCAGTACTCTGTATGCTTCCTCGGAAAGCCACTTTGGAATCAACTTGAACCCTTTTTGTAAGCCCAGTGATGTCTCTTACACCCTTATTCCCACCATGTGCTATTTTGAGTTCTTACCGTATCGCGGAAACAGTGGAGTCATTGATTCTATATCCATGCCCAAGTCGCTTAATGAGAAAGAACAACAACAATTGGTTGATTTGGCTGATGTCAAGATTGGCCAGGAGTACGAGCTTGTTGTTACCACATATTCTGGACTCTACAGATATAGAGTCGGTGATGTGCTTCAGGTTGCTGGATACAAGAACAACGCGCCTCGATTCAACTTCCTATGCCGGGAAAATGTAGTCTTGAGTATTGGTGCTGACTTCACTAATGAAGTTTGAGCTACAAAACGCAGTGAAAAATGCAGTGGGCAATCTGGTGCCATTTGATTCTCAGGTAACCGAGTACACCAGCTATGTCGATATTACCACCATTCCAAGCCACTATGTCATATTCTGGGAACTGAATGCGAATGACTCTACCCTGGTTCCTCCTTTCAGTCTTTGAAGATTGTTGCCTCACAATTGAAGAATCTCTTAACTACTTCTACCGCGAGGGCCGTGCGTCTAATGAATCCATCGGGCCTCTAGAAATTAGGGTGTTGGAAATTGGAACTTTTGACAAGCTCATGGACTACTGCATGAGCTTAGGTGCTTCCATGAACCAATACAAGACGCCCCGCTGTTTGAAATATGCACCCCTTATTGAGCTATTGAACTCTAGGGTCGTGTCCAGCTACTTCAGTCCCATGTGTCCAAAATGGGTTCCTGGCTACAAGAAATGGGACGGCAACAATTAAATGTCAAACTTCCGATTTCCCTGCTTGTACCTTCATTCACTATCCAGAAAAAAGACAACCATTTGTGGATTATTTAGTCAATCGTCATCCTAGCTAAGTTAGTCTTTCGTGAACATGGTATGGATTTGTATTTGTCACAAATAAAATATGGCACTTTTTATTTTCAAAAAAAAAAAAAAAC129bGATCCACCAAGAAGAAAGCATATGGTGTATCTTGGactin related proteinSEQ ID N° 39AGGTGCGGTTCTGGCAGGAATTATGAAGGATGCCCCTGAGTTTTTGGATCAATAGACAAGATTATTTAGAAGAGGGAGTTGCTTGCTTAC130GATCCACACAAAGCAGCTAGAGTTTGGTTAGGCACputative AP2SEQ ID N° 40ATTTGATACAGCTGAAGCTGCCGCTAGAGCTTATGdomain containingATGAAGCTGCTCTTCGATTCAGAGGAAACAGAGCTproteinAAGCTCAATTTCCCCGAAAATGTCCGCTTATTACCACAACAACAACAACAATATCAACCCACAACAAGATCAGCC ATTCCAGCTCCTCAGCAGCTTCACAATTCCCATTAC131TAATCCTTTG AGCGAACGTA TAGTGGAGCTH+-transportingSEQ ID N° 41TCAATATGAT ATACGACTGA AATTAGGAGCATP synthaseCTTGATGCCT AAGGAGAGTG CCCAAAAAGTprotein 6TTTGGAAGCT TCCGAAGCTT TACATGGGGAAAGCAACAAT ATCGCCTTTC TTGAATACCTTTTGGAAGAT TTGCAGCAAA ACGGAGTAGGGGGAGAAGCC TATAAAGATG CGGTGGATCC133GATCCACAAGTGATCCATCATTCTAAAGGCCATACputative proteinSEQ ID N° 42CATACCAAAATTAGATGATAGCAGCCTTGAAATAAAt4g24380 [A.TGCTTGGGTTTATTGAAAAAATTCAAAACCTGTGAthaliana]GACTGCACGAGGAATTAC134GATCCACACCCCATATTGTTCACGCTCACCTCACTGputative proteinSEQ ID N° 43ACGAGCCACCATTAPH1760 [P.horikoshii]C135aGATCCAGTATTTGATAGTAGAAATGTCGCGTAAGGhigh affinity sulfateSEQ ID N° 44AATTTCCAAAAACTATATTCTTCGAATTTTCTGTCCtransporterCTGAGGTTTTCATTGAGTAACTTGATTCTTGCTCTCTTGCAGCTGTTACTGATATAGATACAAGTGGAATTCATTCCTTAGAGGATTTGTTTAC135bGATCCAGGAAGTTGGAAGATATTGGTAATCAGTACNBS-LRR typeSEQ ID N° 45TTTGATGAGTTACTATCAAGGTTTTGCTTCCTAGATresistance proteinGTGGTACAAGCTTTTGATGGAGAAATATTGGCTTGTAAGTTACACAATCTTGTGCATGATCTTGCACAGTCAGTGGCAGGTTCTGAATGTTTAC136GATCCAGGTA GTTTCAAGAC ATTTGATCTTPeroxidaseSEQ ID N° 46AGCTATTACA AGCTTCTGCTCAAAAGGAGAGGCCTATTCC AATCTGATGC AGCTTTAC137GATCCAGGAA AGGAGCATTG AGAAGGTGTATobaccoSEQ ID N° 47AAATGGATAT TGTGATATCTCAAAGGCCCCretrotransposonTCAGGTATGG CACTTTGTTT ATtolC140TGACTGCGTAGTGATCCAGGCAGCACTGGCTGAGTglutaredoxinSEQ ID N° 48GGACTGGTCAGCGCACTGTGCCAAACGTCTTGATTGGCGGGAAGCACATTGGTGGCTGCGACGCCACAACTGCGTTGCACAGGGAAGGGAAGCTTGTTCCTCTGCTAACTGAGGCTGGAGCACTTGCTAAATCTTCTTCTGCTTAGAGGATCAAATAGTCAGTTGTTTTTTTTAGTAAATCAGTCTCGTGAACTTAC143CCTGACTCGGTTTCGTGATGCTAGCTCGTGAACCAATputative chorismateSEQ ID N° 49CATTTCCTCGAACCGACCGGCCATTCAAAACAAGCAmutase/prephenateTCGTATTCGCACATCACGAAGGAACAAGCGTCCTTdehydrataseTTCAAAGTTCTATCGGCGTTTGCATTCAGAAACATAAGCTTAC144TAAGCAAAAGAAACTCCAAGTATAGCACCCACAGAcaudal proteinSEQ ID N° 50TGAGAAATGGGGCTCACCAAAACAATCCTCTCAAACCAACAATACCTCAACCGTCGAGTGGCGTCTCAACACCTGGATCC145GATCCAGGTG GCTTGACCAT TCTCCTGCCGleucoanthocyanidinSEQ ID N° 51GACCAGGACG TCGCCGGCCTTCAGGTCCGCdioxygenase-likeCGCAACCGCG ATTTGGATCAC TGTAAAGCCAproteinGCTTCTCATGCTTTCATTTGT CAATATAGGTGATCAGATTC AGGTATTAC147bTAATCAGGGGCAATGTTGCTGTGCTGGATCaldehydeSEQ ID N° 52dehydrogenaseC147cGATCCCCTCATCAAGGCCAATGACACCATTAribosomal proteinSEQ ID N° 53S4C149TGTGATCACAATTGAGAACTCACGTTCCAATGAGAmethionine synthaseSEQ ID N° 54AGCTCCTCTCAGTTTTCAGGGAGGGAGTGAAGTATGGTGCTGGAATTGGCCCTGGTGTCTACGACATCCACTCTCCAAGAATACCATCAACCGAAGAAATTGCTGATAGAGTGAACAAGATGCTTGCTGTTCTTGACACCAACATCTTGTGGGTCAACCCTGACTGTGGTCTCAAGACCCGCGAGTC150CCAGGTGGTTTACATACAAAACATATTCCAGCTGTCputativeSEQ ID N° 55AGCAGTTTACAGGAGCATATAGTTCGGAATCCAACaminotransferase-ACAGGCAAGATATAATAGTACAGAGGCATCTTTGClike proteinAAAATGATATTCCAGCAACTGATAATAGAGGGTTTAGGGGTCATGATATGTTGGCACCCTTCACTGCTGGGTGGCAAAGTACTGATGTGGATCC157GATCCACAGA AATAGGAGGA AAAAATGAGAputative proteinSEQ ID N° 56AAATATCTTC TGCTTAGAGTGTTGTCAAAGAt1g31040 [A.CTTTTGCCCT CACTGCCTTC CTTCTCATCAthaliana]TTTTTGTCCTCTTCTCTTGG TCTCTCTCTGTATAATTATG TAGTAGATAA AAGCC159GATCCACAAC AATGCATCAC AACTATGGATputative protein 103SEQ ID N° 57TCCAATTATT CGATTTTTTC TTTCCCTCGC[Nicotiana tabacumAATATGATCT Achloroplast]C15bGATCCCACAAATGGAGGGTATATTTGACAACTATTTChaperoninSEQ ID N° 58CCGTGAAGCGTCAGATTGTTAC16TTGATTCGGATTGAGGGAGTGAATACTAAAGAAGAputative ribosomalSEQ ID N° 59AGTGGATTGGTACTTAGGAAAGCGTCTGGCTTATAproteinTTTACAAGGCCAAAACAAAGAAGAATAATTCAGCATTATCGTTGTATTTGGGGTAAAGTTTGTAGGCCACATGGTAACAGTGGTGTTGTTAC160GATCCAGGTCTGGTTTTATGATATTGAAATGAAGGAsubtilisin-like serineSEQ ID N° 60TTACGTGAATTTTCTTTGCGCCATTGGTTATGACCCproteinaseCAAAAGGATTTCACCGTTCGTGAAAGATACTTCTTCGTGAATTTGCAGTGAAAAGAGTTTTAGTTAGTCCAGGGGATTTGAATTATCCGTCGTTCTCAGTTGTTTTTAGCAGTGAGAGTGTGGTAAATACC162aGATCCAGCACCATGAATACATGGGCTTCGAGAACCputative proteinSEQ ID N° 61GCAAATATGATCCTTAAt2g25740 [A.thaliana]C162bGATCCACAGAGTATTTGCAGCCAAGAGTCGTAGAGAputative proteinSEQ ID N° 62ACGGATCAGTGAACGCCTTAAt5g37800 [A.thaliana]C163GATCCAGACC CAACAAAGAT GAATGTGCCTglycosylated gagSEQ ID N° 63TTTGTCGAGA AAAAGGGCACTGGAAGAAAAproteinGACTGTCCGA AGTTGAAGAA TAAGGCCAAATATAATAATGGAAAGGCCAT TATGGATTGAAATGTAGCTG ATTGTGATGATTCAGACTTTCTCATTAC165TGCATCCAAC GCGTTGGGAG CTCTCCCATAputative ligand-SEQ ID N° 64TGGTCGACCT GCAGGCGGCC GCGAATTCACgated ion channelTAGTGATTAG CGGATAACAA TTTCACACAGproteinGAAACAGCTA TGACCATTAG GCCTATTTAGGTGACACTAT AGAACAAGTT TGTACAAAAAAGCAGGCTGG TACCGGTCCG GAATTCCCGGGATTTTTTAT TCTTTCAGGT TTAGTTTCTCAACAATGTTT TTGGCACACA GAGAAAACACAATGAGCACC TTGGGACGCT TAGTGCTCATCTTCTGGCTC TTTGTCGTTC TAATTATCAATTCGAGCTAT ACAGCTAGCT TGACATCTATCCTGACGGTG CAGCAGCTGT CTTCAGGAATTCAAGGAATT GACAGTTTAA TTTCAAGTAGTGATCAAATA GGAGTCCAGG ATGGGTCATTTGCATATAAT TACCTCATTG AAGAGCTAGGTGTTTCAGAA TCACGGCTTC GTATATTGAAAACTGAAGAT GAATATGTCA GTGCCCTCGAGAAAGGTCCA CATGGTGGTG GTGTTGCTGGCATTGTCGAC GAGCTCCCTT ATGTTGAGCTCTTCTTATCC AACAACAAAT GCATATTCAGGACAGTAGGG CAGGAGTTCA TAAAGGGCGGATGGGGCTTT GCATTTCAAA GGGACTCTCCGCTGGCTGTT GATCTGTCAA CTGCAATTCTTCAACGGTCA GAGAACGGTG AACTCCAAAGGATTCATGAC AAATGGCTAA CGAACAACGGATGCTCTTCA CAAAACAACC AAGCTGATGATACTCAGCTT TCTCTCAAGA GCTTCTGGGGCCTATTTCTC ATATGCGCCA TTGCTTGCGTCCTTGCTCTT ATAGTGTTTT TCTGCAGGGTATACTGTCAA TTCCGGAGGT ATCACCCCGAGCCAGAGGAG CCGGAGATCA GTGAACCTGAATCTGCACGA CCTAGTAGGC GTACCCTCCGCTCTGTTAGT TTTAAGGACT TGATAGACTTTGTCGATAGA AGAGAAAGTG AAATTAAGGAAATACTCAAG CGTAAGAGTA GTGATAACAAGAGACATCAA ACTCAGAACT CAGATGGGCAGCCGAGCTCG CCTGTTTGAA ACAAAAATTTGTGGTCGGGT TTGTTAGCTC TTGCTCAATACACTTATGGT TGATATGTAA ATGATGCATGTACAATTTTA TTGTTGAATT ACCTCATTTC ACACC166GATCCATCGTCTTGCTCGCTATTACAAGAAAACAA40s ribosomalSEQ ID N° 65AGAAGCTCCCACCTGTCTGGAAATACGAATCAACCprotein S13ACTGCTAGCACGCTTGTGGCTTAGGGTGAGCCTTGGGCTGGAGTAGTTTTGGCTGATGGCAATATGTTGTTTTCTCGTGTCATGAATTACTTTGTTACTCAGGACTCATCGAAGCTCCACTCGTTCTGCTCGGTGACCTCGTCGTCGTTGTCGTGTTTAC169GATCCATGCA GCAATCAAGC GCTTTGAAGTGlutathione S-SEQ ID N° 66TGACATGAAT CAATTCCCCA CTCTGTTGAGtransferaseGGTATTTGAG GCTTACCAAG AGCTGCCTGCTTTCCAGGAT GCTATGCCAG AAAAGCAGCCTGATGCCACT GCCTGAGGCA AGAATCTCAGGCTATCCATC TCCTTGAAAG TTCCCTTCTCAAACCGTTGA CATACCTGCT GGACTTGCATTTCGGAGAAT TGTTAGCTTT TTCTATTTCTAAAGGCATTA TGACAAGGAT GAGGATGGCGCCTGGTTTCT TCAGGCTAGAC17GATCCCAACC AGTGCTGCTC CGCCGTGGTGputative proteinSEQ ID N° 67CTATCCATCT CCGCCCCGAT TGACGCCGTGAt2g38310 [A.TGGTCCCTAG TCCGCCGTTT CGACAACCCGthaliana]CAAGCGTACA AGCATTTCCT TAC170aGATCCATGGC GGCTGTTCAC TCAGTCCTCCputative glycosylSEQ ID N° 68GCCACGCGTC CTGTCCAGAACACGTCTTCTtransferase ?TCCACTTCAT CGCCGCTGAG TTCGACGCGACGAGCCCGCG AGTTTTGACA AAGCTGGTCCGATCCATTTT CCCTTCGCTC AACTTCAAAGTCTACATTTT CAGAGAAGAC ACAGTCCTAAATCTCATCTC TTCATCGATC CGACAAGCTCTCGAAAACCC GTTAC170bGATCCATTTT GCCGACTTCC CTTGCCTACAprobableSEQ ID N° 69TTGTTCCATC GACCAGAGGCTGTTCACCTTcytochrome P450GGAGACCTGA TGCGGTTATG AGTACGACCGmonooxygenaseGGCGTGGACG GCACTCGGTC CTCCGGATTTTCAAGGGCCG CCGGGGGCGC ACCGGACACCACGCGACGTG CGGTGCTCTT CCAGCCGCTGGACCCTAGCC TCCGACTGAG TCGTTTCCAGGGTGGGCAGG CTGTTAC174GATCCATGAA CCCTGCAAGG GCATTTGGGCbeta-tonoplastSEQ ID N° 70CTGCTCTCGT CGGCTGGAGGTGGAGGAACCintrinsic proteinACTGGATTTA CTGGTTGGGC CCTTTTGTGGGTGCAGCCTT GGCTGGACTT ATCTACGAGTATGGAATCAT ACAGCATGAG GCCGTTCCGCGCCCGACCAC CCATCAGCCA TTGGCACCAGAAGATTACTA AATGCACTTC GATAGCAGTCTTCCATTTGT GAATAAGAGA GGATTGTGCT TAC175ACAGCTATGACCATTAGGCCTATTTAGGTGACACTauxin-responsive-SEQ ID N° 71ATAGAACAAGTTTGTACAAAAAAGCAGGCTGGTAClike proteinCGGTCCGGAATTCCCGGGATGTACAAATTACTAATATAGTTTCTTCACAATTATGGAAAGAAGCGTAGCTAATGAGGCACCAAAGGCCACAATAATGGTGGAGGACTACAAGAAGAATCTTGAGTTCATTGAAGAGGTGACTAGCAATGTTGATGAGGTCCAAATGAGAGTTCTTGCTGAAATCCTCTCCCAGAATGCACATGTTGAGTCTTGCAACGCTATAATCTCAATGGCCGCACTGATAGAGAGACATTCAAGAAAGTCGTACCTGTCATCACTTATGAAGATATTCAGCCTGATATCAAACGTATAGCCTATGGTGATAAATCTCCTATTCTCTGCTCCCAACCCATCTCTGAATTATTGTCAAGTTCTGGCACGTCTGGAGGGGAGAGCAAATTGATACCATCAACAGAGGCAGCGCTTTGGGAGGAGATTACAGCTTCTAAAACTTCTGATGTCTGTGATGAGCCAAGTGGCTCCAGATTTTGGAAAGGGTAAAGGAATGTATTTCATGTTTCATAAGTTCTGAACAGAAGACCCCAGGAGGATTACTAGCACGCTTTTTTACAACTAGTTTTTACAAGAGTCCTTATATCAACTGCGGATACCCCTGCAGGAAATTCACTAGTCCAACGGCAACCATTCTTTGCCAAGACTCTTACCAAAGTATGTACTCGCAAATGCTCTGTGGCCTCTGCCAAAACCAAGAAGTCCTCCGTGTTGGCTCGCTTTTTGCAACCGGCTTCATTCGTGGCATCCGTTTCTTGGAGAAGCATTGGTCTCTACTTTGTAACGATATGCGAAACGGAACCATTAACACCCAAATTACAGATCCTTCAGTGAGAGAAGCAGTGATGGAAATCCTCAAACCTGACCCAAATTAGCTGATTTTCATTGAGGCTGAATGCAGCAAAGACTCATGGCAAGGAATCATCACTAGGTTGTGGCCTAATACCAAGTATGTGGATGCTATTTTGACTGGATCCATGTCACAATATATACCGATACTTGATTATTACAGCAATAGCCTCCCTCTTATCAGTACTTTGTATGGTTCCTCAGAATGCCACTTTGGAATCAACTTGAACCCTTTTTGTAAGCCCAGTGAAGTCTCTTACACCCTTATTCCCACCATGTGCTATTTTGAGTTCTTACCATATCACGGAAATAGTGGAGTCATTGATTCTATCTCCATGCCTAAGTCGCTTAATGAGAAAGAACAACAACAATTGGTTGATTTGGCTGATGTCGAGATTGGCCAGGAGTACGAGCTTGTTGTTACCACATATTCTGGACTCTACAGATATAGAGTCGGTGATGTGCTTCGGGTTGCTGGATACAAGAACAACGCGCCTCGATTCAACTTCCTATGCCGGGAAAATGTAATCTTGAGCATTGGTGCTGACTTCACTAATGAAGTTGAGCTACAAAACGCAGTGAAAAATGCAGTGGGCAATCTGATGCCATTTGATTCTCAGGTAACCGAGTACACCGGCTATGTCGATATTACCACCATTTCCAGCCACTATGTCATATTCTGGGAGCTGAATGCGAATGACTCTACCCCAGTTCCTCCTTCAGTCTTTGAAGATTGCTGCCTCACAATTGAAGAATCTCTTAACTACTTCTACCGCGAGGGCCGTGCGTCTAATGCATCCATCGGGCCTCTAGAAATTAGGGTGGTGGAAATTGGAACTTTTGACAAGCTCATGGACTACTGCAGTAGCTTAGGTGCTTCCATGAACCAATACAAGACACCCCGTTGTGTCAAATATGCACCCCTTATTGAGCTATTGAACTCTAGGGTCGTCTCCAGATACTTCAGTCCCATGTGTCCAAAATGGGTTCCTGGCTACAAGAAATGGAACAACACCAGTTAAATGTCAAGCTTCCAATTTCTCTACTTGAAGCTTCATTCTCTATCCCGAAAAAAGACAACCATTTGTGGATTATTTAGTCAATCGTCATCCTAGCTAAGTTGGTCTTTCGTGAACATGGTATGGATTTGTATTTGTCACAAATAAAATGTGGCACTTTTTATTTCTGTAATGGTTTTATTGTGTCAAGTAGTTTAGTGCAAAGACGAGGAGAAGAAGTCAAAAGAGAGGTTTGGTAGACACTTTTAGTGCCCATATTATGTTGGTGGTTTCACTTGTCTTTTCTATTGCATTTGTGAAGTCTGCTATATAATAAACATCCCGGCATCTC177GATCCATGGC TCGGTTTTGG GCTAAATATGglutathione S-SEQ ID N° 72TTGACGATAA GTCATATAATACCTGGAATGtransferaseTGTTTATGCA ACACTGGAGT CC178TGGAACGGCGCTCCTTATTTGAGGAAAGTGGACCTauxin-inducedSEQ ID N° 73CAGAAACTATTCTGCATACCAGGAGCTCTCTTCTGCprotein IAA4TCTACGAAGAAAGATGTTTACCTGTTTTACTATTGGTCAATATGGATCC18GATCCCAACG CATCAGGGTG AGTCCTTCAARNA-binding-likeSEQ ID N° 74AAACACCAGT GAGGCCACGA CTTCCCCGTGproteinCCATGATGCA GTAACCGATG CTTGTTCTCATGACATGGAA AGAGTTCAGG AAAGCCTTCTTGGAAGACTT GAGGTCACCA TGGGAAGGCGAAACGAAATT CTGTTTCAGT AATTTCCACCTTTCTTTTCT TTTTTCTTTC TGTATTGCCAACACAGTAAC TTTATTGGTA CTGAACATGGCATTAC180bTAAGGCTACAAGCGTAACTTTTAGTGATAGATCATferredoxin-NADPSEQ ID N° 75CATGGATCoxidoreductaseC181aTAAGGCTACAAGCGTAACTTTTAGTGATAGATCATferredoxin-NADPSEQ ID N° 76CATGGATCoxidoreductaseC182GATCCATCAG TTGCTTCTAT AAAGCCATTGpatatinSEQ ID N° 77GACGTCAAAC AAGTTTTGCTGCTCTCATTAGGGACTGGCA CTACTGCAGA TTTTGCTGGGACATACACAG CAAAGGAGGC AGATAATTGGGGTCTTGTTT CCTGGCTATT TCATAATAATTCGAACCCTC TTATTGAAAT GTCATCTGAAGCAAGTGTTA TTATGAATGAT TATTACATCGCCACCATCT ATCGCGCTCT TGGTGCTGAAACGAATTAC183aGATCCATCAA ACAAATCTGT GTCTGCAGGCauxin induced like-SEQ ID N° 78AGCTCTTCTA ATAAGATCAGACAAATAGTTproteinAGGCTTCAAC AGCTCCTCAA GAAATGGAAGAAGATAGCAGCTGCCTCCCC CTCCTCCACCCACCTCCATA ACAACCTCCTCAGTATAAACAACAGCACAA GCAGCAGCACCAAAAGCATC AATAAGTTCCTCAAGAAAACCCTTTCATTC TCGGAAAAGGACAGATCATC ACCTGCAGAG GTATGCAGCATTAC185cGATCCACCAA AACCCTCGGC AACTTCGTTArRNA intron-SEQ ID N° 79CTCAGGACTC ATCAGACTGA GAGCTCTTTCencoded homingTTGATTCTAT GGGTGGTGGT GCATGGCCGTendonucleaseTCTTAGTTGG TGGAGCGATT TGTCTGGTTAC2GATCCCAGAAGTTAGGACATACGTCCCTAACGTTGlipase-like proteinSEQ ID N° 80TCGCGGGGATTATGAGAGGCATCAAAGATGTGATTTCAGCTCGGAGCCACGCGCTTTTTGGTTCCAGGAATTACCCACTCGGGTGCTTGCCGCTGTATCTCACATCATTTCCTGATAATAATACAGGCGCGTACGACCAAATGGGTTGCTTGAGGAACTACAATGACTTCGCTTCGTTCATAATAGATACGTGAGCAGGGCTATCGCGAATCTGCAGCGCGAATTCCCGAATGTTAGCATTGTGTACGGGGATTTCTATGGTTCCCTTTTGACAGTTATGCGCAGTGCTTCTTCCTTTGGATTTGACCAGAACACGTTGCTTAGTGCATGTTGTGGAACTGGAGGGAGGTATAACTTTAC201aGATCCCGAAT GACGACAAGC TTCAATCCATputative proteinSEQ ID N° 81TACTGTAAAT GGTAGCAAAA TCCTACCCGAAt5g44670 [A.TTGGGGATAC GGTAGAGTTT ATACTGTTTTthaliana]AGTTATCAAT TGCACTTTCC CTATTCCAGTTGGTACTGAA AATGGAGGAA AACTCGTAATTCATGCCGCT ACTAACGGCG GCGGGGACACTAAATTCAAC ACCGCCGACA CTTTCGTAGG GTTAC201bGATCCACCTG CCCTTTCAGA TGAGTCAATCN-carbamyl-L-SEQ ID N° 82ACTAAGGCGA CAGAATTAGC ATGTCAACAGamino acidCTGAATTTGA CTCGCAAGAG AATGATTAGTamidohydrolaseCGAGCCTATC ATGACTCCCT GTTTATGGCAAGAATATCCC CGATGGGCAT GATATTCATTCCTTGTTACA AGGGATATAG CCATAAGCGTGAAGAGTTTT CATCTGTTGA CGATATCGCGAACGGGGTAA AAGTTCTAGC GTTGACTCTTGCCAAGTTAT CTCTCTCATA ATCCCTTAC202TTATAGATCAGAAATTTGAAGCCGGAGAAAATGGCdihydrolipoamideSEQ ID N° 83GATAGGGAGCTTAGCAAGAAGAAAGACCACAACAdehydrogenaseATTTTATCTTCCAGATATCTCTATAGCACATCCAAATATTCATTTTCTCTCAGCAGAAATTACTCTTCGGGATCC203GATCCCGAGT TGTACGCATG AGCTCGCAAAcarbonic anhydraseSEQ ID N° 84AGATCAAAGC CCAAAGTTTC TCGTATTCGCCTGCTCCGGC TCCACCAGCT GTGCCCC207bGATCCCTATC CAATAGATAT GGAATTTCGAchlorophyll aSEQ ID N° 85CCACCTTGTA TAGTTCTATC AACCATTGGAoxygenaseATCTCAAAGC CAGGCAAGTT GGAAGGGCAGAGTACCAAAG AGTGCTCTAC ACACCTACACCAACTTCATG TATGTTTACC TGCATCTAAACAGAAGACAA GGTTGTTATA TAGGATGTCACTGGATTTTG CTCCCGTGCT AAAACACATCCCTTTCATGC AATACGTGTG GAGGCATTTTGCTGAACAGG TTAC207cGATCCCTGAT GCATATGAGC GGCTGCTTCTlysyl-tRNASEQ ID N° 86TGATGCTATA GAAGGTGAAA GGCGGCTTTTsynthetaseCATCCGCAGT GATGAGCTGA ATGCTGCTTGGTCTCTTTTC ACACCAGTGT TACTCAGGACTCATCAACAA GCATGAACTT TGCAATGCATACACTGAATT GAATGACCCT GTTGTCCAACGCCAGCGTTT TGCTGATCAA CTCAAGGATCGACAATCAGG TGACGATGAA GCTATGGCACTGGATGAGAA CTTTTGTACA GCTCTTGAATATGGATTACC TCCTACTGGT GGTTGGGGATTGGGTATTGA CCGACTTGCG ATGTTTGTTAC208GATCCCCACC ATCAGGTATT CCGAGCCGCAtranslationSEQ ID N° 87ATAGGTGAAC CGGACCCTCT TGAAGATCATelongation factorCGTATTCGAG ACCACCCCAA ACGACCCCTClike proteinGTTCGATGTT GTTCTTCATT CCAACAACTGCTTCCAGCAG CCTAACGCCG GACACACGCACACACGCACC AACAGGTCGT CGTTCTTCCACACAAACCCG CCGGAACGGA CTCCTTCTCCACCCAGAACA GACCCAGACC GC212GATCCCTATG AACGAGCTTT AGCTCGTTCCauxin-inducedSEQ ID N° 88TGGGCTAATT Tglutathione S-transferaseC213bTAACAACGCAACCACACAGAATCGATCGTTACATAA3 [NicotianaSEQ ID N° 89AAGGGATCtabacum]C214aGATCCCTTGG ATGGTACTTG TTGGTGAACGhistidyl-tRNASEQ ID N° 90CGAACTTAGC GAAGGAGTTG TAAAATTGAAsynthetaseGGATGTGTTT GCAGCTATTG ATTATGAAGTCCCCAGAGGT AACCTTGTGA ACGATTTATGCAGAGGATTA GGCATGTAAT ATCTCAAGTTATTAGTATTG TTAGATTGAT ACAAGAATGCTTTTTTGGGG GGTGGGGGTT AC214bTAAGCGCAGA TGATAATGGT GAAGGGGGTApotassiumSEQ ID N° 91CATTCGCTCT TTACTCTTTG CTGTGTAGACtransporterATGCAAAGTT TAGTCTACTT CCCAACCAACAGGCAGCAGA TGAGGAGCTA TCTGCTTACAAATATGGATT CTCCGGGCAG TCGGCATCTTGTTTACCATT GAAGAGATTT CTTGAGAAGCATAAGAAGTC ACGCACAATA CTGCTTATTGTTGTATTGTT AGGTGCTTGT ATGGTCATAGGAGATGGTGT TCTGACTCCT GCAATGTCAGTTATATCATC AATATCAGGG ATCC215GATCCCTCTC TATTTGCATA AATGTTGATGputative proteinSEQ ID N° 92GATTTGAAGC AATGTTTTTC ATAGGAGTAAAt4g25640 [A.ATGCTGCTAT AAGTGTTCGT GTCTCAAATGthaliana]AGCTTGGGCT AGGACGTGCC AGGGCAACCAAGTATAGCGT CTGTGTCACA GTGTTTCAGTCGCTTCTCAT TGGGATAGTA TGCATGATTGTAGTATTGGC AGTAAGAAAT CATCTGGCCATTCTTTTCAC AAACAGCAAG GTTCTGCAACGTCCCGTACC TGACCTGGCT TGGCTTGTAGGAATAAC216bGATCCCTAGG CATAAAACAA TGAGCAACGCputative proteinSEQ ID N° 93CGCAAGAGAT ATACGGAATC GCTGACCCCCAt2g20240 [A.GAAAATTTTG ATCATTTTCA TTCTCTGATTthaliana]TTGAAAGAAT AGCAGCGCCG TTTTTGGAGCTTGGCAAACC GGACCCCATC CCCCTTTTTGTCGTCGTCTT TCTCAAACCA GACTCCCCTCCCTGATCATT TTTTCTTCTG GGAAAACAAAGCAGCATTTC CATGGTTTTG GCTTTAC217GATCCCTCAA GTTGCACTTT GAATATGCTT60S ribosomalSEQ ID N° 94GTAATAAATA GAAGTAATAT AACAGTGCTTprotein L13aTGTTCTCCAA GGCTTCAAGG TGTGACCATGTTGGATACAA TCTGAAAGTT GTGTTCCAATCCACGTGATC TTTCTGGCTG TACACGCTAATCCACCAGAC AACTTGCTTA CTCAGGACTCATCAACTCGC CATTATTGCT CCAATCAAGTACTGAAGTCT AAATATAGTT GTTTGAAGTACAATTTTGCT GGAGATTGAT GTTTTGGCTT AC22GATCCAACTTACGACATAGGCCTATTGGAATTGGAribonucleotideSEQ ID N° 95GTTCAGGGTCTTGCAGACACATTCATGTTGCTTGGCreductaseATGGCATTTGATTCTCGGGAGGCTCAGCAGCTAAACAAGGACATATTTGAGACAATATACTACCATGCATTAC220TAGTGCTATGGCTGTGGACTCAGGTGCATTTGTACAputative F1-ATPSEQ ID N° 96CAAAGAGGTATGAATGTACTAAAAATGTCACAGTCsynthase subunitTCCCGCACTTCATATTCATCATTTTTGAAAGCGAGGalphaGGAAGGGATCC224aGATCCCTTTA CATCATCCAC ATATAATTCAseven in absentia-SEQ ID N° 97TTCTCAATTC CCATCTTCAA AATCACCCCT TAlike proteinC224bGATCCCTGGC GACAAGCAAT GGAACAACATauxin-responsiveSEQ ID N° 98GAATTGAATA GCCAATTTCT GTTAGTACCGH3-like proteinC227aGATCCCTTCT TTCATATCTG AGATTCAAGClipaseSEQ ID N° 99TGCAATCTGG GGCATATACA ATAACGGTGGGAAGAATTTC TGGGTTCATA ACACAGGACGCTTGGGTTGT TTGCCACAGA GGCTTGCCACAAGAAATGGG AGCAATTTGA ACGATTATGGATGCATTAC227cGATCCCTGTGGCTAGACTAACTGGCCGAGAGGGTTmitochondrialSEQ ID N° 100AGCGAGGTTCCTGCTATGGTGAAGTGAAAGATCTTATPase subunit 9TCACTATAGTGGGAAGAAGACAGGTGGGAGCGAGCGGAGCGAGAGCAAAGCAAGCTCTAGTGGTGGGTTGTCTTCGCGGTCCCATTAC228aGATCCCTTCA ACGGCGTTGC TTGCTGATGGarginineSEQ ID N° 101TGTCCGTGAG GCTGCTCAGA TTTATTGTGA ATTTAdecarboxylaseC228bGATCCCTACG AACTCGGGAA ATGGGCCAGTputative proteinSEQ ID N° 102CTTTCAGCTA TTTGATTAGA ATAATCACACAt3g59770 [A.CGATTAthaliana]C230TAATCCATGT CAAACTCGAC TTTTTGCAGCB12D proteinSEQ ID N° 103CGTAGGCGTT GCTGTAGGGA TCC232TAAACGTGAA TATCGGATTA CACCTCCGCCproline-rich cellSEQ ID N° 104TCCGCTGTCA ACACAAGTGG GAGACATTCCwall like-proteinTCGAAGCACA TTCAACTTTG ATTTTGACTTTGAGGGAAAG ATTCTGGCCG AAGCAGAAAAGGAAAGCCAG AATTGGAGCA GGCTAGGGCTGGAAC237bGATCCCGTCT ACCTTATTCT TTTCAGCAGCputative proteinSEQ ID N° 105CGCAACAGGC AAGTTTTTGC ACCATCTGTT TAAt1g22750 [A.thaliana]C238aGATCCGTCAA GTTTGCATGG TGGTTGCCCTprolyl 4-SEQ ID N° 106GTGATTAhydroxylaseC238bGATCCCGTAG AAAATGCTTC TTTTATGCCTcytochrome c-typeSEQ ID N° 107TGGGTATTTA TATTATAATT TTCATTTTTTbiogenesis proteinGGTGTTTAGG ATTAC238cGATCCCGATGTGATTCATAACTTTCATCACACCCCTvestigial protein ?SEQ ID N° 108CTCAATATCTTCAGCTGAAATTTGTTACTCCATTTAC23bGATCCCACCTCAGGAAAAAAAATCTGCTACGTGCAcellulose synthaseSEQ ID N° 109GTTTTCCACAAAGGTTTGATGGGATTGATCGTCACGACAGATACTCAAACAGAAATGTCGTATTCTTTGATATTAC24TAAAGCAACA AAATCAATTC ACAGCACCTCamino acid transportSEQ ID N° 110ACTTTAGTGT AAGCAAGAAT CAAAAAGCAArelated proteinGTTGCAGGTA CAAATTCCAT AGTGCCAGCTGACCTACCAA AGTTGGGCAT AGCCCATAACAATGTCAACA TTCTCAAAAG AAGATAAAATCACATCTGTG TTCAACCACA TCATTGAATATCAAAAGATA TAAGAACCTA TAAGCTGGGCGTTCTTGTTC CTTTTTTCCC TTTTGATGAAGGTATCTCTC CTATAAGGGT GGGGGGATCC25TTCAACAGAA GAACTCCATC ATCAGCCACTproline rich proteinSEQ ID N° 111GAGGAGAGAA CGCCCAACCC CTGGACAAAATAGAAAACAC ACAATATTGG CCGCGGACCCCAACTTCAAA AACAGAAATC GACCTTACCCAATTCCCAAT TTCCAAGAGC CTCTCACGCACACACACCCC TGAAACCTAG TAAAAATAGAAGGTCTTTGC ACAAAACAAC ATCTCCAAATGGCTCAC28aGATCCCCTGA ATATTGGGTA GCTGTTGTTAT48 protein [TupaiaSEQ ID N° 112CTCAGGACTC ATCACATGCA GAGGTATCGCherpesvirus]GTGTTTGGAT TGTGTTAC28bGATCCCCTGA ATATTGGGTA GCTGTTGTTA50S ribosomalSEQ ID N° 113CTCAGGGCTC ATCGAAAGAA CCCCTCATCGproteinGTTGTTTATC TGGTTTAC29aGATCCCCCTGAGTTCGCCAAGGACTTACTGCCCAAheat shockSEQ ID N° 114GTATTTCAAGCACAATAACTTCTCCAGCTTCGTTCGtranscription factorTCAGTTAC3CATAAGGAGC AGCTGATCGG AGTCCAAAGANADPHSEQ ID N° 115GAATTCGAGA TGCTATAGCA CATATGAAAToxidoreductaseTCTGGGTAGC TCTGTTGTGT AAGGTGTTCThomologGTACAATGAC AAACAGGATT TGTGATATTCGTTGTGTAAA AGGCAGCAC30AGGTATTACA AAACGCATGG GGAGTAGTAGputative proteinSEQ ID N° 116TACAAGGGAA AGGGGTAGAA TGTTCACCAGAT5g05250 [A.CTTGTTATTT GTTGAAGACG AGTAGAGTTGthaliana]GTGCTGGTTT AGGAATGGGA TTGTTTTGCACTCATTTCTG TTTAGCAAGA GTACAGAATTTTAGGGC301TACCCGAAATCCGAACTCTTGCTCCGAATCAAGCCornithineSEQ ID N° 117AATGTTCGACGGCAACGCGAGGTGCCCAATGGGTCdecarboxylaseCAAAATACGGCGCGCTTCCAGAAGAAGTCGAGCCGCTGCTCCGGGCAGCTCAGGCCGCCCGGCTCACCGTCTCCGGTGTCTCCTTCCACATCGGCAGCGGAGATGCCGATTCAAACGCTTATCTCGGCGCCATAGCCGCGGCTAAGGAAGTGTTTGAAACAGCTGCTAAACTCGGTATGTCGAAAATGACTGTTCTAGACGTCGGCGGCGGGTTTACATCCGGCCACCAGTTCACAACCGCCGCCGTCGCTGTTAGATCAGCTTTAC303GTGGATGAAATAATGGTCATGAGTTTTTCAAATCTGputative proteinSEQ ID N° 118TAGACTGGGATCTGATTATGCAACTTCCCAGGCCAkinaseCCGCTTATACCTGTGCCGCACTGACGAGAATGTGAATATTATGGAGGGAAATGAAGAAATTGCTGTGGAATTATTTCGAACAGGGAGTGTTTAC304TAAACCAAAA GCAACTGAAC TCAAGGGCCAF1-ATPase alphaSEQ ID N° 119CCTCTGAGAG TGAGACATTG TATTGTGTCTsubunitATGTAGCGAT TGGACAGAAA CGCTCAACTGTGGCACAATT AGTTCAAATT CTTTCAGAAGCGAATGCTTT GGAATATTCT ATTCTTGTAG CAGCCC305aGATCCGAGGAAGACGAGACAGAAACACCAGCGGAheat shock proteinSEQ ID N° 120TACTTCAACAGAATCAGATGCAGGCTCTGCTGAAGTCTCAGAGGCACAAGTCGTCGAGCCATCAGAAGTAAGGACCGAGAGCAACGATTATTGGGAGTGATTTAC305bTATACAGGAC AACGACGACG ATGAGTCCTGlatex-abundantSEQ ID N° 121AGTAATCAAC CGTTTCGGAT TTTCTGAGGAproteinAGATATTACT GTACTAATTG ATACTGATGATTCTTACACA CAACCAACTG GTCGGAATATACGTAAAGCT TCGTCGGATCC306GTACTCGCGGAGAGGACTATGAATCTGACGATGGGputative proteinSEQ ID N° 122GTGGAATCATGGGCCAAATAGTTCGACATCCGAATAt1g26460 [A.GGGCACAGAGTAACCGTGTGGAACATGCTGTTTAthaliana]C308GATCCGAAAGCATCACCCGAAATCCGAACTGTTGCornithineSEQ ID N° 123TCCGCATCAAGCCCATGCTCGACGGCAACGCGAGAdecarboxylaseTGCCCAATGGGCCCGAAATACGGCGCGCTTCCAGAAGAAGTCGACCCGCTGCTCCGGGCAGCTCAAGCCGCCCGTCTCACCGTATCCGGCGTCTCATTCCACATCGGTAGCGGAGATGCCGATTCAAACGCTTATCTCGGCGCCATAGCCGCGGCTAAGGAAGTGTTTTGAAACAGCTGCTAAACTCGGGATGTCGAAAATGACTGTTCTAGACGTCGGTGGCGGGTTTACATCCGGCCACCAGTTCACAACCGCCGCCGTCGCCGTTAC309ACATGGAGGTGCTTATATTGTGAGACACGCCGCGAS-adenosyl-L-SEQ ID N° 124ATAGCGTGGTCGCAGCAGGACTTGCTCGCCGCTGCmethionineATTGTGCAGGTTTCTTATGCTATCGGTGCGGCTGTAsynthetaseCCACTGTGCGTGTTTGTTGACACTTACAAAACTGGAACAATTCCAGACAAGGATATTTTGGCTCTGATCAAGGAGAACTTTGACTTCAGGCCTGGAATGATGTCAATCAATCTTGACTTGTTAC31GATCCCCTAT TGACTGCCTC TTGCTCTTGCputative proteinSEQ ID N° 125ACTTGCATAT ACGCTTATAT TCAGGAATATAt1g71240 [A.GCTGTCTTAT GTTTTCCCAG CAATCTTGATthaliana]TGTCTTGGCT GCTGGCATGT TATTACTTTAC310GATCCGACTT GCTTTGTCTC TTCGGACGAG40S ribosomalSEQ ID N° 126TTACTCAGGA GCATATGAAA AGGAATGTTGprotein S5CCATACTTTT GAGTAGCAGG AAATTTAGGATCAGTAAAAG AGGCTTACTC AGGACTCATCGTCAGGCTGT TGATATTTCT CCACTTCGCCGTGTTAC311AAACATGAGGACAAACTTAACATGAGGGGGATGCputative heat shockSEQ ID N° 127AGGTTCGGACGAAGTCTAATGAGGTACAAGAAGTCproteinGAGGCATCAGAAGTAAGGACCGAGAGCAACGATTATTGGGAGTGATGGTTAC312TAAGCCCCCA AACTAGAGTC TCCTCAGCTCreceptor-like proteinSEQ ID N° 128CTAATCTTTG GCCTAAGAGT ATTTTGGTTGkinaseTCAGAAATAC TTCAGCGCTG CTTTTTTTACAAGAAAGTGG AAATTTGGTT TATGGTAACTGGGGTAGTTT CTTGAATCCA ACTGACACATATCTGCCAAA CCAGAACATC AATGGCTCAAATGCAACTTC CAGTAATGGA AAATCCAGC313aGATCCGAGAC ATCCAGCCGA GTCCACAAATputative pyruvateSEQ ID N° 129GCAACCGATG AGTCAGTATT GAAGGTTGCAkinaseCTGGACCATG GGAAAACAGC AGGTGTTATAAAGCCACATG ACCGAGTTGT TGTTTTCCAGAAAGTTGGTG ACTCATCTGT GGTGAAGATTATTGAGCTTG AGAATTAGGT TTGTACATCTTTGTATGTTT CAATTGGCTG ACATTCTTAG CTTAC314bGATCCGAAAA AGAACAAGAC CAAAAGGTCTputative proteinSEQ ID N° 130TGAAAAAGAG AGTGACGAGC AGAAGAGAGGKIAA0565 [HomoAAACAGAAAA TACACAAAAA TTGGGAAGGCsapiens]AAAATAGTGA AATCTCCCAC AAATTTCAGCCTAAAACTAG CTTAC314cGATCCGATGG GAAGACCCGG TATGAGGATTcalmodulinSEQ ID N° 131TCATTGCCGG GATGGTTGCC AAGTGATTTTTGCATGTGAT TTGCATCTCA GGCTATATTATTCATAGCAG TGAAAGAAGA GCTGACTTTTTCCCTTTGTA GCTTTAC316AGGTCTATTTTTTCACCAAACAACATTCAGTATTGGputative oxidaseSEQ ID N° 132CTTTGTCCAAAGTAAAAAACTTTATACAAGATGTGCAAAAACTTGTGGTTTTACAGCCCAAGGCATTATGTGGTTTAGACCTATATAGTGGAATCCTAATGAGGTATGTCACGGTTTCAAATGCTTACTTGGGACATCAAGAAGATGCAGTGGATTTTTGATATTACATATTATAGAAGCAAAAATCCATTGACTCCTAGGTTATATGAAGATATTCTTTGAAGAAATAGAGCAAATGGCAATGTTCAAATATGGAGGAGAGCCTCACTGGGGGAAGAATCGTAATGTGGCTTTCATTGATGTGATTAC320TAATGGGGGAGGCTATAGCTACAATGAATCAAATGubiquitin-specificSEQ ID N° 133GAGGAAAATTTGGGTCCACAGTTATCTGGTCTTGTCprotease-like proteinGGGTCGGATCC322TGCCCTGTTTATCGCTGCACTTTTCCCGAGATACATRING-H2 zincSEQ ID N° 134CCGCTACCGCATCTTCACTAACGGTAACAGCATCCTfinger protein-likeCCAAACACTTTCCACGCGCCGCCGCCCTTCTGCTGCAACACGTGGACTCGACAATTCGGTCATCGACACTTTCCCCACCTTTTGCATACGCCGAAGTGAAGGATCATCATATTGGCAAGGGTGGTTTGGAGTGCGCAGTATGCTTGAACGAGTTTGAAGACGACGAAAAGCTGCGGTTGATCCCAAAGTGTGATCACGTGTTCCACCCTGAATGCATCGGTGCTTGGCTCAAGTCTCACGTCACTTGCCCCGTTTGTCGAGCTGACCTTACTACTCCTCAACCTGATGTTAC323ATCCCCATTGGCCTAGTTGGTTCTATGGTGATTACTamino acid transportSEQ ID N° 135ACCACTATATACTGTATATTTGGCTATAACGCTCTGTprotein AAT1CTTTATGCAGCCTTATCAGAACATTGATCCTAATGCTCCGTTTTCTGTGGCGTTCAAAGCTGTTGGATGGAGTTGGGCGCAATACATTGTGGCTGCAGGTGCATTGAAAGGAATGACATCTGTATTGCTTTGTAGGCGCGGTTGGTCAGGCGCGTTATCTCACTCACATTGCACGGACTCACATGATGCCTCCTTGGTTTTCCTATGTTGATGCAAAAACAGGAACGCCCGTTAC324aGATCCGGAGA GCCAAACATT TACGTAGTTT1-SEQ ID N° 136TCATCATCAT GAAATGGTTA CCTGAAACGAaminocyclopropane-TTGTCAGATT CTGTAATTTT GCTGAGTATA1-carboxylateCAGAAGACAA TTTTGCATAT AGTGCTTCAToxidaseGCTCTTACAG TTTGTATGGA TCATTGTTCCTTATCGTTTT ATAATGTATT GTATCATTTTATGAATTCAA TGTTTGGATA GATTTGTATTGTTTGTTATT GTTAC324bGATCCGGGGGTGTAGTTTGGATTGAATTGAACGGGGputative proteinSEQ ID N° 137AAGTGCATGAGTTTATTGCGTTTGATGGTTCACATGAt2g29760 [A.CTAAGTCTGAATACATTTACACCGTTTTAGATAACCthaliana]TAGTCGGTCAAATACAACACATTTACTATTTTTCCAGATGCTGATTCTTTAGTTCTTGAGAATAGCTGAAAGTAATCAGAGTTTTAGATATGCTGAACTTCCAATACAGCCTTAGTTAC325TTCACGATATCGAAACTAGCGATTACGTGAATTTCCputative subtilisin-SEQ ID N° 138TATGCTCCATTGGCTATGACGGCGACGATGTCGCClike serineGTGTTTCGTGAGAGATTCTTCTCGAGTGAATTGCAGTproteinaseGAACAGAATTTGGCTACTCCAGGAGACCTGAATTACCCGTCGTTCTCTGTTGTTTTTACCGGTGATAGTAACGGTGTGGTTAC326aGATCCGGGAA TATCGTCTAG AAGAACTCCTanionic peroxidaseSEQ ID N° 139CCATCGCAAC CATCAACTCA GCCAGAGGTTTTGAAGTCAT AGAACAAGCT AAACAAAGAGTAAAAGATAC TTGTCCCAAC ACGCCTGTATCTTGCGCAGA CATCTTAGCT ATTGCTGCTCGTGATTCTGT TGTTTAC326bTAACAGAAGAAGAAGAGATGCCGGCCCTAGGTTGTarginineSEQ ID N° 140TGCGTAGACGCTACTGTTTCCCCTCCTCTCGGCTATdecarboxylaseGCCTTCTCTCGGGATAGCTCTCTTCCCGCGCCGGAGTTCTTTTACCTCCGGCGTACCTCCTACAAACTCCGCCGCCGGTTCCCATTGGTCTCCGGATCC326cGATCCGGGCCGGTTCGGGTTTCGTCAACTTTACTTGAputative proteinSEQ ID N° 141ATCCGGAAATGTGCTTCCCATTACTCAGGACTCATCAt5g66860 [A.GTTAAACTAAGAAGTAAGATGACTGTACTAGCACTthaliana]CCTATAACTAAAAAGTAACTAGACTCATTCATCAATATCACTCGCTCTCTCTCTGGTTAC327aGATCCGGGTTGTATTAGATATGGTTTATTACGTTAcytochrome bSEQ ID N° 142TTTTGTACTTTATTTTGAACTTCATTTCTGTTTGATTGGTTCTACTAATTTGAATTGGTTACTCAGGACTCATCAGTCCAGTGGTTCAGTGCCTAGTTTTCAAATTGAAGGTCGGGTGTTAC327bGATCCGGCAT GTCTGCTCGA CAAATGGGGA60S ribosomalSEQ ID N° 143GGGAGCTGCT ATTAGTATAC TCAGGACTCAprotein L21TCACGAAAAG GCAACCCCTA GGACCCAAACCAGGTTTCAT GGTTGAAGGC GCTACATTGGAGACTGTTAC CCCCATACCA TATGATGTGG TTAC328aGATCCGTCGG TCAGAGTGGG AGGGGCCCGCputative proteinSEQ ID N° 144AAGCACATGT CGAAAATCAG GATTGATGTCAt4g24290 [A.AATGCTGATC AGCACCCCTT TCAGTACGAAthaliana]ACTAAATCAA CCACAGAAGC CAGCTAAGGTGGACCTGAAC TCCGCAGTTT ATCCTGGCGGTCCACCTTCA CCGGCAAGGG CGCCAAAGATGTCGCACTTT GTCGATACAA CAGAAATGGTAAGAGGACCT GAGGAGTCAC CTGGCTACTGGGTGGTAACT GGTGCAAAGC TATGTGTAGAAGATAGTAGG ATAAGAATGA AAGTGAAGTACTCGCTCTTAC328bGATCCATGCT TGGTGGTATT GGTTCTACCAputative proteinSEQ ID N° 145TAGCTCAAGG GATGGCCTTT GGTACTGGAAAC087851 [OryzaGTGCTGTGGC ACACAGGGCT GTAGATGCGGsativa]TCATGGGTCC ACGCACCATT CAACACGAAACTGTTGCTTC CGAGGTACCT GCTGCAGCAGCAGCTCCTAC AACCATCGGT GCTGGGTCTGATGCTTGCAG TATGCACTCT AAAGCGTTCCAAGACTGCAT CAATAGCTCT GGAAGCGACATTGGCAAGTT TCAATTCTAC ATGGATATGTTGCCCGAGTG CAGGAGGAAC TCAATGCTGAATGCTTAC329aGATCCGGCTA TGTTGCTGAT CAATCTGGTTputative proteinSEQ ID N° 146ATGGCATGGT TGATCCTTCT CAGCATTATTAt3g63460 [A.ATCCGGAGCA ACCATCCAAG CCGCAGCCAAthaliana]GCATTTCGAA CAGTCCCTAT GCCGAGAAC329bATGGTTACTGGTTTCTATAGCCAAAAGCAAAGAGGambiguous hitSEQ ID N° 147CTTTGGTGAGAAAGATGAAGCTTTTTGGAGGGTATTGCTGCGTTTTTTTTGTTTGGCTTCTCTCCGGATCC330ACGGGGGGGG GGGGGGGGGG GGACTTGAAGethylene-responsiveSEQ ID N° 148ACTGGGAAGC TCCATTAACG AGCTCCGACAelement bindingACTCAACAGC CTCTGATTTA AGCCGAAGCAfactorATAGCATTGA GTCCAACATG TTTCCTAATTGCTTGCCCAA TGAATATAAT TATACAGCTGATATGTTTTT TAACGATATC TTTAATGAAGGCATTGTTGG CTATGGATTT GAGCCAGCTTCTGAATTTAC ACTCCCCAGT ATCAAATTGGAGCCAGAAAT GACTGTACAA TCACCTGCAATATGGAATTT ACCGGAGTTT GTGGCGCCGCCGGAGACGGC GGCGGAGGTG AAACTGGAACCACCGGCGCC GCAAAAGGCA AAGCATTATAGGGGAGTGAG AGTGAGGCCG TGGGGGAAGTTTGCAGCGGA AATTAGGGAT CCGGCAAAGAATGGGGCAAG GGTGTGGCTG GGTACGTATGAGACGGCAGA GGACGCAGCG TTTGCTTATGACAAGGCGGC GTTTCGCATG CGGGGGTCACGTGCATTGCT TAATTTCCCG TTAAGGATTAATTCTGGTGA GCCTGATCCC ATTAGAGTTGGTTCTAAAAG GTCATCAATG TCGCCGGAGTATTCTTCTTC TTCATCGTCG TCGGCGTCGTCGCCGAAGAG GAGGAAGAAG GTATCTCAAGGGACGGAGCT AACGGTGTTA TAGGTCCCAACTGGGTTCTG TGTAGTGATT AAGAAAAATAGAATTAGTCG AGGGAATTTG TTTTTTACTTGGCTGAAGTA ATGAATTTGT TATTTATTTATTTTTTGACT GTGGTTGAAA TTGAATCAAAAAAAAAAAAA AAAAAGTACT AGTCGACGCGTGGCCTAGTA GTAGTAGAC331GGGTGACACT ATAGAATACT CAAGCTATGCputative proteinSEQ ID N° 149ATCCAACGCG TTGGGAGCTC TCCCATATGGAt3g62270 [A.TCGACCTGCA GGCGGCCGCG AATTCACTAGthaliana]TGATTAGCGG ATAACAATTT CACACAGGAAACAGCTATGA CCATTAGGCC TATTTAGGTGACACTATAGA ACAAGTTTGT ACAAAAAAGCAGGCTGGTAC CGGTCCGGAA TTCCCGGGATGTGTCCTTTT CCCAATGTTG ATCATGCTGCTTGTCCCAGT GCGCCAGTAT TTGCTTCCCAAGTTTTTCAA AGGAGGACAT TTGCAAGATTTAGACGCTGC AGAATACGAA GAAGCTCCTGCAATAGCTTA CAATATGTCC TATGGAGATCAAGATCCTCA GGCAAGACCT GCCTGCATTGATAGTAGTGA AATTCTTGAT GAGATAATCACAAGAAGCCG TGGGGAGATC CGGCATCCATGCAGCCCAAG AGTGACTAGT TCCACTCCTACCAAACTTGA GGAAATCAAG TCTATGCACAGCCCACAGTT AGCACAAAGG GCTTACAGTCCAAGAGTCAA TGTACTAAGA GGAGAAAGGAGCCCCAGATT GACGGGCAAG GGACTTGGAATAAAGCAAAC TCCTAGCCCC CAGCCATCTAATCTGGGTCA AAATGGTCGT GGTCCGTCTTCTACCTAGC332GAGATGTCGTTTCTTGGAATTCCGATGGGACGGCGputative heat shockSEQ ID N° 150TTTGTTGTGTGGCAGCCGGCGGAATTTGCTAGAGAtranscription factorTTACTTCCAACTCTCTTCAAACATAGCAACTTCTCCAGCTTTGTCCGGCAGCTCAATACCTATGTATGTTATCCTTCTATTTACTGTCTAAAAAAATTTATTCTTATTCCGTGTTTGCATTAC333GATCCGATGA AAACGATGTC GTTGTAATCGferricSEQ ID N° 151GCGGTGGTCC CGGCGGCTAT GTGGCGGCGAleghemoglobinTCAAGGCCGC TCAGCTCGGG CTGAAAACTAreductaseCTTGTATTGA GAAACGTGGT ACCCTCGGTGGTACTTGCCT TAC334GGGGCAAGGGAGTGGCTGGGTACGTATGAGACGGethylene responsiveSEQ ID N° 152CGGAGGACGCAGCGTTGGCATACGACAAGGCGGCelement bindingGTTTCGCATGCGGGGGTCACGTGCATGGATTAfactorC335cGATCCGTCAA AACCCTCGGC AACTTTGTCA40S ribosomalSEQ ID N° 153AGGCAACCTT TGATTGTTTAprotein S2C336aGATCCGTTCG TGTATCCTGT GTTTCAAGCTcytochrome P450SEQ ID N° 154GGACCTAGGG TTTGTTTAGG GAAGGAAATGGCATTCTTGC AGATGAAGAA GGTGGTTGCCGGAGTTCTAC GGCGGTTTAG GGTGGTTCCGGTGGTGGAAA AAGGTGAAGA GGAGCCAGTGTTGATAGCTT ACCTTACTAC TAGGATGAAGGGTGGTTTCT TGGTGAGGAT TGAGCAAAGGACAAATTGAT AGGACCCACA CTCCCTTCCCTTACAATAAT AAAATCTCCG TTAC336bGATCCGTACT GTACTTTTGA GCATTCAAGCubiquitinSEQ ID N° 155ACTTTTGAGT GCTCCAAACC CGGATGATCCconjugating enzymeACTCTCTGAA AACATTGCAA AGCACTGGAAGTCAAATGAG GCTGAAGCTG TTGAAACGGCCAAGGAGTGG ACACGCCTAT ATGCTAGTGGTGCATGAAGA CATAGCAACG AGATATTCAAAAATAACAAA AATTATGGAA TGTATTCTATTGACTTGCTT ATCAATATGA CACTTCGGACGGCTGTTAC338GGGAGGGGCCCGCAAGCACATGTCGAAAATCAGGputative proteinSEQ ID N° 156ATTGATGTCAATGCTGATCAGCACCCCTTTCAGTACAt4g24290 [A.GAAACTAAATCAACCACAGAAGCCAGCTAAGGTGGthaliana]ACCTGAACTCCGCAGTTTATCCTGGCGGTCCACCTTCACCGGCAAGGGCGCCAAAGATGTCGCACTTTGTCGATACAACAGAAATGGTAAGAGGACCTGAGGAGTCACCTGGCTACTGGGTGGTAACTGGTGCAAAGCTATGTGTAGAAGATAGTAGGATAAGAATGAAAGTGAAGTACTCGCTCTTAC339TAAGCAGCTC AATTCCGATC TTCACTGGTCputative serine-richSEQ ID N° 157TGAGACGGCC CTCTGTTCAA GTACCCCTTCproteinTTCTACTCGA GCCTCGGCAG AGCCTTTTTGATCTCATTCG TATTCTAAGG AATTCTAAAGGACTCTTTCA TATTGCACCG GAGCTGGAAAAGATTGGACT ATTCCCTAGC GAGACAACAC34AACATTCGCATTAGCAACAAAACATTCCTACACATambiguous hitSEQ ID N° 158CGTAACAGAATCAAGCATTCATAATATTGTAATAGAACCAAAACAAAATGAAAGAAGTAATTCACCACCAAAAATGGAAACCTCGAACCAGACCAGAAAACCTGCCAGAACCGCAACAAAACTCCACAACGGGCCTCATCGGCACCTCAGATTTGCTCGATTTCTTTTGGAGATGCGACTGCGTGC341aGATCCGTGGC TCTAAGGCTC GGCTCAACTTputative ethyleneSEQ ID N° 159GCCTCACTTAresponse elementbinding proteinC341bGATCCGTGAT GGACTTCTTC AGGCTTCTGThypersensitive-SEQ ID N° 160TTAGCTTAinduced responseproteinC347aGATCCGCAAG GGACCTGCAC CATATAATCTporinSEQ ID N° 161GGAGGTGCCT ACTTATAGTT TCCTGGAAGAGAACAAGTTA CTTATTGGTT ACTCAGGACTCATCGTAGAC TGCGTAGTGA TCTTCTGTACAGGGACTATG TCAGTGACCA TAAGTTCACCGTCACTACCT ATAGCTCAAC CGGAGTGGCTATTACCTCAT CTGGTCTGAA GAAAGGTGAATTATTCTTAG CCGACGTTAC347bGATCCGCCCAGGTCAAGATGTTACTGTACGAACAGcytoplasmicSEQ ID N° 162AAACTGGAAAATCCTTCACTTGCACAGTGCGGTTCaconitate hydrataseGACACCGAGGTGGAGTTGGCTTATTTCAACCATGGAGGTATTCTGCCATATGTCATTCGTCAGTTGACTAAGCAATAAGGGACCGTTTTGATAATTTGGCCACCTTCACGAGCTGCTGGTGCTTAC348TAACCCCAAA AAGACGAATA TTGTGGTGTTputative ribosomalSEQ ID N° 163CTAACAGCGG CAGATCAAAG AAGAACTTGAproteinTGAGCGAAAT CCGCTGACAA AAAAAAGAGAACTTTTTGAA TTCCGATGCC TAGCGTCCCCTGATAACCTA GGATTAGTGG TGATAGGGCTGATGTGGTAT CTCGGAAACT GGGATTTGATGGTATCTGTA GAGCGGATCC349aGATCCGCATG ACCTTTGTGA GCAACACCCTarogenateSEQ ID N° 164GATGTTATTC TCCTTTGTAC TTCAATTATAdehydrogenaseTCTACTGAAC CTGTCCTTAG ATCACTCCCTATTCAAAGGC TAAAAAGAAA CACATTGTTTGTTGATGTTT TGTCTGTTAC349bTAACATTCCC AGCAATCGAT CACAACTACAputative membraneSEQ ID N° 165AGAAGAGCAA AATAACTATG AGAAGATGTTproteinATCTTCAGCA AATTCAGTCA GACCCATTCT[SaccharomycesTATTACTCCA TTATGTGCCG CTTGCGCAAGcerevisiae]CCCACAGGCA GTGGCGGATCC349cGATCCGCAAA AATCAGAACC TGGAACAATCnucleosideSEQ ID N° 166AGAGGTGAGT TAGCTGTTGT AGTCGGAAGGdiphosphate kinaseAACATCATCC ATGGAAGCGA TGGACCCGAGACTGCCAAGG ATGAGATCAA ACTATGGTTCAAACCAGAAG AGTTGGTTAC350TTCTCAGCCAGCCGTGGAACTACAAAGGCCACTCCputative proteinSEQ ID N° 167ATCTAAGGCAAAGTATAGACCTCTGGAGACAAGGGAt3g52110 [A.GTATCCTTCAAGAACTGGAACAGAGCAGCAATGAAthaliana]GAGAAGAGAAAGGAAGATCAAGGGAAGATGATGAGTAATAATCAACAAGGACAGAGAGGTGGTGCTATTGTTGCTGAAAAAGAAGCTGCTGCTAGAGCTTTGGATGTCTTCTGGTTCTTGAAACCTTGCACTCTTTCCAGCTGAAATGGTCAAAGCCCACTGCTGCAGAACATTTCATGAAGTGATTCTTTCATACTTAC351aTGACTGCGTAATGATCCGCTATLTTCCACACAGAGGstromalin 3SEQ ID N° 168ACACCTATTGGACAATCTTCCACCCTTCCATTTCTGCCGACAGTGTTGAGCTCAAAGAACGGCAAAGGAAAAATGACCCCACTCAATTCCAAACTTCAGTTCGTCACTTTTCCTCTAAGCAACCCAATTAGCTTAC351bGATCCGCCAA AAATACAATA ATTATGAAGGambiguous hitSEQ ID N° 169ATGCGACACG CACACCGAGA CATTTTCGGAGAGTGCGAGC AACATAGGTT GGAATATTTACAGCCTTAGG AGGCTTCAGG AATAATGTATAACAACGTTT TCTTTATTGC TTTATTTTCACTTCTCTTAC352bTAAGGGTTCA ACCTTTAGTT CTTACGATTGmuconateSEQ ID N° 170CGTACCCATT GCATTGGAAT TATACGTAGGcycloisomeraseTGGAAACCTT GGATTCCCAG CATAGGCGGA TCC352cTGACTGCGTA GTGATCCACC AAAACCCTTG40S ribosomalSEQ ID N° 171GCAACTTCGT TAprotein S2C353aATGAATCCAG AATACGACTA TCTTTTCAAGGTP-bindingSEQ ID N° 172CTTTTGCTTA TTGGAGATTC TGGTGTTGGCproteinAAATCATGTC TCCTCTTGAG ATTTGCTGATGATTCATATC TTGAGAGTTA CATTAGTACCATTGGTGTTG ACTTTAAAAT CCGCACAGTTGAGCAGGATG GGAAAACCAT TAAACTTCAAATTTGGGATA CTGCTGGTCA AGAACGTTTTAGGACAATTA CCAGCAGCTA CTATCGCGGTGCTCACGGCA TAATTGTTGT CTATGATGTAACCGATCAAG AGAGTTTCAA TAATGTCAAGCAATGGTTGA GTGAAATTGA TCGATATGCAAGTGATAATG TGAACAAACT TCTTGTCGGAAATAAGTGCG ATCTCACAGC GCAGAAGGTAGTTTCCACAG AGATAGCTCA GGCTTTTGCTGATGAGATCG GCATTTCCTT CATGGAAACTAGTGCGAAAA ATGCCACCAA TGTGGAACAGGCTTTCATGG CTATGGCTGC TTCAATCAAGAACAGAATGG CAAGCCAACC AGCATCAAGCAATGCACGGC CTCCAACTGT GCAGATCCGCGGACAACCTG TCAACCAGAA GAGCGGTTGCTGCTCATCTT AAC353bGATCCACCAAAACCCTTGGCAACTTTCGTTTA40S ribosomalSEQ ID N° 173protein S2C354AATACGATCCCACTATACATATCGATATACATAGputativeSEQ ID N° 174AGATTCACCGACTACATTTCAGCCATCCAGCGATCoxidoreductaseCTGATCTATTTGAAAATTGTTAGAATTGATATATCCATATATCATATTTCTGCGGGCATAAGAGTTTTTTCCTTTATGTTCGGTGGAAATCACATGTTATACTATATTCCAATAAATAGATATCTGTGTTATGATACAAGTCCACGTTTTCAAAAAAAAATGGATGAGATTGGGTCCCAGCGGATCC355aGATCCGCCGC TAACACCTAA AACACCCCCCprotein kinaseSEQ ID N° 175TCCCTTGAAG CTTCTTCTTC TTCGAACCCACCCACCTCGG CCGTTACCCC TCCTATTAC356aGATCCGCAAC TAATGCTCTT ATCGGTGCAGglutamate/aspartate-SEQ ID N° 176TCAGTGCTAT AATTTTCTGT GGATACATTGbinding peptideTATATGACAC AGACAACCTG ATTAC356bGATCCGCCGC TAACACCTAA AACACCCCCCextensinSEQ ID N° 177TCCCTTGAAG CTTCTTCTTC GAACCCACCCGCCTCGGCCG TAACCCCTCC TATTAC358GATCCTAGTT TGGAATATGA GCTCTCTGCTputative potassiumSEQ ID N° 178CTTCGAGAAG CCACAGAATC TGGATTTACAtransporterTATTTGCTTG GACATGGGGA CGTGAGGGCGAAGAAAAACT CTTGGTTCAT CAAGAAACTGTCAATAAATT ACTTCTATGC ATTCATGAGGAAGAACTGTA GAGGAGGCGC TGCAACAATGCGTGTTCCTC ACATGAATAT TATCCAGGTGGGAATGACAT ACATGGTTTG ATCTTGGTACCATTTAGCTT CTTGCTGGCC TTGTAAGTGCTGCATTAC359CTGTACAAGTGATGAAGTGCCCTTCACGGTTTCCTCAtSIK-like proteinSEQ ID N° 179TGCAAGAACCAGTGGCAGTTGGTGGTAAACATATGkinaseTCAAAGTCTCCAAGTATGACTGGAATCATCACCCCTGCGCCAAGGTTGAGTTTCTCCCCTTCCTTACCTATCACCCGAGGATCGGCTTCTCCCTCAAAGTCTTCTACGCAGCCCTCGTCTCGTCCTTCATTAC360CCACGCGTCC GCCGAAATTC TGAAGCAATAputative proteinSEQ ID N° 180ACAAAGAATG GGTTGCATCG AAAAGGATCCAt4g14710 [A.AGGAGAGGAC GTCGTACAGG CATGGTACATthaliana]GGATGACAGC GATGAGGACC AGAGGCTTCCCCATCACCGT GAGCCAAAGG AATTTGTGTCTCTTGACAAA CTTGCTGAGC TTGGAGTGCTCAGCTGGAGA CTTGATGCTG ACAATTATGAGACAGAGGAG GAGTTGAAGA AAATTCGGGAAGCTCGTGGC TATTCTTACA TGGATTTCTGTGAGGTTTGC CCTGAGAAAC TACCGAATTATGAGGAGAAA ATCAAGAACT TTTTTGAAGAACACCTGCAC ACCGACGAAG AGATCCGTTACTGTGTTGCA GGAAGTGGTT ATTTTGATCTCCGGGATCGG AATGATGCTT GGATTCGTGTCTGGGTAAAG AAAGGTGGAA TGATTGTTCTGCCTGCTGGA ATTTATCACC GCTTCACACTTGATTCAGAC AATTACATTA AGGCAATGCGACTCTTTGTT GGTGACCCAA TTTGGACTCCATACAATCGC CCACATGACC ATCTCCCTGCAAGGAAAGAA TATATTGAAT CGTTTATCCAAGCAGAAGGC GCTGGCCGTG CAGTTAATGCTGCTGCTTAA ATTTACTAGA GGCGAAGAAGTTGAAATCCT TATAGGCTGT AATAAATGTTACCATATGAT GGTTGTGTGG TTCCTGAAGTGTGCGCCTGG CTCAGCTTGT TGAATGTTGTAATTCGAGCA CTAAATAAAT CTCCTATGGGGATATTGAAC TTAATAGTTA TATACACCTGGAGTCTATGT TGTGAATTTA AACATTTGTGCATGTCGAGT GGTACAATAT TTCCTGTTTCGGGGCGTAAT TAGCTCTGCC ATTTTTGTTGTTGGATTGCA ATGACCTTGA ACTTCTTGAACTTAAAAAAA AAAAAAAAAC364aGATCCGGGTC ACTTCCCTAC ATTGGGTGGCprobableSEQ ID N° 181AAGTGATGCT TTATTAGTGC TTTTCTCCCAtranscription factorCGTCCAAGAG GCAAATTGAC TGAAAAATAAC364bGATCCTCAAG CATTTATTCG CCACTTTTACheme oxygenaseSEQ ID N° 182AACACATACT TTGCGGATTC AGATGGAGGTCGCATGATAG GGAGAAAGGT GGCTGAAAAGATACTCTGAC TGCGTAGTGA TCCGGCTATGTTGCTGATCA ATCTAGTTAT GGCATGGTTGATCCTTCTCA GCATTATTAT CCGGAGCAACCATCCAAGCC GCAGCCAAGC ATTTCGAACAGTCCTTATGC TGAGAATTAT CAACAACCATC364cGATCCTCAAG CATTAATTTG CCACTTTTACheme oxygenaseSEQ ID N° 183AACACATACT TTGCGCATTC AGCTGGAGGTCGCATGATAG GAAGAAAGGT GGCTGAAAAAATACTCAACA AGAAAGAGCT GGAATTCTGACTGCGTAGTG ATCTTGGAGT GAATATGGACGAGGACTACT TACTGCGAAA TGCTAGTAGTCGGTAATTCT TCTTCCTCTG TTGATGCTGTGGAGAGAGCT AGAGCGTGGG GC365TTGACAGGATCGATCATGCCAAATTCTTCATCATCTputative proteinSEQ ID N° 184TCTTCGCTAATTCCAAACGAGTCCACGCTGATGGAAt1g26190 [A.AGAGCTATCTAATGTTGCACCTGGACAACGTCAAAthaliana]TTATACATCAGTTGGACAATCTTAGCAATCTTCTTCGCGACAGGCTAGGAGAACAATCTCGGCAATCAAGAAAAAGCAAGAGAAGAGATATTACCGATATTTGATTCGATCAGAGTGCCTCTCATTGTAACCTTAGCAGTTGGTGGATTGGGATTATTTTTGTTTAC366aGATCCGGGAA GTTTGGTCCG ATAATATTGACCR4-associatedSEQ ID N° 185TTCTGAATTT GAGCTTATAC GAACAGCTATfactorTGATCAGTAC CCTTACATCT CAATGGATACTGAATTCCCG GGCGTTATTT TCAAGCCGGAGGTTTGGTCT TTCCAGCAAA ATCGCCGGCGACATGGACAA CATTATAAGT TGTTACTCAGGACTCATCAA CTAATGAGGA AACCGCGAAATCTGTATACT TTCTAAAACC CCAAAAGGTTTGCTCTTTCA GTTTTAC366bTAAAGCTAGC GGGGTTAGTG ATATCCTTGT6-phosphogluconateSEQ ID N° 186TGACCAGTCC GTGGATAAGA ATCAGTTGATdehydrogenaseTGACGATGTG AGAAAGGCAC TTTATGCATCCAAAATATGT AGCTATGCTC AGGGCATGAATTTGATAAGG GCAAAGAGCG TTGAAAAAGGATGGGATTTG AAACTAGGGG TGCTTGCTAGGATTTGGAAG GGTGGTTGTA TTATCCGTGCTATATTTTTG GATCGCATCA AGGGGGCTTATGACAGAAAC CCGGATCC367GATCCGGCAT GTTTTTTTAC TCAGGACTCAambiguous hitSEQ ID N° 187TCGTTAAAGA ATCAAAGGTT CAAGTGAAATCATGCCCCGT GCTCCTAAAG TACGCTTTCATATTTGGGAA CACTTTGAGG TGAAAGAAGATAACGGAGAA GTTCGCAAAG TAAAGTGCAAGCAATGTGGT CCAGTCTATA ATTTCATCCAAAGAGGGATG GCACATATTG TTTAC368bGATCCCGAGC AGGAGAGCGA TAACATTGTTankyrin like proteinSEQ ID N° 188TTAGTCGTGC AAAAGAAGTT GTGGCTCACAAGTGGAAGCA TCAGAGATAC AGAATAGACAGTAGAGTTTG AACACTTCTT CCTGACTCTGCCTTTAGGGAC369GATGAAGAAGCTGCAATTGCTTATGATAAAGCGGCethylene-responsiveSEQ ID N° 189TTATCCAATGCGCGGTCCAAAGGCTCATTTAtranscription factorC4GTTTGACAAT GCCTACTTCA AAAATTTACAperoxidaseSEQ ID N° 190GCAAGGTATG GGACTATTCA CATCATGATCAAGTGCTTTA CACGGACGGG CGGTCCAAGGGAACTGTCGA CATTTGGGCT AGTAACTCAAAAGCATTCCA AAACGCATTC GTCACTGCAATGACAAAGCT GGGCCGTGTT GGTGTGAAAACTGGGAGGAA TGGAAATAC401GATCCTATAG CCAACCTAAC AATTTACCCCputative proteinSEQ ID N° 191TCTTCGGATC GGTTCTTGTT GGAAAAGATTAt2g44230 [A.CAAAAGGAGA CGCGCTAAAG ATCCCAATTGthaliana]ACTATACACT TGTATGGAGT AGTGAGAACTTGAATATCAA GCAGGATAGT GTTGGCTATATTTGGATGCC AATTCCTCTT GAAGGCTATAAAGCCGTAGG CCACGTTGTA ACAACGTCGCCTCAAAAGCC TTCTCTTGTC ATAATTCGTTGAGTTCGTTA TATTTTAC402GGTGCTTATATTGTTAGACAGGAGGCAAAGAGTGGS-adenosyl-L-SEQ ID N° 192GGGCGCCTCAGGACTTGCTCGCCGTTGTCCTGTGCAmethionineGGTTCCTTATGCTATCGGTGTGGCTGAACCACTTTCsynthetaseCGTGTTTGTTGACACTTACAAGACTGGAACAATTCCAGACAAGGATATTTTGGCTCTGATCAAGGAGAACTTTGACTTCAGGCCTGGAATGATGTCAATCAATCTTGACTTGTTAC408ATGCTCTTCTCCTATTCATTTGACTCACAATGTATCbeta-glucan bindingSEQ ID N° 193CTCCATAATTTCTAATGGATTCTCGGGTGTAATACGproteinAATTGCTCTCTTGGCTAATTCTGATCGCCAATGTGAGAAAATTCTTGATCAGTACAGCTCGGCTTATCCCGTGTCTGGAAGTGCAACTTTGAGGCCTTTTGGTCTTAGTTACAAATGGGATGTGAACGGTAAAGGCAAGTTTGCTTATGCTTGCTCATCCTCTACATCGCCGACTTCTTTCAACAGCAGATTCTTCAGTAACTATTTTGGATGATTTCAAGTATAGGAGCATGGATGGTGAGCTTTGTTGGCGTTGTTGGAAATTCGTGGGAGCTTGAAACGGATTCAATTCCAATATCATGGCATTCGGTTAC409aGATCCTACTAAGGTGGACATGAGTGGTGCTTATATTS-adenosyl-L-SEQ ID N° 194GTTCGACAGGCAGCAAAGAGTGTGGTCGCCTCAGGmethionineACTTGCTCGCCGCTGTATTGTGCAGGTTTCTTATGCsynthetaseTATCGGTGTGGCTGAACCACTTTCCGTGTTTGTTGACACTTACAAGACTGGAACAATTCCAGACAAGGATATTTTGGCTCTGATCAAGGAGAACTTTGACTTCAGGCCTGGAATGATGTCAATCAATCTTGACTTGTTAC409bGATCCTCTGA GGCTATTATG CTTGCTGGATglutamateSEQ ID N° 195AGCTTTTCAA GAGAAAATGG CAAAATAAAAdecarboxylaseTGAAAGCCCA AGGCAAGCCC TGTGACAAGCCCAATATTGT CACTGGTGCC AATGTCCAGGTGTGTTGGGA GAAATTTGCA AGGTATTCTGAAGTGGAGCT AAAGGAAGTA AAGTTGAGTGATGGATACTA TGTGATGGAC CCTGAGAAAGCTGTGGAAAT GGTGGATGAG AACACAATTTGTGTAGCTGC TATGTTGGGT TCCACACTCAATGAGATAAA TTTGAAGATG TTTAC410GATCCTCAAG GCCCCAAAAT TTGATATCGG40S ribosomalSEQ ID N° 196CAAGCTGATG GAGGTTCATG GTGACTATTCprotein S3aAGAAGATGTT GGCGTGAAGT TGGATCGACCAGCTGATGAG ACCGTTGCTG AGGCAGAACCTGAGATTCCT GGAGCTTAGA CTTGTTTGATTTGGATTCTG TCTGAATATG GTGCTTGTCTTCTAAATTTA TGAATTTGTT TTAGTTGAGGTGTCAAAGGC GCGGCCTAAC AAAATATTGGATATCTTTCT TTGGTTACGT TTGATGTTAC414cTAAGCATACA TAGAAGTTAC ACTGCTTTCADNA polymerase ?SEQ ID N° 197TCTCACTCGT TGTAGTGCAG ATCATACACTGGCTATCTTT AGCACCTAGA GAATGAAGCATCATCTGATG CCTTTACTGA ATTTGCTTTTCAAAACTTCC TGTAATTGCT AGGATCC417aTAAGCACCGTTTAGGAGATTTATTCTACCGTTTGGTvacuolar H+-SEQ ID N° 198GTCCCAAAAGTTCGAGGATCATPaseC418CCTTGGTGGAGCTTGCGGTTACGATAACCCTTATGexpansinSEQ ID N° 199ACGCCGGATTTGGAGTAAACACAGCGGCATTGAGTAGCGCACTGTTCAGAAATGGAGAAGCTTGTGGAGCTTGCTACACAGTAAGATGCAACCGCAAACTCGATCGTAAGTGGTGCCTCCCACATGGGGCCGTCACTGTGACGGCCACCAATTTTTGCCCTCCGAACAACCACGGAGGGTGGTGTGATGCACCACGACAACACTTTGACATGTCCATGCCCGCTTTCCTTCGCATTGCTCGACAAGGCAATGAAGGCATTGTTCCTATTCTCTACAAAAGGGTGTCATGTAGGAGAAGAGGAGGAGTACGTTTCACATTAC419GGATATGAGCTCTCTGCTCTTCGAGAAGCCACAGAputative potassiumSEQ ID N° 200ATCTGGATTTACATATTTGCTTGGACATGGGGACGTtransporterGAGGGCGAAGAAAAACTCTTGGTTCATCAAGAAACTGTCAATAAATTACTTCTATGCATTCATGAGGAAGAACTGTAGAGGAGGCGCTGCAACAATGCGTGTTCCTCACATGAATATTATCCAGGTGGGAATGACATACATGGTTTGATCTTGCTGCCATTTAGCTTCTTGCTGGCCTTGTATGTGCTGCATTAC420CAAGTGGACAGAAGTGGTGCTTATGTTTGTGAGACAS-adenosyl-L-SEQ ID N° 201GGCAGCAAAGAGTGTGGTTGCTGCAGGACTTGCTCmethionineGCCGCTGTATTGTCCAGGTTTCTTATGCAATTGGTGsynthetaseTGGCAGAACCACTCTCCGTGTTTGTTGACACTTACAAAACCGGAACCATTTCCAGACAAGGATATTCTGGCTCTGATCAAGGAGAACTTTGACTTCAGGCCTGGAATGATGGCAATTAC421CCAATCCGATATAGCCGATGGCTTCCATGAATATacyl-CoA oxidaseSEQ ID N° 202ATTAGGCCACTACTCAAGCAGCAACTGCATACTGCTCGACTGTGAAGGAGAGTTGCATATATTTATAGCTGTTGTATTGTGCTGTGCCAATAAACTAAAATTGAAATATCATCTTTCTTTTGGATGATGGCCTCCTTTATGACTTACATAGCGGTGATTAC422GACAAAACACTTGGATCCTGACAATTATCTGCTGAputative annexinSEQ ID N° 203TACCCAGCACTAGGAATGTTCATCAGCTTAGAGCAACTTTTGAGTGCTATAAGCAAAATTACGGATTCTCCATCGACCAGGACATTAC423aACTAGTGATTGACTGCGTAGTGATCCTGCTGGTCCGspermidine synthaseSEQ ID N° 204GCTCAAGAGCTTGTGGAAAAACCATTCTTTGCAACGATAGCAAGGGCATTAC423bACTAGTGATTGACTGCGTAGTGATCCTAAGAAAATputative proteinSEQ ID N° 205TGCCCGTGTGATGGACCGACGACTTGAAGGTGAATkinaseACCCGATTAC425GGTGCTATTACAATTTTGGACACATCAAGTGATCCAvacuolar H(+)-SEQ ID N° 206AGGACACTTGCTGTTGCTTGCTATGATCTATCACAGATPase subunit-likeTTCATTCAGTGCCATTCTGCTGGGCGAATCATAGTGproteinAATGACCTCAAAGCTAAGGAGCGCGTAATGAAACTGTTGAACCACGAGAATGCAGAGGTCACAAAAAATGCCTTACTCTGTATCCAAAGGCTTTTCCTAGGTGCCAAGTATGCTAGCTTTTTGCAGGTTTAC426aGATCCTCAAG GCCCCTAAGT TTGATATTGG40S ribosomalSEQ ID N° 207CAAGCTGATG GAGGTTCATG GTGATTATTCprotein S3aAGAAGATGTT GGTGTGAAGT TGGATCGGCCAGTTGATGAG ACAGTGGCAG AGGCAGAACCCGAGGTTCCT GGAGCGTAGA CTCGTTTCGTGCTTCCGAAA TATGTGTTCG AATATGGTGATAGTCTTTAG AGCCTCACAT TGTTTAC426bGATCCCACCAGATCAGCAGAGGCTCATATTTGCTGubiquitinSEQ ID N° 208GTAAGCAGCTGGAGGATGGGCGCACCCTTGCAGATTACAATATCCAAAAGGAATCCACACTCCACCTTGTGCTTCGCCTTCGTGGTGGTGACTATTGAGGATTGAAGTGCTGCTGCTGGGGTTTTACATAAGATGCCTGCTTCTTTGTTCTAATGGTTCTGTTGTTAC428aGATCCTGATG TTACTGCCCG CCCTAAAGCTputative proteinSEQ ID N° 209CTTGAGTGCA ATCTCATCTT TAAt1g27760 [A.thaliana]C428bGATCCTCCAA GGAGATAGCT TTGGCATCTCputative proteinSEQ ID N° 210ATTTTCTTGG AATTTTGGCT TTAAt3g09350 [A.thaliana]C429GATCCTGCTGGTTGGCTAGAATGGGATGGTAATTTTputativeSEQ ID N° 211GCTTTApectinesteraseC430GCTCATTACAATTTTGGACACATCAAGTGATCCAAvacuolar H(+)-SEQ ID N° 212GGACACTTGCTGTTGCTTGCTATGATCTATCGCAGTATPase subunit-likeTCATTCAATGCCATTCTGCTGGGCGAATTATAGTGAproteinATGACCTCAAAGCTAAGGAGCGCGTAATGAAACTGTTGAACCACGAAAATGCAGAGGTCACGAAAAATGCCTTACTCTGTATCCAAAGGCTTTTCCTAGGTGCAAAGTATGCTAGCTTTTTGCAGGTTTAGTTCTCATCGAAGGGTTTGATTGTTCAGACGATGAAAACTAGACATATCTTGTTATTTCATTGAAACAAAAGGAGTTTGATCGTGTTCGTGTTAC431aGATCCTGCAC GTCTGCCTGC TTTTCATTGTmonodehydroSEQ ID N° 213TGTGTCGGTA CGAATGAGGA AAGGTTGACCascorbateCCGAAGTGGT ACAAGGAACA TGGCATTGAAreductaseTTGGTCCTTG GAACTCGTGT AAAATCAGCTGACGTGAGAC GGAAGACACT GTTGACTGCAACTGGTGAGA CCATAACCTA CAAGATTCTCATAGTGGCAA CTGGTGCTCG GGCTTTGAAGCTTGAAGAGT TTGGAGTGAG TGGATCAGATGCTGATGGTG TATGTTATTT ACGAGATTTGGCTGATGCAA ACAGGCTGGT TAC431bGATCCTCTGAGGCTATTATGCTTGCTGGATTAGCTTglutamateSEQ ID N° 214TCACGAGAAAATGGCAAAATAAAATGAAAGCCCAdecarboxylaseAGGTAAGCCCTGTGACAAGCCCAATATTGTCACTGGTGCCAATGTCCAGGTGTGTTGGGAGAAATTTGCAAGGTATTTTGAAGTGGAGCTAAAGGAAGTAAAGTTGAGTGATGGATACTATGTGATGGACCCTGAGAAAGCTGTGGAAATGGTGGATGAGAACACAATTTGTGTAGCTGCTATCTTTGGGTTC432AAACCGGTGCGATTTGAAAATACTGCTGGCGATCTisoflavone synthase-SEQ ID N° 215TACAGGAAAATCACTATCAGGTCATTCCTTTCGGTTlike proteinCAGCAACAAGAATGTGTCCAGGGAATGTCGATGGGTTGAGTTAC433bGATCCTGCTGTAATGGGAATTGGCCCAGCCGTTGC3-ketoacyl-CoASEQ ID N° 216GATACCAGCTGCTGTTAthiolaseC434aTAAGCAGCGATGACCTCTTTGAAAGTGGAAGCTCAputative proteinSEQ ID N° 217AGTGATGATGCTGATGACGAGTTGACTGATAAAAGAT5g43720 [A.TGCAAGAGAACAAGCTTCTAGTACATCAGTGAAAGthaliana]CAGCTTTCTAGCATGTCCAGCGATGAAAAAAATCAGAGGCAAATATCCGCCCGTGCTCTAATGCCACCACCTCGTCCTTCGAGCAAGTCATTTAGTCATTCAGTAAATAAAAAATCACGGTTTGGAGGATCC435bGATCCTCAAAATGGACTGTCAAGGAAGTTGCTGAAmutator transposaseSEQ ID N° 218TGTGTTACTCAGGACTCATCAAGCGGGGAAATAAAAAAGAAGCAAAACAGATGCTCCATATGCAAAACGACTAGCCACAAAAGAACTACTTGCAAGAAGAGAACTGAAGGAACAAGCAACTCCATTGTGGCTTAC436aTAAGGCATCA TATATACATC ATCTCGATGCporinSEQ ID N° 219ATTGAAGAGG AGTGCTGCTG TGGGTGTAATCACTAGAAGG TTCTCTTCAA ATGAGCACACATTTACAGTT GGAGGATCCC436bTAAGCATGGAAACCGCCTTTGTCCTATCTGCAGATGretroelement polSEQ ID N° 220CAAATGGAAGGAAATCCCTCTCCAATTTCCCACCTTpolyproteinCAGTACTGATGTAAACGGTATCAATAATCCCGCGC438GTTTAAGACATTTGATCTTAGCTACTTCAAGCTTTTperoxidaseSEQ ID N° 221GCTCAAGAGGAGAGGTCTGTTCCAATCTGATGCAGCCTTAC439aGATCCTGAGA AAGCTGTAGA AATGGTGGATglutamateSEQ ID N° 222GAGAACACTA TTTGTGTAGC TGCTATCTTGdecarboxylaseGGTTCCACCC TTACTCAGGG GTCATCAATCACTAGTC439bGATCCTCCAA ACCTGAAGAC CAATGCAGTCputative proteinSEQ ID N° 223GAACAACCAG AATGCAAGGG AGAGAAGGTTAt4g09150 [A.GATCTGTTCT TAthaliana]C441aGATCCTCAGCAATTCTAATGGTTCACAAGGCCAGANa+/H+ antiporterSEQ ID N° 224AAGAACGGGCTTCCCTTTTGGAATAAAGGACAAGTAGGGGAATCGAACCAAGTCATTGTAGCATTTGAGACATTCGGACAACTCAGTAAGGTGTCAATTCGACCACAACTGCAATCTCCGCTATGACAAGTATGCACGAGGACATAATTGCTAGCGCGGAGAGAAAAAGAGTTTCAATGATAATTTTACCGTTCCATAAACATCAGAGAATTGGCGGACAATTTGAAACGACACGAGCTGATCTTAGACTTGTCAATCGAAGAGTTCTACAACACGCACCATGTTCTGTTAGCATATTAC441bTGATGTTGAT ATCGCGACTC ATATACATGTputative proteinSEQ ID N° 225CAAGGATGAT GGACCTAAAA GGAGTATACTAt5g04740 [A.GCATGTTGAA ACTGCTGATC GATCTGGTTTthaliana]GCTGGTGGAA GTCGTCAAAA TAATGGCTGACATTAGCATT GATGCTGAAT CAGGAGAGATTGATACAGAA GGTCTAGTTG CGAAGGGCAAGTTCTATGTC AGTTACAGAG GGGCAGCATTACTCAGGACT CATCGATGAG TCCTGAGTAACCACAAATGC CAAACCAAAA GAGCCAATAAATTATACCTT ACATTGAACT GCCATTCTCAAAAAATGGCA CTANGAACTA ATACACACTGTTCGTTGATG GGGTAAAGCA AAAAAATAGGCAAATACTAG GGGAACCATA CAACATCAGCCTAGATACTA TGCAGTTAGT CAGGTTCCTCCATCCTTGTA CCCCCAGCAT CAGCTTCAGG ATCC442ATGTTGGACAACCTTTAGCTCAGTTACTTTATCACTcytochrome P450SEQ ID N° 226TCGATTGGAAACTCCCTAATGGACAAACTCACCAAAATTTCGACATGACTGAGTCACCTGGAATTTCTGTTACATGAAAGGCTGATCTTATTATGATTGCCACTCCTGCTCATTCTTGATTAC443aGATCCTAGTTTGGAATATGAGCTCTCTGCTCTTCGApotassiumSEQ ID N° 227GAACCCACAGAATCTGGATTTACATATTTGCTTGGtransporterCATGGGGACGTGAGGGCGAAGAAAAACTCTTGGTTCATCAAGAAACTGTCAATAAATTACTTCTATGCATTCATGAGGAAGAACTGTAGAGGAGGCGCTGCAACAATGCGTGTTCCTCACATGAATATTATCCAGGTGGGATGACATACATGGTTTGATCTTGGTACCATTTAGCTTCTTGCTGGCCTTGTAAGTGCTGCATTAC443bGATCCATGCA GATATTCCAT GGGGCGATTTglyceraldehyde-3-SEQ ID N° 228AGGTGCAGAT TATGTTGTTG AATCTTCTGGphosphateTGTTTTCACA ACCGTTGAGA AGGCTTCAGCdehydrogenaseACATAAGAAG GGTGGTGCAA AAAAGGTCGTAATCTCAGCT CCATCAGCTG ATGCACCTATGTTTGTGGTA GGAGTGAATG AGAGAACTTTCAAAACCACC ATGGATGTTG TTTATAATGCTAGCTGTAGT ACCAATTGCC TTGCTCCCCTTGCCAAGGTG GTTCATGAGG AGTTTGGCATTGTTGAAGGA TTAC444GATCCTCAAG CATTTATTTG CCACTTTTACheme oxygenase 1SEQ ID N° 229AACACATACT TTGCGCATTC AGCTGGAGGTCGCATGATAG GGAGAAAGGT GGCTGAAAAGATACTCAATA AGAAAGAGCT GGAATTCTACAAATGGGACG GTGACCTTTC TCAGCTGCTGCAGAATGTTA GAGAGAAGCT GAATAAAGTTGCAGAAAACT GGACTAGAGA GGAGAAGAATCATTGTTTGG AAGAGACGGG GAAGTCATTTC AAGTTCTCAG GGGAAATCCT CCGATTAC445GATCCTCTCA TCATTGTCCA GGAGGTCTGTputative inorganicSEQ ID N° 230TGCTGCTCAC CCTTGGCACG ATCTTGAGATpyrophosphataseTGGACCTGAA GCTCCAAAGG TTTTCAATGTTGTCATTGAG ATTACAAAAG GTAGTAAAGTCAAATACGAG CTTGACAAGA AAACTGGTCTCATTAC446aTAATGGAAGA TGCACCACTG GAATGAGCAAcytochrome cSEQ ID N° 231AGAAAAGTTA GGTCATTTTA TGACTTGCTGoxidase subunit 5cGAGAAAGGTG AAATAAGTTT AGTCGCAGAAGAATAATTTT TCGAGGATCC446bTAATGGATGATACTGCTGAGGCAAAAGCTTGTCAAputative proteinSEQ ID N° 232GACGAAGTGAATGCTATTCTGGGAGAGAAGCTATCAt5g09260 [A.TGCTGATTATGAAGAGGAAGTTTTAGCACAATTTGthaliana]AGGATCC447GATCCTCATGACATATGTGAACAACATCCTGACATarogenateSEQ ID N° 233CGTCGTACTCTGCACTTTCCATTAdehydrogenaseC448GATCCTGGTC GCCTGACAGG CAAGAGAGATcatalase 3SEQ ID N° 234TTATCTGCAG ATGGATTAC449aGATCCTGCTG TTTTTACTGG GGATACATTGglyoxalase IISEQ ID N° 235TTTATTGCTG GTTGTGGTAA GTTTTTTGAAGGCAGTGCAG AACAAATGTA TCAGTCACTGTGTGTGACAC TAGGTTTCTT GTCAAAGCCAACTCGGGTGT ATTGTGGCCA TGAGTACACAGTAAAAAATT TGCAGTTTGC TTTAC449bGATCCTGAGG GTGCTCATTA CAATTTTGGAvacuolar H(+)-SEQ ID N° 236CACATCAAGT GATCCAAGGA CACTTGCTGTATPaseGCTTTGCTAT GATCTATCGC AGTTCATTCAATGCCATTCT GCTGGGCGAA TTATAGTGAATGACCTCAAA GCTAAGGAGC GCGTAATGAAACTGTTGAAC CACGAAAATG CAGAGGTCACGAAAAATGCC TTACTCTGTA TCCAAAGGCTTTTCCTAGGT GCAAAGTATG CTAGCTLTTTGCAGGTTTAG TTCTCATCGA AGGGTTTGATTGTTCAGACG ATGAAAACTG GACATATCTTGTTATTTCAT TGAAACAAAA GGAGTTTGATCGTGTTCGTG TTAC449cTGACTGCGTAGTGCTCCTGACGGTTATTGGATCGAGglyoxalase ISEQ ID N° 237ATTTTTGGCACTAAACCTATCAAAGAAGTTGCTGATGCTGCTTCTTGATTCAGGGGCTCTTCGAGTGTCTATCACGAGTGTTGATCAACTCAGCTATCTGTTGAAGAGAGAGTTTCTCGTAAACAGCGTTTTCTTTCCAGGTTA C450GATCCTGGTG TTAGCAACAA TGAAGATGAGputative protein 66bSEQ ID N° 238GATGTTGAGG ATATCAATGT TGCAGAGGAC[Daucus carota]GATATGATGG ATGATGTGCT TGACGTGGATGATAATAACC AGAGGAGTGA TGAAATTGTAAAAGTTGAAG CCGGTAATGG TAGTACACAGATTGATCAGC AGAAGATATG CATCTCTTATCTCTATTAAA GGTTTAGTTT GTGTTTAC451aGATCCTGCTG TAATGCCAAT TGGCCCAGCC3-ketoacyl-CoASEQ ID N° 239GTTGCGATAC CAGCTGGTGT TAthiolaseC452aGATCCTGATAGAACTGAATCCGAGGATTCTGATGAputative SR proteinSEQ ID N° 240TTCAATATAGCCGAGGACATTTTTCAGCAGACAATGATTAGTTAGCTACAAAAGCTGTTTTTGGCAAGTGGTTACCAAGTCTCCGCCATTGATATAGTTACTTCATGGTTAC452bGATCCTGTTT GTGGAAGTGC CCATTGTGCTPHZF-like proteinSEQ ID N° 241TTGGCTCCTT ATTGGCATAA AAAGCTTGGCAAATGTGACT TTGTTGCTTT AGCGGCCTCAACTAGAGGTG GCGTTGTGAA CGTGCATCTAGACGAGGAGA ATCAGAGGGT ACTTCTGAGAGGGAAAGCTG TTGTTGTTAT GGAAGGTACTCTTCTAGTTT AC452cGATCCTGAAC TTCCCCCTGA AATGAGAGAAmitochondrialSEQ ID N° 242GCTCATCGTT ACAAGCTTTC AAAATTGCCAribosomal proteinAGGAACAGTT CTTTTACCCG AATCAGAAATS14CGGTGCGTTT TCACTGGTCG GCCACGTGCTGTGTATGAGA AGTTTAGAAT GTCGCGTATTGTGTTCCGTG GTTTGGCTGC TCGCGGTGCTTTGCAAGGTG TTTAC453TTTCATACCATGGCGATTTGAAAATACATCTGTTTGAcytochrome P450SEQ ID N° 243TCTTACGGGAAATCACTATCAGTTCATTCCTTTTGGTTCAGGAAGAAGAATGTGTCCTGGAATGTCGTTTGGTTTAC454ACAGCTATGA CCATTAAGCC TATTTAGGTGputativeSEQ ID N° 244ACACTATAGA ACAAGTTTGT ACAAAAAAGCphosphatase 2CAGGCTGGTAC CGGTCCGGAA TTCCCGGGATCTCTCAGTTT TTTTCATCCA TTCCTCTTCAGCCAATCCCA AGAGGGTCAT CATTTGCAGCTTCTACTATT CATTCAGGCC CTATCCCGGCCCGTATTTCT AGTACGTACC CTTGCTCGGGCCCGATCGAG AGGGGATTCA TGTCCGGCCCGATTGAGCGG AGCTTCACCT CGGGCCCGTTGGAGAACCAG TATGATCATA TCCAAAGGTACAAGCCCAAG TCCAAGAAAT GGGGTTTAATTAAAAGTTTA AAGAAAGTGT TGTCAAATTCCTTTTTGGGG TTTAATAAAG AAATGAATTTGGTAGAGAAG AATAATAATA ATGAAGTTAATGTTCAAGGG AGTAATAGTC ATCATAGTAATGTTGGAAAT AGTTTGAGTA GTCAGAATAGTTTGGTTGAT GATGATGATG AGGGAAATGACTCATTTAGA GGCCAAAATG TGCAATGGGCTCAAGGTAAA GCAGGGGAAG ACAGAGTACATGTTGTGATT TCTGAGGAAC ATGGTTGGGTTTTTGTAGGG ATATATGATG GATTTAATGGACCTGATGCT ACTGATTTTC TGTTAAACAATCTTTATTCA AATGTCTATA AAGAACTCAAGGGATTGCTA TGGAATGATA AGTTAAAAACCCCCAAGAAT TCGACGAGCA ACGAGACTGTTCCGTTAAGA AACTCGGGTT TTAAGGTGGAACATTTTGTT CAAAATCAAG AATTAGATCAGAGGGAGAAA CTTGATGGGG TTGTTGGTGTTGACCATTCT GATGTATTGA AGGCTTTATCTGAAGGGTTG AGGAAAACCG AGGCGTCGTATTTGGAGATT GCTGATATGA TGGTAAAGGAGAATCCTGAA TTGGCTTTAA TGGGATCTTGTGTTTTAGTA ATGTTGCTTA AAGATCAGGATGTTTATTTG TTGAATGTTG GAGATAGTAGAGCTGTTTTA GCTCAAAATC CTGAGTCTGATATTTCTATT AGCAAATTGA AAAGGATAAATGAGCAGAGT GTAAATAGCA TTGATGCACTCTATCGAGCT GAATCTGATC GCAAACATAATCTAATTCCT TCTCAACTTA CTATGGATCATAGCACATCT ATTAAAGAGG AAGTAATTAGGATTAGAAGT GAGCATTTGG ATGATCCTTTCGCGATTAAA AATGATAGAG TGAAAGGTTCCTTGAAAGTT ACTCGAGCTT TCGGGGCAGGATATCTCAAA CAGCCCAAGT GGAATAATGCACTTCTAGAG ATGTTCAGAA TTAACTACATTGGGAATTCG CCTTACATCA ACTGTTTACCATCGCTTTAC CACCACACTC TTGGTTCGAGAGACAGATTT TTGATCTTAT CATCTGATGGTCTTTACCAA TACTTCACAA ATGAAGAAGCAGTCTCAGAA GTAGAGACCT TTATGTCTATATTCCCCGAG GGAGATCCTG CACAACATCTCGTCGAAGAA GTGTTATTCA GAGCTGCTAAGAAAGCTGGA TTGAACTTCC ATGAGTTGCTCGATATACCT CAAGGAGATC GTAGGAAGTACCATGATGAT GTTTCAATTA TCATTTTGTCCTTCGAAGGA AGGATATGGA AATCATCGTTGTAAATCAGC TAGACACAGG AATTTTTATATTTTACCCTC AGAAATCAGG AAAAAAAGAAAGTACATAGA AAAAATCGAG CTAATTTTGCTGTTAACCGT TGTTTACCCA ATTTTAGCAGTAGTGTTTAT AGTATACAGT CTAGGCTGCTCGATAAAAGA TAGCGAGGCT GAGGTTTCTTGATCCAGAGA TTGTAAAATT GCCAATAAACTTATAACAAC CCCTGCCTCT TCTACATTCAAATGTTATTA GGACATGGTA AGTTTTGTAACAGATGGTGC TCCTTGTATA CATTCTGGAGTTCCATTTCA CAAAAAAAAA AAAAAAAAAAAAAAAAAAAA AAAAC456AAACCGGTTGCGATTGGAAAATACTTCTGGTGCTCTisoflavone synthase-SEQ ID N° 245TACAGGAAAATCACTATCAGGTCATTTCCTTTCGGTTlike proteinCAGGAAGAAGAATGTGTCCAGGGAATGTCGTTGGGTTTAGTTAC457TCGGGTATTG AAGCACAAGA ATGGGAAGTTacetyl Co-ASEQ ID N° 246GGGTGTTGCA GGAATCTGCA ATGGGGGAGGacetyltransferaseAGGCGCATCT GCTCTTGTTG TAGAGCTCATGCCTATAAGG ATGGTGGCAC GTTCATCGCTTTGAAACTGG AATAGTTTGT ACTATATTTACGTCTAGCTG CTGCACAGTT GCATGCCTGCTGAGTTCTGC CACATTGCGT CAAAAGTAGTGAGGTATCTG AATGCTTGTA TCCATTATGTAAAACCATAT AAGCAATAAC CTAATAATACCATGAAAATC GAGCAAACAC TTGTTTCCCT TAC458aGATCCTGGAG AATACTGGAG AGCTGTGATGspecific tissueSEQ ID N° 247AACGATGAGC CAATGCCTGA AGCAATCAAAproteinCATCTTATGC CTCAGCATTC TGTTCCTCTCTCCATAGAGA AAACTGATTG TTACACATTACCTTCTACTG GAGGTGAAGC CTTTGAACCAAGGCCTAATC TATCTGTCTA CCACGATGACGCCAAGCTGA AAGAAGCTGA GAAATTATTATTTATGAAAG ATTTTGAGCC AAGGCCTACTATAACTGGTT ATCATAATAA TGATGCTGGT CTTAC458bGATCCTGTAA TGAAGGAAGA AATTGACAGGSKP1-like protein ?SEQ ID N° 248GAGGTTGAGG ATTTTGCTAG GAGACTGAACTCTGTTTGGC CAGAAAGAAT GCAGGAGATTTTGTCTTTGG GTCAAGAGAG GAGGCCTGTACCACTATCTG TGAATGGGAA TGGTTCCCTAAAGAGATATA CGGGTTTGGA TGGGAGATAATGGTTCAAAT GGTGGATGAT GAATCTTTTGGCTTCAGTCG AGCTTACTCA GGACTCATCATCACTGGTTT TGTTATTACA TAGTGTGTTT GCTTAC461GATCCTGATCCTAGACATTATTTACCTCTTTACCTTgene feebly proteinSEQ ID N° 249AGACCAGCAACCTGATATGTTTTATAGGATGTGCACTTTGTAACCTTTGTATGAGATGAATATGTAACATGGTGTACGTAAAGTTTGAAAGTATAATATGTAAGATCACGTAAATCTATAGGTAAGGCTTAC462GATCCTGGTAGTTTCAAGACATTTGATCTTAGCTACputative peroxidaseSEQ ID N° 250TTCACAGCTTTTGCTCAAGAGGAGAGGTCTGTTCCAATCTGATGCAGCCTTAC463aGATCCTGAGA AAGCTGTAGA AATGGTGGATglutamateSEQ ID N° 251GAGAACACTA TTTGTGTAGC TGCTATCTTGdecarboxylaseGGTTCCACCC TTAC463cGATCCTGGAT GCAGGCGGGT TTTTATCTAGADP-ribosylationSEQ ID N° 252TTATTTTTTT CTTCTCAAGT CAGTGTGGTTfactorATGAACATCT CCTTTAC464GATCCTGATAAACCAACATTATCGTAGAGAATGTTThistamine-releasingSEQ ID N° 253TCTCTGTTTCTCCCTCTGAAGAACTTGCTTAfactor homologC465TAATCCAAAGTAGCAGATAATATCATAAATGCGCGputative proteinSEQ ID N° 254GAAGAACAACCCAACACAGCTCGATACCAGGGTGTkinaseCACTAGTCAAGAGCATCTATAAAACATAATACAAGTCTGAAGAGTCTATAACTATTACAAATGTCTGATACAAGATAGAAATGATAAAGAGGGAGAAACACATGACTACGGACATCAAACAACTACCTCGTGGTCTCTAAATGTGCTAGGAGCTCTCAACTTACACTTGCAGGATCC466GAAGCTGGGCACAATGAGCCTAGCTTGGTAGCAAGputativeSEQ ID N° 255ACTTGTGAACTTACTCAGATACTATGCTGCTGGGCTtranscription factorCGATTCTATTGGTTTCAGCCTTCCACCATACAGCCCSCARECROWTTGCAGGATTAC467ATCCTGTAG AGAAGGGATA TGTGGGTCCTsuccinateSEQ ID N° 256GTGCTATGAA TATTGATGGT TGCAATGGACdehydrogenase iron-TTGCTTGTTT GACTAAGATC GATTCGGGTGprotein subunitCTGAATCGAC GACTACGCCG TTGCCACATATGTTTGTGAT TAC469aGATCCTCTAC ATGAAAATGC AAATTTCATGputative proteinSEQ ID N° 257AATGTGAAAT GGTATACTTT GCTTCGTAAGAT5g08550 [A.TATGGACTCT CTACAGATGA AAATCCAAATthaliana]AGCTTTGATG ACGCTGATGC CAATCCTGTTCAATTGGTGG TGAAACTTGC AATGGCCATTCTACATAACC GGTTAGCTCA GTGCTGGGATGTGTTTAGCA CCCGTGAGAC ACAGTGTGCTGTATCTGCCA TAAATCTGTT GTTAC469bGATCCCAAGA GACTGGTTGA ATACTACAAAputative glutathioneSEQ ID N° 258AACCGTTTTA TGGCCTAGAA TTTCAAAACGS-transferaseGTTTGTCAAC CATTGGTGAA ACTGCGAATGAAGCACGCGC TGTATAAGTA TGTCATGGAGTTCTACAGAA TTGTTGATTA GTAATAGATAAATAAATTGG TCATGTCCTT TTTTTTATCTGTAGAATTGT GAATTATTTT TGGGGTTTGGTGTTTATGCT AGGGACTTGG ATTAC471aGATCCTTTTCTGAAAAAATTCTTTTTCCAACGGTTTAChexose transporterSEQ ID N° 259AAGAGAACAAAGGATCAAGGATTGAACAGTAATTACTGCAAGTATGATAATCAAGGGCTGCAGCTATTACTTTCATCTTTATATCTGGCCGGTTTAC471bGATCCTTACAGGTGGTTCAGTCATAGAATCTGAGGaldehydeSEQ ID N° 260GTAACTTTGTGCATCCAACAATTGTTGAAATATCTTdehydrogenaseCAAAAGCTGAAGTTTGTGAAGGAAGAATTGTTTGCTCCAGTTCTTTATGTAATGAAGTTTAC472GATCCTTCAC TGTGTAATCA AACAAAAAGAquinolinateSEQ ID N° 261TGTAAATTGC TGGAATATCT CAGATGGCTCphosphoribosyltransTTTTCCAACC TTATTGCTTG AGTTGGTAATferaseTTCATTATAG CTTTGTTTTC ATGTTTAC474TGCGTAATCAAACAAAAAGATGTAAATTGCTGGAAquinolinateSEQ ID N° 262TATCTCAGATGGCTCTTTTCCAACCTTATTGCTTGAphosphoribosyltransGTTGGTAATTTCATTATAGCTTTGTTTTCATGTTTCAferaseTGGAATTTGTTACAATGAAAATACTTGATTTATAAGTTTGGTGTATGTAAAATTCTGTGTTAC475TAACGTTGGTTCTCCAAGGGGAATTTCAGGCGAGCputative lipidSEQ ID N° 263GAGGCAGTGACATGCAGTGCCTCGCAGCTAAGTGAtransfer proteinGTGTGTGGGGGCGGTGACGTCGTCACAGGCACCATCTTCGGCATGTTGCAGCAAAATGAGGGACCAACAGCCTTGTCTGTGTGGGTACATGAAGGATCC476aTGTCTGGATC AAACCTTGCT GCCCCATATCMAP kinaseSEQ ID N° 264CTCTCTCCTT CCTAACATGG TGGGGTGGCTATGTCTGTCC CCACTATTCC CACGTGCTTTCTCCTCCCCA CTTATATAAA CACAAATTTCACTGAAGAGG AGAAGAATCC ATTTCCATTCCAACAAATCC AAACGGACCC GACCCGATTCACCCCACCAC ATGGCCTTAG TCCGAGAACGTCGACAGCTC AATCTCAGAC TTCCCTTGCCGGAACCCTCC GAACGCCGCC CTCGTTTCCCCTTACCCCTC CCTCCTTCCA TCTCCACCACCACAACTGCT CCTACCACTA CTATCTCCATCTCGGAACTC GAAAAGCTTA AGGTTCTCGGTCACGGAAAC GGCGGAACTG TGTACAAAGTCCGCCACAAA CGCACATCCG CAATCTACGCTCTCAAAGTC GTTCACGGCG ATAGCGACCCCGAGATTCGC CGTCAAATCC TCCGTGAAATCTCCATCCTT CGCCGGACGG ATTCTCCTTACGTCATCAAG TGCCACGGTG TCATCGACATGCCCGGCGGC GACATCGGTA TCCTTATGGAGTACATGAAC GTCGGCACAC TAGAAAGTCTTTTAAAATCA CAAGCAACTT TCTCCGAACTTAGCTTAGCA AAAATCGCTA AGCAAGTACTTAGCGGACTC GACTACTTAC ACAATCACAAAATCATTCAC AGAGATTTAA AACCTTCGAACCTTCTAGTA AATCGCGAGA TGGAAGTAAAAATCGCCGAT TTCGGAGTGA GTAAAATCATGTGCAGGACT TTAGATCCTT GCAATTCATACGTTGGAACT TGTGCTTATA TGAGCCCAGCAAGGTTTGAT CCAGACACTT ATGGAGTTAACTACAACGGT TACGCAGCTG ATATTTGGAGTTTGGGCTTG ACTTTAATGG AACTATATATGGGCCACTTT CCGTTCTTGC CACCTGGACAGAGACCGGAC TGGGCTACGC TAATGTGCGCCATATGCTTC GGTGAGCCGC CCAGTTTGCCTGAAGGGACG TCGGGAAATT TCAGAGATTTTATCGAGTGT TGTTTACAGA AAGAGTCCAGTAAAAGGTGG AGCGCTCAGC AACTTTTGCAACATCCGTTT ATACTGAGCA TCGATTTGAAGTCCACGTAA AAAGGGACAG AGCAAAGCTGAAGACTGGGA AATTGAATAG TTCCGAGTTGTTTGTAAATA GAGAACGGGA CCTTCTTTTTTTTTTTGAAC TTTTTGGGTT AACTTTTTTGTATATTCTTC AACTATGAAT CTGTGAAATCAGAATCATTC TCTGTATCTG GAAAAAGTGCCCATTTTCCA TAGCAAAAAA AATCATCTGTGGAATTTTGA GACTTAATGA ATTCAATCTTTTTCCAACAA AAAAAAAAAAC476bGATCCTCGTG AGGTTGCTGC TGCTAAAGCAsuccinyl-CoA ligaseSEQ ID N° 265GATTTGAATT ATATTGGCTT GGATGGAGAAATTGGTTGCA TGGTTAC477CCAGCTATGA CCATTAGTGC CTATTTAGGTputative zincSEQ ID N° 266GACACTATAG AACAAGTTTG TACAAAAAAGtransporterCAGGCTGGTA CCGGTCCGGA ATTCCCGGGATTTTTTCTAT TCCGTGATCC CCTTTATCTCTTCCCCTTTT TCTCCTTTTT CTTCTTCGTTTAGGTATATA CCCCATATAT ATAGCCTATAAACCATATAG CTATATAAAA CTCTACATCTATTTTGAGAA TTTGATGATT TGGGTCGGCTAAAAATACAA TCTTTTTAAT ACTCTTTTGAAATCTTGGCA CAAATTTGTG AGATGGAGACGCAGAACCTG GAACGTGGAC ATGTAATTGAGGTACGTTGT GACATGGCAG CTCAAGAAAAGGGGACTAAA ATCTGTGGTT CAGCACCGTGTGGATTCTCA GATGTTAACA CCATGTCTAAGGATGCACAG GAGAGATCAG CATCCATGAGGAAACTTTGC ATCGCGGTTG TCCTCTGCATCATATTTATG GCTGTTGAGG TTGTTGGTGGTATTAAAGCC AACAGTCTGG CAATATTGACCGACGCTGCT CATCTACTAT CAGATGTTGCAGCTTTTGCA ATATCCTTGT TTTCACTCTGGGCAGCAGGA TGGGAAGATA ATCCACGCCAGTCCTATGGG TTTTTCAGAA TCGAGATACTCGGGGCATTA GTTTCTATCC AAATGATATGGATTCTAGCT GGGATCCTTG TTTATGAAGCCATTGCTCGA CTTATTCATG ATACAGGTGAAGTTCAAGGC TTCCTCATGT TTGTGGTGTCTGCATTTGGA TTAGTAGTGA ACCTCATCATGGCACTCTTG TTAGGTCATG ATCATGGCCACGGCCACGGC CATGGCCACA GCCACGGTCATGACCATGAA CACGGCCATA ATCATGGCGAGCATGCTCAT AGCAATACTG ATCATGAGCACGGCCATGGT GAGCATACGC ATATACATGGAATTAGCGTT AGCCGACACC ATCACCATAATGAGGGACCT TCGAGCCGAG ATCAACACTCGCACGCACAT GATGGAGATC ACACCGTGCCTCTACTTAAG AATTCATGTG AGGGTGAAAGTGTATCAGAA GGTGAAAAGA AAAAGAAGCCCCAGAACATA AATGTTCAGG GAGCTTATCTTCATGTAATC GGAGATTCTA TTCACAGCATAGGGGTGATG ATTGGGGGAG CTATTATATGGTATAAACCA GAGTGGAAAA TCATCGATCTAATTTGCACT CTCATTTTCT CTGTAATTGTGCTCGGGACA ACCATTAGGA TGCTTCGGAGTATTCTTGAA GTATTAATGG AGAGTACGCCCAGAGAAATT GATGCAACAA GGCTCCAGAAGGGGCTCTGT GAGATGGAGG ACGTTGTCCCAATCCATGAA TTGCACATAT GGGCAATTACAGTCGGCAAA GTGCTCCTGG CTTGCCATGTCAAGATTAAG TCCGACGCTG ATGCTGACACGGTGCTGGAT AAGGTGATC478ATATGTTACAGGGTCCATGCAGAGCGCTATTTGGCTsucrose transportSEQ ID N° 267GATCTGTCCGGCGGAAAAGCCGGGAGGATGAGAAproteinCATCAAAGGCCTTCTTCTCCTTCTTCATGGCCGTCGGAAACGTCCTCGGTTACGCCGCCGGTTCCTACTCCCGCCTCTACAAAATCTTCCCCTTCTCTAAAACCCCAGCCTGTGACATCTACTGCGCCAACCTCAAATCATGTTTCTTCATCGCCGTCTTCCTTCTACTCAGCTTAC479TGTGTAATCAAACAAAAAGATGTAAATTGCTGGAAputative proteinSEQ ID N° 268TATCTAGATGGCTCTTTTCCAACCTTATTGCTTGAGAAK58573TTGGTAATTTCATTATAGCTTTGTTTTCATGTTTCAT[Acidianus sp.]GGAATTTGTTACAATGAAAATACTTGATTTATAAGTTTGGTGTATGTAAAATTCTGTGTTACTTCAAATATTTTGAGATGTTGAATATCATGTTCTTAC480TCCAAGAGTCTACCACGAGCTAATTCCGAATGTAGgamma-SEQ ID N° 269TTCTGTACGAGAACTGGACGTGCATCGATGGCGATglutamyltransferase-CATATTGAACTCTCGGACGAGAAAAAGGCATTTCTlike proteinTGGAAGAGAGGGGTCATCAACTCGAGGCACATAACGGAGGAGCCATCTGTCAGCTAATTGTTCAAAACCTTCCAAATTCTCCCTTAC481GATCCTTCAC TGTGTAATCA AACAAAAAGAquinolinateSEQ ID N° 270TGTAAATTGC TGGAATATCT CAGATGGCTCphosphoribosyltransTTTTCCAACC TTAferaseC482GATCCTTGGC AGACAAACAG GGTCGAAAGCputative proteinSEQ ID N° 271GGGCTTGTGT CACGTACTGC ATCACTTACAAT4g27720 [A.TTTTGAGCTG TATGACCAAA CATTCTCCTCthaliana]AGTACAAAAT TTTGATGTTG GGCCGTATATTAGGAGGAAT TGCCACCTCT CTCCTATTCTCAGCCTTTGA ATCTTGGCTT GTTGCAGAGCATAATAAGAG GGGTTTTGAT CAACAATGGCTATCATTAC483aGATCCTTTGG GCAAAGGTCG AGATGGAACTreceptor-like proteinSEQ ID N° 272GCTTTCTCTC AGGAAGTATT TGAGAGCTTTkinaseATGTTCAATT TGGATGAAGT TGAGTCTGCTACACAGTATT TTTCAGAGGC AAATTTGTTAGGGAAGAGTA ATTTCACAGC CGTTTATAAAGGGACACTGA GGGATGGGTC TTCTGTTGCT ATTAC483bGATCCTTTAC AAACAGAGTA GAAAGATGCAmutator-likeSEQ ID N° 273GTGAGACATG AATTACATTG ATTTTGGTTTtransposaseTGGCATTCTT TTCTCGCAAG ATATGTTGTAAGCATAGTAT CAGTAGGTCA TTATTCCGATTTTCCCCTCA ATTGGGGAAA GGGAGGAGGTGTGTGACCTT GGTCACGGTT GTACCATTAC483cGATCCTTGGGCCCGATGTCCATGAGGTGGATTACGdelta-1-pyrroline-5-SEQ ID N° 274TTGCATGGGTTTGTGATCAAGATGCATATGCATGTAcarboxylateGTGGTCAGAAGTGTTCAGCTCAATCAATATTGTTCAdehydrogenaseTGCATGAGAATTGGGGTAGAAGCTCTCTCTTAGACAAAATGACCGAGCTTGCTGCAAGAAGAAAGTTGGATGATTAC484aAAAACATCAT GAATAACACC ACCTTTTCCGC3HC4-type RINGSEQ ID N° 275TCCAAATTTC CGACACCGGA GGTTTCCTCGzinc finger proteinGATCGGGAAA AATCGGAGGA TTCGGCTACGGAATTGGTGT TTCAGTAGGT ATTCTTATTTTAATTACAAC AATAACCCTC ACTTCCTATTTTTGTACTCG AAATCAAACA TCAGAGTTACCAACAAGAAG ACAAAGAACA ATTAATCGAAACGAGCTTTC TGGACATTGT GTGGTTGATATTGGGCTCGA TGAAAAAACC CTTTTGAGTTATCCCAAGTT GTTGTACTCT GAAGCTAAGGTCAATCATAA GGACTCAACA GCTAGTTGTTGTTCCATATG TTTAGGAGAT TACAAGAAAAAAGACATGCT TCGATTGTTG CCAGATTGTGGACATTTGTT TGACTTGAAA TGTGTGGATGCTTGGCTCAT GTTGAATCCA AGTTGTCCAGTTTGTAGAAC ATCTCCATTG CCAACACCACAATCTACTCC TTTGGCTGAG GTTGTTCCTTTGGCAACTAG ACCTTTGGGA TGAC484bGATCCTTGTG CCCCTTCCGG AGCCAGAAGCkataninSEQ ID N° 276AAGGTGCGCC ATGTTTGAAG AATTACTACCATCACTGCCT GAAGAGGAGT CACTTCCATATGATTTATTG GTAGAAAAGA CAGAAGGTTTTTCCGGTTCT GATATTCGGT TGTTGTGCAAGGAGGCTGCC ATGCAACCAT TAC485CTTGGTAGTGCGCTTGGGCTGTTCGGTGTTATTGTGputative vacuolarSEQ ID N° 277GGAATTATTATGTCAGCTCAAGCATCTTGGCCATCCATP synthaseAAGGGTGCGTAAGGCTTCATATTATGTGCTTGCTATproteolipid subunitTGCTCCGGACTCATCAC5GATCCCAAAA ATAAGTACCA ACTTCTTTGCambiguous hitSEQ ID N° 278TATGGTTTTT TGTGGAGAAC ATTTCACATCTTTTTCCCTG GGGATATATA CTGTCCTGTCATTGAATCTA ACAATGTCTT CTTCAACTTTCTTGGCCGCT CACTCCCCTC TGCTCAGCCTCCCCCACAAC CTTCTAAGAA AACAAACAAAACACAAAATA CTCAATCAGC AGGTGGTTTAC6GATCCCAAAG AAAGAATGCC AATTTCGGATtransposase-likeSEQ ID N° 279TACGGTCCTA ATATTCGAGA CGAAGTAAGGproteinAGATATTATA TAAACAAAGG GCCTTGTCAACCGATTGGTC ATGCGTTTCC TAAAACTAAGATTGGGAGTA AAATGCGTCC ATTTAGTCCCACTTGGTTTAC7GATCCCATCG ATTATTTGGT TTTCCGGTGAputative proteinSEQ ID N° 280GGATTCAATC CATCGAGGTT CCATCGTGGTAT5g44010 [A.CTCCGGCTTA CGGTCTATTT GTGTTCAACTthaliana]ATAGTGTCGC ATTTTTCTTG TAAACTAGTTGGAATATCTT TAC8aGATCCCAATT TTTCAGAATT GCTACTCTCAphosphate/phosphoSEQ ID N° 281GTATTGTCTT TTGTGGGTCT GTTGTGGGTGenolpyruvateGCAATATTTC TTTAtranslocator-likeproteinC8cGATCCCATTA TATCCTACCG CAATTTTTCAputative proteinSEQ ID N° 282GGGTGAAATT GATGGTGAAG GGATGAGTTTAt1g10410 [A.TGTCTTGTAC TTTAthaliana]C9GTGCTGTTCC AAGTAATGCC TCTGACAATGpyrophosphate-SEQ ID N° 283TATATTGCAC GCTTCTTGCT CAAAGTTGTGdependentTTCATGGAGC AATGGCAGGG TCCACAGGTTphosphofructo-1-ACACCTCGGG GCTTGTCAAC GGTCGCCAGAkinase-like proteinCTTATATTCC ATTCAATCGT ATAACCGAGAAGCAAAATAT GGTGGTTATA ACTGACAGGATGTGGGCACG TCTTCTTTCG TCAACCAATCAGCCAAGCTT CTTGTGCCCG AAAGATGCTTGAAGAGGTTAMAP2ACAGCTATGA CCATTAGGAC CTATTTAGGTputative protein [A.SEQ ID N° 284GACACTATAG AACAAGTTTG TACAAAAAAGthaliana]CAGGCTGGTA CCGGTCCGGA ATTCCCGGGATGTTACTTGA CGTGTTTTCT TTTCTTTTACTCTCCGCCAA TTCAAGACTT CTCAAAGTACTTTCTCATCT AAAGCAAAAT GTCCGACGGAGGATTAACGG TTTTGGACGG ATCACAGCTGAGAGCCGTCA GCCTATCGTT ACCGTCATCGGACGGCAGCT CAGTCACCGG AGCTCAGCTTCTCGATTTCG CTGAATCCAA AGTCTCAGAGTCGCTCTTCG GCTTCTCATT GCCGGATACTCTCAAGTCCG CCGCTCTCAA ACGCCTCAGCGTCGCCGATG ACCTTAATTT CCGCCGTGAACAGCTCGATC GTGAAAATGC CTCGATCATTCTCCGAAATT ACGTCGCTGC CATTGCAGACGAACTCCAAG ATGATCCTAT AGTCATTGCAATTTTGGATG GGAAAACTCT TTGTATGTTTTTGGAAGATG AAGACGACTT TGCCATGTTGGCTGAGAATC TTTTCACTGA TTTAGACACAGAAGATAGAG GAAAGATCAG AAGAAATCAAATACGGGATG CTCTCATTCA TATGGGTGTTGAAATGGGAA TTCCTCCTCT TTCAGAGTTTCCTATACTAA GTGACATTTT AAAGAGGCATGGAGCTGAAG GAGAGGACGA ACTGGGGCAAGCCCAATTTG CACATTTACT TCAGCCTGTGCTTCAGGAGC TGGCAGATGC TCTTGCTAAGAACCCTGTGG TTGTAGTGCA GAAAATCAAGATCAATAATG GTTCCAAATT AAGAAAGGTTTTGGCTGATG AAAAGCAACT AAGTGAGACAGTAGAGAAGA TAATGCAGGA AAAGCAGGATGAGAAGGATA GTCTAAGTAA CAAAGATGCCATTCGGTGTT ATCTCGAGAA AAATGGAGCATCATTGGGCT TGCCACCTCT GAAGAATGATGAAGTGGTGA TTCTTCTATA CGACATTGTATTAGGTGATA TAGAAAATGG AAAGACCGATGCAGCATCAG ATAAGGATGA AATCTTGGTTTTCCTGAAGG ATATCCTTGA GAAATTTGCAGCTCAACTTG AAGTTAACCC AACTTTCCATGATTTTGACA ATTGAAGTTA TATACACCCTCTCAAGATAA GTTATACCAG AAAGATCATATATATGTATT TTAGCCTTTG CTTTTGGTGCCAAGGCAACT TATAGTGTTT AATTTTTATATTGTAGAATA ACAAGTATTC ATGAGACAGATAAATCAAAC CCATTTCATT TGCATTTCAAAAAAAAAAAA GGGCGGCCGC TCTAGAGTATCCCTCGGGGG GCCCAAGCTT ACGCGTACCCAGCTTTCTTG TACAAAGTGG TCCCTATAGTGAGTCGTATT ATAAGCTAGA CACAMAP3aATCCAGAATT AATAAACCCT AGTAAGTGAAethylene-responsiveSEQ ID N° 285AGTGAAAGAA ACTACTCATC CAAATATCTAtranscription factorTAGAAAAGTA AATGAATCCC GCTAATGCAACCTTCTCTTT CTCTGAGCTT GATTTCCTTCAATCAATAGA AAACCATCTT CTGAATTATGATTCCGATTT TTCTGAAATT TTTTCGCCGATGAGTTCAAG TAACGCATTG CCTAATAGTCCTAGCTCAAG TTTTGGCAGC TTCCCTTCAGCAGAAAATAG CTTGGATACC TCTCTTTGGGATGAAAACTT TGAGGAAACA ATACAAAATCTCGAAGAAAA GTCCGAGTCC GAGGAGGAAACAAAGGGGCA TGTCGTGGCG CGTGAGAAAAACGCGACACA AGATTGGAGA CGGTACATAGGAGTTAAACG GCGGCCGTGG GGGACGTTTTCGGCGGAGAT AAGGGACCCG GAGAGAAGAGGCGCGAGATT ATGGCTAGGA ACTTACGAGACCCCAGAGGA CGCAGCATTG GCTTACGATCAAGCCGCTTT CAAAATCCGC GGCTCGAGAGCTCGGCTCAA TTTTCCTCAC TTAATTGGATCAAACATTCC TAAGCCGGCT AGAGTTACAGCGAGACGTAG GCGTACGCGC TCACCCCAGCCATCGTCTTC TTCATGTACC TCATCATCAGAAAATGGGAC AAGAAAAAGG AAAATAGATTTGATAAATTC CATAGCCAAA GCAAAATTTATTCGTCATAG CTGGAACCTA CAAATGTTGCTATAACTGTA TTTAATTTGG AAGGAATTAATTAAGGTTAT TCTATGTCTT TGTATTAGAATTTAGAATAA TTCCCTAAAG CTCCTGAAGAACGAAACTTG TAAACATCTC TCTGTCTCCGTATCATGTTC TAATTTAACA TGAAATTACATGAGCGCAAA AAAAAAAAAA AAAAMAP3bTTGGGGGAGG TTCGCGGCGA AGATAAGGGAAP2-domain DNA-SEQ ID N° 286CCCGGAGAGA AGAGGCGCGA GATTATGGCTbinding proteinAGGAACTTAC GAGACCCCAG AGGACGCAGCATTGGCTTAC GATCAAGCCG CTTTCAAAATCCGCGGCTCG AGAGCTCGGC TCAATTTTCCTCACTTAMAP3cTTGGGGGAGG TTCGCGGCGG AGATGGAAGCputative proteinSEQ ID N° 287ACTTATGGAG GCCAAAGGGG TGAGCAAGTAAt5g28830 [A.TATCGAAGTG CCAGGTGCTC TCCTTCCCCAthaliana]GGAAGAGTAT CCTGAAATAG TTGCAGAACAGCTTTACAGG TTTCTGCAAG AGAAGTTTGAGCTTCAGGCT TAMAP4bTTGGGGGAGG TTCGCGGCGG AGATGCACTCcalmodulin-relatedSEQ ID N° 288CGTTATGAAG GGCATTGGAG AGAAGTGTTCproteinGCTTAMAP5GGCCGTGGGGGAGGTTTGCGGCTGAAATAAGGGACAP2-domain DNA-SEQ ID N° 289CCGGAGAGAAGAGGCGCGAGATTATGGCTAGGAAbinding proteinCTTACGAGACCCCAGAGGACGCAGCATTTGGCTTACGATCAAGCCGCTTTCAAAAGCCGCGGCTCGAGAGCTCGGCTCAATTTTCCTCACMC101TAAAGGCGCC GACTATGCTG CATCATTCTGputative proteinSEQ ID N° 290GGCTGAGGTA TTTGATGGGG TGAGGCAGAGAt3g06150 [A.AGGGTTGACA CCACCAGAAG TAATATATAGthaliana]GACCACAGTCACCACAGGCG GATACGCTAGAAGATTGGCA TTCAATCCAA ATAAAATGGAGGCCTTCAAT GGGGTAGTCT TGGATAAGTTGAGGGCATAT GGTTTAGTTG ATCGCGTCATTGATGATTTC GACATGACTT ATCCTTGGCACTATGATAACCGATGCAATG ACGGGGTGCATTATGGCCGT GCTCCTGCCA AGMC102TAAAGGTGGA GAATATTTTG GTGATGGGACcarbonic anhydraseSEQ ID N° 291ACAGCTGCTG TGGAGGTATA AAAGGACTCATGTCTATCCC TGATGATGGC TCCATAGACAGTCATTTCAT CGAAGAATGG GTCAAAATCTGTTTGATATC AAAGGCAAAG GTAAAGAGAGAACATGGCGA CAAGGATTTC ACTGAACAATGTACAATATT GGAGAAGGAGGCAGTAAATGAATCACTAGC CAACTTACTG ACATATCCATTTGTGAGGGA AGCTGTGMC104TAACCTTGGA AAGACATGGG AGAAGCTGCAP40-like 40SSEQ ID N° 292AATGGCTGCG AGGGTTATTG TTGCTATTGAribosomal proteinGAATCCAAAG GACATAATTG TGCAATCAGCCAGGCCCTAT GGCCAGAGAG CTGTCTTGAAGTTTGCTCAA TACACTGGCG CAAGTGCCATTGCTGGCCGT CACACTCCCG GTACTTTTACCAACCAGCTT CAGACTTCAT ACAGTGAGCCCCGACTCCTC ATTCTCACTG ACCCAAGAACTGATCACCAG CCTATCAAGG AAGCTGCACTTGGGAACATC CCTACTATGG CTTTCTGTGACACTGATTCA CCGATGCGCT ATGTTGACATTGGTATCCCT GCCAATAACA AAGGGAAGCACAGTATCGGT GTTCTTTTCT GGCTCTTAGGAAGGATGGTA CTGCAGATGC GCGGTAGCATTCCTCAGGGA CACAAMC105TAACAGACGT TGATGATATG ATGTTATGGGalanine acetylSEQ ID N° 293CAGGCGACGA TCGAGTAACT AGGACCATCCtransferase-likeGATGGAAAAC TTTGACCTCG AAAGAAGAGGproteinCATTGGCCTT CATCAAGGAA GTGTGTATACCTCACCCCTG GCGTCGATCA ATATGCATCGATGACCGATC GATCGGGTTT GTATCAGTATTTCCTGGATC AGGTTATGAT AGAAGCCAAGGTGTCATAGG ATATGATATT GCAGTTGAATATTGGGGGCA GGGGATTGCT ACAAATGCTATCAAAATGAC AATCCCTCAA GTGTACAATAACTTTCGTGA AATAGTAAGG CTTCAGGCATTAGCTAATGT TAAGAATAAG GCATCCCAAAGGGTGTTMC106AATTCCCCCATGTGCATGCCTGAGTGCACAAACAGputative lateSEQ ID N° 294GAAGGCGAATTGCAATCACCCCGGAGCAGCATGCTembryogenesisTGGATCproteinMC107aTAACCCAATTTTGTTGCCAAAGAAAACTGGAGGTGhistone H2A-likeSEQ ID N° 295AAAAGGCTGGCAAAGAACATAAATCTCCTTCCAAAproteinGCAACCAAATCTCCTAAGAAGGCTTAGATTTAGTGGCTGTTATAAGCCTCTTGCTTTTCTATCTTTATTTGGATCMC107bTAACACGGGAATGATACCAGAGATACAGGCTACAGproline transportSEQ ID N° 296TCAGACCACCTGTAATTGAGAACATGTTGAAAGCTproteinCTGTTCTTTCAGTTCACAGTGGGAGTTGTGCCCTTGCATGCTGTTACTTATATAGGTTATTGGGCTTATGGATCMC108TAACAACCCC ATTTGGAATA GCACTTGGAAputative metalSEQ ID N° 297TTGGTTTATC AAAAGTGTAT AGTGAAAATAtransport proteinGTCCAACAGC ACTAMC109CGTTCGTGGGACCTACAAGGGGCGCGAGGGCAAAGputative 60SSEQ ID N° 298TCGTTCAAGTGTACCGTCTGAAATGGGTAATTCACAribosomal proteinTTGAACGCAGTAACACGTGAGAAGGTTACTCMC113AGTAAAGGTG CAGAATATTT TGGTGATGGGputative carbonicSEQ ID N° 299ACACAGCTGC TGTGGAGGTA TAAAAanhydraseMC114cGATCCAGCAG AGTCGGAGGT TGCCGGATTTputative beta-SEQ ID N° 300CCTTCAGAGT GTAAACTTGA AGTACGTTAketoacyl-CoAsynthaseMC115TAAGCACCCT AGTATTTCTG CATACATGGGputativeSEQ ID N° 301ATCAAGACTC GCTGGGAAAG TTTTGGCAACDihydroorotaseCTTTGTGCGC GGAAATCTTG TATACAAGGAGGGAAATCAT GCTTCTCTTG CATGTGCTCTCCCAATTCTG CATAGATAGT TAGTGCATGAGCCTATCAGT AACTCCACCA ACTTACCATATATCATCCAA ATTATTTCTT CTGTGCAATCTTCATGTTCT TTGTTGTGTC CCTTTGACATTCTTGGAGAT GACCATATGG CATGATATACAGATGGAATT GGTGACTTCC ATCATTTMC116TAAGCAACCC GAAACCCGAT CCGAACCATTputative proteinSEQ ID N° 302CAACTCGGAC TAAGTCGGTT CGGACCGAGGAt1g71780 [A.TTCCGGAGGT CAAGGTCCAC CTGTATCGGCthaliana]AAGGCAAGGG TCCTATCGAC GAATTCACGATGCCCTTAGG TGGATGGGAC CAGGATCAGCTGGAGGTTCG TGAAATTCTC GACAAATACGGGTTCAAATC GGTCTATGCA TTCAAACCGGATACGGGTCG GGGCGTTCCC ATCAGATTCAACCCCCGTAA CGGCCGATCT AMC118TAAGGTATTT GTGAAGTCTT ACTATTTTCCN-acetyl-gamma-SEQ ID N° 303ACAAGGAGAG ACTGCTTCAA GATTTTTTGTglutamyl-phosphateGGAAGAGTTT TGTTTGCTGA GTTTGTAATTreductase likeTCTGTAGAAG TATTCCCGTG TATCCTGGCGproteinTAGTTTTCAG ACGTACCCTA TATTTGATTGCTAATTTTAT GCCTCAGAAG GAGATTATGTGCCATAGATA AAGTTGAACA GGGGGGTGGA TCMC121aAGTCCTATGTGATTGCAAGAGACCGATTTCTTGTTCputative arginineSEQ ID N° 304AAAATGGAAAAATGTTTCCTGGTGGCGGAAGAATAmethyltransferaseCACATGGCACCATTTAGTGACGAATATTTGTATATGGAAATAGCAACTAAGGCGACCTTTTGGCAGCAACAAAACTACTTTGGGGTTGACTTGACACCCTTGCACGGATCMC121bGCGACTTCCGCTTTCGGTACAGTGCAATCTTCTACC6,7-dimethyl-8-SEQ ID N° 305TCGTGCAACAACTGTAAATCCCACACAACTGCACTribityllumazineCTCCTCTTTACTCTTTGTCTCTGCCTTTCCACAGACAsynthaseAAGCATAACCTCTTCACCTGCACTATCATTCACCCAATCTCAAGGTTTAGGGTCTGCAATTGAGAGACATTGCGACCGGTCGGATCMC123TAAGCAAAGA GAGGCAGCTT GGTTTGCTGGputative proteinSEQ ID N° 306TTCTGTGAGA TCAAGACTAC AGTATTTGGGAt2g46580 [A.GCCCACTCCA GGACTTCCTT CTCTAGATGAthaliana]GCAACCATTG CACGACTCGT TGGATCMC124CGGGCCCAATTTGCCCTATAGTGAGTCGTATTAAAputative proteinSEQ ID N° 307AGCAGGCAAGCCTGTTGGTGGGTTCAAGATAGGTAAt1g50570 [A.GACAATCTGGGGAATGGACGGGTTAAAATTTTCATthaliana]CCGTACTTCCATCAGAGAGTTATCTTACATGCAGGTTTTTCTCTGCAAGGAAACATGGGTTGGTGGATGCTGTTGTGAGATGTAAAAGCTCCGAGCGGACAGCTGTTGTCGCCCTTCCTGGTGGAATTGGTACCCTTGACGAGATTTTTGAGATTATGGCTTTGATMC125aTAATCTCAAT GCATCTTTGT TTGTTTGAATacyl carrier proteinSEQ ID N° 308TTGTTCATCA AAATCAAAGG TACACTTGCTCCTTGTCATT TGACTAGTTC AAGGTTGTAGAATTTTGATC CTCTTGAGAG AGGCAATAATCAGACTCTTT GGAAGACCAG TTGCTCAGGCTTTGCCATTG AGGATTATAT CATCCTTTTGTTGCTTTTCT GGAAGACATG ACTCAGTATTTATTCTGTTG CCGTCYLTCC TCTTATAATATTCGAATGCC ACAAATTCAA GCTTGGTTTGATTGTTGCAC TGATTTGAAA AATCTGTCTAGTCTGGCTCA TGAACTTGTG AAGCTGATGCTGGATCMC125bTAATACAGAA GCCTTACTCT ATTGTGTACTputative proteinSEQ ID N° 309TCCATTCTGC TGCAACCTTA CAGATTCAACAt1g69340 [A.CAGATCTAGG ATTGATGAAG AGAATACAACthaliana]AAATACTCGG TCGCAAGCAC CAGCGCAACCTTCATGCGAT ATATGTTCTT CACCCTACTTTTGGACTGAA GAGTGCAATA GTTGCACTACAGCTCTTTGT GGATTATGTG GTATGGAAAAAAGTAGTGTA TGTAGATCGT CTTCTGCAACTATTCCGCTA TGTTCCTCGT GAACAGCTAACCATCCCAGA TTTTGTATTC CAGCATGATTTGGAAGTAAA TGGAGGGAAG GGCCTAATTGTGGATCMC126TAATGGATGC TGCAACGCAA GGTGCCCTACputative proteinSEQ ID N° 310AAGCAGGGAA GCCTGTTGGT GGGTTCAAGAAt1g50570 [A.TAGGTAGAGA AGCTGGGGAA TGGACGGCTTthaliana]CAAATTTTCA TCCGTACTTG CCATCAGAGAGTTATCTTAC ATGCAGGTTT TTCTCTGCAAGGAAACATGG GTTGGTGGAT GCTGTTGTGAGATGTAAAAG CTCCGAGCGG ACAGCTGTTGTCGCCCTTCC TGGTGGAATT GGTACCCTTGACGAGATTTT TGAGATTATG GCTTTGATTCAACTCGAACG AATTGGATCMC129TAAGCAACCC GAAACCCGAT CCGAACCATTputative proteinSEQ ID N° 311CAACTCGGAC TAAGTCGGTT CGGACCGAGGAt1g71780 [A.TTCCGGAGGT CAAGGTGATG AGTCCTGAGTthaliana]AATGACAACA ATATAGCATC ATTGGTAGGMC130aGATCCAAGAAGCTCTTTTGCCTAGCCTTATGAGTAAG protein betaSEQ ID N° 312TTTTATGTTTCCTTCTGTGTTTTTCTTACAGATCTTTsubunit-like proteinTCCGCAGTAGAAGTTTTGTTTGGATTAMC130bTGAGTATGTG GTGTGTTTGT CCAAAAGGTAputative proteinSEQ ID N° 313GATTTATTGA AAAGTATCAA GCAGCTCAAGAT3g45540 [A.TGTAGATGTG GTCATCTAAC AAATGGTGGA TCthaliana]MC203TAAAGGTGCA GAATATTTTG GTGATGGAACcarbonic anhydraseSEQ ID N° 314ACAGGTGCTG TGCAGGTATA AAAGGACTCATGTCTATCCC TGATGATGGC TCCATAGACAGTCATTTCAT CGAAGAATGG GTCAAAATCTGTTTGATATC AAAGGCAAAG GTAAAGAGAGAACATGGCGA CAAGGATTTC GGMC204ATGTATGGTA GATCAGGGCT TGATCGATTTputative proteinSEQ ID N° 315AAGAAAGCTC AGTCATTGGA GCCATTTCAGAT5g47790 [A.GTGTCTGCGA ATTCAGCTGC TAAACCAGCAthaliana]TTGCAGCCTA CTACAAAGGC GGTTACACATCCTTTTCCAG CATATGCACA ATCCACAACATCTCATCAAC AAACTCAATA CGTAAATCCACAACCTGCTT TGCAGAAATC CGTGGCGGCAGATGCAACCG CTTCTACAGT GCCAACTCATCATGTCACTC ATGGAGGGGG ACAATCAACTTGGCAGCCTC CTGATTGGGC TATTGAGCCACGTCCAGGAG TTTATTATCT TGAGGTGATCAAGGATGGTG AGGTACTCGA TCGAATTAATTTGGATAAGC GAAGGCATAT CTTTGGACGGCAGTTTCATA CTTGTGATTT TGTCCTTGATCATCAGTCAG TCTCACGCCA GCATGCTGCTGTGATTCCTC ACAAAAATGG AAGCATTTATGTGATTGATT TAGGATCTGC ACATGGAACATTTGTAGCAA ATGAGAGGCT AACAAAGGATTCCCCTGTCG AACTTGAGCC CGGACAATCTTTGAAGTTGG CTGTATCAAC AAGGCCTTACATCTTGAGAA GGAACAATGA TGCTCTCTTCCCTCCTCCAC GGCAACTGGC AGAAATAGATTTCCCGCCAC CTCCAGATCC TTCAGATGAGGAAGCTGTTT TGGCTTATAA CACCTTTTTAAACCGCTATG GGCTTATAAG GCCTGATTCATTGTCAAAAT CAACAGTATC AACTAGTGGGGAGGATGTCA ACTATTCATC TGACAGGCGCGCGAAAAGAA TTAGGAGAAC AAGTGTGTCATTTAAAGATC AGGTTGGAGG AGAGCTAGTTGAAGTTGTTG GTATTTCGGA TGGAGCAGATGTGGAGACAG AACCTGGTCC ATTGGGTGTGAAAGAAGGAA GTCTTGTCGG AAAATATGAGTCCCTAATAG AACCTACAGT GATACCGAAAGGGAAAGAAC AGTCCTCTGT AAAGGATGCCACCGTTACCC GAACAGGTGT ATCGGACATACTTCAACAGG TATTGTCCAA GGTGAAAAATCCGCCGAAGG GTGGAATTTA CGACGATCTTTATGGAGAAT CAGCTCCTGC TAAAGGGGGATTTTGGGCAT ATTCTGATTC CAGTCAAACAGCTTCTACTA ACGACGCTAA AGGAGACTCCCCTTGTTCTT TACGCAGAAT CTTTGGACATATCTCAAACA ATGTAGACGA CGATACCGATGATTTGTTTG GATAGMC205TAAAGCAGAT TTGCTCAACA TTACTCAACTputative proteinSEQ ID N° 316TTCTGAGTAT AGAAAAGAAG CAAt3g11030 [A.thaliana]MC207aGAGTCCTATGTGATTGCAAGAGACCGATTTCTTGTTputative arginineSEQ ID N° 317CAAAATGGAAAAATGTTTCCTGGTGTCGGAAGAATmethyltransferaseACACATGGCACCATTTAGTGACGAATATTTGTATATGGAAATAGCAAATAAGGCGACCTTTTGGCAGCAACAAAACTACTTTGGGGTTGACTTGACACCTTTGCACGGATGMC207bACTCTCTCTTCCACTGCTCAGACAACAATCGAAATTheat shock proteinSEQ ID N° 318GATTCTCTGTATGAGGGGGTTGACTTTTATCCTACC70ATTACTCGTGCTAGATTCGAGGAGTTGAACATGGATCMC209TAACAAAACAAGCAGTGGCAAGGAGTTCCCAGTGAEEF53SEQ ID N° 319CAGCTTTTGTATTCGCAAGTCCTAAAGTTGGGGATCMC210bTAACGAAGAAAACAACAACAACAATAACAACAACputative proteinSEQ ID N° 320AACAACAAGCCCAGTGTAATCCCACACGTAGGGATAT3g24200 [A.Cthaliana]MC212TAAGGAGGCT GTAGAATTGA TCAATGGGAGquinolinateSEQ ID N° 321GTTTGATACG GAGGCTTCAG GAAATGTTACphosphoribosylCCTTGAAACA GTACACAAGA TTGGACAAACtransferaseTGGTGTTACC TACATTTCTA GTGGTGCCCTGACGCATTCC GTGAAAGCAC TTGACATTTCCCTGAAGATC GATACGGAGC TCGCCCTTGAAGATGGAAGG CGTACAAAAC GAGCATGAGCGCCATTACTT CTGCTATAGG GTTGGAGTAAAAGCAGCTGA ATAGCTGAAG GGTGCAAATAAGAATCATTT TACTAGTTGT CAAACAAAAGATCTTGGGAC GGTGAGCTCC GTTTGTGGGA TCMC214TAAGGTAAGG CACAATAATG TCGTTCCTATputative pyruvateSEQ ID N° 322GATGGCTTTG GGAGTCCAAC AACTCAAGAAdehydrogenaseAGATTGGCCT AAAGTTGATT ATGAGGATTTkinaseGAGAGAAATA CACCAATMC215TAAGCCCGAG AGGTTTCTTG GCTCGAAAATcytochrome P450SEQ ID N° 323AGATGTGAAA GGGCAGCATT ATGAGCThydroxylaseMC216TAACGACTGC AGAATCATCT ATATACGAAGputative proteinSEQ ID N° 324TGCTTGAATC CCATGGATTG CCAATGGGTTAt3g07460 [A.TACTTCCAAA AGGTGTGAAG AATTTCACATthaliana]TAGACAATTC GGGGAAATTT GTAGTCCATTTGGATCAAGC TTGCAATGCT AAATTCGAGAATGAGTTTCA CTATGATAGG AATGTATCGGGTACAATAAG TTACGGACAG ATCCATGCAC TTTMC219GGAATCGAACTAATCGCATCGGAAAACTTCACATCglycineSEQ ID N° 325ATTCGCCGTAATTGAAGCTCTCGGCAGTGCCTTAhydroxymethyltransferaseMC220GATCCCTATTTTACAAGAGTGCATTGATGCCATCACputative proteinSEQ ID N° 326TGAACACCAAAGGCTTCTGTCCTTAAt1g07970 [A.thaliana]MC222TAATAGGTAT AGCATGCCAC AAATCTGGAGambiguous hitSEQ ID N° 327TTGAGGTGGT TATTCTTATA CCCCCAAATGCCCCCAGCAT AGCAGCTTAT GGTTCCATTGTTGTTGTMC223TAATGAGACAATGAGATTATACCCTCCGATACCACcytochrome P450SEQ ID N° 328TTTTATTGCCTCATTATTCAACTAAAGATTGTATT GMC225TATTGGTACGTCGTAAAATGTGACCGGAAAACCAApolygalacturonaseSEQ ID N° 329CCGGATTAinhibitorMC302CCCCTATATT TTTCCCCTAT ATCTTTTTCT CCTCCCpoly(A)-bindingSEQ ID N° 330proteinMC304TAACGACTGC AGAATCATCT ATATACGAAGputative proteinSEQ ID N° 331TGCTTGAATC CCATGGATTG CCAATGGGTTAT3g07470 [A.TACTTCCAAA AGGTGTGAAG AATTTCACATthaliana]TAGACAATTC GGGGAAATTT GTAGTCCATTTGGATCAAGC TTGCAATGCT AAATTCGAGAATGAGTTTCA CTATGATAGG AATGTATCGGGTACAATAAG TTACGGACAG ATCCATGCACTTTCAGGAAT TGAGGCTCAA GATTTGTTTCTATGGTTTCC AGTGAAGGAT ATTCGGGTTGATATACCCAG TTCTGGTTTG ATTTACTTCAACGTTGGCGT TGTATCTAAG CAATTCTCTTTGTCTTCATT TGAGACTCCT AGGGATTGTA CTGMC305bTAACATTGTT TACAGAAGAA AAGCAGGGGGPlastid-specific 30SSEQ ID N° 332TTATGGACTT ATTATTCCCA AGGAAGATGGribosomal likeTAAGACAAAG TTAGAGCCTG TGGAGGTTGAproteinACTAGAGAAA GAAACGTCGA TGGCAGAATAGAAGGAATTG ATGAAAAGTG ATTAGTTAGTGACCGAGTAC ATTTACTTTG CGTTACGATCACTTTTGTAG AGAAGGTTTT CTGCTTGAGGATGTTTTTGC ACCCATCATC TGCGACAGACTGACGGAGCA CTACGCAMC306bTAACCATGCTCTTACAGGATTCTTTTGAGGATGACAkinesin like proteinSEQ ID N° 333AGGCCAAAATTCTCATGATACTGTGTGCGAGCCCGGATCMC307TAAGGCTGCT GGTGAAAGAA GTGGCGGATCputative proteinSEQ ID N° 334TCTCGATGGT GTAGCATTTC TCCTAAGTTCAt2g44090 [A.AGATTTCCTT GGTGATCCAG CTGCAACTTAthaliana]TGCGGTCGCC GACAGCATCG CTAAGTCGGATGACGAGGCT GTCGCTCCTG AGCTCAGGTCTTTCCTTCGG GAGCATTGGT CGGAAGCTGCTTTCTCAGAC GGGCTTAGGC AAGGACAAGAACACTACTTG AATATCGTGC GTATTTTGAAATGGGGGGAAMC308TTGGCAGTGAGATTTTTGCGAATGATTGAGGCTGCTputative Pto kinaseSEQ ID N° 335GTCATCTTGTGTGCGCCACTCATGCTTCAAAGAGACinteractorCAGCAATGGGACAGGTAACACTTGTTCCATTTTATTGAATGAAAACCTATGCCAGAAACGCCCTTAMC309aTAATGGTCTA GCATCGGAGG ATGCTCTGGGpolyproteinSEQ ID N° 336ATTTCTTGAG GAGTGTTACT GCATTCTCCGTACTATGGGT ATCTCAGGAT CGAGCGGGTTTTCTTTCACT ACTTTCCAAC TTCGAGGAGTCGCGTATGAT TAGTGGCACA CCTATGAGTTAGACAGTCCA GATGAGGCTG CTTCACTAACTTGGGCTCAG TTTTCGGAGC ACTACMC309bGATCCGAGCA TTGTGGAGGC ACTATTTCCAADP-ribosylationSEQ ID N° 337GAACACTCAG GGTCTCATTT TTGTGGTTGAfactor-like proteinTAGCAATGAC AGAGACCGTG TCGTGGAGGCAAGAGATGAA TTGCACAGGA TGTTGAACGAGGATGAGCTT CGGCATGCTG TGCTGCTTGTTTTTGCTAAC AAACAAGATC TTTTCCGCAGTAGAAGTTTT GTTTGGATTAMC310aGATCCGCCGCACAGACCAAAACACCGCCCAGCGTAzinc finger likeSEQ ID N° 338GGCTTTTCATCTTCGTCAATATTAGCAAATTAGAACproteinCCCCACCCATTCTCTTCTTTTTCAACAACAGCCAACCCTCAGCTGCCGACACACACGCACAGTCGCCGATGGACAGAGAATCAGCGAATGCCATAGCCATTTGCTGCCTCTGCTTCTTCCCATTAMC310bAATGAAAGAATGTTGGAGTCCTATGTGATTGCAAputative arginineSEQ ID N° 339GACACCGATTTCTTGTTCAAAATGGAAAAATGTTTCmethyltransferaseCTGGTGTCGGAAGAATACACATGGCACCATTTAGTGACGAATACTTGTATATGGAAATAGCAAATAAGGCGACCTTTTGGCAGCAACAAAACTACTTTGGGGTTGACTTGACACCTTTGCACGGATCMC311aGATCCGACCA AGGCGTCTTA GCATTGAAGGeukaryotic initiationSEQ ID N° 340CCTTGAAGCT TTCCGATTCT TTCATGGAACfactor 3H1 likeTCTACAAGAG TAACAACTTT ACTGGAGAGAproteinAGTTGAGGGA AAAGACTCTT TCATGGGTCGACATCTTTGA AGAGATACCG ATTAMC401CAGAATCATC TATATACGAA GTGCTTGAATputative proteinSEQ ID N° 341CCCATGGATT GCCAATGGGT TTACTTCCAAAt5g19850 [A.AAGGTGTGAA GAATTTCACA TTAGACAATTthaliana]CGGGGAAATT TGTAGTCCAT TTGGATCAAGCTTGCAATGG TAAATTGGAG AATGAGTTTCACTATGATAG GMC402GATCCTACAATCAACCTGAGAACATGCATAATTTAputative beta-1,3-SEQ ID N° 342TGTTTTCTTGTAGTGTTTTTCTGATCTGATGAAGGTTTglucanaseAGCTACACACCAAGTTTTCTTTTCATTTGCTAACACCAATGTTCCCACTGAAATGTGGGACAAAAGTAGGAAGCAAAGGGTGAGAGCTGCTTTAMC404TAACTTCAAT GCGACCAGTG GTGCTCGGATnucellin-likeSEQ ID N° 343AATACCTCGT TTGGCTCTAG GGTGTGGATAproteinTGATCAGTTA CCTGGTCAAT CTCATCATCCTTTAGATGGA GTGCTTGGCC TTGGGAAAGGAAAAGCCAGC ATTGTGTCTC AGCTTCACAGCAAGGGTTTG GTGCGGAATG TGGTAGGCCATTGCTTGAGT GGCACAGAAG TAGGTTTTCTCTTCTTTMC405TAACGAGTAT GGCGAAGCCT ATGAATCCCANADHSEQ ID N° 344TGCTGAGTTT CGTTAGTTCA AGGCCAGGATdehydrogenaseGGGTCATGCT CTCAAGTTAC TCGTGTATGAsubunit 1-likeTTTTTTTTAG TCTTGGCAAA TTTTTATGCGproteinAGTCTCACCA AAAGATGCAT GTGTGTGTAMC406aGATCCTAGCATTTGAGAAGTTCCTTGAAGAAAACCtrehalose-6-SEQ ID N° 345CATACTGGCGTGATAAAGTGGTTTTGCTGCAAATTGphosphate synthaseCTGTGCCAACAAGAACAGATGTTCCTGAATACCAAAAACTTACTAGTCAGGTTCATGAGATTGTTGGACGCATCAATGGCCGGTTGGAACTTTGACTGCAGTGCCTATTCATCATCTGGATCGATCTCTTGACTTTCATGCATTATGTGCACTATATGCTGTAACTGATGTAGCGCTGGTTTACCTCCTTAMC406bTAAGGGGTTTTGAGTTTTGTTTACTACTACCACTGCNicotiana tabacumSEQ ID N° 346TCTCAGAAAAAATGGATTTGATAGTCTAGTTTTTTARENT3 repetitiveCACAAACTCTTTTCAAACTATGTCAAGCACTCTCACsequenceATATACTCTTTAGAATACTAGGTTCTGCCCCTCTTGTGTGAGCTTTGCCTTGGGACCCTTGAGCTCTCTCTGAACTTGGACACATAAGAGCTGGTCCTTCCATACTACACTTACTCTTGGTTATGCAATCTGGGTGTGAGCACTACCTAGGATCMC406cTAAGGGAGCT GTTCCAGTTC CAGAGTCAGT60S ribosomalSEQ ID N° 347GCTGAAGAAG CAAAAGAGGA GTGAGGAATGprotein L7GGCCCTTGCA AAGAAACAAG AGCTTGAAGGTGCAAAGAAG AAGAGTTCCG AGAACCGGAAATTGATCTAC AACAGAGCTA AGCAGTATGCTAAGGAATAT GAGCAGCAGG ATAAGGAGTTGATTTGCTTG AAGCGCGAGG GTAGATTGAAGGGTGGTTTC TATGTTGACC CTGAGGCAAAGTTGTTGTTC ATCATTAGGA TCMC407TAAGGCAGAG ATGTTCTTTG ATAGAGGAGAputativeSEQ ID N° 348ATTGCTTGGA GGCCTTGTGA AAGGAGAAAGpathogenesis relatedCAATGGTGAA TTGGCATTGG CTGCTTCAAAproteinATGTCCTTTC ATGAAATAAG AGCAAAACCAGCAACTGCTG CTTATTTTCA AGACAAGATCTCAAGAAAGMC408TAAGCAGGGG AGGAAGTACT GCAAAATTGGcytosolic pyruvateSEQ ID N° 349TGGCCAAGTA CAGACCTGGA ATGCCTATATkinaseTGTCGGTGGT TGTCCCCGAG ATCAAAACTGATTCTTTTGA TTGGACTTGC AGTGACGAGTCTCCAGCAAG GCATAGCCTT ATATTCAGGG GATMC409TGTATAACCTTTTTGATGTCTCAATTCTTATGCTCTTputative proteinSEQ ID N° 350ATGAATAATACATAACAATTGCCACGAAATTTTCTAt1g80220 [A.GAAAGAATAGGTGGCTTAthaliana]MC410TAATGTTTGG CTACTCTTCT GTACAGCTTCputative proteinSEQ ID N° 351CAACATTGGA CAAGGATAAC CTCCGCGGTGAt4g28910 [A.TGGCtTCTCA TCTTCAACAG CTTCACCCTTthaliana]CCCATGGAAG AGGTCCTCTG GGTTCAGATATGCAGAAAGA TGGACCAAAT ATTTCTCAAGCTACTACGTC ATCTATTCCG CACAAGTCATCTGATTCTGT ACAATATGAT GGGAGGGCAATGGAGCATGT GAAAGGCAAT GGGAGACAGCATAAGGCAGA AGAAACTTCC AATTCTCGAGGGGAGGAAAA TGTGAAAGGA AGCAACATAAGCTTCAGGGC AAAAGACCCT CCTGACCAGCCCAGAGCAGA AGCAGTTCCT TCTAATTTTCAACTATTAGG CCAGGTCTTG CTGCAGATMC412TAATCGCATT GAAGCACGGA GTGAGCAGTTRNA polymerase I,SEQ ID N° 352TGACATGTAC ATGCTGTTGG ATGTGAACACII and III 16.5 kDaTGAGATATAT CCTATGCGCG TCAAAGAGAAsubunitATTTATGATG GTTTTAGCAT CTACTTTGAACTTGGATGGG ACACCAGATA CTGGTTATTTCATTCAGGGT AACAAGAAAT CACTTGCTGACAAGTTCGAA TATGTCMC413TACCTGTGGTTGGATCGGTATAGTCGCCACGGTCACputative esteraseSEQ ID N° 353TCGCTTGACCTACTGTCACTGGGCTACCTAAAGTCAACACCACGTTATTACCCACTACCGGAACACCGGTTACAGTCACCAATTGACCACCAGCAGTCACTGTAAAGCTACCTGTTGTTGGCAAGTGCAGTGGATTAMC414TAACGAGTAT GGCGAAGACT ATGAAGCCCAputative calciumSEQ ID N° 354TGATGAGTTT CGTTAGTTCA AGGCTAGGATbinding proteinGGGTCATGCT ATCAAGMT101ATGAGAGTTC GAATCCACCA AACAATGGCGGTP-binding-likeSEQ ID N° 355ACCGTTATGC AGAAAATCAA AGATATCGAAproteinGATGAGATGG CTAAGACCCA AAAGAACAAAGCTACTGCTC ATCATCTCGG TTTGTTAAAGGCAAAACTGG CAAAACTTCG AAGGGAGCTTCTTACACCTA CATCAAAAGG TGGTGGTGGAGCTGGAGAAG GTTTTGATGT TACAAAAAGCGGTGATGCAA GAGTGGGTTT AGTGGGCTTTCCTTCAGTTG GAAAGTCGAC ACTCTTGAACAAATTGACTG GAACTTTTTC TGAGGTTGCTTCATATGAAT TTACCACCTT AACGTGCATTCCTGGTGTCA TCATGTATCG AGGAGCTAAAATCCAGTTGT TGGATCTCCC AGGAATTATTGAGGGTGCCA AGGATGGAAA AGGTAGAGGAAGGCAGGTTA TCAGTACTGC AAGGACTTGCAATTGTATAC TTATTGTTCT TGATGCAATAAAACCAATTA CTCACAAACG TCCCATCGAGAAAGAGCTTG AGGGATTTGG CATCAGGTTGAACAAGGAAC CACCTAATCT GACATTCAGGAGGAAAGAGA AGGGTGGGAT CAATTTAACATCAACAGTGA CCAATACTCA TTTAGACCTCGACACCGTAA AGGCCATATG CAGCGAATACAGAATACATA ATGCTGATGT TCATCTTAGGTATGATGCAA CTGCTGATGA CCTTATTGATGTCATTGAAG GCAGTAGAGT ATACACACCTTGCATCTATG TTGTGAACAA AATTGATCAAATCCCAATGG AAGAGCTGGA GATTCTGGATAAACTTCCCC ATTATTGTCC GATCAGTGCTCATTTGGAAT GGAATCTTGA TGGCTTGCTGGAGAAGATTT GGGAATATCT CAGTCTAACCCGTATATACA CTAAGCCGAA GGGAATGAATCCAGACTATG AGGATCCAGT AATTCTATCATCAAAGAGGA GGACAGTGGA GGACTTCTGCGACAGAATCC ACAAGGATAT GGTTAAACAATTCAAATATG CGCTGGTTTG GGGTTCAAGTGCAAAACACA AACCTCAGAG GGTGGGCAGGGAACATGAAC TAGAAGATGA AGACGTCGTCCAAATCATCA AGAAGGTGTG AMT102TAAAAGGGAG AGAGCAGAAC GTGAGGCTTTubiquinol--SEQ ID N° 356GGGAGCTTTG CCTCTCTATC AGCGGACAATcytochrome-cTCCATGAAGA AATCAAATCT CCCTTGAAGCreductase-likeTTTTTCGATT GAGAATAATT ACTGTGTTGCproteinTTGTAGATGA GCTTTGCCTC TGTATCAGTCGTACAATTCC ATGAAGAAAT CGAATCTCCCTATAAGTTTT TCMT103TAGCAACTTTGACAGGTGTCAATGTCGGTGACAATpathogenesis relatedSEQ ID N° 357GCAACAGCACAACGAGGTGATTATGCCTTCAGTTTlike-proteinCACAGTAAATTGATCGATATTGGGCTATCGATCAATATGCCTTCAGTTTCAGAGTAAATTGATCGATATTGGGCTATCTTTGTTTCTGAAGCTGCATTGTTGAATCTTTTCATCGGATATCCTTCTTGTTGTTCATTCTGTAGCCTAGCTAATTGTGGACTTTCTATTATCGTGTCTTTTTCGTAATATTGCAAGATCMT104aACAACAATCGAAATTGATTCTCTGTATGAGGGCCTTheat shock proteinSEQ ID N° 358GACTTTTATCCTACCATTACTCGTGCTAGATTCGAG70GAGTTGAACATGGATCMT106aGATCTAGTGG CCGGTGAATC ACTGATCAAAribosomal proteinSEQ ID N° 359GAGCAGATTT TAGAGAGATT CTTCATCGATCTAGTGGCCG GTGAATCACT GATCAAAGAGCGAGCAGCCG GCAGGTTTAG CCAGAACTCGTCGATCACMT106bGATGAGTCCTGACTAAACTAATCGATTTGGGTGGCputative ubiquinoneSEQ ID N° 360AATGATAGAAGGTAGTCGTCTTCGGTTGAAAGGGTbiosynthesis proteinGGCAGCAGGCTGCTGTTGCAGTTGGTTCTGCATTTGGGGCGTTGCTAGATCAMT108TAACCACAGA TTTCTCAAGC TGAATCATCAwater channelSEQ ID N° 361TGTAGCAAAG ATCAAAAproteinMT109TAACGTGCTC GGAGAACCTG TATP synthase betaSEQ ID N° 362subunitMT110TAAGGAGTTG TCACTGGAGC AGGAATCGTTputative proteinSEQ ID N° 363CATCGTAAAG AGTGACCCCA AAAGCTCAGGAt1g79140 [A.TACCAAGAGA AAAAAAGGGA GTGCCTCATTthaliana]AGAGCATATT AGTACGGGGT CTGACCTTGATTTCACTGCT CAAATTGATG AAAATGATGTTAGAAAGAAA CTCTCTGAGC ATTACTTGCTGCTTCATGAC ATAGCTGAAA ATGAAAGAGTAAGAGGGGAA TTGGCTCGGA CAACATTGTCTCTGAAGCTG CACGAACAAT ATAAAAAGCAGAAGAAAAGA AGAACATAGT AGGCATCTGMT111TAAGAGCTGT GGAAAAGGTC TGTTGGAATCputative annexinSEQ ID N° 364TATTCTGAAG GTGGTTATCT GGTGCATTGATTCACCAGAG AAACATTTTG CTGAGGTTGTCAGAGCCTCG ATTGTCGGGA TAGGAACTGATGAGGATTCT CTAACAAGAG CCATTGTAGCTCGAGCTGAA GTTGATATGA TGAAAGTAAGGGGAGAGTAT TTCATCGCGA ACAAGACCAGTCTTGATAAT GCAGTTATTG GTGATACATCAGGTGATTAC AGGAAGTTCC TGATGACACTMT112TAAGGGCTTC ACAAATGTGA ATCTCAAAACglucose-1-SEQ ID N° 365TACGTGTATC CTGGCATTGC AGAAAAAAGCphosphateAGCTATGCTA GCAGGTTTTT TAGCGCCTCAcytidylyltransferaseAGCATGAGCA ATATGAATTG TTCCAGTTCTlike proteinATGGCATGTC ATGTTATTAT ATCTTCACGCCGATGACAAA ATAATTGAAT GCAGGAAGAAGCTCCTGGTG CTGCCAGAGT ACAAGTTTACGACTATTTCA AMT113aGATCTACAGTGTTTTTCAGGCTTCAAATTCATCAACputative DNASEQ ID N° 366ATCTCACAAAGGAGCTGTTGCTGTTAGGCAGCCTTreplication licensingATATTAGAGTTGTTGGAATGGAAGAAACGAATGAGfactorGCCAATTCTCGAGGGTCAGCCAACTTCACAGTAGATGAGAAAGAAGAATTTCAGAAATTTGCATCCGATAAGGATGCTTATGAAAAGATATGCTCAAAGATTGCTCCCTCAATATTTGGGCATGTTGATGTAAAGAAAGCTGTAGCATGCCTTTTATTTGGAGGGTCAAGGAAGTTCTTGCCCGATGGTGTAAGATTAMT113bGATCTACCAA CCTGAAAATC TGACGCATCCputative proteinSEQ ID N° 367CCCCATGCTG CCCATTCAGG CATAGGCCTGAt1g07990 [A.TCTCCAAAGG GGTCATCATT GTCTGACGTCthaliana]TCAAAGCGGG AGAAACCCAT GTCATCTGACACACCTGCTT TCTCGCTTTG TTGACTGAAGTTACCACCAT TGACAGAATC CAATCCACTAACAGCATTTG AAGTAGAAGT GGGTGTTGCATCTGTAGAAT TTTTGCTCTC AGCCAATTCGTCCTCCTCTC CTACTACTAC CTCGTCATCACTATTGCTAT TCCCATCATT TGATGTTCCA TTAMT113cGATCTATCAGCAAAAGGAAATCTCTTGTGTATGTTTputative proteinSEQ ID N° 368ATACTTATAAGATTCAAGATGCTGATCTATTGCAAGAT3g10420 [A.TTGCAACTGTTATGGGGCTTGACGAAGAAGTTGAAthaliana]GTAACAGATGATATTGGTATTGCGGATGCTATTCTAGCATCTAGTGCTGAAATGAAGCAGAATCCTTGGATTCGTAGTGTTGCCAAATCTCATCAAGTTTCTGTCTTTGTTGTAAAGTCAAGTACCATGGCCCAAATGGTGAAAGCTATCCGTATGATTCTTGGAATGGATTCCATTCACTCAAAACAGCCATTAMT114TAATAACAACGAGAGCAGTCACATCATTCATGTTC26S proteasomeSEQ ID N° 369CTGCTGGTCCTAATGCTCTCTCTGATGTGCTTATAAregulatory subunitGTACTCCTATTTTCACTGGTGATGGTGAGGGTGGAAS5AGTGGATTTGCAGCAGCAGCTGCAGCGGCTGCCGCTGGTGGAGTGTCTGGGTTTGACTTTGGTGTAGATCMT115bGGGATGGAGAGAAATTTTCTCAAGTATGTGTACTGGfatty acidSEQ ID N° 370TCAAATGGTAAGGAGACAGATGATCCAACTGCGAAhydroperoxide lyaseTGATAAACAGTGTCCTGGTAAAGATCMT202ACCCCGGCTCGAACAGGAGGAGTACGCCATGCTAAputative proteinSEQ ID N° 371TGTGCCTTGGATGATCCACATATAAAGGTCAGGCGrps12 [OenotheraCCGATGAGCACATTGAACTATCCATGTGGCTGAGAelata subsp.GCCCTCACAGCCCAGGCACAACGACGCAATTATCAhookeri]GGGGCGCGCTCTACCACTGAGCTAATAGCCCGACGTGCGAGCCTCCCACTGGGGGCCCGCTATGCCAAAAGCGAGAGAAACCCCATCCCTCTCTTTCCTTTTTTCGCCCCCATGTCGCCACACGGGGGGAACATGGGGACGTAAAAAAGGGGGGCCTATCAACTTGTTCCGACCTAGGATAATAAGCTCATGAGCTTGGTCTTACTTCACCGGCGAGAAAGGAAAGAAGACTTCCATCTCCAAMT203aGATCTCCATCCAGTAATTGACCTCAAAATGTAAGCmaturase-likeSEQ ID N° 372CCAACAAAAAAAAAAAAAAAAACCTTGCCCCTCATproteinTAACCCTCCAAATTGGGGAAATAACGGGGGGCGGGATTTTCCTCACAGTGGTCACTTGAAAATCCAAAAAATGGCCGATCGGGTGTACCTAAAAGGGGGATAATGTCGGCCTACCAGGCATGTGTTGGCTAAGTTCCCTTTTCACATGAAATCCCATTCTTCATACCCTTCTTTTGCTTTTCCCACAGTTTCATAATTGGCCTTATAAACATGTTTTTGTTTTTTTTTTGCCCCGGCTTTTTTTTAACTGGCATGGGCTTCCTTTTTMT203bTAAACGAAGA TGAGAAGAAA CTGTAACTTGputative proteinSEQ ID N° 373GAGCTCACGC TTATGCCTCC TTCTTTTTCTAt2g34600 [A.TTTTCTCCTA AGAATTGCAC TACCCCTTACthaliana]TTCTCAACGG ATAGGGAGGA TAAAGAAAGCACAGAAGAGA AACAACCACA GCAGCTAACAATATTTTACA ATGGAAAATT TGTGGTTTCTGATGCTACTG AACTTCAGGC TAAAGCAATAATATATCTGG CAAGTAGAGA AATGGAGGAGAAAACAAAAA TCCGGTCACC AATTTCAGAATCATCATCAC CAATTTCAGA GCCTTTCATCACCATTTTTAC AATCTCCAGC TTCTGATCTTTTCTATGAAGA GATCMT204TAAAGTACTA ATTCCTATTT ACAATGCTCAprotein kinase-likeSEQ ID N° 374CTGCAGTATT TCTGAGCAGG CTCTTTTCTAproteinATTTAGTATC AGCTGAGTTT TTGCTTATGTTTACTTTTTA CTCAGGCAAG GTTCTTCTTTCAACAATTGA TATCAGGGGT TAGCTACTGCCATTTCMT205TAAACTCGGC ACCTCCACCA ACTCCAAGTCallene oxide cylaseSEQ ID N° 375ATTTTACTGC AAGAGCCAGA GCGGCTCAACTGATTCCTAA ACAACTAAAG TTCAAGAGGTAAGTGMT207TAACGTGACG GATTCGCAGC TGTACGATCTpoly(A)-bindingSEQ ID N° 376GTTCAACCAA GTCGGTCAGG TTGTTTCGGTproteinTAGGGTTTMT208TAAGCACATA ACCTACCTTA TTGAGCAGAA60S ribosomalSEQ ID N° 377CAAAGCACAG TTGGTGGTTA TTGCTCATGAprotein L7ATGTGGACCCA ATAGAGTTAG TCGTGTGGCTGCCAGCATTG TGCAGAAAGA TGGAAATTCCGTACTGCATC GTGAAGGGAA AAGCACGTTTAGGATCGATC GTGCACAAGA AAACTGCTTCGGCTCTATGC TTGACAACTG TGAAAAATGAAGATAAAATG GAGTTCAGCA GAATTTTGGAGGCAATCAAG GCAAACTTCA ATGACAAGTATGAGGAAAAC AGAAAGAAAT GGGGCGGTGGTGTCATGGGA TCCAAATCAC AAGCCAGAACCAAGGCGAAA GAGAGGGTTC TCGCCAAGGAAGGAGGACAG AGAATGAACT AGAGCTTCTATTTTATGTTG CTGTTTGGGT TAGACCTACAAATTTTGTGT TTTTGATTCG CMT209bTAAGGTTCGA TGACGCTAGG ATTATAAGGATyl-copia-likeSEQ ID N° 378AGATTTGTAT GTTATTACCG AATGTTGTTCretrotransposonCGAGTCCCGG ATGAGATCMT210aGATCTCGTCGCCTTCCACGTCTATTCCTTCAGCTGTputative proteinSEQ ID N° 379TTCCTCTTTTCTAGCCTCATTGCTTTGTGCCTTAAT5g05950 [A.thaliana]MT211TAATCGTGGA ACAGGTCAGA TTATTCCAACtranslationSEQ ID N° 380TGCACGACGT GTAGCCTACT CTTCTTTCCTElongation FactorTATGGCGACA CCCAGGCTTA TGGAACCTGT2-like proteinGTATTATGTG GAGATCCAAA CACCCATGGATTGTCTCTCT GCTATATACA CCGTGTTGTCTCGCAGGCGT GGACATGTTA CTGCTGATGTTCCTCAACCT GGGACACCTG CCTACATCGTCAAGGCATTT TTACCTGTGA TCGAGTCCTTTGGTTTCGAA ACCGACTTGA GGTATCACACCCAAGGGCAG GCGTTTTGTC TTTCAGTGTMT212TAATCAGACT AGTGTCCGGG ACCAGGTCCTlipase-like proteinSEQ ID N° 381TGAAGAGGTA AAAAGATTGG TTGAGGAATATAAGAATGAA GAGGTGAGCA TAACAGTAACCGGCCATAGC CTAGGTGCAT CACTTGCAACCCTAAATGCA GTTGACATAG CTTTCAATGGAGTCAACAAA ACAAGCGAAG GCAAGGAATTTCAAGTGACA GCTTTTGCAT TCGCAAGTMT214aACAACTGTGT GGATTGTTTT AGCCCAACCCputativeSEQ ID N° 382TGTTATphytosulfokinepeptide precursorMT301bTAAAGTCCCTGTCAGATATCTGAAGGAAGATAAACputative GDP-SEQ ID N° 383CTCACGGGTCTGCTGGTGGCCTTTATTATTTCAGAAmannoseATTTGATCATGGAGGAACTTCCGTCTCACATTTTTCpyrophosphorylaseTGCTAAACTGCGACGTGTGCTGCAATTTTCCACTGCCAGAGATGCTTGTTGCCCATAGAAGATATGGTGGAATGGGTACATTGCTAGTTATCAAGGTTTCGGCTGAATCAGCCAACCAGTTTGGAGAGTTGGTTGCAGATCMT301cTAAAAACAGG TGCAAGCATC CCATAGTGATputative proteinSEQ ID N° 384TGTAGTTGAG ATGGACCGCA TATTGCGGCCAt1g19430 [A.TGGTGGTTGG GCAATTATAC GTGACAAGGTthaliana]CGAAATACTT GATCCGCTAG AGAGTATACTGAGAAGCTTG CATTGGGAGA TACGAATGACATTCGCAAAA GATAAGGAAG GCATCCTTTGTGCACAAAAG ACCATGTGGA GACCTTGATGAATGGAGCAA ATCTTTCGCT TTCCATTTTCCAGATCMT302aGATCTAATAC CAGTATTCAG TTGTGGAAGTcalmodulin-likeSEQ ID N° 385AATCTCTTCG AGATTCproteinMT302bATGGTAAGGAGACAGATGATCCAACTGCGAATGATdivinyl etherSEQ ID N° 386AAACAGTGTCCTGGTAAAGATCsynthase likeproteinMT303CTTATTATGCTTTTGCTCGTTTASEQ ID N° 387MT305aGATCTGGTAA TTTTGGAAGG GATGGGCCGAputative proteinSEQ ID N° 388TCTTTGCATA CCAACTATAA TGCAAAGTTCC42D8.3AAATGTGATG CTCTAAAGCT TGCTATGGTG[CaenorhabditisAAGAATCAGC GGTTGGCACA AAAGTTGGTT Aelegans]MT305bGATCTGTACA TGTCATCGAC ATTACTAAGAputative proteinSEQ ID N° 389GTTGCTGGTG AACACAACTC TGTTGTAGCAAt2g32340 [A.GTTGTTGGGA AGGGTCACCT GCGTGGAATCthaliana]AAGAAGAACT GGAAACAACA CATTGAGGTT AMT306aTGCGTCTGGCTATGGAAGTTTTGGACCATCTTCTTGpolygalacturonaseSEQ ID N° 390GTCAAACATTTTCGGGTTGTGGCAAACATTCTTCAGinhibiting likeTCACCTGAGAAATCTAGTGGTTTTTGAAATGATAGTproteinTAACCTTGTAGTTACTCAAGACTCAMT307aTAACTGAACT TGGATTTTCG CAAGACGGTThypothetical protein-SEQ ID N° 391ATCAGTTATT TTGTGATAGT CAAAGTGCTAcommon tobaccoTCCACCTTGC GAAGAACGCC TCATTCGATTretrotransposonCCAGATCTtolMT307aTAACCACACCCCAAATAGACCCGTCATTCTTCAACambiguous hitSEQ ID N° 392CAGCACCCCACCCCCGAGTCATCTCCTTCGTCGAACCTCCAGCGACCACTCCCTGAGCCAGATCMT308aTAAACAGAAG ATAGCTGATG AAATACTAGCputative proteinSEQ ID N° 393AACTTTGAGA GGTGTCAATG TCGGTGACAAAT4g09810 [A.TGCAACAGCA CAACGAGGTG ATTATGCCTTthaliana]CAGTTTCAGA GTAAATTGAT CGATATTGGGCTATCGATCA ATATGCCTTC AGTTTCAGAG TAMT308bTAACCGGGATGCATTTTGCCACAACAACCTTGATGputative proteinSEQ ID N° 394ACTATTGTTCTTAGGTGGCTCGGATACATCCAAGCTAt4g33380 [A.TCTCATTTACCCCTTCCAGATCthaliana]MT309TAAGGCACCA TCAGTTTTTG ATATCAAGAA40S ribosomalSEQ ID N° 395TGTTGGCAAA ACCCTCGTTA CTAGGACTCAprotein S3aGGGTACCAAG ATTGCTTCAG AGGGCCTAAAGCATAGAGTA TTTGAAGTGA GTCTGGCTGATCTTCAAAAG GATGAGGATC AGGCTTTCAGGAAGATCAGG TTGAGAGCTG AGGATGTGCAAGGAAAGAAT GTCCTCACAA ACTTCTGGGGGATGGATTTC ACAACAGACA AGTTGAGGTCACTGGTTCGC AAATGGCAGA CTTTGATTGAGGCCCATGTA GATGTCAAAA CTACAGACAGCTATACCTTG AGGATGTTCT GCATTGCTTTTACAAAGAAG CGTCCAAACC AGCAGAAGCGTACGTGTTAT GCTCAGAGCA GCCAGATCCGTCAGATCMT311aAGAACCTAACAATCTTTACAACCTTCACTCTTACAAputative ribosomalSEQ ID N° 396ACACTCTGGGCTAGCAAACAAGAAAACTGCGACTAprotein L28TCCAGGCTGAGGGGAAAGATAACTCTGTGGTGCTTGCCACATCGAAGACCAAGAAGCAAAACAAGCCTTCAACTTTGCTGAACAAATCTGTGATGAAGAACGAATTCCCCAGAATGACCAAGGGTGTAACCAACCAGGGTGCAGACAACTACTACAGGCCAGATCMT311bTAAGGATAGG ATTGGTTATA GTATGATTACcytosolic cysteineSEQ ID N° 397GGATGCTGAG GAGAAAGGCC TGATCAAACCsynthaseTGGCGAGAGT GTCCTCATTG AACCTACAAGTGGAAACACT GGAGTAGGAT TGGCATTTATGGCTGCTGCT AAAGGCTACA AACTCATCATAACGATGCCT TCTTCAATGA GTCTTGAGAGGAGAATTATT CTGCGTGCTC CTGGTGCTGAGTTGGTGCTT ACAGATCMT401CTGAGTAAAG GGAATCAAAT ATGAAGCAAAprobable glutathioneSEQ ID N° 398GGAGGAAAAC TTATCTGATA AAAGCCCTTTS-transferase PARAGCTTCTGGAG ATGAACCCTG TTCACAAAAAGATCCCTATT TTGATTCACA ATAGTAAAGCCATTTGTGAG TCTCTAAACA TTCTTGAGTACATTGATGAA GTCTGGCATG ACAAATGTCCATTACTTCCT TCTGATCCTT ACGAAAGGTCACAAGCCAGA TTCTGGGCCG ACTATATTGACAAGAAGATA TATAGGACAG GAAGAAGAGTGTGGAGCGGT AAAGGTGAAG ATCAAGAAGAAGCAAAGAAG GAATTCATAG AAATACTCAAGACTTTGGAA GGAGAGCTTG GAAATAAAACTTACTTTGGT GGTGATAATC TGGGTTTTGTGGATGTGGCT TTGGTTCCCT TTACTAGTTGGTTTTATTCT TATGAGACTT GTGCAAGCTTTAGTATAGAA GCAGAGTGTC CAAAGCTGGTGGTATGGGCA ACAACATGTA GGAGAGCGAGAGTGMT402bCAAAATCCAGCCCCATAACTCCACCACGTATTCGAmyocyte enhancerSEQ ID N° 399GTCTTGCCGACGAGCTTTCCGTTAGTAGATCfactor 2A likeproteinMT402cTGTACACTGGTCAGTTTATTTACTGCGGTAAAAAA60S ribosomalSEQ ID N° 400GCTAATCTAATGGTGGGTAATGTGTTGGCACTTAGprotein L2ATCMT403aTAAACAGAAGATAGCTGATGAAATACTAGCAACTTputative proteinSEQ ID N° 401TGAGAGGTGTCAATGTCGGTGACAATGCAACAGCAAT4g33380 [A.CAACGAGGTGATTATGCCTTCAGTTTCAGAGTAAAthaliana]TTGATCGATATTGGGCTATCGATCAATATGCCTTCAGTTTCAGAGTAAATTGATCGATATTGGGCTATCTTTGTTTCTGAAGCTGCATTGTTGAATCTTTTCATCGGATATCCTTCTTGTTGTTCATTCTGTAGCCTAGCTAATTGTGGACTTTCTATTATCGTGTCTTTTTCGTAATATTGCAAGATCMT403bGATCTTGGAG ATGGCTTCAT GCAGCGAAGAGPAA1-likeSEQ ID N° 402CCGTGTTTAT TGTCCACTTT TGGGGTGCCGproteinTTGTAACATT GCTTCCGCAC TTTCTGTCTCTAGTACCAGA TTCCGCACCT CTGACCAACCTCATAACCTG GATCATGCTT TCAGCGTCCAGTCTCTTGAT CTGACAAGTG ATTCTGGGTTCCTCCTTGAG TCTTCCATCC ATGACCCATACTCGAGGAAT GGAATGGACT CTTTTGAAATCAGTGACAAT TGCTGGTGCC TGTACTGGACTTTGCATAAT GTCAGTCMT407TGAGTCTTGA GTAATGCATA TATATAGCACprobable glutathioneSEQ ID N° 403AGGAAGAAGA GTGTGGAGCG GTAAAGGTGAS-transferase PARAAGATCAAGAA GAAGCAAAGA AGGAATTCATAGAAATACTC AAGACTTTGG AAGGAGAGCTTGGAAATAAA ACTTACTTTG GTGGTGATAATCTGGGTTTT GTGGATGTGG CTTTGGTTCCCTTTACTAGT TGGTTTTATT CTTATGAGACTTGTGCAAAC TTTAGTATAG AAGCAGAGTGTCCAAAGCTG GTGGTATGGG CAAAAACATGTATGGAGAGC GAGAGTGTCT CAAAGTCCCTTCCTCATCCT CACAAGATCMT409GGATGGAGAGAAATTTCTCAAGTATGTGTACTGGTallene oxideSEQ ID N° 404CAAATGGTAAGGAGACAGATGATCCAACTGTGAATsynthaseGATAAACAGTGTGCTGGTAAAGATCMT410aCTGTGTTTTA TATGTTCTTT GAGCAATATCputative proteinSEQ ID N° 405TGCAGCATAT GGAGGACAGC CCTAATTAAt1g42470 [A.thaliana]MT410cTAATCTGGAT GCAATTGAAG CCCTTGCCACputative NADH-SEQ ID N° 406GGACAACATT GTGTCAAAAG ATGCTTTGACubiquinoneTTTTGAAGAT CACTTCGCAG ToxireductaseT1GATCTCAGAAGTTAGGACATACGTTCCTAACGTTGTlipase-like proteinSEQ ID N° 407CGCTGGGATTATGAGAGGCATCAAAGATGTGATTCAGCTCGGAGCCACGCGCTTTTTGGTTCCAGGAATTTACCCACTCGGGTGCTTGCCGCTTTATCTCACATCATTTCCTGACAATAATACAGGCGCGTACGATCAAATGGGTTGCTTGAGGAACTACAACGAGTTCGCTTCGTATCATAATAGATACGTGAGCAGAGCTATCGCGAT101ATCCAGACAAACGACCTGAAATGGATGAGGTAGTGkinase like proteinSEQ ID N° 408AAATTGGTGGAAGCAATTGACACGAGCAAAGGAGGAGGGATGATACCCGAAGACCAAGCTGGTGGCTGTTTCTGCTTTGCTCCTACCAGGGGTCCATAATCTCTCTTTACTATATTTTTCTTTAGCCCCGTTGGATGGTTACTTAAGACTCATT103TAAGGATGTC AAAGGTTGTG ATGATGCTAAcell division proteinSEQ ID N° 409GCAAGAGCTT GAGGAGGTTG TTGAGTACCTFtsH protease-likeCAAAAATCCT GCTAAGTTCA CTCGGCTTGGGGGAAAGTTG CCGAAGGGCA TTCTTTTGACTGGAGCTCCT GGAACAGGAA AAACCCTCCTTGCCAAGGCT ATCGGTGGAG AAGCAGGGGTGCCTTTCTTT TATAAGGCAG GCTCT104ACTGGGAAAAAACCTGATCTATTGATTCAGCTTCCTheat shock proteinSEQ ID N° 410AATCCACCGAGGAGTCCTGCTGCTCAAGCAGTGAA101AAAGATGAGGATTGAAGAAATAGTGGACGATGATGAAATGGAATACTGCTGAGGCCGTAAAATCACTGGGGTAAAATGAAGAGAAGAATACTTCACTTAT106TTCGGCGAGA TGTTGATCAA TTTCGTACCGfructokinaseSEQ ID N° 411ACGGTCTCCG GCGTTTCCCT TGCCGAGGCTCCGGGGTTCT TGAAGGCTCC GGGCGGTGCACCGGCAAACG TCGCCATCGC AGTGACTAGGCTGGGGGGAA AGTCGGCGTT CGTCGGGAAACTCGGCGACG ATGAGTTCGG CCACATGCTCGCCGGGATAC TCAAACAAAA CGGCGTCCAAGCCGACGGGA TCAGCTTCGA CAAGGGCGCGAGAACGGCGT TGGCGTTCGT GGCTCTACGCGCCGACGGAG AGCGTGAGTT CATGTTCTACAGGAATCCCA GTGCCGATAT GCTGCTCACTCCCGACGAT107TAAACCCAGA GACCTACCAA CTTTTTGACG5′-adenylylsulfateSEQ ID N° 412CAGTAGAGAA GCACTATGGA ATCCGCATTGreductaseAGTACATGTT CCCTGATGCA GTTGAAGTTCAGGCCTTAGT AAGGAACAAG GGCCTCTTCTCTTTCTACGA AGATGGCCAC CAAGAGTGCTGCCGTATAAG GAAAGTTCGA CCTGTTGAGGAGAGCACTCA AAGGCTTTAC GTGCGTGGATCACAGT109AGCTCTCTGGGTCCCTACCGACGCTGAGGTGCGAAsmall subunitSEQ ID N° 413AGCATGGGGAGCGAACAGGATTAGATACCCTGGTAribosomal RNACTCCATGCCGTAAACGATGAGTGTTCGCCCTTGGTCTACGCGGATCAGGGGCCCAGCTAACGCGTGAAACACTCCGCCTGGGGAGTACGGTCGCAAGACCGAAACTCAAAGGAATTGACGGGGGCCTGCACAAGCGGTGGAGCATGTGGTTTAT112GATCTTACTGATGATATTGTTTCTGAATATAGGAACanionic peroxidaseSEQ ID N° 414AGTCCTCGCGCATTTGCCTCTGATTTTGCTGCTGCTATGATTAGAATGGGAGATATTAGTCCCCTAACTGGTCAAAATGGGATCATAAGAACTGTCTGCGGCTCCCTAAATTGATCATTCAAAAGCTTATTACATGTATTTTGTATTTATTTGATTCTTTAT113aGATCTCATGG CGAAAGCAAG CTATGTGCTTputative proteinSEQ ID N° 415ATAATTGTAT TGGTGTATTC TGACATACCGAt1g57600 [A.CGGATTGAAG TTGTTCTAAT TTTATAGGAAthaliana]CTATGATTTG ATTTTAGGCA TTTGTAACTGGAGAAAGATG AATTGTATAA ATAATAACTTCAGCTGGAGC TCGTATCATG TATCATTTAT113bGATCTATGGTTTTGTCTTGGAACTCAAGCACAAGCTauxin-regulatedSEQ ID N° 416TGGTCTTGCTTGAACAAGAAACACTTCTTACCTACTglutathione-SGCAGAAACCAATCATGTCCTTCGTCCCTAGTTGTTCtransferaseAAGCATCAATTTATCAATATTGTTGCTACTCTGTCTATAAATTTTATGGTTTGGTGTAATTTAGTCTTTAT116aGATCTACAAGGGATTTTGGTGAGAGTACAAAAGGAputative proteinSEQ ID N° 417GATGCATGCATCTTTTGTGTGGCTATTTCAGCAAGTAt1g07280 [A.ATTTTCACATACACCTACTTTAthaliana]T116bGATCTACAGG ATGGTTTTGG CAAATCATGGputative proteinSEQ ID N° 418AACTCAAAGT TATTGTCAAA GATTATCAAGAT3g58130GAGGAAATTG CCAATTGTGA TATTTGATTG GTTTA(permease-like)[A. thaliana]T117aGATCTACGAA GCCTCTATTG AATGTTATATzinc finger-likeSEQ ID N° 419GAACTGAAGT ATGATGTTCT TGCTTTAproteinT119ACATTCTGAGAATGTTGAATTGGATAAAGTGAACCgalactinol synthaseSEQ ID N° 420TTGTACACTATCGTGCAGCGGGATCAAAGGCATGGAGGTACACAGGGAAAGAAGAAAATATGCAAAGGGAGGACATAAAATTACTGGTGAAGAAGTGGTGGGACATTTACAAGGACGAATCATTGGACTACAAGAATGCGGGTGCTGTTAT12GATCTCATAA GTCGATTGCC AACTTTCAAAzinc-finger likeSEQ ID N° 421TACAGGACCG GATTCTTCTC GAAGAAAAAGproteinAAAATGGGAG AGTGTGTTAT ATGTTATGCTGCATACAGAA GCGGAGATAT GTTGACCACTTTACCTTGTG CACACATGTT TCATTCAGAATGTATAAACC GCTGGCTTAT121GATCTACATT AGTAACCCTG AGATCACAGTputative peroxidaseSEQ ID N° 422GCCCAAAAAA TAGCAAAATC GATTCAGCTGTCTATTTCTC ACCAGGATAT GGTTCTAACTACACATTCTC CAATACATTC TATGAAAAAGTTGTTGCTCA CGAATCTGTT CTTAGAGTTGATCAGCAACT ATCATATGGA GCTGACACAAGTGAACTAGT TAT123GGCACTCTCACAGAATTCTGCACCTCATCAAGCTGTMobl-like proteinSEQ ID N° 423CCAACAATGTCTGCAGGGCCAAAGTCCGAGTATCGTTGGCCTGATGGAGTTAT124TAACAGAAGC GCGACATTTT GGACACAAGAreceptor-like proteinSEQ ID N° 424TTTGACGAAC CATATTACTT GGACAGGTTCCATATCCAAA TACAAGTGAA CTTCTCTATACAGCTT126TAAGACAAGT CTTAGTGGAT CATGCCCTATphenylalanineSEQ ID N° 425CGAATGGCGA CATGGAGAAG AATTGTAGCAammonia-lyaseCTGCAATTTT CCATAAAATC AGTGCAGTTTGAGGAAGAAT TGAAGATTGT TTTGCTTAAGGAAATGGAGA GTGCTAGATG TAAGTTGGAGAACGGCAAGC CCACAATTT13GACTGCGTAGTGATCTCAGAACCAGTCATTCTGTGTmethionine S-SEQ ID N° 426TGCTTTGCTTGGAGGATTGTATCTGAAGATGCTTACmethyltransferaseAGCTGGAATTAGTTTTGGATTTTCTGCCTCTAGACCATCCTGCTTTAT130TAAGGTTGAG TGCACAATAC CAAAGGACGANADH-glutamateSEQ ID N° 427TGGCTCGTTG GCAACTTTTT TGGATTCAGGdehydrogenaseT133TAATCGGGAA ATAATGGCAG ATGCTGAATARNA-bindingSEQ ID N° 428CAGGTGCTTC GTCGGTGGGG GAGCATGGGCproteinTGGCACCGAC CAAACACTTG GGGATGCTTTTTCTCAGTAC GGTGAAATT139CAGTCAGGGGGGCATGGCTACAATGTCCCGGAGAAputative globalSEQ ID N° 429GAGTATGCTTTAGAAGTGAAACTATCAGAGATGCCGtranscriptionGGAAGTTTACCTGTTGCGGCTCAGGCTCCTGTATCTGregulatorCCATGGCTTTTCAAAGAACATCATTTGAAACAGCTTAGAGCACAATGTCTTGTGTTTTTGGCTTTTAGGAATGGTTTAT14GATCTCAATC AGAGAGCAAT GGCACGTTTCglutathione S-SEQ ID N° 430TGGGCTAACT TTTTGGATGA AAAGTGTTTGtransferaseCCAAAGATGA AGGAACTTTG TTATGAAAGCAACAATGAAG TAAGGGAGAA AGCCAGGGGAGAACTTCATG AACTCCTTAT141aGATCTAGCAT GTGTCACTTA TTTGTATTTGGTP-bindingSEQ ID N° 431TCTCTAGACC TATGCAATTC AGCAGTTCTCproteinCTTTTGGGGA ACAACTCTTC TAAGCGCATACTATCAGTTG ATTTCT142CCCATCGTCGAATTGTCCATGCTGCTGATATGACTL-aspartate oxidase-SEQ ID N° 432GGCAGAGAGATTGAAAGAGCCTTATTAGAGGCAGTlike proteinGTTTAT144GACACCATTGCTTTTTACAGAGTGCAGTGTCATCTGputativeSEQ ID N° 433CAAAATATTTCATTCGACACGTTTCAAATCAAAACcyclopropane-fatty-ACCCTGACTCGAGCTCGTCGGAACATCTCTCGTCACacyl-phospholipidTATGACCCGAGTAATGAACTCTTCTCGCTATTCCTAsynthaseGATCAGACAATGACATACTCATGTGCAATTTTCAAGAGTGAAGAGGAAGACTTGAAAGTTGCACAGGAGAGGAAAATTTCTCTTCTCATTGAAAAGGCAAAAGTTAGCAAGGAACACCACATTCTAGAGATAGGATGTGGTTGGGGAAGTTTGGCCGTGGAAGTTGTTAT145GATCTAGTGT CGTGGTCCCT CGGAATTTCAputative E2SEQ ID N° 434GATTACTTGA GGAACTTGAA CGCGGTGAAAubiquitin-AGGGTATTGG AGATGGGACC GTGAGCTATGconjugating enzymeGGATGGATGA TGGAGATGAT ATTTATATGCGTTCCTGGAC TGGCACCATT ATTGGTCCTCACAATTCCGT TCATGAAGGT CGCATTTATCAGTTGAAGTT ATTCTGCGAC AAAGATTATCCAGAGAAGCC ACCAAGTT146AATGGGTGCAAGTGTGGATCAAACTGCACCTputative type IISEQ ID N° 435metallothioneinT147aTAACATAAAACTAAAAACAGATAAGGTTCATATCAputative proteinSEQ ID N° 436CACAAGCAAGAAATCCCAAAAGGAGGGTTCACCTCOSJNBb0072E24ACAAGTATAACAAACTTGAACATACAATTCCAAAC[Oryza sativa]ACTTGCTTTCTTTCAATCATTCTTGCCTGAAACATTTCCAGGAACATTCAAAACACTAGATCT148CTTATTATGTGGACAATTCTGAACCACAGTGGACAputative membraneSEQ ID N° 437CCTTGGTTGGTTCCAATGATTGTGGTTGCCAATGTAproteinGCCATGTTTATTGTAATCATGTTCGTTACTCAT149aGATCTAGGTA CATTGAGCTA TTTCCTTCACribonucleoprotein-SEQ ID N° 438AGCCAGATGA AGCTAGACGA GCCGAGTCAAlike proteinGGTCACGACA GTGATGCTAA TTATTTCTGGCGGAGCATTT TTAGGCATCA TATATTTCGTCCACCTCTTC TCTTGGGGAT ATTGTAGCAG TTGTTT150GATCTAGGAA GAGAGAGAGA GAGGGAGCTGserine/threonineSEQ ID N° 439ACCCATAACT CAGGCAGTTG ATCGGAAAAGprotein kinaseAGATGGGGTG GTCGTTCTCG GGGTTGAATGCTTTATGCGA CGCCGTTAT151aGATCTAGACA GAGAGGGCAG CCAACTTCAAprohibitin-likeSEQ ID N° 440CATTGCTCTA GATGATGTGT CCATAACAAGproteinCCTGACTTTT GGAAAGGAAT TTACAGCTGCAATTGAAGCA AAACAAGTGG CTGCTCAAGAAGCTGAAAGA GCAAAGTTTG TTGTGGAAAAAGCTGAGCAA GATAAGCGAA GTGCTGTTATCAGAGCTCAG GGTGAGGCTA AGAGTGCCCAGCTTATTGGT CAAGCGATTG CCAATAATCCGGCATTTCTC ACACTCAGGA AAATCGAAGCAGCAAGAGAG ATTGCCCAGC CTCTCTCACATGCAGCAAAC AAGGTGTACT TGAGT151bGATCTAGGAA ACTTTCCCGT CACTTTTTTGambiguous hitSEQ ID N° 441CCCAAATTCT TGAAGCTCCA ACCACTACCACCTCACAATA CTTATATCAA TGGATAGAGCTCCTCAAGAC CTAGCTATTG ATGCCAATTTTACCATGAAA ATCCGGCGAT CAAAATCCGGCCAAATTCCG GCGACCTCCC CGAACACCCTCTTTTGGCAT ACCACCATTT TTTCGGCCACTTGAATTATA AAATGGTAAT TTTCGGACCATGTAAACTCA TAAAATCGAG TTGGAATGAAAGATAATGAC GCTGAGAAAT ATTAGTAGCTT153TAAGCATATA GCTTTTCCTT CTGAGCCAGGlectin-like proteinSEQ ID N° 442ATCACACTTC ACACTAACCG AATCTCGCATAGAATCCATA AATGAAGAAA GCATCTCAATTGGAGAAAAG TTTGTTTTCC CGGGGAATTTGCTTGTCAAC GAAATTCCAC TCATAAGTAGGTTCACATCG TGATCTAAGT TCCATTTCCCATCGAGAGGT GAGTGATACT GGTAGGAGAGTCCTATTCTT CTCCTTGGGT TATGAAAGAATTCAATAGCT CCGGGCTCCC TCACTGCT154TAAGGCTGCC TACGAAGCAA TCTCAGATTTputative reverseSEQ ID N° 443TACATGCAAT AAAAAAGACT ACTCTTGGCTtrancriptaseCTGGAAAATC AACTCCCTAA ACAAATTGAAATATCTCCTC TGGACAATCA TTTGGGACAGGTTACCCACA AAGCATATGG GGGCCAAAAGAGGGATTTGC CATGACGACA CTTGTAACATATGTAATAGG GAGCCTAAGA ACATAGAACAT158GGGCAAACGTGCTGGGAATAAATCTGAATGTGCCAglycine-rich proteinSEQ ID N° 444CTCTCTCTTAGCCTTGTTCTCAACAACTGTGGAAGGAATCCTCCTACTGGCTTCACTTGCTAAGCGCAAGTACCCGATTAT160bGATCTCTTGC CTCGTGCAGA CATGCTTGATputativeSEQ ID N° 445TCTCGTCCTT TGGCCACTCC TCTTACTAGTretroelement polGGTACCGAGC TTCCCAATGA CTGCGTAGTGpolyproteinATCTAGGGCG GGTTCTGTTG ATGTGTACATATAATAAGAT CACATCTAGA TTATGGATTCTCTTTGAGGA TAAGTTTCAC TTTTTGTTCCTACCTTTTTG TAGTAAATTTT164AGGCTGGTACCGGTCCGGAATTCCCGGGATATCGTpar peptideSEQ ID N° 446CGACCCACGCGTCCGATATTCTCAAACAAAAAGAATGGAGAGCAACACGTGGTTCTGCTAGATTTCTGGCCAAGCTCTTTTGGTATGAGGCTAAGAATTGCATTGGCCTTAAAGGGAATCAAATATGAAGCAAAGGAGGAAAACTTATCTGATAAAAGCCCTTTGCTTCTGGAGATGAACCCTGTTCACAAAAAGATCCCTATTTTGATTCACAATAGTAAAGCCATTTGTGAGTCTCTAAACATTCTTGAGTACATTGATGAAGTCTGGCATGACAAATGTCCATTACTTCCTTCTGATCCTTACGAAAGGTCACAAGCCAGATTCTGGGCCGACTATATTGACAAGAAGATATATAGCACAGGAAGAAGAGTGTGGAGCGGTAAAGGTGAAGATCAAGAAGAAGCAAAGAAGGAATTCATAGAAATACTCAAGACTTTGGAAGGAGAGCTTGGAAATAAAACTTACTTTGGTGGTGATAATCTGGGTTTTGTGGATGTGGCTTTGGTTCCCTTTACTAGTTGGTTTTATTCTTATGAGACTTGTGCAAACTTTAGTATAGAAGCAGAGTGTCCAAAGCTGGTGGTATGGGCAAAAACATGTATGGAGAGCGAGAGTGTCTCAAAGTCCCTTCCTCATCCTCACAAGATCTATGGTTTTGTCTTGGAACTCAAGCACAAGCTTGGTCTTGCTTGAACAAGAAACACTTCTTACCTACTGCAGAAACCAATCATGTCCTTCGTCCCTAGTTGTTCAAGCATCAATTTATCAATATTGTTGCTACTCTGTCTATAAATTTTATGGTTTGGTGTAATTTAGTT168GATCTATCCA TGGAGTGAAT TTCGCATCAGputative lipaseSEQ ID N° 447GTGGAGCTGG CTGTTTAT17GATCTCAATG GTGAATTGAC CTTGAAACAAannexinSEQ ID N° 448GTAGTTCAAT GCCTTTGCTC ACCTCAATCCTACTTCAGCA ACATTTTGAT CGCGTCCTTAT171ATGGACATTTGTGTACGAGAAGAAACCTGAAGAAAwound-inducedSEQ ID N° 449CCCCAGAGCCTCTCGTTTTGTTGGCTTATGCCCTACvacuolar membraneATGTGACCAAAGATGTAGAGAGTCACCTTCTCAAGprotein Sn-1TAATCTAATCTATGCTATTCAATGGTTCATAGCCATATATATATGTATGTTAT172TGGGAGCTGAAAATGGCCTGATTGTTAGCGATAGCprotein phosphataseSEQ ID N° 450ATCATTCAGGGAAATGAAGAAGACGAGATTTTATC2CTGTTGGAGAGGATCCTTGTGTAATTAATGGGGAGGAGTTGTTGCCACTGGGCGCTAGCTCGGAGTTGAGTGCCAATTGCTGTTGAAATCGAGGGTATTGACAATGGTCAAATACTTGCCAAAGTCATAAGTTTGGAGGAAAGGAGTTTTGAGAGAAAGATCAGTAATCTGTCCGCCGTTGCTGCTATCCCAGATGATGAAATTACTACTGGCCCTACGCTAAAGGCATCCGTAGTGGCTCTTCCGTTGCCTAGTGAGAATGAACCTGTCAAAGAAAGTGTCAAGAGTGTGTTTGAATTGGAATGCGTGCCACTCTGGGGCTCTGTATCTATCTGTGGAAAGAGACCAGAGATGGAGGATGCTCTTATGGTTGTTCCTAATTTCATGAAAATACCTATCAAAATGTTTATTGGTGATCGTGTGATTGACGGACTAAGTCAACGTTTGAGTCACCTGACATCTCATTTTTATGGTGTATATGATGGTCATGGAGGATCTCAGGTTGCGGATTATTGCTGCAAACGCATTCATTTAGCATTAGTTGAGGAGTTAAAACTTTTCAAAGATGATATGGTGGACGGGAGTGCAAAGGACACACGTCAGGTGCAGTGGGAGAAGGTCTTTACTAGTTGCTTTCTCAAGGTTGACGATGAAGTTGGGGGGAAAGTGAACAGTGATCCCGGTGAAGACAACATAGATACCACTAGCTGCGCCTCTGAACCTATTGCCCCGGAAACTGTGGGGTCCACTGCGGTTGTAGCGGTGATATGTTCATCTCATATTGTAGTTTCTAATTGTGGGGATTCAAGAGCAGTCCTTTATCGTGGCAAAGAAGCAATGGCACTGTCAATTGATCATAAACCAAGCAGAGAAGATGAGTATGCTAGAATTGAAGCATCTGGTGGCAAGGTCATTCAGTGGAATGGACATCGTGTTTTTGGCGTCCTTGCAATGTCAAGATCTATTGGTGACAGATACTTGAAACCATGGATTTATACCCGAACCAGAAATTATGTTTGTACCACGAGCCAGAGAAGACGAATGCCTAGTTTTAGCTAGTGACGGGTTGTGGGATGTCATGTCAAATGAGGAAGCTTGTGAAGTAGCTAGACGACGAATTCTGCTATGGCACAAAAAGAATGGGACTAATCCTCTGCCGGAAAGGGGCCAAGGAGTTGATCCTGCTGCACAAGCAGCAGCAGAGTATCTCTCGACGATGGCTCTTCAAAAAGGTAGCAAAGACAATATATCTGTGATTGTGGTGGACCTTAAAGCTCAAAGGAAGTTCAAGAGCAAATGTTAAGAGATGACAATGTTCACCCGCACTTTGGTTTTTAGTATAAATCTATATACGGCTATGGGGTATAATCTCATTATTACATAACTCGGTCCATCCATTTTTTTATGGGCTTAAGGTCTGTGTATGAGAATAGTGTTTAGCATGTATTTATAGAAAAACAGTTTAACAAATGACGTTTATCCAAATTTTTGGTGTTGTTATGCCAGCAAGTGGCTATGTAAATTGAGCATGTTGTAGCAATATCAAAGATGCAAGTTCTTTGTTTAAAAAAAAAAAAAAAAAAAT177aTGACTGCGTAGTGCTCTATATGGCAATAGATTTGAAleucine-rich repeatSEQ ID N° 451GGCAACATTCCCAAGCCTTTTGCTAAATTGAAGTCTproteinCTTAGATTTTTGCGGTTAT177cGATCTATACCAGAAGGAGCTGTTGTATGTAATGTG60S ribosomalSEQ ID N° 452GAGCATAAAGTGGGAGATCGTGGTGTTTTTGCTAGprotein L2ATGCTCTGGTGATTATGCCATTGTTATCAGCCACAACCCTGATAATGGTACCACTAGGGTTAT178CTGGAATCAATTGCTTCCTCTGCGGTGCGGGCAGCpyruvate kinase-likeSEQ ID N° 453GATTAproteinT18TCAAAAACAA CTTTTATTGT GTTCATGGTTpathogenesis-relatedSEQ ID N° 454TTAGCCGTGG CCCATTCTTC ATTAGCCCAAproteinAACACTCCCA AAGATATCGT TATTGTCCACAACAAAGCCC GTGCAGAAGT TGGTGTCCCACTCCCACCAT TAT2TGAGTGAGCT TCATTATCTA CAAGCTTCCAputative cytochromeSEQ ID N° 455TTTATGAAAG TATGAGACTT TACCCTCCTAP450TCCAATTTGA TTCAAAGTTT TGTTTAGAAGATGATATTTT ACCTGATGGG ACTTTTGTGAAGAAAGGAAC AAGGGTTACG TATCATCCTTATGCAATGGG AAGAATGGAA GAATTATGGGGTTGTGATTTT20GATCTCATTTCGATCCTCACCACCCTCATCTGGCTA13-lipoxygenaseSEQ ID N° 456GCTTCAGCACAACATGCTTCGCTGAATTTCGGCCAGTACCCATACGGCGGCTACGTCCCCAATCGGCCACCTCTCATGCGTAGATTAT201GATCTCGCTT CGGGATCATT CCCCAAGAGCMRP-like ABCSEQ ID N° 457CAGTCCTTTT TGAAGGAACT GTGAGAAGCAtransporterACATTGACCC CATTGGACAA TATTCAGATGATGAAATTTG GAAGAGCCTC GAACGCTGCC AT203TCATCGAAATAATGAGTCACCATTGATATCGACACchloroplast putativeSEQ ID N° 458ATCTCCGATCGCCAAACGCTCGGGAGTTCCTCTATprotein 1708CAATCCTTTTCCTTCTTCTTGTTGCTGGATATCTCGT[Nicotiana tabacum]TCGTACACATATTGTCTTTGTTTCCCGGGCCTCTAGTGAGTGACAGACAGAGTTCGAAAAGGTCAAATCTTTGATGATTCCATCATCTATGATTGAGTTGCGAAAACTTCTGGATAGGTATCCTACATCTGAACCGAATTCTTTCTGGTTAT204GATCTCGAGC TCAGATTACA AAGCAAATCAputative proteinSEQ ID N° 459AGCATTTGTT TGGCAAGGAA CTAGAAATCGAt3g46190 [A.GAACCGCGAA AATGACAACC TCTTGAACCGthaliana]AAACCCATTG ATAAAACCTC GACAAACCTCACCTACCTCA ACTCCCATGC TTTATGGTTGTGTTTTTTGG TAGAAGAAAT GGTGTTTCGGAGCTAAAGTG AGGAGCTGTT TCGAACAAGGCTTCAGCTGC GTTATTGACT GATTTTTTGGTGAGTTTCGG GGTTAT205aAGATGTGACAGCCCGTTAGATTTACGTCATAAGAGputative apoptosisSEQ ID N° 460GGCTGGCGTCGAGCCGCTTGGATAGATTTGATCGAinhibitor likeCCCCAGGTGCATCCTTGGGGAATTCCTGTGTTCGTproteinCAAGGTCTAAGCCGATTTATTCCTGGCCGGACGTCGACAGGTTTTGAGGGAAGTGACTGACCCGAGATCT205bGATCTCGAAC TAGCGATCTC AAATTTCACCaklanonic acidSEQ ID N° 461TCCAGTTCCA CCGAAAATTA CCGTTCTGCTmethyltransferaseTGTGAAGCTA CTACTAGCAC GATTCCCGAAlike proteinGAAGTGGAAA CCGGACTTGT TGTCGGTGGGCCCCATGGAC CGCCGCCAGG ACTCGCTGGAAGATTATTAC TCTGCCGTTT TCAAT206aGCTATAAACCAGACACAAATATCTCCATCTGGGAGnon-photosyntheticSEQ ID N° 462GCAGCATACCAATCTGAAGGTGCATTTCTTGACGAferredoxinCGATCAAATGGAGAAGGGTTATTTGCTGACTTGTATTTCATACCCGAGCATCT207bTAACGATGTC AAAAAATTTC TGTCGGAGACphosphatidylinositol-SEQ ID N° 463AGAATCAGAG ATTATAATCC TCGAGATCspecificphospholipase-likeproteinT208TGAGTAACGTGAGGGAAACTGCTCTTCCTTCAGTAputative proteinSEQ ID N° 464ATTGCACAATACCCCGAGATCAT4g02990 [A.thaliana]T21TATCGATTAT TCATACAGTG AGAGCATAGCcyclophilinSEQ ID N° 465TTAAAAACTC CACAGAAATT TCTAGAAGAGAGTGAGAGAT GGCAAATCCT AAGGTTTTCTTCGACCTTAC CGTCGGCGGT CTACCGACCGGCCGTGTGGT GATGGAGTTG TTCAACGATGTAGTTCCGAA AACAGCGGAT AACTTCCGAGCACTCTGTAC CGGAGAGAAA GGCGTCGGAAAGTCCGGCAA GCCGTTACAC TACAAAGGATCATCATTTCA CCGTGTGATT CCTGGATTTATGTGTCAAGG AGGTGATTTC ACTGCTGGAAACGGTACCGG CGGTGAATCG ATCTACGGCGCCAAATTCGC CGACGAGAAT TTCGTTAAAAAGCATACTGG ACCTGGAATT CTCTCTATGGCCAATGCTGG ACCTGGAACT AACGGATCTCAGTTTTTCAT CTGTACGGCC AAAACCGAGTGGCTTGATGG GAAACACGTG GTGTTTGGTCAAGTTATTGA AGGAATGGAC GTGATTAAGAAAGTGGAAGC CGTTGGATCT AGCTCCGGCAGGTGCTCGAA GCCCGTTGTG ATTGCTGACTGTGGTCAACT CTCTTAGATT ATTAATCGTATCAATTAATG TTAATGATGA TCTAGTCTAGTTAACTATGT GATCGCAGTG TACTGATTTGCTGGTTTTCG TTTTTTTTTT AGCCTTTTCCTTTTTGAGAT TGTGGGTCGG GTTTCGGGCGTACTGTGTCG GGTCTTTACT GTAATTGGTGGTGTTTACTA CTACCAGTGC ATGTTGGAATTGGAATAAGA TTAGATTTCT CGGTTTAAAAAAAAAAAAAA AAAAAAT210ACAGCTATGACCTTAGGCCTATTTAGGTGACACTAputative proteinSEQ ID N° 466TAGAACAAGTTTGTACAAAAAAGCAGGCTGGTACCP0638D12 [OryzaGGTCCGGAATTCCCGGGATCTCAAAAAACACGATCsativa]AATGATCCGTACAACTCTCTCTTATCGAGTCCTCTATTTCCAATAATCACCAAATTACCCCACAAGTTTTCGATTGGATCAATTTAGTGTTTGATCTTTAGCTGTTCTGATCAGTTTATTAGTGGAAATGAAGATAGTGGATTTGGATGAGTCGTTAATGGAAAGTGATGGCAATTGTGTAAATACTGAGAAACGGTTGATTGTTGTTGGTGTTGATGCTAAAAGAGCGTTGGTCGGAGCCGGGGCTCGGATCCTTTTTTACCCGACCCTTTTATACAATGTTTTCCGCAACAAAATTCAATCGGAGTTCAGATGGTGGGATCAAATTGATCAGTTTCTCCTCCTTGGAGCAGTTCCATTTCCCTCGGATGTCCCTCGGTTGAAGCAGCTTGGCGTTGGTGGTGTAATAACACTGAATGAACCTTATGAAACTTTGGTACCATCATCATTGTACCATGCCCATGGGATAGACCATCTCGTTATTCCTACCAGAGATTATCTTTTTGCACCCTCTTTCGTGGATATAAATCGAGCAGTAGATTTTATTCACAGGAATGCGTCCATTGGCCAGACTACGTATGTACATTGCAAAGCCGGAAGGGGAAGGAGCACAACCGTTGTGCTTTGCTATTTGGTGGAATATAAGCACATGACTCCTCGTGCTGCCCTTGAATTCGTCCGCTCCAGAAGACCTCGAGTTTTATTGGCTCCTTCTCAATGGAAGGCTGTTCAAGAATTCAAGCAGCAAAGAGTGGCATCTTATGCGCTCTCTGGTGATGCTGTATTGATCACTAAAGCAGATCTCGAAGGCTATCATAGTTCTTCTGATGATAGTCGCGGTAAGGAACTGGCCATTGTGCCTCGAATAGCAAGAACACAGCCGATGATAGCTAGATTATCCTGCCTCTTTGCATCCTTGAAAGTATCAGATGGTTGTGGACCTGTTACCAGGCAACTGACCGAGGCACGTGCCTGCTAATCGCAAACTCATCAGCAGCAGCTACCTTGTACAGAAGACCACTGCTTAAATAAGGTCAGAAAGAGTCTTATATCTTTGAATCTGTGCTTCAGAGTGAACATCAAGGGATTATGAATAGAAAAAAACAGCTGAAGAGTACTTCAACATTGTGTAAACATGTTCAGAGTATGACTACTGTGGTCATTAGTAAATATTGCATAATTATACTCTTCCCATAATAAAGGGCGGGTATACAGACTTATTCTGAGAAAAAAAAAAAAAAAAAAAT211TAAGGCAGAA AATAAACTCC TATTGCTTTGbeta(1,3)-glucanaseSEQ ID N° 467ATGTGCATGT TACAGTATAT GTTACAAAAGregulatorAAAAACTTTC TGTTTATATA GTAGGAGAGTTTCATCCCTA GTATAAGTCT AAAAAGGTAA AAATT213CACTCTCTCTTAGCCTTGGTCTCAACAACTGTGGAAputativeSEQ ID N° 468GGAATGCTCCTACTGGCTTCACTTGCTAAGCGGAAstrictosidineGTACCCGATTACTCAGGACTCATCATCTACCAGCGsynthaseCAGGCAATTTGTTGCTGCGACTGCAAGTGGAGATAAGACAGGCAGGCTGATGAAATATTATAAACCAACAAAAGAAGTAACAGTTGCACTAGGAGGCCTAT214GATCTCGGATTTCTTATTTCATTGCCCTCTTCCTTTAputative proteinSEQ ID N° 469TTCCTCACTGGCTGTTCGTATTAP0501G01 [Oryzasativa]T216TAAACAATGT TCAGCCTTTC GTTGCAAGTTamidophosphoSEQ ID N° 470ATAAATTTGG ATCAGTTGGT GTTGCCCACAribosyltransferaseATGGCAATTT TGTGAATTAC CTAGCTCTTCGTGCTGAACT TGAGGAAGAC GGGGCAATTTTCAAGACTAG TTCTGAGACT GAGGTGGTTCTTCACCTTAT TGCTAGATCA AAGAAGGAGCTTTTTCTTTT GAGGATTT217GATCTAGTGT CATGGTCCCT CGGAATTTCAputative E2SEQ ID N° 471GATTACTTGA GGAACTTGAA CGCGGTGAAAubiquitin-AGGGTATTGA AAATGGGACC GTGAGGTATGconjugating enzymeGGATGGATAA TGCAAATTAT ATGTATATGCGTCCCTGGAC TGGCCCCACT ATTGGCCCTCAGGATTCCGT TGACTGCGTA GTGATCTGTAACTGCCGAAG ATATCATCTT GCCGCCTCATGTAGAAATT22GATCTCACTC CAAATCACAA TCTCCGCCGTputative proteinSEQ ID N° 472CTGATCCAAT CATGGTGCAC ATTAAt2g35930 [A.thaliana]T220CATCCATCATTATCTTAGGTACACCCGTCCAGCCAGglucose 6SEQ ID N° 473GCAACCCTCTTGGAGCTGCCATTGCAATTCTTGGAAphosphate/phosphateCTGTCTTGCATTCACAGGCAAAACAGTGAAGAGTGtranslocatorGAATTTATATATCGCGCAGGAAAGGTGTCGGAGAGAACCGAGAGGTGTTGAGAAAACGTATCCCATAATCCTGAATCTACCCTTACTTGAGGTGGAACATGAAACTTATTAGTATGTACATAGCAATAATGGGTTACTCAAGACTT221ACTTTGGTACTCCACGTTGTGGGACCTACTGGTGGAputativeSEQ ID N° 474TTGGCTACCCCACTTGTCCAAGATTTTGAACGCCAAstrictosidineCCTCTTCTCTTTCACAAATGATCTGGACATTGATGACsynthaseGACGACGATATTATTTACTTCACGGATACAAGCACAATCTACCAGCGCAGGCAATTTGTTGCTGCGACTGCAAGTGGAGATAAGACAGGCAGGCTGATGAAATATAATAAATCAACAAAAGAAGTAACAGTTGCACTAGGAGGCCTAGCTTTTGCAAATGGTGTAGCCTTACTCAGGACTCATCACT222aGATCTCTCCA ATTTCCTCTT CACTGTCGGTputative proteinSEQ ID N° 475GCCAGAATCC CTGCTCAAGT CTTTGGTTCAAt3g56950 [A.ATTACTGGGG TTAGGCTCAT CATTGCAGCAthaliana]TTTCCAAACA TAGGACGAGG ACCTCGTTTGACCATTGACA TCCACCGAGG TGCACTGATTGAAGGGTGCT TGACATTTGC GATTGTTACCATTTCACTTG GACTTTCCAG AAGAAGTCGTT222bGATCTCTTGC CTCGTGCAGA CATGCTTGATretrotransposon-SEQ ID N° 476TCTCGTCCTT TGGCCACTCC TCTTACTAGTlike proteinGGTACCGAGC TTCCCAAGTT GGATGTCACTTCCCTCTCTG ATCCCACCTA TTTCATTCTTCTATTGAGTC GGCTAACTGT AACTATAAGCTACACGCCTC GAACTCGTAT AAAGATTCTTCCTCTAGGGC CTCCTTTCAC CTTT222cCGACAGAGAGCAGCCCTGAATCTTTGGCTATGTCAputative nucleicSEQ ID N° 477ACTCCGTTCCTACACATTTCTCGTCCTCTTTCTCCACacid binding proteinACGAGTACAACCATAAGCCTTATAAATACTGAAATCTCATCAATAGCTGTGACTTGTAATTGACTAACTAAGCCCATGGCTTCCAACTCTTCCTCCCATAGCCCTCGCACCGTCGAAGAGATCT225GTGATCTCTTGCTGTATCAAGAGGTATTGGAGATCAprotein phosphataseSEQ ID N° 478GTGTCTTA2CT227TAATCCAAAC AAAACTTCTA CTGCGAAGAAribosomal proteinSEQ ID N° 480GGTCCGCGGT GTAAAGAAGA CCAAGGCTGGS19TGATGCTAAG AAGAAATAAG TCTTATGCAAACAAAAATCT CAATTTGGGA TTCTTTTGGTGGCCTATGTA TTTGTCTTGT GGTACTGTTGATTTTGACTT TGATTTTGGG GCGATTCAGTTATCTTCCCA TGGGGATATC TCATGGAAGGCTTAGAGTAC TTGAGAGTTC TATTAGTTAG TT228GGCCTTATTCTTTTGCTTTCAGGATTCATCTTACCACputative proteinSEQ ID N° 481CTACTGATGGCATCGCGCATCATCGACGATCCCTCTAt5g05740 [A.GTGTTCCACGAATCATTTCTAGCTGGCGGTATAGCCthaliana]AAGCTTATTCTAGGAGATGCTCTCAAGGAAGGAACTCCTATATCAGTAAATCCGCTTGTCATATGGGCCTGGGCTGGACTTCTCATTAT229aGATCTCTAGC ACAAAAACGA CCCCCCCCGTnucleoporin-likeSEQ ID N° 482TAGTCATCTT CTCCAGACAA TCCCTAAGTCproteinGACGAGTAGC TGCTGCCTCG TCCTTCACTGAGCATCCAAA GTCCAAACGC CGCTGCTTTCGTCTTCAACC CATCGTCCAA CTTCACGTCGT25TAAATGGAGCAAGGCTAAGCTTGTCTGGTGATCACputativeSEQ ID N° 483CAGCTCAGTAATGCTGGCCTTGCTGTATCCCTTTGTfolylpolyglutamateAAAAGTTGGCTTAGAAGTACAGGAAACTGGAAAAsynthetaseGGCTGTTTGAAGATGCATATGAGAAAGATGGTCTACCAGAGGAATTCCTGAGGGGTCTTTCAGCTGCACGTCTTTTCTGGCAGGGGTCAGATTGTTGTTGACCCTCTGATCAACACATCTGGAGGACATAAAAGGTTGTCAGGAGATCT27GATCTCCCAA TACTGACCGG GGGATAGGAAtransposase-likeSEQ ID N° 484GTCCATTGCG AGAATATAGC CCTAATATACproteinGAGATGAACT TAGAAGACGT TATATTCAAATGGGACCTTG CCAGCCTACG AGTCATGATTTTCCTAAAAC TAAGTTTGGG AAGACAATGCGTCAGTTTTA TCCTGGTTGG TTTTAT28GATCTCCTAG GAGTGTTAGT GACAAAGATAnicotinicSEQ ID N° 485GCCCACGTTC TGTGTTTTTG GATCGCAGTTacetylcholineCATCGTCAAA TTCTAGGCGT AGTTCTAGTGreceptor epsilonGTACTAGTTC CGAAGCATCC GTACAGTAGC TTTAsubunitT3TGAACCCTTT TTGATGGACT TAAGGGAATAputative proteinSEQ ID N° 486ATTTGGTGAC CCAATCTTCC TCCTCTTGGAP0529E05 [OryzaCTTCAATTTG GACCACCATA TAATTGTAAAsativa]ATTTGGACAA TTTATTTCCT TTGGTCTTGAGCTCTTCCTC TACAATTGAA AGCTTCTTTATTTGCCATTG AAGTCTAGCA ACCTTAGTAG GCAAT30GATCTCCCAG AAGGGGTCCA AAGCATCATTputative proteinSEQ ID N° 487GCAGATTCTA GTGAATGTGT GTCAATGGGGAt2g35930 [A.GAGGAACAGA GTGAAAGCGG CGGAGACTGAthaliana]CGCGGTTAGAT302aTAAAGCCACAGACAAGACCAACTACATTGGTGCTAputative proteinSEQ ID N° 488ATGATCTTCAAGCTACCTACTCTCTCTATCCAGGAAAt1g76660 [A.GTCCTGCTACTACTCTCAGATCACTACGCAGTCAATthaliana]CCCGCGT302bGATCTGGATT TACCTCCACC TCCCAGGCCTsplicing factorSEQ ID N° 489GGTTTTCCAT CTGTTAGGCC ACTACCTCCACCTCCTGGGC TTGCGCTGAA TATTCCTAGGCCTCCTAATA CAGTCCAGTA TTCCACCTCCACCAGTGCTG GGGTTGCTGC TCCACCTCGACCTCCTATGG TTACTCAGGG GTCATCAATCACTAGTT302cACTAGTGATTGACTGCGTAGTGATCTGACTTGTCCGpectinSEQ ID N° 490CTTTGTATAGATGTGACmethylesteraseT303bCGAGTTGAATGAATCAAAGCAAGACGAAGTCAGCAcysteine-rich proteinSEQ ID N° 491GTCCTCGCTCTTGAATCAGATCT305GATCTGAGGAGAGTTTGCATTTTGGATTTGCGCACGarabinogalactan-SEQ ID N° 493AGATGTTTATGATTCTAGGATTTATTTTAGTCATCTproteinTACTCGGCTGATGTTTATTCGCTTTTGTGACTTTTACTCGTGGGCGGTGGTGACCGCGTACATGCTATTTATTTGATTTTTACTATGGTTATTGTTTATTGTTAT308aGATCTGATCC AGCAGTTGTT CTTGCATTTGputative proteinSEQ ID N° 494ATATTCAGTG TAATATTGAA TCATTTTATCBAC19.2AAGTTATCGT TGCTGTCCCT TTTCTTGGTA[LycopersiconATCCAGTTGT CTGCTTTGAG ATTTACTCTTesculentum]CTGAATCAAA ATCTTGGAGT TGCTCTTCTTCAGACTGTAT TGAGTTGGAA AATAGCACAAGTCCTCTAAT CTTTGATAT309ATGGGAACGGCTTCCTGGTTGCACTTGTTGGTACGGputative proteinSEQ ID N° 495ACTCTCTTATGGAGTTTTGACTGGTACTTCCCTTGTT4933419D20 [MusCCCCTGTACTTATTCCTAATACTCCAGGAAATATTGmusculus]CGTCACTTGGCTTAT311ATAAACAGCCTTGGATGATTCTTGCTGCTCATCGTGputative proteinSEQ ID N° 496CCCTTGGTTACTCCGCTAATGATTGGTATGCTAAGGAJ271664 [CicerAAGGCTCATTTGAAGAGCCCATGGGAAGGGAGCACarietinum]TTGCACAAACTCTGGCAGAAATATAAGGTTGATATGGCATTTTATGGGCACGTCCATAACTATGAAAGAGTTTGCCCAATTTACCAGAATCAATGTGTGAACAAGGAGACATCACACTACTCGGGCGTAGTGAAAGGAACAATTCATGTTGAAGTTGGGGGAGGAGGAACCCTTTTGAATAAATTT313aGATCTGAGACCGGGGTTTATCGAGACTGAGTTTTATphospholipase DSEQ ID N° 497ACTTCTCCTCAAGTGTTCCATTAT314CTAAGGGTGCTGCCAGCTTTACCTCCCAAGTCATCAelongation factor-1SEQ ID N° 498TCATGAACCATCCAGGACCGATTGGAAATGGATATalphaGCTCCAGTGCTTGACTGCCACACCTTCCACATTGCTGTCAAGTTTGCAGAAATTTTGACCAAGATCGACAGGCGTTCTGGTAAGGAGATTGAGAAGGAGCCCAAGTTCTTGAAGAATGGTGATGCTGGTATGGTTAT315aGATCTATGGT TTTGTCTTGG AACTCAAGCAPROBABLESEQ ID N° 499CAAGCTTGGT CTTGCTTGAA CAAGAAACACGLUTATHIONE S-TTCTTACCTA CTGCAGAAAC CAATCATGTCTRANSFERASECTTCGTCCCT AGTTGTTCAA GCATCAATTTPARAATCAATATTG TTGCTACTCT GTCTATAAAT TTTT315bGATCTTGATA ACAAACGTAA TACTAACATGputative proteinSEQ ID N° 500AAACAAGCTA ATGGAACACA AAATTTACAGAt2g44270 [A.AGCAAACAGT GTGGAAGCTT GGACTTTTGAthaliana]ATCATCATAT AACTGTATAA TCGTTGTATAATTCTCAGTG GTGATCATTG CGATCTT319aGATCTTGCCATCACAGAAAAGGATCATTCTGGGCGRNase NGR2SEQ ID N° 501CATGAGTGGGAAAAACATGGGACATGTGCTTATCCAGTTGTCCATGATGAATATGAGTTCTTTTTGACTACGCTGAATGTTTACTTCAAGTATAATGTTACAGAAGTTGTGCTTGAAGCTGGATATGTACCATCAGATTCCGTAAGTATCCATTACGAGGCATCATTTCATCAATTGAAAATGCTTTCCATGCAACCCCAT319bGATCTCATCA TGAATGTTGG TACTGGTGGC60S acidicSEQ ID N° 502GGTGGTGCTG CAGTTGCTGT TGCTGCTCCCribosomal proteinACTGGTGGTG CCAGTGCCGG TGCTGCAGCTP1-like proteinGCTGCCCCTG CTGCGGAGGA AAAGAAGGAAGAGCCTAAGG AAGAAAGTGA TGACGACATGGGATTCAGTC TGTTTGATTA GGAGCTCCTTTCAGTATGAT ATTTGGTTCT TTTTTAGAGA ATTGT32TAACACAGAG AAAGTAGAAG AAACTACAAASGP1 monomericSEQ ID N° 503ACAAGGACAA CAACAACATG CCAAGAATGGG-protein likeATCATCATAT GGTCTATTTC CTTCATTATGproteinATGATCCTGA TGACGACCCA TCTTCTTCTTTGACCTTGAG ATATGAACCT TCTTCTAAGTCTTGGGAGAT CT320aGATCTCCCTA CCGGTGGGCT TGCTAACGTCphosphoglycerateSEQ ID N° 504GCTGCAACCT TTATGAATCT GCATGACTACmutaseGAGACACCAA GCGATTACGA GCCAAGCTTGATTGAGGTTG TTGACAACTA GATATCTCAGAGAATTTAGG AGGGTTGAAA TTTTGGCGCAAGTTGGAAAG TGATAATGAC TACATTCTATACTCTTTCCA GTCTATTTGA ATAAGACATTTTTTTGAGCT TATATTAT320bAGTGATCTCCATCGTGACCTTGGTTTTGATAAGAAAplexus-like proteinSEQ ID N° 505GAAGCAGCTGCTCCCTTCCTTCTCCACTCCCAGCATCAAGCACATTCCTTAGCACAATCAACCAGTCAACAACCACCCCAAAACAACCTGCAAAACTCAGCAAAATTCCACCCAAAAACTCCTAGAAGCGCAGTACTTCAGCTCCAGAAAGTCATGAAAACGCAGTTGTAGCACCGTCCCTTTTAGCACCCTTAT320cTAAGGGTGCTAAAAGGGACGGTGCTACAACTACGTcollagen-likeSEQ ID N° 506TTTCATGACTTTTTGGAGCTGAAGTATTTTGCTTCTTproteinGGAGTTTTTGGATGGAAATTTTGCTGAGTTTTGGAGGTTGTTTTGGGGTGGTTGTTGGCTGGTTGATTGTGCTAAGGAATGTGCTTGATGCTGGGAGTGGAGAAGGAAGGGAGAAGCTGCTTCTTTCTTATCAAAACCAAGGTCCCGATGGAGATCT321TAAGGAAAAT AAATGACATG CATTTAGAACputative proteinSEQ ID N° 507CAATATTCAA GAACAGTGAG TTTATCATCTAt2g11600 [A.CTCAAAACAT AAACAAAATG AACTTGGCTTthaliana]CAAATAATCC TTGAACAAAA TAGGGAGATCT322aGATCTCGAGAGAATTTATGGCTTCACTCCAAGAAAputative proteinSEQ ID N° 508CCCTCGTGCTGTAAAGCCACCTGATCATTACATAGAAt5g22210 [A.ATACATGCGCTTAthaliana]T323ACAGCTATGACCATTAGGCCTATTTAGGTGACACTcellulaseSEQ ID N° 509ATAGAACAAGTTTGTACAAAAAAGCAGGCTGGTACCGGTCCGGAATTCCCGGGATGAACATGAGAGGGAAACCAAGGCTACTGGTTAATCTCTCAACCATTTGACTTTGATCACCAATTAAGCTCAGATACAATGCACTCAGCAAATCATTGGGGAGGATCATTAGAAATCGCGAACACCGGCGATTCAACGGCGGAGGAATATGACCGGAGTCGGAATTTGGATTGGGACAGAGCATCAGTAAATCATCATCAAAAACAACAACAGTATAATAACTACGATCAATATTCTCATCGGCATAATTTAGATGAAACGCACAGAGTTGGTTATTAGGTCCGCCGGAGAAGAAGAGAAGAAATACGTCGATTTAGGATGTATTTGTTTGCAGCAGAAAAGCATTCAAATATACTATTTATGGAATTATTATCGCTTTTCTCGTTATCGCTCTGCCTACGATTATCGCCAAGTCTTTGCCTAAGCATAAAACTCGGCCTTCTCCTCCTGATAATTACACTATTGCCCTTCACAAGGCTCTCCTCTTCTTCAACGCTCAAAAATCTGGAAAATTGCCAAAAAACAATGAGATTCCATGGAGAGGAGACTCAGGTTTACAAGATGGATCAAAACTCACAGACGTTAAAGGAGGGTTGATTGGAGGGTATTATGATGCTGGAGATAACACAAAATTTCACTTTCCAATGTCATTTGCAATGACAATGTTGAGTTGGAGTGTCATTGAATATGAACACAAGTACAGAGCCATTGATGAGTATGATCATATCAGAGATCTCATCAAATGGGGCACTGATTACTTGCTTCGTACTTTCAACTCCACTGCCACTAAAATTGACAAAATTTATAGCCAGGTTGGTGGTTCTCTAAACAATTCAAGAACACCAGATGATCACTACTGCTGGCAAAGGCCAGAAGACATGAACTATGAACGCCCTGTTCAAACAGCTAATTCGGGGCCTGATCTTGCCGGTGAAATGGCAGCAGCATTGGCTGCAGCCTCCATAGXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXACGTAGGAACTGTGGCCCTCGCTATATCTCCTTGGATATTCTTCGCCGTTTTGCCACTTCCCAGATGAATTATATTTTAGGTGACAATCCCTTGAAGATGAGCTATGTAGTAGGGTATGGAAACAAATTCCCAAGGCATGTACATCATAGGGGTGCATCAATACCCTCTGGTAAAACAAAGTACTCATGCACTGGAGGTTGGAAATGGAGAGATACCAAAAATCCGAATCCTCACAATATTACAGGAGCTATGGTAGGAGGACCTGATAAGTTTGATAAGTTCAAAGACGCGCGCAAAAATTTCAGCTATACAGAGCCAACACTAGCAGGAAATGCAGGACTAGTTGCTGCACTGGTTTCTTTAACTAGCAGTGGTGGCTATGGTGTTGACAAAAATGCCATTTTCTCAGCTGTTCCACCCTTATATCCAATGAGTCCACCCCCACCTCCCCCATGGAAACCATAATGTGCAAATTTTGCCTTGAAAACCTGCAGCAGCTTAAATTTTGCCTATATTTGGCTGGCTATATCCATGTACAAAATTTCGAGAATAAAGAGTTGTTGTAACTCTGTTTATCTTATGACTCCGCGGCTTAATAAAATTCTTGCATTAATTTCTTTTTAAAAAAAAAAAAAAAAAAT324aGATCTATCAA GTTTGCATGG TGGGTGCCCTputative prolyl 4-SEQ ID N° 510GTGATTAhydroxylase alphasubunitT327CTACCGAAGGGTACCTTGCAGAAGAAGGGGAGGAexpansinSEQ ID N° 511ATAGATTTACAATCAATGGGCACTCTTACTCCAACTTGGTTCCCGTGACCAATGTTGGAGGTGCAGGAGATGTAAGATCATTGTACATCAAGGGTTCAAGAACTCAGTGGCAACCAATGTCAAGAAATTGGGGCCAAAATTGGCAGAATAACGCTTACCTCAATGGCCAAAGCTTATCTTTCAAAGTCACCACAAGTGATGGTCGCACTGTGTTTCTTATAATGCAGCTCCTCATTCCTGGTCCTTTGGCCAGACTTTTACTGGAGGACAGTTCCGTTAT328CCCTTATTGAGCAAAATCTCGAAGCTTGGGGGTAAeukaryoticSEQ ID N° 512GGTATCTTCAGCCTCTTCGGTTCCGGAAGTGCCACTtranslation initiationGTGCCAGCCTGTTCCAGCCTTGGAAAAGCTTGCAAfactor 3CTCTGAGGTTGCTCCAGCAGGTATCTCAGGTGTACCAGACAATCCAGATTGGTAACCTGTCTAAGATGATCCCATTCATTGACTTTGCTGCTATTGAGAAGATCGCTGTTGATGCTGTTAGACATAATTTTGTTGCCGTTAT330TAACCCCAAA GTTCAAGCAT CTATTGCTGCBTF3b-likeSEQ ID N° 513AAACACATGG GTCGTTAGTG GTTCCCCCCAtranscription factorGACAAAGAAA TTGCAGGATA TCCTTCCTCAAATTATTCAC CAATTGGGTC CTGATAATTTGGAGAATTTG AAGAAGTTGG CTGAGCAGGTCCAGAAGCAG GGTGCTGCTG CAGGTACAGGTGAGGCTGCA GGTGCGGCCG CAGCACAGGA AGT331TTCCAAAAGTACAACAGGTGTTAGAAGTGCGTTCGRNA polymeraseSEQ ID N° 514GTTGATTCAATATCCATGAATCTAGAAAACAGGATbeta″TGAGGGCTGGAACAAATGTATAACAAGAATTCTTGGAATTCCTTGGGGATTCTTGATTGGTGCTGAGCTAACTATAGCGCAAAGCCGAATCTCTTTGGTTACTCAGGACTCATCAAGAGACCCCCCGGGGAATCCCGAGAATTCTTGTTATACATTTGTTCCAACCCTCAATCCTCTTTTTT332bGATCTGGGTG AGGCAAAGAA AATTCTTGGClight harvestingSEQ ID N° 515ATGGAGATAA TTAGAGATAG ACATTCAAAGchlorophyll a/b-AAACTCTGTT TATCTCAGAA AGAATATTTGbindingAAGCGAGTAC TACAACGTTT TGGCATAGATGACAAGACTA AGCCAGTTAG TACTCCACTTGCTCCCCATG TTAT333bCCAGCCGCAC CCTCACCACC AAAACTCCATputative outer-SEQ ID N° 516CGTCGGACCT CCCTTCACTA CGCAATAGCCmembrane proteinATAAATGAAA CTTCACCTCA CACATGCCCTAAGCTCTTCT TCTTCATTGA CAGACCCAGA TCT335bGATCTGGAAC ATGACACAGC TGAGGCGTCTdisease resistanceSEQ ID N° 517GCGTCTACTG AGTAGAAACT ATTTGTGTAAlike proteinGCCTAAAT336aGATCTGGAAA CCCCAAAAGT ATAGAAGCAAambiguous hitSEQ ID N° 518TTCTTGAGGT TGAGGATATC ATATAAACTACTGTACCATT GGATTTCTTT CCATAATTCTTGAGGTTGAA TATCTCAGGC AATCTTTGATTCATATGGGA AT336cGATCTGGGGA ATACTGACTT AGTGACTTACputative proteinSEQ ID N° 519AATGTTATGA TGAACCTATA TGCTAAAATGAt5g09450 [A.GGAGACCTTG AGAAACTACA GTCGTTAGTGthaliana]CAAGAGATGG AAGATAAGGG AATTGCT337TAAGGAGAAA CAGAGAAGGA AACTACTGAGputative proteinSEQ ID N° 520AAATGATAAT GCAGAAAACA CACCAATACTAt3g52110 [A.thaliana]T339TGGTGTCGGAAGAATACACATGGCACCATTTAGTGputative arginineSEQ ID N° 521ACGAATATTTGTATATGGAAATAGGAAATACGGCGmethyltransferaseACCTTTTGGCAGCAACAAAACTACTTTGGGGTTGACTTGACACCTTTGCACAGATCT340GGTTTCATCACTGGTTTTGACTTTGGAGCTTGATTTprolineSEQ ID N° 522AGTGGAGTTTTCATGCATAGAAATTTCTGAATTTCTdehydrogenase likeTCTATTGGAAGCTTGAAGAATAGGAGAAGAGGCGTproteinTCCTTTTCCTTGCCTATGTTTTCTCCTCAATCTCCTCCCCTTTTCATTCTCTGTTTTTCCGTCTTTCCCCAGATCT341TAATGGAGGGCAAGCTGAGGAGTGGAACTACTCTCthymidylate kinaseSEQ ID N° 523ATTGTTGATCGCTATTCTTATTCTGGGGTGGCATTTTCATCTGCCAAGGGACTTGATATTGAATGGTGTAAGGCCCCAGAAATAGGATTGTTAGCTCCAGATCT349TGCCAACAGTTCTATGCACATTGGAGATGTCACAAputative proteinSEQ ID N° 524TCCCATATCAAATTGCACAAACAGGGCTCTGGGATAT4g24350 [A.TGGCTGAAACCAAATGCAACTCTGGAACCAAATGAthaliana]TTTTGCTCAATTTGATTTCAAGAATTATAATGTGCCAAAAGGAGGGGATAACAAGTTGGGGCGTGTTGGTTATAGCACGGAGCAGTTTTACTCAACTTCAGGGGAGGTCAATGTACCTCAGAGACCAGTTTGGTTTAT35GATCTCCGTC CGAGTGAATA ATGCATTTCTputative proteinSEQ ID N° 525TTTGGCAGGC AATGAAGAGA ATCGGGTGGAAt1g70660 [A.TCAAAAAGGT TTGGTTCTGA AATGTTGTATthaliana]TTTGTAACTG GAGATTGGAG AAAGAACATTGTAGATGAAA ATGTATATAG CCTTATTGCTCAGATAGTAG CAACTGTTGT CTTAT351aTTTTCGACAAGCTTGATGAAGATGGTGATGGATTAputative proteinSEQ ID N° 526GTAAGTTTAGGTGAACTCAAAGGCCTTCTTGATAACG14861GATTGGAGCTTGTACAGATCACTACGCAGTCATAA[DrosophilaGATCmelanogaster]T352GATCTGTTGA TGCAGATATG TGGCATGGGAserine/threonineSEQ ID N° 527ATCAGGATTT GCTATCCTCA AACAATGTCAkinase-like proteinCAATCAGTGT ACTAATAT353bGATCTGTCAT TGATGTTCAT TACTACAATCglucan 1,3-beta-SEQ ID N° 528TTTTCTCTGG CATGTTTAglucosidaseT354TGTCACAATTCCATCTCAAGTCGCTCCAACTGGGCTputative proteinSEQ ID N° 529ATGGGATTGGCTGAAACCAAATGCATCTCTGGAACAT4g24350 [A.CAAATGATTTTGCTTAATTTGATTCCAAGAATTATAthaliana]GTGCACCAAAAGGAGGGGATAACAAGTTGGGGCGTGTTGGGTATAGCACTGAACAGTTTTATTCAACTTT356TAACTGAGGC ACAAATGATT GACCACATGTglycineSEQ ID N° 530CAAAATTAGC TTCAATGAAT AAGGTTTTCAdecarboxylaseAGTCATATAT TGGGATGGGA TATTATAACAmulti-enzymeCTTTTGTACC ACCTGTTATT TTGAGGAATAcomplex P subunitTTATGGAGAA TCCTGCTTGG TATACTCAGTATACTCCTTA TCAGGCTGAG ATTTCGCAGGGACGTCTCGA GTCCCTGCTA AT357CCATTCTTCTCATTTCTGATGTATTTGGATATGAAGendo-1,3-1,4-beta-SEQ ID N° 531CTCCACTTTTGAGGAAGATAGCAGATAAAGCCGCAD-glucanaseGCTGCAGGGTACTTGGTGGTTGTTCCTGATTTCTTCTATGGTGAACCTCTTGATCGCGAGAAACATAACGTACAGACATGGTTAT36TGACGTGCGT AGAGATCTCC GAGATTATCTputative proteinSEQ ID N° 532AGATAGTTTC CATGGGCTGG GACTTTTCCTAT5g13800 [A.CTTCCCACCA CTATCAGAAA GCTCACAGAAthaliana]CTTGTATGGC AGAAAATTAG TGCTCCCGAGAGCATTGCGG AGGTGCTTAT361TAAGCACCAC AATTTGCAGC TGTTACCAGTphotosystem II D2SEQ ID N° 533CGATCGCGAT CGCGCCTACA TGCGCAGACTproteinTCCACATCTG TACCATTGTA CCATAGTAACCTTGTTCTGT CTCTTTGTTC ACTTAGAAATGCTATAAATA CTGCATACAG ATGACTATACACATTAGCTG ACGCTTGATC ATTCATTGAGGAACCTTGTG GTTTCCACAA TTTTTCACTAAGCAGTCGGC ACATGATGTG TTAGTCAATCCCATATGGCA CTCAAATACT GTGTGCCGTACATATGGAAT AGGGAACTAA GAGAGTTACATACGGGAGAT CAATAAGGGC TCAGCAACAGGAGTGTCTTC AT362ACGATGTGCT CCCGGTCCCG AGTGTCTCGC14-3-3 like proteinSEQ ID N° 534GCAGTGTGTC ATCCTCAAAA CCAGCCTTGGGTAAAAATGA CAGGTAGGAT GACAATGTTATGTTATTGTT GGACTTGTGG GAAGTAGTTTGGTCCTTTGA ACTTTGTTGC CGGAAAAGCTATCTAAAGCA CTTTCTGATT TGGGCTTTCAGGACTTCAGG TCATTTATTC CGCCTTAT364aGATCTGTGGA AAAGGAAAGC TGGAGAAACTNADHSEQ ID N° 535TGCTGTGCTG TAATTTATGT ACAGTGCTATdehydrogenase-likeTTGGCTGCTC AACTAAGATT GTTTTGATTCproteinTCTCTTAGTC TTATGTTATC TTTTTTCTTGAAAATCCTTG CTTTTTCTTT CTTCTCTTGGAGTTGGGGGT CAATATCCTT TGTTTGTGGT GT364cGATCTGTGGA ATGCAATTGG TTCGTAATATB12D-like proteinSEQ ID N° 536CTGCGGCAAC CCTGAAGTCA GGGTGACCAAGGAAAACAGG GCAGCAGGGG TACTGGACAATTTTTCAGAA GGGGAGAAAT ATGCTGAGCATGCTCTTAGG AAGTTTGTCC CCTTCTGTAAAGTTAGCATT TTCTTCTGCT TCCCCGTTTTT365aGATCTGTCGA ACCAGAGTTG GAAATGGAGGputative proteinSEQ ID N° 537AAGAGGATGA TCCTTATCCT CCATCCACTGAt4g11570 [A.TGGCCGTTGA TGATGGTTTC TGGTAACATCthaliana]TCTGCAATGT ACAGTAGTTG TGCTTACTCAGGACTGATCG TCTAAGGACT TTTATGAGACATTCTCGTGT GTTACAATAC AAATATGACATCTTTGCCTT AT366cGATCTGTACA AGCAAGACTG GATTGGGAGAphospholipase DSEQ ID N° 538GGAGGACTAT GCGAATGATG TACACTGACATAATTCAAGC TCTAAAAGTA AAGGGAATTG TT367GATCTGTTCT TCAATATAAC AGAACGTCTTputative proteinSEQ ID N° 539TTTTCCTTAORF 1901[Nicotiana tabacumplastid]T368TAATGCTCTC TCTGCACATA CTGGTACATAputative glyoxalaseSEQ ID N° 540AATAATAATA TTACAAAAAA GGATTTTTACGGTATGTTTG GGTTGTTGGA AAAGGGGTCTAAATTTATGA GGGGTAAAAT CACTCTTTTTGCCGACAATA TCACTCAAAA ACAAATATCTATCATGTCCA AAGCTAAATT TTCCATCATCAGAGATTCCA CTTCTCGTGA GCAGTTCATATTTGCACCTC TGCTTCCATT TTCGTGAATGAAATTAGGCA TTGTT369GTAATATCTGCGGCAACCCTGAAGTCAGGGTGACCB12D proteinSEQ ID N° 541AAGGAAAACAGGGCAGCAGGGGTACTGGACAATTTTTCAGAACGGGAGAAATATGCTGAGCATGCTCTTAGGAAGTTTGTCCGAAACAAGTCTCCGGAGATTATGCCATCTATCAACGGCTTCTTTAGCGATCCAAAGTGAAGTTTGACATGGATTAT37GATCTCCAAG CCTAGCTCCA GCACCAGCACfasciclin-likeSEQ ID N° 542CAGGTCCCGA ATACACAAAC CTAACCGACTarabinogalactan-TACTCTCCGT TGCTGGCCCT TTCCACACATprotein 7TCCTTAT370aGAAAAAGGGA GAAAAAGACT ACACTTAGGAputative ankyrinSEQ ID N° 543GCACGTTATT CGCCTATTTG AAGCTAAAAAproteinCCTACCCCCA CATCTGAAAA GATCGGGAATCGAGGATATA TACAGATCT370bGATCTGTCAA AGGCCAAGTA TTTCACAGATputative acetone-SEQ ID N° 544GAAGGGTTTG GATCAGTGAA GAGAGTTTACcyanohydrin lyaseATTGTGTGCA CAGAGGATAA ATGGATACCAGAAGAATTCC AACGATGGCA AATTGACAAC AT372bTAATGCACCA CTAAACAAGC ATGATAGGAGputative 12-SEQ ID N° 545TACTTTCTAT ATGACAGATCoxophytodienoatereductase 2T372cGATCTGGAAA GGTGGGTGTA TTATCAGGGC6-phosphogluconateSEQ ID N° 546AGTGTTCTTG GATCGGATTAdehydrogenaseT39GGATCTCCAAC TGAAATGAAA TGAAGAGGAAmaturaseSEQ ID N° 547GACGATGAGT CCTGAGTAAT GTCAGGGGAGGAGGACTTGG GATCGCGTAA AACACAGACATCGCCATTGC AGACGAATTC GCCAGAGTCTGAGGACTCAG GTGAGAAGCA GCTACAGAAGTTGAACAAAG CCATAGTAGG AATTGAACCTAAGTAAATTA TATATCCCGA TCAAAGAGCTGACGAAAGGA ATGAGCAGAA CGTGGAGTGTAGTGGATATT ATTCGACTAA CGAAGACTCTTGGAATAGTT AGAGTAAAAA GTTCCCAAGAGAGCGTCTTT ATGGCGCGCG TCAATCACATACAACAAGGA TCAAGGGAGA TCACTACGCAGTCAAT401TAACACATAC ACACGCATAA CTCACGAAGTiron(III) ABCSEQ ID N° 548GGCACGTGTA AAAAAGAATT CCATCGAAGTtransporter-likeGTTCGAAATT CAAAGGACAC AAAAATCTCTproteinCTCTAAAAAT TCTTGAAAGA GCTGGTGGATGAAACAGATT CTCTTACAAA CACTTTCAATTCAGACGTAC GATAATTAGC GTGAAGACTTGAAAAGTAGC CACTGCAAAG GAAATGATCCCATTACTGTT AACAAAGGCA TATTCT402AGAAAAAGTCCGATCACCGGGCGAGGAGTCCGACphenylalanineSEQ ID N° 549AAAGAGTCCACACGCAATGTGCAATGGACAAATCAammonia lyaseTTGATCCAATGTTGGAGAGTCTCAAGAGCTGGAATGGTGCTCCTCTTCCTATCTGTTAGTTGTTTTGCTTGATTTCGCGCGGCGGGAACTTTTGTTAT404GATATTCTTGGTGGAGTTTTAGCTGCGTTATGATACfatty acid 9-SEQ ID N° 550TTTTGAAATTGAATTTGGAAAGCTCCTGCTTGGTTChydroperoxide lyaseTAAGGTGACTTTCAAGTCAGTAACCAAGGCAACGTCTTAT405aGATCTTAGGG CAGGGCATGA ACAAAGTCTAlipoic acid synthase-SEQ ID N° 551TCTGTGCTTAlike proteinT405bGATCTTAGAG TGTCTAGGGT TGGGCCAGGAputative proteinSEQ ID N° 552GGGTCTCTTAtRNA-Ile [Spinaciaoleracea]T406GGACCTGATACGGATACGACAGCCTTTTGGGAGTCputative proteinSEQ ID N° 553GGCGCAACATAGGCCCTTTGTTCTCCAAAACTATACAt2g36290 [A.TCTGGGGCTTGTTTAGTATTGGATTCAATGACTCTTthaliana]TGTTATTGTACAAATTTGAATATTTGTCAATATTATCAAATGATTGTTTAGTTGCTTTATTCAAGTAATGAATGGTTATGTGTTAT407GTTTGAAGATGAAACGTTTGATTTGGAATTTTCTCCputative proteinSEQ ID N° 554TGTTTTTGACCCCGCGCTTTATCCGGAGAAATATGTAt1g24480 [A.GTCGGAGATCGAACGGACGTTGAAGGCCGGAGGGthaliana]TTTGTGTTTTGCACGTGGCGTTATCTAGACGGGCTGATAAGTATTCGGCGAACGATTTGTACAGTGTTGAGCCGTTGAAGAAACTGTTTAT408GATCTTGAGT TCAATTCCAA AGCCATTTACuracil transporter-SEQ ID N° 555CATTATTTAC AACAATGCTT GGTTCTTTAGlike proteinCTTGTTTTTA GCAGGGGGAC TTTATTGTATTCTTTCATAT TTGAAGGGGA AAAAGAAAAATCAAAAGCAC GTAAATCCTT TGCTGCCTAATGCATCTTAG TGATGTCTCTT409aGCGCGAAACGCGCTATCTGTCGGGGTTCCCCCGAChemolysinSEQ ID N° 556CCTTAGGATCGACTAACCCATGTGCAAGTGCCGTTCACATGGAACCTTTCCCCTCTTCGGCCTTCAAGGTTCTCATTTGAATATTTGCTACTACCACCTAGATCT409bGATCTTGGCC TGTTGACAGA TTTAGCCGTTputative proteinSEQ ID N° 557TTTCATATAA ACTCCAATAG ATTTTCAGGCAt1g49490 [A.ACTATCCCAA AATCCTTTTC TAAGCTCCAAthaliana]CTTCTCTATG AACTTGACGT GAGTAACAATCTTTTGTGTG GTGAATTTCC TTCGGT409cGATCTTGGAC CCAGAAATAT GCCATGGGATubiquitinSEQ ID N° 558GAAAACATTT GGCTTTACTC CCATGAACATconjugating enzymeCGGGCCTTTA TGCTATAGTA GTAAATAAAAATAGGCGCGG AGCACAATTT TCTGATATTGGTGTCTTTTG TTATCTGACG TTGTGTCT410GAGAGAGCTAGAGCGTGGCGTGAAATGTATTTCTTberberine bridgeSEQ ID N° 559GCATAACTATGATAGGTTGGTTCenzymeT411cTCTTGACCAA GATTGACAGG CGTelongation factor-1SEQ ID N° 560alphaT414GATCTTGAAGACTTCTGTGCTTTCCTTTAGTGGCTThexamericSEQ ID N° 561TTGTTGTGCTCTGTGTTTApolyubiquitinT418TCTTCCTCTGTTGATGCTGTGGAGAGAGCTAGAGCGberberine bridgeSEQ ID N° 562TGGGGTGAAAAGTATTTCTTGCATAACTATGATAGenzymeGT419TGCAGCGATTGCTGGGTTTGAGGTAACTGTCTTGGcollagen-likeSEQ ID N° 563CTTAGTAATGCAATTAGTAGTGTCAGACCCTTGTACproteinTAGCTCCGGAACATGAATCTTATATGTATTTATTCAAAGAACATTGCGACAAATCTTTGTTATGAATTGTCTTTCTGTGCGTTGTATGTTTCCTTTGGGTGTATTTCGTACGAAGGAAATATTTTCCACGAAAAATATTTCCTAGAAAATAAATGGTTTGCTTAT420aGATCTTGCAC TGTAAACACA GTACTTTGGAputative proteinSEQ ID N° 564ATACAATTCA ACTTCTGTTT CCTAAAGAAAAt3g27330 [A.TAGAAGCAAG AAAAGCAGCT GGAGCTTTGAthaliana]ATAGTAGAGA AGCTCGACGC AAAAGTCCAGTAAGAGCTGC TACAGCTCAT TCTAACATCTCTAGCAGCAG AATT420bGATCTTGGCT GCAAGTGGGT CATTCTTGGTputativeSEQ ID N° 565CATTCGGAGA GGAGACATGT AATTGGAGAAtriosephosphateAATGATGAAT TTATCGGCAA GAGGGCTGGGisomeraseTATGCTTTGA GGCAAGGTGT TGGTGTTATAGCCTGTATTG GAGAGCT421TGTGTTAGGCTTGGCAAAGCCGAAACCCTTCCCAChigh-affinity nitrateSEQ ID N° 566AGCCATTGTGGCCATCCTCTTGTTCTCCCTTGGAGCtransporterTCAAGCTGCATGTGGCGCTACCTATGGTGTCATCCCTTTCGTGTCGCGAAGATGACTAGGCTTAT422cGATCTTGCCA TGGACGTAAT TATCAACAGCwound-inducedSEQ ID N° 567AGCCATATTG GGTCCTGWRKY-typetranscription factorT423TGACTGCGTAGTGATCTTGATGGTGAATTGACCTTGannexinSEQ ID N° 568AAACAAGTTGTTCAATGCCTTTGTTCACCTCAAGCCTACTTCAGCAACATATTGATCGCGTCCTTAT424aGATCTTGAAT ACTATTCGAA ATTCAGAAGAH+-transportingSEQ ID N° 569ACTGCGTGGA GGGGCTATTG AACAACTCGAATP synthase IAAAAGCTCGT TCTCGCTTAC GGAAAGTAGAAAGCGAAGCC GAGCAGTTTC GAGTGAATGGATACTCTGAA ATAGAACGAG AAAAATTGAATTTGATTAT424bACAGCTATGA CCATTAGGCC TATTTAGGTGauxin-inducedSEQ ID N° 570ACACTATAGA ACAAGTTTGT ACAAAAAAGCproteinAGGCTGGTAC CGGTCCGGAA TTCCCGGGATGAAATCACAA CAATGGCCAA AGAGGGAACAAAAGTGCCAA GAATCAAATT GGGTTCACAGGGGCTAGAAG TGTCAGCTCA AGGACTTGGTTGTATGGGTA TGTCCGCTTT TTATGGGCCGCCCAAACCCG AGCCCGATAT GATCCAACTCATTCACCATT CCATCAACTC TGGTGTCACCTTTCTTGATA CATCAGATGT GTATGGGCCCCACACCAATG AAATCCTACT TGGCAAGGCGTTGAAGGGAG GGGTGAGAGA ACGAGTTGAGTTAGCAACAA AATTTGGAGC TATTTTTGCAGATGGAAAGA TAAAAGTGTG TGGAGAGCCAGCCTATGTAA GGGCAGCATG CGAGGCTAGCTTAAAGCGAC TTGATGTTGA CTGCATTGACTTGTACTACC AGCACCGAAT TGATACACGCGTGCCTATTG AAGTCACGGT TGGAGAACTTAAGAAGCTGG TTGAAGAGGG TAAAATAAAATATATAGGTC TATCCGAGGC ATCAGCATCGACGATTAGAA GAGCACATGC AGTTCATCCAATAACAACAG TACAATTAGA ATGGTCTCTATGGTCTAGAG ATGTAGAGGA AGAAATAATCCCTACTTGCA GAGAACTCGG TATTGGGATTGTGGCATACA GTCCACTAGG ACGGGGATTTTTGTCATCCG GTCCAGAGCT GCTTGAAGATTTGTCAAGTG AAGATTTCCC AAAGCATCTCCCAAGGTTCC AGGCTGATAA TCTTGAGCATAACAAAATAT TATATGAAAG AATTTGTCAAATGGCGGCAA AGAAGGGATG TACGCCATCTCAACTAGCCT TGGCTTGGGT ACATCACCAAGGAAATGATG TGTGCCCCAT CCCAGGTACCACAAAGATCG AAAACCTCAA CCAAAACATTGGAGCTTTGT CAATTAAGTT AACAACAGAAGACATGGTGG AACTTGAATA CATTGCTTCAGCTGATGCAG TCAAAGGTGA AAGAGATGCTTCTGGTGCAA ATCACAAAAA CTCTGATACTCCACCATTGT CAACTTGGAA GGCTACGAGATAAGATTTTC GCGCACTTTC CACGTTACAATGTATCTGAA ACATGTTCTT GTTGGAAATAGTAAATATTA TAAAAGTTTA AACAAGTGTCTAGGCTCATT TGTACTGTCG AGTCATCCCAGAATATTCAC TAATCATTGT TCATATAACT TGT426bAGTGATCCTC AAGCATTAAT TTGCCACTTTheme oxygenaseSEQ ID N° 571TACAACACAT ACTTTGCGCA TTCAGCTGGAGGTCGCATGA TAGGAAGAAA GGTGGCTGAAAAAATACTCA ACAAGAAAGA GCTGGAATTCTGACTGCGTA GTGATCTTGG AGTGAATATGGACGACGACT ACTTACTGCG AAATGCTAGTAGTCGGTAAT TCTTCTTCCT CTGTTGATGCTGTGGAGAGA GCTAGAGCGT GGGGT426cGATCCGGGTC ACTTCCCTAC ATTGGGTGGCprobableSEQ ID N° 572AAGTGATGCT TTATTAGTGC TTTTCTCCCAtranscription factorCGTCCAAGAG GCAAATTGAC TGAAAAATAAT429cGATCTTCTAACAGTAAATGAAATATGTTGCGACAChelicase-like proteinSEQ ID N° 573ATTTAGAGAATCTGCAGAAAAAAGAGGGTTGTTACATTGTGATAACAACTTTGATTGAATGTATGTTAGAGGCTGCATGTTATCAAATGCCTTATAGTTTAT430CCTACATTGGTCCTCGCCATAACGTATTGGATGACAputative ABCSEQ ID N° 574GGGCTAAAGCCCCAACTCTAGCCATTCCTTTTGACAtransporterCTGCCCGGCCTGCTGAGCTATGTGATTGTTTCACAAGGCCTCCGGTTAGCCCTTGGCGCCTTGATCATGGATGCTAAACAAGCTTCAACTGTGGTCACTGTCACCATGCTAGCATTCGTTCTAACAGGAAGGTTCTACGTGCATAAAGTGCCAGCTTGTGTAGCTTGGATTAT431GACTGGAATGGCTGATCGTAAGATCGCAATGCCAGbeta-glucosidaseSEQ ID N° 575ATGCCATCCCGGATCGTCAGAGAGTGAACTTTTATClike proteinGTGGGCACCTTTCGGCAGTTCAAGAAGCCATAGAGCTCGGTGTGAAGATTAT432aGATCTGCAAA CAATGACTGG AAATCTCTTAphospholipase D-SEQ ID N° 576CTCAGGTAAA GGAGGTAGGA ATATATCTCGlike proteinCTGGTTGCTC AGATATAGCA AAAAAGGTTGAAATCTACTA TGACAACCTT TGGAAACTTGCCCACCTTGA TGTTCCAGCT TACACAAGATCAGTTTGGGA TTCACAGTGG CAGATTAT434AATACGACTC ACTATAGGGC GAATTGGGCCputative SGP1SEQ ID N° 577CGACGTCGCA TGCTCCCGGC CGCCATGACGmonomeric G-GCCGCGGGAA TTCGATTCTG ATCTCGGCGGproteinCGAATTTGCC CCAACTGCAG CAGCAGCTGCTATCTCTTCC TCTATCTTGT GTTTGTGTGCATGCTGTGGA TCAGTACCCC GTCTACGCAACTGCAGCAGC AGCTGCTATC TCGTCCTNTTGCTGACTGCG TAGTGATCTT CAAGTTCATTACAGCAAAGC TCTTCAATTT GCCATGGACATTGGAGCGTA ACCTTACCAT TGGAGAACCAATTATTATTT TTAGGTTTT436aGATCTTCACA GTAGCATCAG GTCATACTGAsubtilisin-likeSEQ ID N° 578CAGGTGGTTT TCCGGGACTC TGACACTGGGproteinaseAAGTGGTCTA AAGATTAT438cGATCTTCAAA TTTCTTTGAT TCTAAAGTAAN-SEQ ID N° 579TGAAAGAAGC ATTAhydroxycinnamoyl/benzoyltransferaseT439GATCTTTACG GGCCCTATTT ATTCTTCAAAacyl CoA reductaseSEQ ID N° 580GGAATATTTG ATGACATGAA CACAGAAAAATTACGTAGAG CAGCGAAGGA GGCTGGTATTGAAATAGACG TGTTCAATTT TGATCCCAAGAGCATCAACT GGGAGGATTA TTTTATGGACACTCACGTAC CTGGCGTTGT AAAATATGTA TTTAT440GATCTTGGAG TGAATATGGA CGACGACTACberberine bridgeSEQ ID N° 581TTACTGCGAA ATGCTAGTAG TCGTAATTCTenzymeTCTTCCTCTG TTGATGCTGT GGAGAGAGCTAGAGCGTGGG GTGAAATGTA TTTCCTGCATAACTATGATA GGTTGGTTAT441aGATCTATACC AGAAGGAGCT GTTGTATGTA60S ribosomalSEQ ID N° 582ATGTGGAGCA TAAAGTGGGA GATCGTGGTGprotein L2TTTTTGGTAG ATGCTCTGGT GATTATGCCATTGTGATCAG CCACAACCCT GATAATGGTACCACTAGGGT TAT442AAAACACCAATTGTCTGTAAACCTTCAGAAATCGCripening-relatedSEQ ID N° 583CATTGAACGCGCTTTAhydrolase-likeproteinT443CCTAAATCTATCAATATGGATGAAAGTTTGGGGGTcytochrome P450SEQ ID N° 584TACAGCGAGAAAACGCCACTCTTTGAAAGTAATAChydroxylaseCAAAAAAGGCTTGAGAACTTACGTATTTGAGTTTTCATAGTTATGTTTTGTGCATATTTTCTTACTTATATTTGGAGTAAACCAGTATTCCTGTTGTGTTATGAACAAGTTGTAGTGCTGCCTACTGGAGTTTGTGTTAT446aGATCTTTACA AGGCAGCCGG GGGATTCAAGreceptor like proteinSEQ ID N° 585GTCAGTGAAC TAATTGGAGT TGGAGGCTTTkinaseGGTGCTGTTT ATAAGGGTAT TTTGCCTACTAATGGAGCTG AGGTTGCGGT GAAGAGGATAGCAAGCAATT CTCTTCAAGG AATGAGAGAATTTGCAGCGG AGATTGAAAG CTTAGGCAGG TTAT446bCGACTGGGTAGGGATCTTTGAAGCCGCTAGCAATClipoxygenase ASEQ ID N° 586GAACTAAGTTTGCCACATCCAGATGGTGACCAATTTGGTGGCATTAGGAAAGTGTATACCCCAGCTGATCAAGGTGCCGAGGGCTCCATCTGGGAACTGGCTAAAGCTTATGTTGCAGGGAATGACTCAGGTGTTCATCAACTAATTAGTCATTGGTTAT447GATCTTTGCAAGGATTTCTGCAAAAGAGAAAGAATputative proteinSEQ ID N° 587AGAATTCAAGCAACTTCCCCATATCATCACTAGCTAt2g34600 [A.CTAACAATTATATTACTAATAATATGTGATGATCTTthaliana]CTATTTCTTTTTACTTTCATTATTTTACTTCTCCTAGTGTGGCTAT448GATCTTGGAGTGAATATGGACGACGACTACTTACTberberine bridgeSEQ ID N° 588GCGAACTGCTAGTAGTCGTAATTCTTCTTCCTCTGTenzymeTGATGCTGTGGAGAGAGCTAGAGCGTGGGGTGAAATGTATTTCTTGCATAACTATGATAGGTTGGTTAT449GATCTTTTCT GGCCAACTCG GGAACCTACAputative integralSEQ ID N° 589GCTTGCAGCA GCCTCTCTTG GCAATCAAGGmembrane proteinCATCCAATTA TTTGCTTATG GCCTTATGCTAGGAATGGGC AGTGCAGTGG AAACGCTTTGTGGCCAAGCA TATGGAGCTC ACAGATATGAAATGCTAGGA GTCTACCTGC AAAGAGCAACAGTAGTACTT TCCTTAT454GATCTGTGGA ATGCAATTGG TTCGTAATATB12D proteinSEQ ID N° 590CTGCGGCAAC CCTGAAGTCA GGGTGACCAAGGAAAACAGG GCAGCAGGGG TACTGGACAATTTTTCAGAA GGGGAGAAAT ATGCTGAGCATGCTCTTAGG AAGTTTGTCC GAAACAAGTCTCCGGAGATT ATGCCATCTA TCAACGGGTTCTTTAGCGAT CCAAAGTGAA GTTTGACATGGATTAT455AGTAATCCCA AAGTTTATCA ATCTAGCCATputative dTDP-D-SEQ ID N° 591GAGGGGGAAG CCTCTTCCTA TTCACGGAGAglucose 4,6-TGGTTCAAAT GTTAGAAGTT ATTTGTACTGdehydrataseTGAGGATGTT GATGCGGCTT TCGAGGTTGTTCTTCACCGA GGAGAGGTTG GTCATGTTTATAACATTGGA ACTAAGAAAG AGAGCAGGGTGATTGATGTT GCCAAAGAGC ACTACGCAGT CGT461AAGATTGCGA GAAGTCAAAG AACTGAGGTCputative 6-SEQ ID N° 592TTTTGATGTT TTCTTTTTAT TTGACCTAATphosphogluconateTGCCTAAGGT TCTTCCCGTC ATTGAATCTGdehydrogenaseGGAGGCTAGA TTCTGTAGTA TCTGTCATGTGGTCGCTCAA ATGTTGGAAC TTTACCTATATTGTTGTGAA GCCTATTTGT ATCTTTAT463aGATCTTAAGT TATAAGTACG TTTCTTTTATchaperone GrpESEQ ID N° 593TATTTTCTAT ATtype 2T463bGATCTCACCG GGAAAGTGCA CCAGCTGCCAputative proteinSEQ ID N° 594TGCTGTATCA AGTTCAAt2g39440 [A.thaliana]T464TAGCGGATAA CAATTTCACA CAGGAAACAGepimerase/dehySEQ ID N° 595CTATGACCAT TAGGCCTATT TAGGTGACACdratase-likeTATAGAACAA GTTTGTACAA AAAAGCAGGCproteinTGGTACCGGT CCGGAATTCC CGGGATCTCTTTCTAATCTC TCCGCTGCCT CACTTTTCTCCTCCAAATTT TTAGAGAATG GGAAGCTCAGGTGGCATGGA CTATGGTGCT TACACCTATGAGAATCTTGA GAGGGAACCT TACTGGCCAACCGAGAAGCT CCGTATTTCC ATTACTGGGGCCGGAGGATT TATTGCTTCC CACATTGCTCGTCGTTTGAA GAGCGAGGGC CACTACATAATTGCCTCCGA TTGGAAGAAG AATGAGCACATGACAGAAGA TATGTTCTGT CATGAGTTTCATCTTGTGGA TCTTAGGGTT ATGGATAATTGCTTGAAGGT TACAAAAGAT GTTGATCATGTCTTCAACCT TGCTGCTGAT ATGGGTGGCATGGGCTTCAT TCAGTCTAAC CATTCTGTTATTTTCTATAA CAACACTATG ATCAGTTTCAACATGATGGA AGCTGCTCGG ATTAATGGTGTCAAAAGGTT CTTCTATGCA TCTAGCGCTTGCATTTACCC CGAGTTCAAA CAACTTGAAACAAATGTCAG TTTGAAAGAA TCTGATGCATGGCCAGCAGA GCCTCAAGAT GCTTACGGCTTGGAGAAGCT TGCGACCGAA GAGTTGTGCAAGCATTACAA CAAAGATTTT GGAATTGAATGTTGTATTGG AAGGTTCCAT AACATCTATGGTCCATTTGG AACTTGGAAA GGTGGAAGGGAAAAAGCTCC TGCCGCGTTT TGTAGAAAAGCCCAAACTGC AGTAGATAAG TTTGAAATGTGGGGAGATGG ACTTCAACCA CGTTCATTCACCTTCATTGA TGAGTGTGTT GAAGGGGTTCTCAGATTGAC AGAGTCTGAC TTCCGGGAGCCAGTGAATAT TGGAAGTGAT GAGATGGTGAGCATGAATGA CATGGCTGAG ATGGTTATTAGCTTTGAGGA CAAGAAGCTT CCTGTCCACCACATTCCTGG CCCAGAAGGT GTTAGTGGTCGCAACTCAGA CAACACCCTT ATAAAAGAGAAGCTTGGTTG GGCTCCGACA ATGAGATTGAAGGATGGTTT GAGAATTACA TACTTCTGGATCAAGGAGCA GATCGAGAAA GAGAGATCTCAAGGAGTTAA TATTGCAAAT TATGGATCGTATAAGGTGGT GGGCACTCAA GCTCCAGTTGAACTCGGTTC CCTTCGTGCT GCTGATGGCAAGGAATAAGT TCATCCCTTC TATTAATTGGAAGCCAAATC ACTGCTATGA CATTGCTGCTTTATTAATAT GGTTGTCGTA GGTGAATGTGTTAAATTTTC AGTAATTGTT GGCTTTTCTTGGTTTTGAAT CTTGTAATTT AAGCCCCTTGGCTTGTGGGG GGGATGGTTG GATGCTTCAGCTGTATTTAT CAGTTGTTTG AGAAGATCTATATATGATAA TCCAATAATT GGCAAACT465TAATGGCAAA GGGATACAAC CAAAAGAAGGputativeSEQ ID N° 596GTATTGATTA TCAAGGAACA TTCTCATCCGretroelement polTGGTGAAGAT GGTTACTGTA AGAGGACTACpolyproteinGCAGTCAT8TAAACGTGGT GGATGTTTCT TATGGAGGAGputative polypeptideSEQ ID N° 597AGAATGGTTT CAATCAAGCA ATTGAGTTGTchain release factorCTGCTGAGAT CT9GCATCAGGAA CACACAAGAG AATACTGTATputative adenosineSEQ ID N° 598TACACAGGGT GCTGATCCAG TTGTTGTTGAkinaseTGAGGATGGG AAGGTGAAAT TGTTCCCAGTTATTCCTTTG CCAAAAGAGA AACTTGTTGACACCAACGGT GCTGGTGATG CATTTGTGGGAGGATTCCTT GCACAGTTAG TCCAAGGAAAACCTATTGCA GATTGTGTCA AAGCAGGGTGTTATGCATCG AATGTCATCA TCCAAAGGTCTGGTTGAACA TACCTTAAGA AGCCCGATTTTGAATCACGG ATATTTCCATC168TGCAAAATGT TTGCACCTGA AAGAACACATputative proteinSEQ ID N° 599TGTCCTTGAT GGATCAt3g52140 [A.thaliana]C187bTAATCACAAA GGGTTGCTCA TCATAACTAAputative proteinSEQ ID N° 600TAGCTATGCA GTGATTGAGA CAAAGAATGAP0469E09 [OryzaTGGATCsativa]C20TAATCCAAGT CCCTAGCATA AACACCAAACputative glutathioneSEQ ID N° 601CCCAAAAATA ATTCACAATT CTACAGATAAS-transferaseAAAAAAGGAC ATGACCAATT TATTTATCTATTACTAATCA ACAATTCTGT AGAACTCCATGACATACTTA TACAGCGCGT GCTTCATTCGCAGTTTCACC AATGGTTGAC AAACCGTTTTGAAATTCTAG GCCATAAAAC GGTTTTTGTAGTATTCAACC AGTCTCTTGG GATCC307TAAAGCAAAG ACGTGGTTAC TACAATCTACmetapyrocatechase-SEQ ID N° 602TTATGCATCA TAGAACTAAT GCATTCTCAAlike proteinAAGTGTATGG GGTCCTCGGA TCC427bTAAACAATAT TTGTAACATA AAAGTTTCATputative proteinSEQ ID N° 603CTGCTAAAAT TGTGTGGAAG TGAGTACAGTAt5g12080 [A.TTCTATTTGG AGGATCACthaliana]T108TAAACAGTGA TGATGATGAT GTGGGCATCTputative proteinSEQ ID N° 604CTGATGAAGA TGAAGAATAT TTCAGAAAGCP0698A04 [OryzaCTCAGGGCAA GCAAAAGAAT AGGGGTGGGCsativa]ATAGTGTAAA ATCTACCAGA GAAATTAGGTTTCTTGCTAC ATGTGCTCGA CGAAAAAGGGGTAGAACATC ATATGAAGAG GAAGAATCATCAGAACATGA TTTCTGAAAAT114aTAAAGTTAGA TGGAAACGAA CCTTTGCTTGguanine nucleotide-SEQ ID N° 605TAGCATTATG CATGGTAATA TTATATTGTTexchange-likeCACTACACGT TCCTGATGTA GACCCACCTTproteinCAAAAACGGG AGAGCGATCA TGTAGATCAATACGCAGTCT147bTAACAGCATG TTCATTTTCA ATAACTCCTGputative AthilaSEQ ID N° 606TAATGCCTAT TCAACAAATG AAGTTTGAGCretroelement proteinATCAGTTGTT TCAGTGGATG CAGATGCATCTTTAGCTTCC GATGTGCCAG TTGATGATTTTCCTGCACCA CCCGTAATAA ATTTGGTAATCAAATCTTCT AGATCT42TAATCATAAA GTTTTGAGGA AGCACCTCAAputative glucan 1,3-SEQ ID N° 607AAGATCAACT TGTAACAGCA TTGTGGAGAT Cbeta-glucosidaseT207aTAACGATGTC AAAAAATTTC TGTCGGAGACphosphatidylinositol-SEQ ID N° 608AGAATCAGAG ATCATAATCC TCGAGATCspecificphospholipase-likeproteinT325bTAAACGAGCA AAAGAATAAT AAGGGACTTAurdineSEQ ID N° 609GCATACTGGT AGCAAGAACC CCAGATCphosphorylase likeproteinT365bTAAGCCGTAC ATCAAATTGG TATATATTGGtranscription factorSEQ ID N° 610TCACTCACAA AAGACTTTCT GTACCCTAACrush 1 alfa likeCTTGCCAATG GAAGTGGGCA ATGGTAAATTproteinCGTGCGAGAA TCAAATTTCG ACAGATCMC311bGATCCGGAAC GAAGGCGATG AACCTGACTCputative bZIPSEQ ID N° 611GATCGGAATA TAATATCACC GCAAATGACCtranscriptionalTCGACTCTCA AATGGCGACC TTGACCGCGAactivatorAACTACAATG ATTCAAACTC GAAAAATGCTCAATGATGTT CAACCTGCTT TATTA










TABLE 2










Sequences with no homology












Seq

Anno-












code
SEQUENCE
tation
SEQ ID N°














C103
GATCCAAGATAGCCCTATAGGCGTCCGCATTCCCTGGCATCTC
No hit
SEQ ID N° 612




CCTCCATCCTTTCATCCTGTTTCATTTATGTAATTCAGAAACAG



GGTTGTATTTATTTTTGGACCTTGTTTGTAGTATTCCTAGACCG



TTTGTGAAGTTGTGACACCAGTTTTGGGTAGTATTTGTTTA





C110a
GATCCAAGTTGTAAACATTGTGGAAATGGAACATGTAATATAT
No hit
SEQ ID N° 613



ATAATGCTTA





C115
GATCCAAAGGTACGGCTTAGCAAAATTACAGACATGATCTCGC
No hit
SEQ ID N° 614



TTCACACATTTCCAGAGGCAACAGTAGAAGAAAGATACCATAT



TGGAGAGCTAAAGGTTTTATAAAAAGTTGAAGAAGGTTTATAT



TAGCCTCATCTACAATCCTGTTGCAGAGATCAACTAAGTGACT



TGAAATGCTTTTGTAGACCATTA





C117b
GATCCAACACGCAACTGTGAGTATTTTTGAAGAGCTCGAACAA
No hit
SEQ ID N° 615



TATAGAAATTAGAAGTT CACTTTATAT TTGATTA





C118a
GATCCAAGGAGGGTGGTGTAGCGCCTTCACGTCAAAAGACTA
No hit
SEQ ID N° 616



ATGAAGTTGTCATTA





C118b
GATCCAACAGCTCAACAATGAAAGAAACAAAGCAAAAGATAA
No hit
SEQ ID N° 617



TCTTTTTTTCATTA





C154
GATCCACGGCTATAGGTGATGACGATGGCATTGAGATACCTTC
No hit
SEQ ID N° 618



AGGTTTATTCGAAGGTAGAATCAGTCAAACGCA





C124a
GATCCACCACAACCCACATTTGATTTGATAGCTCAATCTAAAT
No hit
SEQ ID N° 619



TGGAAGCAATAGAGGTAATATTTAGGGAGCACCAGTTA





C155
GATCCACCAAAACCCTTGGCAACTTCGTTACTCAGGACTCATC
No hit
SEQ ID N° 620



ACACCAATCCATCCCGAACTTGGTGGTTA





C129a
GATCCACCATTTGGGAATTTGCTGCAATGTAGGGAAAAGAAAC
No hit
SEQ ID N° 621



AAAAATTGAAATGTCACACACTGACTGAGGTAATTACAAAATT



ATCATTGATCTTTACATTCAAAGTGGCTTA





C156a
CGACTGCGTAGTGCTCCACTTACCATAGTTTGAGCACGATAGA
No hit
SEQ ID N° 622



CATTCCGGGATCATCTAGTAAGGATCGCTCATTCAGGAGTTGC



TTA





C156b
GATCCACAAGACATGTTCACCACCAACCGGGTACATGTACCAC
No hit
SEQ ID N° 623



GATGTTTTGACAAAATGTTGTGATTTTTTTGCTTA





C156c
TTGGGCAGTAATACGCTAATCAGAGATTAAGCAGCATAAACAT
No hit
SEQ ID N° 624



ATGAGGCTGATATAGTTATTGTCGCCCACTTAGGGGAAGTTTA





C158
GATCCACAAA ATCAAACGGA CTATAACAAA TCCAAAACCC
No hit
SEQ ID N° 625



TAAGTTTTGAATCTGAAATT CGGGTATAAA AACCCTAGGG



ATAGCAAGAA ACGGGGA





C138a
GATCCAGACAAAACACCTTTGTTATGCTCAGGGTTGAGTAGTT
No hit
SEQ ID N° 626



TA





C138b
GATCCAGGTACCTCAGAGCGAGCTGGGCATTAGGTGACTGTTT
No hit
SEQ ID N° 627



A





C146
TGACTGCGTAGTGCTCCAGGGTACAGACGTACAGTCCTTATTC
No hit
SEQ ID N° 628



ATTCTTCACTTA





C147a
GATCCAGCACATGCAGAACAACTCATCCCATTA
No hit
SEQ ID N° 629





C171
GATCCATCCA AATGAGTCGG TGTTAGGAGA ATAGCTGATA
No hit
SEQ ID N° 630



TACTAACTGCCTTGAACTTTG CCTTCAGCTT GCAGCTCCTC



TGCATGTAGT GAGGAAGCTA ATGCAGCTCC ATTTCCATGA



ACCATAACAT TGTCACTTCG TGGGATGATATGTGCTTTGA



CCATGGTAGC ATGAGGGACA AAATTCTTCA TTGCGTTA





C179
GATCCCATTGTTGTCATAAGCGAGACAGAAGAAAAATATCAGT
No hit
SEQ ID N° 631



CTTTTGAGGATTGTCCTGGTTTATCT





C180a
GATCCATTACAACAGATAAATTGCAGTGTTCTGTTGGCTTA
No hit
SEQ ID N° 632





C181b
GATCCATATTCATGTATACAATACACTCATCTGGCCTTA
No hit
SEQ ID N° 633





C181c
GATCCATAGGAGGGAAAGTCTGATGCCAGCGCCGCCTTA
No hit
SEQ ID N° 634





C183b
GATCCATGAA AGCTAGGTTG AAGATTTGTA TCAAAAAGGG
No hit
SEQ ID N° 635



GGCATGATGAATTGAGCATA AAGTTTGCTG CTTCTTGCTG



ATGATAGGGG GGAGTGAGCTTTGGCTTGCG TTATTTGTCC



TAACTAGCCA ATGGTCTTCT GGTGGCTTCTGGTGATTGGC



TAAGTCAAAG CCATGGTAGA TTATTTGTTG



CTGGATTGTGCTAAGTGTGC AGTTGGAACA TGTACTGGAG



AAAAAACTTT GAGGTGTTGATTA





C184
GATCCATTGA ATTTCCAGAA GTGCCCTTAC AACAGCAACA
No hit
SEQ ID N° 636



GCAACTGCCCCTGTTGCATA AAGAACAACG GCAGCCATCT



GAGTCTTTGA GAGTAACAATTGAGGAAAAT GCTCCTATTA



TAGAAGAGGG CCCTGCATC





C185a
GATCCATTCAATTTGTGGAAGCTGTGGTATATTGGACGTTTATG
No hit
SEQ ID N° 637



AATGGTACGTTCCTTAGTTCTGCCTTA





C185b
GATCCATGGTTTTGTACTTCGTATGATTTTGAATTACATCTGCT
No hit
SEQ ID N° 638



GATTA





C187a
GATCCATAAAGTTACTTGATATGCCATCCTGTCCAGCTATAGA
No hit
SEQ ID N° 639



GGAGTATCAAATTGAAGCATTA





C187c
GATCCATGGC CATTATTTTC GCTGTATTAC ACATCCATCA
No hit
SEQ ID N° 640



ATAAAGGTCCGATTTCTCCG TATTA





C13
CACAAACAAA TAAAGCTATT GTCATTCATT ACTCGAAAAA
No hit
SEQ ID N° 641



GAAAGTACAA CATATCAAAG AGCGATGACA CAAATTATCA



GTGATCTCCT ACTGATTCAC AAACCAACTT GTGTTA





C14a
GATCCCAAAG TAAACAAGCT AGCCACAAAA AGTGCAATTC
No hit
SEQ ID N° 642



TTGATGTATA GCAGAAAACC CCTTGTTA





C14b
GATCCCACTGGAAGAAGCTGAGTTACTCAGGACTCATCAGGA
No hit
SEQ ID N° 643



GGTGTGGCTGTGTTA





C15a
GATCCCATGA ATTGTGCTGT GACTCAGGAC TCATCATCAT
No hit
SEQ ID N° 644



TGACAGCTGC TGTTA





C23a
GATCCCAATT GTAAGTTCAT GTAAATGTAC ATCATCGTTA
No hit
SEQ ID N° 645



TTTTTTTGCA GGTGCCAAAT TTTCACATAC AGCACCTTGC



CTCGTATCTT TTGTCTGATC TTATATTA





C29b
GATCCCCAACCGCCATGTTGACTTGAATCAAACAAAAAAAAAT
No hit
SEQ ID N° 646



TGAACAGTTACTAAGTACTTTATAGAGGGCGTTA





C32
TGACTGCGTA GTGATCCCCC ATTATGACCA AGTTTGGCAT
No hit
SEQ ID N° 647



ACATTGTAAC TGAGATATCA TACACTCACA TATTGAAGAG



TTATCCTTTT TTAGCTTCAT AAATTGATTC ATTTTGCTTA



CTCAGGACTC ATCGTCA





C33
GATCGACTGCGTAGTGATCCCCTCCTGCTGATGAAGTGACCGA
No hit
SEQ ID N° 648



AAATTGCTTAGTGGCATAGCGAAAAAGGCAAGGCGCTTA





C35
GATCCCCCAA AAATATACTA TTTTGATGGA TTCGTCACAT
No hit
SEQ ID N° 649



ACTAGTAATA TTTTTGAAGA ATTCGGGCAA CCTAGAGTAC



GAGTGTATTT GTCCATTA





C36
GATCCCCAAG TATACTCATG TATACGTGGA CGTCAAGTAA
No hit
SEQ ID N° 650



TAAAGTGACT CGAAAGTCAA ATGTCGAACC CACAGATACT



TACATTA





C237a
GATCCCGAAC ATTCGATTGG TGAGTTTATG CAGCAGATGT
No hit
SEQ ID N° 651



GTACAGTGTA CTTTGTTTA





C204a
GATCCCGGCCACTTTTTAGCTTA
No hit
SEQ ID N° 652





C204b
GATCCCGACCAAACTTATACTTATGAATTAGTCCCTTA
No hit
SEQ ID N° 653





C205a
GATCCCTAAC CTTGTATTAT GCGGCTGTGA CCCGGTTGAT
No hit
SEQ ID N° 654



ATTTATGACC ATTTCTAGTG TGATTCCGTG TTA





C205b
GATCCCTGAC CACCGAAAAC CAGCTCCCAT TCACCTCCGA
No hit
SEQ ID N° 655



TCTCACACGA AAACAGACCC CTTA





C205c
GATCCCTGGAGCTGCGAACACGCCTTATGCGTTCGGTCTATTC
No hit
SEQ ID N° 656



TCAGTCCTCCTTGTCGTCCTAGGCATCGTGCTCATTGCTGTTGG



CTTGCTATACCTCGGGTTA





C206
GATCCCTAGT AGGAATGCTT GTTTGCATCA CGTGCATTTG
No hit
SEQ ID N° 657



ACTTTGGGGA CTCAACACAG GGGTTGGGTT CGTCTAGGAC



AGGTGCACCC AAAATAACAG CTCCATCTTG A





C207a
GATCCCTAGT AGGAGCGCTT GTTTGTATCA CGTGCTTTTG
No hit
SEQ ID N° 658



ACTTAGGGAA CTCAACACAT GGGTTGGGTC CGTCTAGGAC



ATGTTTACCC GAAACAAAAG ACCATCCTGA TGCATCTTAC



CTGCTACGTG TGCATTTATT TGTTTCGGCT TGTTTGTTGA



CCGGTTA





C209
GATCCCTAGT AGGAACGTTT GCTTGCATCA TGTGCATTTG
No hit
SEQ ID N° 659



ACTTAGGGGA CTCAACACAG GGGTTGGGTC CGTCTAGGAC



AGGTGTACCC GAAATAAAGG CCATCTTCAT ACATCTTACC



TACTATGTGT GCATTTATTT CCGGC





C213a
GATCCCTTTC TCTCAGCTTT CTCCCCCCAA GTCTTGAAAT
No hit
SEQ ID N° 660



GGTTA





C216a
GATCCCTAGTAGGAACGTTTGTTGTATCACGTGCATTTGACTTA
No hit
SEQ ID N° 661



GGGGGCTCAACACAGGGGTTGAGTCCGTCTAGGACAAGTGTA



CCCAAAAATAAAAGACCATCCTGAGGTATCCTATGTGCTACAT



GCTGCAATCTTCAAGGGTGAAAAGGATCATTGGCGGATCAAT



GATGGTTA





C222
GATCCCTTTT GTAACGACCC ATCACGTGGT CGCCCCCTCA
No hit
SEQ ID N° 662



GGATAATGTC TATGCTTTCA AATGCTCTCT TTACTACTCC



GCCTTACTCA GGAC





C227b
GATCCCTAAG CTTTTCACTC ACGTTAGTGA TAGGTGTTTA
No hit
SEQ ID N° 663



GATAGAGTGA TTTGTGGTAG TTGAAGTTTG AGTTGAGGTT



ATTTGAGCAA TGACTCATGT GTGTTTCTCC TTTGTAAGTA



ATCTGCCTTG TTTGCTGCAG TTACATAGAA CTCACATTA





C229
GATCCCTTAC AAATGACCAG CTGGTTTCAG ATTACTCAGG
No hit
SEQ ID N° 664



ACTCATCATC ATTA





C231a
GATCCCTTAC AAATGACCAG CTGGTTTCAG ATTA
No hit
SEQ ID N° 665





C231b
GATCCCTAAT TATTGATGTT TTTTGTTGAT TA
No hit
SEQ ID N° 666





C231c
GATCCCTGGT CTGGGATTCT AGAAGTGCAT TA
No hit
SEQ ID N° 667





C302
ATAATAGCTGAACAAAGTGATAAAAATCTATGTATCATAAGCG
No hit
SEQ ID N° 668



GGGACTGCTCCTTTCAACTGGAGCTTTCACACCGCTGTATCTTC



TTCAACATGTTCTATTCCCCTATTGGTTATTATAGTCCTGTGAG



AAGCATTTTCCAGGAAATAGATCATGTTTTGCTTTA





C313b
GATCCGAGGG TAGTTTTTCG GTGTTTAGAT ACTCTATATA
No hit
SEQ ID N° 669



CTTGTTTCTC CAATCCCAAG AGAAGATCGT TCGAGTTCAA



CAGTCAGGCG TCCACCTGCA GAATGCGAGT CAACAGTCCA



AGGTTATCAA CAGAAGTTAG TCACAATAAA GAAAAAGAGA



GACAGGCAAG AAGTAAATCC AAATGCAGAA GTTGATGAAA



GATGTGAACT GCTTA





C314a
GATCCTGAAACTGGATATCGACTGATAAATTATCATCAACGTT
No hit
SEQ ID N° 670



TTTGCTTGTGTACCATTTCTTTTCCGTAAAAGACATACTGCTTA



GTTTTTATGGTCCTACATTCACTGGGGCATAGCGGCAGACTCC



CTTA





C315
ACGGGGTAGCCTGATAGAGAAGGGACCGCTCTTAGAGGGATG
No hit
SEQ ID N° 671



ACCAGGGAAGCTTATGCCCTTA





C317
ACACATGCTCAAAGGAAAGGCGCGACCCCAGCGAATACCGAT
No hit
SEQ ID N° 672



GGAGTTTCTGCGCTCCAATGCACTCTAAGGACGTGGAAACTCC



ATGCTCGGGTATGGGCGAGTCTTGCATTACTCACAGACTCATC



GGCACCATTA





C318
GAGAGATTGGAGGTCAACTTCGTCAGATAATCACGAGGAAAG
No hit
SEQ ID N° 673



ACCAGCAACTACAAGAGACACAAATAGGTCATCAAGACGCAT



GCCTAGCTCCTTCTTGTTCAGGCATTA





C321a
CGACTGCGTAGTGCTCCGAATTGGAGTATTTTTTTGCTAAGTTT
No hit
SEQ ID N° 674



TTCTTTGGGTCAGAGCTTGTTGTCGCATTA





C321b
GATCCGATAG TAAAACCAAA TTACTCAGGA CTCATCGTCA
No hit
SEQ ID N° 675



TTA





C321c
GATCCGAATTGAAGTATTTTTTTGCTAAGTTTTTCTTTGGGTCA
No hit
SEQ ID N° 676



GTGCTTGTTGTCGCATTA





C342
TTGAATACAAAATCAAGTAGCCGAAGGCTTTAATTGTGAGCCG
No hit
SEQ ID N° 677



GTCAAGTTCAGCAATACTCAGCTGCGCAAAGCCGTAGAGTGG



ATCAAAATGCAACAATTTCCAGTACTACAGAACAATTATTTCC



TGTACCTTCATTTA





C343
GATCCGCCTC TGGATCTAAG TGGATATGTA CCACTCCCTT
No hit
SEQ ID N° 678



TACTAGGCAG AACCAAATTC TTCGCTAGCT GATAACTGGT



CTCATTGTAT TTCCTCTTTA A





C344
TGTCGTTCCCCTTCATGTGGTTTCTGGGAGCCTATCTTGATCTT
No hit
SEQ ID N° 679



TA





C347c
GATCCGCCCTGGCCTGTAAGACTGAAACTACTTTTTGACCTAC
No hit
SEQ ID N° 680



CGAGTAGAAGTCAAGTATCTAACGTACTAAACCCTCTTGTCAG



TTTTTTCCTCGTTATTGATTCTCTTGTATGAACAGGACACTATA



GACGCCAGTCCCAGTGATTTGATTTTCGACGCAAATCCAGCTC



CACATATTGATCAAAATGGCATGGAGCTTCAAGAACTGAACAC



CAGGCCTCATCTTGTTA





C352a
GATCCGCGAG AATGCTGCTG CTTGTTAGTG TCTGTTTGTG
No hit
SEQ ID N° 681



ATTTGCATAG CTTTTGATAT CTTATCTTAT TGGTACCTGA



CCATTAGTCT TA





C355b
GATCCGCAAG TATACTCATG TATACGTGGA CGTCAAGTAA
No hit
SEQ ID N° 682



TAAAGTGACT CGAAAGTCCA ATGTCGAACC CACAGATACT



TACATTA





C356c
GATCCCAAGAGTAGCTGCCTTTTAGACGGTGTGATCTAATCGT
No hit
SEQ ID N° 683



GTGTTTGACTCTATTATGATACCTTCATCTGCTGCATTA





C357a
GATCCGCCTG GCTCCAAAGC AGAATTTTTG TTGAATCGGT
No hit
SEQ ID N° 684



TGTATGCTGT TGTCCGCATT A





C357b
GATCCGCCCCTGCATTCGTGTCAAGTTTCTAAAGCGAGTTTTCA
No hit
SEQ ID N° 685



AATAATTGCTCTGGTATTA





C335a
GATCCGTCCCTATCCCTGCCTAGTCTATTTCTTTCCTGGATACT
No hit
SEQ ID N° 686



GCATTTA





C335b
GATCCGTGGT TATGCCTCCA CACCTTCTGA AGTAAAAGGT
No hit
SEQ ID N° 687



CCCTGTTTTA





C337
GAAAGGATCACGGATTGGAGCTGTGTCTATCTTGTTATAAGGA
No hit
SEQ ID N° 688



TTGTGTTGTAATAAATAAGTTCACATGGTTA





C340
GGCCCTTCTTCTTGCTATTTTATTGTTAGCTGATATTGCTGCTTT
No hit
SEQ ID N° 689



GATTGGCTTTCTAAAAATTGTAAAATGCATATTCACGCTCGAA



TTTTCAGAGATGTATTTTGGGTGATTGCTTTGTTTATTTTGAGA



AGTAGAGATATTGAATTCCACCTTA





C368a
AACCGGAGATGAATCAACGACGAACTTTGATTGTCCACAAATT
No hit
SEQ ID N° 690



TGTCCGAGAACGAATCTCTCACCAAGATAACTTGACGTCGAAA



ACGACTACGAACGGACGACCAAAGAAGGTGGTCGTTTGGCAT



CGTTTA





C405
ATCCTTTCCTTTTTGTTCGCGTCATGTTTCAACCGAGCCTAATA
No hit
SEQ ID N° 691



GTTCTAGGATTCGGTTCTTCTTTCATTAGTTCCCCAAAAATCTG



AATTTTACTACTAAGAACTTCATACGAGTTGGTTTA





C406
GATCCTATTC GTACGTTTTT TTGAAGCCAT AGTACCAGAA
No hit
SEQ ID N° 692



TCTATTGTCA TAGGTTTTTT GAGTTTGTTT TTCTTTTATT



GCTGTTAGAA TCATATGTTC GGGTGTGACT AAGATAACTG



CTTAGTGTCT TTTA





C411a
GATCCTAGAG AGAGAAAGAG AAAGAGATAG CAGTTGAGTA
No hit
SEQ ID N° 693



AAGGAGAGAG TCCTGTTTGT TGAAGCTGTA ATGTAAAACG



CGTTCTCCCC CTTCCCGCTC TGCTGGTTA





C411b
CGCGTTGGGAGCTCTCCCTATGGTCGACCTGCAGGCGGCCGCG
No hit
SEQ ID N° 694



AATTCACTAGTGATATCGAATTCCCGCCGCCGCCATGGCGGCC



GGGAGCATGCGACGTCGGGCCCCATTCGCCCTATAGTGAGTCG



TATTAA





C414a
GATCCTGGTGTATACGCTTCACCTCGTCCAAGATACTACTGATT
No hit
SEQ ID N° 695



GTGGAAAGTGCATGAAAGTCAAAAACACTACTATTTGATACTC



ACTTGTATTGTTTTACTATAGAATCAAATGGTGTTAGTATGAAG



TGAGGGGCTGCTTA





C414b
GATCCTAACA CAAAGATTTC GTGATGGTTT TGACCTATGC
No hit
SEQ ID N° 696



TCGCAACCTT AGACCTCAAC CTCATTGACT CTTATCATCA



GTGTATTGTG TTGTACAAGT ATGTGATTCT ATTATCACAA



ATGTGTTTCA GTTTCTCCTT TTGCTTA





C415
TATATTGGGC ATTGGGTCGC ATGTTGCAGG CTGCCATGCC
No hit
SEQ ID N° 697



CCATGGCTTC GGTGTGTAGT GATCAGAATT CATATTAGGT



CTCAACAATG TGCAGCCTGC TATGTAGCCA CAAATGACTT



ATAGCCGCCT TA





C416
AAGCTCGGTGTGAGAGCATACACTGGTGCTCATTACTATGTAC
No hit
SEQ ID N° 698



TCTGGCTTA





C417b
ACTAGTGATTGATGACCCCTGAGTAAGGCGCTTTCAGTGAGAT
No hit
SEQ ID N° 699



TCAACAATTAGGACTAAGCGTTACACTCTAGGATCACTACGCA



GTCAATCCCGCG





C427a
GATCCTCAAG CGAATGGGGT CTTCTTGTTG TTTACAAGAG
No hit
SEQ ID N° 700



TAAGGGCCCA GAACTTTTTA GCCACCATAG TTGTTTA





C428c
GATCCTCCAAGCAAAATAATTGAAAAGGAGGTGGTAGCTGGT
No hit
SEQ ID N° 701



CCATCCTTTA





C433a
GATCCTCAAAGTTTATGTGTTGTTTATTTATATCATTTTTTCTCG
No hit
SEQ ID N° 702



ATAGTTA





C434b
GATCCTCATTCATGGAATGGCTTGTTTCTGAGCAATTTGTTGCT
No hit
SEQ ID N° 703



GTACCCACTTCACCGCTTGCAAAAGACATGAGCCTGTTGGAAA



AAATTTACGATTCTATCCTTGTGATGGTGAAAGTATTCATTTAT



GATAAATCTACCACTTTTGATTGAATTTCACGATCCAAAATAA



AGGATGGTGTTGCATACTATAAGATTTTAGTTTGGAGATCGGT



TTCCCTATTGATCTTA





C435a
GATCCTACAT GAACGTGAAA TGCATTGTAC GTAAGGCTGC
No hit
SEQ ID N° 704



CATTTTTTTT TACTTTCTTG TGAACCTACT AGGAAGTTGG



TTGTGGACTT TATAATATGA TTCCAAGAAG ATAATACTGT



TGAAAGCAGC GGGGGAAGAT CTACCAAGCA ATGCATAACA



AGAAAAGGTG CCTTA





C437
GATCCTGTCCTGATGAAAAGTCATTGGGAATAGTTCCATGTAC
No hit
SEQ ID N° 705



AATTGGCAATTTGGAGCACAATGAACTGGATTCATGTACTAGT



TCTGTTTCGGCCTTA





C440
GATCCTGATA AACCAACATT ATCGTAGAGA ATTTTTCTCT
No hit
SEQ ID N° 706



GTTTCTCCCT CTGAAGAACT TGCTTA





C451b
GATCCTGGTG TATACGCTCC ACCTCGTCCA AGATACTACT
No hit
SEQ ID N° 707



GATTGTGGAA AGTGCATGAA AGTCAAAAAC ACTACTATTT



GATACTCACT TGTATTGTTT TACTATAGAA TCAAATGGTG



TTAGTATGAA GTGAGGGGCT GCTTTA





C463b
GATCCTGCTTTCCACTAAAAGCTTGTGAACTTTTGGCCTAAACT
No hit
SEQ ID N° 708



CTTTGTTGCTCAATGATATCATCTGCTTA





C468
CGACTGCGTAGTGATCCTGCAGTTGATCCTATTGCTTATACAA
No hit
SEQ ID N° 709



GCCTTGTTTTTACTGTCACTTTCTTTGCGGGTACATTCCAAGCT



GCATTTGGCCTATTA





C470a
GATCCTTGCATGTTAGTTTACAATATTCTCAAATTACTCAGATG
No hit
SEQ ID N° 710



TAGTTTACTTTTTCTGTTTCTTTTTCCTCTAGTAAGTATATAAGT



TATTTGTTGGAATAAACTCTAGAATGCTTGCTTCTTTATGGCAT



ATATTAGCACCTACTTTA





C470b
TAAACCCAAA ATTGAAAACC AGCTGACACT ACTCGAGTTT
No hit
SEQ ID N° 711



TTTGTTTTTT TGTTTTCTAG TTTTGAATAT CCTATCAGTA



TGTGTATTTT CAGTATTTTT GATGCAGAGA AAATGAGTTT



TCAAAATCTG GTTTTCTAGT GAAGGAAGGA TC





C473
GATACAACGTGATATATTGACAGAATTGTGTTTCGGTTATCAT
No hit
SEQ ID N° 712



ATAAACATTATATAGGTTCTGCTTA





T114b
GATCTACCG TGTGTGCTTC TTAGCCTATT GAAAATCGGA
No hit
SEQ ID N° 713



TTGCATTTTG CTCTAGGCTT ATGATCTTGT TTTAGCTTGC



TCCTATTGGT GTTTATTTTT TACTATGTTT TATGTATTA





T117b
GATCAACCAT GTGTGATTCT CAGTAAATCC GATTGCATAA
No hit
SEQ ID N° 714



TATATTTTGG ATAGTTTA





T120
AGTTTGCTTTACGAGATTTCCTAGTTATTATCCTTTGAGTCTGT
No hit
SEQ ID N° 715



TGTTCTTTTTTATATCGACTTTTACCTTCTAGTTTTGCACAACAA



TGTCTAGCTTTTTTTGTTATTGCCCTTTCTATTTTGTATTTGAAA



AGGTGTGTTA





T125a
GATCTACCAACTCGGGGGTTTATTTACTGTCATTCGTTACTCAT
No hit
SEQ ID N° 716



GACTCATCA





T125b
GATCTACCAACTCGGAGGTTTATTTACTGTCATTCGTTACTCAG
No hit
SEQ ID N° 717



GACTCATCA





T131
GATCTACCGTGTGTGCTTCTTAGCCTATTAAAAATCGGATTGCA
No hit
SEQ ID N° 718



TTTTGCTCTAGGCTTA





T136
ACTAGTGATTGACTGCGTAGTGATCTACGTTGCGTTTGGTTGG
No hit
SEQ ID N° 719



ATGAAAATAGTTGTGGCATACACTTTCTTTTCATGATTTTGGAT



TA





T138a
GATCTACAAA CTTGCAGAGG TGAGAGCAAC ATGGATTTAT
No hit
SEQ ID N° 720



CCTTTTCCTT GGATTATTTA





T138b
GATCTACAAA CTTGCAGAGG TGAGAGCACC ATGGATTTAT
No hit
SEQ ID N° 721



CCTTTTCCTT GGATTATTA





T141b
GATCTAGTAT GTAATTTCTC TAGTACCATA TTTGCGATTT
No hit
SEQ ID N° 722



TCCCATTATC TTTGTTTGTA GTCTGTATAT TATAGTAAGA



AATTGAATAA CAAAAGACAT AGAAA





T149b
GATCTAGAAATATATACCTTGGAGTTTCAGAGCTAACACACGC
No hit
SEQ ID N° 723



AGAATTGGGGTTGTAAATAGTGCAAGTAGCAAATCTGTAATAA



TTGTTTAGTGTACTCATCACCCTTCTGCTAGTTCAAAGTGGCTC



AGTTCAATACAAATTCAAAACTTTTGTTA





T160a
GATCTGATAT TGCAGGTTTA GCCAAATCAT GGTCTCTCTT
No hit
SEQ ID N° 724



GGGCTGGCTG GAGTCCTCCG ACCTAGATNA AGTCCCTGAC



TGCGTAGTGA TCTAGGGCGG GTTCTGTTGA TGTGTACATA



TAATAAGATC ACGTCTAGAT TATGGATTCT CTTTGAGGAT



AAGTTTTACT TTTTGTTCCT ACCTTTTTGT AGTAA





T169
AATTGGTGGACAGTATTATAGGCTCAAATATAGGCGAATGCCT
No hit
SEQ ID N° 725



TCGAGCCCCCAACTGCACTGAAAGTCAGAACAATGACTTCAAA



GGCACCCCTTGGAACTATATACAACATGTGCAATGCAAACTTG



TGTTTGAGTGTGAAATACCATGGATGCAAGTTATCTTTTGAGCT



TACTCTTCTATTTCATTCATTTCTGTAATGTCCTGAATACAATCT



TATATTCTGCCTAGTAGAGAAGCCCTTCCTCCCCTCTCTTATGT



TGTTA





T173
CGATACTCCAGCAAAGAAGAGAAAAAGCCAGTTTTGGCATCA
No hit
SEQ ID N° 726



AGGGTTCAAATCGAAGTTCCAAGAGTAGTATTTTTCCTCAGAT



AACTACTGATAGTGATCTTTGGGTGGAGGCTCATATTTAGAGG



GATATCTTTATCTAGCACAACTGGATGTCACACTGATAGTGAT



CTTTCTTGGGTTGTTCTTGTGGAGGAAATTCACCTTGCGATTC



CTTA





T174
GGTTCATACAGTCCAAGACTTATGTGATCTAAATCCAGAATCG
No hit
SEQ ID N° 727



TAGTAGCTGATTCAAAGTCGCGTGAACAACTTCTTCCATGCTC



CCAGACTGTACAGAAACTGTTGCAGACCTTCACCTTA





T177b
GTGCTCTATCCCCACAAAATTCCATTTTTCTTCACCTTAGCTTC
No hit
SEQ ID N° 728



TTTATTTTGGCCGTAGAAACCAGTAGCTCATAGCTATGTGAAC



CCTCTTCCCTTACCACCTTA





T7
GATCTCACCC GGTGCTGCTC CAAGGCAACT CAATAATCAA
No hit
SEQ ID N° 729



AGAAGAAAAT GAAGTGGTCC TCTTGCTGGA AATACAATTA



CTGTCGTTTC GATTTA





T10
GATCTCATCT CAACAGCGGA CATGAACAAG CACATACTTT
No hit
SEQ ID N° 730



GCCCTAATAT TGAAGTGGAC AGTTGGTTA





T26
GATCTCCATC GATCGAGTCA GAAAGATCAT TGTACATGTG
No hit
SEQ ID N° 731



CCAATTAGTA ACCAGTGTTT AGATCAACTA TGGTGTTATT



TTTGGGTCTT ATGTTGAATA ATTATTTGAA GCTTTAGTAC



ATTTGATGTT GTAATTGTGG AGTACTTGTA TTTTTTATAC



AATATCTTTT ATGTTTA





T31
GATCTCCTACAGTCCTTGCACGTTTATCTTTTTGTTTCTTCTTTT
No hit
SEQ ID N° 732



TGGGATTTA





T34
GATCTCCTCCAAAATCCTTGTAAGAAATAATGCTACAAGCTTA
No hit
SEQ ID N° 733



TGAATCCATTTTCTGGTTA





T40
GATATTAAAATGAGGAGATTTACCACTCTCTTGACTATGTATA
No hit
SEQ ID N° 734



CTAATGAAATTATCTCCATATTGAATGGGGATGTAATACCTTT



GTCTCTTGATTACTCAAGACTTAT





T202
GATCTCGGCA TGTATCAAGT CAAGACCGGT TGATTAGCCA
No hit
SEQ ID N° 735



ATCAGGAGAT TTCCTTCTGT ATTTA





T206b
GATCTCGGAG TGAATATGGA CGACGACTAC TTACTGCGAA
No hit
SEQ ID N° 736



ATGCTAGTAG TCGTAATTCT TCTTCCTCTG TTGATGCTGT



GGAGAGAGCT AGAGCGTGGG GTGAAATGTA TTTC





T209
GCTTGAAGACTAACTTGGAAACCATGCTTTCGCCCTCTAACCC
No hit
SEQ ID N° 737



AGCTTTTAACCAAAACTGTCTGGAACAGCTGCTTTCAAGCATC



AAGAATTGATGATGCCCCCCTTAGGACAGCAACTGGGCCCCCG



GTAAATGGAACGGGCTGGAAAGAAACAACAATAGCAACTCCT



TCTAAAACCCCAGGGAAAGGGGAGATAGAAAGACTATTCACT



ACAGCGGAGAGAGTCTATTTGATGGTAAGAGCTATAGGAGCC



CTACTTA





T218a
GATCTCTGGT TCAAACTAGA TTCTGGTTCA ATTTTGGTTC
No hit
SEQ ID N° 738



GCTTTA





T218b
GATCTCTTGAGAGAGAAGTCGTATGGTCAGTGATTTCCAGTTA
No hit
SEQ ID N° 739



GTTTA





T219
GATCTCTAGT AGGAACGTTT GCTTGCATCA TGTGCATTTA
No hit
SEQ ID N° 740





T223
TTCTCCTTATCATCACTAGTTTAGTTCCATTTGTACATACCTTTT
No hit
SEQ ID N° 741



GTAATTCGCGGGGAGAAAATTGGATAGGTGGATTACTAAGCAT



AACACTACTGTATCACTTA





T224
ACACATTGTTCGGAGCCCAATTGCTGTGAGATTCCTCTTTTTCT
No hit
SEQ ID N° 742



AGAAAAAGGAAATGATGGCGCTAATCTCAGCGACATGCTGAT



TTTTCATTTGTAATAAAACATTTTCACATCATTTTTGCTTA





T229b
AGTTGGACGATGGGTTGAAGACGAAAGCAGCGGCGTGTGGAC
No hit
SEQ ID N° 743



TTTGGATGTTCACTGAATGACGAGGCAGCAGCTGCTCGTCGAC



TTAGGGATTGTCTGGAGAAGATGACTAACGGGGGGGGTCGTTT



TTGTGCTAGAGATCACTACGCAGTCAGGAAGTGACTGACCCC





T230
GTGATCTCTCTTGAAATCTATAATGAGACGTTGACAGAAATAA
No hit
SEQ ID N° 744



GCAATAGATGTGTTATGAGATGTGTTTTCCGCTCTCATTA





T231
GATCTCTATT GAATATGGAA TTGAAGATAT GATTTGTTCT
No hit
SEQ ID N° 745



TGTTGTATTT ATGTCCAGAT TTCGTGTATT A





T303a
ACTAGTGATTGACTGCGTAGTGATCTGATTCAAGAGCGAGGAC
No hit
SEQ ID N° 746



TGCTGACTTCGTCTTGCTTTTGGTCCATTCAACTCGTTTA





T304b
GATCTGAGGTTGCTGATTTAGATTATGATGACTTTGAGGCTGA
No hit
SEQ ID N° 747



CTTTCAGGTCTTTA





T306
GATCTGATAACAGGGTTGGGCTAAAAGAAGCCAAACAGTTGTT
No hit
SEQ ID N° 748



GATGGCTTAGCTAGAATATAGGTTATTGAAAGTTT





T307a
GATCTAGGTG CTTCTGGATA ATCTACACGA ACTTCTGGTT A
No hit
SEQ ID N° 749





T307b
TGACTGCGTATTGATCTGAGCAAGCAGTACAGTACAATGATTG
No hit
SEQ ID N° 750



GAATATTGTTA





T307c
GATCTGATGC TGAGAAATGA GACGGGGTCG TTTGGTAGTT A
No hit
SEQ ID N° 751





T308a
GATCTGATAT TGCAGGTTTA GCCAAATCAT GGTCTCTCTT
No hit
SEQ ID N° 752



GGGCTGGCTG GAGTCCTCCG ACCTAGATGA AGTCCCTTCT



GATAACGGAG TTGGTGTTCC TGCTTGTGCC ACGGAGCAAG



GACTAGACTG ATCAATTGCA TTAGTGGATT CAAAAATTTC



GATCTCACTG ACTGAATCAA GAAGCATGTC AAGCT





T310a
GATCTGACTA CTCTGGATTC ATTACTAGTA ATATGATTT
No hit
SEQ ID N° 753





T310b
GATCTGACTA CTCTGGATTC ATTACTAGTA ATTGATTTT
No hit
SEQ ID N° 754



GTATTGAAAC CAGAGAGA





T313b
GATCTGATTCATGTTCCCACATGATACGTAGGCAACCCACATC
No hit
SEQ ID N° 755



AGGTTCGATCACCATTA





T315c
GATCTGGCCG GCTAAACTAA TATTGGCGCC ACCACTTCCT
No hit
SEQ ID N° 756



CAAACTTTAT CTTCTCTGTT ATTGGCCAGA AGAGAGAGAC



CTGGCTGGAT TTTTACTCTT TCTGGCAGTC TTTGTGATTT



TCTCTCTATG ATTCGCTGGA GAATATATTT TTCCAGTGAC



CTTTTGTGCA TGATATTTA





T316a
GATCTAGCAT CCAATGGACC AAGTTCTCTG GTGACAGCCA
No hit
SEQ ID N° 757



ATTATTGTGA ACGCTTCTTC TGGTTGAGTT GCTGGTTATA



CTAGGTAGTT CTCTGTATAC CAGCTCCTTG TTA





T316b
GATCTATGTG GCTATGATTT TTGCTTAGTA GTTGAATTGT
No hit
SEQ ID N° 758



ATTATTTTCA TTCTGCAATC AAGTACTGCT ATCTTTTATT



TCTCGGTTTT CATCAAATGT TTGCTCTTCC TTA





T317a
GATCTCATGA ATGCATAGTA GAATACTGTT GTCTTTGCTT
No hit
SEQ ID N° 759



ATGTTA





T317b
GATCTGGGGT TCGCAGCAAC TTTTGAAGAA GAAGAAACTT
No hit
SEQ ID N° 760



AGGTTTA





T322b
GATCTAGGAGTTTGTCATCTAAGTAAATCAGTTTTGTATCCTTG
No hit
SEQ ID N° 761



ATTTTTGCCATACAGAGAGACCAGGGTAAAATGCGCTTA





T322c
GATCTGTGTGCCTAATGATTTTTGCCTAGTAGATGGATTATATT
No hit
SEQ ID N° 762



ATTTTCATTCTGCAATCAAGTAATACCTATCTTTTATTA





T324b
GATCTGGTGG CTATTCTTCC TCAAGGTCCT CGATTA
No hit
SEQ ID N° 763





T324c
GATCTACGAA ACGGTGTGTT GTATTCTTGT TCATTA
No hit
SEQ ID N° 764





T325a
GATCTGGTAA CGGATTTGGC TCCGTTGGAG TCGGACAAAA
No hit
SEQ ID N° 765



ACACTCTCAG CTTTA





T326a
GATCTGGGCA TGAGGTTCGC AAGCATGTCA TGTTATTGAA
No hit
SEQ ID N° 766



ATCTGCATTT A





T326b
GATCTGGGCA TGAAGTCTTC AAGCATGTCA TGTTATTGAA
No hit
SEQ ID N° 767



ATCTGCATTT A





T332a
GATCTGGGTC TGTCAATGAA GAAGAAGAGC TTAGGGCATG
No hit
SEQ ID N° 768



TGTGAGGTGA AGTTTCATTT ATGGCTATTG CGTAGTGAAG



GGAGGTCCGA CGATGGAGTT TTGGTGGTGA GGGTGCGGCT



GGTGTGAAGA TGGAGCTAGG TTCTAGGTTT TTTTTGGTGT TA





T333a
GATCTGGGTC TGTCAATGAA GAAGAAGAGC TTAGGGCATG
No hit
SEQ ID N° 769



TGTGAGGTGA AGTTTCATTT ATGGCTATTG CGTAGTGAAG



GGAGGTCCGA CGATGGAGTT TTGGTGGTGA GGGTGCGGCT



GGTATGGAGA TGGAGCTAGG T





T333c
GATCTGATCC AGCAGTTGAT CTAGCATTTC ATATTCAGTG
No hit
SEQ ID N° 770



TAATGACTGC GTAGTGATCT GGGTCTGTCA ATGAAGAAGA



AGAGCTTAGG GCATGTGTGA GGTGAAGTTT CATTTATGGC



TATTGCGTAG TGAAGGGAGG TCCGACTATG CAGTTTTGGT



GGTGAGGG





T335a
GATCTGGTGC GTAGTAACCT GTGCTTTGTT CGAATTCGAG
No hit
SEQ ID N° 771



GTGCAATCAC ATTCAAGGAA AAATAATATA ATACAAACGA



CTTTTTCTTT TTCTACCTTG CTTCAATTTT TACTTCGTAT



ATCATAAATT AGTGGTTTAT TTGTTATGTT TCATCACGTT



TTGATAATTT TATTGATTA





T336b
GAATCCACCTACCTAATAGCAAGAACAATTGAATTTGACCGAA
No hit
SEQ ID N° 772



CAGAGTTCTGAAATTGAGGGGAAGCCCCAACACCGTCTCCCTC



CCCGCTAATTCCATTTCTCTAAATTACA





T338a
GATCTGGGGAAAAAGGGAAACAAAAAAAAAAGCAGAGAAGG
No hit
SEQ ID N° 773



AAATCTGCCGCCTCCCTAAATGACTAACTCCTCCTTA





T338b
GATCTGGGTG AAAAGTCAGA AAGCAGCAAA GCAATGTTCT
No hit
SEQ ID N° 774



TTTCTTCCCA AGACGCAACA ACTCAATAGC CATGAAAACG



CATTGCTTA





T338c
GATCTGGGGG AAAAGCCAGA GAGCAGCAAA GCAACGTCCC
No hit
SEQ ID N° 775



TTTCTTCCCA AAATGCAGTA GCTCAATAGC CATGAAAACT



CACTCCTTA





T343
GATCTGGAGATGCAATTTTTGATAACCAGCAGTTCTATTCAATT
No hit
SEQ ID N° 776



TTGTGCAGTCCTTGCTGGTTGTTTCTTTCTCCATTTTTTTTTGTT



CTTGTGAACCATTA





T345
ATTGGGCTCCACTGCTATAGGCGCCTGCTGCAGTTTCGGTATC
No hit
SEQ ID N° 777



AGACAACTTGTCTGATTTTGATGGCATTACTCAG





T346
GATCTGGAGA TCAGGAAATG TTCTAAAATC TCCCTCAATT
No hit
SEQ ID N° 778



ACGCTCTTGG GCTCTTGATT TTAGGTGCTC TTGGTCATCC



ATTA





T350a
GATCTGTTCA AGTTGGCCGA TTAGTCCATC CTTTTTACTG
No hit
SEQ ID N° 779



AATAACATAC AACTTTGTGC TTCTTTTTAC ATGAATAAAA



TACTAGAGAT GTCTTTTCTC AACATTGTT





T350b
GATCTGTAGA GAAGGCTCGC TCCTAAATTA TATTTCTTTC
No hit
SEQ ID N° 780



ATTTACCTTT TCTTTCTGCT AATTTCCTTT TCCGTGGTCT



CTTTTACTTT TTTCTTGGGA GGGGAAGATG GGAGTGGGGT



GTCACCTTCC CTTGTC





T350c
GATCTGTGAG ACTTAGTAAG AAGCATGGCT GGTTTTTCAT
No hit
SEQ ID N° 781



ATGTACAGCC CATCTCATTT TAGTGTAGAA TAAGCATGAG



GTATGGTTCA TACGCTAATA GCACATTGAA TGGTAAATTT



TAGGTTTCC





T351b
GATCTGTAAA TATGTTACAT ATTAGGAGTA TAATGTTTTC
No hit
SEQ ID N° 782



ATTACTAAAG CATGTAAATA TGTTGCTCCG GGCTTTGGTC



TATTAGTAAG AGCGCAATGC GTA





T353a
GATCTGTCAT TGATGTTCAT TACTCCAATC TTTTCTCTGA
No hit
SEQ ID N° 783



CATGTTTA





T358
GATCTGTAAA TATGTTACAT ATTAGGAGTA TAATGTTTTC
No hit
SEQ ID N° 784



ATTACTAAAG CATGTAAATA TGTTGCTCCG GGCTTTGGTC



TATTAGTAAG AGCGCAATGC GTA





T359a
CCATCAGCTAAATTATCTCGAATTTCAATAGTGGTACTCAC
No hit
SEQ ID N° 785





T359b
CATCTGTAAA TATGTGACTG ACTGCGTAGT GATCTGTGGA
No hit
SEQ ID N° 786



AACTGCTGAT CCGGTAATTC TCAGAGA





T359c
GATCTGTACT GTACATGTCA AAAAGGGAC
No hit
SEQ ID N° 787





T360a
GATCTGTGAG GGG
No hit
SEQ ID N° 788





T360b
GATCTGTTGA GAAATATGCT AATAA
No hit
SEQ ID N° 789





T360c
GATCTGTCAA AGGCCAA
No hit
SEQ ID N° 790





T364b
GATCTGTGGA AAAGGAAAGC TGGAGAAACT TGCTGTGCTG
No hit
SEQ ID N° 791



TAATTTATGT ACAGTGCTAT TTGGCTGCTC AACTAAGATT



GTTTTGATTC TCTCTTAGTC TGATGTTATC TTTTCTCGTG



ACAATCCTTC CTTTTTCTTT CTTCTCTTGG AGTTGGGGGG



TCAATATCCT TTGTTTGTGG TG





T366a
GATCTGTCGA AATTTGATTC TCGCACGAAT TGTACCATTG
No hit
SEQ ID N° 792



CCCACTTCCA TTGGCAAGGT TAGGGTACAG AAAGTCTTTT



GTGAGTGACC AATATATA





T366b
GATCTGTGAA TATGTTGCTA TTATATTTAC GCACATCTTA
No hit
SEQ ID N° 793



GATTTCGCTT TTCTTTCTGT TCTGAATCTC T





T371
TTTATCCGCACGAGGCTTCTGGAATGTAATGGCAGCTGATACA
No hit
SEQ ID N° 794



TTGATGTAAATGTAATGCATTGTGCTTCTCAACCAAAGTACAC



TTCCGGGGAGGTCATTA





T372a
TGACTGCGTAGTGCTCTGTGAGAGGCCATTTGGATCATATATG
No hit
SEQ ID N° 795



TTGCTATCCATTGCATTA





T462
GCTAAATGATTTCTAATGGGATGGGCATGCTCCCCACTGCTCT
No hit
SEQ ID N° 796



ATGATTTATTATAGTCATACTCTGTTTCGTACCTGGCCGCTAGC



CTTTCGCTTCCTCCTTGTACTAGATTTTGACCTTGAATTCCCCCT



GAAAGCGAGAACGCACTATATGCCTTTA





T403a
GATCTTATAG CTAGATGTTG GGTTTTGACA ATTGAACTCT
No hit
SEQ ID N° 797



TATCATTGTA TTTGAGTTTG GACTGTCATG ATGAAACTTG



ATGAAAACCT GCTTAGTCGA ATCAGTAGCA AAAT





T403b
GATCTTGGAG TGAATATGGT CGACGACTAC TTATTGCGAA
No hit
SEQ ID N° 798



ATGCTAGTAG CAGTAGTCCT TCTTCCTCTG TTGATGCTGT



GAAGAGAGCT AGAGCG





T403c
GATCTTAGAG TGAATATGGA CGACGACTAC TTACTGCGAA
No hit
SEQ ID N° 799



ATGCTAGATA GTCGTAATTC TTCTTCCTCT





T466a
GATCTTATAT GAGCTATGTC AATTTTGATC GGCTTCTTCT
No hit
SEQ ID N° 800



GGATTA





T466b
GATCTTATAT GAGCTATGTC AATTTTGATC GGCTTCTTCT
No hit
SEQ ID N° 801



GGATTA





T429a
GATCTTCCAG GATTATTATT GTCTTCCGCT GCGTGTTACG
No hit
SEQ ID N° 802



AACACCTATA CGCAATCGTA CATTATGGAC CATAAAACCG



ATCCCCCTAA TCTTGAATAA AAAATCCATG CTATTTTTTG



TTGTCATTCC ATTTA





T429b
GATCTGGCTGATAGTGCAAAAGATTCAACTATTATTGACATAT
No hit
SEQ ID N° 803



GTTGCAACATGTACCATGTGTGGTTTGATCATGGCGCCTAGA



TGGAAGTGATGCTATAGTAAATAGACTTCACTTGTTTCATGCT



ACTTA





T432b
GATCTTCAAC TATCTCAACT GCTGTAGTGC AAAAGCTTGA
No hit
SEQ ID N° 804



AGTTCATGGG ATTGATTTGT TCCAACTTGT TTGTAATGAT



AAATATATCA ATGTGATTTC TCCTATATAT GTTTTGAGGG



ACTTTTCCAA GAAAAAGGAA AAGTGTGGAT TTTATGATTG



TGGTGACTGG TAATTA





T432c
TGACTGCGTCTTGATCTTCAACTATTTCAACTGCTGTAGTGCAA
No hit
SEQ ID N° 805



AAGGTGAACTTCATGGGATTGATTTGCTCCAACTCGTTTGTAA



TGATAAATATATCAATGTGATTTCTCCTATATATGTTTTGAGGG



ACTTTTCCAACAAAAAGGAAAAGCGTGGATTTTATGATTGTGG



TGACTGGTAATTA





T433a
GATCTTCCAG AACAGCCATC CACC
No hit
SEQ ID N° 806





T433b
GATCTTCCAG AACAGCCATC CACCAGTGTA AACAAATACA
No hit
SEQ ID N° 807



AATCAAGGTC CCAATGATGA ATGTGTTCA





T436b
GATCTTCCAAAATACAGCTAGGAACTAACCACTCAATAGATCA
No hit
SEQ ID N° 808



TCTCCAATAAATTTTGCGCCTTCCTTCCTTATTA





T437
TAGGGAATAGGAAGATGTACAAGAGGCAATATGGAGCACAAT
No hit
SEQ ID N° 809



GAACTGGATTCATCTACTATGTTCTTTCGGCCTTA





T438a
GATCTACATG TCTAATGTAG TTGGGGATTT ACCTTATCCT TA
No hit
SEQ ID N° 810





T438b
GATCTTCTGCAAAGGTAGCAGCTTCCTACTAACCAGATATTA
No hit
SEQ ID N° 811





T411a
TGTATTTCTGCGGCGGGGGGGGGGGGACCTTTGAAAATACCAA
No hit
SEQ ID N° 812



AAACACCCCTTATTTGCCCATTGATTTTGGTTTTAAAAATCA





T411b
GATCTTGCAT GAATACGGAA TATATACTTT GTGCACCGAA
No hit
SEQ ID N° 813



GTGCCCTTCC CTTCTTGGTT GCTA





T416
GATCTTTGGGTTCTCATGGATCGTGGGGACTATGAACTTTGAAA
No hit
SEQ ID N° 814



GGGCTTTA





T417
GACTACTTACTGCGAAATGATAGTAGTAGTAATTCTTCTTCCTC
No hit
SEQ ID N° 815



TGTTGATGCTGCGGAGAGACCTAGAGCGTGCCGTGAAATGTAT



TTCTTGCATAACTATGATAGGTTGGTTA





T422a
CATATGGACCAAACTTGTTCTGAGTTTTTGCTAGATTGAGACTG
No hit
SEQ ID N° 816



CATGGTCCTCTC





T422b
GATCTTGCCA TGGACTAATT ATCAACAGCA GCCATATTGG G
No hit
SEQ ID N° 817





T426a
GATCTTGGAG TGAATATGGT CGACGACTAC TTATTGCGAA
No hit
SEQ ID N° 818



ATGCTAGTAG CAGTAGTCCT TCTTCCTCTG TTGATGCTGT



GGAGAGAGCT AGAGCGTGGG GTGAGA





T428a
GATCTTGGAG GAATAGAAAG AGCGTTGTAT ATTGCTCGCA
No hit
SEQ ID N° 819



CTTTCTATAG TTTTGATTA





T428b
GATCTTGGAG TAATACAAAT AACGTTGTAT ATTGCTCGCA
No hit
SEQ ID N° 820



CTTTCAATAG TTTTGATTA





T441b
GATCTTTGGACAAAGTTTGGGGAAATGATTGCTCTGCTCTTT
No hit
SEQ ID N° 821



GTTGTTGGTTA





T450a
GATCTTTGCATAGTTCGGAAAAATCGAGAATAGACTAAATAAA
No hit
SEQ ID N° 822



CTAACGTTCTCTTTTTTCTTTCTTTCTCTTTTTTTTTTTACCTTA





T450b
GATCTTTGCGTAGTTCGAGAAGATCGAGAATAAAGGAAACAA
No hit
SEQ ID N° 823



ACTAACGTTCTAATTTTCTTTTCTTTTTTTTTCTTTTTTTACCTTA





T452a
GATCTTTGCGTGTTGCACTACAGATTTTTAGGACCTTCTGACTT
No hit
SEQ ID N° 824



GTTA





T452b
GATCTTTCAG TGTTGTACTC TTCCCTGCTT TA
No hit
SEQ ID N° 825





T456
GATCTAAGTAGAGCAGGGTTCTAGATGCCTAGGATGCTTTCTT
No hit
SEQ ID N° 826



GGGTGAATCTGCCTTTTCCTCTTGCTGCCTATCTCTGTGGCAGC



TCCAGAGAATGGTGATTGTCTGTTGTTTGAAGCTGCATTA





T459a
GATCTTTGATATTGGTAGCTTGTGAGTTGAAGACTAAGGCTTA
No hit
SEQ ID N° 827



TTAGTAAAAATAATACATGTATTAGCCTTTGTATTA





T459b
GATCTTTAGA GAACTATAAG TTTTACTTCT GTTTCTTGAC
No hit
SEQ ID N° 828



CGTTTTTGAT TTTGTGTTAT TGAGATATAC TTGCAATTAC



TCAGGACTCA





T460a
GATCTTTACTTGATTGCTACTCCTTGTGTCGCGTCTTGATTA
No hit
SEQ ID N° 829





T460b
GATCGTTACT TGATTGCTAC TCCTTGTGTC GCGTCTTGAT TA
No hit
SEQ ID N° 830





MC103
TAAACATGCG GAAGTCCAAA GATAATACCA CTACCTAGCC
No hit
SEQ ID N° 831



CACATTGATC CGGTGTCACA AGTCAAGAGC CTCTAATACA



AGTCTGAACG ACCTAATACA TAAATAATCT AGGAATGTGG



AAAGTAATAA GATATGAAGG AGCAATCCGG GTCTACGGAT



TACATGCAGC TACTTCGATA ACTCCGGCAA ATG





MC114a
TAACGTATCA GCTTTGTTTT TTCCACGGTT CCACCTAAGT
No hit
SEQ ID N° 832



AGCTATGTTT CTTGGATC





MC114b
TAACTAAGGGAAAGAAGAGAAGAACAGAAATGACCTATAGCT
No hit
SEQ ID N° 833



ACATTAGGCATGGATC





MC119
TAAGAGGAGT GCAGCTTTTG CTCAAGTTTC AGATTCTCAG
No hit
SEQ ID N° 834



CCCATAACAC ATCCTGAGAC TCTTGTTTGT GAGAACAAAC



AACTTCATTC TGAAGGAGGG GTTCCCAGTA TTACCAAGGA



GCAGTTTGAT CAGCCTTTGA CTCTTCTTCA ACAGTCCAAA



GTCTCAC





MC130c
TAATGAGGATGTGGTGGCTCTGTACAAAAGGTAGACTGATTGA
No hit
SEQ ID N° 835



GAAGTATCAAACAGCTCAAGTGTAGATGTGGTCATCTAACAAA



TGGTGGATC





MC202
TAAACATACAATGACTGGGCTGTTATAGCAGGGGTTTCGGGAC
No hit
SEQ ID N° 836



TTCTTTTGTTGGGTTTGTTTTGTTCAAGTTAGTAGTGAAGTTCA



GCTCGAGTTCAACTCTTATCTGGACTCTATTGCTTTGGGATC





MC210a
TAACAATCAG ACTGCATCAA ATTTCTACCT AGGCCTACAA
No hit
SEQ ID N° 837



TAATTTGAGT GTGGTCATGG GATGGGATC





MC301
TAAACGATGC CCAACGACCA CCTTCTTTGG TCGTCCGTTC
No hit
SEQ ID N° 838



GTAGTCGTTT TCGACGTCAA GTTATCTTGG TGCGAGATTC



GTTCTCGGAC AGATTTGTTT ACAATCAAAG TTCGTCGTTG



ATTCATCTCC GGTTAGTTGT TTTTGAGTTT TATTTTTGTC CAA





MC305a
TAACTGAACT TTATATAAAC TGTGCCGACA CCCTTCTCTC
No hit
SEQ ID N° 839



TTCACCTCCG GGGATGTGCT TACTGGTTGA GACTCCCTAT



TCTGTTAGTG TCATACCTTG AAATAAGAAA GAGGCCGGAC



AAGTTACGAA GCCAGATGGC CTTTTGGTTC CCGGTAAGTT



GCCCCCTCCT CGACTCGAGT TGTCCGCTCG GGTACATAGT



CTAAAACACT GACCCAGGTT TTGAACATAG AATAACGTGA



CTTCATGCCG GATC





MC306a
TAACATGTTGGACGCGGATATACCTGTTCCAAATATACCAGAG
No hit
SEQ ID N° 840



AGACCAATTTCTCTCATTGCGGATC





MT104b
AAGTCATAAAGAGGACTGAAAATTGCCAGAACCCTGAAGGAG
No hit
SEQ ID N° 841



CTCCAGGATGACATCTGGCCAGAGCCTACTTGCTGCTGGGGCT



GCACAAGCTGGGGGATC





MT115a
GTAATTGCTCATGTCCTATGCCTTTGGAAAGACATCCAAATGG
No hit
SEQ ID N° 842



CTATGAGATTATATGCCCTCGTTAGACTTTGCCGGCAGATC





MT116
AACATGTACC GGGATTCTCA AAGAAACAAG TCATAGCTAC
No hit
SEQ ID N° 843



ACCAGATGTT GATCATGTTC TTTTAGGAAT CTCGAAGAGA



TTACTTCC





MT117a
TAATGTTATG ACTTGTGGGA GGGATTGTGT TTACAATGAT
No hit
SEQ ID N° 844



TGTAAAGATG ATTGTTGGAT TTGCTGTAGA TGTGTTAGAT C





MT117b
TAATGTAGGT ATTGTGGGGT GGTAGTGGTT GGAGCTTCGA
No hit
SEQ ID N° 845



GAATTTGGGC AAAAAAGTGA CGGGAAAGTT TTCTAGATC





MT118
GAAGAACGGGATTCAAAAGGTAATTTCATTACTCAG
No hit
SEQ ID N° 846





MT209a
TAAGGACGAG GAGGTAAAGG GGATTATTGG GTGTTAGTGT
No hit
SEQ ID N° 847



GGGGTCAAGG AGACAGGCTA GGGCTTGGAG GGGAGATC





MT210b
TAAGGGAAAA GATAATTTTA CTCCAGGACC AGAAGAAACT
No hit
SEQ ID N° 848



CAAAGACTGG TATGGAAAAT TTTGAGATC





MT213
GTCCCGAACTGTGCGTCTAGGCGGGTGGGGACACGGGGAGAA
No hit
SEQ ID N° 849



GGGGCACGATGGTTTTACCCAGGTTGGGGCCCTTTGGAGGGGG



GTAAAACCCTCCTCCTGGTTGATTACTCAGGGCTCATT





MT214b
TTTAACCCAACCCTGTTATCAG
No hit
SEQ ID N° 850





MT301a
TAAACAGCCCGAAAATCACCCAAAGACACTCTCTAAACTATCC
No hit
SEQ ID N° 851



AAAACATCGGCTTTGAATCACCCCAAAACCACGTTTTACGCAG



CTAAAATACAGCACTAAACTCCCCAAAAAAGGGTCGATGTCG



CACCATATTTGTCAACAAACAGAGCTTCGCTTCAACTGTATAA



GATCACTCACGTTCAGTCGCGTTTTTTTTTTTAGTTGGGTTCAA



GGTTTCCGACGTGGGTCTCGGGTCAGTAGTTTGTTTGTACGAA



AGTTTTAGCAGATC





MT303a
AAGTGGCACTTTA
No hit
SEQ ID N° 852





MT303a
CTTATTATGCTTTTGCTCGTTTA
No hit
SEQ ID N° 853





MT304a
TAACGATTAT CCGTTTGGAA ACACTAGCAA AACCTGACGC
No hit
SEQ ID N° 854



CGGGACTCGC GAAAAATCGG AATAAGCCAA CAGGAATTCG



TAGACCAAAA CTCGAACATA CGGGGAACCT CAAATCCTCG



AACGCGGACC AGATC





MT304b
TAACATACAGTACGAATTTTGTTACTTTATTACTTTGACAGCAA
No hit
SEQ ID N° 855



TGCAAGGGAAAGCAGCCACAAGTTGGTAAGAAATAAAAAAA



GGCCAAGAACACTAGTTGATGAGGATGTTGAGGACACCATGG



CCAGATC





MT304c
TAACCAACTGAAACAAAACTGACACTATCATTGCATACAACCT
No hit
SEQ ID N° 856



ACTGTCTACTATTGTTTTAAGTTTCTCTTCATTTTGTATTTTGAT



GTAATTGTATTATGGGACCACGTTTGTCACCGACCCTCTCCAG



ATC





MT305c
TAACAACCAGAGTTCAAACGATAAAAGGGTGTGGTTGATTTAT
No hit
SEQ ID N° 857



ACCCAACCCACTGAAACTTGAAAAATATACACTACTAGTCAAG



CCATCAAGCAATCCAGAAATGCAGAGGAGCCCAGATC





MT306b
GCGTAGTGCTCTGTCGCTAATGGGGTTTATGCTGCGATTTTTCT
No hit
SEQ ID N° 858



TTCCTGTCAAAAACTATGTGGACTAGGAGTGGAGTGCGTCCTC



TACAACAATATCTGAGTTACATCCGATCGGGTCACTCAAGACT



CA





MT306c
TAACGGAAGGAGAAAGGTGGATATTATTGTGGTGTGGCCTTTT
No hit
SEQ ID N° 859



GTCTTTGGTTTTCTATTCTATTGAGCCCTAAAAATAGTGATATC



TTGGTCTGATGTTCCCTGTTGCAGATC





MT308c
TAACCTTTTT TAGCAAGTAA TTAGATTACT AATTTCATTT
No hit
SEQ ID N° 860



TTTAAAAACG GTTACCCGGA GTTTTCTTTT TTTTTTTTTA



CACTTGCCAG ATC





MT312
TAAGGGTGAG CATGGAACTC GGGTGATATG GTAGCCTGTG
No hit
SEQ ID N° 861



AA





MT313
TAATGCTGAT GA
No hit
SEQ ID N° 862





MT402a
GGTGAATTGGCATTGGCTGCTCCAAAATGTCCTTCCATGAAAT
No hit
SEQ ID N° 863



AAGAGCAATACCAGCATCTGCTGCTTATTTTCAAGACAAGATC





MT408
TAATGTGTAA TCAGTAGCAT CTATGTGCAA CTTTGATGGT
No hit
SEQ ID N° 864



TTTTGTCACA TCCAAGTAGT GAACACATTC ATCATTGGGA



CCCTGATTTG TATTTGTTT





MT410b
TAATTGTATA TGAGTAACAA AAAAGAGTTA GTTGTATTTT
No hit
SEQ ID N° 865



ACTTTATCAC CGATTTCCCG AACTACGCAA GATC





MAP1
CTGCCACCTCCAATCTCCAGGCATATACAGTCGCCAATTGCTT
No hit
SEQ ID N° 866



CTCCTCTTCCTATGTGTGCCTCTTCAAGTTCATGTACATGATCC



ATCTTCCTCTAATTTCTCTGGGCAAGATAATCATAACTATATCT



TCACAACCTGAATCTAACTCCTCTGACCAAGATATACCAAAAC



CCATCTCCAATTTTGAACCATATCCATATCC





MAP4a
TTGGGGGAGG TTTGCGGCGG AGATAAAATG AAAAAAAAGA
No hit
SEQ ID N° 867



AATGGAAGTG AACTTGAAGT TA





BMAP2a
TAAGGTTCAAAGCCAGCTATTACAGTTAGTTGTGTGAGCTTAT
No hit
SEQ ID N° 868



TCGCTCAACCTTAGCGGTAGGACATCTGGTGCGTCGGCTGCAT





BMAP3
CTCCGACTCGATGTTGTCCTTGGATTTGGATTCCGGAGAGATC
No hit
SEQ ID N° 869



AAATGGTACAAACAGCTTGGAGGATATGACATCTGGACCGTCG



GCTGCATA





T304a
GATCTGAGGT TGCTGATTTA GATTATGATG ACTTTGAGGC
No hit
SEQ ID N° 870



TGACTTTCAG GTCTTTA





T226
GATCTCTA GTGTGAGTCA AAAATGATCA TAATATGAGT
No hit
SEQ ID N° 871



TTTGCCGGAG GCTTGGTTCA ATGAAAAATC GTTGTTTCAG



TTGAGGTTCA TTCTTTTTTA CTGTTTCGCT CCTAATAAAT



TTTTATTGTC AGTTGTCTTC TGATTTTTGC TGTTTTGTCC



TATTCATTGT TGTGTTAGTA TTTTTGTTGA ATGTTGCATT



GTTTTCTTTG TTTGAAAATT TCAATACGTT GGCCCTATCC



TATTTTTGTA ATTTGTTTGG ATTATAATTG TATTGGTGTA



GAAGATAAAA TTGTTCCATT A

















TABLE 3










Primers used to amplify the NsPMT2 promoter











Primer Code
Sequence















FwP ALGG52
5′-AAAAAGCAGGCTCGAGGAGTGGAATACGAACAAA-3′








RvP ALGG53
5′-AGAAAGCTGGGTTTTCCAAATTAAACTAAGCAAATTG-3′

















TABLE 4










Jasmonate induction of the NsPMT2 promoter in


transgenic BY-2 cell line 7, represented as


GUS activity in units/mg protein/minute.









Time (h)
+DMSO
+MeJA












0
0.2 ± 0.3
0.8 ± 1.0


4
0.2 ± 0.3
2.0 ± 0.3


8
0.2 ± 0.3
6.4 ± 0.3


14
0.2 ± 0.3
29.1 ± 1.9 


24
2.9 ± 0.6
92.2 ± 6.4 
















TABLE 5










Induction of the NsPMT2 promoter in transgenic BY-2 cell


line 7, double transformed with pK7WGD2-C330, represented


as GUS activity in units/mg protein/minute.










Line
Time (h)
+DMSO
+MeJA













BY-2 line 7
0
0.0 ± 0.0
 0.0 ± 0.0



24
0.9 ± 0.1
 399.0 ± 56.4



48
6.0 ± 0.8
 663.0 ± 33.6


BY-2 line 7-C330
0
0.9 ± 0.1
 1.0 ± 0.1



24
6.4 ± 0.1
 276.7 ± 55.9



48
128.6 ± 0.3 
347.8 ± 2.0
















TABLE 6










A: Measurement of nicotine alkaloids in BY-2 reporter cell


line in the presence and absence of synthetic auxins, in


the presence and absence of MeJA. B: Measurement of nicotine


alkaloids in BY-2 reporter cell line supertransformed with


an expression vector comprising C330, in the absence of


2,4D, without and with the elicitor MeJA.










Reporter cell line (line





7) + expression vector
Anatabine
Anabasine
Nicotine


comprising the C330 gene
mg/g DW
Mg/g DW
mg/g DW














−2,4D + DMSO
 0 h
0.036
ND
0.010



24 h
0.018
ND
0.005



48 h
0.115
0.003
0.271


−2,4D + MeJA
 0 h
0.038
ND
0.008



24 h
2.065
0.099
0.271



48 h
3.541
0.297
0.283


















TABLE 7








Seq code
SEQUENCE
SEQ ID N°


















MAP3
MNPANATESF SELDFLQSIE NHLLNYDSDF SEIFSPMSSS
SEQ ID N° 872




NALPNSPSSS FGSFPSAENS LDTSLWDENF EETIQNLEEK



SESEEETKGH VVAREKNATQ DWRRYIGVKR RPWGTFSAEI



RDPERRGARL WLGTYETPED AALAYDQAAF KIRGSRARLN



FPHLIGSNIP KPARVTARRS RTRSPQPSSS SCTSSSENGT



RKRKIDLINS IAKAKFIRHS WNLQMLL





C330
MFPNCLPNEY NYTADMFFND IFNEGIVGYG FEPASEFTLP
SEQ ID N° 873



SIKLEPEMTV QSPAIWNLPE FVAPPETAAE VKLEPPAPQK



AKHYRGVRVR PWGKFAAEIR DPAKNGARVW LGTYETAEDA



AFAYDKAAFR MRGSRALLNF PLRINSGEPD PIRVGSKRSS



MSPEYSSSSS SSASSPKRRK KVSQGTELTV L





C484a
MNNTTFSDPN SDTGGFLGSG KIGGFGYGIG VSVGILILIT
SEQ ID N° 874



TTTLTSYFCT RNQTSELPTR RQRTINRNEL SGHCVVDIGL



DEKTLLSYPK LLYSEAKVNI KDSTASCCSI CLADYKKKDM



LRLLPDCGHL FHLKCVDPWL MLNPSCPVCR TSPLPTPQST



PLAEVVPLAT RPLG





C360
MGCIEKDPRE DVVQAWYMDD SDEDQRLPHH REPKEFVSLD
SEQ ID N° 875



KLAELGVLSW RLDADNYETD EELKKIREAR GYSYMDFCEV



CPEKLPNYEE KIKNFFEEHL HTDEEIRYCV AGSGYFDLRD



RNDAWIRVWV KKGGMIVLPA GIYHRFTLDS DNYIKAMRLF



VGDPIWTPYN RPHDHLPARK EYIESFIQAE GAGRAVNAAA





C165
MFFAHRENTM STLGRLVLIF WLFVVLIINS SYTASLTSIL
SEQ ID N° 876



TVQQLSSGIQ GIDSLISSSD QIGVQDGSFA YNYLIEELGV



SESRLRILKT EDEYVSALEK GPHGGGVAGI VDELPYVELF



LSNNKCIFRT VGQEFIKGGW GFAFQRDSPL AVDLSTAILQ



RSENGELQRI HDKWLTNNGC SSQNNQADDT QLSLKSFWGL



FLICAIACVL ALIVFFCRVY CQFRRYHPEP EEPEISEPES



ARPSRRTLRS VSFKDLIDFV DRRESEIKEI LKRKSSDNKR



HQTQNSDGQP SSPV





C353a
MNPEYDYLFK LLLIGDSGVG KSCLLLRFAD DSYLESYIST
SEQ ID N° 877



IGVDFKIRTV EQDGKTIKLQ IWDTAGQERF RTTTSSYYRG



AHGIIVVYDV TDQESFNNVK QWLSEIDRYA SDNVNKLLVG



NKCDLTAQKV VSTEIAQAFA DEIGIPFMET SAKNATNVEQ



AFMAMAASIK NRMASQPASS NARPPTVQIR GQPVNQKSGC



CSS





MT101
MRVRIHQTMA TVMQKIKDIE DEMAKTQKNK ATAHHLGLLK
SEQ ID N° 878



AKLAKLRREL LTPTSKGGGG AGEGFDVTKS GDARVGLVGF



PSVGKSTLLN KLTGTFSEVA SYEFTTLTCI PGVIMYRGAK



IQLLDLPGII EGAKDGKGRG RQVISTARTC NCILIVLDAI



KPITHKRPIE KELEGFGIRL NKEPPNLTFR RKEKGGINLT



STVTNTHLDL DTVKAICSEY RIHNADVHLR YDATADDLID



VIEGSRVYTP CIYVVNKIDQ IPMEELEILD KLPHYCPISA



HLEWNLDGLL EKIWEYLSLT RIYTKPKGMN PDYEDPVILS



SKRRTVEDFC DRIHKDMVKQ FKYALVWGSS AKHKPQRVGR



EHELEDEDVV QIIKKV





T21
MANPKVFFDL TVGGLPTGRV VMELFNDVVP KTADNFRALC
SEQ ID N° 879



TGEKGVGKSG KPLHYKGSSF HRVIPGFMCQ GGDFTAGNGT



GGESIYGAKF ADENFVKKHT GPGILSMANA GPGTNGSQFF



ICTAKTEWLD GKHVVFGQVI EGMDVIKKVE AVGSSSGRCS



KPVVIADCGQ LS





C476a
MALVRERRQL NLRLPLPEPS ERRPRFPLPL PPSISTTTTA
SEQ ID N° 880



PTTTISISEL EKLKVLGHGN GGTVYKVRHK RTSAIYALKV



VHGDSDPEIR RQILREISIL RRTDSPYVIK CHGVIDMPGG



DIGILMEYMN VGTLESLLKS QATFSELSLA KIAKQVLSGL



DYLHNHKIIH RDLKPSNLLV NREMEVKIAD FGVSKIMCRT



LDPCNSYVGT GAYMSPARFD PDTYGVNYNG YAADIWSLGL



TLMELYMGHF PFLPPGQRPD WATLMCAICF GEPPSLPEGT



SGNFRDFIEC CLQKESSKRW SAQQLLQHPF ILSIDLKST





MC204
MYGRSGLDRF KKAQSLEPFQ VSANSAAKPA LQPTTKAVTH
SEQ ID N° 881



PFPAYAQSTF SHQQTQYVNP QPALQKSVAA DATASTVPTH



HVTHGGGQST WQPPDWAIEP RPGVYYLEVI KDGEVLDRIN



LDKRRHIFGR QFHTCDFVLD HQSVSRQHAA VIPHKNGSIY



VIDLGSAHGT FVANERLTKD SPVELEPGQS LKLAVSTRPY



ILRRNNDALF PPPRQLAEID FPPPPDPSDE EAVLAYNTFL



NRYGLIRPDS LSKSTVSTSG EDVNYSSDRR AKRIRRTSVS



FKDQVGGELV EVVGISDGAD VETEPGPLGV KEGSLVGKYE



SLIEPTVLPK GKEQSSVKDA TVTRTGVSDI LQQVLSKVKN



PPKGGIYDDL YGESAPAKGG FWAYSDSSQT ASTNDAKGDS



PCSLRRIFGH ISNNVDDDTD DLFG





T323
MHSANHWGGS LEIANTGDST AEEYDRSRNL DWDRASVNHH
SEQ ID N° 882



QKQQQYNNYD QYSHRHNLDE TQQSWLLGPP EKKKKKYVDL



GCIVCSRKAF KYTIYGIIIA FLVIALPTII AKSLPKHKTR



PSPPDNYTIA LHKALLFFNA QKSGKLPKNN EIPWRGDSGL



QDGSKLTDVK GGLIGGYYDA GDNTKFHFPM SFAMTMLSWS



VIEYEHKYRA IDEYDHIRDL IKWGTDYLLR TFNSTATK1D



KLYSQVGGSL NNSRTPDDHY CWQRPEDMNY ERPVQTANSG



PDLAGEMAAA LAAASIXXXX XXXXXXXXXX XXXXXXXXXX



XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX



XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX



XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX



XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX



XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXX



XXXXXXXXXX XRRNCGPRYI SLDILRRFAT SQMNYILGDN



PLKMSYVVGY GNKFPRHVHH RGASIPSGKT KYSCTGGWKW



RDTKNPNPHN ITGAMVGGPD KFDKFKDARK NFSYTEPTLA



GNAGLVAALV SLTSSGGYGV DKNAIFSAVP PLYPMSPPPP



PPWKP





T464
MGSSGGMDYG AYTYENLERE PYWPTEKLRI SITGAGGFIA
SEQ ID N° 883



SHIARRLKSE GHYIIASDWK KNEHMTEDMF CHEFHLVDLR



VMDNCLKVTK DVDHVFNLAA DMGGMGFIQS NHSVIFYNNT



MISFNMMEAA RINGVKRFFY ASSACLYPEF KQLETNVSLK



ESDAWPAEPQ DAYGLEKLAT EELCKHYNKD FGIECCIGRF



HNIYGPFGTW KGGREKAPAA FCRKAQTAVD KFEMWGDGLQ



PRSFTFIDEC VEGVLRLTES DFREPVNIGS DEMVSMNDMA



EMVISFEDKK LPVHHIPGPE GVSGRNSDNT LIKEKLGWAP



TMRLKDGLRI TYFWIKEQIE KERSQGVNIA NYGSYKVVGT



QAPVELGSLR AADGKE





C127
MERNVANEAP KATIMAEDYK KDLEFIEEVT SNVDEVQMRV
SEQ ID N° 884



LAEILSQNAH VEYLQRHNLN GSTDRETFKK VVPVITYEDI



QPDIKRIAYG DKSPILCSQP ISELLSSSGT SGGESKLIPT



TEPEIGKRLQ LHKLVMSVLS QVAPDSGKGK GMYFMFISPE



QKTPGGLIAR FLTTSYYNSP YFNYSRLHNP HCNYTSPTAA



ILCPDSYQSM YSQMLCGLCQ NNQVLRVGSF FATSFVRAIR



FLEKHWSLLC NDIRSGTINT QITDPLVREA VMEVLKPDPT



LADFIEVECT KDSWQGIITR LWRNTKYVDV IVTGSMSQYI



PILDYYSNNL PLISTLYASS ESHFGINLNP FCKPSDVSYT



LIPTMCYFEF LPYRGNSGVI DSISMPKSLN EKEQQQLVDL



ADVKIGQEYE LVVTTYSGLY RYRVGDVLQV AGYKNNAPRF



NFLCRENYVL SIGADFTNEV ELQNAVKNAV GNLVPFDSQV



TEYTSYVDIT TLPSHYVIFW ELNANDSTLV PPSVFEDCCL



TIEESLNYFY REGRASNESI GPLEIRVLEI GTFDKLMDYC



MSLGASMNQY KTPRCLKYAP LIELLNSRVV SSYFSPMCPK



WVPGYKKWDG NN





C175
MERSVANEAP KATIMVEDYK KNIEFIEEVT SNVDEVQMRV
SEQ ID N° 885



LAEILSQNAH VEYLQRYNLN GRTDRETFKK VVPVITYEDI



QPDIKRIAYG DKSPILCSQP ISELLSSSGT SGGESKLIPS



TEAALGRRLQ LLKLLMSVMS QVAPDFGKGK GMYFMFISSE



QKTPGGLLAR FFTTSFYKSP YINCGYPCRK FTSPTATILC



QDSYQSMYSQ MLCGLCQNQE VLRVGSLFAT GFIRGIRFLE



KHWSLLCNDI RNGTINTQIT DPSVREAVME ILKPDPKLAD



FIEAECSKDS WQGIITRLWP NTKYVDAILT GSMSQYLPIL



DYYSNSLPLI STLYGSSECH FGINLNPFCK PSEVSYTLIP



TMCYFEFLPY HGNSGVIDSI SMPKSLNEKE QQQLVDLADV



EIGQEYELVV TTYSGLYRYR VGDVLRVAGY KNNAPRFNFL



CRENVILSIG ADFTNEVELQ NAVKNAVGNL MPFDSQVTEY



TGYVDITTIP SHYVIFWELN ANDSTPVPPS VFEDCCLTIE



ESLNYFYREG RASNASIGPL EIRVVEIGTF DKLMDYCSSL



GASMNQYKTP RCVKYAPLIE LLNSRVVSRY FSPMCPKWVP



GYKKWNNTS





T424b
MAKEGTKVPR IKLGSQGLEV SAQGLGCMGM SAFYGPPKIPE
SEQ ID N° 886



PDMIQLIHHS INSGVTFLDT SDVYGPHTNE ILLGKALKGG



VRERVELATK FGAIFADGKI KVCGEPAYVR AACEASLKRL



DVDCIDLYYQ HRIDTRVPIE VTVGELKKLV EEGKIKYIGL



SEASASTIRR AHAVHPITTV QLEWSLWSRD VEEEIIPTCR



ELGIGIVAYS PLGRGFLSSG PELLEDLSSE DFPKHLPRFQ



ADNLEHNKIL YERICQMAAK KGCTPSQLAL AWVHHQGNDV



CPIPGITKIE NLNQNIGALS IKLTTEDMVE LEYIASADAV



KGERDASGAN HKNSDTPPLS TWKATR





T164
MESNNVVLLD FWPSSFGMRL RIALALKGIK YEAKEENLSD
SEQ ID N° 887



KSPLLLEMNP VHKKIPILIH NSKAICESLN ILEYIDEVWH



DKCPLLPSDP YERSQARFWA DYIDKKIYST GRRVWSGKGE



DQEEAKKEFI EILKTLEGEL GNKTYFGGDN LGFVDVALVP



FTSWFYSYET CANFSIEAEC PKLVVWAKTC MESESVSKSL



PHPHKIYGFV LELKHKLGLA





MAP2
MSDGGLTVLD GSQLRAVSLS LPSSDGSSVT GAQLLDFAES
SEQ ID N° 888



KVSESLFGFS LPDTLKSAAL KRLSVADDLN FRREQLDREN



ASIILRNYVA AIADELQDDP IVIAILDGKT LCMFLEDEDD



FAMLAENLFT DLDTEDRGKI RRNQIRDALI HMGVEMGIPP



LSEFPILSDI LKRHGAEGED ELGQAQFAHL LQPVLQELAD



ALAKNPVVVV QKIKINNGSK LRKVLADEKQ LSETVEKIMQ



EKQDEKDSLS NKDAIRCYLE KNGASLGLPP LKNDEVVILL



YDIVLGDIEN GKTDAASDKD EILVFLKDIL EKFAAQLEVN



PTFHDFDN





C1
MATKVYIVYY SMYGHVEKLA EEIKKGAASV EGVEAKLWQV
SEQ ID N° 889



PETLSEDVLA KMSAPPKSDV AVITPQELAE ADGIIFGFPT



RFGMMAAQFK AFLDATGGLW RTQQLAGKPA GIFYSTGSQG



GGQETTPLTA ITQLVHHGMI FVPIGYTFGA GMFEMEKVKG



GSPYGAGTFA GDGSRQPSDL ELQQAFHQGK YIAGIAKKLK



GAA





T210
MKIVDLDESL MESDGNCVNT EKRLIVVGVD AKRALVGAGA
SEQ ID N° 890



RILFYPTLLY NVFRNKIQSE FRWWDQIDQF LLLGAVPFPS



DVPRLKQLGV GGVITLNEPY ETLVPSSLYH AHGIDHLVIP



TRDYLFAPSF VDINRAVDFI HRNASIGQTT YVHCKAGRGR



STTVVLCYLV EYKHMTPRAA LEFVRSRRPR VLLAPSQWKA



VQEFKQQRVA SYALSGDAVL ITKADLEGYH SSSDDSRGKE



LAIVPRIART QPMIARLSCL FASLKVSDGC GPVTRQLTEA RAC





C112
MSSASTENRS LWTEIRESIR SILKANCGHF HTLFILFLLP
SEQ ID N° 891



IFFSLVVYPS FHLALFHPDY DFTQPVQFSH FLSSHFEIIV



PIVFTLFLVL LFLCAVATTT YSALHVSYGR PINLVSSIKS



IRNSFFPLLS TFIVSHTIFI SIALVFSLVL VFLVQVLQTL



GLIELKYDSN HFLFLVIPAL IVLVPVLIWL QVNWSLAYVI



AVVESKWGFE TLRRSAYLVK GKRSVALSMM LLYGLLMGIM



VVLGAMYLVI MDAAKGRQWR SSGVILQTAM SSITSYLMMS



QFLVGNVVLY LRCNDLNGEK LPLEIEHLLL HQSLANDHPP



PMLSASTKNL SLWTEVVESA MSIFKANSGH FHALSILFLL



PISFFLVVYP SFHLALFHPN YDFISFAQPH LFLSNFEIIV



PTSYSLFLVL LFLCAVATTT YSAVHASYSR PINLVLSIKS



IRKSLFPLLS TLLVSHTIFI SITLVFTLVL TILVQILQPL



GLIEIKYDSD HFLLLAIPAL VVLVPVLLWL HVNWSLAYVI



AVIESKWGYE TLRRSSYLVK GQRWVAFGIY LYYGLSMGIM



MVCGSMFFVI MGVAKGNKWR SLDVIIQTAL VSVMGYLTMN



QYLVANVVLY MKCKDLSVEK LQSETGGEYV PLPLDEKNQA



LE





C454
SQFFSSIPLQ PIPRGSSFAA STIHSGPIPA RISSTYPCSG
SEQ ID N° 892



PIERGFMSGP IERSFTSGPL ENQYDHIQRY KPKSKKWGLI



KSLKKVLSNS FLGFNKFMNL VEKNNNNEVN VQGSNSHHSN



VGNSLSSQNS LVDDDDEGND SFRGQNVQWA QGKAGEDRVH



VVISEEHGWV FVGIYDGFNG PDATDFLLNN LYSNVYKELK



GLLWNDKLKT PKNSTSNETV PLRNSGFKVE HFVQNQELDQ



REKLDGVVGV DHSDVLKALS EGLRKTEASY LEIADMMVKE



NPELALMGSC VLVMLLKDQD VYLLNVGDSR AVLAQNPESD



ISISKLKRIN EQSVNSIDAL YRAESDRKHN LIPSQLTMDH



STSIKEEVIR IRSEHLDDPF AIKNDRVKGS LKVTRAFGAG



YLKQPKWNNA LLEMFRINYI GNSPYINCLP SLYHHTLGSR



DRFLILSSDG LYQYFTNEEA VSEVETFMSI FPEGDPAQHL



VEEVLFRAAK KAGLNFHELL DIPQGDRRKY HDDVSIIILS



FEGRIWKSSL





T172
GAENGLIVSD SIIQGNEEDE ILSVGEDPCV INGEELLPLG
SEQ ID N° 893



ASSELSLPIA VEIEGIDNGQ ILAKVISLEE RSFERKISNL



SAVAAIPDDE ITTGPTLKAS VVALPLPSEN EPVKESVKSV



FELECVPLWG SVSICGKRPE MEDALMVVPN FMIUPIKMFI



GDRVIDGLSQ RLSHLTSHFY GVYDGHGGSQ VADYCCKRIH



LALVEELKLF KDDMVDGSAK DTRQVQWEKV FTSCFLKVDD



EVGGKVNSDP GEDNIDTTSC ASEPIAPETV GSTAVVAVIC



SSHIVVSNCG DSRAVLYRGK EAMALSIDHK PSREDEYARI



EASGGKVIQW NGHRVFGVLA MSRSIGDRYL KPWIIPEPEI



MFVPRAREDE CLVLASDGLW DVMSNEEACE VARRRILLWH



KKNGTNPLPE RGQGVDPAAQ AAAEYLSTMA LQKGSKDNIS



VIVVDLKAQR KFKSKC





C477
METQNLERGH VIEVRCDMAA QEKGTKICGS APCGFSDVNT
SEQ ID N° 894



MSKDAQERSA SMRKLCIAVV LCIIFMAVEV VGGIKANSLA



ILTDAAHLLS DVAAFAISLF SLWAAGWEDN PRQSYGFFRI



EILGALVSIQ MIWILAGILV YEAIARLIHD TGEVQGFLMF



VVSAFGLVVN LIMALLLGHD HGHGHGHGHS HGHDHEHGHN



HGEHAHSNTD HEHGHGEHTH IHGISVSRHH HHNEGPSSRD



QHSHAHDGDH TVPLLKNSCE GESVSEGEKK KKPQNINVQG



AYLHVIGDSI HSIGVMIGGA IIWYKPEWKI IDLICTLLFS



VIVLGTTIRM LRSILEVLME STPREIDATR LQKGLCEMED



VVPIHELHIW AITVGKVLLA CHVKIKSDAD ADTVLDKV





C331
MLIMLLVPVR QYLLPKFFKG AHLQDLDAAE YEEAPAIAYN
SEQ ID N° 895



MSYGDQDPQA RPACIDSSEI LDEIITRSRG EIRHPCSPRV



TSSTPTKLEE IKSMHSPQLA QRAYSPRVNV LRGERSPRLT



GKGLGIKQTP SPQPSNLGQN GRGPSST









REFERENCES



  • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).

  • Bachem, C. W. B. et al. Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J. 9, 745-753 (1996).

  • Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868 (1998).

  • Nagata, T., Nemoto, Y. & Hasezawa, S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 132, 1-30 (1992).

  • Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning, A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; 1989).

  • Sharan, M., Taguchi, G., Gonda K., Jouke, T., Shimosaka, M., Hayashida, N. & Okazaki, M. Effects of methyl jasmonate and elicitoron the activation of phenylalanine ammonia-lyase and the accumulation of scopoletin and scopolin in tobacco cell cultures. Plant Science 132, 13-19 (1998).

  • Smith, N. A., Singh, S. P., Wang, M., Stoutjesdijk, P. A., Green, A. G. & Waterhouse, P. M. Total silencing by intron-spliced hairpin RNAs. Nature 407, 319-320 (2000).

  • Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J. & Church, G. M. Systematic determination of genetic network architecture. Nature Genet. 22, 281-285 (1999).

  • Van der Fits, L., Deakin, E. A., Hoge, J. H. & Memelink J. The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol. Biol. 43, 495-502 (2000).

  • Vos, P. et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23, 4407-4414 (1995).

  • Creelman, R. A:, Tierney, M. L. & Mullet, J. E. (1992): Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci., 89:4938-4941.

  • Darvil, A. G. & Albersheim, P. (1984): Phytoalexins and their elicitors—a defence against microbial infections in plants. Annu. Rev. Plant Physiol. 35: 243-275.

  • Flores, H. E., Protacio, C. M. & Signs, M. W. (1991): Plant nitrogen metabolism. Recent Adv. Phytochem., 23: 329.

  • Furuya, T., Hisashi, K. & Syono, K. (1971): Regulation of nicotine biosynthesis by auxins in tobacco callus tissues. Phytochemistry, 10: 1529-1532.

  • Gundlach, H., Mueller, M. J., Kutchan, T. M. & Zenk, M. H. (1992): Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci., 89: 2389-2393.

  • Hibi, N., Higashiguchi, S., Hashimoto, T. & Yamada, Y. (1994): Gene expression in tobacco low-nicotine mutants. Plant Cell, 6:723-735.

  • Imanishi, S., Hashizume, K., Nakakita, M., Kojima, H., Matsubayashi, Y., Hashimoto, T., Sakagami, Y., Yamada, Y. & Nakamura, K. (1998): Differential induction by methyl jasmonate of genes encoding ornithine decarbocsylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol. Biol. 38:1101-1111.

  • Ishikawa, A., Yoshihara, T. & Nakamura, K. (1994): Jasmonate-inducible expression of a potato cathepsin D inhibitor-GUS gene fusion in tobacco cells. Plant Mol. Biol., 26:403-414.

  • Linsmaier, E. M. & Skoog, F. (1964): Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant., 18: 100-127.

  • Mandujano-Chavez, A., Schoenbeck, M. A., Ralston, L. F., Lozoya-Gloria, E. & Chappell, J. (2000): Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by methyl jasmonate and fungal elicitor. Arch. Biochem. Biophys. 381: 285-294.

  • Nagata, T. & Kumagai, F. (1999): Plant cell biology through the window of the highly synchronized tobacco BY-2 cell line. Methods Cell Sci. 21: 123-127.

  • Ohta, S., Matsui, O. & Yatazawa, M. (1978): Culture conditions for nicotine production in tobacco tissue culture. Agric. Biol. Chem., 42: 1245-1251.

  • Reinbothe, S., Mollenhauer, B. & Reinbothe, C. (1994): JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6: 1197-1209.

  • Scaramagli, S., Franceschetti, M., Michael, A. J., Torrigiani, P. & Bagni N. (1999): Polyamines and flowering: spermidine biosynthesis in the different whorls of developing flowers of Nicotiana tabacum L., Plant Biosystems, 133: 229-237.

  • Strunz, G. M. & Findlay, J. A. (1985): Tobacco Alkaloids, Related Compounds, and Other Nicotinic Acid Derivatives. In: A. Brossi (Ed.) The Alkaloids, Chemistry & Pharmacology, vol 26. Academic Press, New York, pp. 121-151.

  • Suzuki, K., Yun, D. J., Chen, X.-Y., Yamada, Y. & Hashimoto, T. (1999): An Atropa belladonna hyoscyamine 6β-hydrolase gene is differentially expressed in the root pericycle and anthers. Plant Mol. Biol., 40: 141.

  • Swiatek, A., Lenjou, M., Van Bockstaele, D., Inzé, D. & Van Onckelen, H. (2002): Differential effect of jasmonic acid and abscisid acid on cell cycle progression in tobacco BY-2 cells. Plant Physiol. 128: 201-211.

  • Verpoorte, R., van der Heijden, R. & Memelink, J. (1998): Plant biotechnology and the production of alkaloids: prospects of metabolic engineering. In: The Alkaloids, Chemistry and Pharmacology, vol 50. G. A. Cordell (Ed.), Academic Press, New York, pp. 453-508.

  • Verpoorte R. (2000) Secondary metabolism. Metabolic Engineering of Plant Secondary Metabolism. In: Verpoorte R and Alfermann A W, editors. Kluwer Academic Publishers, Dordrech-Boston-London, pp. 1-29.


Claims
  • 1. An isolated polypeptide that modulates the production of at least one secondary metabolite in an organism or cell derived therefrom wherein said polypeptide is selected from the group consisting of: (a) a polypeptide encoded by a polynucleotide comprising SEQ ID NO: 1 through 611 or SEQ ID NO: 612 through 871; (b) a polypeptide comprising a polypeptide sequence having a least 60% identity to at least one of the polypeptides encoded by a polynucleotide sequence having SEQ ID NO: 612 through 871; (c) a polypeptide comprising a polypeptide sequence having a least 90% identity to at least one of the polypeptides encoded by a polynucleotide sequence of SEQ ID NO: 1 through SEQ ID NO:610, or SEQ ID NO:611; (d) fragments and variants of the polypeptides according to (a), (b) or (c) that modulate the production of at least one secondary metabolite in an organism or cell derived thereof.
  • 2. The isolated polypeptide of claim 1 wherein said isolated polypeptide is selected from the group consisting of SEQ ID NOs: 872, 873, 874 through 895 and polypeptide sequences having at least 90% identity to SEQ ID NO: 872, 873, 874 through 895.
  • 3. An isolated polynucleotide selected from the group consisting of: (a) a polynucleotide comprising a polynucleotide sequence having at least one of the sequences SEQ ID NO: 1 through SEQ ID NO: 611 or SEQ ID NO: 612 through 871; (b) a polynucleotide comprising a polynucleotide sequence having at least 60% identity to at least one of the sequences having SEQ ID NO: 612 through SEQ ID NO: 871; (c) a polynucleotide comprising a polynucleotide sequence having at least 90% identity to at least one of the sequences having SEQ ID NO: 1 through SEQ ID NO: 611; (d) fragments and variants of the polynucleotides of the foregoing (a), (b) or (c), modulating the production of at least one secondary metabolite in an organism or cell derived thereof.
  • 4. A recombinant DNA vector comprising at least one of the polynucleotide sequences of claim 3.
  • 5. A transgenic plant or a cell derived therefrom transformed with the recombinant DNA vector of claim 4.
  • 6. A method of identifying genes, the expression of which modulates the production of at least one secondary metabolite in an organism or cells derived from said organism, said method comprising the steps of: (a) performing a genome wide expression profiling of said organism or cells on different times of growth, (b) isolating genes whose expression is co-regulated either with said at least one secondary metabolite, or with a gene known to be involved in the biosynthesis of said secondary metabolite, (c) analysing the effect of over- or under-expression of said isolated genes in said organism or cell on the production of said at least one secondary metabolite, and (d) identifying genes that can modulate the production of said at least one secondary metabolite.
  • 7. The method according to claim 6, wherein steps (a) to (d) are preceded by a step of inducing the production of said at least one secondary metabolite in said organism or cell.
  • 8. The method according to claim 6 wherein said secondary metabolite is an alkaloid or phenylpropanoid.
  • 9. The method according to claim 7 wherein said secondary metabolite is an alkaloid or phenylpropanoid.
  • 10. A method of modulating a cell, comprising using the polynucleotide of claim 3 to modulate the biosynthesis of secondary metabolites in the cell.
  • 11. A method of modulating the biosynthesis of alkaloids in a cell, said method comprising: using a polynucleotide comprising SEQ ID NO: 10, 11, 19, 20, 35, 40, 41, 47, 65, 67, 70, 88, 89, 97, 98, 101, 102, 103, 106, 107, 108, 117, 118, 120, 121, 123, 124, 126, 128, 130, 131, 132, 136, 137, 142, 143, 144, 145, 146, 147, 148, 152, 154, 155, 159, 160, 161, 162, 163, 175, 176, 177, 181, 182, 183, 189, 197, 202, 207, 208, 209, 210, 217, 219, 220, 221, 233, 235, 236, 237, 239, 240, 241, 242, 243, 244, 261, 262, 264, 265, 268, 70, 272, 273, 274, 278, 279, 299, 300, 302, 303, 304, 305, 306, 316, 317, 318, 320, 321, 326, 329, 331, 332, 333, 334, 341, 344, 348, 349, 350, 351, 354, 355, 356, 358, 372, 373, 374, 375, 377, 382, 390, 391, 392, 395, 403, 405, 406, 414, 417, 418, 419, 420, 424, 430, 434, 439, 440, 441, 445, 446, 456, 463, 478, 485, 491, 497, 507, 508, 510, 518, 519, 527, 529, 531, 532, 534, 567, 569, 570, 575, 577, 579, 587, 593, 594, 598, 599, 601, 603, 608, 612, 613, 618, 619, 620, 628, 636, 642, 643, 647, 648, 649, 652, 653, 654, 655, 656, 657, 659, 660, 662, 664, 670, 671, 674, 675, 676, 677, 679, 680, 682, 683, 695, 696, 700, 701, 703, 707, 709, 710, 711, 712, 714, 719, 724, 727, 729, 732, 734, 735, 740, 741, 744, 746, 748, 749, 750, 751, 753, 754, 755, 757, 758, 759, 760, 761, 762, 763, 764, 766, 767, 772, 777, 784, 794, 809, 810, 811, 816, 817, 822, 823, 826, 827, 828, 829, 830, 832, 833, 834, 836, 837, 839, 840, 841, 850, 854, 855, 856, 858, 859, 861, 864, 865, 488, 489 and/or 490 or fragments or homologues thereof to modulate the biosynthesis of alkaloids in the cell.
  • 12. A method of modulating the biosynthesis of phenylpropanoids in a cell, said method comprising: using a polynucleotide comprising SEQ ID NO: 3, 4, 5, 7, 15, 17, 21, 23, 29, 30, 32, 33, 39, 42, 44, 45, 46, 48, 49, 50, 51, 8, 61, 62, 72, 74, 79, 84, 92, 94, 95, 104, 105, 125, 134, 150, 170, 171, 179, 180, 184, 194, 195, 200, 201, 203, 204, 205, 213, 214, 215, 218, 245, 249, 250, 251, 252, 254, 255, 266, 275, 276, 281, 282, 285, 286, 287, 289, 291, 298, 301, 308, 309, 310, 311, 312, 313, 315, 319, 323, 324, 335, 343, 361, 363, 364, 370, 379, 380, 383, 384, 385, 386, 398, 401, 402, 407, 415, 416, 423, 432, 433, 437, 443, 444, 447, 448, 450, 451, 452, 455, 457, 460, 461, 462, 471, 474, 486, 487, 493, 494, 499, 500, 501, 502, 503, 504, 505, 506, 517, 522, 523, 524, 526, 528, 538, 541, 543, 544, 545, 546, 547, 553, 554, 555, 562, 568, 571, 572, 578, 580, 581, 582, 588, 605, 607, 616, 617, 621, 626, 627, 637, 638, 641, 644, 650, 651, 665, 666, 667, 681, 684, 685, 691, 697, 698, 704, 708, 713, 720, 721, 728, 730, 736, 745, 752, 756, 771, 776, 778, 782, 783, 792, 793, 795, 797, 798, 799, 800, 801, 808, 815, 818, 819, 820, 821, 835, 842, 843, 844, 845, 848, 851, 852, 853, 862, 868, 488, 489 and/or 490 or fragments or homologues thereof to modulate the biosynthesis of phenylpropanoids in the cell.
Priority Claims (2)
Number Date Country Kind
02076973.3 May 2002 EP regional
02077674.6 Jul 2002 EP regional
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of PCT International Patent Application No. PCT/EP04/50171, filed on May 16, 2003, designating the United States of America, and published, in English, as PCT International Publication No. WO 03/097790 A2 on Nov. 27, 2003, the contents of the entirety of which is incorporated by this reference.

Continuations (1)
Number Date Country
Parent PCT/EP03/50171 May 2003 US
Child 10991285 Nov 2004 US