GENES ASSOCIATED WITH RESISTANCE TO WHEAT YELLOW RUST

Information

  • Patent Application
  • 20210388375
  • Publication Number
    20210388375
  • Date Filed
    April 09, 2019
    5 years ago
  • Date Published
    December 16, 2021
    2 years ago
Abstract
An isolated nucleic acid encoding a nucleotide-binding and leucine-rich repeat (NLR) polypeptide including a zinc-finger BED domain, wherein expression of the NLR polypeptide in a plant confers or enhances resistance of the plant to a fungus.
Description
FIELD OF THE INVENTION

The invention relates to genes associated with disease resistance in plants.


BACKGROUND OF THE INVENTION

Crop diseases pose a threat to global food security. Genetic resistance can reduce crop losses in the field and can be selected using molecular markers. However, it often breaks down due to changes in pathogen virulence as experienced for the wheat yellow (stripe) rust fungus Puccinia striiformis f. sp. tritici (PST). This highlights the need to (i) identify genes that alone or in combination provide broad-spectrum resistance and (ii) increase our understanding of their molecular mechanisms.


NLRs are intracellular receptors which induce cell death upon pathogen recognition to prevent disease spread throughout the plant. Different modes of action for this gene family have been discovered over the past twenty years. The NB-ARC domain is the signature of the NLRs which in most cases carry additional Leucine Rich Repeats (LRR) at the C-terminus. Recent in silico analyses have identified NLRs with additional ‘integrated’ domains at different positions of the gene structure. These include zinc-finger BED domains (BED-NLRs) which are widespread across Angiosperm genomes and can confer resistance to bacterial blast in rice (Xa1).


In plant immunity, NLRs act as intracellular immune receptors that trigger a series of signalling steps ultimately leading to cell death upon pathogen recognition, preventing the disease spread throughout the plants. The NB-ARC domain is the hallmark signature of the NLRs which in most cases carry leucine-rich repeats (LRR) at the C-terminus. Recent in silico analyses have identified NLRs with additional ‘integrated’ domains, including zinc-finger BED domains (BED-NLRs). The BED domain from the DAYSLEEPER protein binds DNA in Arabidopsis, however whether BED domains from BED-NLRs conserved this function is unknown. BED-NLRs are widespread across Angiosperm genomes and this architecture provides resistance to bacterial blast in rice through Xa1.


The genetic relationship between Yr5 and Yr7 has been debated for almost 45 years. Both genes map to chromosome arm 2BL in hexaploid wheat (Triticum aestivum) and were hypothesized to be allelic, and closely linked with YrSP. While Yr5 confers resistance to almost all tested PST isolates worldwide, both Yr7 and YrSP have been overcome in the field following wide deployment (Table 1) and each display a different recognition specificity.


SUMMARY OF THE INVENTION

According to an aspect of the invention is provided an isolated nucleic acid encoding a nucleotide-binding and leucine-rich repeat (NLR) polypeptide comprising a zinc-finger BED domain, wherein expression of the NLR polypeptide in a plant confers or enhances resistance of the plant to a fungus, for example wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. tritici.


Further aspects and embodiments are as defined in the appended claims and in the detailed description below.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1. Yr5 and YrSP are allelic and paralogous to Yr7


(A) Left-Pictures of wild-type and selected EMS-derived susceptible mutant lines for Yr7, Yr5 and YrSP (Tables 2-3) inoculated with PST isolate 08/21 (Yr7), PST 80/11 (Yr5), PST 134 E16 A+ (YrSP). Candidate gene structures, with mutations shown with black bars, identified by RenSeq and their predicted effects on the translated protein are shown on the right. (B) Schematic representation of the physical and genetic interval of the Yr loci. Schematic representation of chromosome 2BL and the Yr loci is shown in grey with previously published SSR markers shown in black. Markers that we developed to confirm the genetic linkage between this locus and the candidate contigs are shown with black marks on the close-up underneath the chromosme. Yr loci mapping intervals are defined by the black horizontal lines. A more detailed genetic map is shown in FIG. 5.



FIG. 2: Yr7 and Yr5/YrSP encode integrated BED-domain resistance genes


(A) Schematic representation of the Yr7/Yr5/YrSP protein domain organisation. BED domains are highlighted in black, NB-ARC domains in dark grey, LRR motifs from NLR-Annotator in grey and manually annotated LRR motifs xxLxLxx in light grey. The sequence identity between YrSP and Yr5 is shown in light grey. Asterisks point the EMS-induced mutation positions. The plot shows the degree of amino acid conservation (50 AA rolling average) between Yr7 and Yr5 at the protein level based on the conservation diagram produced by Jalview (2.10.1) alignment viewer. Regions that correspond to the conserved domains have matching greyscale on the line. The amino acid changes between Yr5 and YrSP are annotated on the YrSP protein. (B) Five Yr5/YrSP haplotypes were identified in this study. Polymorphism are highlighted across the protein sequence with grey vertical bars for polymorphisms shared by at least two haplotypes and light grey vertical bars showing polymorphism that are unique to the corresponding haplotype. Matching greyscale across protein structures illustrate 100% sequence conservation.



FIG. 3: BED domains from BED-NLRs and non-NLR proteins are distinct


(A) Table representing the NLR counts in the syntenic region across genomes (see FIG. 6) showing their expansion in the Triticeae and the identification of BED-BED-NLRs. (B) WebLogo (http://weblogo.berkeley.edu/logo.cgi) diagram showing that the two BED domains from BED-BED-NLRs, BED-I and -II, are distant and only the highly conserved amino acids that define the BED domain (red bars) are conserved between the two types. (C) Gene structure most commonly observed for BED-NLRs and BED-BED-NLRs shows that BED is in most cases encoded by a single exon. (D) Neighbour-net analysis based on uncorrected P distances obtained from alignment of 153 BED domains (amino-acid sequences) extracted from the 108 BED-containing proteins (including 25 NLRs) from RefSeq v1.0. BED domains from NLRs located in the syntenic region defined in FIG. 6 and BED domains from Xal and ZBED from rice. BED_I and II clades are highlighted with the arc line, BED domains from the syntenic regions not related to either of these types are in dark grey. BED domains derived from non-NLR proteins are in black and BED domains from BED-NLRs outside the syntenic region are in light grey. For a better view, we removed the identifiers (see FIG. 8 for the detailed network). Seven BED domains from non-NLR proteins were close to BED domains from BED-NLRs.



FIG. 4: Identification of candidate contigs for the Yr loci using MutRenSeq


Annotated screen capture of RenSeq reads from the wild-type and mapping of EMS-derived mutants to the best candidate contig identified with MutantHunter for the three genes targeted in this study. From the top to the bottom: Vertical black lines represent the Yr loci, rectangles depict the motifs identified by NLR-Annotator (each motif is specific to a conserved NLR domain), while read coverage (grey histograms) is indicated on the left, e.g. [0-149], and the line from which the reads are derived on the right, e.g. CadWT for Cadenza wild-type. Vertical bars represent the position of SNP identified between the reads and reference assembly—dark grey shows C to T transitions and light grey G to A transitions. Black boxes highlight SNP for which the coverage was lower, but still superior to the 20x threshold used here.


The top screen capture shows the Yr7 allele annotated and before curation from the Cadenza genome assembly (Table 4). Light grey dashed lines illustrate the actual locus and the one that was formerly de novo assembled from Cadenza RenSeq data, lacking the 5′ region containing the BED domain and thus the Cad903 mutation. This locus was the only one for which all seven mutant lines carried a mutation. The middle screen capture illustrates the Yr5 locus annotated from the Lemhi-Yr5 de novo assembly. The results are similar to those described above for Yr7. The full locus was de novo assembled.



FIG. 5: Candidate contigs identified by MutRenSeq are genetically linked to the Yr loci mapping interval


Schematic representation of chromosome 2B from Chinese Spring (RefSeq v1.0) with the positions of published markers linked to the Yr loci and surrounding closely linked markers that were used to define their physical position (grey regions). Close-up of the physical locus indicating the positions of KASP markers that were used for the mapping (vertical bars Table 10). Light grey refers to Yr7, dark grey to Yr5 and grey to YrSP. The arrow points to the NLR cluster containing the best BLAST hits for Yr7 and Yr5/YrSP on RefSeq v1.0. Lines link the physical map to the corresponding genetic map for each targeted gene (see Methods). Values are expressed in centiMorgans.



FIG. 6: Expansion of BED-NLRs in the Triticeae and presence of BED-BED-NLRs whose BED domains are conserved across the syntenic region


Schematic representation of the physical loci containing Yr7 and Yr5/YrSP homologues on RefSeq v1.0 and its syntenic region based on gene content across RefSeq v1.0 subgenomes and selected grass genomes. Arrows represent loci. The syntenic region in other species was defined when three consecutive non-NLR genes had orthologues in the same order compared to chromosome 2BL outside the NLR cluster (see Methods). The syntenic region is bordered by conserved non-NLR genes (shown in light grey). Black arrows represent canonical NLRs and the different shades of grey arrows represent different types of BED-NLRs based on their BED domain and their relationship identified in FIG. 9. Grey lines link NLRs sharing more than 80% ID across more than 80% of their aligned sequence. Brown dashed lines represent the closest BED-NLR from the Triticeae to BED_I and II found in Brachypodium (Bd3 and Bd4, respectively).



FIG. 7: The Yr loci are phylogenetically related to surrounding NLRs on RefSeq v1.0 and their orthologs


Phylogenetic tree based on translated NB-ARC domains from the NLR-Annotator. Sequences were aligned using Muscle v3.8.13 with default parameters and the tree was built with the MPI version of the RAxML (v8.2.9) program. Node labels represent bootstrap values for 1,000 replicates. The tree was rooted at mid-point and visualized with Dendroscope v3.5.9. The greyscale pattern matches the one in FIG. 3 to highlight BED-NLRs with different BED domains. There was clear separation between NLRs belonging to the two different clusters but the sub-clades have less support. One explanation would be that conflicting phylogenetic signals due to events such as hybridization, horizontal gene transfer, recombination, or gene duplication and loss might have occured in the region. Split networks allow nodes that do not represent ancestral species and can thus represent such incompatible and ambiguous signals. We thus used this method in the following part of the analysis to analyse the relationship between the BED domains.



FIG. 8: Same Network as the one shown on FIG. 3 with the identifiers of all analysed proteins.



FIG. 9: BED-NLRs and BED-containing proteins are not differentially expressed in yellow rust-infected susceptible and resistant varieties


Heatmap representing the normalised read counts (Transcript Per Million, TPM) from the reanalysis of RNAseq data for all of the BED-containing proteins and BED-NLRs annotated on RefSeq v1.0. No expression is shown in white and expression levels increase from light grey to dark grey. Most BED-containing protein and BED-NLRs were not expressed at all in the analysed data. No striking pattern was observed for those that were expressed: difference were observed between varieties but these were independent of the presence of the yellow rust pathogen.



FIG. 10: Pedigrees of selected Thatcher-derived varieties and varieties known to carry Yr7 based on marker data.


The size of the circle is proportional to the prevalence of the variety in the tree. Greyscale illustrate the genotype with dark grey showing the absence of Yr7 and grey its presence. Varieties in light grey were not tested. Yr7 originated from Triticum durum cv. Iumillo and was introgressed into hexaploid wheat through Thatcher (top of the pedigree). All the varieties. Each variety positive for the Yr7 allele is related to a parent that was also positive for Yr7.



FIG. 11: Screen capture of the mapping of the Paragon RenSeq reads to the Cadenza NLR set showing that Paragon likely carries an identical version of Yr7



FIG. 12: Design of a allele-specific primer for Yr5. Yr5-Insertion PCR amplification products obtained from Yr5 donnor


Spelt and Yr5 Isogenic Lines AvocetS+Yr5 and Lemhi+Yr5, YrSP donor Spaldings Prolific and YrSP Isogenic Line AvocetS+YrSP, lines carrying alternate Yr5 alleles identified on FIG. 2 (Claire, Cadenza, Paragon), Negative controls AvocetS and Water. Molecular weight marker is the 2-log ladder from New England Biolab.





DETAILED DESCRIPTION OF THE INVENTION

In a first aspect the invention relates to an isolated nucleic acid encoding a nucleotide-binding and leucine-rich repeat (NLR) polypeptide comprising a zinc-finger BED domain, wherein expression of the NLR polypeptide in a plant confers or enhances resistance of the plant to a fungus, for example wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. tritici.


The isolated nucleic acid may be isolated from a plant, for example an Angiosperm such as Aegilops tauschii, Brachypodium distachyon, Oryza sativa, Triticum turgidum or Triticum aestivum.


The BED domain may have an amino acid sequence corresponding to SEQ ID NO: 1 (BED-I sequence SVVWEHFTITEKDNGKPVKAVCRHCGNEFKCDTKTNGTSSMKKHLENEHS) or a variant thereof (see for example BED-I variants and consensus sequence shown in FIG. 3A) or a functional fragment thereof.


The NLR polypeptide may comprise a leucine-rich repeat (LRR) motif at or near the C-terminus.


The NLR polypeptide may have an amino acid sequence comprising SEQ ID NO: 2 (Yr5 protein) or SEQ ID NO: 3 (Yr7 protein), or a variant or functional fragment of either, including variants described herein. For example, the isolated nucleic acid may have a nucleotide sequence comprising SEQ ID NO: 4 (Yr5 gene nucleotide sequence), or its corresponding cDNA sequence, SEQ ID NO: 5 (Yr7 gene nucleotide sequence), or its corresponding cDNA sequence, or variants or functional fragments thereof, including other alleles described herein.


Alternatively, the NLR polypeptide may have an amino acid sequence comprising SEQ ID NO: 6 (YrSP protein) or a variant or functional fragment thereof, including variants described herein. For example, the isolated nucleic acid may have a nucleotide sequence comprising SEQ ID NO: 7 (YrSP nucleotide sequence) or its corresponding cDNA sequence, or variants or functional fragments thereof, including other alleles described herein.


The NLR polypeptide may comprise a further zinc-finger BED domain, for example having an amino acid sequence comprising SEQ ID NO: 8 (BED-II sequence KAWDNFDVIEEENGQPIKARCKYCPTEIKCGPKSGTAGMLNHNKICKD) or a variant therefore (see for example BED-II variants and consensus sequence shown in FIG. 3A) or a functional fragment thereof.


In another aspect the invention relates to a nucleotide-binding and leucine-rich repeat (NLR) polypeptide comprising a zinc-finger BED domain, wherein expression of the NLR polypeptide in a plant confers or enhances resistance of the plant to a fungus, for example wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. tritici. The BED domain may have an amino acid sequence comprising SEQ ID NO: 1 (BED-I) or a variant or functional fragment thereof


Further features of the NLR polypeptide per se of the invention may be defined as above and herein.


In another aspect the invention relates to a vector comprising an isolated nucleic acid of the invention. The vector may further comprising a regulatory sequence which directs expression of the nucleic acid, for example a regulatory sequence selected from a constitutive promotor, a strong promoter, an inducible promoter, a stress promotor or a tissue specific promoter.


In yet another aspect, the invention relates to a host cell comprising a nucleic acid, an NLR polypeptide or a vector of the invention. The host cell may be a bacterial cell, a yeast cell, plant cell or other cell type.


In another aspect, the invention relates to a method of producing a transgenic plant or plant cell comprising introducing and expressing a nucleic acid or a vector according to the invention into a plant or plant cell, wherein introducing and expressing the nucleic acid or vector confers or enhances resistance of the plant or plant cell to a fungal pathogen such as wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. tritici.


The transgenic plant or plant cell may have resistance or enhanced resistance to the fungal pathogen compared to a plant or plant cell of the same species lacking the nucleic acid or vector. The term “transgenic plant” refers to a plant comprising such a transgene. A “transgenic plant” includes a plant, plant part, a plant cell or seed whose genome has been altered by the stable integration of recombinant DNA. A transgenic plant includes a plant regenerated from an originally-transformed plant cell and progeny transgenic plants from later generations or crosses of a transformed plant. As a result of such genomic alteration, the transgenic plant is distinctly different from the related wild type plant. An example of a transgenic plant is a plant described herein as comprising one or more of the nucleic acids of the disclosure, for example encoding Yr5, YrSP or Yr7 proteins or a functional variant thereof, typically as transgenic elements. For example, the transgenic plant includes one or more nucleic acids of the present disclosure as transgene, inserted at loci different from the native locus of the corresponding Yr5, YrSP or Yr7 gene(s). Accordingly, it is herein disclosed a method for producing a transgenic plant, wherein the method comprises the steps of

    • (i) transforming a parent plant with no or low resistance to a fungus,
    • (ii) selecting a plant comprising said one or more nucleic acid(s) of the invention as transgene(s),
    • (iii) regenerating and
    • (iv) growing said transgenic plant.


In specific embodiments, said transgenic plant is an Angiosperm such as Aegilops tauschii, Brachypodium distachyon, Oryza sativa, Triticum turgidum or Triticum aestivum.


For transformation methods within a plant cell, one can cite methods of direct transfer of genes such as direct micro-injection into plant embryos, vacuum infiltration or electroporation, direct precipitation by means of PEG or the bombardment by gun of particules covered with the plasmidic DNA of interest.


It is preferred to transform the plant cell with a bacterial strain, in particular Agrobacterium, in particular Agrobacterium tumefaciens. In particular, it is possible to use the method described by Ishida et al. (Nature Biotechnology, 14, 745-750, 1996) for the transformation of monocotyledons.


Descriptions of Agrobacterium vector systems and methods for Agrobacterium-mediated gene transfer are provided by Moloney et al., Plant Cell Reports 8:238 (1989). See also, U.S. Pat. No. 5,591,616 issued Jan. 7, 1997.


Alternatively, direct gene transfer may be used. A generally applicable method of plant transformation is microprojectile-mediated transformation wherein DNA is carried on the surface of microprojectiles measuring 1 to 4 micron. The expression vector is introduced into plant tissues with a biolistic device that accelerates the microprojectiles to speeds of 300 to 600 m/s which is sufficient to penetrate plant cell walls and membranes. Sanford et al., Part. Sci. Technol. 5:27 (1987), Sanford, J. C., Trends Biotech. 6:299 (1988), Klein et al., BioTechnology 6:559-563 (1988), Sanford, J. C., Physiol Plant 7:206 (1990), Klein et al., BioTechnology 10:268 (1992). Several target tissues can be bombarded with DNA-coated microprojectiles in order to produce transgenic plants, including, for example, callus (Type I or Type II), immature embryos, and meristematic tissue.


Following transformation of plant target tissues, expression of the selectable marker genes allows for preferential selection of transformed cells, tissues and/or plants, using regeneration and selection methods now well known in the art.


The foregoing methods for transformation would typically be used for producing a transgenic plant including the nucleic acids of the invention as transgenic element(s).


The transgenic plant could then be crossed, with another (non-transformed or transformed) inbred line, in order to produce a new transgenic line. Alternatively, a genetic trait which has been engineered into a particular line using the foregoing transformation techniques could be moved into another line using traditional backcrossing techniques that are well known in the plant breeding arts. For example, a backcrossing approach could be used to move an engineered trait from a public, non-elite inbred line into an elite inbred line, or from an inbred line containing a foreign gene in its genome into an inbred line or lines which do not contain that gene. As used herein, “crossing” can refer to a simple X by Y cross, or the process of backcrossing, depending on the context.


When the term transgenic plant is used in the context of the present disclosure, this also includes any plant including, as a transgenic element one or more of nucleic acids of the invention and wherein one or more desired traits have further been introduced through backcrossing methods, whether such trait is a naturally occurring one or a transgenic one. Backcrossing methods can be used with the present invention to improve or introduce one or more characteristic into the inbred. The term backcrossing as used herein refers to the repeated crossing of a hybrid progeny back to one of the parental plants. The parental plant which contributes the gene or the genes for the desired characteristic is termed the nonrecurrent or donor parent. This terminology refers to the fact that the nonrecurrent parent is used one time in the backcross protocol and therefore does not recur. The parental plant to which the gene or genes from the nonrecurrent parent are transferred is known as the recurrent parent as it is used for several rounds in the backcrossing protocol (Fehr et al, 1987).


In a typical backcross protocol, the recurrent parent is crossed to a second nonrecurrent parent that carries the gene or genes of interest to be transferred. The resulting progeny from this cross are then crossed again to the recurrent parent and the process is repeated until a plant is obtained wherein all the desired morphological and physiological characteristics of the recurrent parent are recovered in the converted plant in addition to the gene or genes transferred from the nonrecurrent parent. It should be noted that some, one, two, three or more, self-pollination and growing of a population might be included between two successive backcrosses.


In another aspect the invention relates to a method for producing a non-transgenic plant or plant cell having resistance or enhanced resistance to a fungal pathogen, the method comprising mutating or editing the genomic material of the plant or plant cell to comprise a nucleic acid of the invention.


An aspect of the present disclosure relates to a DNA fragment of the corresponding nucleic acids of the invention (either from naturally occurring coding sequence, or improved sequence, such as codon optimized sequence) combined with genome editing tools (such TALENs, CRISPR-Cas, Cpf1 or zing finger nuclease tools) to target the corresponding Yr5, YrSP or Yr7 genes within the wheat plant genome by insertion at any locus in the genome or by partial or total allele replacement at the corresponding locus.


In particular, the disclosure relates to a genetically modified (or engineered) plant, wherein the method comprises the steps of genetically modifying a parent plant to obtain in their genome one or more nucleic acids of the invention, preferably by genome-editing, selecting a plant comprising said one or more one or more nucleic acids as genetically engineered elements, regenerating and growing said wheat genetically engineered plant.


As used herein, the term “genetically engineered element” refers to a nucleic acid sequence present in the genome of a plant and that has been modified by mutagenesis or by genome-editing tools, preferentially by genome-editing tools. In specific embodiments, a genetically engineered element refers to a nucleic acid sequence that is not normally present in a given host genome in the genetic context in which the sequence is currently found but is incorporated in the genome of plant by use of genome-editing tools. In this respect, the sequence may be native to the host genome, but be rearranged with respect to other genetic sequences within the host genomic sequence. For example, the genetically engineered element is a Yr5, YrSP or Yr7 gene that is rearranged at a different locus as compared to a native gene. Alternatively, the sequence is a native coding sequence that has been placed under the control of heterologous regulatory sequences.


In specific embodiments, said genetically engineered plant is an Angiosperm such as Aegilops tauschii, Brachypodium distachyon, Oryza sativa, Triticum turgidum or Triticum aestivum.


The term “genetically engineered plant” or “genetically modified plant” refers to a plant comprising such genetically engineered element. A “genetically engineered plant” includes a plant, plant part, a plant cell or seed whose genome has been altered by the stable integration of recombinant DNA. As used herein, the term “genetically engineered plant” further includes a plant, plant part, a plant cell or seed whose genome has been altered by genome editing techniques. A genetically engineered plant includes a plant regenerated from an originally-engineered plant cell and progeny of genetically engineered plants from later generations or crosses of a genetically engineered plant. As a result of such genomic alteration, the genetically engineered plant is distinctly different from the related wild type plant. An example of a genetically engineered plant is a plant comprising mutated versions of Yr5, YrSP or Yr7 encoding genes. In another embodiment, the genetically engineered plant includes the nucleic acids as genetically engineered elements, inserted at loci different from the native locus of the corresponding Yr5, YrSP or Yr7 gene(s).


In specific embodiments, said genetically engineered plants do not include plants which could be obtained exclusively by means of an essentially biological process.


Said one or more genetically engineered element(s) enables the expression of polypeptides which restore or improve resistance to certain fungus, in particular resistance to a fungal pathogen such as wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. Tritici, as compared to the parent plant which do not comprise the genetically engineered element(s). Typically, said genetically engineered plant is a wheat plant, comprising, as the genetically engineered elements, a mutated version of Yr5, YrSP or Yr7 encoding gene, and said genetically engineered plant has an improved resistance to a fungal pathogen such as wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. Tritici.


Such genetically engineered plant with improved resistance may be screened by exposing a variety of genetically engineered plant having distinct mutated versions of Yr5, YrSP or Yr7 encoding gene, to a fungal pathogen such as wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. Tritici and selecting the plants which present improved resistance to said fungal pathogen.


In specific embodiments, a genetically engineered element includes an Yr5, YrSP or Yr7 encoding nucleic acid under the control of expression elements as promoter and/or terminator.


Another aspect of the disclosure relates to a genetically engineered wheat plant, which comprises the modification by point mutation, insertion or deletion of one or few nucleotides of an Yr5, YrSP or Yr7 encoding nucleic acid, as genetically engineered element, into the respectively Yr5, YrSP or Yr7 locus, by any of the genome editing tools including base-editing tool as described in WO2015089406 or by mutagenesis.


The present disclosure further includes methods for improving resistance to a funal pathogen in a plant by genome editing, comprising providing a genome editing tool capable of replacing partially or totally an Yr5, YrSP or Yr7 encoding nucleic acid or form in a plant by its corresponding mutated sequence as disclosed herein which confer improved resistance to said fungal pathogen when expressed in said plant.


Such genome editing tool includes without limitation targeted sequence modification provided by double-strand break technologies such as, but not limited to, meganucleases, ZFNs, TALENs (WO2011072246) or CRISPR CAS system (including CRISPR Cas9, WO2013181440), Cpfl or their next generations based on double-strand break technologies using engineered nucleases.


In another aspect, the invention relates to a plant or plant cell obtained or obtainable by a method of the invention. The plant or plant cell may be a crop plant or plant cell or a biofuel plant or plant cell, for example selected from maize, wheat, tobacco, oilseed rape, sorghum, soybean, potato, tomato, grape, barley, pea, bean, field bean, lettuce, cotton, sugar cane, sugar beet, broccoli or other vegetable brassicas or poplar.


In another aspect, the invention relates to a seed of the plant of the invention wherein the seed comprises a nucleic acid or an NLR polypeptide of the invention. The seed may be a wheat seed.


In another aspect, the invention relates to a method of limiting wheat yellow (stripe) rust in agricultural crop production, the method comprising planting a wheat seed as according to the invention and growing a wheat plant under conditions favourable for the growth and development of the wheat plant.


In another aspect, the invention relates to a method for identification or selection of an organism such as plant having resistance to a fungus such as wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. tritici, comprising the step of screening the organism for the presence or absence of: (1) a nucleic acid as defined according to the invention; and/or (2) an NLR polypeptide according to the invention, wherein presence of the nucleic acid or the NLR polypeptide indicates resistance.


Accordingly, it is disclosed herein the means for specifically detecting the nucleic acids of the present invention in a wheat plant.


Such means include for example a pair of primers for the specific amplification of a fragment nucleotide sequence specific of the nucleic acids of the invention in the plant genomic DNA.


As used herein, a primer encompasses any nucleic acid that is capable of priming the synthesis of a nascent nucleic acid in a template-dependent process, such as PCR. Typically, primers are oligonucleotides from 10 to 30 nucleotides, but longer sequences can be employed. Primers may be provided in double-stranded form though single-stranded form is preferred.


Alternatively, nucleic acid probe can be used for the specific detection of any one of the nucleic acids.


As used herein, a nucleic acid probe encompass any nucleic acid of at least 30 nucleotides and which can specifically hybridizes under standard stringent conditions with a defined nucleic acid. Standard stringent conditions as used herein refers to conditions for hybridization described for example in Sambrook et al 1989 which can comprise 1) immobilizing plant genomic DNA fragments or library DNA on a filter 2) prehybridizing the filter for 1 to 2 hours at 65° C. in 6× SSC 5× Denhardt's reagent, 0.5% SDS and 20 mg/ml denatured carrier DNA 3) adding the probe (labeled) 4) incubating for 16 to 24 hours 5) washing the filter once for 30 min at 68° C. in 6× SSC, 0.1% SDS 6) washing the filter three times (two times for 30 min in 30 ml and once for 10 min in 500 ml) at 68° C. in 2× SSC 0.1% SDS. The nucleic acid probe may further comprise labeling agent, such as fluorescent agents covalently attached to the nucleic acid part of the probe.


In certain embodiments, said nucleic acid probe is a fragment of at least 20 bp, 30 bp, 40 bp, 50 bp, 60 bp, 70 bp, 80 bp, 90 bp, 100 bp, 110 bp, 120 bp, 130 bp, 140 bp, 150 bp, 160 bp or the whole fragment of any of SEQ ID NO:4, 5 or 7.


References to “variant” include a genetic variation in the native, non-mutant or wild type sequence. Examples of such genetic variations include mutations selected from: substitutions, deletions, insertions and the like.


More generally, as used herein the term “polypeptide” refers to a polymer of amino acids. The term does not refer to a specific length of the polymer, so peptides, oligopeptides and proteins are included within the definition of polypeptide. The term “polypeptide” may include polypeptides with post-expression modifications, for example, glycosylations, acetylations, phosphorylations and the like. Included within the definition of “polypeptide” are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids), polypeptides with substituted linkages, as well as other modifications known in the art both naturally occurring and non-naturally occurring.


As used herein, a “functional variant or homologue” is defined as a polypeptide or nucleotide with at least 50% sequence identity, for example at least 55% sequence identity, at least 60% sequence identity, at least 65% sequence identity, at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity with the reference sequence.


Sequence identity between nucleotide or amino acid sequences can be determined by comparing an alignment of the sequences. When an equivalent position in the compared sequences is occupied by the same base or amino acid, then the molecules are identical at that position. Scoring an alignment as a percentage of identity is a function of the number of identical amino acids or bases at positions shared by the compared sequences. When comparing sequences, optimal alignments may require gaps to be introduced into one or more of the sequences to take into consideration possible insertions and deletions in the sequences. Sequence comparison methods may employ gap penalties so that, for the same number of identical molecules in sequences being compared, a sequence alignment with as few gaps as possible, reflecting higher relatedness between the two compared sequences, will achieve a higher score than one with many gaps. Calculation of maximum percent identity involves the production of an optimal alignment, taking into consideration gap penalties.


Suitable computer programs for carrying out sequence comparisons are widely available in the commercial and public sector. Examples include MatGat (Campanella et al., 2003, BMC Bioinformatics 4: 29; program available from http://bitincka.com/ledion/matgat), Gap (Needleman & Wunsch, 1970, J. Mol. Biol. 48: 443-453), FASTA (Altschul et al., 1990, J. Mol. Biol. 215: 403-410; program available from http://www.ebi.ac.uk/fasta), Clustal W 2.0 and X 2.0 (Larkin et al., 2007, Bioinformatics 23: 2947-2948; program available from http://www.ebi.ac.uk/tools/clustalw2) and EMBOSS Pairwise Alignment Algorithms (Needleman & Wunsch, 1970, supra; Kruskal, 1983, In: Time warps, string edits and macromolecules: the theory and practice of sequence comparison, Sankoff & Kruskal (eds), pp 1-44, Addison Wesley; programs available from http://www.ebi.ac.uk/tools/emboss/align). All programs may be run using default parameters.


For example, sequence comparisons may be undertaken using the “Needle” method of the EMBOSS Pairwise Alignment Algorithms, which determines an optimum alignment (including gaps) of two sequences when considered over their entire length and provides a percentage identity score. Default parameters for amino acid sequence comparisons (“Protein Molecule” option) may be Gap Extend penalty: 0.5, Gap Open penalty: 10.0, Matrix: Blosum 62. Default parameters for nucleotide sequence comparisons (“DNA Molecule” option) may be Gap Extend penalty: 0.5, Gap Open penalty: 10.0, Matrix: DNAfull.


In one aspect of the invention, the sequence comparison may be performed over the full length of the reference sequence.


Particular non-limiting embodiments of the present invention will now be described in detail.


EXAMPLES
Example 1

Introduction


Here we isolate and characterise three major yellow rust resistance genes (Yr7, Yr5, and YrSP) effective in hexaploid wheat (Triticum aestivum), each having a distinct and unique recognition specificity. We show that Yr5, which remains effective to a broad range of PST isolates worldwide, is allelic to YrSP and paralogous to Yr7, both of which have been overcome by multiple PST isolates. All three Yr genes belong to a complex gene cluster on chromosome 2B encoding nucleotide-binding and leucine-rich repeat proteins (NLRs) with a non-canonical N-terminal zinc-finger BED domain that is distinct from those found in non-NLR wheat proteins. We developed and tested diagnostic markers to accelerate haplotype analysis and marker-assisted selection for breeding, enabling stacking of the non-allelic Yr genes. Our results provide evidence that the BED-NLR gene architecture can provide effective field-based resistance to important fungal diseases such as wheat yellow rust.


Results and Discussion


To clone the genes encoding Yr5, Yr7 and YrSp, we identified ethyl methanesulfonate-derived susceptible mutants from different genetic backgrounds carrying these genes (FIG. 1, Tables 2-3). We performed MutRenSeq (see Methods) and identified a single candidate contig for each of the three genes based on nine, ten, and four independent susceptible mutants, respectively (FIG. 1A and FIG. 4). The three candidate contigs were genetically linked to a common mapping interval previously identified for the three Yr loci. Additionally, their closest homologs in the Chinese Spring wheat genome sequence (RefSeq, https://wheat-urgi.versailles.inra.fr/Seq-Repository/Assemblies) lie between the flanking markers defining the genetic mapping interval (FIG. 1B and 5). Within each contig we predicted a single open reading frame based on RNA-Seq data. All three predicted Yr genes displayed similar exon-intron structures (FIG. 1A), although YrSP was truncated in exon 3 due to a single bp deletion that results in a premature termination codon. The DNA sequences of Yr7 and Yr5 were 77.9% identical across the complete gene, whereas YrSP was a truncated version of Yr5, sharing 99.8% identity in the common sequence. This suggests that Yr5 and YrSP are encoded by alleles of the same gene, but are paralogous to Yr7. The 23 mutations identified by MutRenSeq were confirmed by Sanger sequencing and lead to either an amino acid substitution or a truncation allele (splice junction or termination codon)(FIG. 1A, Table 3). Taken together, the mutant and genetic analyses demonstrate that these two genes encode for Yr7 and Yr5/YrSP.


The Yr7, Yr5 and YrSP proteins contain a zinc-finger BED domain at the N-terminus, followed by the canonical NB-ARC domain. Only Yr7 and Yr5 proteins encode multiple LRR motifs at the C-terminus. YrSP lost most of the LRR region due to the presence of a premature termination codon in exon 3 (FIG. 2A). However, YrSP still confers functional resistance to PST, although having a different recognition specificity to Yr5. Yr7 and Yr5/YrSP are highly conserved in the N-terminus, with a single amino-acid change in the BED domain, but this high degree of conservation is eroded after the BED domain (FIG. 2A). The BED domain is required for Yr7-mediated resistance, as a single amino acid change in the mutant line Cad0903 led to a susceptible reaction (FIG. 1A). However, recognition specificity is not solely governed by the BED domain, as the Yr5 and YrSp alleles have identical BED domain sequences and yet confer resistance to different PST isolates.


We examined the allelic variation in Yr7 and Yr5/YrSP across eight sequenced tetraploid and hexaploid wheat genomes (Table 4). Yr7 was originally derived from tetraploid durum wheat (T. turgidum ssp. durum) cultivar Iumillo and was spread globally through hexaploid cultivar Thatcher. We identified Yr7 only in Cadenza (Thatcher-derived) and Paragon, which is identical by descent to Cadenza in this interval (Table 5a and b). None of the three sequenced tetraploid accessions (Svevo, Kronos, Zavitan) carried Yr7.


For Yr5/YrSP, we identified three additional alleles in the sequenced hexaploid wheat cultivars (Table 5a and b). Claire encodes a complete NLR with only six amino-acid changes situated outside the three conserved domains (BED, NB-ARC and LRRs) and six polymorphisms in the C-terminus compared to Yr5. Robigus, Paragon and Cadenza also encode a full length NLR which shares common polymorphisms with Claire in addition to 19 amino acid substitutions across the BED and NB-ARC domains. Tetraploid Kronos and Svevo encode a fifth Yr5/YrSP protein with a truncation in the LRR region distinct from YrSP, in addition to multiple amino acid substitutions in the C-terminus. This truncated tetraploid allele is reminiscent of YrSP and is expressed in Kronos (see Methods). None of these varieties exhibit a typical Yr5 resistance response, suggesting that these amino acid changes/truncations may alter recognition specificity or protein function.


We designed diagnostic markers for Yr5 and Yr7 to facilitate their detection and use in breeding. We confirmed their presence in the donor cultvars Thatcher and Lee (Yr7), Spaldings Prolilic (YrSP), and spelt wheat cv. Album (Yr5) (Tables 10-12; FIGS. 10 and 12). To further define their specificity, we tested the markers in a collection of global landraces and European varieties released over the past one hundred years. Yr5 was only present in spelt cv. Album, AvocetS-Yr5, and Lemhi-Yr5 and was not detected in any other line (Table 19), consistent with the fact that Yr5 has not yet been deployed within European breeding programmes. Yr7 on the otherhand was more prevalent in the germplasm tested and we could track its presence across pedigrees including Cadenza derived cultivars (see Tables 11-15; FIG. 10).


We defined the Yr7/Yr5/YrSP syntenic interval across the wheat genomes and related grass species Aegilops tauschii (D genome progenitor), Hordeum vulgare (barley), Brachypodium distachyon and Oryza sativa (rice) (FIG. 6). We identified both canonical NLRs as well as integrated BED-NLRs across all genomes and species, except for barley, which contained only canonical NLRs across the syntenic region. The phylogenetic relationship based on the NB-ARC domain suggests a common evolutionary origin of these integrated domain NLR proteins before the wheat-rice divergence (50 Mya) and an expansion in the number of NLRs in the A and B genomes of polyploid wheat species (FIG. 7, FIG. 3A). Within the interval we also identified several genes in the A, B and D genomes that encode two consecutive in-frame BED domains in frame (herein named BED_I and BED_II) followed by the canonical NLR. These double BED domain genes had each BED domain fully encoded within a single exon (exons 2 and 3) and in most cases had a four-exon structure (FIG. 3B). This is consistent with the three exon structure of single BED domain genes, such as Yr7 and Yr5/YrSP (BED_I type encoded on exon 2). Very few amino acids were conserved between BED_I and II (FIG. 3B). To our knowledge this is the first report of the double BED domain NLR protein structure to date. The biological function of this molecular innovation remains to be determined, although our data show that the single BED_I structure can confer PST resistance and is required for Yr7-mediated resistance.


Among other mechanisms, integrated domains of NLRs are hypothesised to act as decoys for their intended effector targets. This would suggest that the integrated domain might be sequence-related to the host protein targeted by the effector. To identify potential host targets of AvrYr7, AvrYr5 and AvrYrSP, we retrieved all BED-domain proteins (108) from the wheat genome, including 25 BED-NLRs, and additional BED-NLRs located in the syntenic intervals (Table 6). We also retrieved the rice Xal and ZBED proteins, the latter being hypothesized to act in rice resistance against Magnaporthe. oryzae. We used the split network method implemented in Splitstree4 to represent the relationships between these BED domains (FIG. 3C, FIG. 8). We found a major split in the network, with almost all wheat non-NLR BED proteins (76 of 83) clustering together at one end and the BED-NLRs proteins of wheat and other analysed species at the other end. This clear separation is consistent with the hypothesis that integrated domains might have evolved to strengthen the interaction with the effector after integration. Among BED-NLRs, BED_I and BED_II constitute two major clades that are comprised solely of genes from within the Yr7/Yr5/YrSP syntenic region. The seven non-NLR BED domain wheat proteins that clustered with BED-NLRs are most closely related to the Brachypodium and rice proteins and were not expressed in RNA-Seq data from a Yr5-mediated resistance vs susceptible time-course (FIG. 9, Table 12). Similarly, no BED-containing protein was differentially expressed during this infection time-course. This is consistent with the prediction that effectors alter their targets' activity at the protein level. However, we cannot disprove that these closely related BED-containing proteins are involved in BED-NLRs-mediated resistance.


BED-NLRs are frequent in Triticeae and occur in other monocot and dicot tribes. However, only a single BED-NLR gene, Xa1, had been previously shown to confer resistance to plant pathogens. In the present study, we show that the distinct Yr5, YrSP, and Yr7 resistance specificities belong to a complex NLR cluster on chromosome 2B and are encoded by two BED-NLRs genes which are paralogous. We report an allelic series for the Yr5/YrSP gene with five independent alleles including three full-length BED-NLRs (including Yr5) and two truncated versions (including YrSP). This wider allelic series could be of functional significance as previously shown for the Mla and Pm3 loci that confer resistance to Blumeria graminis in barley and wheat, respectively, and the flax L locus conferring resistance to Melampsora lini. Overall, our results add strong evidence for the importance of the BED-NLR architecture in plant-pathogen interactions. The paralogous and allelic relationship of these three distinct Yr loci will inform future hypothesis-driven engineering of novel recognition specificities.


Methods


1.1. MutRenSeq


Mutant Identification


Table 2 summarises plant materials and PST isolates used for each Yr gene. We used an ethyl methanesulfonate (EMS)-mutagenised population in cultivar Cadenza to identify mutants in Yr7, whereas EMS-populations in the corresponding AvocetS-Yr near isogenic line (NIL) were used to identify Yr5 and YrSP mutants. For Yr7, we inoculated M3 plants from the Cadenza EMS population with PST isolate 08/21 which is virulent to Yr1, Yr2, Yr3, Yr4, Yr6, Yr9, Yr17, Yr27, Yr32, YrRob, and YrSol. We hypothesised that susceptible mutants would carry mutations in Yr7. Plants were grown in 192-well trays in a confined glasshouse with no supplementary lights or heat. Inoculations were performed at the one leaf stage (Z11) with a talc-urediniospore mixture. Trays were kept in darkness at 10° C. and 100% humidity for 24 hours. Infection types (IT) were recorded 21 days post-inoculation following the Grassner and Straib scale. Identified susceptible lines were progeny tested to confirm the reliability of the phenotype and DNA from M4 plants was used for RenSeq (see section below). Similar methods were used for AvocetS+Yr7, AvocetS+Yr5 and AvocetS+YrSp EMS-mutagenised populations with the following exceptions: PST pathotypes 108 E141 A+ (University of Sydney Plant Breeding Institute Culture no. 420),150 E16 A+(Culture no. 598) and 134 E16 A+(Culture no. 572) were used, respectively. EMS-derived susceptible mutants in Lehmi+Yr5 were previously identified and DNA from M5 plants was used for RenSeq.


DNA Preparation and Resistance Gene Enrichment and Sequencing (RenSeq)


We extracted total genomic DNA from young leaf tissue using the large-scale DNA extraction protocol from the McCouch Rice Lab (https://ricelab.plbr.cornell.edu/dna_extraction). Total genomic DNA of all Avocet mutants and wild-types were extracted following a previously described method. We checked DNA quality and quantity on a 0.8% agarose gel and with a NanoDrop spectrophotometer (Thermo Scientific). Arbor Biosciences (Ann Arbor, Mich., USA) performed the targeted enrichment of NLRs according to the MYbaits protocol and using an improved version of the Triticeae bait library. Library construction was performed using the TruSeq RNA protocol v2 (Illumina 15026495). Libraries were pooled—one pool of samples for Cadenza mutants and one of eight samples for the Lemhi+Yr5 parent and Lemhi+Yr5 mutants. AvocetS+Yr5 and AvocetS+YrSP wild type together with their respective mutants were also processed according to the aforementioned MYbaits protocol and the same bait library were used. All enriched libraries were sequenced on a HiSeq 2500 (Illumina) in High Output mode using 250 bp paired end reads and SBS chemistry. We used Cadenza wild-type data previously generated on an Illumina MiSeq instrument.


In addition to the mutants, we also generated RenSeq data for Kronos and Paragon to confirm the presence of the Yr5 allele in Kronos and the Yr7 gene in Paragon


Details of all the lines sequenced is available in Table 3 and sequencing details are in Table 8.


1.2. MutantHunter Pipeline


We adapted the pipeline from https://github.com/steuernb/MutantHunter/to identify candidate contigs for the targeted Yr genes. First, we trimmed the RenSeq-derived reads with trimmomatic and the following parameters: ILLUMINACLIP:TruSeq2-PE.fa:2:30:10 LEADING:30 TRAILING:30 SLIDINGWINDOW:10:20 MINLEN:50 (v0.33). We made de novo assemblies of wild-type plant trimmed reads with the CLC assembly cell and default parameters apart from the word size (-w) parameter that we set to 64 (v5.0, http://www.cicbio.com/products/c1c-assembly-cell!, Table 9). We then followed the MutantHunter pipeline detailed at https://github.com/steuernb/MutantHunter/. For Cadenza mutants, we used the following MutantHunter program parameters to identify candidate contigs: -c 20-n 6-z 1000, that translates into SNPs with at least 20x coverage, six susceptible mutants must have a mutation in the contig to report it as candidate, and small deletions were filtered out by setting the number of coherent positions with zero coverage to call a deletion mutant at 1000. The -n parameter was modified accordingly in subsequent runs with the Lemhi+Yr5 (−n 6). For identifying Yr5 and YrSP contigs from Avocet mutants, we followed the aforementioned MutantHunter with all default parameters, except the use of CLC Genomics Workbench (v10) for reads QC and trimming, as well as de novo assemblies of Avocet wild-type and mapping all reads against de novo assembly of wild-type. The MutantHunter programme parameters were set all as default except for −z was set as 100. The parameter −n was set for two as the first run and then three as the second run. Regarding Yr5, two mutants were sibling lines as they carried the same mutation at identical positions (FIG. 4, Table 3).


For Yr7 we identified a single contig with six mutations, however we did not identify mutations in line Cad0903. Upon examination of the Yr7 candidate contig we predicted that the 5′ region was likely missing (FIG. 4). We thus annotated potential NLRs in the Cadenza genome assembly available from the Earlham Institute (Table 4, http://opendata.earlham.ac.uk/Triticum aestivum/EI/v1.1) with the NLR-Annotator program with standard parameters (https://github.com/steuernb/NLR-Annotator). We identified an annotated NLR in the Cadenza genome with 100% sequence identity to the Yr7 candidate contig, but that extended beyond the available sequence. We therefore replaced the previous candidate contig with the extended Cadenza sequence (100% sequence identity) and mapped the RenSeq reads from the Cadenza wild-type and mutants the same way as above. This confirmed the candidate for Yr7 as we retrieved the missing 5′ region including the BED domain, and confirmed a mutation in the outstanding mutant line Cad0903 (FIG. 4).


The Triticeae bait library does not include integrated domains in its design so they are prone to be missed, especially when located at the ends of an NLR. Sequencing technology could also have accounted for this: MiSeq was used for Cadenza wild-type whereas HiSeq was chosen for Lemhi-Yr5 and we did not observe the missing 5′ region in the latter, although coverage was lower than the regions encoding for canonical domains.


In summary, we sequenced nine, ten and four mutants for Yr7, Yr5 and YrSP and identified a single contig for each target gene which accounted for all the mutations.


1.3. Candidate Contig Confirmation and Gene Annotation


We sequenced the three candidate contigs to confirm the EMS-derived mutations using primers documented in Table 10. We first PCR-amplified the full locus from the same DNA preparations as the ones submitted for RenSeq with the Phusion® High-Fidelity DNA Polymerase (New England Biolabs) following the provider's protocol (https://www.neb.com/protocols/0001/01/01/per-protocol-m0530). We then carried out nested PCR on the obtained product to generate overlapping 600-1,000 bp amplicons that were purified using the MiniElute kit (Qiagen). The purified PCR products were sequenced by GATC following the LightRun protocol (https://www.gatc-biotech.com/shop/en/lightrun-tube-barcode.html). Resulting sequences were aligned to the wild-type contig using ClustalOmega (https://www.ebi.ac.uk/Tools/msa/clustalo/). This allowed us to curate the Yr7 locus in the Cadenza assembly that has two ‘N’ in its sequence, corresponding to a 39 bp insertion and a 129 bp deletion, and confirm the presence of the mutations in each mutant line.


We used HISATt2 (v2.1) to map RNA-Seq reads available from Cadenza and AvocetS-Yr5 onto the RenSeq de novo assemblies with curated loci to define the gene structure of the genes. We used the following parameters: —no-mixed—no-discordant to map read in pairs only. We used the—novel-splicesite-outfile to predict splicing sites which we manually checked with the genome visualisation tool IGV (v2.3.79). Predicted CDS were then translated using the ExPASy online tool (https://web.expasy.org/translate/). This allowed us to predict the effect of the mutations for each candidate gene (FIG. 1A). The long-range primers for both Yr7 and Yr5 loci were then used on the corresponding susceptible Avocet NIL mutants to determine whether the genes were present and carried mutations in that background (FIG. 1A).


1.4. Genetic Linkage Experiments


We generated a set of F2 populations to genetically map the candidate contigs (Table 2). For Yr7 we developed an F2 population based a cross between the susceptible mutant line Cad0127 to the Cadenza wild type control (population size 139 individuals). For Yr5 and YrSp we developed F2 populations between AvocetS and the NILs carrying the corresponding Yr gene (94 individuals for YrSp and 376 for Yr5). We extracted DNA from leaf tissue at the seedling stage (Z11). Rqtl package was used to produce the genetic map based on a general likelihood ratio test and genetic distances were calculated from recombination frequencies (v1.41-6).


We used markers linked to Yr7, Yr5, YrSP (WMS526, WMS501 and WMC175, WMC332, respectively) in addition to closely linked markers WMS120, WMS191 and WMC360 (based on the GrainGenes database https://wheat.pw.usda.gov/GG3/) to define the physical region on RefSeq v1.0. Two different approaches were used for genetic mapping depending on the material. For Yr7, we used the public data for Cad0127 (www.wheat-tilling.com) to identify nine mutations located within the Yr7 physical interval based on BLAST analysis against RefSeq v1.0. We used KASP primers when available and manually designed additional ones including an assay targeting the Cad0127 mutation in the Yr7 candidate contig (Table 10). We genotyped the Cad0127 F2 populations using these ten KASP assays and confirmed genetic linkage between the Cad0127 Yr7 candidate mutation and the nine mutations across the physical interval (FIG. 5).


For Yr5 and YrSP, we first aligned the candidate contigs to the best BLAST hit in an AvocetS RenSeq de novo assembly. We then designed KASP primers targeting polymorphism between these sequences and used them to genotype the corresponding F2 population. We also used markers polymorphic between parental lines to determine the presence of Yr5/YrSP in breeding material (Table 10). For both candidate contigs we confirmed genetic linkage with the genetic intervals for these Yr genes (FIG. 5).


1.5. Yr7 Gene-Specific Markers


We aligned the Yr7 sequence with the best BLAST hits in the genomes listed on Table 2 and designed KASP primers targeting polymorphisms that were Yr7-specific. Three markers were retained after testing on a selected panel of Cadenza-derivatives and varieties that were positive for Yr7 markers in the literature, including the Yr7 reference cultivar Lee (Table 10 for the primers, Tables 11 and 12 for the results). The panel of Cadenza-derivatives was phenotyped with three PST isolates: PST 08/21 (Yr7-avirulent), PST 15/151 (Yr7-avirulent—virulent to Yr1,2,3,4,6,9,17,25,32,Rendezvous, Sp, Robigus, Solstice) and PST 14/106 (Yr7-virulent, virulent to Yr1,2,3,4,6,7,9,17,25,32, Sp, Robigus, Solstice, Warrior, Ambition, Cadenza, KWS Sterling, Apache) to determine whether Yr7-positive varieties as determined by the three KASP markers displayed a consistent specificity. Pathology assays were performed as for the screening of the Cadenza mutant population. We retrieved pedigree information for the analysed varieties from the Genetic Resources Information System for Wheat and Triticale database (GRIS, www.wheatpedigree.net) and used the Helium software (v1.17) to illustrate the breeding history of Yr7 in the UK (FIG. 10).


We used the three Yr7 KASP markers to genotype (i) varieties from the AHDB Wheat Recommended List from 2005-2018 (https://cereals.andb.org.uk/varieties/andb-recommended-lists.aspx); (ii) the Gediflux collection that gathers European bread wheat varieties released between 1920 and 2010 and (iii) the core Watkins collection, which represents a global set of wheat landraces collected in the 1930s. Results are reported in Tables 13-15.


Yr5 Gene-Specific Markers


We identified a 774 bp insertion in the Yr5 allele 29 bp upstream the STOP codon with respect to the Cadenza and Claire alleles. gDNA from YrSP confirmed that the insertion was specific to Yr5.


We used this polymorphism to design primers flanking the insertion and tested them on a subset of the collections mentioned above. We included DNA from Triticum aestivum ssp. spelta var. Album (Yr5 donor) and Spaldings Prolific (YrSP donor) to assess their amplification profiles. PCR amplification was conducted using a touchdown programme with the first 10 cycles from 67° C. to 62° C. (−0.5° C. per cycle) and the remaining 25 cycles at 62° C. This allowed to increase the specificity of the reaction. We observed three different profiles on the tested varieties (i)1,281 bp amplicon in Yr5 positive cultivars, (ii) 507 bp amplicon in the alternate Yr5 alleles carriers including YrSP, Cadenza and Claire and (iii) no amplification in other varieties. We sequenced the different amplicons and confirmed the insertion in Yr5 compared to the alternate alleles. The lack of amplicon in some varieties might respresent the absence of the loci in the tested varieties.


1.6. In Silico Allele Mining for Yr7 and Yr5


We used the Yr7 and Yr5 sequences to retrieve the best BLAST hits in the T. aestivum and T. turgdium wheat genomes listed in Table 4. The best Yr5 hits shared between 93.6 and 99.3% sequence identity, which was comparable to what was observed for alleles derived from the barley Pm3 (>97% identity) and flax L (>90% identity) genes. Yr7 was identified only in Paragon and Cadenza (Table 5a and b; see FIG. 11 for curation of the Paragon sequence).


1.7. Analysis of the Yr7 and Yr5/YrSP Cluster on RefSeq v1.0


Definition of Syntenic Regions Across Grass Genomes


We used NLR-Annotator to identify putative NLR loci on RefSeq v1.0 chromosome 2B and identified the best BLAST hits to Yr7 and Yr5 on RefSeq v1.0. Additional BED-NLRs and canonical NLRs were annotated in close physical proximity to these best BLAST hits. Therefore, to better define the NLR cluster we selected ten non-NLR genes located both distal and proximal to the region and identified orthologs in barley, Brachypodium and rice in EnsemblPlants (https://plants.ensembl.org/). We used different % ID cutoffs for each species (>92% for barley, >84% for Brachypodium and >76% for rice) and determined the syntenic region when at least three consecutive orthologues were found. A similar approach was conducted for Triticum ssp and Ae. tauschii (Table 16).


1.8. Definition of the NLR Content of the Syntenic Region


We extracted the previously defined syntenic region from the grass genomes listed in Table 4 and annotated NLR loci with NLR-Annotator. We maintained previously defined gene models where possible, but also defined new gene models which were further analysed through a BLASTx analysis to confirm the NLR domains (Tables 16-18). The presence of BED domains in these NLRs was also confirmed by CD-Search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). All NLR and BED-NLR encoding sequences were taken forward for reciprocal BLAST analyses across all genomes to identify orthologous relationships. NLRs are known to be more variable than other gene classes so we used a lower threshold to define orthologues (80% ID across 80% of the alignment for the Triticeae (brown lines on FIG. 6)).



1.9. Phylogenetic and Neighbour Network Analyses


We aligned the translated NB-ARC domains from the NLR-Annotator output with MUSCLE and standard parameters (v.3.8.31). We verified and manually curated the alignment with Jalview (v2.10.1). We built a Maximum Likelihood tree with the RAxML program and the following parameters: raxmlHPC -f a -x 12345-p 12345-N 1000-m PROTCATJTT -s <input_alignmentlasta>(MPI version v8.2.10). The best scoring tree with associated bootstrap values was visualised with Dendroscope (v3.5.9).


We used the Neighbour-net method implemented in SplitsTree4 to analyse relationships between BED domains from NLR and non-NLR proteins (v4.16). We first retrieved all BED-containing proteins from RefSeq v1.0 as follows: we used hmmer (v3.1b2, http://hmmer.org/) to identify conserved domain in protein sequences from RefSeq v1.0. We applied a cut-off of 0.01 on i-evalue to filter-off any irrelevant identified domains. We separated the set between NLR and non-NLRs based on the presence of the NB-ARC and sequence homology for single BED proteins. BED domains were extracted from the corresponding protein sequences based on the hmmer output and were verified on the CD-search database. Alignments of the BED domains were performed the same way as for NB-ARC domains and were used to generate a neighbour network in SplitsTree4 based on the uncorrected P distance matrix.


1.10. Transcriptome Analysis


Kronos Analysis


We reanalysed RNA-Seq from cultivar Kronos to determine whether the Kronos Yr5 alelle was expressed. We followed the same strategy as that described to define the Yr7 and Yr5 gene structure (candidate contig confirmation and gene annotation section). We generated a de novo assembly of the Kronos NLR repertoire from Kronos RenSeq data and used it as a reference to map read data of one replicate from the wild-type Kronos heading stage. Read depths up to 30× were present in the Yr5 allele which allowed to confirm its expression. Likewise, the RNA-Seq reads confirmed the gene structure, which is similar to YrSP, and the premature termination codon in Kronos Yr5.


Re-Analysis of RNAseq Data in Dobon et al., 2016


Briefly, two RNA-Seq time-courses were used based on samples taken from leaves at 0, 1, 2, 3, 5, 7, 9 and 11 days post-inoculation for the susceptible cultivar Vuka and 0, 1, 2, 3 and 5 days post inoculation for the resistant AvocetS-Yr5. We used normalised read counts (Transcript Per Million, TPM) from Ramirez-Gonzalez et al. (2018; under review) to produce the heatmap shown in FIG. 11 with the pheatmap R package (v1.0.8). Transcripts were clustered according to expression profile defined by a Euclidean distance matrix and hierarchical clustering. Transcripts were considered expressed if their average TPM was 0.5 TPM in at least one time point. We used the DESeq2 R package (v1.18.1) to conduct a differential expression analysis. We performed two comparisons: (1) we used a likelihood ratio test to compare the full model ˜Variety +Time +Variety:Time to the reduced model ˜Variety +Time to identify genes that were differentially expressed between the two varieties at a given time point after time 0 (workflow: https://www.bioconductor.org/help/workflows/rnaseqGene/); (2) Investigation of both time courses in Vuka and AvocetS-Yr5 independently to generate all of the comparisons between time 0 and a given time point, following the standard DESeq2 pipeline. Differentially expressed genes were considered to be those with an adjusted p-value <0.05 and a log2 fold change of 2 or higher.


Although the present invention has been described with reference to preferred or exemplary embodiments, those skilled in the art will recognize that various modifications and variations to the same can be accomplished without departing from the spirit and scope of the present invention and that such modifications are clearly contemplated herein. No limitation with respect to the specific embodiments disclosed herein and set forth in the appended claims is intended nor should any be inferred.


All documents cited herein are incorporated by reference in their entirety.









TABLE 1





Summary of the data from NIABTAG Seedstats journal (NIABTAG Network) and UK


Cereal Pathogen Virulence Survey (http://www.niab.com/pages/id/316/UKCPVS) that were used


Table 1: Cereal Weights Certified-NIAB TAG for selected Yr7 varieties from 1990 to


2016 with virYr7 prevalence among UK yellow rust isolates (UKCPVS)

























Cultivated Yr7 varieties
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999






















% virYr7_isolattext missing or illegible when filed
9
19
7
8
4
0
3
7
4
10


CORDIALE
total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


CUBANITA
total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


GRAFTON
total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SKYFALL
total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


RUSKIN
total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


BROCK
total tons
3666.8
934.4
389
127.3
80.7
0
0
0
0
0



%
1.3
0.3
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0


CADENZA
total tons
0
0
337.5
8011.3
8412.3
3345.3
1146.4
634.5
744.8
223.5



%
0.0
0.0
0.1
3.1
3.4
1.3
0.4
0.3
0.3
0.1


CAMP
total tons
1450.35
462.7
217
215.9
81.7
56.8
31.2
0
0
0


REMY
%
0.5
0.2
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0


PROPHET
total tons
0
0
0
124.2
29
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SOLEIL
total tons
65
47.7
152.5
71.5
60
15
0
0
0
0



%
0.0
0.0
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0


SPARK
total tons
0
0
2402.7
3734.2
3240.6
2737.9
2369.6
1627.1
1036.9
809.3



%
0.0
0.0
1.0
1.5
1.3
1.0
0.9
0.7
0.5
0.4


TARA
total tons
392.3
3018.7
748
85.7
49.6
0
0
0
0
0



%
0.1
1.1
0.3
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total
282286
283787
240546
255647
245240
261883
270400
247852
229351
222203



varieties













total %
2.0
1.6
1.8
4.8
4.9
2.4
1.3
0.9
0.8
0.5



Yr7






























Cultivated Yr7 varieties
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009






















% virYr7_isolattext missing or illegible when filed
4
0
3
36
4
8
11
4
0
0



total tons
0
0
21
969
5307
4819
6466
8013
10764
12346



%
0.0
0.0
0.0
0.5
2.9
3.1
4.3
4.3
5.7
7.1



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
0
0
0
0
0
0
0
0
191
5010



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.1
2.9



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
234.8
132.65
117
60
39
0
0
0
0
0



%
0.1
0.1
0.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total tons
896.9
259.544
212.345
195
79
139
33
1
1
0



%
0.5
0.1
0.1
0.1
0.0
0.1
0.0
0.0
0.0
0.0



total tons
0
0
0
0
0
0
0
0
0
0



%
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0



total
182648
176431
165486
186474
185970
154906
151525
184903
188184
174779



varieties













total %
0.6
0.2
0.2
0.7
2.9
3.2
4.3
4.3
5.8
9.9



Yr7































Cultivated Yr7 varieties
2010
2011
2012
2013
2014
2015
2016

























% virYr7_isolattext missing or illegible when filed
24
70
97
92
93
76
92






total tons
10494
9171
8389
6,815.20
6,375.10
4,858.90
3,076.30






%
5.7
4.7
4.9
4.0
3.9
2.8
1.9






total tons
0
0
0
65.9
490.9
197.7
53.9






%
0.0
0.0
0.0
0.0
0.3
0.1
0.0






total tons
10719
9948
9832
8,161.10
5,903.30
4,664.20
3,326.20






%
5.8
5.0
5.7
4.8
3.6
2.7
2.1






total tons
0
0
0
275
11,885.60
17,032.90
17,587.70






%
0.0
0.0
0.0
0.2
7.2
9.7
11.0






total tons
0
0
0
13.8
9.20
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total tons
0
0
0
0
0
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total tons
0
0
0
0
0
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total tons
0
0
0
0
0
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total tons
0
0
0
0
0
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total tons
0
0
0
0
0
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total tons
0
0
0
0
0
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total tons
0
0
0
0
0
0
0






%
0.0
0.0
0.0
0.0
0.0
0.0
0.0






total
184795
197221
171034
170,276.70
164,779.00
174,991.40
159,371.70






varieties













total %
11.5
9.7
10.7
9.0
15.0
15.3
15.1






Yr7















text missing or illegible when filed indicates data missing or illegible when filed







to draw the plot presented next to the table. The proportion of harvested Yr7 wheat varieties is shown in dark green and prevalence of yellow rust isolates virulent to Yr7 in orange (UK, from 1990 to 2016).









TABLE 2







Summary of the newly generated and previously published plant materials analysed for


the present study with the different PST isolates used for the pathology assays.


Table 2: Plant materials and rust isolated used in the present study











Gene
Experiment
Plant Material
Rust isolate
Reference(s)





Yr7
MutRenSeq
EMS-derived TILLING
PST 08/21
Krasileva et al., 2017




population in the






UK Cadenza cultivar





Confirmation of the Yr7
Avocet-Yr7 EMS mutants

Generated for the study



candidate through






sequencing






Genetic linkage
F2 population:

Generated for the study



confirmation
Cad0127 × CadWT (139)





Yr7 KASP primer testing
Cadenza-derived varities +
PST 08/21; PST 15/15text missing or illegible when filed
Generated for the study




Yr7 carriers





Yr7 frequency in
UK Recommended list 2018

https://cereals.ahdb.org.uk/varieties/



breeding materials


ahdb-recommended-lists.aspx




Gediflux collecion

Reeves et al., 2004




Core-set of the Watkins collection

Wingen et al., 2014


Yr5
MutRenSeq
EMS-derived Lemhi-Yr5 mutants
PST81/20
McGrann et al., 2014



Confirmation of the Yr5
Avocet-Yr5 EMS mutants

Generated for the study



candidate through






sequencing






Genetic linkage
F2 population:

Generated for the study



confirmation
Avocet-S × Avocet-S-Yr5 (376)




YrSP
MutRenSeq
Avocet-YrSP EMS mutants
134 E16A+(Culture ntext missing or illegible when filed
Generated for the study



Genetic linkage
F2 population:

Generated for the study



confirmation
Avocet-S × Avocet-S-Yr5 (94)






text missing or illegible when filed indicates data missing or illegible when filed

















TABLE 4







Summary of the available genome assemblies that we used for the in silico allele mining and synteny analysis


across rice, Brachypodium, barley and different triticeae accessions.


Table 4: Genome assemblies that were used for the present study










Specie
Cultivar/groutext missing or illegible when filed
Source
Link/ref






Triticum aestivum


Cadenza

Earlham Institute
http://opendata.earlham.ac.uk/





Triticum_aestivum/EI/v1.1/



Triticum aestivum


Paragon

Earlham Institute
http://opendata.earlham.ac.uk/





Triticum_aestivum/EI/v1.1/



Triticum aestivum


Claire

Earlham Institute
http://opendata.earlham.ac.uk/





Triticum_aestivum/EI/v1.1/



Triticum aestivum


Robigus

Earlham Institute
http://opendata.earlham.ac.uk/





Triticum_aestivum/EI/v1.1/



Triticum turgidum


Kronos

Earlham Institute
http://opendata.earlham.ac.uk/





Triticum_turgidum/EI/v1.1/



Triticum turgidum


Svevo

The International Durum Wheat
http://d-data.interomics.eu




Genome Sequencing Consortium




Triticum turgidum


Zavitan

WEWseq
Avni et al. 2017



Aegilops tauschii


Tauschii

UC Davis
Luo et al. 2017



Oryza sativa


Japonica

Ensembl/RAP-DB
http://plants.ensembl.org/





Oryza_sativa/Info/Index



Brachypodium distachyon


Ensembl/Brachypodium.org
http://plants.ensembl.org/





Brachypodium_distachyon/Info/Index



Hordeum vulgare


Morex

Ensembl/IBSC
http://plants.ensembl.org/





Hordeum_vulgare/Info/Index






text missing or illegible when filed indicates data missing or illegible when filed














TABLE 5a







In silica allele mining for Yr7 and Yr5/YrSP


in available genome assemblies for wheat











Cultivar
% ID to Yr5 protein
% ID to Yr7 protein














Cadenza
98.2
100



Paragon
98.2
99.8*



Claire
99.3
n.s



Robigus
98.2
n.s



Kronos
93.6
n.s



Svevo
93.6
n.s



Zavitan
n.s
n.s





*due to the presence of the Ns in the Paragon sequence (see supp) haplotypes
















TABLE 6





List of the identified BED-containing proteins in RefSeq v1.0 based on a hmmerscan analysis (see Methods). Several


features are added: number of identifed BED domains and the presence of other conserved domains present, the best BLAST hit


from the non-redundant database of NCBI with its description and score, and whether the BED domain was related to BED domains


from NLR proteins based on the neighbour network shown oi FIG. 10.


Table 6: List of the identified BED-containing proteins in RefSeqv1.0 based on a hmmerscan analysis



























CD-
CD-




#
CD-
CD-
CD-Search/
Search/
Search/




BED
Search/text missing or illegible when filed
Search
hmmer
hmmertext missing or illegible when filed
hmmetext missing or illegible when filed
Best BLAST hit





TraesCS1B01G158800.1
1
ZnF_BED
DUF4413
Dimer_


XP_016740977.1






Tnp_hAT





TraesCS3B01G269600.1
1
ZnF_BED
DUF4413
Dimer_


XP_020177565.1






Tnp_hAT





TraesCS3B01G317800.1
1
ZnF_BED
DUF4413
Dimer_


XP_020177565.1






Tnp_hAT





TraesCS5B01G377100.1
1
ZnF_BED
DUF4413
Dimer_


ABA94812.1






Tnp_hAT





TraesCS5B01G501500.1
1
ZnF_BED




XP_020164333.1


TraesCS5D01G501900.1
1
ZnF_BED




XP_020164333.1


TraesCS7A01G447400.1
1
ZnF_BED
DUF4413
Dimer_


XP_020177565.1






Tnp_hAT












BED sequence









related to BNLs








align-
in Neighbour




Best BLAST hit description
qlength
slentgh
% ID
ment
Network Tree






TraesCS1B01G158800.1
PREDICTED: zinc finger BED
706
698
42.837
705
Yes




domain-containing








TraesCS3B01G269600.1
zinc finger BED domain-
772
395
94.43
395
yes




containing protein RICEtext missing or illegible when filed








TraesCS3B01G317800.1
zinc finger BED domain-
675
395
92.911
395
yes




containing protein RICEtext missing or illegible when filed








TraesCS5B01G377100.1
hAT family dimerisation
728
709
58.779
655
yes




domain containing prottext missing or illegible when filed








TraesCS5B01G501500.1
protein NLP4-like [Aegilops
663
714
74.965
715
yes





tauschii subsp. taustext missing or illegible when filed









TraesCS5D01G501900.1
protein NLP4-like [Aegilops
715
714
100
714
yes





tauschii subsp. taustext missing or illegible when filed









TraesCS7A01G447400.1
zinc finger BED domain-
772
395
94.937
395
yes




containing protein RICEtext missing or illegible when filed











text missing or illegible when filed indicates data missing or illegible when filed














TABLE 8







List of de novo assemblies generated from the corresponding RenSeq data


Table 8: Sequencing data details























# Read-pairs







Enrichment
Sequence


mapped to




Sample
Accession
Sequencing chemistry
potext missing or illegible when filed
pool
# Read-pairs
# Read-pairs
the de novo
% Read-pairs
do novo assembly



















MW01-127_HM7MVBCXX_L1_2.fq.gz
Cad0127
Illumina_HiSeq_2500 (text missing or illegible when filed
A
1
14805176
14743094
18772686
  64%
Cadenza-WT


MW01-127_HM7MVBCXX_L1_2.fq.gz
Cad0127
Illumina_HiSeq_2500 (text missing or illegible when filed
A
1
14805176
14743094





MW01-1551_HM7MVBCXX_L1_1.fq.gz
Cad1551
Illumina_HiSeq_2500 (text missing or illegible when filed
A
1
8216218
8184048
10619188
  65%
Cadenza-WT


MW01-1551_HM7MVBCXX_L1_2.fq.gz
Cad1551
Illumina_HiSeq_2500 (text missing or illegible when filed
A
1
8216218
8184048





MW01-1978_HM7MVBCXX_L1_1.fq.gz
Cad1978
Illumina_HiSeq_2500 (text missing or illegible when filed
B
1
12462294
12409066
15916836
  64%
Cadenza-WT


MW01-1978_HM7MVBCXX_L1_2.fq.gz
Cad1978
Illumina_HiSeq_2500 (text missing or illegible when filed
B
1
12462294
12409066





WW01-27_Cadenza_S3_L001_R1_001.fastq.gz
Cadenza-WT
Illumina_MiSeq (250btext missing or illegible when filed
C
2
5901019
5843683
7884202
  67%
Cadenza-WT


WW01-27_Cadenza_S3_L001_R2_001.fastq.gz
Cadenza-WT
Illumina_MiSeq (250btext missing or illegible when filed
C
2
5901019
5843683





AvS_KD17010810-A71_HCHT7BCXY_L1_1.fq.gz
AvocetS
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
12669666
12284950





AvS_KD17010810-A71_HCHT7BCXY_L1_2.fq.gz
AvocetS
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
12669666
12284950





AvS_SP_KD17010810-A50_HCHT7BCXY_L1_1.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
13559810






AvS_SP_KD17010810-A50_HCHT7BCXY_L1_2.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
13559810






AvS_Yr5_KD17010810-A81_HCHT7BCXY_L1_1.fq.gz
AvocetS-Yr5
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
10131809






AvS_Yr5_KD17010810-A81_HCHT7BCXY_L1_2.fq.gz
AvocetS-Yr5
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
10131809






AvS_Yr7_KD17010810-A93_HCHT7BCXY_L1_1.fq.gz
AvocetS-Yr7
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
7698058






AvS_Yr7_KD17010810-A93_HCHT7BCXY_L1_2.fq.gz
AvocetS-Yr7
Illumina_HiSeq_2500 (text missing or illegible when filed
D
3
7698058






C855_KD17010810-A2_HCHT7BCXY_L1_1.fq.gz
Cad0855
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
13109055
12568140
17166458
  68%
Cadenza-WT


C855_KD17010810-A2_HCHT7BCXY_L1_2.fq.gz
Cad0855
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
13109055
12568140





C903_KD17010810-A94_HCHT7BCXY_L1_1.fq.gz
Cad0903
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
9109264
8704600
11780688
  68%
Cadenza-WT


C903_KD17010810-A94_HCHT7BCXY_L1_2.fq.gz
Cad0903
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
9109264
8704600





C923_KD17010810-A40_HCHT7BCXY_L1_1.fq.gz
Cad0923
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
14252713
13647531
17530654
  64%
Cadenza-WT


C923_KD17010810-A40_HCHT7BCXY_L1_2.fq.gz
Cad0923
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
14252713
13647531





C1034_KD17010810-A49_HCHT7BCXY_L1_1.fq.gz
Cad1034
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
13415313
12889224
15567764
  60%
Cadenza-WT


C1034_KD17010810-A49_HCHT7BCXY_L1_2.fq.gz
Cad1034
Illumina_HiSeq_2500 (text missing or illegible when filed
E
3
13415313
12889224





YSP_0_KD17071213-AK3122_HV32GBCXY_L1_l.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
F
4
20168141
19285244
25472610
66.04%
AvocetS-YrSP-WT


YSP_0_KD17071213-AK3122_HV32GBCXY_L1_2.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
F
4
20168141
19285244


AvocetS-YrSP-WT


YSP_1_KD17071213-AK2489_HV32GBCXY_L1_1.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
F
4
4866592
4715938
6208114
65.82%
AvocetS-YrSP-WT


YSP_1_KD17071213-AK2489_HV32GBCXY_L1_2.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
F
4
4866592
4715938


AvocetS-YrSP-WT


YSP_2_KD17071213-AK3121_HV32GBCXY_L1_1.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
G
4
22067358
21281452
28040118
65.88%
AvocetS-YrSP-WT


YSP_2_KD17071213-AK3121_HV32GBCXY_L1_2.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
G
4
22067358
21281452


AvocetS-YrSP-WT


YSP_3_KD17071213-AK2464_HV32GBCXY_L1_1.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
G
4
14603831
14068492
18132636
64.44%
AvocetS-YrSP-WT


YSP_3_KD17071213-AK2464_HV32GBCXY_L1_2.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
G
4
14603831
14068492


AvocetS-YrSP-WT


YSP_4_KD17071213-AK2483_HV32GBCXY_L1_1.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
H
4
16757582
15993630
20438956
63.90%
AvocetS-YrSP-WT


YSP_4_KD17071213-AK2483_HV32GBCXY_L1_2.fq.gz
AvocetS-YrStext missing or illegible when filed
Illumina_HiSeq_2500 (text missing or illegible when filed
H
4
16757582
15993630


AvocetS-YrSP-WT


Y5_0_KD17071213-AK2488_HV32GBCXY_L1_1.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
H
4
18106714
17329780
23756414
68.54%
AvocetS-Yr5-WT


Y5_0_KD17071213-AK2488_HV32GBCXY_L1_2.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
H
4
18106714
17329780


AvocetS-Yr5-WT


Y5_1_KD17071213-AK2485_HV32GBCXY_L1_1.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
I
4
12149902
11617256
14917602
64.20%
AvocetS-Yr5-WT


Y5_1_KD17071213-AK2485_HV32GBCXY_L1_2.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
I
4
12149902
11617256


AvocetS-Yr5-WT


Y5_2_KD17071213-AK2486_HV32GBCXY_L1_1.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
I
4
18064931
16987606
23153166
68.15%
AvocetS-Yr5-WT


Y5_2_KD17071213-AK2486_HV32GBCXY_L1_2.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
I
4
18064931
16987606


AvocetS-Yr5-WT


Y5_3_KD17071213-AK2487_HV32GBCXY_L1_1.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
J
4
15563606
14814817
19915922
67.22%
AvocetS-Yr5-WT


Y5_3_KD17071213-AK2487_HV32GBCXY_L1_2.fq.gz
AvocetS-Yr5-
Illumina_HiSeq_2500 (text missing or illegible when filed
J
4
15563606
14814817


AvocetS-Yr5-WT






text missing or illegible when filed indicates data missing or illegible when filed














TABLE 9







Sequencing details of RenSeq data generated in this study.


Table 9: de novo assemblies from RenSeq data statistics











de novo assembly
assembler
#contigs
#NLR-contigs
#complete_NLR














Cadenza-WT
CLC assembly cell
29706
5572
431


AvocetS
CLC assembly cell
400158




AvocetS + YrSP
CLC assembly cell
530695




AvocetS + Yr7
CLC assembly cell
278126




AvocetS + Yr5
CLC assembly cell
362856




Paragon






Kronos






AvocetS + YrSP_AU
CLC Genomics Wotext missing or illegible when filed
268235
5361
791


AvocetS + Yr5_AU
CLC Genomics Wotext missing or illegible when filed
109608
5180
782






text missing or illegible when filed indicates data missing or illegible when filed














TABLE 10





Summary of primers designed for the present study. (Part 1/2)



























KASP_R-






Primer_Name
Gene
Primer_Type
chromosome
gene_allele
KASP_alternate_allele
common
product_size
Comment





Yr7










detection










Yr7-A
Yr7
KASP
2BL
TTAGTCCTGCC
TTAGTCCAGCCCATAAGCc
CAGTGTT
41







CCATAAGCg

AAAACCA










GGGAGGA




Yr7-B
Yr7
KASP
2BL
TGGAGGTATCA
TGGAGGTATCATCGGGTGAa
CATCAAA
70
Dominant






TCTGGTGAg

ATCATCG

marker:








CCTATGT

alternate 










allele is










actually










not










amplified


Yr7-C
Yr7
KASP
2BL
CACATGAGTCG
CACACGACCTAATACTGAGa
ACTGCAA
48
Dominant






ATACTGAGg

TGCCTTC

marker:








CCATA

alternate










allele is










actually










not










amplified


Yr7-D
Yr7
KASP
2BL
GCTGGAAAGGC
GCTGGAAAGGCTTGAGATCg
AATGGCG
48







TTGACATCa

TGGTAAG










GACAGA















Primer_Name
Forward
Reverse
Product size Y
Product size YrSP
Alternate profile





Yr5 detection







Yr5-Insertion
CTCACGCATT
TATTGCATAAtext missing or illegible when filed
1281
507
no amplification

















Primer_Name
Gene
Primer_Type
chromosome
KASP_WT_allele
KASP_mutant_allele
common
product_size





Yr7 mapping









Cad0127
Yr7
KASP
2BL
AAGTGATGTCGGGA
AAGTGATGTCGGGAGGAGt
TGGAGAATG
83






GGAGc

GAAGTTCTT









TTGTGT



Cad1551
Yr7
KASP
2BL
CACAATCATCAAGA
CACAATCATCAAGATGAA
CCAACAATA
51






TGAAGCg
GCa
TCTCAGTTA









CCTCATTG



Cad1978
Yr7
KASP
2BL
TGCATCCTTCCAGG
TGCATCCTTCCAGGACAA
AACCAGGGA
79






ACAAATg
ATa
GGACGCTTA









TG



Cad0127_M1
Yr7 mapping
KASP
2BL
ACATTTACGTGGAG
ACATATTCGTGGAGGCCGa
TGGTGAACT
94






GCCGg

CTGATAGGA









ACTTC



Cad0127_M2
Yr7 mapping
KASP
2BL
TTCTCCTGCGCCTC
TTCTCCTGCGCCTCTCTGa
GGAGGGTCT
59






TCTGg

GGCCTCTGT



Cad0127_M3
Yr7 mapping
KASP
2BL
CGGAACCAATCACC
CGGAACCAATCACCTCGGa
ATGTTGTCC
78






TCGGg

ACGGCGATT









AA



Cat0127_M4
Yr7 mapping
KASP
2BL
GAAAGCAGCAGCCA
GAAAGCAGCAGCCACAGt
TTGGTCGGC
55






CAGc

TCTTGAACT









TT



Cad0127_M5
Yr7 mapping
KASP
2BL
CATCATCCATTTTC
CATCATCCATTTTCCCTC
AGCTTCTTT
51






CCTCTCGc
TCGt
AGAACATGC









CAAC



Cac0127_M6
Yr7 mapping
KASP
2BL
ACTGCTCGCAACAC
ACTGCTCGCAACACATAC
CCCAATTAT
67






ATACAc
At
TTGCAGTGC









TTGAG



Cad0127_M7
Yr7 mapping
KASP
2BL
GCTTCAGTGAACAA
GCTTCAGTGAACAAGGTG
GAGAGGAGA
36






GGTGATGc
ATGt
AATGACATC









CTAGAT



Cad0127_M8
Yr7 mapping
KASP
2BL
AGAACCAGAGAATT
AGAACCAGAGAATTTGTT
CGACTATGG
103






TGTTGTTGTAg
GTTGTAa
AGAACCTTG









AGAGA



Cad0127_M9
Yr7 mapping
KASP
2BL
GCCTTTCTTCATCT
GCCTTTCTTCATCTGGCC
TGTGGTACG
78






GGCCTTTAGc
TTTAGt
AGTTGGCAT









ACC

















Primer_Name
Gene/Name
Primer_Type
chromosome
KASP_Target
KASP_Alt
common
product_size





Yr5 mapping









Yr5_candidate
Yr5
KASP
2BL
CAGGAGATCTTG
CAGGAGATCT
AAACTCTTTGACT
44






AAGGACAT
TAAAGGAATA
GGTACTCG



Yr5_M1
W90K_Kukri_text missing or illegible when filed
KASP
2BL



ask SEB


Yr5_M2
W90K_RAC87
KASP
2BL






Yr5_M3
W90K_Tdurutext missing or illegible when filed
KASP
2BL






WMC175

KASP
2BL






Yr5_M4
W901_Ra__c6text missing or illegible when filed
KASP
2BL






Yr5_M5
W90K_GENE-text missing or illegible when filed
KASP
2BL






Yr5_M6
W90Kt_wsnp_text missing or illegible when filed
KASP
2BL






YrSP mapping









Yr5_candidate
YrSP
KASP
2BL
CAGGAGATCTTG
CAGGAGATCTT
AAACTCTTTGACT
44






AAGGACAT
AAAGGAATA
GGTACTCG



YrSP_M1
W90K_JD_c2text missing or illegible when filed
KASP
2BL






YrSP_M2
RAC875_rep_text missing or illegible when filed
KASP
2BL






Yr5P_M3
BobWhite_c3text missing or illegible when filed
KASP
2BL






text missing or illegible when filed indicates data missing or illegible when filed














TABLE 10







Summary of primers designed for the present study. (Part 2/2)










Primer name
Forward
Reverse
product size (bp)





Yr7 cloning





Yr7_locus
AGCCAGCAGAAGTCTTAGAAACAG
CTACGAGATATATGTTGAGCAGCTTG
6.6 kb


A
TCTTAGAAACAGCCACGTC
ACGTCGATCAAACAGAGG
704


B
TTGTACTTCGGCATCCTC
ACACTTCGCTTTCACTGG
709


C
TCAATCTTTGGGTTGTGC
TGTGCCGAAAAGAAACAT
791


D
CTGAGGTCGAGAGAGTCG
TTTCCGTTGGACGAACTA
746


E
CTGATAACCAACCCACCA
CGCGAAGTTGTTAATTCC
702


F
GATCCAGCGCTACTTCAA
AACGGATTGCCCTTTAAC
829


G
TTGTCTGTTGCACAAAGGT
AGGAATGTTCCCCTTCAG
728


H
AAGAATTGGATGGGGAAG
ATAAGCGTCCTCCCTGGT
784


I
CTACCCAATGGCTTGTTG
GCCATGATCCCTGAATG
768


J
AGGTGAAGTTGAGCAGCA
CATCAGCGATAGCCACTT
713


K
CAGATGTGACGGCAGAGT
GTTGCGTGCCCTCTAGTA
734


L
AGAAACGCTGCAAGTCTG
CTGAAACGCTCATTCTGG
792


Yr5 cloning





Yr5_locus
CGCTTAATTCCCCTTCCTTC
CACGTCAGACTGGATCAAAGCTCTA
4.9 kb


A
Yr5_locus_F
TGGCTCCTTATTCGTTCTCTTTC
813


B
GGGAACACTTCACGATCA
AATTCCTTCATGCCTTCC
901


C
CTTGCTCCAAGGAAAGTG
CCCTGTGACATCCAGAAA
890


D
AGGGAAACCCACTAGCAG
TGGTTGCAATGGAAGAGT
900


E
GTGTGCTGCAAATGTCTG
ATGACCTCTGCCCAGTTT
819


F
GAGAAACCTGCCCAAAGT
ATGGTATGCGCAACAGTC
884


G
GGTTGCCGGAATCTAAGT
GATGGGTCTTGGATGTGA
890


H
GCAACCCTGCTTTCCTAGC
Yr5_locus_R
671






































TABLE 18







Corresponding gene models










NLR Annotator
Longest overlap in Ensembl
BLASTx best hit
comments














Os1
LOC_Os04g52970.1.1





Os2
Os04t0621500-00_LOC_Os04g53030.1.1





Os3
Transcript: LOC_Os04g53040.1.1





Os4
Transcript: LOC_Os04g53050.1.1 &&






Transcript: LOC_Os04g53060.1.1





Os5
Transcript: LOC_Os04g53120.1.1





Os6
Transcript: LOC_Os04g53160.1.1





Bd1
BRADI_5g22145v3

Phytozome: Bradi5g22146.1



Bd2
BRADI_5G22160.1 &&

truncated genes so kept Annotator




BRADI_5G22160.1

locus



Bd3
BRADI_5g22179v3





Bd4
BRADI5G22187





Hv1
HORVU2Hr1G103460.1
XP_020186889.1
Traces of BED but not annotated






as such by CD search



Hv2
HORVU2Hr1G103440.1

truncated gene so kept Annotator






locus



Aet1
EMT18301





Aet2
X
EMS51583.1
kept Annotator locus



Aet3
EMT06562





Aet4
EMT29760





Aet5
EMT12526





Aet6
EMT02111





Aet7
EMT18676





Aet8
EMT12939





Tt1
TRIDC2BG071010.1
EMS62808.1




Tt2
TRIDC2BG071030.1
EMS62808.1
no conserved domain in gene model



Tt3
X

kept Annotator locus



Tt4
TRIDC2BG071040.1





Tt5
X
EMS51583.1
kept Annotator locus



Tt6
TRIDC2BG071050.1
EMS51583.1




Tt7
X

kept Annotator locus



Tt8
TRIDC2BG071070.1
CAD45026.1




Tt9
TRIDC2BG071070.18
EMS62808.1
kept Annotator locus



Tt10
TRIDC2BG071180.3
XP_020186889




Tt11
X

kept Annotator locus



Tt12
TRIDC2BG071220.1
XP_020186937.1
no conserved domain in gene model



Tt13
X
XP_003579311




Tt14
TRIDC2BG071240.1
XP_020186937.1




Tt15
X
XP_003579311.1
kept Annotator locus



Tt16
X
XP_014751374.1
kept Annotator locus



Tt17
X
XP_003579311.1
kept Annotator locus



Tt18
X
BAJ98893.1
kept Annotator locus



Tt19
X
KQJ84588.2
kept Annotator locus



Tt20
TRIDC2BG071280.1
XP_003579311.1




Ta_2A1
TraesCS2A01G464500





Ta_2A2
TraesCS2A01G464700





Ta_2A3
TraesCS2A01G464900





Ta_2A4
X

partial NLR
kept Annotator locus


Ta_2A5
TraesCS2A01G465100





Ta_2A6
TraesCS2A01G465200





Ta_2A7
TraesCS2A01G465600





Ta_2A8
TraesCS2A01G466100





Ta_2A9
X
XP_020186937.1

kept Annotator locus


Ta_2A10
TraesCS2A01G625200LC

partial gene model
kept Annotator locus


Ta_2A11
TraesCS2A01G625400LC-


kept Annotator locus



TraesCS2A01G625500LC-






TraesCS2A01G625600LC





Ta_2A12
TraesCS2A01G466500-


kept Annotator locus



TraesCS2A01G625600LC-






TraesCS2A01G466600





Ta_2D1
TraesCS2D01G465300





Ta_2D2
TraesCS2D01G465400





Ta_2D3
TraesCS2D01G465500





Ta_2D4
TraesCS2D01G465600





Ta_2D5
TraesCS2D01G466000





Ta_2D6
TraesCS2D01G466400





Ta_2D7
TraesCS2D01G466600

Modified gene model rescued one






additional BED domain



Ta_2B1
TraesCS2B01G486100





Ta_2B2
TraesCS2B01G485200





Ta_2B3
X

partial NLR
kept Annotator locus


Ta_2B4
TraesCS2B01G486300





Ta_2B5
X

partial NLR
kept Annotator locus


Ta_2B6
TraesCS2B01G486400





Ta_2B7
TraesCS2B01G486700





Ta_2B8
TraesCS2B01G487700





Ta_2B9
TraesCS2B01G488000





Ta_2B10
TraesCS2B01G488400





Ta_2B11
TraesCS2B01G488600-






TraesCS2B01G488700





Ta_2B12
TraesCS2B01G734100LC





Ta_2B13
TraesCS2B01G489400






















SELECTED SEQUENCE INFORMATION















>Yr7_locus 


(SEQ ID NO: 5)




embedded image




TCGGTTCTCGGTTCTCGGTTTTCGGGTTTGTGAAGCCTCTGACCCTGGCATTTGCTCGGGTTCGGTTCTGCTCTAGGTGCCTACTGGCTA





CGGCCAACGCGCCTCCTGTCGGGGCGGTTTTCCACGCAACTTAGCATCCGGCAACTTATATATAACAAACCTGCGTTCCTTCTTCTCGCT





CCACCGGTTTCCAAGCTCAGAGCTTCAAGCCAAACCCATTTCCAGTGAAGCAGTCGATGGAGCTCCTCACCTTCCTCTTCAGAATGGTGG





CCCTGATCCCCGGCGCATTACGCAACGCGGAGAAGCTGCCCGGTGCTCTCATCTCGTGCGGCGTCGTCCAAGCCGCGGCGGCGCTCTTCC







embedded image




TGGTATTCGGGCTTGTGGAGGCGTCCGCCGGATTTTATGTGTCCGGCGATGTGGCCGGACGCCGTGCTGCCGGGAAGACCATCCTGTGGG







embedded image




CCCGTTCATGTTGTATAGAATATAATGAGTGTATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCTGGGGGGCCATTTTGGTCAG





TGTGTGCTTTGGGGACGGGGGAATCAGTAGTAGGTTGTACCAGCACGAGTGTTTTAGACTTCATATACTTTCATTCTTTTTTTCACTTGA







embedded image






embedded image




CTTCTCATGCCGTGTTCGGGCCGTATTCTCGAGCATAAAGTTCGGCCCACTAAGTGTCGAAAGAAAGCTGCTTCTAATTGACCTTCTGCT







embedded image




TGTGTTGTGGCTGGTGTTCTTCCCCGCTCGTCTCGTCTGCTCCCCATTCCACACGCTTAATTCCCCTTCCTTCATTGACTCGAGCTCGAG





ACCTGCTCCTGCCGGATCTGATAATGGAGCCGGCGGGAGACTCTTCCCTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAA







embedded image




ACACGGTGGTGGCTGCTGTGAAGGGGAGGGCAGCCGGGAACATGCCTCTGTCCCGGTCTCTCGCTCGTGTCAAGGAGCTTCTCTATGACG





CCGACGACGTGATCGACGAGCTAGACTACTACAGGCTCCAACACCAAGTCGAAGGAGGTAGTAAGCATAATCCCATTATATATCGAATCT







embedded image




GCTGAAAGAGTGGATGAAATATCAAGGGGCCATGTCGATACACTGAATGTCAGTGTTGGCAAATTACGGTCCCCGGTATGGGAACACTTC





ACCATCACAGAAACAACTATCGACGGGAAGCGTTCAAAAGCCAAATGTAAGTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAAC





GGGACTTCATCTATGAAAAAACATTTGGAGAAGGAGCATTCCGTGACTTGCACGAATAAATCTGCAGTGCACCCCCCAAACACTTCAAGG






TACCAGCAGGAATTTATACCTTGCTTCAACGAATTTGTTGTAATTGTTTATATACGTCTGCTTGAGAGCCCATTGTTGTTCTGAATTTCT








embedded image






embedded image






embedded image






embedded image




CAGAAAAGAATAAGATCAAAAAGTCAATAACTGAAAACCAATCTGGTGGTGTAAATGTTCTGCCTATTGTAGGCATTGCAGGTGTTGGAA





AGACAACTCTTGCTCAATTTGTGTATAATGATCCAGACGTGAAAAGTCAATTTCACCACAGGATATGGGTTTGTGTGTCCTGCAAATTTG







embedded image




TGAAAGAACATGTCGAGTACCAAGCAAAGAGTTTTCTGCTCATTTTAGATGATGTCTCGGACAGTATGGATTATCATAAATGGAACAAAT







embedded image




AACCGATCAAGTTAGGTGCTTTAGAAAACGATGATATGTGGTTATTGCTCAAGTCATGTGCATTTGGTTTTGGGAACTATGAAGGTACGG







embedded image




ATCTTAGCATTGATCATTGGAGTAACATTCTCAAGAATGAGAAGTGGAAATCGCTGGGACTCAGTGGGGGCATCATGCCTGCTTTGAAGC





TTAGTTATGATGAGTTGACGTACCGTTTACAACAATGTTTCTCGTATTGCTCTATATTTCCTGACAAATATAGGTTTCTCGGGAAGGATT





TGGTCTATATTTGGATTTCTCAGGGATTTGTGAATTGCACCCAAAATAAGAGATTGGAGGAGACGGGATGGGAATATCTGAATCAATTGG







embedded image




TGTGTGATCTCATGCATGATTTCGCAAGGATGATTTCAAGGACTGAATGTGCGACTATAGATGGTCTACAGTGCAATAAAATATTCCCAA







embedded image




TGAGAAATTCAGTTACATCAGTTACCAAATTGAGAACATTGGTTGTGCTTGGGAACTTTGACTCTTTCTTTGTACGGTTGTTCCAAGATA





TATTCCAGAAGGCACAAAATTTACGCCTGCTGCTAGTATCTCTAGCATCCACTTATCTGTCTCAAGTGCCTGCTGCATTCAATGATTTTA





ATTCCTTCCTGTGCAATTTGGCAAATCCTTTGCATCTTCGTTACCTAAAACTTGAGTTGGATGGGATTGTGCCACAAGTTTTGAGTACGT







embedded image




TTGTTGCACACAAGAGAGTCCATTCTTCCATTACTAGCATTGGTAACATGACATCTATCCAGGAGCTACATGATTTTGAAGTTCGAATTT







embedded image






embedded image




GTGACACTGAATTTGAATCTTCTGCAAACATGGCAAGAGAAGTGATTGAGGGTCTTGAACCACACATGGATTTAAAACATCTACAAATAT





CTCAGTATAATGGTACCACTTCACCAGCTTGGCTTGCCAACAATATCTCAGTTACCTCATTGCAGACGCTTCATCTTGATGATTGTGGAG







embedded image




CTTCACTGGAGGAGCTAGTTCTAATTAAAATGCCGAAGTTAGTGAGATGCTCAAGCACTTCTGCCGAGGGTCTGAGCTCTAGCTTAAGGG







embedded image




CTGGTCTTAGGAATTTGATTCTATATTGTTGCCCTCATTTGAAAGTGTTGAAGCCTCTTCCACCTTCAACTACCTTTTCTAAGGTACTCA





TCAGAGAAATTTCAAGATTTCCGTCTATGGAGGTATCATCTGGTGAGAAGTTACAAATTGGGAATATTGATGTGTACATAGGCGATGATT





TTGATGAGTCTTCTGATGAGTTGAGCATACTGGATGACAAAACTTTGGCGTTCCATAATCTTAGAAACCTGAAATCGATGGAGATATATG





GTTGCAGAAATCTAAGGTCTTTTTCGTTCGAAGGTTTCAGTCATCTTGTCTCTTTAACAAGTTTGAAAATAGTAAGCTGTGAACAACTTT







embedded image






embedded image




TAACAAGAGTAGTGTTACCGATGGAAGAGGAAGAAAACAATCTATTAACAACAGTACTGTCATCAGGAAATCAAGATGAGGCATTGACAT





GGTTAGTTCGTGACGGACTCTTGCACATTCCATCAAATCTCGTCTCCTCTCTCAAGAATATGAGTATTACTCAGTGCCCTCGCCTAAAGT





TTAACTCAGGCAAGGACTGCTTCTCTGGATTTACCTCGCTTGAGAAGCTTGAAATTTGGGGATCGTTGGTGGATGATGACGGAAGTGATG





ACCTGGAGAATGGAAGTTCTTTTGTGTTCGGAGAGGAGGATCAACCCCTGGGGGCGAACGGAAGATGGCTCCTCCCGACATCACTTCAGG







embedded image




CCGGCCAAGGTTTGCAATCTCTACAGCTGTACTCATGCACGGCACTGGAAGAATTGGCAATTTCCGGCTCTGGATCGGTCACCGTCACTG







embedded image




GGTTGTGCCCTCGGCTGGAAAGGCTTGACATCAATGACCCATCTGTCCTTACCACGCCATTCTGCAAGCACCTCACCTCCCTGCAACGCC





TAAAACTTGGCTTCTTGAAAGTGACGAGACTAACAGATGAGCAAGAACGAGCGCTTGTGCTCCTCAAGTCACTGAAAGAGCTCGAGATTT





TTTATTGTACTCATCTCATAGATCTTCCTGCGGGGCTGCAGACCCTTCCTTCCCTCAAGAGTTTGAAGATAGAAGAGGGTCGAGGCATCT





CAAGGCTGCCGGAAGCAGGCCTCCCACATTCGCTGGAAGAACTGGAAATCAAAATTTGCAGCAAGCTAGAAGATGAATGCAGGCGGCTAG





CAACATGCGAAGGCAAGCTAAAAGTCAAAATTGATGGTCGATATGTGAATTAATTATGTTTCTGGCCTCATGTGCAAAGTGTACCGCTTG







embedded image






embedded image




>Yr7_CDS



ATGGAGCCGGCGGGAGACTCTTCCCTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG






GCCTGGATTCAGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACATGCCTCTGTCCCGGTCTCTCGCTCGTGTCAAGGAGCTTCTCTATGACGCCGACGACGTGATCGACGAGCTA





GACTACTACAGGCTCCAACACCAAGTCGAAGGAGTTACAAGTGACGAGCCTGACGGTATGCGTGGAGCTGAAAGAGTGGATGAAATATCA





AGGGGCCATGTCGATACACTGAATGTCAGTGTTGGCAAATTACGGTCCCCGGTATGGGAACACTTCACCATCACAGAAACAACTATCGAC





GGGAAGCGTTCAAAAGCCAAATGTAAGTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGGGACTTCATCTATGAAAAAACAT





TTGGAGAAGGAGCATTCCGTGACTTGCACGAATAAATCTGCAGTGCACCCCCCAAACACTTCAAGCACCGGCGATGCTACTTGTAATGTG





AGGTCGGTTGAAGTTGGTAGTTCGTCCAACGGAAAAAGAAAGAGAACAAATGAGGATCCAACGCAGACCACCGCAGCTAACATACACGCC





CAATGGGACAAGGCTGAGTTATCCAATAGGATAATTAAAATTACTGAGAAGTTACAGTTACAGGACATCCAGGGGGCTTTGAGTAAAGTT





CTCGAGCCATATGGATCCAGCGCTACTTCAAGTTCAAATCATCACCGCTTGAGTACAGCATCGAATCAGCACCCAACAACATCAAGTCTT





GTTCCAATGGAAGTTTATGGCAGAGTTGCAGAAAAGAATAAGATCAAAAAGTCAATAACTGAAAACCAATCTGGTGGTGTAAATGTTCTG





CCTATTGTAGGCATTGCAGGTGTTGGAAAGACAACTCTTGCTCAATTTGTGTATAATGATCCAGACGTGAAAAGTCAATTTCACCACAGG





ATATGGGTTTGTGTGTCCTGCAAATTTGATGAAGTGAAGCTCACAAAGGAGATGTTAGACTTTTTTCCTCGAGAAAGGCATGAAGGAATT





AACAACTTCGCGAAGCTTCAAGAGATCTTGAAAGAACATGTCGAGTACCAAGCAAAGAGTTTTCTGCTCATTTTAGATGATGTCTCGGAC





AGTATGGATTATCATAAATGGAACAAATTGTTGAACCCTTTGCTATCAAGTCAAGCGAAGAATATAATTCTAGTCACGACCAGAAATTTG





TCTGTTGCACAAAGGTTAAGCACACTTGAACCGATCAAGTTAGGTGCTTTAGAAAACGATGATATGTGGTTATTGCTCAAGTCATGTGCA





TTTGGTTTTGGGAACTATGAAGGTACGGAAAATCTAAGCACTATTGGAAGACAAATAGCAGAGAAGTTAAAGGGCAATCCGTTAGCAGCA





GTAACTGCAGGGGCACTGTTAAGAGATAATCTTAGCATTGATCATTGGAGTAACATTCTCAAGAATGAGAAGTGGAAATCGCTGGGACTC





AGTGGGGGCATCATGCCTGCTTTGAAGCTTAGTTATGATGAGTTGACGTACCGTTTACAACAATGTTTCTCGTATTGCTCTATATTTCCT





GACAAATATAGGTTTCTCGGGAAGGATTTGGTCTATATTTGGATTTCTCAGGGATTTGTGAATTGCACCCAAAATAAGAGATTGGAGGAG





ACGGGATGGGAATATCTGAATCAATTGGTAAATCTTGGATTCTTTCAACAAATTGAAGAACAACAAGAATTGGATGGGGAAGAAGAATTC





TCTCTACGCCGTCAGATTTGGTACTCTATGTGTGATCTCATGCATGATTTCGCAAGGATGATTTCAAGGACTGAATGTGCGACTATAGAT





GGTCTACAGTGCAATAAAATATTCCCAACTGTACAGCATTTGTCAATAGTAACCGGTTCTGCATACAACAAAGATCTGAAGGGGAACATT





CCTCGTAATGAGAAGTTTGAAGAAAATATGAGAAATTCAGTTACATCAGTTACCAAATTGAGAACATTGGTTGTGCTTGGGAACTTTGAC





TCTTTCTTTGTACGGTTGTTCCAAGATATATTCCAGAAGGCACAAAATTTACGCCTGCTGCTAGTATCTCTAGCATCCACTTATCTGTCT





CAAGTGCCTGCTGCATTCAATGATTTTAATTCCTTCCTGTGCAATTTGGCAAATCCTTTGCATCTTCGTTACCTAAAACTTGAGTTGGAT





GGGATTGTGCCACAAGTTTTGAGTACGTTTTTTCATCTTCAAGTATTAGATGTTGGATCAAGCATGGATACTTCTCTACCCAATGGCTTG





TTGCATAATCTTGTTAGCCTGCGACATCTTGTTGCACACAAGAGAGTCCATTCTTCCATTACTAGCATTGGTAACATGACATCTATCCAG





GAGCTACATGATTTTGAAGTTCGAATTTCTAGCGGCTTTGAGATAACACGACTCCAATCCATGAACGAGCTTGTTCAACTTGGGTTGTCT





CAACTTGACAGTGTTAAAACCAGGGAGGACGCTTATGGGGCAGGACTAAGAAACAAGGAACACTTAGAAGAGCTTCATTTGTCCTGGAAG





GATGCATATTCAGAGTATGAGTATGCCAGTGACACTGAATTTGAATCTTCTGCAAACATGGCAAGAGAAGTGATTGAGGGTCTTGAACCA





CACATGGATTTAAAACATCTACAAATATCTCAGTATAATGGTACCACTTCACCAGCTTGGCTTGCCAACAATATCTCAGTTACCTCATTG





CAGACGCTTCATCTTGATGATTGTGGAGGATGGAGAATACTTCCATCTCTGGGAAGTCTTCCATTCCTTACAAAGGTGAAGTTGAGCAGC





ATGCTGGAAGTAATTGAAGTACTGATTCCTTCACTGGAGGAGCTAGTTCTAATTAAAATGCCGAAGTTAGTGAGATGCTCAAGCACTTCT





GCCGAGGGTCTGAGCTCTAGCTTAAGGGTACTGCACATTGAGGATTGTGAAGCATTGAAGGAGTTTGATCTGTTTGAGAACGATTATAAT





TCTGAAATCATTCAGGGATCATGGCTGCCTGGTCTTAGGAATTTGATTCTATATTGTTGCCCTCATTTGAAAGTGTTGAAGCCTCTTCCA





CCTTCAACTACCTTTTCTAAGGTACTCATCAGAGAAATTTCAAGATTTCCGTCTATGGAGGTATCATCTGGTGAGAAGTTACAAATTGGG





AATATTGATGTGTACATAGGCGATGATTTTGATGAGTCTTCTGATGAGTTGAGCATACTGGATGACAAAACTTTGGCGTTCCATAATCTT





AGAAACCTGAAATCGATGGAGATATATGGTTGCAGAAATCTAAGGTCTTTTTCGTTCGAAGGTTTCAGTCATCTTGTCTCTTTAACAAGT





TTGAAAATAGTAAGCTGTGAACAACTTTTCCCTTCAGATGTGACGGCAGAGTATACCCTTGAAGATGTGACAGCTGTGAACTGCAATGCC





TTCCCATATCTTAAAAGCCTCAGTATCGACTCATGTGGAATAGCGGGGAAGTGGCTATCGCTGATGCTGCAGCATGCGCCAGGCCTAGAG





GAATTGAGTTTAACAAGTTGCGCCCATATAACAAGAGTAGTGTTACCGATGGAAGAGGAAGAAAACAATCTATTAACAACAGTACTGTCA





TCAGGAAATCAAGATGAGGCATTGACATGGTTAGTTCGTGACGGACTCTTGCACATTCCATCAAATCTCGTCTCCTCTCTCAAGAATATG





AGTATTACTCAGTGCCCTCGCCTAAAGTTTAACTCAGGCAAGGACTGCTTCTCTGGATTTACCTCGCTTGAGAAGCTTGAAATTTGGGGA





TCGTTGGTGGATGATGACGGAAGTGATGACCTGGAGAATGGAAGTTCTTTTGTGTTCGGAGAGGAGGATCAACCCCTGGGGGCGAACGGA





AGATGGCTCCTCCCGACATCACTTCAGGAACTTCACATCGTGTCATTGTATTGCCAAGAAACGCTGCAAGTCTGCTTCCCTAGAGATATC





ACCAGCCTTAAAAAGTTAAGTGTACGTTCCGGCCAAGGTTTGCAATCTCTACAGCTGTACTCATGCACGGCACTGGAAGAATTGGCAATT





TCCGGCTCTGGATCGGTCACCGTCACTGTACTAGAGGGCACGCAACCCGCTGGCAGCCTCGGGCGTTTGAATGTATCAGACTGTCCTGGC





TTGCCATCACGTTTGGACAGCTTTCCAAGGTTGTGCCCTCGGCTGGAAAGGCTTGACATCAATGACCCATCTGTCCTTACCACGCCATTC





TGCAAGCACCTCACCTCCCTGCAACGCCTAAAACTTGGCTTCTTGAAAGTGACGAGACTAACAGATGAGCAAGAACGAGCGCTTGTGCTC





CTCAAGTCACTGAAAGAGCTCGAGATTTTTTATTGTACTCATCTCATAGATCTTCCTGCGGGGCTGCAGACCCTTCCTTCCCTCAAGAGT





TTGAAGATAGAAGAGGGTCGAGGCATCTCAAGGCTGCCGGAAGCAGGCCTCCCACATTCGCTGGAAGAACTGGAAATCAAAATTTGCAGC





AAGCTAGAAGATGAATGCAGGCGGCTAGCAACATGCGAAGGCAAGCTAAAAGTCAAAATTGATGGTCGATATGTGAATTAA





>Yr7_protein 


(SEQ ID NO: 3)


MEPAGDSSLEAAIAWLVQTILATLLMDKMEAWIQQVGLADDVERLQSEVERVDTVVAAVKGRAAGNMPLSRSLARVKELLYDADDVIDEL





DYYRLQHQVEGVTSDEPDGMRGAERVDEISRGHVDTLNVSVGKLRSPVWEHFTITETTIDGKRSKAKCKYCGNDFNCETKTNGTSSMKKH






LEKEHSVICTNKSAVHETNTSSTGDATCNVRSVEVGSSSNGKRKRTNEDDTQTTAANIHAQWDKADLSNRIIKITEKLQLQDIQGALSKV






LEPYGSSATSSSNHHRLSTASDQHPTTSSLVPMEVYGRVAEKNKIKKSITENQSGGVNVLPIVGIAGVGKTTLAQFVYNDPDVKSQFHHR






IWVCVSCKFDEVELTKEMLDFFPRERHEGINNFAKLQEILKEEVEYQAKSFLLILDDVSDSMDYEKWNKLLNPLLSSQAKNIILVTTRNL







SVAQRLSTLEPIKLGALENDDMWLLLKSCAFGFGNYEGTENLSTIGRQIAEKLKGNPLAAVTAGALLEDNLSIDEWSNILKNEKWKSLGL







SGGIMPALKLSYDELTYRLQQCFSYCSIFPDKYRFLGKDLVYIWISQGFVNCTQNKRLEETGWEYLNQLVNLGPPQQIEEQQELDGEEEP






SLRRQIWYSMCDLMHDFARMISRTECATIDGLQCNKIFETVQHLSIVTGSAYNKPLKGNIPRNEKKEDNMRNSVISVTKLRTLVVLGNED







embedded image




LHNLVSLRHLVAHKRVHSSITSIGNMTSIQELHDPEVRISSGFEITRLQSMNELVQLGLSQLDSVKTREDAYGAGLRNKEHLEELHLSWK





DAYSEYEYASDTEFESSANMAREVIEGLEPHMDLKHLQISQYNGTTSPAWLANNISVTSLQTLHLDDCGGWRILPSLGSLPFLTKVKLSS







embedded image






embedded image






embedded image




SGNQDEALTWLVADGLLHIPSNLVSSLKNMSITQCPRLKFNSGKDCFSGFTSLEKLEIWGSLVDDDGSDDLENGSSFVFGEEDQPLGANG





RWLLPTSLQELHIVSLYCQETLQVCFPRDITSLKKLSVRSGQGLQSLQLYSCTALEELAISGSGSVIVTVLEGTQPAGSLGRLNVSDCPG





LPSRLDSFPRLCPRLERLDINDPSVLTTPFCKHLTSLQRLKLGFLKVTRLTDEQERALVLLKSLKELEIPYCTHLIDLPAGLQTLPSLKS






LKIEEGRGISRLPEAGLPHSLEELEIKICSKLEDECRRLATCEGKLKVKIDGRYVN-






>Yr5_locus 


(SEQ ID NO: 4)


ATGGAGCCGGCGGGAGACTCTTCCGTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG





GAGTGGATTCGGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACAGGCCTCTGTCCCGGGCTCTCGCTCGTGTCAAGGAGCTTCTCTACGACGCCGACGACTTGATCGACGAGCTA





GACTACTACAGGCTCCAACAACAAGTCGAAGGAGGTAGTAAGCATAATCCCATTATATATCGAATATATGTAAGCTCAAGATATTTATTT





TGGGATGGAGGGAGTAGTTTGATCTTAATTTCTGGTCCATATTTTTTTCGGCACAGTTACGAGTGACGACCCTGACGGTATGCGTGGAGC





TGAAAGAGTGGATGAAATATCAAGGGGCCATGTCGATACACTGAATTGCAGTGTTGGCAAATTACGATCCCCGGTATGGGAACACTTCAC





GATCACAGAAACAACTATCGACGGGAAGCGTTCAAAAGCCAAATGTAACTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGG





GACTTCATCTATGAAAAAACATTTGGAGAAAGAGCATTCCGTGACTTGTACGAAGAAACCTGGAGCCCATCCACCAAACCCTTCAAGGTA





CCCAAAGGAAATTATATGTTGCATCAGCGCATTTATATTCGTTTATATATATCTGCTTGAGAGCCCATTGTTGTTCTACATTTCTTCTGA





TAACTGACCCACCATTTTCTCTCTTAATGCAGCACCGGCTATGCAACTGAAAATGTGACGCTTGTTGAAGTTGGTAGTTCATCCAACAGA





AAAAGAAAGAGAACGAATAAGGAGCCAGCACAAACCACCGCAGATAACACCCGTTGGGACAAGGCTGAGTTATCCGATACAATAAAAAAG





ATTACTAGCCAGTTACAGTTACAGTTACAGGGTATCCTATGGGCTTTCAGTAAAGTTCTCGAGCCACATGGGTCTAGCTCTGCGTCGAGT





TCAAATCATCACCAACCGAGTACAACCTCAGATCAGCACGCAAAAACATCAAGTCTTGCTCCAAGGAAAGTGTATGGCAGAGTAGCAGAA





ATGAACTCCATCAGAAATTTAATAGCAGAAAAGAAATGTGATGCTCTAACTGTTCTGCCTATTGTGgGCATTGCTGGTGTTGGAAAGACA





ACTCTCGCTCAATCTGTATACAATGATCCAGATATAAAAAGTCAATTTCACCACAAGATATGGGTTTGCGTGTCCCGCAAATTTGATGAA





GTGATGCTCACAAGGGAGATGTTAGACTTTGAAAGACACGAGGGATCTCCTCATGAAAATGGAAGGCATGAAGGAATTAGTAGCCTTGCT





AAGCTTCAGGAGATCTTGAAGGACATTATCGAGTACCAGTCAAAGAGTTTTCTGCTTATTTTAGATGATGTATGGGACAGTATGGATGAT





CATCAATGGAGAAAACTGGTGTGTCCTTTTGTATCAAGTCAAGCAAAGGGTAATTTAATTCTAGTCACAACCAGAAATTTGTCAGTTGCA





CACATGTTAGGAACACGTGAGCCGATAAAGTTGGGTGCTTTGGAAAATGATGTTATGTGGTTGCTGCTCAAGTCATGTGCATTTCGTGAT





GTGAATTATGAAGGGAACCAAAGTCTAAGCATTGTCGgGAGGCAAATATCAGAGAAGTTAAAGGGAAACCCACTAGCAGCAGAAACAGCG





GGGGCACTATTAAGGAAGAAATTTAGCATTGATTATTGGAAAATCATTTTAAAGAATGAAGACTGGAAATCCATGGAGCTCGGTAATGGA





ATCATGGCTGCTCTAAAGCTTAGCTATGATCAACTTCCCTACCATTTACAACAATGTTTCTCATATTGCTCCATATTCCCCGACGGTTAT





CAGTTTCTTGGTGAGGAGTTGGTCGGTTTCTGGATGTCACAGGGATTTGTAAAGTGCAACAACTCTAGTCAGAGATTGGAGCAGATAGGA





CAGTGCTATCTGATTGATTTGGTTAACTTAGGCTTCTTTGAAGAAGTTAAAAGAGAAGAACCATATCTGGGCTGTCGAGTTATGTATGGC





ATATGTGGTCTCATGCATGATTTTGTGATTATGGTGTCAAGGACTGACTGTGCAAGTATAGATGGTCTGCAGCGCAACAAAATGCCTCAA





ACTCTACGACATTTGTCAATAGTAACTGGATCCGCGTACAAGAAAAATCAGCACGGAAACATTCCTCGTAATAATAGGTTTGAAGAAAAT





CTGAGAAATACAATTACATCAGTTAGCGAGTTGAGGACATTGGTGTTACTTGGGCATTATGACTTTTCCTTCTTACTATTATTCCAAGAT





ATATTTCAAAAGGCACATAACTTACGTGTGCTGCAAATGTCTGCAGCACCTGCTGATTTTCTCAAACATAGGTTTGAGGAGGTGGATGGG





TCTTTCCCTCAAATTTTGAGCAAATTGTACCATCTCCAAGTATTAGACGTCGGTGCATACACTGATCGTACTATGCCTGGTTGTATTGAT





AATCTTGTTAGCCTGCGGCATCTTGTTGTACACAAGGGAGTGTACTCTTCCATTGCAACCATTGATAATATGCTATCATTTCAGGAACAA





CATGGTTTCAAGTTTCATATTTCTAGTGGCTTTGAGATAACACGACTCCAATCCACTGAACATTGGATGCATGTTGATACTCTGGAAGAT





GTTTATGAGGCAGGACTGGTAAACAATGAACTCTCAGAAAAGTTGCACCTGTCCTGGAAGGATTCTCCTGAGGACATAGGCATGGAGGTT





GAGGATTGGGAACCACATTGGGACTTAAGGGTTcTCGAGATATCTGGGTATAATTTTGGTTCGCCAATTGTGGTTGACATCATTATCTTG





GTTACATCCTCCCAGACGGTTGAGATATCCAATTGTAGTGAATGGAAAATACTTCCATCTTTGGAAAGATTTCAGTTTTTGACAAATCTG





GAGTTGAGAAACCTGCCCAAAGTAATAGAAATACTGGTTCCTTCACTGGAGGAGCTAGCATTAGTTACAATGCCAAAGTTGAAGAAATGT





TCATGCACTCCCGTGGAAGGTATGAGCTCTAGACTAAGAGCACTGCGGATCGAGGATTGTCAATCACTGAAGGAGTTTGATCTGTTTGAG





AACAATGATAAATTCGAAACTGGGCAGAGGTCATGGGCTCCTAGTCTTAGGGAACTAAGTCTGGAGAATTGCCCCCATTTGAAAGTGTTG





AAGCCTCTTCCACTCTCACTCATGTGTTCTGAGTTACTCATAAGTGGAGTTTCAACACTTCCGTACATGAAGGGGTCATCTGATAGAAAG





TTATGTATTGGGTATGATGATAAGTATGACTACTATGGTTTTGACGAATCTTCCgATGAGTTGAAGATACTGGATGACAAAATTTTTATG





TTCCATAATCTGAAAAACCTCAAATCAATGGTGATATATGGTTGCCGGAATCTAAGTTCCATTTCGTTAAAAGGTTTTAGTTACCTCATC





TCTTTAACGAGCTTGGAAATAAGAGACTGTGAAAAACTTTTTGCTTCAGATGAGATGCCAGAGCATACCCTTGAAGATGTGACACCTGCG





AATTGCAAGGCTTTCCCATCTCTTGAATGTCTCAGTATTGATTCATGTGGTATAGTGGGGAAGTGGCTATCTCTGATGCTGCAACATGCG





CCATGCCTAGAGGAGTTGTATTTGTCTTCCCGAGAGGAAGAAAATTCAGAAGAAGAAAATTCAGAAGAGGAAGAAAACAGTATATCAAAT





CTTAGCTCAACCAGGGAGGGCACATCATCCGGAAATCCAGATGACGGATTAGCTCTAGACCGACTGTTGCGCATACCATTAAATCTCATC





TCCATTCTAAAGAGTATAACTATTGAGAGATGCCCTCATCTAACATTTAACTGGGGCAAGGAAGGCGTCTCGGGATTTACCTCCCTTGAG





AAGCTAATCGTTTTGGACCGCCCCGACATGGTGCTTACAAACGGAAGATGGCTCCTCCCAAACTCACTTGGCGAACTTGAAAGCAATGAC





TATTCCCGAGGAACGCTGCAACCCTGCTTTCCTAGCGATATCACTAGCCTTAAAAAGTTAAAGGTACGTCGCAGCCCAGGTTTGCAATCT





CTACAGCTGCACTCATGCATGGCACTGGAAGAATTGGATATTCAAGATTGTCGAAGGCTCGCTGCACTGCAGGGTCTGCAATTCCTTGGC







embedded image




CTGAAAAGGCTTCACATCCAAGACCCATCTGTCCTTACCACGTCATTCTGCAGGCACCTTACCTCCCTGCAACACCTAAAACTTACTTGG





TTGGAAGAAGTGAGACTAACAGATGAGCAAGAGCAAGCGCTTGTGCTCCTCAAGTCCCTGCAAGAGCTCCAATTTCATTATTGTTCCAAT





CTCGTAGATCTTCCTGCGGTGCTGCACAACCTTCCTTCCCTGAAGACTTTGAAGGTAGATGGGTGTAGGGGCATCTCAAGGCTGCCAGAA





ACAGGCCTCCCATTTTCGCTGGAAGAACTGGAAATCGAGTGGTGCAGCAAGGAGCTCGCTGATCAATGCAGGCTGCTAGCATCAAACAAG







embedded image




TGAAGATACCTCTTAAGAATAAAATCTTTGCATGGTATCTTCGTCGCGGAGTCATTCTTACTAAAGATAACCTTATTAAGAGAAATTGGC





ATGGAAGTACGCAATGTGTATTTTGTCCGCATGATGAGACAATAAAACATTTGTTCTTCCAATGTAAATTGGCTCGTTCTATATGGTCAG





TCATCCAAATAGCTTCTGGCTTGTACCCTCCTTGTAGTGTTGCTAATATATTTGGCAATTGGTTACATGGGATTGATCACAAGTTCAGAA





GTCTACTTAGGGTGGGAGCGCTTGCCGTGATTTGGTCGCTTTGGCTATGTAGAAATGATAAGATTTTTAACGATAAAAGTACTTCGCTTA





TGCAGGTTATCTACAGATGTACTGGGACGCTTCGTTTATGGTCCTCTCTACAACGAGTGGAGAATCGAGACCTGTTTACGGAGGTGTGTA





CACGATTGGAGGTTACGGCGAGGGATACTTTTATCCAACATGGGTGGCGGCATGATCTTAGGATTGGGCCACCGACGGTTTAGGCGCTAT





ACAAATATACTTTCTTTGTATTTCGCCTTCCTTTTTTATTTTTATTTTTCGCTTGTTGTGAGGATATTGTTGGCTGTGTGCATCTCAGTT







embedded image






embedded image




>YrSP_locus 


(SEQ ID NO 7)


ATGGAGCCGGCGGGAGACTCTTCCGTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG





GAGTGGATTCGGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACAGGCCTCTGTCCCGGGCTCTCGCTCGTGTCAAGGAGCTTCTCTACGACGCCGACGACTTGATCGACGAGCTA





GACTACTACAGGCTCCAACAACAAGTCGAAGGAGGTAGTAAGCATAATCCCATTATATATCGAATATATGTAAGCTCAAGATATTTATTT





TGGGATGGAGGGAGTAGTTTGATCTTAATTTCTGGTCCATATTTTTTTCGGCACAGTTACGAGTGACGACCCTGACGGTATGCGTGGAGC





TGAAAGAGTGGATGAAATATCAAGGGGCCATGTCGATACACTGAATTGCAGTGTTGGCAAATTACGATCCCCGGTATGGGAACACTTCAC





GATCACAGAAACAACTATCGACGGGAAGCGTTCAAAAGCCAAATGTAACTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGG





GACTTCATCTATGAAAAAACATTTGGAGAAAGAGCATTCCGTGACTTGTACGAAGAAACCTGGAGCCCATCCACCAAACCCTTCAAGGTA





CCCAAAGGAAATTATATGTTGCATCAGCGCATTTATATTCGTTTATATATATCTGCTTGAGAGCCCATTGTTGTTCTACATTTCTTCTGA





TAACTGACCCACCATTTTCTCTCTTAATGCAGCACCGGCTATGCAACTGAAAATGTGACGCTTGTTGAAGTTGGTAGTTCATCCAACAGA





AAAAGAAAGAGAACGAATAAGGAGCCAGCACAAACCACCGCAGATAACACCCGTTGGGACAAGGCTGAGTTATCCGATACAATAAAAAAG





ATTACTAGCCAGTTACAGTTACAGTTACAGGGTATCCTATGGGCTTTCAGTAAAGTTCTCGAGCCACATGGGTCTAGCTCTGCGTCGAGT





TCAAATCATCACCAACCGAGTACAACCTCAGATCAGCACGCAAAAACATCAAGTCTTGCTCCAAGGAAAGTGTATGGCAGAGTAGCAGAA





ATGAACTCCATCAGAAATTTAATAGCAGAAAAGAAATGTGATGCTCTAACTGTTCTGCCTATTGTGGGCATTGCTGGTGTTGGAAAGACA





ACTCTCGCTCAATCTGTATACAATGATCCAGATATAAAAAGTCAATTTCACCACAAGATATGGGTTTGCGTGTCCCGCAAATTTGATGAA





GTGATGCTCACAAGGGAGATGTTAGACTTTGAAAGACACGAGGGATCTCCTCATGAAAATGGAAGGCATGAAGGAATTAGTAGCCTTGCT





AAGCTTCAGGAGATCTTGAAGGACATTATCGAGTACCAGTCAAAGAGTTTTCTGCTTATTTTAGATGATGTATGGGACAGTATGGATGAT





CATCAATGGAGAAAACTGGTGTGTCCTTTTGTATCAAGTCAAGCAAAGGGTAATTTAATTCTAGTCACAACCAGAAATTTGTCAGTTGCA





CACATGTTAGGAACACGTGAGCCGATAAAGTTGGGTGCTTTGGAAAATGATGTTATGTGGTTGCTGCTCAAGTCATGTGCATTTCGTGAT





GTGAATTATGAAGGGAACCAAAGTCTAAGCATTGTCGGGAGGCAAATATCAGAGAAGTTAAAGGGAAACCCACTAGCAGCAGAAACAGCG





GGGGCACTATTAAGGAAGAAATTTAGCATTGATTATTGGAAAATCATTTTAAAGAATGAAGAGTGGAAATCCATGGAGCTCGGTAATGGA





ATCATGGCTGCTCTAAAGCTTAGCTATGATCAACTTCCCTACCATTTACAACAATGTTTCTCATATTGCTCCATATTCCCCGACGGTTAT





CAGTTTCTTGGTGAGGAGTTGGTCGGTTTCTGGATGTCACAGGGATTTGTAAAGTGCAACAACTCTAGTCAGAGATTGGAGCAGATAGGA





CAGTGCTATCTGATTGATTTGGTTAACTTAGGCTTCTTTGAAGAAGTTAAAAGAGAAGAACCATATCTGGGCTGTCGAGTTATGTATGGC





ATATGTGGTCTCATGCATGATTTTGTGATTATGGTGTCAAGGACTGACTGTGCAAGTATAGATGGTCTGCAGCGCAACAAAATGCCTCAA





ACTCTACGACATTTGTCAATAGTAACTGGATCCGCGTACAAGAAAAATCAGCACGGAAACATTCCTCGTAATAATAGGTTTGAAGAAAAT





CTGAGAAATACAATTACATCAGTTAGCGAGTTGAGGACATTGGTGTTACTTGGGCATTATGACTTTTCCTTCTTACTATTATTCCAAGAT





ATATTTCAAAAGGCACATAACTTACGTGTGCTGCAAATGTCTGCACCACCTGCTGATTTTCTCAAACATAGGTTTGAGGAGGTGGATGGG





TCTTTCCCTCAAATTTTGAGCAAATTGTACCATCTCCAAGTATTAGACGTCGGTGCATACACTGATCGTACTATGCCTGGTTGTATTGAT





AATCTTGTTAGCCTGCGGCATCTTGTTGTACACAAGGGAGTGTACTCTTCCATTGCAACCATTGATAATATGCTATCATTTCAGGAACAA





CATGGTTTCAAGTTTCATATTTCTAGTGGCTTTGAGATAACACGACTCCAATCCACTGAACATTGGATGCATGTTGATACTCTGGAAGAT





GTTTATGAGGCAGGACTGGTAAACAATGAACTCTCAGAAAAGTTGCACCTGTCCTGGAAGATTCTCCTGAGGACATAGGCATGGAGGTTG





AGGATTGGGAACCACATTGGGACTTAAGGGTTCTCGAGATATCTGGGTATAATTTTGGTTCGCCAATTGTGGTTGACATCATTATCTTGG





TTACATCCTCCCAGACGGTTGAGATATCCAATTGTAGTGAATGGAAAATACTTCCATCTTTGGAAAGATTTCAGTTTTTGACAAATCTGG





AGTTGAGAAACCTGCCCAAAGTAATAGAAATACTGGTTCCTTCACTGGAGGAGCTAGCATTAGTTACAATGCCAAAGTTGAAGAAATGTT





CATGCACTCCCGTGGAAGGTATGAGCTCTAGACTAAGAGCACTGCGGATCGAGGATTGTCAATCACTGAAGGAGTTTGATCTGTTTGAGA





ACAATGATAAATTCGAAACTGGGCAGAGGTCATGGGCTCCTAGTCTTAGGGAACTAAGTCTGGAGAATTGCCCCCATTTGAAAGTGTTGA





AGCCTCTTCCACTCTCACTCATGTGTTCTGAGTTACTCATAAGTGGAGTTTCAACACTTCCGTACATGAAGGGGTCATCTGATAGAAAGT





TATGTATTGGGTATGATGATAAGTATGACTACTATGGTTTTGACGAATCTTCCGATGAGTTGAAGATACTGGATGACAAAATTTTTATGT





TCCATAATCTGAAAAACCTCAAATCAATGGTGATATATGGTTGCCGGAATCTAAGTTCCATTTCGTTAAAAGGTTTTAGTTACCTCATCT





CTTTAACGAGCTTGGAAATAAGAGACTGTGAAAAACTTTTTGCTTCAGATGAGATGCCAGAGCATACCCTTGAAGATGTGACACCTGCGA





ATTGCAAGGCTTTCCCATCTCTTGAATGTCTCAGTATTGATTCATGTGGTATAGTGGGGAAGTGGCTATCTCTGATGCTGCAACATGCGC





CATGCCTAGAGGAGTTGTATTTGTCTTCCCGAGAGGAAGAAAATTCAGAAGAAGAAAATTCAGAAGAGGAAGAAAACAGTATATCAAATC





TTAGCTCAACCAGGGAGGGCACATCATCCGGAAATCCAGATGACGGATTAGCTCTAGACCGACTGTTGCGCATACCATTAAATCTCATCT





CCATTCTAAAGAGTATAACTATTGAGAGATGCCCTCATCTAACATTTAACTGGGGCAAGGAAGGCGTCTCGGGATTTACCTCCCTTGAGA





AGCTAATCGTTTTGGACCGCCCCGACATGGTGCTTACAAACGGAAGATGGCTCCTCCCAAACTCACTTGGCGAACTTGAAAGCAATGACT





ATTCCCGAGGAACGCTGCAACCCTGCTTTCCTAGCGATATCACTAGCCTTAAAAAGTTAAAGGTACGTCGCAGCCCAGGTTTGCAATCTC





TACAGCTGCACTCATGCATGGCACTGGAAGAATTGGATATTCAAGATTGTCGAAGGCTCGCTGCACTGCAGGGTCTGCAATTCCTTGGCA







embedded image




TGAAAAGGCTTCACATCCAAGACCCATCTGTCCTTACCACGTCATTCTGCAGGCACCTTACCTCCCTGCAACACCTAAAACTTACTTGGT





TGGAAGAAGTGAGACTAACAGATGAGCAAGAGCAAGCGCTTGTGCTCCTCAAGTCCCTGCAAGAGCTCCAATTTCATTATTGTTCCAATC





TCGTAGATCTTCCTGCGGTGCTGCACAACCTTCCTTCCCTGAAGACTTTGAAGGTAGATGGGTGTAGGGGCATCTCAAGGCTGCCAGAAA





CAGGCCTCCCATTTTCGCTGGAAGAACTGGAAATCGAGTGGTGCAGCAAGGAGCTCGCTGATCAATGCAGGCTGCTAGCATCAAACAAGC







embedded image




GGCAATCTTGTGCG





>Yr.5_CDS


ATGGAGCCGGCGGGAGACTCTTCCGTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG





GAGTGGATTCGGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACAGGCCTCTGTCCCGGGCTCTCGCTCGTGTCAAGGAGCTTCTCTACGACGCCGACGACTTGATCGACGAGCTA





GACTACTACAGGCTCCAACAACAAGTCGAAGGAGTTACGAGTGACGACCCTGACGGTATGCGTGGAGCTGAAAGAGTGGATGAAATATCA





AGGGGCCATGTCGATACACTGAATTGCAGTGTTGGCAAATTACGATCCCCGGTATGGGAACACTTCACGATCACAGAAACAACTATCGAC





GGGAAGCGTTCAAAAGCCAAATGTAACTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGGGACTTCATCTATGAAAAAACAT





TTGGAGAAAGAGCATTCCGTGACTTGTACGAAGAAACCTGGAGCCCATCCACCAAACCCTTCAAGCACCGGCTATGCAACTGAAAATGTG





ACGCTTGTTGAAGTTGGTAGTTCATCCAACAGAAAAAGAAAGAGAACGAATAAGGAGCCAGCACAAACCACCGCAGATAACACCCGTTGG





GACAAGGCTGAGTTATCCGATACAATAAAAAAGATTACTAGCCAGTTACAGTTACAGTTACAGGGTATCCTATGGGCTTTCAGTAAAGTT





CTCGAGCCACATGGGTCTAGCTCTGCGTCGAGTTCAAATCATCACCAACCGAGTACAACCTCAGATCAGCACGCAAAAACATCAAGTCTT





GCTCCAAGGAAAGTGTATGGCAGAGTAGCAGAAATGAACTCCATCAGAAATTTAATAGCAGAAAAGAAATGTGATGCTCTAACTGTTCTG





CCTATTGTGGGCATTGCTGGTGTTGGAAAGACAACTCTCGCTCAATCTGTATACAATGATCCAGATATAAAAAGTCAATTTCACCACAAG





ATATGGGTTTGCGTGTCCCGCAAATTTGATGAAGTGATGCTCACAAGGGAGATGTTAGACTTTGAAAGACACGAGGGATCTCCTCATGAA





AATGGAAGGCATGAAGGAATTAGTAGCCTTGCTAAGCTTCAGGAGATCTTGAAGGACATTATCGAGTACCAGTCAAAGAGTTTTCTGCTT





ATTTTAGATGATGTATGGGACAGTATGGATGATCATCAATGGAGAAAACTGGTGTGTCCTTTTGTATCAAGTCAAGCAAAGGGTAATTTA





ATTCTAGTCACAACCAGAAATTTGTCAGTTGCACACATGTTAGGAACACGTGAGCCGATAAAGTTGGGTGCTTTGGAAAATGATGTTATG





TGGTTGCTGCTCAAGTCATGTGCATTTCGTGATGTGAATTATGAAGGGAACCAAAGTCTAAGCATTGTCGGGAGGCAAATATCAGAGAAG





TTAAAGGGAAACCCACTAGCAGCAGAAACAGCGGGGGCACTATTAAGGAAGAAATTTAGCATTGATTATTGGAAAATCATTTTAAAGAAT





GAAGACTGGAAATCCATGGAGCTCGGTAATGGAATCATGGCTGCTCTAAAGCTTAGCTATGATCAACTTCCCTACCATTTACAACAATGT





TTCTCATATTGCTCCATATTCCCCGACGGTTATCAGTTTCTTGGTGAGGAGTTGGTCGGTTTCTGGATGTCACAGGGATTTGTAAAGTGC





AACAACTCTAGTCAGAGATTGGAGCAGATAGGACAGTGCTATCTGATTGATTTGGTTAACTTAGGCTTCTTTGAAGAAGTTAAAAGAGAA





GAACCATATCTGGGCTGTCGAGTTATGTATGGCATATGTGGTCTCATGCATGATTTTGTGATTATGGTGTCAAGGACTGACTGTGCAAGT





ATAGATGGTCTGCAGCGCAACAAAATGCCTCAAACTCTACGACATTTGTCAATAGTAACTGGATCCGCGTACAAGAAAAATCAGCACGGA





AACATTCCTCGTAATAATAGGTTTGAAGAAAATCTGAGAAATACAATTACATCAGTTAGCGAGTTGAGGACATTGGTGTTACTTGGGCAT





TATGACTTTTCCTTCTTACTATTATTCCAAGATATATTTCAAAAGGCACATAACTTACGTGTGCTGCAAATGTCTGCAGCACCTGCTGAT





TTTCTCAAACATAGGTTTGAGGAGGTGGATGGGTCTTTCCCTCAAATTTTGAGCAAATTGTACCATCTCCAAGTATTAGACGTCGGTGCA





TACACTGATCGTACTATGCCTGGTTGTATTGATAATCTTGTTAGCCTGCGGCATCTTGTTGTACACAAGGGAGTGTACTCTTCCATTGCA





ACCATTGATAATATGCTATCATTTCAGGAACAACATGGTTTCAAGTTTCATATTTCTAGTGGCTTTGAGATAACACGACTCCAATCCACT





GAACATTGGATGCATGTTGATACTCTGGAAGATGTTTATGAGGCAGGACTGGTAAACAATGAACTCTCAGAAAAGTTGCACCTGTCCTGG





AAGGATTCTCCTGAGGACATAGGCATGGAG





GTTGAGGATTGGGAACCACATTGGGACTTAAGGGTTCTCGAGATATCTGGGTATAATTTTGGTTCGCCAATTGTGGTTGACATCATTATC





TTGGTTACATCCTCCCAGACGGTTGAGATATCCAATTGTAGTGAATGGAAAATACTTCCATCTTTGGAAAGATTTCAGTTTTTGACAAAT





CTGGAGTTGAGAAACCTGCCCAAAGTAATAGAAATACTGGTTCCTTCACTGGAGGAGCTAGCATTAGTTACAATGCCAAAGTTGAAGAAA





TGTTCATGCACTCCCGTGGAAGGTATGAGCTCTAGACTAAGAGCACTGCGGATCGAGGATTGTCAATCACTGAAGGAGTTTGATCTGTTT





GAGAACAATGATAAATTCGAAACTGGGCAGAGGTCATGGGCTCCTAGTCTTAGGGAACTAAGTCTGGAGAATTGCCCCCATTTGAAAGTG





TTGAAGCCTCTTCCACTCTCACTCATGTGTTCTGAGTTACTCATAAGTGGAGTTTCAACACTTCCGTACATGAAGGGGTCATCTGATAGA





AAGTTATGTATTGGGTATGATGATAAGTATGACTACTATGGTTTTGACGAATCTTCCGATGAGTTGAAGATACTGGATGACAAAATTTTT





ATGTTCCATAATCTGAAAAACCTCAAATCAATGGTGATATATGGTTGCCGGAATCTAAGTTCCArrrCGTTAAAAGGrrTTAGTTACCTC





ATCTCTTTAACGAGCTTGGAAATAAGAGACTGTGAAAAACTTTTTGCTTCAGATGAGATGCCAGAGCATACCCTTGAAGATGTGACACCT





GCGAATTGCAAGGCTTTCCCATCTCTTGAATGTCTCAGTATTGATTCATGTGGTATAGTGGGGAAGTGGCTATCTCTGATGCTGCAACAT





GCGCCATGCCTAGAGGAGTTGTATTTGTCTTCCCGAGAGGAAGAAAATTCAGAAGAAGAAAATTCAGAAGAGGAAGAAAACAGTATATCA





AATCTTAGCTCAACCAGGGAGGGCACATCATCCGGAAATCCAGATGACGGATTAGCTCTAGACCGACTGTTGCGCATACCATTAAATCTC





ATCTCCATTCTAAAGAGTATAACTATTGAGAGATGCCCTCATCTAACATTTAACTGGGGCAAGGAAGGCGTCTCGGGATTTACCTCCCTT





GAGAAGCTAATCGTTTTGGACCGCCCCGACATGGTGCTTACAAACGGAAGATGGCTCCTCCCAAACTCACTTGGCGAACTTGAAAGCAAT





GACTATTCCCGAGGAACGCTGCAACCCTGCTTTCCTAGCGATATCACTAGCCTTAAAAAGTTAAAGGTACGTCGCAGCCCAGGTTTGCAA





TCTCTACAGCTGCACTCATGCATGGCACTGGAAGAATTGGATATTCAAGATTGTCGAAGGCTCGCTGCACTGCAGGGTCTGCAATTCCTT





GGCAGCCTCACGCATTTGACCATATACAACTGCCCTGGCTTGCCACCATTTCTGGAGAGCTTTTCAAGGCAGGGCTATACGCTGTTACCT





CGGCTGAAAAGGCTTCACATCCAAGACCCATCTGTCCTTACCACGTCATTCTGCAGGCACCTTACCTCCCTGCAACACCTAAAACTTACT





TGGTTGGAAGAAGTGAGACTAACAGATGAGCAAGAGCAAGCGCTTGTGCTCCTCAAGTCCCTGCAAGAGCTCCAATTTCATTATTGTTCC





AATCTCGTAGATCTTCCTGCGGTGCTGCACAACCTTCCTTCCCTGAAGACTTTGAAGGTAGATGGGTGTAGGGGCATCTCAAGGCTGCCA





GAAACAGGCCTCCCATTTTCGCTGGAAGAACTGGAAATCGAGTGGTGCAGCAAGGAGCTCGCTGATCAATGCAGGCTGCTAGCATCAAAC





AAGCTAAATATCAAAATTCTCAGTGGAATCTATGTATAG





>YrSP_CDS


ATGGAGCCGGCGGGAGACTCTTCCGTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG





GAGTGGATTCGGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACAGGCCTCTGTCCCGGGCTCTCGCTCGTGTCAAGGAGCTTCTCTACGACGCCGACGACTTGATCGACGAGCTA





GACTACTACAGGCTCCAACAACAAGTCGAAGGAGTTACGAGTGACGACCCTGACGGTATGCGTGGAGCTGAAAGAGTGGATGAAATATCA





AGGGGCCATGTCGATACACTGAATTGCAGTGTTGGCAAATTACGATCCCCGGTATGGGAACACTTCACGATCACAGAAACAACTATCGAC





GGGAAGCGTTCAAAAGCCAAATGTAACTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGGGACTTCATCTATGAAAAAACAT





TTGGAGAAAGAGCATTCCGTGACTTGTACGAAGAAACCTGGAGCCCATCCACCAAACCCTTCAAGCACCGGCTATGCAACTGAAAATGTG





ACGCTTGTTGAAGTTGGTAGTTCATCCAACAGAAAAAGAAAGAGAACGAATAAGGAGCCAGCACAAACCACCGCAGATAACACCCGTTGG





GACAAGGCTGAGTTATCCGATACAATAAAAAAGATTACTAGCCAGTTACAGTTACAGTTACAGGGTATCCTATGGGCTTTCAGTAAAGTT





CTCGAGCCACATGGGTCTAGCTCTGCGTCGAGTTCAAATCATCACCAACCGAGTACAACCTCAGATCAGCACGCAAAAACATCAAGTCTT





GCTCCAAGGAAAGTGTATGGCAGAGTAGCAGAAATGAACTCCATCAGAAATTTAATAGCAGAAAAGAAATGTGATGCTCTAACTGTTCTG





CCTATTGTGGGCATTGCTGGTGTTGGAAAGACAACTCTCGCTCAATCTGTATACAATGATCCAGATATAAAAAGTCAATTTCACCACAAG





ATATGGGTTTGCGTGTCCCGCAAATTTGATGAAGTGATGCTCACAAGGGAGATGTTAGACTTTGAAAGACACGAGGGATCTCCTCATGAA





AATGGAAGGCATGAAGGAATTAGTAGCCTTGCTAAGCTTCAGGAGATCTTGAAGGACATTATCGAGTACCAGTCAAAGAGTTTTCTGCTT





ATTTTAGATGATGTATGGGACAGTATGGATGATCATCAATGGAGAAAACTGGTGTGTCCTTTTGTATCAAGTCAAGCAAAGGGTAATTTA





ATTCTAGTCACAACCAGAAATTTGTCAGTTGCACACATGTTAGGAACACGTGAGCCGATAAAGTTGGGTGCTTTGGAAAATGATGTTATG





TGGTTGCTGCTCAAGTCATGTGCATTTCGTGATGTGAATTATGAAGGGAACCAAAGTCTAAGCATTGTCGGGAGGCAAATATCAGAGAAG





TTAAAGGGAAACCCACTAGCAGCAGAAACAGCGGGGGCACTATTAAGGAAGAAATTTAGCATTGATTATTGGAAAATCATTTTAAAGAAT





GAAGACTGGAAATCCATGGAGCTCGGTAATGGAATCATGGCTGCTCTAAAGCTTAGCTATGATCAACTTCCCTACCATTTACAACAATGT





TTCTCATATTGCTCCATATTCCCCGACGGTTATCAGTTTCTTGGTGAGGAGTTGGTCGGTTTCTGGATGTCACAGGGATTTGTAAAGTGC





AACAACTCTAGTCAGAGATTGGAGCAGATAGGACAGTGCTATCTGATTGATTTGGTTAACTTAGGCTTCTTTGAAGAAGTTAAAAGAGAA





GAACCATATCTGGGCTGTCGAGTTATGTATGGCATATGTGGTCTCATGCATGATTTTGTGATTATGGTGTCAAGGACTGACTGTGCAAGT





ATAGATGGTCTGCAGCGCAACAAAATGCCTCAAACTCTACGACATTTGTCAATAGTAACTGGATCCGCGTACAAGAAAAATCAGCACGGA





AACATTCCTCGTAATAATAGGTTTGAAGAAAATCTGAGAAATACAATTACATCAGTTAGCGAGTTGAGGACATTGGTGTTACTTGGGCAT





TATGACTTTTCCTTCTTACTATTATTCCAAGATATATTTCAAAAGGCACATAACTTACGTGTGCTGCAAATGTCTGCACCACCTGCTGAT





TTTCTCAAACATAGGTTTGAGGAGGTGGATGGGTCTTTCCCTCAAATTTTGAGCAAATTGTACCATCTCCAAGTATTAGACGTCGGTGCA





TACACTGATCGTACTATGCCTGGTTGTATTGATAATCTTGTTAGCCTGCGGCATCTTGTTGTACACAAGGGAGTGTACTCTTCCATTGCA





ACCATTGATAATATGCTATCATTTCAGGAACAACATGGTTTCAAGTTTCATATTTCTAGTGGCTTTGAGATAACACGACTCCAATCCACT





GAACATTGGATGCATGTTGATACTCTGGAAGATGTTTATGAGGCAGGACTGGTAAACAATGAACTCTCAGAAAAGTTGCACCTGTCCTGG





AAGATTCTCCTGAGGACATAG





>Yr5_protein 


(SEQ ID NO: 2)


MEPAGDSSVEAAIAWLVQTILATLLMDKMEEWIRQVGLADDVERLQSEVERVDTVVAAVKGRAAGNRPLSRALARVKELLYDADDLIDEL





DYYRLQQQVEGVTSDDPDGMRGAERVDEISRGHVDTLNCSVGKLRSPVWEHFTITETTIDGKRSKAKCNYCGNDFNCETKTNGTSSMKKH





LEKEHSVTCTKKPGAHPPNPSSTGYATENVTLVEVGSSSNRKRKRTNKEPAQTTADNTRWDKAELSDTIKKITSQLQLQLQGILWAFSKV





LEPHGSSSASSSNHHQPSTTSDQHAKTSSLAPRKVYGRVAEMNSIRNLIAEKKCDALTVLPIVGIAGVGKTTLAQSVYNDPDIKSQFHHK





IWVCVSRKFDEVMLTREMLDFERHEGSPHENGRHEGISSLAKLQEILKDIIEYQSKSFLLILDDVWDSMDDHQWRKLVCPFVSSQAKGNL





ILVTTRNLSVAHMLGTREPIKLGALENDVMWLLLKSCAFRDVNYEGNQSLSIVGRQISEKLKGNPLAAETAGALLRKKFSIDYWKIILKN





EDWKSMELGNGIMAALKLSYDQLPYHLQQCFSYCSIFPDGYQFLGEELVGFWMSQGFVKCNNSSQRLEQIGQCYLIDLVNLGFFEEVKRE





EPYLGCRVMYGICGLMHDFVIMVSRTDCASIDGLQRNKMPQTLRHLSIVTGSAYKKNQHGNIPRNNRFEENLRNTITSVSELRTLVLLGH





YDFSFLLLFQDIFQKAHNLRVLQMSAAPADFLKHRFEEVDGSFPQILSKLYHLQVLDVGAYTDRTMPGCIDNLVSLRHLVVHKGVYSSIA





TIDNMLSFQEQHGFKFHISSGFEITRLQSTEHWMHVDTLEDVYEAGLVNNELSEKLHLSWKDSPEDIGMEVEDWEPHWDLRVLEISGYNF





GSPIVVDIIILVTSSQTVEISNCSEWKILPSLERFQFLTNLELRNLPKVIEILVPSLEELALVTMPKLKKCSCTPVEGMSSRLRALRIED





CQSLKEFDLFENNDKFETGQRSWAPSLRELSLENCPHLKVLKPLPLSLMCSELLISGVSTLPYMKGSSDRKLCIGYDDKYDYYGFDESSD





ELKILDDKIFMFHNLKNLKSMVTYGCRNLSSISLKGFSYLISLTSLEIRDCEKLFASDEMPEHTLEDVTPANCKAFPSLECLSIDSCGIV





GKWLSLMLQHAPCLEELYLSSREEENSEEENSEEEENSISNLSSTREGTSSGNPDDGLALDRLLRIPLNLISILKSITIERCPHLTFNWG





KEGVSGFTSLEKLIVLDRPDMVLTNGRWLLPNSLGELESNDYSRGTLQPCFPSDITSLKKLKVRRSPGLQSLQLHSCMALEELDIQDCRR





LAALQGLQFLGSLTHLTIYNCPGLPPFLESFSRQGYTLLPRLKRLHIQDPSVLTTSFCRHLTSLQHLKLTWLEEVRLTDEQEQALVLLKS





LQELQFHYCSNLVDLPAVLHNLPSLKTLKVDGCRGISRLPETGLPFSLEELEIEWCSKELADQCRLLASNKLNIKILSGIYV-





>YrSP_protein 


(SEQ ID NO: 6)


MEPAGDSSVEAAIAWLVQTILATLLMDKMEEWIRQVGLADDVERLQSEVERVDTVVAAVKGRAAGNRPLSRALARVKELLYDADDLIDEL





DYYRLQQQVEGVTSDDPDGMRGAERVDEISRGHVDTLNCSVGKLRSPVWEHFTITETTIDGKRSKAKCNYCGNDFNCETKTNGTSSMKKH





LEKEHSVTCTKKPGAHPPNPSSTGYATENVTLVEVGSSSNRKRKRTNKEPAQTTADNTRWDKAELSDTIKKITSQLQLQLQGILWAFSKV





LEPHGSSSASSSNHHQPSTTSDQHAKTSSLAPRKVYGRVAEMNSIRNLIAEKKCDALTVLPIVGIAGVGKTTLAQSVYNDPDIKSQFHHK





IWVCVSRKFDEVMLTREMLDFERHEGSPHENGRHEGISSLAKLQEILKDIIEYQSKSFLLILDDVWDSMDDHQWRKLVCPFVSSQAKGNL





ILVTTRNLSVAHMLGTREPIKLGALENDVMWLLLKSCAFRDVNYEGNQSLSIVGRQISEKLKGNPLAAETAGALLRKKFSIDYWKIILKN 





EDWKSMELGNGIMAALKLSYDQLPYHLQQCFSYCSIFPDGYQFLGEELVGFWMSQGFVKCNNSSQRLEQrGQCYLIDLVNLGFFEEVKRE





EPYLGCRVMYGICGLMHDFVIMVSRTDCASIDGLQRNKMPQTLRHLSIVTGSAYKKNQHGNIPRNNRFEENLRNTITSVSELRTLVLLGH





YDFSFLLLFQDIFQKAHNLRVLQMSAPPADFLKHRFEEVDGSFPQILSKLYHLQVLDVGAYTDRTMPGCIDNLVSLRHLVVHKGVYSSIA





TIDNMLSFQEQHGFKFHISSGFEITRLQSTEHWMHVDTLEDVYEAGLVNNELSEKLHLSWKILLRT-





>Yr7_with_Ns


ATGGAGCCGGCGGGAGACTCTTCCCTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG





GCCTGGATTCAGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACATGCCTCTGTCCCGGTCTCTCGCTCGTGTCAAGGAGCTTCTCTATGACGCCGACGACGTGATCGACGAGCTA





GACTACTACAGGCTCCAACACCAAGTCGAAGGAGGTAGTAAGCATAATCCCATTATATATCGAATCTATGTGTGCTACTCAATAGTTTGA





TCTTAATTTCTGGTCCATGTTTCTTTTCGGCACAGTTACAAGTGACGAGCCTGACGGTATGCGTGGAGCTGAAAGAGTGGATGAAATATC





AAGGGGCCATGTCGATACACTGAATGTCAGTGTTGGCAAATTACGGTCCCCGGTATGGGAACACTTCACCATCACAGAAACAACTATCGA





CGGGAAGCGTTCAAAAGCCAAATGTAAGTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGGGACTTCATCTATGAAAAAACA





TTTGGAGAAGGAGCATTCCGTGACTTGCACGAATAAATCTGCAGTGCACCCCCCAAACACTTCAAGGTACCAGCAGGAATTTATACCTTG





CTTCAACGAATTTGTTGTAATTGTTTATATACGTCTGCTTGAGAGCCCATTGTTGTTCTGAATTTCTTCTGATAACCAACCCACCATCCT





TTTCTTACTGCAGCACCGGCGATGCTACTTGTAATGTGAGGTCGGTTGAAGTTGGTAGTTCGTCCAACGGAAAAAGAAAGAGAACAAATG





AGGATCCN





AAGGCTGAGTTATCCAATAGGATAATTAAAATTACTGAGAAGTTACAGTTACAGGACATCCAGGGGGCTTTGAGTAAAGTTCTCGAGCCA





TATGGATCCAGCGCTACTTCAAGTTCAAATCATCACCGCTTGAGTACAGCATCAGATCAGCACCCAACAACATCAAGTCTTGTTCCAATG





GAAGTTTATGGCAGAGTTGCAGAAAAGAATAAGATCAAAAAGTCAATAACTGAAAACCAATCTGGTGGTGTAAATGTTCTGCCTATTGTA





GGCATTGCAGGTGTTGGAAAGACAACTCTTGCTCAATTTGTGTATAATGATCCAGACN





CAGAAAAGAATAAGATCAAAAAGTCAATAACTGAAAACCAATCTGGTGGTGTAAATGTTCTGCCTATTGTAGGCATTGCAGGTGTTGGAA





AGACAACTCTTGCTCAATTTGTGTATAATGATCCAGACGTGAAAAGTCAATTTCACCACAGGATATGGGTTTGTGTGTCCTGCAAATTTG





ATGAAGTGAAGCTCACAAAGGAGATGTTAGACTTTTTTCCTCGAGAAAGGCATGAAGGAATTAACAACTTCGCGAAGCTTCAAGAGATCT





TGAAAGAACATGTCGAGTACCAAGCAAAGAGTTTTCTGCTCATTTTAGATGATGTCTCGGACAGTATGGATTATCATAAATGGAACAAAT





TGTTGAACCCTTTGCTATCAAGTCAAGCGAAGAATATAATTCTAGTCACGACCAGAAATTTGTCTGTTGCACAAAGGTTAAGCACACTTG





AACCGATCAAGTTAGGTGCTTTAGAAAACGATGATATGTGGTTATTGCTCAAGTCATGTGCATTTGGTTTTGGGAACTATGAAGGTACGG





AAAATCTAAGCACTATTGGAAGACAAATAGCAGAGAAGTTAAAGGGCAATCCGTTAGCAGCAGTAACTGCAGGGGCACTGTTAAGAGATA





ATCTTAGCATTGATCATTGGAGTAACATTCTCAAGAATGAGAAGTGGAAATCGCTGGGACTCAGTGGGGGCATCATGCCTGCTTTGAAGC





TTAGTTATGATGAGTTGACGTACCGTTTACAACAATGTTTCTCGTATTGCTCTATATTTCCTGACAAATATAGGTTTCTCGGGAAGGATT





TGGTCTATATTTGGATTTCTCAGGGATTTGTGAATTGCACCCAAAATAAGAGATTGGAGGAGACGGGATGGGAATATCTGAATCAATTGG





TAAATCTTGGATTCTTTCAACAAATTGAAGAACAACAAGAATTGGATGGGGAAGAAGAATTCTCTCTACGCCGTCAGATTTGGTACTCTA





TGTGTGATCTCATGCATGATTTCGCAAGGATGATTTCAAGGACTGAATGTGCGACTATAGATGGTCTACAGTGCAATAAAATATTCCCAA





CTGTACAGCATTTGTCAATAGTAACCGGTTCTGCATACAACAAAGATCTGAAGGGGAACATTCCTCGTAATGAGAAGTTTGAAGAAAATA





TGAGAAATTCAGTTACATCAGTTACCAAATTGAGAACATTGGTTGTGCTTGGGAACTTTGACTCTTTCTTTGTACGGTTGTTCCAAGATA





TATTCCAGAAGGCACAAAATTTACGCCTGCTGCTAGTATCTCTAGCATCCACTTATCTGTCTCAAGTGCCTGCTGCATTCAATGATTTTA





ATTCCTTCCTGTGCAATTTGGCAAATCCTTTGCATCTTCGTTACCTAAAACTTGAGTTGGATGGGATTGTGCCACAAGTTTTGAGTACGT





TTTTTCATCTTCAAGTATTAGATGTTGGATCAAGCATGGATACTTCTCTACCCAATGGCTTGTTGCATAATCTTGTTAGCCTGCGACATC





TTGTTGCACACAAGAGAGTCCATTCTTCCATTACTAGCATTGGTAACATGACATCTATCCAGGAGCTACATGATTTTGAAGTTCGAATTT





CTAGCGGCTTTGAGATAACACGACTCCAATCCATGAACGAGCTTGTTCAACTTGGGTTGTCTCAACTTGACAGTGTTAAAACCAGGGAGG





ACGCTTATGGGGCAGGACTAAGAAACAAGGAACACTTAGAAGAGCTTCATTTGTCCTGGAAGGATGCATATTCAGAGTATGAGTATGCCA





GTGACACTGAATTTGAATCTTCTGCAAACATGGCAAGAGAAGTGATTGAGGGTCTTGAACCACACATGGATTTAAAACATCTACAAATAT





CTCAGTATAATGGTACCACTTCACCAGCTTGGCTTGCCAACAATATCTCAGTTACCTCATTGCAGACGCTTCATCTTGATGATTGTGGAG





GATGGAGAATACTTCCATCTCTGGGAAGTCTTCCATTCCTTACAAAGGTGAAGTTGAGCAGCATGCTGGAAGTAATTGAAGTACTGATTC





CTTCACTGGAGGAGCTAGTTCTAATTAAAATGCCGAAGTTAGTGAGATGCTCAAGCACTTCTGCCGAGGGTCTGAGCTCTAGCTTAAGGG





TACTGCACATTGAGGATTGTGAAGCATTGAAGGAGTTTGATCTGTTTGAGAACGATTATAATTCTGAAATCATTCAGGGATCATGGCTGC





CTGGTCTTAGGAATTTGATTCTATATTGTTGCCCTCATTTGAAAGTGTTGAAGCCTCTTCCACCTTCAACTACCTTTTCTAAGGTACTCA





TCAGAGAAATTTCAAGATTTCCGTCTATGGAGGTATCATCTGGTGAGAAGTTACAAATTGGGAATATTGATGTGTACATAGGCGATGATT





TTGATGAGTCTTCTGATGAGTTGAGCATACTGGATGACAAAACTTTGGCGTTCCATAATCTTAGAAACCTGAAATCGATGGAGATATATG





GTTGCAGAAATCTAAGGTCTTTTTCGTTCGAAGGTTTCAGTCATCTTGTCTCTTTAACAAGTTTGAAAATAGTAAGCTGTGAACAACTTT





TCCCTTCAGATGTGACGGCAGAGTATACCCTTGAAGATGTGACAGCTGTGAACTGCAATGCCTTCCCATATCTTAAAAGCCTCAGTATCG





ACTCATGTGGAATAGCGGGGAAGTGGCTATCGCTGATGCTGCAGCATGCGCCAGGCCTAGAGGAATTGAGTTTAACAAGTTGCGCCCATA





TAACAAGAGTAGTGTTACCGATGGAAGAGGAAGAAAACAATCTATTAACAACAGTACTGTCATCAGGAAATCAAGATGAGGCATTGACAT





GGTTAGTTCGTGACGGACTCTTGCACATTCCATCAAATCTCGTCTCCTCTCTCAAGAATATGAGTATTACTCAGTGCCCTCGCCTAAAGT





TTAACTCAGGCAAGGACTGCTTCTCTGGATTTACCTCGCTTGAGAAGCTTGAAATTTGGGGATCGTTGGTGGATGATGACGGAAGTGATG





ACCTGGAGAATGGAAGTTCTTTTGTGTTCGGAGAGGAGGATCAACCCCTGGGGGCGAACGGAAGATGGCTCCTCCCGACATCACTTCAGG





AACTTCACATCGTGTCATTGTATTGCCAAGAAACGCTGCAAGTCTGCTTCCCTAGAGATATCACCAGCCTTAAAAAGTTAAGTGTACGTT





CCGGCCAAGGTTTGCAATCTCTACAGCTGTACTCATGCACGGCACTGGAAGAATTGGCAATTTCCGGCTCTGGATCGGTCACCGTCACTG





TACTAGAGGGCACGCAACCCGCTGGCAGCCTCGGGCGTTTGAATGTATCAGACTGTCCTGGCTTGCCATCACGTTTGGACAGCTTTCCAA





GGTTGTGCCCTCGGCTGGAAAGGCTTGACATCAATGACCCATCTGTCCTTACCACGCCATTCTGCAAGCACCTCACCTCCCTGCAACGCC





TAAAACTTGGCTTCTTGAAAGTGACGAGACTAACAGATGAGCAAGAACGAGCGCTTGTGCTCCTCAAGTCACTGAAAGAGCTCGAGATTT





TTTATTGTACTCATCTCATAGATCTTCCTGCGGGGCTGCAGACCCTTCCTTCCCTCAAGAGTTTGAAGATAGAAGAGGGTCGAGGCATCT





CAAGGCTGCCGGAAGCAGGCCTCCCACATTCGCTGGAAGAACTGGAAATCAAAATTTGCAGCAAGCTAGAAGATGAATGCAGGCGGCTAG





CAACATGCGAAGGCAAGCTAAAAGTCAAAATTGATGGTCGATATGTGAATTAA





>curated_Yr7


ATGGAGCCGGCGGGAGACTCTTCCCTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG





GCCTGGATTCAGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACATGCCTCTGTCCCGGTCTCTCGCTCGTGTCAAGGAGCTTCTCTATGACGCCGACGACGTGATCGACGAGCTA





GACTACTACAGGCTCCAACACCAAGTCGAAGGAGGTAGTAAGCATAATCCCATTATATATCGAATCTATGTGTGCTACTCAATAGTTTGA





TCTTAATTTCTGGTCCATGTTTCTTTTCGGCACAGTTACAAGTGACGAGCCTGACGGTATGCGTGGAGCTGAAAGAGTGGATGAAATATC





AAGGGGCCATGTCGATACACTGAATGTCAGTGTTGGCAAATTACGGTCCCCGGTATGGGAACACTTCACCATCACAGAAACAACTATCGA





CGGGAAGCGTTCAAAAGCCAAATGTAAGTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGGGACTTCATCTATGAAAAAACA





TTTGGAGAAGGAGCATTCCGTGACTTGCACGAATAAATCTGCAGTGCACCCCCCAAACACTTCAAGGTACCAGCAGGAATTTATACCTTG





CTTCAACGAATTTGTTGTAATTGTTTATATACGTCTGCTTGAGAGCCCATTGTTGTTCTGAATTTCTTCTGATAACCAACCCACCATCCT





TTTCTTACTGCAGCACCGGCGATGCTACTTGTAATGTGAGGTCGGTTGAAGTTGGTAGTTCGTCCAACGGAAAAAGAAAGAGAACAAATG





AGGATCCAACGCAGACCACCGCAGCTAACATACACGCCCAATGGGACAAGGCTGAGTTATCCAATAGGATAATTAAAATTACTGAGAAGT





TACAGTTACAGGACATCCAGGGGGCTTTGAGTAAAGTTCTCGAGCCATATGGATCCAGCGCTACTTCAAGTTCAAATCATCACCGCTTGA





GTACAGCATCAGATCAGCACCCAACAACATCAAGTCTTGTTCCAATGGAAGTTTATGGCAGAGTTGCAGAAAAGAATAAGATCAAAAAGT





CAATAACTGAAAACCAATCTGGTGGTGTAAATGTTCTGCCTATTGTAGGCATTGCAGGTGTTGGAAAGACAACTCTTGCTCAATTTGTGT





ATAATGATCCAGAC





GTGAAAAGTCAATTTCACCACAGGATATGGGTTTGTGTGTCCTGCAAATTTGATGAAGTGAAGCTCACAAAGGAGATGTTAGACTTTTTT





CCTCGAGAAAGGCATGAAGGAATTAACAACTTCGCGAAGCTTCAAGAGATCTTGAAAGAACATGTCGAGTACCAAGCAAAGAGTTTTCTG





CTCATTTTAGATGATGTCTCGGACAGTATGGATTATCATAAATGGAACAAATTGTTGAACCCTTTGCTATCAAGTCAAGCGAAGAATATA





ATTCTAGTCACGACCAGAAATTTGTCTGTTGCACAAAGGTTAAGCACACTTGAACCGATCAAGTTAGGTGCTTTAGAAAACGATGATATG





TGGTTATTGCTCAAGTCATGTGCATTTGGTTTTGGGAACTATGAAGGTACGGAAAATCTAAGCACTATTGGAAGACAAATAGCAGAGAAG





TTAAAGGGCAATCCGTTAGCAGCAGTAACTGCAGGGGCACTGTTAAGAGATAATCTTAGCATTGATCATTGGAGTAACATTCTCAAGAAT





GAGAAGTGGAAATCGCTGGGACTCAGTGGGGGCATCATGCCTGCTTTGAAGCTTAGTTATGATGAGTTGACGTACCGTTTACAACAATGT





TTCTCGTATTGCTCTATATTTCCTGACAAATATAGGTTTCTCGGGAAGGATTTGGTCTATATTTGGATTTCTCAGGGATTTGTGAATTGC





ACCCAAAATAAGAGATTGGAGGAGACGGGATGGGAATATCTGAATCAATTGGTAAATCTTGGATTCTTTCAACAAATTGAAGAACAACAA





GAATTGGATGGGGAAGAAGAATTCTCTCTACGCCGTCAGATTTGGTACTCTATGTGTGATCTCATGCATGATTTCGCAAGGATGATTTCA





AGGACTGAATGTGCGACTATAGATGGTCTACAGTGCAATAAAATATTCCCAACTGTACAGCATTTGTCAATAGTAACCGGTTCTGCATAC





AACAAAGATCTGAAGGGGAACATTCCTCGTAATGAGAAGTTTGAAGAAAATATGAGAAATTCAGTTACATCAGTTACCAAATTGAGAACA





TTGGTTGTGCTTGGGAACTTTGACTCTTTCTTTGTACGGTTGTTCCAAGATATATTCCAGAAGGCACAAAATTTACGCCTGCTGCTAGTA





TCTCTAGCATCCACTTATCTGTCTCAAGTGCCTGCTGCATTCAATGATTTTAATTCCTTCCTGTGCAATTTGGCAAATCCTTTGCATCTT





CGTTACCTAAAACTTGAGTTGGATGGGATTGTGCCACAAGTTTTGAGTACGTTTTTTCATCTTCAAGTATTAGATGTTGGATCAAGCATG





GATACTTCTCTACCCAATGGCTTGTTGCATAATCTTGTTAGCCTGCGACATCTTGTTGCACACAAGAGAGTCCATTCTTCCATTACTAGC





ATTGGTAACATGACATCTATCCAGGAGCTACATGATTTTGAAGTTCGAATTTCTAGCGGCTTTGAGATAACACGACTCCAATCCATGAAC





GAGCTTGTTCAACTTGGGTTGTCTCAACTTGACAGTGTTAAAACCAGGGAGGACGCTTATGGGGCAGGACTAAGAAACAAGGAACACTTA





GAAGAGCTTCATTTGTCCTGGAAGGATGCATATTCAGAGTATGAGTATGCCAGTGACACTGAATTTGAATCTTCTGCAAACATGGCAAGA





GAAGTGATTGAGGGTCTTGAACCACACATGGATTTAAAACATCTACAAATATCTCAGTATAATGGTACCACTTCACCAGCTTGGCTTGCC





AACAATATCTCAGTTACCTCATTGCAGACGCTTCATCTTGATGATTGTGGAGGATGGAGAATACTTCCATCTCTGGGAAGTCTTCCATTC





CTTACAAAGGTGAAGTTGAGCAGCATGCTGGAAGTAATTGAAGTACTGATTCCTTCACTGGAGGAGCTAGTTCTAATTAAAATGCCGAAG





TTAGTGAGATGCTCAAGCACTTCTGCCGAGGGTCTGAGCTCTAGCTTAAGGGTACTGCACATTGAGGATTGTGAAGCATTGAAGGAGTTT





GATCTGTTTGAGAACGATTATAATTCTGAAATCATTCAGGGATCATGGCTGCCTGGTCTTAGGAATTTGATTCTATATTGTTGCCCTCAT





TTGAAAGTGTTGAAGCCTCTTCCACCTTCAACTACCTTTTCTAAGGTACTCATCAGAGAAATTTCAAGATTTCCGTCTATGGAGGTATCA





TCTGGTGAGAAGTTACAAATTGGGAATATTGATGTGTACATAGGCGATGATTTTGATGAGTCTTCTGATGAGTTGAGCATACTGGATGAC





AAAACTTTGGCGTTCCATAATCTTAGAAACCTGAAATCGATGGAGATATATGGTTGCAGAAATCTAAGGTCTTTTTCGTTCGAAGGTTTC





AGTCATCTTGTCTCTTTAACAAGTTTGAAAATAGTAAGCTGTGAACAACTTTTCCCTTCAGATGTGACGGCAGAGTATACCCTTGAAGAT





GTGACAGCTGTGAACTGCAATGCCTTCCCATATCTTAAAAGCCTCAGTATCGACTCATGTGGAATAGCGGGGAAGTGGCTATCGCTGATG





CTGCAGCATGCGCCAGGCCTAGAGGAATTGAGTTTAACAAGTTGCGCCCATATAACAAGAGTAGTGTTACCGATGGAAGAGGAAGAAAAC





AATCTATTAACAACAGTACTGTCATCAGGAAATCAAGATGAGGCATTGACATGGTTAGTTCGTGACGGACTCTTGCACATTCCATCAAAT





CTCGTCTCCTCTCTCAAGAATATGAGTATTACTCAGTGCCCTCGCCTAAAGTTTAACTCAGGCAAGGACTGCTTCTCTGGATTTACCTCG





CTTGAGAAGCTTGAAATTTGGGGATCGTTGGTGGATGATGACGGAAGTGATGACCTGGAGAATGGAAGTTCTTTTGTGTTCGGAGAGGAG





GATCAACCCCTGGGGGCGAACGGAAGATGGCTCCTCCCGACATCACTTCAGGAACTTCACATCGTGTCATTGTATTGCCAAGAAACGCTG





CAAGTCTGCTTCCCTAGAGATATCACCAGCCTTAAAAAGTTAAGTGTACGTTCCGGCCAAGGTTTGCAATCTCTACAGCTGTACTCATGC





ACGGCACTGGAAGAATTGGCAATTTCCGGCTCTGGATCGGTCACCGTCACTGTACTAGAGGGCACGCAACCCGCTGGCAGCCTCGGGCGT





TTGAATGTATCAGACTGTCCTGGCTTGCCATCACGTTTGGACAGCTTTCCAAGGTTGTGCCCTCGGCTGGAAAGGCTTGACATCAATGAC





CCATCTGTCCTTACCACGCCATTCTGCAAGCACCTCACCTCCCTGCAACGCCTAAAACTTGGCTTCTTGAAAGTGACGAGACTAACAGAT





GAGCAAGAACGAGCGCTTGTGCTCCTCAAGTCACTGAAAGAGCTCGAGATTTTTTATTGTACTCATCTCATAGATCTTCCTGCGGGGCTG





CAGACCCTTCCTTCCCTCAAGAGTTTGAAGATAGAAGAGGGTCGAGGCATCTCAAGGCTGCCGGAAGCAGGCCTCCCACATTCGCTGGAA





GAACTGGAAATCAAAATTTGCAGCAAGCTAGAAGATGAATGCAGGCGGCTAGCAACATGCGAAGGCAAGCTAAAAGTCAAAATTGATGGT





CGATATGTGAATTAA





>Yr7_Paragon_with_Ns


ATGGAGCCGGCGGGAGACTCTTCCCTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTCATGGACAAGATGGAG





GCCTGGATTCAGCAAGTCGGGCTTGCCGACGACGTCGAGAGGCTCCAGTCTGAGGTCGAGAGAGTCGACACGGTGGTGGCTGCTGTGAAG





GGGAGGGCAGCCGGGAACATGCCTCTGTCCCGGTCTCTCGCTCGTGTCAAGGAGCTTCTCTATGACGCCGACGACGTGATCGACGAGCTA





GACTACTACAGGCTCCAACACCAAGTCGAAGGAGGTAGTAAGCATAATCCCATTATATATCGAATCTATGTGTGCTACTCAATAGTTTGA





TCTTAATTTCTGGTCCATGTTTCTTTTCGGCACAGTTACAAGTGACGAGCCTGACGGTATGCGTGGAGCTGAAAGAGTGGATGAAATATC





AAGGGGCCATGTCGATACACTGAATGTCAGTGTTGGCAAATTACGGTCCCCGGTATGGGAACACTTCACCATCACAGAAACAACTATCGA





CGGGAAGCGTTCAAAAGCCAAATGTAAGTACTGTGGAAATGATTTTAATTGCGAAACGAAGACAAACGGGACTTCATCTATGAAAAAACA





TTTGGAGAAGGAGCATTCCGTGACTTGCACGAATAAATCTGCAGTGCACCCCCCAAACACTTCAAGGTACCAGCAGGAATTTATACCTTG





CTTCAACGAATTTGTTGTAATTGTTTATATACGTCTGCTTGAGAGCCCATTGTTGTTCTGAATTTCTTCTGATAACCAACCCACCATCCT





TTTCTTACTGCAGCACCGGCGATGCTNA





CGGAAAAAGAAAGAGAACAAATGAGGATCCAACGCAGACCACCGCAGCTAACATACACGCCCAATGGGACAAGGCTGAGTTATCCAATAG





GATAATTAAAATTACTGAGAAGTTACAGTTACAGGACATCCAGGGGGCTTTGAGTAAAGTTCTCGAGCCATATGGATCCAGCGCTACTTC





AAGTTCAAATCATCACCGCTTGAGTACAGCATCAGATCAGCACCCAACAACATCAAGTCTTGTTCCAATGGAAGTTTATGGCAGAGTTGC





AGAAAAGAATAAGATCAAAAAGTCAATAACTGAAAACCAATCTGGTGGTGTAAATGN





CTTGAGTACAGCATCAGATCAGCACCCAACAACATCAAGTCTTGTTCCAATGGAAGTTTATGGCAGAGTTGCAGAAAAGAATAAGATCAA





AAAGTCAATAACTGAAAACCAATCTGGTGGTGTAAATGTTCTGCCTATTGTAGGCATTGCAGGTGTTGGAAAGACAACTCTTGCTCAATT





TGTGTATAATGATCCAGACGTGAAAAGTCAATTTCACCACAGGATATGGGTTTGTGTGTCCTGCAAATTTGATGAAGTGAAGCTCACAAA





GGAGATGTTAGACTTTTTTCCTCGAGAAAGGCATGAAGGAATTAACAACTTCGCGAAGCTTCAAGAGATCTTGAAAGAACATGTCGAGTA





CCAAGCAAAGAGTTTTCTGCTCATTTTAGATGATGTCTCGGACAGTATGGATTATCATAAATGGAACAAATTGTTGAACCCTTTGCTATC





AAGTCAAGCGAAGAATATAATTCTAGTCACGACCAGAAATTTGTCTGTTGCACAAAGGTTAAGCACACTTGAACCGATCAAGTTAGGTGC





TTTAGAAAACGATGATATGTGGTTATTGCTCAAGTCATGTGCATTTGGTTTTGGGAACTATGAAGGTACGGAAAATCTAAGCACTATTGG





AAGACAAATAGCAGAGAAGTTAAAGGGCAATCCGTTAGCAGCAGTAACTGCAGGGGCACTGTTAAGAGATAATCTTAGCATTGATCATTG





GAGTAACATTCTCAAGAATGAGAAGTGGAAATCGCTGGGACTCAGTGGGGGCATCATGCCTGCTTTGAAGCTTAGTTATGATGAGTTGAC





GTACCGTTTACAACAATGTTTCTCGTATTGCTCTATATTTCCTGACAAATATAGGTTTCTCGGGAAGGATTTGGTCTATATTTGGATTTC





TCAGGGATTTGTGAATTGCACCCAAAATAAGAGATTGGAGGAGACGGGATGGGAATATCTGAATCAATTGGTAAATCTTGGATTCTTTCA





ACAAATTGAAGAACAACAAGAATTGGATGGGGAAGAAGAATTCTCTCTACGCCGTCAGATTTGGTACTCTATGTGTGATCTCATGCATGA





TTTCGCAAGGATGATTTCAAGGACTGAATGTGCGACTATAGATGGTCTACAGTGCAATAAAATATTCCCAACTGTACAGCATTTGTCAAT





AGTAACCGGTTCTGCATACAACAAAGATCTGAAGGGGAACATTCCTCGTAATGAGAAGTTTGAAGAAAATATGAGAAATTCAGTTACATC





AGTTACCAAATTGAGAACATTGGTTGTGCTTGGGAACTTTGACTCTTTCTTTGTACGGTTGTTCCAAGATATATTCCAGAAGGCACAAAA





TTTACGCCTGCTGCTAGTATCTCTAGCATCCACTTATCTGTCTCAAGTGCCTGCTGCATTCAATGATTTTAATTCCTTCCTGTGCAATTT





GGCAAATCCTTTGCATCTTCGTTACCTAAAACTTGAGTTGGATGGGATTGTGCCACAAGTTTTGAGTACGTTTTTTCATCTTCAAGTATT





AGATGTTGGATCAAGCATGGATACTTCTCTACCCAATGGCTTGTTGCATAATCTTGTTAGCCTGCGACATCTTGTTGCACACAAGAGAGT





CCATTCTTCCATTACTAGCATTGGTAACATGACATCTATCCAGGAGCTACATGATTTTGAAGTTCGAATTTCTAGCGGCTTTGAGATAAC





ACGACTCCAATCCATGAACGAGCTTGTTCAACTTGGGTTGTCTCAACTTGACAGTGTTAAAACCAGGGAGGACGCTTATGGGGCAGGACT





AAGAAACAAGGAACACTTAGAAGAGCTTCATTTGTCCTGGAAGGATGCATATTCAGAGTATGAGTATGCCAGTGACACTGAATTTGAATC





TTCTGCAAACATGGCAAGAGAAGTGATTGAGGGTCTTGAACCACACATGGATTTAAAACATCTACAAATATCTCAGTATAATGGGACCAC





TTCACCAGCTTGGCTTGCCAACAATATCTCAGTTACCTCATTGCAGACGCTTCATCTTGATGATTGTGGAGGATGGAGAATACTTCCATC





TCTGGGAAGTCTTCCATTCCTTACAAAGGTGAAGTTGAGCAGCATGCTGGAAGTAATTGAAGTACTGATTCCTTCACTGGAGGAGCTAGT





TCTAATTAAAATGCCGAAGTTAGTGAGATGCTCAAGCACTTCTGCCGAGGGTCTGAGCTCTAGCTTAAGGGTACTGCACATTGAGGATTG





TGAAGCATTGAAGGAGTTTGATCTGTTTGAGAACGATTATAATTCTGAAATCATTCAGGGATCATGGCTGCCTGGTCTTAGGAATTTGAT





TCTATATTGTTGCCCTCATTTGAAAGTGTTGAAGCCTCTTCCACCTTCAACTACCTTTTCTAAGGTACTCATCAGAGAAATTTCAAGATT





TCCGTCTATGGAGGTATCATCTGGTGAGAAGTTACAAATTGGGAATATTGATGTGTACATAGGCGATGATTTTGATGAGTCTTCTGATGA





GTTGAGCATACTGGATGACAAAACTTTGGCGTTCCATAATCTTAGAAACCTGAAATCGATGGAGATATATGGTTGCAGAAATCTAAGGTC





TTTTTCGTTCGAAGGTTTCAGTCATCTTGTCTCTTTAACAAGTTTGAAAATAGTAAGCTGTGAACAACTTTTCCCTTCAGATGTGACGGC





AGAGTATACCCTTGAAGATGTGACAGCTGTGAACTGCAATGCCTTCCCATATCTTAAAAGCCTCAGTATCGACTCATGTGGAATAGCGGG





GAAGTGGCTATCGCTGATGCTGCAGCATGCGCCAGGCCTAGAGGAATTGAGTTTAACAAGTTGCGCCCATATAACAAGAGTAGTGTTACC





GATGGAAGAGGAAGAAAACAATCTATTAACAACAGTACTGTCATCAGGAAATCAAGATGAGGCATTGACATGGTTAGTTCGTGACGGACT





CTTGCACATTCCATCAAATCTCGTCTCCTCTCTCAAGAATATGAGTATTACTCAGTGCCCTCGCCTAAAGTTTAACTCAGGCAAGGACTG





CTTCTCTGGATTTACCTCGCTTGAGAAGCTTGAAATTTGGGGATCGTTGGTGGATGATGACGGAAGTGATGACCTGGAGAATGGAAGTTC





TTTTGTGTTCGGAGAGGAGGATCAACCCCTGGGGGCGAACGGAAGATGGCTCCTCCCGACATCACTTCAGGAACTTCACATCGTGTCATT





GTATTGCCAAGAAACGCTGCAAGTCTGCTTCCCTAGAGATATCACCAGCCTTAAAAAGTTAAGTGTACGTTCCGGCCAAGGTTTGCAATC





TCTACAGCTGTACTCATGCACGGCACTGGAAGAATTGGCAATTTCCGGCTCTGGATCGGTCACCGTCACTGTACTAGAGGGCACGCAACC





CGCTGGCAGCCTCGGGCGTTTGAATGTATCAGACTGTCCTGGCTTGCCATCACGTTTGGACAGCTTTCCAAGGTTGTGCCCTCGGCTGGA





AAGGCTTGACATCAATGACCCATCTGTCCTTACCACGCCATTCTGCAAGCACCTCACCTCCCTGCAACGCCTAAAACTTGGCTTCTTGAA





AGTGACGAGACTAACAGATGAGCAAGAACGAGCGCTTGTGCTCCTCAAGTCACTGAAAGAGCTCGAGATTTTTTATTGTACTCATCTCAT





AGATCTTCCTGCGGGGCTGCAGACCCTTCCTTCCCTCAAGAGTTTGAAGATAGAAGAGGGTCGAGGCATCTCAAGGCTGCCGGAAGCAGG





CCTCCCACATTCGCTGGAAGAACTGGAAATCAAAATTTGCAGCAAGCTAGAAGATGAATGCAGGCGGCTAGCAACATGCGAAGGCAAGCT





AAAAGTCAAAATTGATGGTCGATATGTGAATTAA





>curated_TraesCS2B01G48800_Ta_2B09


ATGATGGAGCCGGCGGGAGACTCTTTTGTGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACGCTCCTGATGGACAAGATG





GAGGAGTGGATTCGGCAAGTCGGTCTTGCCGACGACGTCGAGAGGCTCCAGCGCGAGGTCGAGAGAGTCGACATGGTGGTGGCTGCTGTG





AAGGGGAGGGCAGCCGGGAACAGGCCTCTGTCCCGGGCTCTCGCTCGTGTCAAGGAGCTTCTCTACGACGCCGACGACGTGGTCGACGAA





CTGGACTACTACAGGCTCCAACAGCAAGTCGAAGGAGGTAGTAAGCATAATCCCATTATATCGAAACTATTATGATACTTAATACTCCCT





CTGTTTCTAAATATAAGTATTTTTAGAAATTTCCGTATGTAGTCCATATTGAAATCTCTAAAAGGAATTATATTTAGTAACGGAGGGCGT





AGTTTGATCTTAATTTCTGGTCCATATTTCTTTTCGGCACAGTTACGAGTGACAAGCCTGACGATATGCGTGGAGCTGAAAGAGTGGATG





AAATATCAAGGGGCCATGTCGATACACTGAATGTCAGTGTTGGGAAATTACGGTCCTCGGTATGGGAACACTTTACCATCACAGAAACTG





TCGACCGGAAGCGTTCAAAAGCCAAATGTAAGTACTGTAGAAAGGATTTTAATTGCGAAACGAAGACAAACGGGACTTCATCTATGAAAA





AACATTTGGAGAAAGAGCATTCCGTAACTTGTACGAAGAAACGTGGAGCCCATCCACCAAACCCTTCAAGGTACCCAAAGGAAATTGTAT





GTTGCACCAGTGCATTTGTATTACAAGTTTATATATATCTGCTTGAGAGCCCATTGTTGCTCTACATTTCTTCTGATAACTGACCCACCA





TCCGTTTCTTGTTGCAGCACCGGTGATGCGACTTGTAATGTGAGGTCGGTTGAAGTTGGTAGTTCGTCCAACGGAAAAAGAAAGAGAACA





AATGAGGATCCAACACAAACCACCGCAGCTAACACACACACCCAATGGGACAAGGCTGAGTTTTCCAATAGGATAATTAAAATTACAGGC





CAGTTACAGTCACAGGACATCCAAGGGGCTTTGAGTAAAGTTCTTGGGCCATATGGACCTAGCGCTACTTCAAGTTCAAGTCATCACCGC





CCGAGTACAACCTCAGCTCAGCACCCAACAACATCAAGTCTTGTTCCACTGGAAGTTTATGGCAGAGTTGCAGAAAAGAACAAGATCAAA





AAGTCAATAACTGAAAACCAATCTGGTGGTGTAAATGTTCTACCTATTGTAGGCATTGCAGGTGTTGGAAAGACAACTCTCGCTCAATTT





GTGTATAATGATCCAGACGTGAAAAGTCAATTTCACCACAGGATATGGGTTTGTGTGTCCCGTAAATTTGATGAAGTGAAGCTCACAAAG





GAGATGTTAGACTTTTTTCCTCGAGAAAGGTATGAAGGAATTAGCAATTTTGCGAAGCTTCAAGAGATCTTGAAAGAACATATCGAGTAC





CAGTCGAAGAGCTTTCTGCTTGTATTAGACGATGTCTCGGACAATGTTGATTATCATAAATGGAACAAATTGTTGTACCCTTTGATGTCA





AGTCAAGCAAAGGGTAATATAATTCTAGTCACAACCAAAAATTTGTCTGTTGCACAAAGGTTAAGAACACTTGAACCGATCAAGTTAGGT





GCTTTAGAAAATGATGATATGTGGTTATTGCTCAAGTCATGTGCATTTGGTTTTGGGGACTACAAAGGTCCGGGAAATCTAAGAGCTATT





GGAATGCAAATAGCAGAGAAGTTAAAGGGCAACCCGTTAGCAGCAGTAACTGCAGGGGCACTGTTAAGAGATCATCTTAGCGTTGATCAT





TGGAGTAACATTCTCAAGAAAGAGAAGTGGAAATCGTTGGGACTCCATGGGGGCATCATGCCTGCTTTGAAGCTTAGCTATGATGAGCTA





CCGTACCATTTACAACAATGTTTCTCGTATTGTTCTATATTTTCTGAAAAATATAGGTTTCTTCGGAAGGAACTGGTCTATATTTGGATT





TCTCAAGGATTTTTGAATCACACTAAGAGATTGGAGGAGATAGGATGGGAATGTCTGAATAATTTGGTGAACCTGGGATTCTTTCAGCAG





ATTGGAGAGCAACAGGAAGGGGATGAAGATGAGGAAGAAGATTTTTTTCTAGGCAGTAAAATTTGGTATTGTATGTCTGGTCTCATGCAC





GATTTTGCAAGGATGGTTTCAAGGACTGAGTGTGCAACCATGGATGGTCTTCAGTGTAATAATATGTTACCAACTATACGTCACTTGTCA





ATTGTGACCAATTCTGCATATAGCAAAGAACAGCATGGAACCATACCTCGCAATATCAAGTTTGAAGAGAACCTGAGAAATGCATTTGCA





TCAGTGAGGAAATTGAGGACATTAGTTTTATTTGGGCACTACGACTCTTTCTTCTTCAAATTGTTCCTTGATATATTCCAGAAGGACCAG





AACTTGCGTCTGCTGCAAATGTCTGCAACATGTGCTGATTTTGATTCCTTCATGTGTAGTTTGGTAAATCCTGCACATCTTCGCTATCTA





AAACGTGAACCTGATGAGGTGAATGGTGCTTCCCCTCAAATTTTGAGCAAGTTGTACCATCTTCAAATATTAGATGTTGGCTCATACACT





GATCCTATACCTGATGGTAATAATAATCTAGTTAGCCTGCGGCATCTTATTCCAGAAAATGGAGTATACTCTTCCATTGCTAGCATTGGT





AGAATGACATCACTTAAAGAGCTACATCATTTTAAGGTTCGGTTTTGTTCTAGAGGATTTGAGATATCACAACTCCAATGCATGAACGAG





CTTGTACAACTTGGGGTGTCTCGAGTTGATAGTGTTAAAACTCGGGAGGAGGCTTATGGAGCAGGACTGAGAAGCAAAGAATACTTGAAA





AATCTGCACTTGTCCTGGAAGGATACCTTGTCACAGAAGGAATGTGACACTAGCTCTGAATATTCTGCAGACGAAAACGAGGAGCTCTCA





CAAATGGATACAGCAAGAGAGGTGCTCGAGGGACTTGAACCTCACATGAACTTAAAGCATCTACATATATCTGGGTATAATGGTACTACT





TCACCAACTTGGCTTGCCAACAATCTCTCAGTTACCTCCTTGCAGACGCTTCACCTTGATGGTTGTCGAAGATGGAGAATACTTCCATCT





CTTGAAAGTCTTCCATTTCTTACAAAGCTGAAGTTGAGCAGCATGCTGGAAGTAATAGAAGTATTGGTTCCTTCACTGGAGGAGCTAGTT





TTGATGGACATGCCTAAGTTAGTGAGATGCTCAAGCATTTCTGTGGGGGCTCTGAACTCTAGCTTACGAGCACTACGGATCGAGGATTGT





GAAGCACTAAAGGAGTTTGATCTGTTTGAGAACGATGATAATTCTGAAATCATTCAGGGGTCATGGCTGCCTGGTCTTAGGAATTTGATT





GTGAAATGTTGCCCTCATTTGAAAGTGTTGAAGCCTCTTTCACCTTCAACTACCTTTTCTAAGGTAGTCATCAGAGAAGTTCCAAGATTT





CCGTATATGGAGGTATCATCTGGTGAAAAGTTAGAAATTGGGAAATTTGATGAGGACGGAGATGATTTTGATGAATCTTGTGATGAGTTG





AGGATACTGGATGACAAAATTTTGGCATTCCACAATCTTAGAAACCTCAAATCGATGGAGATATATGGTTGCAGAAATCTAAGGTCTTTT





CTGTTCGAAGGTTTCAGTCATCTTGTCTCTTTATTAAGTTTGGATATAACAAAGTGTGAACAACTTTTCTCTTCGGATATGTCGCCAGAG





TATACCCTTGAAGATGTGAGAGCTGTGAACTTCAATGCCTTCCCATTTCTCAAAAATCTCAGTATTGACTCATGCGGAATAGCGGGGAAG





TGGCTATCGCTGATGCTGCAGCATGCGCCAGGCCTAGAGGAATTGCGTTTAAGATATTGCGCACATATAACAAGAGTAGTGTTACCGATG





GAAGAGGAAGAAAACAGTCTCTTAACAACAGTAGTGTCATCAGGAAATCAAGATGAGGCATTGACCTGGTTAGTTCGTGACGGACTCTTG





CACATTCCATCAAATCTCGTCTCCTCTCTCAAGAAGATGACTATTGGTCAGTGCCCTCGCCTAAAGTTTAACTCGGGCAAGGACTGCTTC





TCTGGATTTACCTCGCTTGAGAAGCTTGAAATTTGGGGATCATTGGTGGATGATGACGGAAGTGATGACCTGGAGAATGGAAGTCCTTTT





GTGTTCGGAGAGGAGGATCAACCCCTGGGAGCGAATGGAAGATGGCTCCTCCCGACATCACTTCAGGAGCTTAACATCGGGTGGTTCTGT





TACCAAGAAACGCTGCAACCCTGCTTTCCTAGAGATATCACCAGCCTTAAAGAGTTAAGTGTACGTTCAATCCAAGGTTTGCAATCTCTA





CAGCTGCACTCATGCACGGCACTGGAAGGATTGGAGATTAGAGGCTGTGAATCGCTCACCGTCACTGTACTAGAGGGCATGCAACCCATT





GGCAGCCTCGTGCGTTTGAATGTATCAGACAGTACTGGCTTGCCACCATGTTTGGAGAGCTTTTCAACGCTGTGCCCTCGGCTTGAAAGG





CTTTGCACCGATGACCCATCTGTCCTTACCACGTCATTCTGCAAGCACCTCACCTCCCTACAAAGACTAGAACTTAGTTTCTTGAAAGTG





ACGAGACTAACAGATGAGCAAGAGCAAGCGCTTGTGCTGCTCAAATCCCTGCAAAAGCTCGAATTCATTTGGTGTTCTGCTCTAGTAGTT





CTTCCTGAGGGGCTGCACACCCTTCCTTCCCTCAAGAGATTGGAGATAAACCAGTGTGGACGCATCACAAGGCTGCCAGAAGCAGGCCTC





CCACATTCGCTGGAAGAACTCGAAATCCGGTCTTGCAGCCAGGAGCTAGATGATGAATGCAGGCGGCTAGCAACAAGCAAACTGAAAGTC





AAGATTGATTGGACGTATGTGAATTAA





>curated_TraesCS2901G48800_Ta_2B09


MMEPAGDSFVEAAIAWLVQTILATLLMDKMEEWIRQVGLADDVERLQREVERVDMVVAAVKGRAAGNRPLSRALARVKELLYDADDVVDE





LDYYRLQQQVEGVTSDKPDDMRGAERVDEISRGHVDTLNVSVGKLRSSVWEHFTITETVDRKRSKAKCKYCRKDFNCETKTNGTSSMKKH





LEKEHSVTCTKKRGAHPPNPSSTGDATCNVRSVEVGSSSNGKRKRTNEDPTQTTAANTHTQWDKAEFSNRIIKITGQLQSQDIQGALSKV





LGPYGPSATSSSSHHRPSTTSAQHPTTSSLVPLEVYGRVAEKNKIKKSITENQSGGVNVLPIVGIAGVGKTTLAQFVYNDPDVKSQFHHR





IWVCVSRKFDEVKLTKEMLDFFPRERYEGISNFAKLQEILKEHIEYQSKSFLLVLDDVSDNVDYHKWNKLLYPLMSSQAKGNIILVTTKN





LSVAQRLRTLEPrKLGALENDDMWLLLKSCAFGFGDYKGPGNLRAIGMQIAEKLKGNPLAAVTAGALLRDHLSVDHWSNILKKEKWKSLG





LHGGIMPALKLSYDELPYHLQQCFSYCSIFSEKYRFLRKELVYIWISQGFLNHTKRLEEIGWECLNNLVNLGFFQQIGEQQEGDEDEEED





FFLGSKIWYCMSGLMHDFARMVSRTECATMDGLQCNNMLPTIRHLSIVTNSAYSKEQHGTIPRNIKFEENLRNAFASVRKLRTLVLFGHY





DSFFFKLFLDIFQKDQNLRLLQMSATCADFDSFMCSLVNPAHLRYLKREPDEVNGASPQILSKLYHLQILDVGSYTDPIPDGNNNLVSLR





HLIPENGVYSSIASIGRMTSLKELHHFKVRFCSRGFEISQLQCMNELVQLGVSRVDSVKTREEAYGAGLRSKEYLKNLHLSWKDTLSQKE





CDTSSEYSADENEELSQMDTAREVLEGLEPHMNLKHLHISGYNGTTSPTWLANNLSVTSLQTLHLDGCRRWRILPSLESLPFLTKLKLSS





MLEVIEVLVPSLEELVLMDMPKLVRCSSISVGALNSSLRALRIEDCEALKEFDLFENDDNSEIIQGSWLPGLRNLIVKCCPHLKVLKPLS





PSTTFSKVVIREVPRFPYMEVSSGEKLEIGKFDEDGDDFDESCDELRILDDKILAFHNLRNLKSMEIYGCRNLRSFLFEGFSHLVSLLSL





DITKCEQLFSSDMSPEYTLEDVRAVNFNAFPFLKNLSIDSCGIAGKWLSLMLQHAPGLEELRLRYCAHITRVVLPMEEEENSLLTTVVSS





GNQDEALTWLVRDGLLHIPSNLVSSLKKMTIGQCPRLKFNSGKDCFSGFTSLEKLEIWGSLVDDDGSDDLENGSPFVFGEEDQPLGANGR





WLLPTSLQELNIGWFCYQETLQPCFPRDITSLKELSVRSIQGLQSLQLHSCTALEGLEIRGCESLTVTVLEGMQPIGSLVRLNVSDSTGL





PPCLESFSTLCPRLERLCTDDPSVLTTSFCKHLTSLQRLELSFLKVTRLTDEQEQALVLLKSLQKLEFIWCSALVVLPEGLHTLPSLKRL





EINQCGRITRLPEAGLPHSLEELEIRSCSQELDDECRRLATSKLKVKIDWTYVN-





>curated_TraesCS2B01G488400_Ta_2B10


ATGGCGGCCGCGATTgGGTGGCTGGTTGAGACCATCTCTGCGACCCTCCAAATCGACAAGCTCGACGCCTGGATTCGGCAAGTCGGTCTT





GCCGATGACATCGAGAAGCTCAAGTCGGAGATCCGGAGAGTCAACATAGTGGTCACTGCTGCCAAGGGCAGGGGGGTAGGGAGCGAGCTG





CTGGATGGACCTTTCGCTCTTCTGGAGGAGCGGCTCTATGAAGCCGACGACGTGGTCGACGAGCTCGACTACTACAGGCTCCAACACCAA





GTCCAAGGTCTGCCGGCACCTGCAGATCCAAGCGAGCCAGTCCCACTCCCAGTCCCAGGAGGTAAGCGTAAATCTGTCTAGACCCAAGTA





ATCCAAGTCTGCTAATTATTAGTTTGATCTTATGTTGCTCCAAAAATGTAAATTGGTCGTATCTGATCAAGGACGACCGTTCTTTAATTT





CTGGTCCACGATTTCTTTTGGCACAGTTACAAGGGGTGAGCCCGAAGGCGTGCTTGTAGCTGAGCAATTCAATGAGATATCGAGGGGCGG





TGGTGATGTACCACAGAGCAATGTTGGCAAATTACGGTCCGTGGTATGGGAACACTTTATGATCACAGAAAGAGATAACGGAAAACCCAA





CAAGGCAGTATGCCGACACTGTAGCAATGAGTTTAAGTGTGACACCAAGACGAACGGTACATCATCTATGAAAAAGCATTTGGAGAATGA





GCATTCTGTGACTTGTACAAAGAAACCTCCTGGAGCACATCTACCAAACCCTTCAAGGTACTTAAAAGAGAATTGGGTATAGAGAGTAGA





GTATTCTTTCTAATCTTAAGTGTACATTTTTAAAAAGTTGTTTATATACATATGCTTGAGGCGATTGTGGTCCTGATTAATAAGCACATC





CCCCGCAAAATAAATAAATACGCACCTCTTTTTTTCTCACCACAGCACCGGTGAGCCTACTATAATTGCCAGCTCATCCAGCAAAAAACG





AAAGAGACGACGGTCCAAGGCATGGGAATTTTTTGATGTCATAGAAGAAGTAAACGAACAGCCTATGAAAGCAAGATGTAAATACTGTCC





CGCAGAGATCAAGTGCGGCCCAACAAGTGGGACAGCAGGTATGCTCAACCATAACAAGATTTGTAAGAACAAACCTGGACCAAATGACCA





GTTGCCAAACCTGTCAAGGTAACTAAAGAATCTATATGTTGCGTCGAAAAACAATTAGAAGTCATTAAGTTAAGAGTCTCATTGTGGTTC





TAATAGTCAATTAACGTTCTTTTTTCTTATTGTAGCACCGGTGATGCTAATGCGGATGTGACGCCAATTCTAATAGGTAACTCGTCCACC





AGAAAAGGGAGAATGGATGATTCCATACAAATTGATGTGACTAACACAGTCACCCCTTGGGACATGGCCGAATTATCCAGCAGGATACGA





AAAATAGCTAGTCAGTTGCAATACATCCAAGAGGAAACGACTGAAATTCTCAAGCTACATGGATCGGACTCTACTTCAAGTTCAGATCAT





CACCAGAGTACAACATCATATCAGCACCTCAGAACATCAAGTCTTGTTCCAAGGAATGTGTATGGAAGAGTTAAAGAAAAGGAACACATC





ATGAAATTGATGATGACAGAAGGCAGATCTGACAAAGTAATTGTTGTGCCTATTGTAGGCATTGCAGGTATTGGAAAGACAACTCTCACT





CAACTTGTGTACAACGATCCAGAAGTGGAAAGGCAATTTGAACATAGGATATGGGTTTGGGTGTCTCGCAACTTTGATGAAATGAGGCTC





ACAAGGGATATGCTGAGCTTTGTTTCTCAAGAAAGTCATGAAGGAATAGGCTGCTTTGGGAAGCTTCAGGAGATCCTGAGAAGTCATGTC





AAATCAAAGAGGGTTTTACTTATTTTAGATGATGTATGGTATGACAAGAAAGATGCCCGATGGAACCAACTATTGGCTCCCTTTAAGCCT





CATAGTGCCAATGGCAATGTGATTCTTGTGACAACTAGAAAAATGACCGTTGCAAAAATGATTGGAACAGTGGTGCCAATTAAGTTAGCT





ACTATTGAAAATGATGACTTTTGGTTATTATTCAAATCATGTGCTTTTGTTGATGGAAACTATGAATGTCTTGGAAATCTTAGCACTATT





GGACGGCAAATAGCAGAAAAGTTAAAGGGTAACCCGTTAGCAGCAGTGACTACAGGGGCACTATTAAGGAACCAACTTACCGTTGATCAT





TGGAGTAAAATTCTCAAGGAAGAAAATTGGAAATCATTAGGACTTAGTGGAGGCATCATGCCTGCTTTGAAGCTTAGTTATGATGAGTTG





ACATACCGTTTACAACAATGTTTCTTGTATTGTTCTATATTTCCTGACAAATATAGGTTTCTTGGTAAGGATTTGGTATATATGTGGATT





TCTCAGGGATTTGTGAATTGCACCCAAAATAAGAGATTGGAGGAGATAGGATTGGAATATCTGAATCATTTGGTAAACCTGGGATTCTTT





CAGCAAATTGAAGAACAGCAAGAATTGGATGAGGAAAAAGAATTCTCTCTACGCGGTCAGATTTGGTATTCTATGTGTGATCTCATGCAT





GATTTTGCGAGGATGGTTTCGGTGACTGAATATGCGAGGATAGATGGTCTGCAGTGTAAGAAAATCTTACCGACTATACACTATTTGTCA





ATAGTAACTGGTTCTGCATACAACAGAGATCTGCATGGGAATATTCCTCGCAATGAGAAGTTTGAAGAAAATCTGAGAAATTCTGTTACA





TCAGTTACCAAATTGAGAACACTGGTTGTACTTGGGAGCTTTGACTATTTCTTTGTACAGTTGTTCCAAGATATATTTCAAAAGGCCCAA





AATTTACGCCTGCTGCGAGTATCTCCAGAATCCACTTATCTGTTTCAAGTGCCTGCAGCATCCACTGATTTTAATTCCTTCCTGTGCAGT





TTGGCAAATCCTTTGCATCTTCGTTATCTAAAACTTGATTTAGACGGGATTGTGCCACAAGTTCTCAGTACTTTTCTTCTTCTTCAAGTA





TTAGATGTTGGCTCAAACAGGGATACTTCTCTACCCAATAGCTTGCATAATCTTGTTAGCCTGCGACATCTTGTTGCACACAAGAGAGTC





CATTCTTCCATTGCTAGCATTGGCAACATGACATCTATCCAGGAGCTACATGATTTTGAGGTTCGAATTTCTAGCGGCTTTGAGATTACA





CAACTCAAATCCATGAACAAGCTTGTTCAACTTGGAGTGTCTCAACTTGACAGTGTTAAAACCCGGGAGGAGGCTTATGGGGCAGGACTA





AGAAACAAGGAACACTTAGAAGAGCTTCACTTGTGTTGGAAGCATGCATTTTCAGTGGATAAGGATGTCAGTGACACTAGATTTGAATCT





TCTGCAGACATGGCCAGAGAAGTGATTGAGGGTCTTGAACCACACATGGATCTAAAACATCTACAAATATCTCGGTATAATGGTACCACT





TCACCGACTTGGCTTGCCAATAATATCTCAGTTACCTCACTGCAGACGCTTCATCTTGATGATTGTGGAGGATGGAGAATACTTCCATCT





CTGGGAAGTCTTCCATTTCTTACAAAGTTGAAGTTGAGCAACATGTGGGAAGTAACAGAAGTATTGGTTCCTTCACTGGAGGAGCTAATT





TTACTCAACATGCCCAAGTTAGTGAGATGCTCAAGTACTTCTGTGGGGGCTCTGAACTTTAGTTTACGAGCACTGCGGATCGAGGATTGT





GAAGCACTGAAGGAGTTAGATCTGTTTGAGAACGATGATAATTCTGAAATCATTCAGGGGTCATGGCTGCCTGGTCTTAGGAATTTGATT





GTGAAATATTGCCCTCATTTGAAAGTGTTGAAGCCACTTCCACCTTCAGCTACCTTTTCTAAGGTACTCATCAAAGTGGTTTCAAGATTT





CCGTCTATGAAGGTATCATCGGGTGAAAAGTTAGAAATTTGGGATGCTAATTACCGCAGAGGCGATCGATCTTGTGATGAGTTGATCATA





CTGGATGACAAAATTTTGGTGTTCCATAATCTTAGAAACCTCAAATCGATGGAGATATTTGGTTGCAGAAATCTAAGGTCTTTCTCGTTT





GAAGGTTTCAGTCATCTCGTCTCTTTAACGAGCTTGAAAATAAGAGGCTGTGAAAAACTTTTCTCTTCACATGAGATGCCAGCCATTGAA





CATGTGACAGCTGTGAACTGCGATTCTTTCCCATCTCTTAAAAGTCTCAGTATTAAGTCATGTGGAATAGCGGGGAAGTGGCTATCGTTG





ATGCTGCAGCATGCGCCAGGCCTAGAGAAATTGAGTTTAAGATATTGCGCACATATAACAACAGTACTGTTACCGATGGAAGAGGAAGAA





AACAATCTATTAACAACAGTACTGTCATCAGGAAATCAAGATGAGGCATTGACCTGGTTAGCTCGAGAGGGACTCTTGCACATTCCATCA





AATCTCGTCTCCTCTCTCAAGAATATGAGTATTAGTGAGTGCCCTCGTCTAAAATTTAACTGGGGCACGGACTGCTTCTCTGGATTTATC





TCGCTTGAGAAGCTTGAAATCTGGGGATCGTTGGTGGATGATGACGGAAGTTATGACCCCGAGAATGGAAGTTCTTTTGTGTTCGAAGAG





GAGGATCAACCCCTGGGGGCGAACGGAAGATGGCTCCTCCCGACATCACTTCAGGAACTTAACATCAGGTTCTTGTGTTACCAAGAAACG





CTGCAACCCTGCTTTACTAGAGATATCACCAGCCTTAAAAAGTTATATGTAAGCTTCAGCCCAGGTTTGCAATCTCTACAGCTGCACTCA





TGCACGGCACTGGAAGAATTGGCAATTGTCGGCTGTGGATCAGTCACCGTCACTGTACTAGAAGACTCTCCTGGCTTGCTGCCATGTTTG





GAAAGGCTTTGCATCAATGACCCATCTGTCCTTACCACGTCATTCTGCAAGCACCTCACCTCCCTGCAACGCCTACGACTTGGTTTCTTG





AAAGTGAGGAGACTAACAGATGAGCAAGAGCAAGCGCTTGTGCTGCTCAAATCCCTGAAAGAGTTCCAATTCTATTTGTGTAATGATCTC





GTAAATCTTCCTGCTGGGCTGCACACCCTTCCTTCCCTCAAGAGGTTGGAGATAGAACGGTGTGGACGCATCTCAAGGCTGCCAGAAGCA





GGCCTCCCACATTCGCTGGAAGAACTGAAAATCGAGTCTTGCAGCCAGGAGCTATATGATGAATGCAGGCAGCTAGCAACAAGCAAACTG





AAAGTCAAAATTGGTGGGAGATATGAGAATTAA





>curated_TraesCS2B01G488400_Ta_2B10


MAAAIGWLVETISATLQIDKLDAWIRQVGLADDIEKLKSEIRRVNIVVTAAKGRGVGSELLDGPFALLEERLYEADDVVDELDYYRLQHQ





VQGLPAPADPSEPVPLPVPGVTRGEPEGVLVAEQFNEISRGGGDVPQSNVGKLRSVVWEHFMITERDNGKPNKAVCRHCSNEFKCDTKTN





GTSSMKKHLENEHSVTCTKKPPGAHLPNPSSTGEPTIIASSSSKKRKRRRSKAWEFFDVIEEVNEQPMKARCKYCPAEIKCGPTSGTAGM





LNHNKICKNKPGPNDQLPNLSSTGDANADVTPILIGNSSTRKGRMDDSIQIDVTNTVTPWDMAELSSRIRKIASQLQYIQEETTEILKLH





GSDSTSSSDHHQSTTSYQHLRTSSLVPRNVYGRVKEKEHIMKLMMTEGRSDKVIVVPIVGIAGIGKTTLTQLVYNDPEVERQFEHRIWVW





VSRNFDEMRLTRDMLSFVSQESHEGIGCFGKLQEILRSHVKSKRVLLILDDVWYDKKDARWNQLLAPFKPHSANGNVILVTTRKMTVAKM





IGTVVPIKLATIENDDFWLLFKSCAFVDGNYECLGNLSTIGRQIAEKLKGNPLAAVTTGALLRNQLTVDHWSKILKEENWKSLGLSGGIM





PALKLSYDELTYRLQQCFLYCSIFPDKYRFLGKDLVYMWISQGFVNCTQNKRLEEIGLEYLNHLVNLGFFQQIEEQQELDEEKEFSLRGQ





IWYSMCDLMHDFARMVSVTEYARIDGLQCKKILPTIHYLSIVTGSAYNRDLHGNIPRNEKFEENLRNSVTSVTKLRTLVVLGSFDYFFVQ





LFQDIFQKAQNLRLLRVSPESTYLFQVPAASTDFNSFLCSLANPLHLRYLKLDLDGIVPQVLSTFLLLQVLDVGSNRDTSLPNSLHNLVS





LRHLVAHKRVHSSIASIGNMTSIQELHDFEVRISSGFEITQLKSMNKLVQLGVSQLDSVKTREEAYGAGLRNKEHLEELHLCWKHAFSVD





KDVSDTRFESSADMAREVIEGLEPHMDLKHLQISRYNGTTSPTWLANNISVTSLQTLHLDDCGGWRILPSLGSLPFLTKLKLSNMWEVTE





VLVPSLEELILLNMPKLVRCSSTSVGALNFSLRALRIEDCEALKELDLFENDDNSEIIQGSWLPGLRNLIVKYCPHLKVLKPLPPSATFS





KVLIKVVSRFPSMKVSSGEKLEIWDANYRRGDRSCDELIILDDKILVFHNLRNLKSMEIFGCRNLRSFSFEGFSHLVSLTSLKIRGCEKL





FSSHEMPAIEHVTAVNCDSFPSLKSLSIKSCGIAGKWLSLMLQHAPGLEKLSLRYCAHITTVLLPMEEEENNLLTTVLSSGNQDEALTWL





AREGLLHIPSNLVSSLKNMSISECPRLKFNWGTDCFSGFISLEKLEIWGSLVDDDGSYDPENGSSFVFEEEDQPLGANGRWLLPTSLQEL





NIRFLCYQETLQPCFTRDITSLKKLYVSFSPGLQSLQLHSCTALEELAIVGCGSVTVTVLEDSPGLLPCLERLCINDPSVLTTSFCKHLT





SLQRLRLGFLKVRRLTDEQEQALVLLKSLKEFQFYLCNDLVNLPAGLHTLPSLKRLEIERCGRISRLPEAGLPHSLEELKIESCSQELYD





ECRQLATSKLKVKIGGRYEN-





>curated_TraesCS2B01G488600_TraesCS2B01G488700_Ta_2B11


ATGGAGGCCGCGATTGCATGGCTGGTGCAGACCATCCTTGCAACCCTCCTGATCGATAAGCTCGATGCGTGGATTCGGCAAGTCGGGCTT





GCCGATGACGTTGAAAAGCTCAAGTCAGAGATCAGGAGAGTCAAGATGGTGGTCTCGGCTGTGAAGGAGAGAGGGATCAGGAACGAGTCG





CTGGATGAATCTCTCGCTCTTCTCGTGGAGCGACTCTACGAAGCCGACGACGTGGTCGACGAGCTGGATTACTACAGGCTCCAAGAGCTG





GTTGAAGGTGCCCGGCCCCGGCTGCCTGCAGATCCAACCGTGCTGGTTCCTTCCAACCTGCCCATCCAAGGAGAAGGAGGTACGCATACT





TCTTCCTGTAGATCCAACACAAAGTTCTTTCATAGGCCGAGTATCGAAGTGTGACAAACTACTAGTAATTGTTAGTCTGATGATCCTATC





TTACTTAGGACAAATTAATGAAATTTATATTATCTGATCAAGGACGACCATGCTTTTCTGGTCCATTTTTCTGTTGGCACAGCTACAAGA





AACGAGCCCGAAGGTAACAGTGCTGGCAAATCACGGTCCGTGGTCTGGGAAAACTTTACAGTCACAGAAACTGTTGACAGAAAGTCCGCC





AAAGCAGTATGTAGACACTGTGGCAATGAGTTCAAGTGTGATACGAAGATCAACGGTACATCATCTATGAAGAAACATTTAGAGAAGGAG





CATCCCGATAAGATGAAACCTCCTGGAGCGCATCCACCAAACCCTTCAAGGTACCTAAAGAAGAATTGAGCATGAGCCCATTTAATTAGA





AATCGTTTATATACCTCTTTCTTTTTTCTTGAATGGTTATATACATCTTCTTGACAGCGCACTAATTTTGGTCCTAATAGCCAACCCACC





ACTTTTTTCTTACTGCAGCACTGCTGAGCCTATTGCCATTGCCAGCTCATCCAGGGGAAAAGGAAAGAAACAGCGGTCCAAGGCATGGGA





TAATTTTGATGTTATAGAAAATGACATTGGACAGCCAACCAAAGCAATATGTAAATACTGCCACACAGAGATCAAGTGCGGAATGAAGAC





CGGGACAGCGGGTATGCTTAACCATAACAAGATTTGCAAGAAGAAACCTGAACCAAATGACCAGCCACCAAACCTGTCGAGGTAGCTACC





TTGCATCAGCAAATTTTTGGATGTTGTTTTATAAACAATCCCCACCATGGTTCTAATAGCCGTTTGTTCATGATCTTTTTCTTACTGCAA





CATTGGTGATGCTACTGCAAATGCGACATATATTGTGGTTTATGACGATTCAGCTACAAGAAAAAGAAGGAGAGTGGATGAGGAGTCAGC





AGAAATCACTGCAGCTAATACACACACCTGTTGGGACAAGGCTACATTATCCAATATGATACGAAAAATTATTAGTCAGTTACAAGAGAT





CCAAGGGCAAGTGAGGGAGGTTATCGAGTTACATGGATCAGACTTATCTTCCAGTTCAAATCACCATCAAAATACAACCTTATATCAGCG





CCTACGGACATCAAGTCTTGGTCCAAGAAAAGTGTATGGAAGAGTTGCAGAAAAGAACTCCATTGTAAGGATGATAACAGGAGAAAAGTC





TGGTGGTTTAGTTGTTCTGCCTATTGTAGGCATTGCAGGTGTTGGCAAAACAACTCTTGCTCAACTTGTATACAATGATCCATATTTGGA





TGATCATTTTGACCAAAGGATATGGGTTTGGGTGTCTCGCAATTTTGATGAAGTGAGACTAACAAGGGAGATTTTGAACTCTGTTTATCA





AGAAAGGCATGAAGATATAAAATGTTTTGCGAAGCTTCAGGAGATCTTGAAGCATCAGGCCGACTCACAGCGACTTTTAATCATTTTAGA





TGATGTCTGGGATGACATGAACGATAATATCCAACACCATAAAATGTTGGCTCCTCTGGTATCAAGTCATGTGAAGGGTAATGTGATTCT





AGTCACAACCAGAAGTATGTCTGTTGCACAAAGCTTAGGCACCCTCAAGCCAGTCAAGTTAGGTGCTCTGGCAAATGATGACTTTTGGTT





ATTGTTCAAATCACACGCATTTGGTTACGAGAACTGTCAGGAGCATCAAAGTTTAAGTATCATCGGGCGGCAAATAGCCGAGAAGTTAAA





GGGCAACCCATTAGCAGTTGTATCTACAGCAGAACTATTACGGAAGAAACTTAACACCGATTATTGGAGAATCGTTCTAAAGAACGAAGA





GTGGAAATACATGCATCACAATAGAGGGATCATGGCTGCTCTGAAGCTTAGCTATGATCAACTTCCGTACCATTTACAACGGTGTTTCTC





ATATTGCTCCATATTCCCTGACAGTTATCAGTTTCTTAGTGAGGAGTTGGTCGGTTTCTGGATATCACAGGGATTTGTAAAGTGCAACGG





CTCTAGTCAGAGATTGGAGGATATAGGGCGGGGATATCTGATTGATTTGGTTAACCTGGGCTTCTTTGAAGAAGCTAAAAGAGAAGAACC





ATATCTAGGCAGTCAAGTTATGTATGCCATATGCGGTCTCATGCATGATTTTGCGATGATGGTTTCAAGGACTGACAGTGCAAGTATAGA





TGGTCGACCCTACAAAAAAATGCCTCGAACTCTACGACATTTGTCAATAGTAAATGGATCCGCATACCAGAAAGATCAGCATGGGAACAT





TTATCATGATGAGAAGTTTGAAGAAAATCTGAAAAATGCAATTACATCAGTTAGTGAACTGAGGACATTAGTGTTACTTGGGCACTATGA





CTTTTCCTTCTTACTATTATTCCAATATATATTCCAAAAGGCACATAACTTACGTGTGCTACAAATGTCTGCAGCATCTGCTGATTTTCT





CAAACATGGGATTGAGGAGGTGGATGGGTCTTTCCCTCAAATTTTGAGCAAATTGTACCATCTCCAAGTATTAGTCGGTTCATACAATGA





TCGTACTATGCCTGGTTGTATTGATAATCTTGTTAGCCTGCGGCATCTTGTTGTACACAAGGGAGTGTACTCTTCCATTGCAACCATTGA





TAATATGCTATCATTTCAGGAACGACATGGTTTCAAGTTTCATATTTCTAGTGGCTTTGAGATAACACAACTCCAATCCACTGAACATTG





GATGCATGTTAATACTCTGGAAGATGTTTATGAGGCAGGACTGGTAAACAATGAACTCTCAGAAAAGTTGCACTTGTCCTGGAAGGATTC





TCCTGCGGACATGGTCATGGAGGTTGAGGGTTGGGAACCACATTGSGACTTAAGGGTTCTCGAGATATCTGGGTATAATTTTGCTTGGAC





AATTATGGTTGACAACATTATCTTGGTTACCTCCTCCCAGACGGTTCACATATGCGATTGCATTGAATGGAAAATACTTCCATCTTTGGA





AAGGTTTCGGTTTTTGACAAAGCTGGAGTTGAGAAACCTGCCTAAAGTAATACAAATACTGGTTCCTTCACTGGAGGAGCTAGCTTTAGT





TAAAATGCCAAAGTTGGAGAAATGTACATGCACTTCCGTGGAAGGTATGAGCTCTAGACTAAGAGCACTGCAGATCAAGGATTGTCAATC





ACTGAAGGAGTTTGATCTGTTTGAGAACAACGATAAATTCGAAACTGGGCAGAGGTCATAGGCTCCTAGTCTTAGGGAACTAAGTCTGGA





GAATTGCCCCCATTTGAAAGTGTTGAAGCCTCTTCCACGCTCAAGCATGTGTTCTGAGTTACTCATCTGTGACGTTTCAACACTTCCGTA





CATGAAGGGATCATCTGATGAAGAGTTATGTATTGGGTATGATGGTGAGTATGGCTATGGTTTTGACGAATCTTCCGATGAGTTGAAGAT





ACTGGATGACAAAATTTTGCTGTTCCATAATCTGAAAAACCTCAAATCGATGGTGATACATGGTTGCCGGAATCTAAGTTCCATTTCATT





AAAAGGTTTTAGTTACCTCGTCTCTTTAACGAGCTTGAAAATAAGAAATTGTGAAAAACTTTTTGCTTCAAATGAGATGCCAGAGCATAC





CCTCGAAGATGTGACACTTGTGAATTGCAAGGCTTTCCCATCTCTGGAATGTCTCAGTATTGATTCATGTGGTATAGTGGGGAAGTGGCT





ATCTTTGATGCTGCAACATGCGCCATGCCTAGAGGAATTGTATTTGTCTTCCCAAGAGGAAGAAAAATCAGAAGAGGAAGAAAACAGTAT





ATCAAATCTTAGCTCAACCAGGGAGGGCACATCATCCGGAAATCCAGATGACGGATTAGCTCTAGACCGACTGTTGTGCATCCCATTAAA





TCTCATCTCCATTCTAAAGAGGATAACTATTGAGAGGTGCCCTCATCTAACATTTAACTGGGGCAAGGAAGGCGTCTCGGGATTTACCTC





CCTTGAGAAGCTAGTCATTTTAGACCGCCCTGACCTGCTCTCGTCGTTGGTGCATACAGACGGAGGATGGCTACTCCCGAACTCACTTGG





CCAACTTGAAATCGATGGCCATTCCCAAGTAA





>curated_TraesCS2B01G488600_TraesCS2B01G488700_Ta_2B11


MEAAIAWLVQTILATLLIDKLDAWIRQVGLADDVEKLKSEIRRVKMVVSAVKERGIRNESLDESLALLVERLYEADDVVDELDYYRLQEL





VEGARPRLPADPTVLVPSNLPIQGEGATRNEPEGNSAGKSRSVVWENFTVTETVDRKSAKAVCRHCGNEFKCDTKINGTSSMKKHLEKEH





PDKMKPPGAHPPNPSSTAEPIAIASSSRGKGKKQRSKAWDNFDVTENDIGQPTKAICKYCHTEIKCGMKTGTAATRKRRRVDEESAEITA





ANTHTCWDKATLSNMIRKIISQLQEIQGQVREVIELHGSDLSSSSNHHQNTTLYQRLRTSSLGPRKVYGRVAEKNSIVRMITGEKSGGLV





VLPIVGIAGVGKTTLAQLVYNDPYLDDHFDQRIWVWVSRNFDEVRLTREILNSVYQERHEDIKCFAKLQEILKHQADSQRLLIILDDVWD





DMNDNIQHHKMLAPLVSSHVKGNVILVTTRSMSVAQSLGTLKPVKLGALANDDFWLLFKSHAFGYENCQEHQSLSIIGRQIAEKLKGNPL





AVVSTAELLRKKLNTDYWRIVLKNEEWKYMHHNRGIMAALKLSYDQLPYHLQRCFSYCSIFPDSYQFLSEELVGFWISQGFVKCNGSSQR





LEDIGRGYLIDLVNLGFFEEAKREEPYLGSQVMYAICGLMHDFAMMVSRTDSASIDGRPYKKMPRTLRHLSIVNGSAYQKDQHGNIYHDE





KFEENLKNAITSVSELRTLVLLGHYDFSFLLLFQYIFQKAHNLRVLQMSAASADFLKHGIEEVDGSFPQILSKLYHLQVLVGSYNDRTMP





GCIDNLVSLRHLVVHKGVYSSIATIDNMLSFQERHGFKFHISSGFEITQLQSTEHWMHVNTLEDVYEAGLTEDGYSRTHLANLKSMAIPK





-





>curated_TraesCS2B01G734100LC_Ta_2912


GTATATTGTTTCTGCTCTGCTCGCGTGCTCCCCACCCTCGAGCCTCGACTCCCCCCACACTCTCCACTGACAAGAAACCATCTCCAGCGA





ACATCTTCTGCCGGATCTGATGGCGGCCTCGATTGGGTGGCTGGTTGAGACCATCTCTGCAACCCTCAAGATCGATAAGCTCGATGCCTG





GATTCGGCAAGTCGGACTTGCCGATGACATCCAGAAGATCAAGTCGGAGATCTGGAAAGTCCAGACAGTGGTCACTACTCTACTGCCAAG





AGTACGGGGGTCGCAAACGAGCTTCTGGATGAAGCTTTCGCTCTTGTCGAAGAGCGGCTCTATGAAGCCGACGATCTTGTCGACGAGCTC





GACTACTACAGGCTCCAACACCAAGTCCAAGGTCTGCCTGCCCCTGCAGATCCAAGCGAGCTACTCCGAAGAGGTAAGCGTAAATCTCTC





TACACCCAATTAATCCAAGTCAGCTAATTATTAGTTTGATCTTATATTGCGCCAAAAATTTAAATTGGTCGTATCTGATCAAGGACGCCA





TTGCTTTTCTGCTCCACGATTTCTTTTGGCACAGTTACAAGGGGTGAGCCCGAAGGTGTGCTTGTAGCTGAGCGACTCAATGAGATACCG





AGGGGTGATGGTGATATAGCACAGAGACAGAGCAATGTTGGCAAATTACGGTCCGTGGTATGGGAACACTTCACGATCACACAAAGAGAT





AATGGAAAACCTGTCAAAGCAGTATGTGTACACTGTAGAAATGAGTTTAAGTGCGATACGAAGACGAACGGTACATCATCTATGAAAAAG





CATTTGGAGAATGAGCATTCTGTGACTTGTGCAAAGAAACCTCCTGGAGAACATCCAGCAAACCCTTCAAGGTACTTAAAAGAGAATTGG





GTATAGAGTAGAGTATTCTTTCAAGCTCAGATGTACATACACCCCTTACCTTGTACTCCCTCCGTTCCATATTAATCGTCGCTGATTAGT





ACAACTAATATGGAACGGAGGGAGTATGAGGGAGGCTATGAGCACATTTAAGAAAAAAGTGTTCATATACATCTGCTTGAGGCCATTATA





TGTTCCTAATAACCCCATCTTTTTATTACTGCAGCACCGGTGAGCCTACTGTAATTGGCAGCTCATCCAGCAGAAAAGGAAAGAGACGAC





GGTCCAAGGCATGGGAACTTTTTGATGTCATACAAGAAGTAAACGAACAGCCTATGAAAGCAAGATGTAAATACTGTCCCACAGAGATCA





AGTGCGGACCAACGAGTGGGACAGCAGGTATGCTCAACCATAGCAAGATTTGTATACCTGGACTAAACAACCAGCCGCCAAACCCGTCAA





GGTAACTAAAGAATCTATACATTGCACCGAAAAATATTAGAAGTCATTAAGTTAAGAGTCTCACTGTGGTTCTAATAGCCAATTCACGGT





CTTTTTCCTATTGCAGCACTAGTGATGCTAATGCAAATGTGACGCCAATTACTGCGGCTAACACGGTCACCCCTTGGGACATGGCTGAAT





TGTCCAACAAGATTAAAAAAATAGCTGGTCAGTTGCAATACATCGGAAGGGAAGTGGGTGAGATTCTAAAGCTACATGGATCCGACTGTA





CTTCAAGTTCAGATCAGCACCTCAGAACACCAAGTCTTGTTCCAAGGAATGTGTATGGAAGAGTTAAGGAAAAGGAACACATCATGAAAT





TGATGATGACAGAAGGCAGATCTGACAAATTAATTGTTGTGCCTATTGTAGGCATTGCAGGTGTTGGAAAGACAACTCTCACTCAACTTG





TATACAATGATGTAGAAGTGGAAAGGCAATTTCACCATAGAATATGGGTTTGGGTGTCTCGCAACTTTGATGAAATGAGGCTCACAAGAG





AGATGTTGAGCTTTGTTTCTCAAGAAAGACATGAAGGAATAGACTGCTTTGTGAAGCTTCAGGAGATCTTGAAAAGTTATGTTAAATCAA





AGAGGATTTTACTTATTTTAGATGATGTTTGGGATGACAAGAACAATTACCAGTGGAACCAACTATTGGCTCCTTTTCGGCACGACAATG





CTATTGGTAATGTGATTCTTGTGACAACTAGAAAATTGTCTGTTGCAAAAATGATTGGAACAACAAGACCAATTAAGTTAGGTGCATTGG





AAAATGATGACTTCGAGTTATTGTTCAAATCATGTGCATTAGGTGATGGAAACTATGAATTTCCTGGAAATTTTAGCACAATTGGGCAGC





ACATAATAGAGAAGTTAAAGGGCAACCCCTTAGCAGCAATAACTACTGGGTCGCTATTAAGGGATCATCTTACCGCTGATCATTGGAGTA





ACATTCTCAAGAAAGAAAGTTGGAAGTCACTGGGAGTCAGTGGAGGCATCATGCCTGCTTTGAAGCTTAGTTATGATGAGCTACCATACC





GTTTACAACAATGTTTCTCTTACTGTTCTATATTTCCTAACAAATATAGGTTTCTTGGTAAGGATTTAGTCTATATTTGGATTTCTCAGG





GATTTGTGAATTGCACCCAAAATAAGAGATTGGAGGATACAGGGTGGGAATATCTGAATCAATTGGTAAACCTGGGATTCTTTCAACAAA





TTGAAGAACAACAAGAATTGGATGAGGAAGAAGAATTCTCTCTATGCCGTCAGATTTGGTACTCTATGTGTGATCTCATGCATGATTTTG





CGAGGATGGTTTCAAGGACCAAATGTGCGACTATAGATGGTCCACAGTGCAATAAAATATTGCCAACTGTACAGCATTTGTCAATAGTAA





CCGGTTCTGCATACAACAAAGATCTGCACGGGAACATTCCTCGTAATGAGAAGTTTGAAGAACATCTGAGAAATTCAGTTACATCAGTTA





CCAAGTTGAGAACATTGGTTGTACTTGGAAAATTTGACTCTTCCTTTGTACAGTTGTTCCAAGATATATTCCAAAAGGCACAAAATTTAC





GCCTGCTACGAGTATCTTATCCACTTATCTGTTTCAAGTGCCTGAAGCATCCACCGGTTTTAATTCCTTCCTGTGCAGTTTGGCAAATCC





TTTGCATCTTCGTTACCTAAAACTTGAGTTGGATGGGATTGTGCCACAAGTTTTGAGTACGTTTTTGCATCTTCAAGTATTAGATGTTGG





ATCAAGCATGGATACTTCTCTACCCAATGGCTTGTTGCATAATCTTGTTAGCCTGCGACATCTAGTTGCACACAAGAGAGTCCATTCTTC





CATTACTAGCATTGGTAACATGACATCTATCCAGGAGCTACATGATTTTAAGGTTCGAATTTCTGGTGGCTTTGAGATAACACAACTCAA





ATACATGAACGAGCTTGTTCAACTTGGGGTGTCTCAGCTTGACAGTGTTAAAACCCGGGAGGAGGCTTATGGAGCAGGATTAAGAAACAA





GGAACACTTAGAAGAGCTTCACTTGTCCTGGAAGGATGCATATTCAGAGTATGAGTTTGTCAGTGACACTAGATTTGAATCTTCTGCAAA





CATGGCAAGAGAAGTGATTGAGGGTCTTGAACCATACATGGATTTAAAACATCTACAAATATCTTGGTATAATGGTACCACTTCACCAGC





TTGGCTTGCCAACAATATCTCAGTTACCTCATTGCAGTCGCTTCATCTTAATTATTGTGGAACATGGAGAACACTTCCATCTCTGGGAAG





TCTTCCATTTCTTACAAAGCTGAAGTTGAGCAACATGTGGGAAGTAAAAGAAGTATTGATTCCTTCACTGGAGGAGCTAGTTTTGATCGA





CATGCCTAAGTTAGTGAGATGCTCAAGCACTTCTGTCGAGGGTCTGTGCTCCAGCTTAAGGGTACTGCAGATCAAATATTGTAAAGCATT





GAAGGAGTTTGATCTGTTTGATAACGATGATAATTCTGGAATCACTCAGGGATCATGGCTGCCCGGTCTTAGGAATTTGATTCTGGATTA





TTACCCTCATTTGGAAGTGTTGAAGCCTCTTCCACCTTCAACTACGTGTTGTAAGGTACTCATCAGAGAAGTTCCAAGATTTCCGTATAT





GGAGGTATCATCTGGAGAAAAGTTAGAAATTGGGAATACTTATGGGTACAGAGGCGATGGTTTTGATGAATCTTCTGATGAATTGAGGAT





ACTGGATGACAAAACTTTGGCATTCCATAACCTTGGAAACCTCAAATTGATGGAGATATATGGTTGCAGAAATCTAAGGTCTTTTTCGTT





CGAAGGTTTTAGTCATCTTGTCTCTTTAGCAAGTTTGACAATAGTAGACTGCGAACAACTTTTCCCTTCAGATGTGTCGCCAGAGTATAC





CCTTGAGGATGTGACAGCTATGAACTGCAATGCCTTCCCATCTCTTAAAAGTCTCAGTATTCAGTCATGTGGAATAGCGGGGAAGTGGCT





ATCGTTGATGCTGCAACATGCGCCAGGCCTAGAGAAATTGGCTTTAGCAAATTGCGCCCATATAACAACAGTACTATTAACAACAGTATT





GTCCGATGGAAGAGGAAGAAAACAGACTATTAACAACAGTACTGTCATCAGGAAATCCAGATGAGGCATTGACCTGGTTAGCTCGAGACT





GACTCTTGCACGTTCAGTCACTCAAGATGATTGATATTTGGGACTGCCCCCGCCTAACATTTAACGGGGCCAAGGAATGCTTCTCTGGAT





TTACCTCCCTTGAGAAGCTAGTCATTCGAGGCTGCCCCGACCTGTTCTCGTCATTGGTACATAAAGACGTAACAGATGACCAGGCAAGCG





GAAGATGGCTCCTCCCGAAATCACTTCAGGAACTTGAGATCGTTGAATATTCCCAAGAAAAGCTGCAGCTCTGCTTCCCTAGAGATATCA





CAAGCCTTAAAAAGTTAAATGTATATCACAGCCCAGGTTTGCAATCTCTACGGCTGCACTCATGCACGGCACTGGAAGAATTGGAGATTA





GATGCTGTGGATCGCTCACCGTCACTGAACTAGAAGGCATACAACGCCTTGGCAGCCTCGGGCGTTTGAATGTATCAGACTGTCCTGGCT





TGCCACCATGTTTGGAGAGCTTTTCAACGCTGTGCCCTCGGCTGGAAAGGCTTGAGATCGATGACCCATCTGTCCTTACCACGTCATTCT





GCAAGCACCTCACCTCCCTGCAAAGACTACATCTTGGTCCCATGAAAATGACGAGACTCACAGATGAGCAAGAGCGGGCGCTTGTGCTGC





TGAAGTCCCTGCAAGAGCTCGAATTCAATCGGTGTCGTGATCTCGTAGATCTTCCTGGGGGCCTGCACAACCTTCCTTCCCTCAAGAGGT





TAAAGATATGGGATTGTCTGGGCATCTCAAGGCTGCCGGAAGCAGGTCTCCCATTTTCACTGGAAGAACTGGAAATCAATCATTGCAGCA





AGGAACTAGCTGACCAATGCAGTCTGCTAGAAACAAGCAAGCGAAAAGTGAAAATTACTTTATGTACTCCAATTGATTACTGGCTGCTAT





GTTAAGCACATGTTTCTAAGCTGTCTCTGCTTTTGAGGAAATCTTCCGCCGTATACCCTCAGAGTTGACAGACCCTCATAAATGTGCAGT





GTGCTCATTCCAGAATGAGCTGTCTCTGCAGGCATTCAATTAGGCTGCTCAACATATACTATCATGCAACAGGTAAACCGGCATGTTTCG





CTGTTTGCTATTCATCTTGTCTTGTCAACTGAAAAATATAATTAATTTTCATTTCCTTGACTGCACAGAGAACTACTCCCTCCGTTCCTA





AATATAAGTCTTTGTAGAGATTCCACTATAGACTACATACGGAGCAAAATGAGTGAATCTACGCTTAAAATGCATTTATATACATTCGTA





TGTGGTTCATACTAATATCTCTACAAAGACTTATATTTAGGAACGGAGGGAGTACACGAGATAAACCTGCAGATGTTTTATGTTGTTTGT





TGCACAAGTTGTGTCCGAAATTTCCGCCATTCAGATATGCTCTGCAGCTACAACAATGCACCTTTTCAAGGAAAAAAAAGCTAAAACAAA





GCACTTCAGAGACAGGAATAGTAGCTCTCGTCTGACACGAGAAGGAGGATATGTGGGGTTACTCTTAACTAAATTCATGTGTTGATCAGC





CAGACTCAGAAGTCAGGATGGCCTCGGCAGACGCCTAATGTGTGCAAGAATGATTAAAGTTGGATATGCAAGCCTGTAACCTGGTGTGCC





GTCGCCGATTACTAGTTTCCTGTTGTGATATCAGCGACGCAGTGTGTGTGTAGTATACTACTATGCTATCTTGGTACATCCTAATGAGCT





CATCTCTTCCCATTTTCCTTTATCTTTGTGATGCTTCAAACTATCTTTGTGATGCAGTGTGTCTGTACTATCCTATCTTGGATCTTCACA





GAATTTTGCTACTGGTCTGGACTCATTCTGTCAGTGGTTGTTTGCTTTGTGGACTTGTGCTCGTGGTCTCTGTTTTTTCAAGCTGATCCT





GAAGCTTGCTGGAGCCTGTGAGGCACGATAAAAATTCTCATCAAAGTGAGGCACAATAAAGCTCCTCGTTTCTTGTTGACTGTACGAGCT





CCTTTCTCCAGTGTGTAACTGAAAATGGGACGAGAATGCCGAAGGTTTGCTCATAAGGTCATATCACCATGCGAAACCCCAACAGTAACG





TCGGGGAAACAGAGTTGATATGGCCTCCTGTAAGAAAAAAGAGCTGGTACGGCCCGCTCCAGTTTCATCATTTCATTGCCATCCCTCGCA





TGTGTAGCGCTGTATCGGAGGAGCTCTCCTCTTTTGCGTGATATATTGCGTTATCAATAAGAAAACTATTCATGTCTTTGCTTCGGATAT





TTTTATGTATCTGAATTTTCTTGATCAGAAGAAAACTCTTTTTACTCTGTTTGTGATGCTGGACAAGTCATGCTGTCTTCGAACTGTGCA





TGAATAATTTTGCTCCTGATCTGGAGCACTTACATCGAGTGGTAGCTTACTTTGATGTGTGCACTAACAAAAGATTAGAAAATGTACATT





ATACCTGATGGCGTAATCAATCTTTTCTGTTGTGCTCAAGTTGTTGTCGATCATGCTTATCGTTTTCAGACTTCCTGAGCTGGCCGGCCT





GTGAATGTGGTAAGCAAACAAATTTTCTAGTCAATGATATATAGGCACAAGTAAAGAACAGGACAAGTTAACTGAATCCAAGGCAACCTG





CACATCTCAGAAACAAGTACTCACTCAAATCATACTGTTCAAGTAAGACGCTACAGGAAGTTAAGCTGCCCATCGTCTTAAACCAGCATA





GGATGCTCCCTTAACTCAAAATAAAGCTGTTAAAACAAGCTCCTCTGCAATGCAAGAACTTCATCAGTTCATGGAGAATAAACAGGGAGC





TCGACAGTACCGCAGGATGACGAGGAGCCACTGCCCACCAGAGATTGGTAAGTTGCGGTTGGATCTGGCCACAGCGCCTCCGCATCGGCG





CCCAGAGGTTGGTCGGATGGGGGATGTTGGCGAGCTCGCCTGCGAGGCGTTCCCTGAGCGCACTGCCATCACGGCGGGCCAGCCCCCGCT





TGCAGGAACGTCGGGCATCCCGGGCGGCGGCGTCTTGCAACTATCGGCGCGTGGCGTGGGAGGGCAAGCCTGAAGAAGACAAACTAGCTA





AATGGGCCGGACATTGGCACAGGCCATTGGCGCATATATTTTTATATTTTCCCAAAAAGTATACATATTAAAAATATATTCAGTAATCAC





TTTATATTTCTCAAAAAAATAATCAATTTA





>curated_TraesCS2B01G734100LC_Ta_2B12


MAASIGWLVETISATLKIDKLDAWIRQVGLADDIQKIKSEIWKVQTVVTTLLPRVRGSQTSFWMKLSLFSKSGSMKPTILSTSSTTTGSN





TKSKVCLPLQIQASYSEEDAIAFLLHDFFWHSYKGTGEPTVIGSSSSRKGKRRRSKAWELFDVIQEVWEQPMKARCKYCPTEIKCGPTSG





TAGMLNHSKICIPGLNNQPPNPSSTSDANANVTPITAANTVTPWDMAELSNKIKKIAGQLQYIGREVGEILKLHGSDCTSSSDQHLRTPS





LVPRNVYGRVKEKEHIMKLMMTEGRSDKLIVVPIVGIAGVGKTTLTQLVYNDVEVERQFHHRIWVWVSRNFDEMRLTREMLSFVSQERHE





GIDCFVKLQEILKSYVKSKRILLILDDVWDDKNNYQWNQLLAPFRHDNAIGNVILVTTRKLSVAKMIGTTRPIKLGALENDDFELLFKSC





ALGDGNYEFPGNFSTIGQHIIEKLKGNPLAAITTGSLLRDHLTADHWSNILKKESWKSLGVSGGIMPALKLSYDELPYRLQQCFSYCSIF





PNKYRFLVLDVGSSMDTSLPNGLLHNLVSLRHLVAHKRVHSSITSIGNMTSIQELHDFKVRISGGFEITQLKYMNELVQLGVSQLDSVKT





REEAYGAGLRNKEHLEELHLSWKDAYSEYEFVSDTRFESSANMAREVIEGLEPYMDLKHLQISWYNGTTSPAWLANNISVTSLQSLHLNY





CGTWRTLPSLGSLPFLTKLKLSNMWEVKEVLIPSLEELVLIDMPKLVRCSSTSVEGLCSSLRVLQIKYCKALKEFDLFDNDDNSGITQGS





WLPGLRNLILDYYPHLEVLKPLPPSTTCCKVLIREVPRFPYMEVSSGEKLEIGNTYGYRGDGFDESSDELRILDDKTLAFHNLGNLKLME





IYGCRNLRSFSFEGFSHLVSLASLTIVDCEQLFPSDVSPEYTLEDVTAMNCNAFPSLKSLSIQSCGIAGKWLSLMLQHAPGLEKLALANC





AHITTSLKMIDIWDCPRLTFNGAKECFSGFTSLEKLVIRGCPDLFSSLVHKDVTDDQASGRWLLPKSLQELEIVEYSQEKLQLCFPRDIT





SLKKLNVYHSPGLQSLRLHSCTALEELEIRCCGSLTVTELEGIQPLGSLGRLNVSDCPGLPPCLESFSTLCPRLERLEIDDPSVLTTSFC





KHLTSLQRLHLGPMKMTRLTDEQERALVLLKSLQELEFNRCRDLVDLPGGLHNLPSLKRLKIWDCLGISRLPEAGLPFSLEELEINHCSK





ELADQCSLLETSKRKCAHSRMSCLCRHSIRLLNIYYHATARLRSQDGLGRRLIVSVLSYLGSSQNFATGLDSFCQWLFALWTCARGLCFF





KLILKLAGAYFLSWPACECAVKTSSSAMQELHQFMENKQGARQYRRMTRSHCPPEIGKLRLDLATAPPHRRPEVGRMGDVGELACEAFPE





RTAITAGQPPLAGTSGIPGGGVLQLSARGVGGQA-





>curated_TraesCS2B01G489400_Ta_2913


ATGTTGCTCGGAATCTTCGAAACAGCTGAGCAGGCCGCGAGAACCTACGATGCGGCGGCGCTGCGCTTCAAGGGCGCCAAGGCCAAGCTC





AACTACCCCGAGGGTTTCCAGGGACGCACCGACCTCGGCTTCAAAGTCACCCGCAGCATACCGGACGGATTACAACAACATCGCCACTAC





CCCTCCACCATGGAGGCGCCAGCAACGCAGCCGTCGCCGCAACAGCAGCCGACCGTCCCAGTCCTCATGCGGCACGAACTGCCGCCTCAG





GGCGCCGGCAGCTCCAGGGGCGCTGTCAACCTGCCCTTCGGCGCCATGTCGGCCCCGTCCACGTCGTCCACCTCATCGCCGCACATGCTC





GTCCCTCCGCTTGCGTCCGAGGACCATACAATGAGAAGAACTGTAAGTGTAGAAGAGGAAGCTAACGACACACATGACGGAGTGACGGCG





CGCACACAATCTAGCAAGTTTGTGAACAGTTTTTACGGTTTTGCAAGTGCGTGTGCATTCTTTACTTTATCTGACTCTGGTCAAAGGACG





ACCCTTTTTCTTTTTCTTTTGGCAGTTGCAAGGAACAACGCCGAATGTATGCACGGTGCAGACAGGGTCGATGAGATATCAAGGGGCGAT





GCTGACACACCGAGTAACATTGTTGGCAAATTGCGGTCCGTCGTATGGGAACACTTTACGATCACAGAAAAAGATAATGGAAAACCGCTC





AAAGCAGTATGTAGACACTGTGGCAATGAGTTTAAGTGTGATACAAAGACCAACGGTACATCGTCTATGAAAAAACATTTGGAGAACGAG





CATGCCGTGACCTTTACCAAGAAACCTCCTAGAGGGCGTCCACCAAACCCTTCAAGGTACCCTCCCAAAAGAGAATTGGGCATATACCTT





GCATGAGCATATTTTTAGAAACTCGTTAATACACATCTGCTTCGGGAGCCCGATAATTGTGGTCCTAATAGCCAACCTAATGTCTCATTT





TCTTACTGCAGCACTAGTGAGCCTATCTTAATCGGCAACTCGTCCAGGACAAAAGGAAAGAGACGATGGTCCAAGGCATGGCAACTTTTT





GATATCATAGAAGAAGAAAACGGAGAGCCTATCAAAGCAATATGTAAATATTGTCCAACAAAGATCAAGTGTGGACCAATGTGTGGGACA





GCTGGTATGCTCAACCATAACAAGATTTGTAAGAACAAACCTGGACCATATGACCAGTCACCAAACCCATCAAGGTAGCTAATGAATCTA





TACCTTGCATCGACACATTTTTACAAGTCATTTAATTAAGAGGTCTCACCGTGGTTCTAGTAGCCAATTCACGGTTTCTTACATTAATTG





CTGCAGCACGGGTGATGCTACTGCACATGTGAAGCCTTCATCTAGCAGAAAAAGGAGGAGACCCGAATCAACACAAATGACCGCGCCTAA





CACCGCGACTGGTTGGGACAAGGTCGAGATATCCAATAGGATACAAAACATAACTAGTGAGCTACAAGGCATCCAACTGGAAGTGCCTAA





GGCTTTCTATCCATGTGGATCAAGCTTATCTTCAAATTCAGATCACCACCAGAGTACAATCTCAGATCAGCGCCTAAAGACATCAAGTCT





TGTTCAAAAGAAAGTGTATGGGAGAGATGTAGAAAAGAACTCCATCGTGAAGTTGGTGAGGGCAAAAAACAAATCTCACGGTGTAACTAT





TTTGCCTATTGTAGGGATTGCGGGCGTTGGAAAGACAACTCTCGCTCAACTTGTATACAATGATCCATATAGTGAAAGTCAATTTGATCA





CAAGATATGGGTTTGGGTGTCTCACAACTTTGATGGCATGAGGCTCACAAGAGAAATGTTGACCTCTGTTTCTCAACAAAGGCATGAAGG





AATAGACTGCTTTGTGAAGCTTCAGGAGATCTTAAAAAGTCATATCAAATCAAAGAGGGTTTTACTAATTTTAGATGACGTCTGGGATGA





CAAGGATGATTGCCGCTTGAACCAACTAATGGCTCCTTTTAAGAATGATAGTGATAATGGCAATGTGATTCTTGTGACAACTAGAAAACT





TTCTGCTGCAAAAATGATTGGAACAACGGAGCCAATTAAGTTAGGTGCTTTAGAAAAGGATGACCTCTGGTTATTGTTCAAATCATGTGC





ATTTGGTGATGAAAACTATGACTGTCTTGGAAATATTAGCACAATTGGACGACAAATAGCAGAGAAGTTAGAAGGCAACCCGTTGGTAGC





AGTAACTACAGGGGCACTATTAAGAGGTCATCTTACCGTTGATCATTGGAGTAACATTCTCAAGAAAGAAAGTTGGAAATCACTGGGACT





CAATGGAGGCATCATGCCTGCTTTGAAGCTTAGTTATGATGAGTTGCCACACCATTTACAACAATGTCTCTCACATTGTTCTATATTTCC





CAAAAAATATAGGTTTCTTGGTAAGGATTTAGTCTATATTTGGATTTCTCAGGGATTCGTGGATCGCACCCATTTAAGTGAGAGATTGGA





GGAGGCAGGATTGGAATATTTGAATGATTTGATGAGCCTGGGATTCTTTCAGCAAGTTGAAGACCAGCAGGATGAAGATGGGGATGAGGA





TGAGGAAGAAGAATCCTCTCTAGGCAGTCAAATTCGGTACTCTATGTGTGGTCTCATGCATGATTTTGCCAAGATGGTTTCAAGGACTGA





ATGTGCAACTATAGATGGTCTACACTGCAAAATGCTGCCAAATATACGTCATTTGGCGATAGTAACTGATTCTGCATACAACAAAGATTG





GTATGGGAACATTCCTCGTAATGAGAATTTTGAAGAAAATCTGAGAAACACGGTTACATCGGTCAGCAAATTGAGGACGCTGGTTTTAGT





TGGGCACTATGACTCTTTCTTCATAGAATTGTTCCAAACTATATTCCGAAAGGCACATAATTTACGCCTGCTGCAAGTGTCTGCAACATC





CACTGGTTTTAACTCCTTTTGTTGTGTTTTGGCAAATCCTTTGCATCTACGTTATCTAAAACTTGAGTTGCACGGGGTTGTGCCACAAGT





TTTGAGTAAGTCCTTTCATCTTCAAGTATTAGATGTTGGCTCAGACATGAATACTTCTGTACCCAATGGCATGCATAATCTTGTCAGCCT





GCGCCATCTTATTGCACGCAACAGAGTGCGCTCTTCAATTGCTAGCATTGGCATCATGGCATCTCTTCAGGAGCTACATGATTTTGAGGT





TCGAAATGCTAGCGGCTTTGAGATAACACAACTCCAATCCATGAACGAGCTTGTACAACTTGGGGTGTCTCAACTTGATAATGTTAAAAC





TCGGGATGACGCTTATAGGGCAGGACTAAGAAACAAAGAACACTTAGAAGAGCTTCATTTGTCCTGGAAGTATGCACTGTTAGAAAATGA





ATATAGCAGTGAAAAGGCAAGAGAAGTTCTTGAGGGTCTTGAACCACATATGGGTTTAAAGCATCTACAAATATCTAAGTATAATGGTAC





TACTTCACCAACTTGGCTTGCCAACAAAATCTCGGTTACCTCCTTGCAGACACTTCATCTTGATGATTGTCGTGGATGGAGAATACTTCC





ATCTCTGGGAAGTCTTCCATTTCTTACAAAGCTGAAGTTGAGCACCATGTGTGAAGTAATAGAAGTATTACTTCCTTCACTAGAGGACTT





GGTACTAATTAACATGCCAAAGTTAGAGAGATGCTCAAGCACTTCTGTGGAGGGTTTGAGCTCTAACTTGAGGGTGCTGCAGATCGAGCA





TTGCAAAGCACTAACGTCATTTGATCTGCTTGAGAATAATGATAAATTCAAAATCGAGCAGAGCTCGTGCTTGGCTGGTCTTAGGAAATT





AATTTTGTATGATTGCCCTCGTTTGAAAGTGTTGAACCCTCTTCCACCTTCAACAACATGTTCCGAGTTACTCATCAGTGGAGTTTCAAT





ACTTCCGAGTATGAAGGGATCATCAAGTGATAATTTACGTATTGGGCTCATTAATGAGTCTATAATCTATGGCAGTATTGATGGATACGC





TGATGAGTCGAGGATAATGGATGACAAAATTTTTGCGTTCCATAATCTTAGAAACCTCAAATCGATGGTGATATTTGGTTGCCAAAATTT





AAGGTCATTTTCATTTGAAGATTTTAGTCATCTCAGCTCTTTAAAGAATTTGGAAATATCAATGTGCAAGGAACTTTTCTCTTCAGATGT





GATGCCAGAGCATACCCTTCAAAATGTGGCAACCACGAAATGCAGGGCCTTCCCATCTCTTGAAAGTCTCAGTATTAGGTCATGTGGAAT





AACAGGGAAGTGGGTATCTTTGATGCTCCAACATGCGTGGATCCTTGAGGAATTGAGTTTGGAAGATTGCCTACACACAACAATAATACA





ATTGCCGACGGAAGAGGAAGAAAACAGTCTATCAGATCTTATCTCAGCCAGGGAGGACTCATCATCAGGAGATCAAGACACATTGACCTG





GTTAGCTCGAGATAGACTCTTGCACATTCCATCAAATATCACCTCCTCTCTCAAGTGGTTAACCATTTGGAAGTGCCGTGGTGTAACATT





TAATGGGAGTGAAAAAGGTTTCTCCAGATTTACCTCCCTTAAGGAGCTACAAATTAGGGGATGCCCCGAGCTAGTCTTGCATTTGGTGGA





TAAAGATGGAACTTATTACTGCACGAACGGAAGATGGTTCCTCCCATCATCACTTGAGGTACTGGGCATCGACAACTATTTCCAAGAAAA





GCTTCAACCCTGCTTTCTGAATGATCTCACCAGCCTTAAAAGGTTATCCGTCTCGTCCAGGCCATGGTTGAAATCTCTACAGCTGCACTC





ATGCACAGCACTAGAAGAGTTGAAAGTCATTCAGTGTGAATCGCTCACGACACTAGAGGGCTTGCAATTCCTTGGCACCCTCAGGCATTT





GACAGTATACGACTGCCCTGGCATGTCTACCTGTTTGAAGAGCCTTTCATGGCGCTACGGGCTATGCTCTCGGCTGGAAACGCTCGGAAT





TGGTGATCCATCAGTCCTTACCACATCATTCTGCAAGCTCCTCACATCGCTGCAATGCCTAAAATTATATCATTTTGGGTGGGAAGTAAC





GAGGCTAACCGATAACCAAGAGATAGCCCTTGTGTTCCTCAAGTCCCTGCAAGAGCTCCACTTTTTGTGCTGTTATGATCTAGTAGATCT





TCCTGCGGGGCTGCACAACCTTCCTTCCCTCAAGAAGTTGAAAATAGACACTTGTCCGCGCGTCTCAAGGCTGCCGAAAACAGGTCTCCC





ACTTCCGCTGGAAGAACTGGAAATCGAGTTTTGCAGCAAGAAGCTGGCTGATCAATGCAGGCTGCTAGAAACAAGCAAGCTAAAAGTCAA





AATTAGTCTATGCTCTTGA





>curated_TraesCS2B01G489400


MLLGIFETAEQAARTYDAAALRFKGAKAKLNYPEGFQGRTDLGFKVTRSIPDGLQQHRHYPSTMEAPATQPSPQQQPTVPVLMRHELPPQ





GAGSSRGAVNLPFGAMSAPSTSSTSSPHMLVPPLASEDHTMRRTVSVEEEANDTHDGVTARTQSSKFVNSFYGFASACAFFTLSDSGQRT





TLFLFLLAVARNNAECMHGADRVDEISRGDADTPSNIVGKLRSVVWEHFTITEKDNGKPLKAVCRHCGNEFKCDTKTNGTSSMKKHLENE





HAVTFTKKPPRGRPPNPSSTSEPILIGNSSRTKGKRRWSKAWQLFDIIEEENGEPIKAICKYCPTKIKCGPMCGTAGMLNHNKICKNKPG





PYDQSPNPSSTGDATAHVKPSSSRKRRRPESTQMTAPNTATGWDKVEISNRIQNITSELQGIQLEVPKAFYPCGSSLSSNSDHHQSTISD





QRLKTSSLVQKKVYGRDVEKNSIVKLVRAKNKSHGVTILPIVGIAGVGKTTLAQLVYNDPYSESQFDHKIWVWVSHNFDGMRLTREMLTS





VSQQRHEGIDCFVKLQEILKSHIKSKRVLLILDDVWDDKDDCRLNQLMAPFKNDSDNGNVILVTTRKLSAAKMIGTTEPIKLGALEKDDL





WLLFKSCAFGDENYDCLGNISTIGRQIAEKLEGNPLVAVTTGALLRGHLTVDHWSNILKKESWKSLGLNGGIMPALKLSYDELPHHLQQC





LSHCSIFPKKYRFLGKDLVYIWISQGFVDRTHLSERLEEAGLEYLNDLMSLGFFQQVEDQQDEDGDEDEEEESSLGSQIRYSMCGLMHDF





AKMVSRTECATIDGLHCKMLPNIRHLAIVTDSAYNKDWYGNIPRNENFEENLRNTVTSVSKLRTLVLVGHYDSFFIELFQTIFRKAHNLR





LLQVSATSTGFNSFCCVLANPLHLRYLKLELHGVVPQVLSKSFHLQVLDVGSDMNTSVPNGMHNLVSLRHLIARNRVRSSIASIGIMASL





QELHDFEVRNASGFEITQLQSMNELVQLGVSQLDNVKTRDDAYRAGLRNKEHLEELHLSWKYALLENEYSSEKAREVLEGLEPHMGLKHL





QISKYNGTTSPTWLANKISVTSLQTLHLDDCRGWRILPSLGSLPFLTKLKLSTMCEVIEVLLPSLEDLVLINMPKLERCSSTSVEGLSSN





LRVLQIEHCKALTSFDLLENNDKFRIEQSSCLAGLRKLILYDCPRLKVLNPLPPSTTCSELLISGVSILPSMKGSSSDNLRIGLINESII





YGSIDGYADESRIMDDKIFAFHNLRNLKSMVIFGCQNLRSFSFEDFSHLSSLKNLEISMCKELFSSDVMPEHTLQNVATTKCRAFPSLES





LSIRSCGITGKWVSLMLQHAWILEELSLEDCLHTTIIQLPTEEEENSLSDLISAREDSSSGDQDTLTWLARDRLLHIPSNITSSLKWLTI





WKCRGVTFNGSEKGFSRFTSLKELQIRGCPELVLHLVDKDGTYYCTNGRWFLPSSLEVLGIDNYFQEKLQPCFLNDLTSLKRLSVSSRPW





LKSLQLHSCTALEELKVIQCESLTTLEGLQFLGTLRHLTVYDCPGMSTCLKSLSWRYGLCSRLETLGIGDPSVLTTSFCKLLTSLQCLKL





YHFGWEVTRLTDNQEIALVFLKSLQELHFLCCYDLVDLPAGLHNLPSLKKLKIDTCPRVSRLPKTGLPLPLEELEIEFCSKKLADQCRLL





ETSKLKVKISLCS-





>curated_TraesCS2D01G466600


TACTGTTGTACAGTTGTACTTTCCCCCCATTTGATGGAGGCCGCGATCGCGTGGCTGGTGGAGACCATCCTTGCAACACTCCTGATCGAC





AAGCTTGATGCTTGGATTCGCCAAGCCGGGCTTGCCGATGACATCGAGAAGCTCAAGTCGGAGATCAGGAGAATCAAGATGGTGATCTCT





GCTCTCAAGGGCAGAGGGATCCGGAAAGAGGCACTGGCTGAATCTCTCGCCCTTCTGGAGGATCACCTCTACGTACGACGCCGGCGACGT





GGTGGACGAGCTCGACTACTACAGGCTCCAACAGCAGGTCCGGGGACAAGGGGGCACTCCCACTGCCTGGCCGCCTGCAGATCCAAGCGT





GCATGGTACGCGTACTAGTGCTCGTAGATCCAAATCAAAGTGTACTAATTATTACTAGTTCGGTCTAATATATCTTGCTTCAAAAGACAA





ATTGATCTTATCTTATCAAGAATATGCATTTCTTTCCTGGGCATGTGTTTTTGGGCACAGTTGCAAGCGACGAGCGGCAAGGTGTGGATG





GAGCCGAGCGAGTCAATGAGATACCGAGGGGCGATGCTGCTACACGTAATAGCAGTGTTGGCAAATTACGGTCGCTCGTATGGGAGCACT





TCACGATCACACAAAAGGATGACGGAAAGCCTGTGAAAGCAAAATGTACATACTGTACAGAAGAGTTCAGATGCGAAACAAAGACGAATG





GCACGTCATCTATGAGGAACCATTTGGAGAAAGAGCATTCCGTGATTTGTACGAAGAGACCTGGAGCGCATCCACCAAATCTTTCAAGGT





ACCTTCAAAAGGACTTTTGTTTTTCGAAAATGAGGTTGAATCTTCTGTCTCTGCATTAAGCCATGCACACGGCCATTTTATTATATTATT





CAAAAATGCCTTATACAAGATACTAAAACTTTGATCCTTCAGAATCCATCTTCTAGACGATAAAAGTCGCACCACCTACAAGCTTGAGGA





TAATGGTGGTCATGATCAGGGCCACATGCCCTGACCTCACCCCTACACAAATCATCCAAAACCGGAACGCCGGTCCAGCGGACCCTTAGC





GCATCACATGCGTACACTCCGAAAGTCGCCACCGCCGCCTTTTGCGAACCCATCTTCGATGTAGGGATCAATGAAAAGACCTTGTCAGGT





ATGCCGTTGACGCCACCGCGAAGCCAGACCGCGTCACCGCCCTGCACGCGTCCATCATCGAGAGTCCGCCGCCGAGACTTGTCGTCTTCG





ACTCGTAAGACCACACAACTCCACCTCAGGATCCCTTCGGCCAGCACATGCTCCAGAAAAACGATGCCTCGGGAGGGTAAACGGCTCCGC





GCGCCGCTATCATCCGATCCGGGAGACCCGGATCTAGGGTTTCTCCCAGTGCGGCCTGGGCGGGAAGACAACAACTACATCAATGATGCC





TCTAACAAGAAAATGACGCCGTCATCGTCCGCCATGACGGAAGTCGGCGCATTTTTACGGGTAGCCTCACCTCCTCGAACCCATGGCTGG





CTTCCGATCCACAAATCCCGGAGGGTTGCGGATCTCCCACATCAAGCGTCGTAGACGCCGGAGAAAACTCCGGCCGCCACACGCCTCCAG





CAACGAACTCGGGTATATGATCCCTTGATCCACCGCCCCCGACACAGCCACGTGAAGCTGTCTCCTGGCCCGTCATCCCCGCCAGAGGGG





CCGCTGCCGCCGCCGTGTCCGGAGCCACCGCTCCAGGGCCCCTGCGCCGTAGATTGCTCACTAGAATTAATTGCATTGTGAGATTTTTGT





TAGTATACTTTGTGTTGTTGTTTGATCGCGATTCTTCTGCTCTGTGTTCTCATCTTTGCTAGTAGTATACACATACAAGGAATTGATTTT





TGCGAGAACTATAAAGTGCAGGTTCCGAAAGCGTTTTCATTGGGATCGATCTAACCACACTGGTAACAATGATTGACCACAGACTGCTCG





GGCTTCATGCCGGGCCTTGGGCTTCGGGCTTTCATGCCGGGCCAGACTCGGGCTTGCATTTAGACAAAATGTCAGGCTTCATGGTCAGGC





TCGGGCTTGAGATATGACGGTCGGGCTTTTTAAAGCTGAGCCCAAAACCCGGCCCGGCCCGGCCCAAGGTATGCCCAGGTTTGCCGCCCA





GTCTCAGTGTATAGTTGTAAAAAAGAGCCTGAATCAGATGTAACAGCATGGTCTGTAGTAGTGATATATCTTCCAGGGGCCCTTTTACAA





CACAAAAATTGTGTGTGCTGCCTTTAAATGCCCACTACTTGGGATCGTGCATATAGCTCTGCTTACCACACTCATTGCGTATAATATGTT





AGCTCTTGTGTGCCACAAATAGATGAATCGACCTACAGGCTACAGGACGCTAGTATGGATCTCCTGATCCAGTGTGGTGTTGATAGCTCT





CTCTATCAACAGGATCTCCTGATTTATCACAACTACAGATTTTGCTCTACTGAAACTGAAACAACCCGACACCCAAGCATATGGTCTTGC





TGAGGGGTCAAATGCATACCCTCATCGAGAGAGAACTGAACCTTTGGGAGATCTTGGAATCTTAATGCCACCAAAAAAATACTTGAGTTG





ACCCAAATTCTTAACCTCAAATCTGTTGCTAAACCTCACCTTCAGGCGACTTACCTCCACATTTACATCTCCCATGATAATAATATTGTC





CACATTAATAACAAGGATGTTAATTTGTTTCTTAATGCTGACATAATATCGTATGATCTCCATTTCATTGTTTGTGGCTCACCGAAACCT





GTCAAACCTCGCTCTTTGTAACTGCTTGTGACCTCCCGCAAAAAAAAAACTGCTTGTGACCTCCCGCAAAAAAAAAACTGCTTGTGACCA





TACAAAGACTTCTTCAATTTGCACACCTTTCCATTGGTTCTGGGGTACTAAAACTAGACGGGGTCTCCAAATAACGCTCCATGCAGATAT





GCATTCTTGACATCCAAGTATCCAACTGATCCAATGGCCAACCAAAGTTAGCGGTGCAAGAAATAAGTGATCT





TTTTTGCGAGAAAATTTTCAATCTATTCATTTTCAATCATGCAGTACAACGAATACCAGAAATAATAGAAATTACATCCAGATCTGTAGA





CCACCTAGTGACGACTACCAACACTGACGCGAGCTGAAGGCGCGCCGCTGTCATCGCCCCTCCATTGGCGGAGTTGGGCACAACTTGTTG





TAGTAGACAGCCGGGAAGTCGTCGTGCTAAGACCCCGTAGGACCAGCGCACCAGAACAGCAGTCGCCGCAGCTGAAGAATAACGTAGACC





AGAAGGATCCAATCCGAAGACACACGAACGTAGACGAACAACGACGAGATCCGAGCAAATCCACCAAAGATAGATCCGCCGGAGACACAC





CTCCACACGCCCACCAACGGTGCTAGACGCACTGCCGGAAGGGGGCTAGGCGGGGAGACCTTTATTCCATCTTCAGGAAGCCGATGCCGT





CTCGTCTTCCTTAGCAGGAACAAACCCTAGCAAAACTGAAAGAAACGACTAAAAACGGATCCCTCCCGCCGGCCCTTGCCGAGATCCACC





GCGCCCCTAGGGCCATCGGAGAGGAGGCGGACCTGCGGCGGCGTCGGCGCGAGGCAGAAACCCCAACTTTTTTGTGGAGGAGGAGGAGGC





GGCTAGAAAGGCTTCCGTGTCCGTAATAGTCAATCCCATAGATTTATGGACTTGGAATGTGTTTGGTTGACATCTTTGTTTTTGAGCATT





TTGCATACTTTTCCCAGTTGAGCCTGTTTGAGCTAATGCATGCAAAAAACCAACATCTGCATGTAGTTTGGTTGCCTACATTTAGGCTAC





CTGCATCAGGGAAGCAATTTTTACCATGGTATTTGGTTGCTTGCATCGCAGTTGTTAGACAAACTACATGCTGTTAATTTGGTTGCAAAT





GGCATAAGGTCTGATCACTTCTCACTAGTGATGACCTTGCCACACACGGGTTGAACATTGCCTCGGTCCTAACTTGGAAAGATATGGCAA





TTTATCCTAGCTACTAACAAATAGCATACAAATTAAGAGCCATATGCCTGAATAAGGGAAAGTTCATCGATGCTAAATAGGGTGAAGTCC





ATCCTCATCCTTTGTTCTTCCAGGCTTCGCTGTCAAATGCCTCCACACCATGACTGGAGCTGACAACATCATCAGGCTTCACATCTTTCT





CCTCCAGCACAAGTTCATCACAACCTCATTGTAGGATCCAGTTATGAAGGATGCAACATGCAAGAACAAGTTTACCCTGGGTAGGGTAAG





GGTGAAATGACTTTTGATCCAGGATCTTAAACATATTCTTCATAGCTCTAAATGCCCTCTCAACCATAACTCTAAGGCTGGAGTATCAGA





GATTAAAAAGTTTATGTGGAGTCGTAGGATAGTTTCTACCAGAGAACTCGTTCAGATGGTACCTGGTTTTCCTGAGAGGTGGAAGAGCAC





CCGGCCGACATGCATAGCCAACATCTCCTAGGTAGAACTTGCCATCGGGGATATTGATGCCATCAGGTCTACTCATGTTGTCACTTAGAA





TGTTAGCATCAGTGCTGATCCTTCCCAACCAGCTAGCACATATGTGAACTTCAGATCGAAGTCAACAGCACCAAGAACATTCTGGCTTAT





AGAAGAAATTAGTGGTGTTGGTATTACCCTTATAGAAGAAAGAAAATGAAACAACAATTAAAAACAAATGATGAAAAACTTGCACACAGT





TTGTACTGAAATTGCATATTTTTATGAATGCAAAAATAGGCAGATAATAATGCAATTTTGCACTACAGTATAATTTATACACATTGTATA





ATACTTTTGTATATATTTACACACGCACACCTAATATTTACACATACGCATAAAGAAAAAGAAAAACTGACTAGAAATACTTGATAAACA





ATAATAAATACTAAAACTAGTACGAAGCTAAAAGACAAAAACTGAATTTTCCCTAAGGTAGAATGAATTAGGTGCATTGGTTTCCCCTCT





AAAAAAGAAATAAAGAAAACTTGAAACAGACGACAATAGAAAATTTTGCACATGAAATGCGCGGTTGCACAATATGCAAAAACAAGTATA





CCGTAATTTTCAGATAACAAAGACACATGCATGTGCATACATGCACATGGCTGCAATGCACGAAGAGCATACACAAAGTCACTCACAACA





CCAGCACCAGCACATGCAGGTCCCTTGCAAGCAGGCAAGACACACACATGCACGCACACAAAATCTGACACATAAGAAAAGAAAAAAACA





GACAAAATATTTAGTAGAAGAAAAGAGTGACTGACCCAAAAGTAAATTTCAGAAGACTTAAATGTAGCAAAACTGATATACATCAGCTTG





AGAGCCCATGGTTTTCCTAATAGCCAGCCCACCATCTTTTTCTGACTGCAGCACCGGCGAGCCTATTGTAATTGGCAGCTCATCCAAGGG





AAAAGGAAAGAAACGACGGTCCAAGGCATGGGATTCTTTTGATGTCATAAAAGAAGTAAACGGACAGCCTATCAAAGCAAGATGTAAATA





CTGTCCCACAGAGATCAAGTGCGGAACCGGGAACGGGACAGCAGGTATGCTCAACCATAACAAGATTTGTAAGAAGAAACCTGGACTAGA





TGACCAGCCACCAAACTCGTCAAGGTAGCTGATGAATCTTTGCACCGTGACATTTTTAGGGGGTTGTTTAAATAAGAGCCCCATTGTGGT





TCTATTTTCCAATTGACGGTCTCTTCCTTACTGCAGCACCAATGATACTACCGCAAATGATGCTACCACAAATGCAAGGCCTAATCTAAT





TGGTGATTCATCTAGCAGAAAAAGAAGGAGAGTTGATGAGGAATCCGCACAAAATATCGCAGCTAACACAAGTACCCCTTGGAACAAGGC





TGAATTATCAAACAGAATACAACAAATAATTAGTCGGTTACAGGACATCCGAGGGGAAGTGAGTGAGGTTTTCAAGCTACATGAATCAGA





CTCTGCTTCAAGTTTAGATCACAACCGGAGTACAACCTCGGATCAGCATCTGAGAACATCAAGTCTTATTTCAAGGCAATTGTATGGGAG





AGTTGCAGAAAAGAAATCCATCTTGAAGTTGATGATGTCAGATGACACATCTAATAGCATAATTGTTCTGCCTATTGTAGGCGTTGCAGG





TGTTGGAAAGACAGCTCTCACTCAACTTGTATACAATGAACCAAACGTGGAGAGTCGATTTCAGCACAGGGTATGGATTTGGGTGTCTCG





AAACTTTGATGAAGTGAGGATAACAAGGGAGATGTTAAACTTTGTTTCTAGAGAAAAACATGAAGAAATAAACTGCTTTGTGAAGCTTCA





GGAGATCTTGAAAATTCATGTAAAATCAAAGAGGGTTTTAATAATTTTAGATGATGTCTGGGATGACATGAACGACTGCCGATGGAACCA





ATTGTTGGCTCCTTTTAAGTTTAATAGTGCTAATGGCAATGTGATTCTTGTGACAACAAGAAAACTATCTGTTGCAAAAATGGTTGGAAC





AACTGAGCCAATTAAGATAGGTGCTTTGGAAGAGGACGATTTCTGGTTATTGTTTAAATCATGTGCACTTGGTGATAGAGCCTCTGAAAA





TCCTGGAAATCTATGCACTATTGGACGACAAATAGCAGGCAAGTTAAAGGGCAATCCGTTAGCAGCAGTAACTGCAGGGGCACTATTACG





AGATCATCTTACTGTTGATCATTGGAGTAACATTCTCAAGAAAGAAGACTGGAAATCGTTGGGTCTCAGCGGAGGCATCATGCCTGCTTT





GAAGCTTAGCTATGATGAACTGCCATACCATTTACAAAGATGCCTATCATATTGTTCTATATTTCCTAACAAGCATAAGTTCTCGGGTAA





GGATTTGGTTTATATATGGATTTCCCAAGGATTTGTGAGTTGCGCCAATTTAAGTAAGAGCTTGGAGGAGATAGGATGGCAATATTTAAT





TGATATGACGAACATGGGCTTATTTCAGCAAGTCAGAGGAGAAGAGTCGTCTTCATTCTTTCACTCAAATTGCCAAACATGGTATGTTAT





GTGTGGTCTTATGCATGATTTTGCAAGGATGATCTCAAGAACTGAGTGTGCAACTATAGATGGTTTACAGTGCAATGGGATGATGTCAAC





TGTGCGACATTTATCAATAGTAACTGACTCTGCATACAAGAAAGATCAGCATGGGAATATTCTTCGTAATGAGAAGTTCGAAGAATATCT





AAGGAGTACAGTTACATCAGTTGGTAAATTAAGGACGTTGATTTTACTTGGGCACTATGACTCTTTCTTCTCACAGTTGTTCAAAGATAT





TTTCAAAGAGGCACATAATTTACACCTGCTGCAGATGTCTGCAACATCTGCTGATTTTAGTTCCTTCCTATGTGGTTTGGCAAGCGCGGT





GCATCTTCGTTATCTAAAACTTGAGTCAGATGGGTTGGAGGGGGATTTTCCACAAGTTTTGGTCAATCTTTTTCATCTTCAGGTATTAGA





TGTTGGCTCAAACACCGATCCTATTTTACCTAATGGCATGCATAATCTTGTGAACCTGCGGTATCTTGTTGCAGAAAAGGGAGTATACTC





TTCCATTGCTAGCATTGGTAGCATGACATCACTTCAACAACTTCATAATATTAAGGTTCAATTTTCTTGTATCGGCTTTGAGATAACACA





ACTCCAGTCTATGAACGAGCTTGTACAACTTGGTGTGTCTGAACTTGAAAATGTCAAAACTAGATATGAGGCTAATGGAGCAAAACTGAG





AGACAAAAGACACTTAGAAGAGTTGCGCTTGTTGTGGACGCATACTCCGTCACGAGATGAATATGCCACTGACACGAGCTTTCAACATCC





AGTGGACAATGTAGAAAGAGATGTAGAGCTCTTGCCAATGGTTGAAAGAGGGCCAAGTTCCGAGCCTTGTCTGGACAGAGCAAGAGAGGT





GCTAGAGGGTCTTGAACCACATCAAGACTTAAAACATCTTCAGATATCTGGGTACTATGGTGCTACATCCCCAACTTGGCTTGCCAACAA





TATCTCAGTTACCTCCCTGCGAACCCTTCATCTAGACAGTTGTGGAGAATGGGAAATACTTCCGTTTATGGAAAGGTTTCCACTTCTGAT





AAAACTGAAGTTGACCAACCTGCGGAAAGTAATCGAAGTATTGGTTCCTTCACTGGAGGAGCTAGTTTTAGTTGAAATGCCAAAGTTGCA





AAGATGTTTGTGCATTTCCGTGGGGGGTCTGAGCTCTAGCTTAAGGGCATTGCACATCGATAAGTGTCAAGCACTAAAGACGTTTGATCT





GTTTATGAACGATCATAAAATCAAACTAGAGCAGAGGCCATGGTTGTCTGGTCTTAGGAAATTAATTATGCGTGATTGCCCTCATTTAAA





AGTATTGAACCCTCTTCCACCTTCAGCCACCTTTTCTGAGTTACTCATCAGTGGAGTTTCAACACTTCCAAGTATGAAGGGGTCATCTAG





TGAAACGTTACATATTGGATCTTTCAATTGGTTTATTGATCACTCTTCTGGTGAGTTGACGGTACTGGATGATAAAATATTGGCATTCCA





CAACCTGAGGAGAATCAAATTGATGAGAATATATGGTTGCCGGAATCTAACTTCTATTTCATTCGAAGGTTTTAGTCATCTCGTCTCTTT





AGAGAGGTTGGAAATACACTGGTGCGAAAAATTGTTCTCTTCACATGTTTTTCCAGAGCATATCCTTGAAGATGTGCCGACTGCAAATTG





CAAGGCCTTCCCTTCTCTTGAAAGTCTCACTATTGAGTTCTGTGGAATAGCAGGGAAGTGGCTATCTCTGATGCTGCAACATGCGCCAAA





CCTAGAAGAATTGATTTTAGAGAATTGCCCCCGTATAACAACGCTGTTATCGACAGAAGAGGAAGAAAACAGTCCATCAAATCTTATCAT





GGACAGGGGGTACTCGTCATCAGGAAATCTAGATGACGCATTGGCAGGGTTAGCTCAAGACGAACTCTTGCACGTTCCATCAAATCCCGT





CTCCTCTCTTAGGAAGATAACTATTCAGGGCTGCCCTTGTCTGACATTTAATGGGAGCAAGAACGGCTTCTCTAGATTTACCTCCCTTGA





GGAGATAACGATCTACAACTGCCCCGAGCTGTTCTCGCCTTTGGTGCATAAAGCCGGAAATGATGACCGCACAAACGGAAGATGGCTATT





CCCAACATCACTTGGGGAACTTGACATCGACGGCTATTCCCAAGAGACGCTGCAGCCGTGTTTTCCAAGTCCTCTCACCAGCCTTAAAAA





GTTGGAGGTACTGAGCAGCCCAGGTTTGGAATCTCTGCAGCTTCAGTCATGCACGGCACTTGAAGAGCTGATAATTGGAGGCTGTGGATC





ACTCACCGCACTAGAGGGCTTGCAATCCATTGGCAACCTCAGGCATTTGAAAGTATCTGATTGCCCTGGCCTGCCTCCATATTTAGAGAG





CTTGTCAAGGCAGGGCTATGAGATCTGCCCTCGACTGGAAGGACTTCACATCGATGACCCATCTGTCCTTAGCAAGTCATTCTGCAAGCA





TCTCACCTCCCTCCAACGCCTAGAACTGGGTCATTTGAGCATGGAAGCGACAACACTGACTGATGAGCAAGAGAGAGCGCTTCTGCTGCT





TAAGTCCCTGCAAGAGCTCGACATTTGTGGTTGTTATCATCTCGTAGATCTTCCTGCGAGGCTGGACACCCTTACTTCCCTCAATAGGTT





CAAGATACATTCCTGCTCCATCATCTCAAGGCTCCCACTAGCATTTTAGCAGTACACATGTATTCCTGATGTTTTGTAATCAATAATTTG





CCACAGACCTGCATGCACTAGGCTGCCCAGATTCTGTGACCACTGTCCCTCTGCTCTCCTAAACTTGGGCCATACATTATGTTATATTCA





GAATTGATATACCCTCATAAATGTGCACTATGCTCAATGTAAAAAAGACCGTCTCTCTGCATATGATTCGGTCTTCAGACAATTTTCCTA





AAGCCCTTCTATCAGTTGTAGCATGCTTTGCCGTATGCGTTAACAAAAGATTAACAAATGTACATGATAGCTGATGGTCTAATCAATCTT





TCTATTGTGATCAGGATGT





>curated_TraesCS2D01G466600


MEAAIAWLVETILATLLIDKLDAWIRQAGLADDIEKLKSEIRRIKMVISALKGRGIRKEALAESLALLEDHLYVRRRRRGGRARLLQAPT





AGPGTRGHSHCLAACRSKLASDERQGVDGAERVNEIPRGDAATRNSSVGKLRSLVWEHFTITQKDDGKPVKAKCTYCTEEFRCETKTNGT





SSMRNHLEKEHSVICTKRPGAHPPNLSSTGEPIVIGSSSKGKGKKRRSKAWDSFDVTKEVNGQPIKARCKYCPTEIKCGTGNGTAGMLNH





NKICKKKPGLDDQPPNSSSTNDTTANDATTNARPNLIGDSSSRKRRRVDEESAQNIAANTSTPWNKAELSNRIQQIISRLQDIRGEVSEV





FKLHESDSASSLDHNRSTTSDQHLRTSSLISRQLYGRVAEKKSILKLMMSDDTSNSIIVLPIVGVAGVGKTALTQLVYNEPNVESRFQHR





VWIWVSRNFDEVRITREMLNFVSREKHEEINCFVKLQEILKIHVKSKRVLIILDDVWDDMNDCRWNQLLAPFKFNSANGNVILVTTRKLS





VAKMVGTTEPIKIGALEEDDFWLLFKSCALGDRASENPGNLCTIGRQIAGKLKGNPLAAVTAGALLRDHLTVDHWSNILKKEDWKSLGLS





GGIMPALKLSYDELPYHLQRCLSYCSIFPNKHKFSGKDLVYIWISQGFVSCANLSKSLEEIGWQYLIDMTNMGLFQQVRGEESSSFFHSN





CQTWYVMCGLMHDFARMISRTECATIDGLQCNGMMSTVRHLSIVTDSAYKKDQHGNILRNEKFEEYLRSTVTSVGKLRTLILLGHYDSFF





SQLFKDIFKEAHNLHLLQMSATSADFSSFLCGLASAVHLRYLKLESDGLEGDFPQVLVNLFHLQVLDVGSNTDPILPNGMHNLVNLRYLV





AEKGVYSSIASIGSMTSLQQLHNIKVQFSCIGFEITQLQSMNELVQLGVSELENVKTRYEANGAKLRDKRHLEELRLLWTHTPSRDEYAT





DTSFQHPVDNVERDVELLPMVERGPSSEPCLDRAREVLEGLEPHQDLKHLQISGYYGATSPTWLANNISVTSLRTLHLDSCGEWEILPFM





ERFPLLIKLKLTNLRKVIEVLVPSLEELVLVEMPKLQRCLCISVGGLSSSLRALHIDKCQALKTFDLFMNDHKIKLEQRPWLSGLRKLIM





RDCPHLKVLNPLPPSATFSELLISGVSTLPSMKGSSSETLHIGSFNWFIDHSSGELTVLDDKILAFHNLRRIKLMRIYGCRNLTSISFEG





FSHLVSLERLEIHWCEKLFSSHVFPEHILEDVPTANCKAFPSLESLTIEFCGIAGKWLSLMLQHAPNLEELILENCPRITTLLSTEEEEN





SPSNLIMDRGYSSSGNLDDALAGLAQDELLHVPSNPVSSLRKITIQGCPCLTFNGSKNGFSRFTSLEEITIYNCPELFSPLVHKAGNDDR





TNGRWLFPTSLGELDIDGYSQETLQPCFPSPLTSLKKLEVLSSPGLESLQLQSCTALEELIIGGCGSLTALEGLQSIGNLRHLKVSDCPG





LPPYLESLSRQGYEICPRLEGLHIDDPSVLSKSFCKHLTSLQRLELGHLSMEATTLTDEQERALLLLKSLQELDICGCYHLVDLPARLDT





LTSLNRFKIHSCSIISRLPLAF-








Claims
  • 1. An isolated nucleic acid encoding a nucleotide-binding and leucine-rich repeat (NLR) polypeptide comprising a zinc-finger BED domain, wherein expression of the NLR polypeptide in a plant confers or enhances resistance of the plant to a fungus.
  • 2. The isolated nucleic acid according to claim 1, wherein the nucleic acid is isolated from a plant.
  • 3. The isolated nucleic acid according to claim 1, wherein the BED domain has an amino acid sequence corresponding to SEQ ID NO: 1 or a variant or functional fragment thereof.
  • 4. The isolated nucleic acid according to claim 1, wherein the NLR polypeptide comprises a leucine-rich repeat (LRR) motif at or near the C-terminus.
  • 5. The isolated nucleic acid according to claim 1, wherein the NLR polypeptide has an amino acid sequence comprising SEQ ID NO: 2 or SEQ ID NO: 3, or a variant or functional fragment of either.
  • 6. The isolated nucleic acid according to claim 5, having a nucleotide sequence comprising SEQ ID NO: 4 or SEQ ID NO: 5.
  • 7. The isolated nucleic acid taccording to claim 1, wherein the NLR polypeptide has an amino acid sequence comprising SEQ ID NO: 6 or a variant or functional fragment thereof.
  • 8. The isolated nucleic acid according to claim 7, having a nucleotide sequence comprising SEQ ID NO: 7.
  • 9. The isolated nucleic acid according to claim 1, wherein the NLR polypeptide comprises a further zinc-finger BED domain.
  • 10. A nucleotide-binding and leucine-rich repeat (NLR) polypeptide comprising a zinc-finger BED domain, wherein expression of the NLR polypeptide in a plant confers or enhances resistance of the plant to a fungus.
  • 11. The NLR polypeptide according to claim 10, wherein the BED domain has an amino acid sequence comprising SEQ ID NO: 1 or a variant or functional fragment thereof.
  • 12. The NLR polypeptide according to claim 10, comprising a leucine-rich repeat (LRR) motif at or near the C-terminus.
  • 13. The NLR polypeptide according to claim 10, having an amino acid sequence comprising SEQ ID NO: 2 or SEQ ID NO: 3, or a variant or functional fragment of either.
  • 14. The NLR polypeptide according to claim 10, having an amino acid sequence comprising SEQ ID NO: 6 or a variant or functional fragment thereof.
  • 15. A vector comprising an isolated nucleic acid as defined in claim 1.
  • 16. The vector according to claim 15, further comprising a regulatory sequence which directs expression of the nucleic acid.
  • 17. A host cell comprising a nucleic acid as defined in claim 1, an NLR polypeptide or a vector.
  • 18. The host cell according to claim 17, which is a bacterial cell, a yeast cell or a plant cell.
  • 19. A method of producing a transgenic plant or plant cell comprising introducing and expressing a nucleic acid according to claim 1 or a vector into a plant or plant cell, wherein introducing and expressing the nucleic acid or vector confers or enhances resistance of the plant or plant cell to a fungal pathogen such as wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. tritici.
  • 20. The method of claim 19, wherein the transgenic plant or plant cell has resistance or enhanced resistance to the fungal pathogen compared to a plant or plant cell of the same species lacking the nucleic acid or vector.
  • 21. A method for producing a non-transgenic plant or plant cell having resistance or enhanced resistance to a fungal pathogen, the method comprising mutating or editing the genomic material of the plant or plant cell to comprise a nucleic acid as defined in claim 1.
  • 22. A plant or plant cell obtained or obtainable by the method as defined in claim 19.
  • 23. The plant or plant cell of claim 22, wherein the plant or plant cell is a crop plant or plant cell or a biofuel plant or plant cell.
  • 24. A seed of the plant of claim 22, wherein the seed comprises a nucleic acid or an NLR polypeptide
  • 25. The seed according to claim 24, which is a wheat seed.
  • 26. A method of limiting wheat yellow (stripe) rust in agricultural crop production, the method comprising planting a wheat seed as defined in claim 25 and growing a wheat plant under conditions favourable for the growth and development of the wheat plant.
  • 27. A method for identification or selection of an organism such as plant having resistance to a fungus such as wheat yellow (stripe) rust fungus Puccinia striiformisi f. sp. tritici, comprising the step of screening the organism for the presence or absence of: (1) a nucleic acid as defined in claim 1; and/or(2) an NLR polypeptide, wherein presence of the nucleic acid or the NLR polypeptide indicates resistance.
Priority Claims (1)
Number Date Country Kind
1805865.1 Apr 2018 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/058963 4/9/2019 WO 00