GENETICALLY ALTERED LYSM RECEPTORS WITH ALTERED AGONIST SPECIFICITY AND AFFINITY

Information

  • Patent Application
  • 20210233608
  • Publication Number
    20210233608
  • Date Filed
    August 13, 2019
    5 years ago
  • Date Published
    July 29, 2021
    3 years ago
Abstract
Aspects of the present disclosure relates to genetically altered LysM receptors. In particular, the present disclosure relates to a hydrophobic patch into the LysM2 domain which can increase affinity and/or selectivity for LCOs and by replacement of regions in the LysM1 domain with the corresponding regions of the LysM1 domain from a donor LysM receptor that can alter the affinity and/or selectivity for the oligosaccharide particularly for LCOs and can alter the specificity between LCO when using regions from a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor. The present disclosure also relates to genetically altering LysM receptors in plants to include a hydrophobic patch or alter the hydrophobic patch and to genetically altering LysM receptors in plants by replacement of regions in the LysM2 domain.
Description
SUBMISSION OF SEQUENCE LISTING AS ASCII TEXT FILE

The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 794542000440SEQLIST.txt, date recorded: Aug. 12, 2019, size: 298 KB).


TECHNICAL FIELD

The present disclosure relates to genetically altered LysM receptors. In particular, the present disclosure relates to a hydrophobic patch into the LysM2 domain which can increase affinity and/or selectivity for LCOs and by replacement of regions in the LysM1 domain with the corresponding regions of the LysM1 domain from a donor LysM receptor that can alter the affinity and/or selectivity for the oligosaccharide, particularly for LCOs, and can alter the specificity between LCOs when using regions from a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor. The present disclosure also relates to genetically altering LysM receptors in plants to include a hydrophobic patch or alter the hydrophobic patch and to genetically altering LysM receptors in plants by replacement of regions in the LysM2 domain.


BACKGROUND

Plants are exposed to a wide variety of microbes in their environment, both benign and pathogenic. To protect against the pathogenic microbes, plants have the ability to recognize specific molecular signals of the microbes through an array of receptors and, depending upon the pattern of the signals, can initiate an appropriate immune response. The molecular signals are derived from secreted materials, cell-wall components, and even cytosolic proteins of the microbes. Chitooligosaccharides (COs) are an important fungal molecular signal that plants recognize through the chitin receptors CEBiP, CERK1, LYK5, and CERK6 (previously called LYSE) found on the plasma membrane. These receptors are in the LysM class of receptors and recognize the size and the acetylation of COs from fungi. Lipo-chitooligosaccharides (LCOs) are another important molecular signal that can be found on both bacteria and fungi that are recognized by other LysM receptors.


In addition to benign and pathogenic microbes, some microbes can be beneficial to plants through association or symbiosis. Plants that enter into symbiotic relationships with certain nitrogen fixing bacteria and fungi need to be able to recognize the specific bacterial or fungal species to initiate the symbiosis while still being able to activate their immune systems to respond to other bacteria and fungi. One important mechanism that allows plants to recognize these specific bacteria or fungi is through specialized LysM receptors that have high affinity, high selectivity, and/or high specificity for the form of LCOs produced by the specific bacteria or fungi while LCOs from other bacteria and fungi are not recognized by these specialized LysM receptors.


Experimental and computational approaches have been used to identify a number of these specialized LysM receptors (also referred to as high affinity and specificity LCO receptors). As these receptors are required for recognizing symbiotic bacterial and fungal species, and for initiating symbiosis, these receptors represent an important component of any plant engineering strategy. Using these receptors, however, will not be particularly straightforward; transferring a specialized LysM receptor into a plant that does not currently have one may require codon optimization, the identification of suitable promoters, the use of targeting signals, and further engineering approaches needed to adapt exogenous sequences for optimal expression. Further, the number of these receptors that have been identified is currently limited.


Moreover, species that already have specialized LysM receptors, e.g., legumes, cannot be easily engineered with new specialized LysM receptors. Currently, legumes are limited to the specific bacterial or fungal species with which they form symbiotic associations. While legumes may have the benefit of existing symbiotic associations, their agricultural potential is limited. For example, legumes cannot currently be easily engineered to have different specificity for different symbiotic microbial species, which would allow legumes to better form associations with the bacterial or fungal species in different soils. Moreover, legumes cannot be easily engineered to have improved specialized LysM receptors. Further, legumes cannot currently be engineered to have synergistic symbiotic requirements with other crops grown in rotation with them. Editing approaches are needed for both the modification of endogenous LysM receptors into specialized LysM receptors able to perceive symbiotic bacterial and fungal species, and the modification of specialized LysM receptors into specialized LysM receptors with different specific recognition of symbiotic bacterial and fungal species.


BRIEF SUMMARY

In order to meet these needs, the present disclosure provides complementary means of modifying LysM receptors by introduction of a hydrophobic patch into the LysM2 domain which can increase affinity and/or selectivity for LCOs, and by replacement of regions in the LysM1 domain with the corresponding regions of the LysM1 domain from a donor LysM receptor that can alter the affinity and/or selectivity for the oligosaccharide, particularly for LCOs, and can alter the specificity between LCOs when using regions from a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor.


Certain aspects of the present disclosure relate to a modified plant LysM receptor comprising a LysM2 domain modified to comprise a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group consisting of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, and a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is red highlighted in red in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is red highlighted in red in FIGS. 12A-12G and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is red highlighted in red in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is red highlighted in red in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is red highlighted in red in FIGS. 12A-12G in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is red highlighted in red in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1.


In some aspects, the present disclosure relates to a modified plant LysM receptor comprising a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP; and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP. In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO:28 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO:31 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a nucleic acid sequence encoding the modified plant LysM receptor of any one of the preceding embodiments. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a first nucleic acid sequence encoding a modified plant LysM receptor where the LysM1 domain has been modified as in any of the preceding embodiments relating to modification to the LysM1 domain and a second nucleic acid sequence encoding a modified plant LysM receptor where the LysM2 domain has been modified to include a hydrophobic patch as in any of the preceding embodiments relating to modifications to the LysM2 domain. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the first nucleic acid or second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof. In some embodiments, the plant part is a fruit, a kernel, or a grain.


In some aspects, the present disclosure relates to a pollen grain or an ovule of a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a protoplast from a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a tissue culture produced from protoplasts or cells from a genetically altered plant of any of the above embodiments relating to plants, wherein the cells or protoplasts are produced from a plant part selected from the group consisting of leaf, anther, pistil, stem, petiole, root, root primordia, root tip, fruit, seed, flower, cotyledon, hypocotyl, embryo, and meristematic cell.


In some aspects, the present disclosure relates to a method of producing the genetically altered plant of any one of the above embodiments relating to plants, comprising introducing a genetic alteration to the plant comprising the nucleic acid sequence. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter (KAY et al. Science, 236, 4805, 1987), a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is inserted into the genome of the plant so that the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to an endogenous promoter. In some embodiments, the endogenous promoter is a root specific promoter.


Additional aspects of the present disclosure relate to a modified plant LysM receptor including a LysM2 domain modified to include a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, or a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments of any of the above embodiments, the hydrophobic patch was generated by modifying an existing hydrophobic patch in the unmodified LysM receptor. In some embodiments, the unmodified LysM receptor was modified by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, substituting at least one hydrophobic amino acid residue with another hydrophobic amino acid residue, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the LysM domain three dimensional structure is a Lotus LYS11 ectodomain. In some embodiments, the unmodified LysM receptor is the Lotus LYS11 receptor and the existing hydrophobic patch amino acid residues of the LysM domain that are modified are or correspond to K100, E101, G102, E103, S104, Y105, Y106, N128, and Y129 of the Lotus LYS11 ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1. In some embodiments of any of the above embodiments, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the LysM2 domain of the unmodified LysM receptor were substituted or deleted to generate the modified plant LysM receptor, and (ii) the entire LysM2 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments of any of the above embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof.


In some aspects, the present disclosure relates to a modified plant LysM receptor including a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP; and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP. In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO:28 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO:31 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the first LysM1 domain is further modified by substituting a fifth part of the first LysM1 domain with a sixth part of a second LysM1 domain. In some embodiments, the first LysM1 domain is SEQ ID NO:115 [LysM1 domain Lotus NFR1; LjNFR1/32-89] or SEQ ID NO:106 [LysM1 domain Lotus NFR1; LjNFR1/31-89] and the second LysM1 domain is SEQ ID NO:114 [LysM1 domain Medicago LYK3; MtLYK3/31-89] or SEQ ID NO:105 [LysM1 domain Medicago LYK3; MtLYK3/30-89]. In some embodiments, wherein the fifth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/56-92], and wherein the sixth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62]. In some embodiments, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82]. In some embodiments, the first LysM1 domain is SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/31-89] and the second LysM1 domain is SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/32-89]. In some embodiments, the fifth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62], and the sixth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62]. In some embodiments of any of the above embodiments including the first LysM1 domain being SEQ ID NO:33 and the second LysM1 domain being SEQ ID NO:32, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82].


In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the first LysM1 domain were substituted or deleted with the corresponding amino acid residues of the second LysM1 domain, and (ii) the entire LysM1 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof and the second LysM2 domain is from the donor plant LysM receptor. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, including a nucleic acid sequence encoding the modified plant LysM receptor of any one of the preceding embodiments. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, soybean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, including a first nucleic acid sequence encoding a modified plant LysM receptor where the LysM1 domain has been modified as in any of the preceding embodiments relating to modification to the LysM1 domain and a second nucleic acid sequence encoding a modified plant LysM receptor where the LysM2 domain has been modified to include a hydrophobic patch as in any of the preceding embodiments relating to modifications to the LysM2 domain. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the first nucleic acid or second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, soybean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof. In some embodiments, the plant part is a fruit, a kernel, or a grain.


In some aspects, the present disclosure relates to a pollen grain or an ovule of a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a protoplast from a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a tissue culture produced from protoplasts or cells from a genetically altered plant of any of the above embodiments relating to plants, wherein the cells or protoplasts are produced from a plant part selected from the group of leaf, anther, pistil, stem, petiole, root, root primordia, root tip, fruit, seed, flower, cotyledon, hypocotyl, embryo, or meristematic cell.


In some aspects, the present disclosure relates to a method of producing the genetically altered plant of any one of the above embodiments relating to plants, including introducing a genetic alteration to the plant having the nucleic acid sequence. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter (KAY et al. Science, 236, 4805, 1987), a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is inserted into the genome of the plant so that the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to an endogenous promoter. In some embodiments, the endogenous promoter is a root specific promoter.


In further aspects, the present disclosure relates to methods for selection of a target plant LysM receptor for modifying the target plant LysM receptor to have a desired receptor characteristic, wherein the method includes the steps of: a) providing a structural model, a molecular model, a surface characteristics model, and/or an electrostatic potential model of a donor plant LysM receptor having the desired receptor characteristic and two or more potential target plant LysM receptors; b) comparing each of the two or more potential target plant LysM receptors with the structural model, the molecular model, the surface characteristics model, and/or the electrostatic potential model of the donor plant LysM receptor, and/or comparing each of the two or more potential target plant LysM receptors with the donor plant LysM receptor using structural overlay; and c) selecting the potential target plant LysM receptor with a suitable match for the donor plant LysM receptor to be the target plant LysM receptor. In some embodiments, the criteria for determining that the potential target plant LysM receptor is a suitable match for the donor plant LysM receptor in step (c) are selected from the group of goodness of fit to template structure; similarity; phylogenetic relation; surface potential; coverage to template structure; GMQE, QMEAN, and Local Quality estimates from SWISS-Model; or any combination thereof. In some embodiments, the structural model of a donor plant LysM receptor is a protein crystal structure, a molecular model, a cryo-EM structure, and a NMR structure. In some embodiments, the donor plant LysM receptor model is of an entire ectodomain and the two or more potential target plant LysM receptor models are of entire ectodomains. In some embodiments, the donor plant LysM receptor model is of a LysM1 domain, a LysM2 domain, a LysM3 domain, or any combination thereof, and the two or more potential target plant LysM receptor models are of LysM1 domains, LysM2 domains, LysM3 domains, or any combination thereof.


In some embodiments, the donor plant LysM receptor is Medicago NFP, Medicago LYK3, Lotus NFR1, Lotus NFR5, Lotus LYS11, or Arabidopsis CERK1. In some embodiments, the two or more target plant LysM receptors are additionally compared to Lotus CERK6. In some embodiments, the two or more potential target plant LysM receptor polypeptides are all from the same plant species or plant variety. In some embodiments, the desired receptor characteristic is affinity, selectivity, and/or specificity for an oligosaccharide or class of oligosaccharides. In some embodiments, the desired receptor characteristic is binding kinetics for an oligosaccharide or class of oligosaccharides, wherein the binding kinetics include off-rate and on-rate. In some embodiments, the class of oligosaccharides is selected from the group of LCOs, COs, beta-glucans, cyclic-beta-glucans, exopolysaccharides, or optionally LPS. In some embodiments, the class of oligosaccharides is LCOs or COs. In some embodiments, the class of oligosaccharides is LCOs, optionally produced by a produced by a nitrogen-fixing bacteria optionally selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof; or optionally produced by a mycorrhizal fungi optionally selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, pr any combination thereof. In some embodiments, the LCOs are M. loti LCO, S. meliloti LCO-IV, or S. meliloti LCO-V.


In some embodiments, the method further includes step d) identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a first oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor, and optionally identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a second oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor. In some embodiments, the method further includes step e) generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; generating a modified plant LysM receptor wherein the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; or generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM and the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM. In some embodiments, the first oligosaccharide binding feature is a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the second oligosaccharide binding feature is a part of the LysM1 domain of the donor plant LysM receptor.


In additional aspects, the present disclosure relates to a a modified plant LysM receptor produced using any one of the preceding methods, wherein the modified plant LysM receptor includes a LysM2 domain modified to include a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, or a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments of any of the above embodiments, the hydrophobic patch was generated by modifying an existing hydrophobic patch in the unmodified LysM receptor. In some embodiments, the unmodified LysM receptor was modified by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, substituting at least one hydrophobic amino acid residue with another hydrophobic amino acid residue, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the LysM domain three dimensional structure is a Lotus LYS11 ectodomain. In some embodiments, the unmodified LysM receptor is the Lotus LYS11 receptor and the existing hydrophobic patch amino acid residues of the LysM domain that are modified are or correspond to K100, E101, G102, E103, S104, Y105, Y106, N128, and Y129 of the Lotus LYS11 ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1. In some embodiments of any of the above embodiments, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the LysM2 domain of the unmodified LysM receptor were substituted or deleted to generate the modified plant LysM receptor, and (ii) the entire LysM2 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments that may be combined with any of the preceding embodiments, the present disclosure related to a genetically altered plant or part thereof including the modified plant LysM receptor of any of the above embodiments.


In further aspects, the present disclosure relates to a a modified plant LysM receptor produced using any one of the preceding methods, wherein the modified plant LysM receptor includes a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP; and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP. In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO:28 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO:31 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the first LysM1 domain is further modified by substituting a fifth part of the first LysM1 domain with a sixth part of a second LysM1 domain. In some embodiments, the first LysM1 domain is SEQ ID NO:115 [LysM1 domain Lotus NFR1; LjNFR1/32-89] or SEQ ID NO:106 [LysM1 domain Lotus NFR1; LjNFR1/31-89] and the second LysM1 domain is SEQ ID NO:114 [LysM1 domain Medicago LYK3; MtLYK3/31-89] or SEQ ID NO:105 [LysM1 domain Medicago LYK3; MtLYK3/30-89]. In some embodiments, wherein the fifth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62], and wherein the sixth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62]. In some embodiments, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82]. In some embodiments, the first LysM1 domain is SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/31-89] and the second LysM1 domain is SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/32-89]. In some embodiments, the fifth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62], and the sixth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62]. In some embodiments of any of the above embodiments including the first LysM1 domain being SEQ ID NO:33 and the second LysM1 domain being SEQ ID NO:32, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82].


In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the first LysM1 domain were substituted or deleted with the corresponding amino acid residues of the second LysM1 domain, and (ii) the entire LysM1 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain. In some embodiments that may be combined with any of the preceding embodiments, the present disclosure related to a genetically altered plant or part thereof including the modified plant LysM receptor of any of the above embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows the structure of the NFP receptor ectodomain (NFP-ECD) with the three LysM domains labeled (LysM1, LysM2, and LysM3). Motifs within the LysM domains are also labeled: LysM1 motifs=α1, α2, β1, and β2; LysM2 motifs=α3, α4, β3, and β4; and LysM3 motifs=α5, α6, β5, and β6. Glycosylations (di-GlcNAc cores are shown (projecting from α1 at upper; additional cores visible at center adjacent to β2 and β1 as well as at bottom left behind α4), and disulfide bridges are indicated with arrows and labeled with the residue numbers (C47-C166; C39-C104; and C102-C164).



FIGS. 2A-2B show the hydrophobic patch in the Medicago NFP LysM2 domain, and binding assay measurements using mutants of important residues within the hydrophobic patch. FIG. 2A shows molecular docking of CO4 (designated as “Ligand”) onto Medicago NFP shaded with electrostatic surface potential. The hydrophobic patch is circled by a dashed black line, and the locations of important residues L147 and L154 are shown using arrows. The position of the LCO fatty-acid is depicted with a dashed grey line. FIG. 2B shows binding assay measurements comparing a wild type (WT) NFP (“NFP WT”) with an NFP mutated at residues 147 and 154 (“NFP L147D L154D”; bold). The results shown for NFP WT are from seven replicates and the results shown for NFP L147D L154D are from four replicates.



FIG. 3 shows the general schematic of the construct used for mutant complementation experiments. Designations are as follows: T-DNA left border=LB, T-DNA right border=RB, nuclear localized triple yellow fluorescent protein=tYFPnls, buffer sequence=buffer, constitutive ubiquitin promoter=pUbi, Nfr1 promoter=pNfr1, Cerk6 promoter=pCerk6. The arrows indicate the directions of gene transcription.



FIGS. 4A-4B show complementation assays of Medicago nfp mutants. FIG. 4A shows complementation tested by inoculation with S. meliloti strain 2011. FIG. 4B shows complementation tested by inoculation with S. medicae. Columns represent the mean nodule numbers, while circles represent the individual counts. Empty circles=Medicago A17 wild type; filled circles=Medicago nfp mutant; EVC=empty vector control; and WT=wild type. Error bars show the SEM. Different letters indicate significant differences between the samples (ANOVA, Tukey, P<0.05).



FIGS. 5A-5B show results of functional studies measuring nodulation and defense using domain swaps between the Lotus japonicus (Lj) LCO receptor NFR1 and the Lotus japonicus (Lj) CO receptor CERK6. FIG. 5A shows complementation experiments of a Lotus nfr1-1 single mutant with different domain-swapped protein constructs. Nodules were counted on hairy root transformed L. japonicus nfr1-1 mutant roots after the indicated days post inoculation (dpi) with M. loti R7A. FIG. 5B shows complementation of a Lotus cerk6 single mutant with different domain-swapped protein constructs. Ratios of CO8 and flg22 elicited ROS peak values are plotted normalized to the wild type sample (Gifu; transformed with the empty vector) set as 1. In both FIGS. 5A and 5B, black dots represent individual transformed plants, and error bars show the SEM. Different letters indicate significant differences among the samples (ANOVA, Tukey, P<0.01). The compositions of the recombinant receptors are shown by shading of the respective parts, with black indicating LjNFR1 derived sequences and grey indicating LjCERK6 derived sequences. Shaded bars indicate multiple amino acid long region swaps (black bars are LjNFR1 derived sequences; grey bars are LjCERK6 derived sequences), while white bars indicate single amino acid mutations introducing a bulky amino acid (Trp) to the LysM structure. LysM domains are labelled at the left (in FIG. 5A) or at the right (in FIG. 5B) of the recombinant receptors as LysM1, LysM2, and LysM3, and transmembrane and intracellular domains are labelled at the left (in FIG. 5A) or at the right (in FIG. 5B) of the recombinant receptors as TM+IC.



FIG. 6 shows a 3D structure of the Lotus CERK6 ectodomain with the three LysM domains labeled (LysM1, LysM2, and LysM3). Region II and region IV in LysM1 are labeled and shaded in light grey.



FIG. 7 shows complementation of Lotus japonicus nfr1-1 mutants with LjNFR1/MtLYK3 chimeras depicted at the bottom of the graph. Complementation was assayed by counting nodules formed per plant, which is shown at the top of FIG. 7. Black dots represent individual plants, columns indicate the mean values, and error bars show the SEM. Different letters indicate significant difference among the samples (ANOVA, Tukey, P<0.01). The schematics of the individual chimeric receptors tested are shown at the bottom of FIG. 7, with white indicating LjNFR1 domains, grey indicating MtLYK3 domains, and black indicating LjCERK6 domains (control). LysM domains are labelled as LysM1, LysM2, and LysM3; transmembrane and juxtamembrane domains are labelled as TM and JM; and the kinase domain is labelled as K



FIGS. 8A-8C show an alignment of selected LysM receptors from Arabidopsis thaliana (At; AT3G21630_CERK1 (SEQ ID NO:75), AT1G77630_LYP3 (SEQ ID NO:80), AT2G17120_LYP1 (SEQ ID NO:82)), Zea mays (Zm; ZM9_NP_001146346.1 (SEQ ID NO:72)), Hordeum vulgare (Hv; HvLysMRLK4_AK369594.1 (SEQ ID NO:73)), Medicago truncatula (Mt or Medtr; Mt_LYK9XP_003601376 (SEQ ID NO:69), Mt_LYK3_XP_003616958 (SEQ ID NO:71), Mt_LYK10_XP_003613165 (SEQ ID NO:77), Medtr5g042440.1 (SEQ ID NO:79)), Oryza sativa (Os; XP_015611967_OsCERK1 (SEQ ID NO:74), OsCeBiP (SEQ ID NO:81)) and Lotus japonicus (Lj; BAI79273.1_CERK6 (SEQ ID NO:34), CAE02590.1_NFR1 (SEQ ID NO:70), BAI79284.1_EPR3 (SEQ ID NO:76), CAE02597.1_NFR5 (SEQ ID NO:78)). NFR1 and NFR5 are Nod factor receptors, EPR3 is an exopolysaccharide receptor, AtLYP1 and AtLYP3 are peptidoglycan receptors, AtCERK1, OsCERK1, OsCeBIP, CERK6 are chitooligosaccharide receptors. C(x)XXXC and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. FIG. 8A shows the first two portions of the alignment including all of the LysM1 domain and part of the LysM2 domain. FIG. 8B shows the third and fourth portions of the alignment including the rest of the LysM2 domain and all of the LysM3 domain. FIG. 8C shows the fifth portion of the alignment.



FIGS. 9A-9B show an alignment of selected LysM receptors from Arabidopsis thaliana (At; AT3G21630_CERK1 (SEQ ID NO:75)), Zea mays (Zm; XP_020399958_ZM1 (SEQ ID NO:20), XP_008652982.1_ZM5 (SEQ ID NO:21), AQK73561.1_ZM7 (SEQ ID NO:84), NP_001147981.1_ZM3 (SEQ ID NO:85), NP_001147941.2_ZM6 (SEQ ID NO:86), AQK58792.1_ZM4 (SEQ ID NO:87), ZM9_NP_001146346.1 (SEQ ID NO:72)), Hordeum vulgare (Hv; HORVU4Hr1 G066170_HvLysMRLK10 (SEQ ID NO:19), AK357612_HvLysMRLK2 (SEQ ID NO:17), AK370300_HvLysmRLK1 (SEQ ID NO:16), AK372128_HvLysMRLK3 (SEQ ID NO:18), HvLysMRLK4_AK369594.1 (SEQ ID NO:73)), Oryza sativa (Os; XP_015611967_OsCERK1 (SEQ ID NO:74)), Medicago truncatula (Mt; XP_003613904.2_MtNFP (SEQ ID NO:83), MtLYK3_XP_003616958 (SEQ ID NO:71), MtLYK9XP_003601376 (SEQ ID NO:69)), and Lotus japonicus (Lj; CAE02590.1_NFR1 (SEQ ID NO:70), CAE02597.1NFR5 (SEQ ID NO:78), BAI79273.1_CERK6 (SEQ ID NO:34). LjNFR1, LjNFR5, MtLYK3 and MtNFP are functional Nod factor receptors, AtCERK1, OsCERK1, LjCERK6 are functional chitin receptors. C(x)XXXC and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. The number of “X” residues in the C(x)XXXC motif located before LysM1 varies between receptors and therefore the location of LysM1 (black line) changes accordingly in the alignments in this figure and in successive figures. FIG. 9A shows the first and second portions of the alignment including all of the LysM1 domain and part of the LysM2 domain. FIG. 9B shows the third and fourth portions of the alignment including the rest of the LysM2 domain and all of the LysM3 domain.



FIGS. 10A-10B show an alignment of selected LysM receptors from Zea mays (Zm; ONM41523.1_ZM8 (SEQ ID NO:88), XP_008657477.1_ZM2 (SEQ ID NO:89), Zm00001d043516 ZM10 (SEQ ID NO:91)), Hordeum vulgare (Hv; MLOC_5489.2_HvLysM-RLK9 (SEQ ID NO:90), MLOC_18610.1_HvLysM-RLK8 (SEQ ID NO:92), MLOC_57536.1_HvLysM-RLK6 (SEQ ID NO:93)), Medicago truncatula (Mt; Mt_LYK10_XP_003613165 (SEQ ID NO:77), Mt_LYK3_XP_003616958 (SEQ ID NO:71), XP_003613904.2_MtNFP (SEQ ID NO:83)), and Lotus japonicus (Lj; BAI79284.1_EPR3 (SEQ ID NO:76), CAE02590.1_NFR1 (SEQ ID NO:70), CAE02597.1_NFR5 (SEQ ID NO:78)). LjNFR1, LjNFR5, MtLYK3 and MtNFP are functional Nod factor receptors, LjEPR3 is functional EPS receptor. C(x)XXXC and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. FIG. 10A shows the first, second, and third portions of the alignment including all of the LysM1 domain and all of the LysM2 domain. FIG. 10B shows the fourth, fifth, and sixth portions of the alignment including all of the LysM3 domain.



FIGS. 11A-11B show an alignment of selected LysM receptors from Arabidopsis thaliana (At; AT1G21880.2_LYP2 (SEQ ID NO:94), AT1G77630_LYP3 (SEQ ID NO:80), AT2G17120_LYP1 (SEQ ID NO:82)), Oryza sativa (Os; OsCeBiP (SEQ ID NO:81)), and Lotus japonicus (Lj; LjLYP1 (SEQ ID NO:95), LjLYP2 (SEQ ID NO:96), LjLYP3 (SEQ ID NO:97), CAE02590.1_NFR1 (SEQ ID NO:70), CAE02597.1_NFR5 (SEQ ID NO:78)). LjNFR1, LjNFR5, are functional Nod factor receptors, AtLYP2 and AtLYP3, are PGN receptors, OsCeBiP is a functional chitin receptor. C(x)XXXC and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. FIG. 11A shows the first, second, third, and fourth portions of the alignment including all of the LysM1 domain, all of the LysM2 domain, and all of the LysM3 domain. FIG. 11B shows the fifth, sixth, and seventh portions of the alignment.



FIGS. 12A-12E show annotated amino acid sequences of previously known LCO receptors and newly identified LCO receptors. FIG. 12A shows the annotation key; the LysM1 domain is shown with a dashed underline, the LysM2 domain is shown with a solid underline, the hydrophobic patch residues are shown in bold, and the LysM3 domain is shown with residues italicized. Medicago NFP (MtNFP/1-595; SEQ ID NO:1), Lotus NFR5 (a known LCO receptor; LjNFR5/1-595; SEQ ID NO:2), Pea SYM10 (a known LCO receptor; Pea_SYM10/1-594; SEQ ID NO:3), and Soybean NFR5α (a known LCO receptor; GmNFR5α/1-598 max; SEQ ID NO:4) are shown. FIG. 12B shows Chickpea NFR5 (a new LCO receptor; ChickpeaNFR5/1-557 (Cicer arietinum); SEQ ID NO:5), Bean NFR5 (a new LCO receptor; BeanNFR5/1-597 (Phaseolus vulgaris); SEQ ID NO:7), Peanut NFR5 (a new LCO receptor; PeanutNFR5/1-595 [Arachis hypogaea subsp. hypogaea]; SEQ ID NO:9), and Lotus LYS11 (a new LCO receptor; LjLYS11/1-591; SEQ ID NO:11). FIG. 12C shows Medicago LYR1 (a new LCO receptor; MtLYR1/1-590; SEQ ID NO:12), Parasponia NFP1 (a new LCO receptor; PanNFP1/1-613; SEQ ID NO:13), Parasponia NFP2 (a known LCO receptor; PanNFP2/1-582; SEQ ID NO:14), and Barley receptor HvLysM-RLK1 (a new LCO receptor; HvLysM-RLK1 (AK370300); SEQ ID NO:16). FIG. 12D shows Barley receptor HvLysM-RLK2 (a new LCO receptor; HvLysM-RLK2 (AK357612); SEQ ID NO:17), Barley receptor HvLysM-RLK3 AK372128 (a new LCO receptor; HvLysM-RLK3 AK372128; SEQ ID NO:18), Barley receptor HvLysM-RLK10 (a new LCO receptor; HvLysM-RLK10 (HORVU4Hr1G066170); SEQ ID NO:19), and Maize receptor ZM1 (a new LCO receptor; ZM1 (XP_020399958); SEQ ID NO:20). FIG. 12E shows Maize receptor ZM5 (a new LCO receptor; ZM5 (XP_008652982.1); SEQ ID NO:21), Apple NFP5 (a new LCO receptor; XP_008338966.1 PREDICTED: serine/threonine receptor-like kinase NFP [Malus domestica]; SEQ ID NO:22), and Strawberry NFR5 (a new LCO receptor; XP_004300586.2 PREDICTED: protein LYK5-like [Fragaria vesca subsp. vesca]; SEQ ID NO:23).



FIGS. 13A-13C show structural modelling of the HvLysM-RLK2/37-247 LysM1-3 domains and selection of residues for modification to introduce a hydrophobic patch. FIG. 13A shows the PyMol visualization of the LysM1-3 domains of the HvLysM-RLK2/37-247 model with the LysM1 domain labeled and in dark grey, the LysM2 labeled and in light grey, and the LysM3 labeled and in light grey. FIG. 13B shows the electrostatic surface potential of the model with chitin modeled in the binding groove. FIG. 13C has the amino acid sequence of the HvLysM-RLK2/37-247 LysM1-3 domains with the LysM1 domain with a dashed underline, the LysM2 domain with a solid underline, and the LysM3 domain with no underline, and the residues that can be modified to create the hydrophobic patch in bold.



FIG. 14 shows an alignment of the Lotus japonicus (Lj) NFR1 and Lotus japonicus (Lj) CERK6 LysM1 domains. Viewed top-down, LjNFR1 (NFR1_Lj2g2904690; SEQ ID NO:99) is shown in the top row, LjCERK6 (CERK6 AB503687; SEQ ID NO:100) is shown in the second row, sequence conservation is shown in the third row. Region II and region IV in the LysM1 domain are denoted by light grey arrows and labelled as “II.” or



FIGS. 15A-15F show L. japonicus LjLYS11 ectodomain model and crystal structure, modified LjLYS11 ectodomains, and testing of modified LjLYS11 ectodomains. FIG. 15A shows a comparison of the LjLYS11 ectodomain model (LYS11—model; left) with the crystal structure of the LjLYS11 ectodomain (LYS11—crystal structure; right). FIG. 15B shows schematics of modified LjLYS11 ectodomains (LjLYS11—LjNFR5 chimeras) used for testing. The top schematic shows an ectodomain with entirely LjLYS11 domains (black), the middle schematic shows an ectodomain where the LysM2 domain from LjLYS11 was replaced with the LysM2 domain from LjNFR5 (grey), and the bottom schematic shows an ectodomain where key residues from LjLYS11 were replaced with key residues from LjNFR5 (grey) (N-terminus=N′; LysM1=M1; LysM2=M2; LysM3=M3; 6×HIS tag used for purification=6×HIS; C-terminus=C′). FIG. 15C shows the results of binding assays with the ectodomain with entirely LjLYS11 components (ectodomain schematic shown at top with LjLYS11 domains in black; results of binding assays shown at bottom). The Kd is shown in the title of each graph (CO5 (Kd=11.4 μM), M. loti LCO (Kd=38.6 μM), and S. meliloti LCO (weak binding)). FIG. 15D shows the results of binding assays with the ectodomain where LysM2 from LjLYS11 was replaced with LysM2 from LjNFR5 (ectodomain schematic shown at top with LjLYS11 domains in black and LjNFR5 domains in grey; results of binding assays shown at bottom). FIG. 15E shows the results of binding assays with the ectodomain where key residues from LjLYS11 were replaced with key residues from LjNFR5 (ectodomain schematic shown at top with LjLYS11 domains in black and LjNFR5 residues in grey; results of binding assays shown at bottom). For FIGS. 15C-15E, binding in nm is shown on the y-axes, time in seconds (s) is shown on the x-axes, and the tested molecules are shown in the titles of the graphs (C05, M. loti LCO, and S. meliloti LCO). FIG. 15F shows complementation of L. japonicus nfr5 (Ljnfr5) mutants with LjNFR5/LjLYS11 chimeras depicted at the bottom of the graph. Complementation was assayed by counting nodules formed per plant, which is shown at the top of FIG. 15F. Black dots represent individual plants, columns indicate the mean values, and error bars show the SEM. Different letters indicate significant difference among the samples (ANOVA, Tukey, P<0.01). The schematics of the individual chimeric ectodomains tested are shown at the bottom of FIG. 15F, with light grey indicating LjNFR5 domains, grey indicating LjLYS11 domains, and empty vector denoted by a label (LysM1, LysM2 and LysM3 are shown as boxes; transmembrane domain is shown as a wavy shape; kinase domain is shown as an oval shape). Below the receptor schematics, the number of plants (Plant), the number of plants without nodules (neg), the number of plants with nodules (pos), and the frequency (freq) of plants forming nodules when transformed with the depicted vector is provided.



FIGS. 16A-16H show homology modelling of the barley RLK10 receptor (HvRLK10) ectodomain and of the barley RLK4 receptor (HvRLK4) ectodomain as well as results of binding experiments using the HvRLK10 ectodomain and the HvRLK4 ectodomain. FIG. 16A shows a schematic of the purified HvRLK10 ectodomain at the top (N-terminus=N′; LysM1=M1; LysM2=M2; LysM3=M3; 6×HIS tag used for purification=6×HIS; C-terminus=C′) and the results of binding assays of HvRLK10 ectodomain with CO5 at the bottom. FIG. 16B shows homology modelling of the Barley receptor RLK10 (HvRLK10) ectodomain with surface representation shaded according to its electrostatic potential. The hydrophobic patch is circled by a dashed black line, and the ligand is shown at the top of the hydrophobic patch. FIG. 16C shows the results of binding assays of HvRLK10 ectodomain with M. loti LCO. FIG. 16D shows the results of binding assays of HvRLK10 ectodomain with S. meliloti LCO. FIG. 16E shows a schematic of the purified HvRLK4 ectodomain at the top (N-terminus=N′; LysM1=M1; LysM2=M2; LysM3=M3; 6×HIS tag used for purification=6×HIS; C-terminus=C′) and the results of binding assays of HvRLK4 ectodomain with CO5 at the bottom. FIG. 16F shows a 3D structure of the HvRLK4 ectodomain with a ligand shown at the top. FIG. 16G shows the results of binding assays of HvRLK4 ectodomain with M. loti LCO. FIG. 16H shows the results of binding assays of HvRLK4 ectodomain with S. meliloti LCO. For FIGS. 16A, 16C-16D, 16E, and 16G-16H, binding in nm is shown on the y-axes, time in seconds (s) is shown on the x-axes, and the tested molecules are shown in the titles of the graphs (CO5, M. loti LCO, and S. meliloti LCO).



FIGS. 17A-17B show complementation of Medicago truncatula lyk3 mutants with LjNFR1/MtLYK3 chimeras as well as the MtLYK3 ectodomain structure and schematics of LjNFR1/MtLYK3 chimeras. FIG. 17A shows complementation of Medicago lyk3 mutants (Mtlyk3) with LjNFR1/MtLYK3 chimeras depicted at the bottom of the graph. The controls Medicago wild type (WT) transformed with empty vector and Mtlyk3 transformed with empty vector were included. Complementation was assayed by counting nodules formed per plant, which is shown at the top of FIG. 17A. Black dots represent individual plants, columns indicate the mean values, and error bars show the SEM. Different letters indicate significant difference among the samples (ANOVA, Tukey, P<0.01). The schematics of the individual chimeric receptors tested are shown at the bottom of FIG. 17A, with grey indicating MtLYK3 domains, black indicating LjNFR1 domains, and empty vector denoted by a label. Below the receptor schematics, the frequency (freq) of plants forming nodules when transformed with the depicted vector is provided. LysM domains are labelled as LysM1, LysM2, and LysM3; transmembrane domain is labelled as TM; and the kinase domain is labelled as kinase. FIG. 17B shows the MtLYK3 ectodomain structure, with Region II (dark grey helix), Region III (light grey helix), and Region IV (grey linker) labeled (top); and schematic representation of the engineered LjNFR1 ectodomain (black) with indicated regions from the MtLYK3 ectodomain (grey; regions from the MtLYK3 ectodomain=regions II-IV (“2 to 4”), regions II, III, and IV (“2, 3, 4”), and regions II and IV (“2, 4”)) (bottom).



FIGS. 18A-18F show BLI binding curves for A. thaliana CERK1 (AtCERK1) binding to chitopentaose (CO5) and chitooctaose (CO8), models of CO and LCO perception, and structural alignment of the ectodomains of Medicago NFP, Arabidopsis CERK1 and Lotus CERK6. FIG. 18A shows AtCERK1 binding to chitopentaose (Chitin (CO5)). FIG. 18B shows AtCERK1 binding to chitooctaose (Chitin (CO8)). For FIGS. 18A-18B, seven 2-fold dilution series of analyte (1.56-100 μM) were used for each experiment; experimental binding curves are represented in solid lines, fitting curves in dashed lines; goodness of fit is described by the global fit R2 on the mean value of each point; number of replicates performed using independent protein preparations (n) indicated; and kinetic parameters (kon and koff) are shown. FIG. 18C shows a model of CO perception by CO receptors (e.g., CERK1, LYK5). FIG. 18D shows a model of LCO perception by LCO receptors (e.g., NFP, LYK). FIG. 18E shows a model of LCO perception by hydrophobic patch mutant LCO receptors (e.g., NFP, LYK). FIG. 18F shows structural alignment of the ectodomains of Medicago NFP, Arabidopsis CERK1 and Lotus CERK6. Molecular fits (RMSD values) based on structural superposition of the ectodomains are shown in Å (Angstrom). The structures (above) are shaded according to the schematic representation of the ectodomain (below). The conserved disulfide connectivity pattern between Medicago NFP, Arabidopsis CERK1 and Lotus CERK6 is highlighted.



FIGS. 19A-19D show BLI binding curves for WT NFP-ECD and hydrophobic patch mutant NFP-ECD (L147D/L154D) binding to S. meliloti LCO-IV and a schematic of the NFP receptor. FIG. 19A shows WT NFP-ECD binding to S. meliloti LCO-IV. FIG. 19B shows L147D/L154D NFP-ECD binding to S. meliloti LCO-IV. For FIGS. 19A-19B, seven 2-fold dilution series of analyte (1.56-100 μM) were used for each experiment; and experimental binding curves are represented in solid lines, fitting curves in dashed lines. FIG. 19C shows a table summarizing the kinetic parameters of FIGS. 19A-19B, with goodness of fit described by the global fit R2 on the mean value of each point, and number of replicates performed using independent protein preparations (n) indicated. FIG. 19D shows a schematic of the NFP receptor with LysM1, LysM2, LysM3, stem, and transmembrane (TM) and kinase domains labeled, and the location of the hydrophobic patch in LysM2 indicated by a grey bar. Numbers below the schematic provide the corresponding amino acid residues, and the locations of the CxC motifs flanking the LysM domains are shown.





DETAILED DESCRIPTION

The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.


Modified Plant LysM Receptors

Certain aspects of the present disclosure relate to a modified plant LysM receptor comprising a LysM2 domain modified to comprise a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group consisting of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, and a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 11 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 11 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide with at least 70% sequence identity, at least 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LJCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12G and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12G in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1.


In some aspects, the present disclosure relates to a modified plant LysM receptor comprising a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities and/or selectivities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP; and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP. In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifications to the LysM2 domain.


Additional aspects of the present disclosure relate to a modified plant LysM receptor including a LysM2 domain modified to include a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, or a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 11 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 11 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1Λ of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments of any of the above embodiments, the hydrophobic patch was generated by modifying an existing hydrophobic patch in the unmodified LysM receptor. In some embodiments, the unmodified LysM receptor was modified by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, substituting at least one hydrophobic amino acid residue with another hydrophobic amino acid residue, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the LysM domain three dimensional structure is a Lotus LYS11 ectodomain. In some embodiments, the unmodified LysM receptor is the Lotus LYS11 receptor and the existing hydrophobic patch amino acid residues of the LysM domain that are modified are or correspond to K100, E101, G102, E103, S104, Y105, Y106, N128, and Y129 of the Lotus LYS11 ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1. In some embodiments of any of the above embodiments, either or both (i) 80% or fewer, 79% or fewer, 78% or fewer, 77% or fewer, 76% or fewer, 75% or fewer, 74% or fewer, 73% or fewer, 72% or fewer, 71% or fewer, 70% or fewer, 69% or fewer, 68% or fewer, 67% or fewer, 66% or fewer, 65% or fewer, 64% or fewer, 63% or fewer, 62% or fewer, 61% or fewer, 60% or fewer, 59% or fewer, 58% or fewer, 57% or fewer, 56% or fewer, 55% or fewer, 54% or fewer, 53% or fewer, 52% or fewer, 51% or fewer, 50% or fewer, 49% or fewer, 48% or fewer, 47% or fewer, 46% or fewer, 45% or fewer, 44% or fewer, 43% or fewer, 42% or fewer, 41% or fewer, 40% or fewer, 39% or fewer, 38% or fewer, 37% or fewer, 36% or fewer, 35% or fewer, 34% or fewer, 33% or fewer, 32% or fewer, 31% or fewer, 30% or fewer, 29% or fewer, 28% or fewer, 27% or fewer, 26% or fewer, 25% or fewer, 24% or fewer, 23% or fewer, 22% or fewer, 21% or fewer, or 20% or fewer of amino acid residues in the LysM2 domain of the unmodified LysM receptor were substituted or deleted to generate the modified plant LysM receptor, and (ii) the entire LysM2 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments of any of the above embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof.


In some aspects, the present disclosure relates to a modified plant LysM receptor including a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP; and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP. In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO:28 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO:31 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the first LysM1 domain is further modified by substituting a fifth part of the first LysM1 domain with a sixth part of a second LysM1 domain. In some embodiments, the first LysM1 domain is SEQ ID NO:115 [LysM1 domain Lotus NFR1; LjNFR1/32-89] or SEQ ID NO:106 [LysM1 domain Lotus NFR1; LjNFR1/31-89] and the second LysM1 domain is SEQ ID NO:114 [LysM1 domain Medicago LYK3; MtLYK3/31-89] or SEQ ID NO:105 [LysM1 domain Medicago LYK3; MtLYK3/30-89]. In some embodiments, wherein the fifth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/56-92], and wherein the sixth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62]. In some embodiments, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82]. In some embodiments, the first LysM1 domain is SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/31-89] and the second LysM1 domain is SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/32-89]. In some embodiments, the fifth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62], and the sixth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62]. In some embodiments of any of the above embodiments including the first LysM1 domain being SEQ ID NO:33 and the second LysM1 domain being SEQ ID NO:32, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82].


In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, either or both (i) 80% or fewer, 79% or fewer, 78% or fewer, 77% or fewer, 76% or fewer, 75% or fewer, 74% or fewer, 73% or fewer, 72% or fewer, 71% or fewer, 70% or fewer, 69% or fewer, 68% or fewer, 67% or fewer, 66% or fewer, 65% or fewer, 64% or fewer, 63% or fewer, 62% or fewer, 61% or fewer, 60% or fewer, 59% or fewer, 58% or fewer, 57% or fewer, 56% or fewer, 55% or fewer, 54% or fewer, 53% or fewer, 52% or fewer, 51% or fewer, 50% or fewer, 49% or fewer, 48% or fewer, 47% or fewer, 46% or fewer, 45% or fewer, 44% or fewer, 43% or fewer, 42% or fewer, 41% or fewer, 40% or fewer, 39% or fewer, 38% or fewer, 37% or fewer, 36% or fewer, 35% or fewer, 34% or fewer, 33% or fewer, 32% or fewer, 31% or fewer, 30% or fewer, 29% or fewer, 28% or fewer, 27% or fewer, 26% or fewer, 25% or fewer, 24% or fewer, 23% or fewer, 22% or fewer, 21% or fewer, or 20% or fewer of amino acid residues in the first LysM1 domain were substituted or deleted with the corresponding amino acid residues of the second LysM1 domain, and (ii) the entire LysM1 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof and the second LysM2 domain is from the donor plant LysM receptor. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain.


LysM receptors are a well known and well understood type of receptor. LysM receptors have three characteristic domains located in the ectodomain of the protein: LysM1, LysM2, and LysM3, which are present in this order on the protein sequence. The LysM1 domain is located toward the N-terminal end of the protein sequence, and is preceded by an N-terminal signal peptide as well as a C(x)xxxC motif. The LysM1 domain is separated from the LysM2 domain by a CxC motif, and the LysM2 domain is separated from the LysM3 domain by a CxC motif as well. The three LysM domains, as well as the C(x)xxxC and CxC motif are clearly shown in FIGS. 8A-8C, FIGS. 9A-9B, FIGS. 10A-10B, and FIGS. 11A-11B that show individual alignments of Nod factor (e.g., LCO) LysM receptors, EPS LysM receptors, and chitin (CO) as well as PGN LysM receptors, again clearly depicting the three LysM domains as well as the C(x)xxxC and CxC motifs. The category of LysM receptors is therefore known by one of skill in the art.


As used in the present disclosure, the term “affinity” refers to affinity for LCOs generally. The LysM receptors of the present disclosure may contain a hydrophobic patch in their LysM2 domain. Without wanting to be limited to theory, it is believed that LysM receptors with the hydrophobic patch have higher affinity for LCOs as compared to LysM receptors without the hydrophobic patch, but LysM receptors with domain-swapped LysM1 domains would also provide higher affinity for LCOs and other agonists. Affinity can be measured using the methods described in the Examples below, and using other methods known in the art that measure binding kinetics, association, dissociation, and KD.


As used in the present disclosure, the term “selectivity” refers to the differentiation between different polysaccharide ligands, specifically between lipo-chitooligosaccharides (LCOs) as a class and other polysaccharide ligands, preferably chitooligosaccharides (COs). Without wanting to be limited to theory, it is believed that this hydrophobic patch confers selective recognition of LCOs over COs, and that therefore LysM receptors with the hydrophobic patch have increased selectivity as compared to LysM receptors without the hydrophobic patch. In addition, the LysM receptors with domain-swapped LysM1 domains should also have higher or altered selectivity depend upon the choice of the donor receptor.


As used in the present disclosure, the term “specificity” refers to the differentiation between different lipo-chitooligosaccharides (LCOs) produced by different nitrogen-fixing bacterial species and/or mycorrhizal fungi. The LysM receptors of the present disclosure may contain a LysM1 domain where regions (e.g., partial, entire) in the LysM1 domain have been replaced with the corresponding regions of the LysM1 domain from a donor LysM receptor. Without wanting to be limited to theory, it is believed that if the donor LysM receptor is a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor, this replacement can alter the specificity of the LysM receptor, but LysM receptors with a hydrophobic patch in the LysM2 domain may also provide specificity for specific LCOs. The LysM1 domain is clearly shown in FIG. 14, which shows an alignment between Lotus NFR1 and Lotus CERK6, and clearly designates region II and region IV within the LysM1 domain. LysM1 domain replacement can confer highly specific recognition of LCOs produced by particular nitrogen-fixing bacterial species and/or mycorrhizal fungal species, and therefore LysM receptors with the replaced domain can have altered specificity as compared to LysM receptors without the replaced domain, which allows the modified receptors to recognize different nitrogen-fixing bacterial species and/or mycorrhizal fungal species. For at least these reasons, the high affinity, high selectivity, and/or high specificity LysM receptors of the present disclosure will be readily understood by one of skill in the art.


Genetically Altered Plants and Seeds

In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a nucleic acid sequence encoding a modified plant LysM receptor of any one of the embodiments described in the section “Modified plant LysM receptors”. In some embodiments, the modified plant LysM receptor has higher selectivity and/or affinity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high selectivity and/or affinity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the root cell is a root cortex cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn (e.g., maize, Zea mays), rice (e.g., Oryza sativa, Oryza glaberrima, Zizania spp.), barley (e.g., Hordeum vulgare), wheat (e.g., common wheat, spelt, durum, Triticum aestivum, Triticum spelta, Triticum durum, Triticum spp.), Trema spp. (e.g., Trema cannabina, Trema cubense, Trema discolor, Trema domingensis, Trema integerrima, Trema lamarckiana, Trema micrantha, Trema orientalis, Trema philippinensis, Trema strigilosa, Trema tomentosa), apple (e.g., Malus pumila), pear (e.g., Pyrus communis, Pyrus×bretschneideri, Pyrus pyrifolia, Pyrus sinkiangensis, Pyrus pashia, Pyrus spp.), plum (e.g., prune, damson, bullaces, Prunus domestica, Prunus salicina), apricot (e.g., Prunus armeniaca, Prunus brigantina, Prunus mandshurica, Prunus mume, Prunus sibirica), peach (e.g., nectarine, Prunus persica), almond (e.g., Prunus dulcis, Prunus amygdalus), walnut (e.g., Persian walnut, English walnut, black walnut, Juglans regia, Juglans nigra, Juglans cinerea, Juglans californica), strawberry (e.g., Fragaria×ananassa, Fragaria chiloensis, Fragaria virginiana, Fragaria vesca), raspberry (e.g., European red raspberry, black raspberry, Rubus idaeus, Rubus occidentalis, Rubus strigosus), blackberry (e.g., evergreen blackberry, Himalayan blackberry, Rubus fruticosus, Rubus ursinus, Rubus laciniatus, Rubus argutus, Rubus armeniacus, Rubus plicatus, Rubus ulmifolius, Rubus allegheniensis), red currant (e.g., Ribes rubrum, Ribes spicatum, Ribesbes alpinum, Ribes schlechtendalii, Ribes multiflorum, Ribes petraeum, Ribes triste), black currant (e.g., Ribes nigrum), melon (e.g., watermelon, winter melon, casabas, cantaloupe, honeydew, muskmelon, Citrullus lanatus, Benincasa hispida, Cucumis melo cantalupensis, Cucumis melo inodorus, Cucumis melo reticulatus), cucumber (e.g., slicing cucumbers, pickling cucumbers, English cucumber, Cucumis sativus), pumpkin (e.g., Cucurbita pepo, Cucurbita maxima), squash (e.g., gourd, Cucurbita argyrosperma, Cucurbita ficifolia, Cucurbita maxima, Cucurbita moschata), grape (e.g., Vitis vinifera, Vitis amurensis, Vitis labrusca, Vitis mustangensis, Vitis riparia, Vitis rotundifolia), bean (e.g., Phaseolus vulgaris, Phaseolus lunatus, Vigna angularis, Vigna radiate, Vigna mungo, Phaseolus coccineus, Vigna umbellate, Vigna acontifolia, Phaseolus acutifolius, Vicia faba, Vicia faba equine, Phaseolus spp., Vigna spp.), soybean (e.g., soy, soya bean, Glycine max, Glycine soja), pea (e.g., Pisum spp., Pisum sativum var. sativum, Pisum sativum var. arvense), chickpea (e.g., garbanzo, Bengal gram, Cicer arietinum), cowpea (e.g., black-eyed pea, blackeye bean, Vigna unguiculata), pigeon pea (e.g., Arhar/Toor, cajan pea, Congo bean, gandules, Caganus cajan), lentil (e.g., Lens culinaris), Bambara groundnut (e.g., earth pea, Vigna subterranea), lupin (e.g., Lupinus spp.), pulses (e.g., minor pulses, Lablab purpureaus, Canavalia ensiformis, Canavalia gladiate, Psophocarpus tetragonolobus, Mucuna pruriens var. utilis, Pachyrhizus erosus), Medicago spp. (e.g., Medicago sativa, Medicago truncatula, Medicago arborea), Lotus spp. (e.g., Lotus japonicus), forage legumes (e.g., Leucaena spp., Albizia spp., Cyamopsis spp., Sesbania spp., Stylosanthes spp., Trifolium spp., Vicia spp.), indigo (e.g., Indigofera spp., Indigofera tinctoria, Indigofera suffruticosa, Indigofera articulata, Indigofera oblongifolia, Indigofera aspalthoides, Indigofera suffruticosa, Indigofera arrecta), legume trees (e.g., locust trees, Gleditsia spp., Robinia spp., Kentucky coffeetree, Gymnocladus dioicus, Acacia spp., Laburnum spp., Wisteria spp.), or hemp (e.g., cannabis, Cannabis sativa).


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a first nucleic acid sequence encoding a modified plant LysM receptor where the LysM1 domain has been modified as in any of the preceding embodiments relating to modification of the LysM1 domain and a second nucleic acid sequence encoding a modified plant LysM receptor where the LysM2 domain has been modified to include a hydrophobic patch as in any of the preceding embodiments relating to modification of the LysM2 domain. In some embodiments, the modified plant LysM receptor has higher selectivity and/or affinity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high selectivity and/or affinity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the root cell is a root cortex cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the first nucleic acid or second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn (e.g., maize, Zea mays), rice (e.g., Oryza sativa, Oryza glaberrima, Zizania spp.), barley (e.g., Hordeum vulgare), wheat (e.g., common wheat, spelt, durum, Triticum aestivum, Triticum spelta, Triticum durum, Triticum spp.), Trema spp. (e.g., Trema cannabina, Trema cubense, Trema discolor, Trema domingensis, Trema integerrima, Trema lamarckiana, Trema micrantha, Trema orientalis, Trema philippinensis, Trema strigilosa, Trema tomentosa), apple (e.g., Malus pumila), pear (e.g., Pyrus communis, Pyrus×bretschneideri, Pyrus pyrifolia, Pyrus sinkiangensis, Pyrus pashia, Pyrus spp.), plum (e.g., prune, damson, bullaces, Prunus domestica, Prunus salicina), apricot (e.g., Prunus armeniaca, Prunus brigantina, Prunus mandshurica, Prunus mume, Prunus sibirica), peach (e.g., nectarine, Prunus persica), almond (e.g., Prunus dulcis, Prunus amygdalus), walnut (e.g., Persian walnut, English walnut, black walnut, Juglans regia, Juglans nigra, Juglans cinerea, Juglans californica), strawberry (e.g., Fragaria×ananassa, Fragaria chiloensis, Fragaria virginiana, Fragaria vesca), raspberry (e.g., European red raspberry, black raspberry, Rubus idaeus, Rubus occidentalis, Rubus strigosus), blackberry (e.g., evergreen blackberry, Himalayan blackberry, Rubus fruticosus, Rubus ursinus, Rubus laciniatus, Rubus argutus, Rubus armeniacus, Rubus plicatus, Rubus ulmifolius, Rubus allegheniensis), red currant (e.g., Ribes rubrum, Ribes spicatum, Ribesbes alpinum, Ribes schlechtendalii, Ribes multiflorum, Ribes petraeum, Ribes triste), black currant (e.g., Ribes nigrum), melon (e.g., watermelon, winter melon, casabas, cantaloupe, honeydew, muskmelon, Citrullus lanatus, Benincasa hispida, Cucumis melo cantalupensis, Cucumis melo inodorus, Cucumis melo reticulatus), cucumber (e.g., slicing cucumbers, pickling cucumbers, English cucumber, Cucumis sativus), pumpkin (e.g., Cucurbita pepo, Cucurbita maxima), squash (e.g., gourd, Cucurbita argyrosperma, Cucurbita ficifolia, Cucurbita maxima, Cucurbita moschata), grape (e.g., Vitis vinifera, Vitis amurensis, Vitis labrusca, Vitis mustangensis, Vitis riparia, Vitis rotundifolia), bean (e.g., Phaseolus vulgaris, Phaseolus lunatus, Vigna angularis, Vigna radiate, Vigna mungo, Phaseolus coccineus, Vigna umbellata, Vigna acontifolia, Phaseolus acutifolius, Vicia faba, Vicia faba equine, Phaseolus spp., Vigna spp.), soybean (e.g., soy, soya bean, Glycine max, Glycine soja), pea (e.g., Pisum spp., Pisum sativum var. sativum, Pisum sativum var. arvense), chickpea (e.g., garbanzo, Bengal gram, Cicer arietinum), cowpea (e.g., black-eyed pea, blackeye bean, Vigna unguiculata), pigeon pea (e.g., Arhar/Toor, cajan pea, Congo bean, gandules, Caganus cajan), lentil (e.g., Lens culinaris), Bambara groundnut (e.g., earth pea, Vigna subterranea), lupin (e.g., Lupinus spp.), pulses (e.g., minor pulses, Lablab purpureaus, Canavalia ensiformis, Canavalia gladiate, Psophocarpus tetragonolobus, Mucuna pruriens var. utilis, Pachyrhizus erosus), Medicago spp. (e.g., Medicago sativa, Medicago truncatula, Medicago arborea), Lotus spp. (e.g., Lotus japonicus), forage legumes (e.g., Leucaena spp., Albizia spp., Cyamopsis spp., Sesbania spp., Stylosanthes spp., Trifolium spp., Vicia spp.), indigo (e.g., Indigofera spp., Indigofera tinctoria, Indigofera suffruticosa, Indigofera articulata, Indigofera oblongifolia, Indigofera aspalthoides, Indigofera suffruticosa, Indigofera arrecta), legume trees (e.g., locust trees, Gleditsia spp., Robinia spp., Kentucky coffeetree, Gymnocladus dioicus, Acacia spp., Laburnum spp., Wisteria spp.), or hemp (e.g., cannabis, Cannabis sativa). In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof. In some embodiments, the plant part is a fruit, a kernel, or a grain.


In some aspects, the present disclosure relates to a pollen grain or an ovule of a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a protoplast from a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a tissue culture produced from protoplasts or cells from a genetically altered plant of any of the above embodiments relating to plants, wherein the cells or protoplasts are produced from a plant part selected from the group consisting of leaf, anther, pistil, stem, petiole, root, root primordia, root tip, fruit, seed, flower, cotyledon, hypocotyl, embryo, and meristematic cell.


Methods of Producing and Cultivating Genetically Altered Plants

Certain aspects of the present disclosure relate to a method of producing the genetically altered plant of any one of the above embodiments relating to plants as described in the section “Genetically altered plants and seeds”, comprising introducing a genetic alteration to the plant comprising the nucleic acid sequence. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter (KAY et al. Science, 236, 4805, 1987), a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is inserted into the genome of the plant so that the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to an endogenous promoter. In some embodiments, the endogenous promoter is a root specific promoter.


In some aspects, the present disclosure relates to a method of producing a genetically altered plant able to recognize LCOs, comprising the steps of: introducing a genetic alteration to the plant comprising the provision of an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized, thereby enabling the plant to recognize LCOs.


In some aspects, the present disclosure relates to a method of producing a genetically altered plant able to recognize LCOs, comprising the steps of: introducing a genetic alteration to the plant comprising the provision of an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with high affinity, high selectivity, and/or high specificity, thereby enabling the plant to recognize LCOs with high affinity, high selectivity, and/or high specificity.


In some aspects, the present disclosure relates to a method of producing a genetically altered plant able to recognize LCOs produced by a specific nitrogen-fixing bacterial species and/or a specific mycorrhizal fungal species, comprising the steps of: introducing a genetic alteration to the plant comprising the provision of an ability for LCOs produced by the specific nitrogen-fixing bacterial species and/or the specific mycorrhizal fungal species to be recognized with altered specificity, thereby enabling the plant to recognize LCOs with altered specificity. In some embodiments, the genetic alteration allows the genetically altered plant to recognize a different specific nitrogen-fixing bacterial species and/or specific mycorrhizal fungal species as compared to a plant without the genetic alteration. In some embodiments, the genetically altered plant is able to be grown in different agricultural conditions (e.g., different soils containing different symbiotic microbial species, etc.). In some embodiments, the genetic alteration allows the genetically altered plant to be grown in different agricultural conditions containing specific bacterial strains producing LCOs detected with high specificity, sensitivity, and/or selectivity by the genetically altered plant. In some embodiments, the bacterial strains are added as a seed coating or as a soil inoculum. In some embodiments, the genetically altered plant is able to be grown with different crop species (e.g., different crop rotations, etc.).


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs, comprising the steps of: providing a seed with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized, wherein the seed produces a plant with the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi; cultivating the plant under conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with high affinity, high selectivity, and/or high specificity, comprising the steps of: providing a seed with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with high affinity, high selectivity, and/or high specificity, wherein the seed produces a plant with the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity; cultivating the plant under conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with altered specificity, comprising the steps of: providing a seed with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with altered specificity, wherein the seed produces a plant with the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high specificity; cultivating the plant under conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with altered specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil. In some embodiments, the genetic alteration allows the genetically altered plant to recognize a different specific nitrogen-fixing bacterial species and/or specific mycorrhizal fungal species as compared to a plant without the genetic alteration. In some embodiments, the genetically altered plant is able to be grown in different agricultural conditions (e.g., different soils containing different symbiotic microbial species, etc.). In some embodiments, the genetically altered plant is able to be grown with different crop species (e.g., different crop rotations, etc.).


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs, comprising the steps of: providing a tissue culture or protoplast with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized; regenerating the tissue culture or protoplast into a plantlet; growing the plantlet into a plant, wherein the plant has the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi; transplanting the plant into conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with high affinity, high selectivity, and/or high specificity, comprising the steps of: providing a tissue culture or protoplast with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with high affinity, high selectivity, and/or high specificity, regenerating the tissue culture or protoplast into a plantlet; growing the plantlet into a plant, wherein the plant has the ability to recognize LCOs produced by produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity; transplanting the plant into conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with altered specificity, comprising the steps of: providing a tissue culture or protoplast with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with altered specificity, regenerating the tissue culture or protoplast into a plantlet; growing the plantlet into a plant, wherein the plant has the ability to recognize LCOs produced by produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high specificity; transplanting the plant into conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with altered specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil. In some embodiments, the genetic alteration allows the genetically altered plant to recognize a different specific nitrogen-fixing bacterial species and/or specific mycorrhizal fungal species as compared to a plant without the genetic alteration. In some embodiments, the genetically altered plant is able to be grown in different agricultural conditions (e.g., different soils containing different symbiotic microbial species, etc.). In some embodiments, the genetically altered plant is able to be grown with different crop species (e.g., different crop rotations, etc.).


In some embodiments of any of the above methods, the ability to recognize LCOs is conferred by a nucleic acid sequence encoding a modified plant LysM receptor of any one of the embodiments described in the section “Modified plant LysM receptors”. In some embodiments, the modified plant LysM receptor has higher selectivity and/or affinity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high selectivity and/or affinity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the root cell is a root cortex cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn (e.g., maize, Zea mays), rice (e.g., Oryza sativa, Oryza glaberrima, Zizania spp.), barley (e.g., Hordeum vulgare), wheat (e.g., common wheat, spelt, durum, Triticum aestivum, Triticum spelta, Triticum durum, Triticum spp.), Trema spp. (e.g., Trema cannabina, Trema cubense, Trema discolor, Trema domingensis, Trema integerrima, Trema lamarckiana, Trema micrantha, Trema orientalis, Trema philippinensis, Trema strigilosa, Trema tomentosa), apple (e.g., Malus pumila), pear (e.g., Pyrus communis, Pyrus xbretschneideri, Pyrus pyrifolia, Pyrus sinkiangensis, Pyrus pashia, Pyrus spp.), plum (e.g., prune, damson, bullaces, Prunus domestica, Prunus salicina), apricot (e.g., Prunus armeniaca, Prunus brigantina, Prunus mandshurica, Prunus mume, Prunus sibirica), peach (e.g., nectarine, Prunus persica), almond (e.g., Prunus dulcis, Prunus amygdalus), walnut (e.g., Persian walnut, English walnut, black walnut, Juglans regia, Juglans nigra, Juglans cinerea, Juglans californica), strawberry (e.g., Fragaria×ananassa, Fragaria chiloensis, Fragaria virginiana, Fragaria vesca), raspberry (e.g., European red raspberry, black raspberry, Rubus idaeus, Rubus occidentalis, Rubus strigosus), blackberry (e.g., evergreen blackberry, Himalayan blackberry, Rubus fruticosus, Rubus ursinus, Rubus laciniatus, Rubus argutus, Rubus armeniacus, Rubus plicatus, Rubus ulmifolius, Rubus allegheniensis), red currant (e.g., Ribes rubrum, Ribes spicatum, Ribesbes alpinum, Ribes schlechtendalii, Ribes multiflorum, Ribes petraeum, Ribes triste), black currant (e.g., Ribes nigrum), melon (e.g., watermelon, winter melon, casabas, cantaloupe, honeydew, muskmelon, Citrullus lanatus, Benincasa hispida, Cucumis melo cantalupensis, Cucumis melo inodorus, Cucumis melo reticulatus), cucumber (e.g., slicing cucumbers, pickling cucumbers, English cucumber, Cucumis sativus), pumpkin (e.g., Cucurbita pepo, Cucurbita maxima), squash (e.g., gourd, Cucurbita argyrosperma, Cucurbita ficifolia, Cucurbita maxima, Cucurbita moschata), grape (e.g., Vitis vinifera, Vitis amurensis, Vitis labrusca, Vitis mustangensis, Vitis riparia, Vitis rotundifolia), bean (e.g., Phaseolus vulgaris, Phaseolus lunatus, Vigna angularis, Vigna radiate, Vigna mungo, Phaseolus coccineus, Vigna umbellate, Vigna acontifolia, Phaseolus acutifolius, Vicia faba, Vicia faba equine, Phaseolus spp., Vigna spp.), soybean (e.g., soy, soya bean, Glycine max, Glycine soja), pea (e.g., Pisum spp., Pisum sativum var. sativum, Pisum sativum var. arvense), chickpea (e.g., garbanzo, Bengal gram, Cicer arietinum), cowpea (e.g., black-eyed pea, blackeye bean, Vigna unguiculata), pigeon pea (e.g., Arhar/Toor, cajan pea, Congo bean, gandules, Caganus cajan), lentil (e.g., Lens culinaris), Bambara groundnut (e.g., earth pea, Vigna subterranea), lupin (e.g., Lupinus spp.), pulses (e.g., minor pulses, Lablab purpureaus, Canavalia ensiformis, Canavalia gladiate, Psophocarpus tetragonolobus, Mucuna pruriens var. utilis, Pachyrhizus erosus), Medicago spp. (e.g., Medicago sativa, Medicago truncatula, Medicago arborea), Lotus spp. (e.g., Lotus japonicus), forage legumes (e.g., Leucaena spp., Albizia spp., Cyamopsis spp., Sesbania spp., Stylosanthes spp., Trifolium spp., Vicia spp.), indigo (e.g., Indigofera spp., Indigofera tinctoria, Indigofera suffruticosa, Indigofera articulata, Indigofera oblongifolia, Indigofera aspalthoides, Indigofera suffruticosa, Indigofera arrecta), legume trees (e.g., locust trees, Gleditsia spp., Robinia spp., Kentucky coffeetree, Gymnocladus dioicus, Acacia spp., Laburnum spp., Wisteria spp.), or hemp (e.g., cannabis, Cannabis sativa).


Molecular Biological Methods to Produce Genetically Altered Plants and Plant Cells

One embodiment of the present invention provides a genetically altered plant or plant cell comprising one or more modified endogenous plant genes. For example, the present disclosure provides plants with genetically altered LysM receptors modified to include a hydrophobic patch or alter the hydrophobic patch in the LysM2 domain and plants with genetically altered LysM receptors modified by replacing regions in the LysM1 domain with corresponding donor LysM1 domain regions. Plants with these modified receptors can have increased affinity, selectivity, and/or specificity for LCOs.


Certain aspects of the present disclosure relate to methods for selection of a target plant LysM receptor for modifying the target plant LysM receptor to have a desired receptor characteristic, wherein the method includes the steps of: a) providing a structural model, a molecular model, a surface characteristics model, and/or an electrostatic potential model of a donor plant LysM receptor having the desired receptor characteristic and two or more potential target plant LysM receptors; b) comparing each of the two or more potential target plant LysM receptors with the structural model, the molecular model, the surface characteristics model, and/or the electrostatic potential model of the donor plant LysM receptor, and/or comparing each of the two or more potential target plant LysM receptors with the donor plant LysM receptor using structural overlay; and c) selecting the potential target plant LysM receptor with a suitable match for the donor plant LysM receptor to be the target plant LysM receptor. In some embodiments, the criteria for determining that the potential target plant LysM receptor is a suitable match for the donor plant LysM receptor in step (c) are selected from the group of goodness of fit to template structure; similarity; phylogenetic relation; surface potential; coverage to template structure; GMQE, QMEAN, and Local Quality estimates from SWISS-Model; or any combination thereof. In some embodiments, the structural model of a donor plant LysM receptor is a protein crystal structure, a molecular model, a cryo-EM structure, and a NMR structure. In some embodiments, the donor plant LysM receptor model is of an entire ectodomain and the two or more potential target plant LysM receptor models are of entire ectodomains. In some embodiments, the donor plant LysM receptor model is of a LysM1 domain, a LysM2 domain, a LysM3 domain, or any combination thereof, and the two or more potential target plant LysM receptor models are of LysM1 domains, LysM2 domains, LysM3 domains, or any combination thereof.


In some embodiments, the donor plant LysM receptor is Medicago NFP, Medicago LYK3, Lotus NFR1, Lotus NFR5, Lotus LYS11, or Arabidopsis CERK1. In some embodiments, the two or more target plant LysM receptors are additionally compared to Lotus CERK6. In some embodiments, the two or more potential target plant LysM receptor polypeptides are all from the same plant species or plant variety. In some embodiments, the desired receptor characteristic is affinity, selectivity, and/or specificity for an oligosaccharide or class of oligosaccharides. In some embodiments, the desired receptor characteristic is binding kinetics for an oligosaccharide or class of oligosaccharides, wherein the binding kinetics include off-rate and on-rate. In some embodiments, the class of oligosaccharides is selected from the group of LCOs, COs, beta-glucans, cyclic-beta-glucans, exopolysaccharides, or optionally LPS. In some embodiments, the class of oligosaccharides is LCOs or COs. In some embodiments, the class of oligosaccharides is LCOs, optionally produced by a produced by a nitrogen-fixing bacteria optionally selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof; or optionally produced by a mycorrhizal fungi optionally selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the LCOs are M. loti LCO, S. meliloti LCO-IV, or S. meliloti LCO-V.


In some embodiments, the method further includes step d) identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a first oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor, and optionally identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a second oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor. In some embodiments, the method further includes step e) generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; generating a modified plant LysM receptor wherein the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; or generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM and the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM. In some embodiments, the first oligosaccharide binding feature is a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the second oligosaccharide binding feature is a part of the LysM1 domain of the donor plant LysM receptor. In some embodiments, the modified LysM receptor is an endogenous LysM receptor modified using one or more gene editing components. In some embodiments, the one or more gene editing components target a nuclear genome sequence operably linked to a nucleic acid encoding an endogenous LysM receptor (e.g., a soybean LysM receptor). A further embodiment of this aspect includes the one or more gene editing components being selected from the group of a ribonucleoprotein complex that targets the nuclear genome sequence; a vector comprising a TALEN protein encoding sequence, wherein the TALEN protein targets the nuclear genome sequence; a vector comprising a ZFN protein encoding sequence, wherein the ZFN protein targets the nuclear genome sequence; an oligonucleotide donor (ODN), wherein the ODN targets the nuclear genome sequence; or a vector comprising a CRISPR/Cas enzyme encoding sequence and a targeting sequence, wherein the targeting sequence targets the nuclear genome sequence.


Additional aspects of the present disclosure relate to a modified plant LysM receptor produced using any one of the above methods, wherein the modified plant LysM receptor includes a LysM2 domain modified to comprise a hydrophobic patch on the surface of the LysM2 domain. Further aspects of the present disclosure relate to a modified plant LysM receptor produced using any one of the above methods, wherein the modified plant LysM receptor includes a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. The modified plant LysM receptors of the present disclosure may be used to produce the genetically altered plant of any one of the above embodiments relating to plants as described in the section “Genetically altered plants and seeds”


Transformation and generation of genetically altered monocotyledonous and dicotyledonous plant cells is well known in the art. See, e.g., Weising, et al., Ann. Rev. Genet. 22:421-477 (1988); U.S. Pat. No. 5,679,558; Agrobacterium Protocols, ed: Gartland, Humana Press Inc. (1995); and Wang, et al. Acta Hort. 461:401-408 (1998). The choice of method varies with the type of plant to be transformed, the particular application and/or the desired result. The appropriate transformation technique is readily chosen by the skilled practitioner.


Any methodology known in the art to delete, insert or otherwise modify the cellular DNA (e.g., genomic DNA and organelle DNA) can be used in practicing the inventions disclosed herein. For example, a disarmed Ti plasmid, containing a genetic construct for deletion or insertion of a target gene, in Agrobacterium tumefaciens can be used to transform a plant cell, and thereafter, a transformed plant can be regenerated from the transformed plant cell using procedures described in the art, for example, in EP 0116718, EP 0270822, PCT publication WO 84/02913 and published European Patent application (“EP”) 0242246. Ti-plasmid vectors each contain the gene between the border sequences, or at least located to the left of the right border sequence, of the T-DNA of the Ti-plasmid. Of course, other types of vectors can be used to transform the plant cell, using procedures such as direct gene transfer (as described, for example in EP 0233247), pollen mediated transformation (as described, for example in EP 0270356, PCT publication WO 85/01856, and U.S. Pat. No. 4,684,611), plant RNA virus-mediated transformation (as described, for example in EP 0 067 553 and U.S. Pat. No. 4,407,956), liposome-mediated transformation (as described, for example in U.S. Pat. No. 4,536,475), and other methods such as the methods for transforming certain lines of corn (e.g., U.S. Pat. No. 6,140,553; Fromm et al., Bio/Technology (1990) 8, 833 839); Gordon-Kamm et al., The Plant Cell, (1990) 2, 603 618) and rice (Shimamoto et al., Nature, (1989) 338, 274 276; Datta et al., Bio/Technology, (1990) 8, 736 740) and the method for transforming monocots generally (PCT publication WO 92/09696). For cotton transformation, the method described in PCT patent publication WO 00/71733 can be used. For soybean transformation, reference is made to methods known in the art, e.g., Hinchee et al. (Bio/Technology, (1988) 6, 915) and Christou et al. (Trends Biotech, (1990) 8, 145) or the method of WO 00/42207.


Genetically altered plants of the present invention can be used in a conventional plant breeding scheme to produce more genetically altered plants with the same characteristics, or to introduce the genetic alteration(s) in other varieties of the same or related plant species. Seeds, which are obtained from the altered plants, preferably contain the genetic alteration(s) as a stable insert in chromosomal or organelle DNA or as modifications to an endogenous gene or promoter. Plants comprising the genetic alteration(s) in accordance with the invention include plants comprising, or derived from, root stocks of plants comprising the genetic alteration(s) of the invention, e.g., fruit trees or ornamental plants. Hence, any non-transgenic grafted plant parts inserted on a transformed plant or plant part are included in the invention.


Introduced genetic elements, whether in an expression vector or expression cassette, which result in the expression of an introduced gene will typically utilize a plant-expressible promoter. A ‘plant-expressible promoter’ as used herein refers to a promoter that ensures expression of the genetic alteration(s) of the invention in a plant cell. Examples of promoters directing constitutive expression in plants are known in the art and include: the strong constitutive 35S promoters (the “35S promoters”) of the cauliflower mosaic virus (CaMV), e.g., of isolates CM 1841 (Gardner et al., Nucleic Acids Res, (1981) 9, 2871 2887), CabbB S (Franck et al., Cell (1980) 21, 285 294) and CabbB J I (Hull and Howell, Virology, (1987) 86, 482 493); promoters from the ubiquitin family (e.g., the maize ubiquitin promoter of Christensen et al., Plant Mol Biol, (1992) 18, 675-689), the gos2 promoter (de Pater et al., The Plant J (1992) 2, 834-844), the emu promoter (Last et al., Theor Appl Genet, (1990) 81, 581-588), actin promoters such as the promoter described by An et al. (The Plant J, (1996) 10, 107), the rice actin promoter described by Zhang et al. (The Plant Cell, (1991) 3, 1155-1165); promoters of the Cassava vein mosaic virus (WO 97/48819, Verdaguer et al. (Plant Mol Biol, (1998) 37, 1055-1067), the pPLEX series of promoters from Subterranean Clover Stunt Virus (WO 96/06932, particularly the S4 or S7 promoter), an alcohol dehydrogenase promoter, e.g., pAdh1S (GenBank accession numbers X04049, X00581), and the TR1′ promoter and the TR2′ promoter (the “TR1′ promoter” and “TR2′ promoter”, respectively) which drive the expression of the 1′ and 2′ genes, respectively, of the T DNA (Velten et al., EMBO J, (1984) 3, 2723 2730).


Alternatively, a plant-expressible promoter can be a tissue-specific promoter, i.e., a promoter directing a higher level of expression in some cells or tissues of the plant, e.g., in root epidermal cells or root cortex cells. Examples of constitutive promoters that are often used in plant cells are the cauliflower mosaic (CaMV) 35S promoter (KAY et al. Science, 236, 4805, 1987), and various derivatives of the promoter, virus promoter vein mosaic cassava (International Application WO 97/48819), the maize ubiquitin promoter (CHRISTENSEN & QUAIL, Transgenic Res, 5, 213-8, 1996), trefoil (Ljubql, MAEKAWA et al. Mol Plant Microbe Interact. 21, 375-82, 2008) and Arabidopsis (UBQ10, Norris et al. Plant Mol. Biol. 21, 895-906, 1993).


In preferred embodiments, root specific promoters will be used. Non-limiting examples include the promoter of the maize allothioneine (DE FRAMOND et al, FEBS 290, 103-106, 1991 Application EP 452269), the chitinase promoter (SAMAC et al. Plant Physiol 93, 907-914, 1990), the glutamine synthetase soybean root promoter (HIREL et al. Plant Mol. Biol. 20, 207-218, 1992), the RCC3 promoter (PCT Application WO 2009/016104), the rice antiquitine promoter (PCT Application WO 2007/076115), the LRR receptor kinase promoter (PCT application WO 02/46439), the maize ZRP2 promoter (U.S. Pat. No. 5,633,363), the tomato LeExt1 promoter (Bucher et al. Plant Physiol. 128, 911-923, 2002), and the Arabidopsis pCO2 promoter (HEIDSTRA et al, Genes Dev. 18, 1964-1969, 2004). These plant promoters can be combined with enhancer elements, they can be combined with minimal promoter elements, or can comprise repeated elements to ensure the expression profile desired.


In some embodiments, genetic elements to increase expression in plant cells can be utilized. For example, an intron at the 5′ end or 3′ end of an introduced gene, or in the coding sequence of the introduced gene, e.g., the hsp70 intron. Other such genetic elements can include, but are not limited to, promoter enhancer elements, duplicated or triplicated promoter regions, 5′ leader sequences different from another transgene or different from an endogenous (plant host) gene leader sequence, 3′ trailer sequences different from another transgene used in the same plant or different from an endogenous (plant host) trailer sequence.


An introduced gene of the present invention can be inserted in host cell DNA so that the inserted gene part is upstream (i.e., 5′) of suitable 3′ end transcription regulation signals (e.g., transcript formation and polyadenylation signals). This is preferably accomplished by inserting the gene in the plant cell genome (nuclear or chloroplast). Preferred polyadenylation and transcript formation signals include those of the nopaline synthase gene (Depicker et al., J. Molec Appl Gen, (1982) 1, 561-573), the octopine synthase gene (Gielen et al., EMBO J, (1984) 3:835 845), the SCSV or the Malic enzyme terminators (Schunmann et al., Plant Funct Biol, (2003) 30:453-460), and the T DNA gene 7 (Velten and Schell, Nucleic Acids Res, (1985) 13, 6981 6998), which act as 3′ untranslated DNA sequences in transformed plant cells. In some embodiments, one or more of the introduced genes are stably integrated into the nuclear genome. Stable integration is present when the nucleic acid sequence remains integrated into the nuclear genome and continues to be expressed (e.g., detectable mRNA transcript or protein is produced) throughout subsequent plant generations. Stable integration into and/or editing of the nuclear genome can be accomplished by any known method in the art (e.g., microparticle bombardment, Agrobacterium-mediated transformation, CRISPR/Cas9, electroporation of protoplasts, microinjection, etc.).


The term recombinant or modified nucleic acids refers to polynucleotides which are made by the combination of two otherwise separated segments of sequence accomplished by the artificial manipulation of isolated segments of polynucleotides by genetic engineering techniques or by chemical synthesis. In so doing one may join together polynucleotide segments of desired functions to generate a desired combination of functions.


As used herein, the terms “overexpression” and “upregulation” refer to increased expression (e.g., of mRNA, polypeptides, etc.) relative to expression in a wild type organism (e.g., plant) as a result of genetic modification. In some embodiments, the increase in expression is a slight increase of about 10% more than expression in wild type. In some embodiments, the increase in expression is an increase of 50% or more (e.g., 60%, 70%, 80%, 100%, etc.) relative to expression in wild type. In some embodiments, an endogenous gene is overexpressed. In some embodiments, an exogenous gene is overexpressed by virtue of being expressed. Overexpression of a gene in plants can be achieved through any known method in the art, including but not limited to, the use of constitutive promoters, inducible promoters, high expression promoters (e.g., PsaD promoter), enhancers, transcriptional and/or translational regulatory sequences, codon optimization, modified transcription factors, and/or mutant or modified genes that control expression of the gene to be overexpressed.


Where a recombinant nucleic acid is intended for expression, cloning, or replication of a particular sequence, DNA constructs prepared for introduction into a host cell will typically comprise a replication system (e.g. vector) recognized by the host, including the intended DNA fragment encoding a desired polypeptide, and can also include transcription and translational initiation regulatory sequences operably linked to the polypeptide-encoding segment. Additionally, such constructs can include cellular localization signals (e.g., plasma membrane localization signals). In preferred embodiments, such DNA constructs are introduced into a host cell's genomic DNA, chloroplast DNA or mitochondrial DNA.


In some embodiments, a non-integrated expression system can be used to induce expression of one or more introduced genes. Expression systems (expression vectors) can include, for example, an origin of replication or autonomously replicating sequence (ARS) and expression control sequences, a promoter, an enhancer and necessary processing information sites, such as ribosome-binding sites, RNA splice sites, polyadenylation sites, transcriptional terminator sequences, and mRNA stabilizing sequences. Signal peptides can also be included where appropriate from secreted polypeptides of the same or related species, which allow the protein to cross and/or lodge in cell membranes, cell wall, or be secreted from the cell.


Selectable markers useful in practicing the methodologies of the invention disclosed herein can be positive selectable markers. Typically, positive selection refers to the case in which a genetically altered cell can survive in the presence of a toxic substance only if the recombinant polynucleotide of interest is present within the cell. Negative selectable markers and screenable markers are also well known in the art and are contemplated by the present invention. One of skill in the art will recognize that any relevant markers available can be utilized in practicing the inventions disclosed herein.


Screening and molecular analysis of recombinant strains of the present invention can be performed utilizing nucleic acid hybridization techniques. Hybridization procedures are useful for identifying polynucleotides, such as those modified using the techniques described herein, with sufficient homology to the subject regulatory sequences to be useful as taught herein. The particular hybridization techniques are not essential to the subject invention. As improvements are made in hybridization techniques, they can be readily applied by one of skill in the art. Hybridization probes can be labeled with any appropriate label known to those of skill in the art. Hybridization conditions and washing conditions, for example temperature and salt concentration, can be altered to change the stringency of the detection threshold. See, e.g., Sambrook et al. (1989) vide infra or Ausubel et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, NY, N.Y., for further guidance on hybridization conditions.


Additionally, screening and molecular analysis of genetically altered strains, as well as creation of desired isolated nucleic acids can be performed using Polymerase Chain Reaction (PCR). PCR is a repetitive, enzymatic, primed synthesis of a nucleic acid sequence. This procedure is well known and commonly used by those skilled in this art (see Mullis, U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,800,159; Saiki et al. (1985) Science 230:1350-1354). PCR is based on the enzymatic amplification of a DNA fragment of interest that is flanked by two oligonucleotide primers that hybridize to opposite strands of the target sequence. The primers are oriented with the 3′ ends pointing towards each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences, and extension of the annealed primers with a DNA polymerase result in the amplification of the segment defined by the 5′ ends of the PCR primers. Because the extension product of each primer can serve as a template for the other primer, each cycle essentially doubles the amount of DNA template produced in the previous cycle. This results in the exponential accumulation of the specific target fragment, up to several million-fold in a few hours. By using a thermostable DNA polymerase such as the Taq polymerase, which is isolated from the thermophilic bacterium Thermus aquaticus, the amplification process can be completely automated. Other enzymes which can be used are known to those skilled in the art.


Nucleic acids and proteins of the present invention can also encompass homologues of the specifically disclosed sequences. Homology (e.g., sequence identity) can be 50%-100%. In some instances, such homology is greater than 80%, greater than 85%, greater than 90%, or greater than 95%. The degree of homology or identity needed for any intended use of the sequence(s) is readily identified by one of skill in the art. As used herein percent sequence identity of two nucleic acids is determined using an algorithm known in the art, such as that disclosed by Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al. (1990) J. Mol. Biol. 215:402-410. BLAST nucleotide searches are performed with the NBLAST program, score=100, wordlength=12, to obtain nucleotide sequences with the desired percent sequence identity. To obtain gapped alignments for comparison purposes, Gapped BLAST is used as described in Altschul et al. (1997) Nucl. Acids. Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (NBLAST and XBLAST) are used. See www.ncbi.nih.gov.


Preferred host cells are plant cells. Recombinant host cells, in the present context, are those which have been genetically modified to contain an isolated nucleic molecule, contain one or more deleted or otherwise non-functional genes normally present and functional in the host cell, or contain one or more genes to produce at least one recombinant protein. The nucleic acid(s) encoding the protein(s) of the present invention can be introduced by any means known to the art which is appropriate for the particular type of cell, including without limitation, transformation, lipofection, electroporation or any other methodology known by those skilled in the art.


Having generally described this invention, the same will be better understood by reference to certain specific examples, which are included herein to further illustrate the invention and are not intended to limit the scope of the invention as defined by the claims.


EXAMPLES

The present disclosure is described in further detail in the following examples which are not in any way intended to limit the scope of the disclosure as claimed. The attached figures are meant to be considered as integral parts of the specification and description of the disclosure. The following examples are offered to illustrate, but not to limit the claimed disclosure.


Example 1: Structural Characterization of Medicago NFP Ectodomain

The following example describes the structural characterization of the Medicago NFP protein ectodomain.


Materials and Methods

Expression and purification of Medicago NFP ectodomain: The Medicago truncatula NFP ectodomain (residues 28-246) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native NFP signal peptide (residues 1-27, predicted by SignalP 4.1) was replaced with the AcMNPV gp67 signal peptide to facilitate secretion and a hexa-histidine tag was added to the C-terminus. Recombinant baculoviruses were produced in Sf9 cells (Spodoptera frugiperda) using the FlashBac Gold kit (Oxford Expression technologies) according to the manufacturer's instructions with Lipofectin (ThermoFisher Scientific) as a transfection reagent. Protein expression was performed as follows. Suspension-cultured Sf9 cells were maintained with shaking at 299 K in serum-free MAX-XP (BD-Biosciences, discontinued) or HyClone SFX (GE Healthcare) medium supplemented with 1% Pen-Strep (10000 U/ml, Life technologies) and 1% CD lipid concentrate (Gibco). Protein expression was induced by adding recombinant passage 3 virus once the Sf9 cells reached a cell density of 1.0*10{circumflex over ( )}6 cells/ml. After 5-7 days of expression, medium supernatant containing NFP ectodomains was harvested by centrifugation. This was followed by an overnight dialysis step against 50 mM Tris-HCl pH 8, 200 mM NaCl at 277 K. The NFP ectodomain was enriched by two subsequent steps of Ni-IMAC purification (HisTrap excel/HisTrap HP, both GE Healthcare). For crystallography, N-glycans were removed using the endoglycosidase PNGase F (1:15 (w/w), room temperature, overnight). As a final purification step, NFP ectodomains was purified by SEC on a Superdex 200 10/300 or HiLoad Superdex 200 16/600 (both GE Healthcare) in phosphate buffered saline at pH 7.2 supplemented to a total of 500 mM NaCl (for binding assays) or 50 mM Tris-HCl, 200 mM NaCl (for crystallography). NFP ectodomain elutes as a single, homogeneous peak corresponding to a monomer.


Crystallization and structure determination: Crystals of deglycosylated NFP ectodomain were obtained using a vapour diffusion setup at 3-5 mg/ml in 0.2 M Na-acetate, 0.1 M Na-cacodylate pH 6.5, and 30% (w/v) PEG-8000. Crystals were cryoprotected in their crystallization condition by supplementing with 5% (w/v) PEG-400 before being snap-frozen in liquid nitrogen. Complete diffraction data to 2.85 Å resolution was obtained at the MaxLab 1911-3 beamline. The phase problem was solved by molecular replacement using Phaser from the PHENIX suite with a homology model based on the AtCERK1 ectodomain structure (PDB coordinates 4EBZ) as a search model. Model building and refinement was done using COOT and the PHENIX suite, respectively. The output pdb filled structural model was generated and its electrostatic surface potential was calculated using the PDB2PQR and APBS webservers (PMID: 21425296). The results were visualized in PyMol using APBS tools 2.1 (DeLano, W. L. (2002). PyMOL. DeLano Scientific, San Carlos, Calif., 700.).


Results

The structure of Medicago NFP was determined by molecular replacement using a homology model based on the inner low B-factor scaffold of AtCERK1. The complete structure of NFP (residues 33-233) was built this way, including four N-glycosylations that were clearly resolved in the 2.8 Å electron density map. NFP forms a compact structure where three classical βααβ LysM domains are tightly interconnected and stabilized by 3 conserved disulfide bridges (C3-C104, C47-C166 and C102-C164) (FIG. 1). The disulfide connectivity pattern and the overall scaffold arrangement is shared with other LysM-RLK proteins involved in chitin defense signaling, supporting a common evolutionary origin of these class of receptors.


Example 2: Identification of Important Residues for Lipo-Chitooligosaccharide (LCO) Perception

The following example describes the use of a structurally-guided approach to identify important residues in NFP for LCO perception. After identifying important residues, NFP point mutations were created, and tested using ligand-binding assays.


Materials and Methods

Structurally-guided residue identification: The NFP ectodomain was structurally aligned to ligand-bound CERK1. Then, the electrostatic surface potential was mapped to the previously-developed structure of the NFP ectodomain. The predicted ligand-binding location and electrostatic surface potential are depicted in FIG. 2A.


Creation of NFP point mutations: The NFP leucine residues L147 and L154 were replaced with aspartate residues. Aspartate is similar in size to leucine, but negatively charged where leucine is hydrophobic. Point mutants of NFP were engineered using site-directed mutagenesis. In particular, a double-mutated NFP was engineered where the leucine residues L147 and L154 were replaced with aspartate residues to create the mutant NFP L147D L154D. Point mutated versions of NFP were expressed and purified as described in Example 1.


NFP mutant binding assays: The binding assay using NFP wild type (WT) protein was replicated seven times, while the binding assay using the NFP mutant NFP L147D L154D was replicated four times. A summary of results is shown in FIG. 2B.


Biolayer interferometry (BLI): Binding of NFP WT and NFP L147D/L154D mutant to S. meliloti LCO-IV was measured on an Octet RED 96 system (Pall ForteBio). S. meliloti LCO consists of a tetrameric/pentameric N-acetylglucosamine backbone that is 0-sulfated on the reducing terminal residue, 0-acetylated on the non-reducing terminal residue, and mono-N-acylated by unsaturated C16 acyl groups. Biotinylated ligand conjugates were immobilized on streptavidin biosensors (kinetic quality, Pall ForteBio) at a concentration of 125-250 nM for 5 minutes. The binding assays were replicated 7 times for the NFP WT, and 4 times for the NFP L147D/L154D mutant. Data analysis was performed in GraphPad Prism 6 software (GraphPad Software, Inc.). Equilibrium dissociation constants derived from the steady-state were determined by applying a non-linear regression (one site, specific binding) to the response at equilibrium plotted against the protein concentration. Kinetic parameters were determined by non-linear regression (association followed by dissociation) on the subtracted data. Results are shown in FIGS. 19A-19C. Binding of A. thaliana CERK1 (AtCERK1) to chitopentaose (CO5) and chitooctaose (C08) was measured in the same way. Results are shown in FIGS. 18A-18B.


Results


FIG. 2A shows modelling of the NFP ectodomain bound to a ligand with predicted chitin and LCO fatty acid chain locations. Structural alignment of the NFP ectodomain with ligand-bound CERK1 positions chitin in the LysM2 binding groove of NFP without any obvious clashes. Strikingly, the electrostatic surface potential revealed a hydrophobic patch on the NFP ectodomain that is located near the non-reducing moiety of the docked chitin molecule, which potentially could accommodate the fatty acid chain of the LCO ligand. Two leucine residues (L147 and L154) were identified as the residues that give this patch its hydrophobic character.


To test the contribution of these two residues to LCO binding, both residues were replaced with similarly sized but negatively charged aspartate residues to produce NFP L147D L154D. Interestingly, the double mutated NFP L147D L154D ectodomain bound S. meliloti LCO-IV with approximately two times lower affinity; Kd of 48.0±1.0 μM (FIG. 2B). Closer inspection of the binding kinetics revealed that the association (Kon) was almost unaffected whereas the dissociation (Koff) was approximately 15 times faster in the double mutant. These results show that the hydrophobic patch of the NFP ectodomain is stabilizing the LCO bound state, and that this stabilization is most likely occurring via the fatty acid chain. Docking the LCO fatty acid in this hydrophobic patch and the chitin backbone in the LysM2 binding site (derived from CERK1) would place the sulphate and acetyl side groups facing K141.


Biochemical analysis of LCO binding to the hydrophobic patch mutant reveals that purified L147D/L154D NFP-ECD bound S. meliloti LCO-IV with 13-fold lower affinity (Kd of 166.7±4.2 μM) compared to WT NFP-ECD (FIGS. 19A-19C). The association rate (kon) was 4.5-fold faster and the dissociation rate (koff) was dramatically increased with 59-fold in the double mutant compared to the WT NFP-ECD, suggesting that the hydrophobic patch had a strong stabilizing effect on LCO binding mediated by the acyl chain.


The binding kinetics of AtCERK1 binding to chitin fragments were measured as a comparison. As shown in FIGS. 18A-18B, fast association and dissociation rates were seen. These kinetics were reminiscent of the kinetics observed for the mutant L147D/L154D NFP-ECD (FIG. 19B). The binding kinetics of AtCERK1 to chitin fragments were clearly different than the binding kinetics of NFP to LCO (FIG. 19A).


Together, the data provided evidence that the hydrophobic patch in NFP (shown in FIG. 19D) was a conserved structural imprint critical for LCO perception and symbiotic signaling.


Example 3: Complementation Test in Medicago nfp Mutants

To confirm the biochemical observations described in the previous examples, next a complementation test was performed in Medicago nfp mutants using hairy root transformation.


Materials and Methods

Complementation assay: Construct assembly, plant growth conditions, hairy root transformations, nodulation and ROS assays were generally conducted as described in Bozsoki et al. (2017) (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127). A general schematic of the construct is provided in FIG. 3. The tested transgenes were the mutated LysM receptors described in Example 2.


Results


FIGS. 4A-4B shows the results of the complementation test. The results shown in FIG. 4A are complementation tests where the plants were inoculated with S. meliloti strain 2011. When Medicago nfp mutants are transformed with the wild type Nfp gene, complementation is seen, which is defined as an average of 10 nodules per plant 6-7 weeks after inoculation with S. meliloti strain 2011. In contrast, roots transformed with the double mutant construct (L147D/L154D) did not develop any nodules per plant 6-7 weeks after inoculation with S. meliloti strain 2011.


These complementation experiments were repeated using S. medicae inoculation, which has been reported to nodulate Medicago with higher efficiency. The results shown in FIG. 4B are complementation tests where the plants were inoculated with S. medicae. The S. medicae results confirm that the double mutant construct (L147D/L154D) complements poorly. Taken together, these results show that the hydrophobic patch in NFP is required for LCO recognition, and for functional symbiotic signaling.


Example 4: Functional Characterization of CO and LCO Receptors Using Domain Swaps

The following example describes functional characterization of the Lotus LCO receptor NFR1 and the Lotus CO receptor CERK6. This was done using domain swaps, and by measuring nodulation and defense (reactive oxygen species, ROS) responses to assess complementation.


Materials and Methods

Complementation assay: Construct assembly, plant growth conditions, hairy root transformations, nodulation and ROS assays were generally conducted as described in Bozsoki et al. (2017) (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127). A general schematic of the construct is provided in FIG. 3, whereby the pNfr1 promoter was used for the constructs tested in nodulation assays, and the pCerk6 promoter was used for the constructs tested in ROS assays. For functional complementation of nfr1 and cerk6 mutants, only plants expressing the YFP marker protein from the transformation control (FIG. 3) were used. For the nodulation assays, nodules were counted on hairy root transformed L. japonicus nfr1-1 mutant roots after the indicated days post inoculation (dpi) (e.g., 44 dpi, 49 dpi, and 50 dpi) with M. loti R7A (FIG. 5A). For the ROS assays, transformed roots were harvested from individual plants, then the root material was divided into two halves, each half being tested for ROS response to CO8 or flg22. For each transformed plant the ratio of CO8 and flg22 elicited ROS peak values after were plotted normalized to the wild type sample, which was set as 1 (FIG. 5B). The tested chimeric receptors are depicted as shaded block diagrams in FIGS. 5A-5B.


Results


FIGS. 5A-5B show results of functional studies measuring nodulation and defense using domain swaps between the Lotus LCO receptor NFR1 and the Lotus CO receptor CERK6. FIG. 5A shows complementation experiments of a Lotus nfr1 single mutant with different domain-swapped protein constructs expressed under the pNFR1 promoter. Nodulation was used to assess complementation. FIG. 5B shows complementation experiments of a Lotus cerk6 single mutant with different domain-swapped protein constructs expressed under the pCerk6 promoter. The level of elicited ROS response was used to assess complementation. The results of these experiments show that the LysM1 domain of the NFR1 ectodomain is important to perceive both LCO (in the case of NFR1) and CO (in the case of CERK6) ligands.


Additional experiments, also depicted in FIGS. 5A-5B, swapped smaller sections, referred to as regions, of the domains. These experiments showed that two regions, namely region II and region IV, were particularly important for specific recognition of a ligand. Taken together, these results show that swapping either the entire LysM1 domain, or swapping only region II and region IV, is sufficient to convert a CO receptor into an LCO receptor.


Example 5: Structural Characterization of Lotus CERK6 Ectodomain

The following example describes the structural characterization of the Lotus CERK6 protein ectodomain.


Materials and Methods

Modelling: The target LysM receptor amino acid sequence (Lotus CERK6) was aligned with a known receptor sequence (Medicago NFP). Then, the LysM1-3 domains of the target sequence were used as an input in SWISS-MODEL (Biasini 2014). The structural coordinate file (.pdb) of the Medicago NFP crystal structure as template file in SWISS-MODEL (Biasini 2014), and the modelling program was run using the command ‘Build Model’. The electrostatic surface potential of the output target (.pdb) model generated with SWISS-MODEL was calculated using PDB2PQR & APBS webservers (PMID: 21425296) and visualized in PyMol using APBS tools 2.1 (DeLano, W. L. 2002). The 3D structure of the Lotus CERK6 ectodomain is depicted in FIG. 6, and corresponds to that published by Bozsoki et al., 2017 (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127).


Results

The 3D structure of CERK6 shows that region II and region IV are located adjacent to each other as shown in FIG. 6. This indicates the potential involvement of these two regions in a possible binding site.


Example 6: Functional Characterization of LCO Receptors Using Domain Swaps

The following example describes functional characterization of the Lotus LCO receptor NFR1 and the Medicago LCO receptor LYK3. This was done using domain swaps, and by measuring nodulation to assess complementation.


Materials and Methods

Complementation assay: Construct assembly, plant growth conditions, hairy root transformations, nodulation and ROS assays were generally conducted as described in Bozsoki et al. (2017) (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127). A general schematic of the construct is provided in FIG. 3, whereby the pNFR1 promoter was used to drive the chimeric constructs. The tested chimeric receptors in Lotus are depicted as block diagrams below the graph in FIG. 7, where NFR1 domains are shown in white and LYK3 domains are shown in grey, and transverse lines across the block depicting the LysM1 domain indicate sections II and IV. Unaltered Lotus CERK6 protein was used as a negative control (zero nodulation). Nodules were counted on hairy root transformed L. japonicus nfr1-1 mutant roots 35 days post inoculation with M. loti R7A. M. loti R7A is the cognate N-fixing bacterial strain for L. japonicus, and is not recognized by M. truncatula.


The tested chimeric receptors in Medicago are depicted as block diagrams in FIGS. 17A-17B, where NFR1 domains are shown in black, LYK3 domains are shown in grey, and transverse lines across the block depicting the LysM1 domain indicate regions II, III, and IV. The pLYK3 promoter was used to drive the chimeric constructs. Nodules were counted on hairy root transformed M. truncatula WT or M. truncatula lyk3 mutant roots 35 days post inoculation with S. meliloti. S. meliloti is the cognate N-fixing bacterial strain for M. truncatula, and is not recognized by L. japonicus.


Results


FIG. 7 shows results of functional studies measuring nodulation using domain swaps between the Lotus LCO receptor NFR1 and the Medicago LCO receptor LYK3. In addition, LjCERK6 was included as a negative control (zero nodulation). In a Lotus nfr1-1 mutant, two recombinant receptors were able to complement. Domains of NFR1 (white) and LYK3 (grey) proteins were assembled in different chimeric constructs as shown in the diagram below the graph. Transversal lines across LysM1 show the where the section II and IV were derived from. CERK6 protein was used as control. Only chimeric receptors that contained regions II and IV of the LysM1 domain or the entire LysM1 domain from NFR1 complemented the nfr1 mutant when inoculated with M. loti. This indicates that the LysM1 domain is essential for allowing specific M. loti LCO recognition. The importance of region II and region IV is shown by a recombinant receptor entirely consisting of MtLYK3 except for LjNFR1 region hand region IV, which was able to functionally complement the nfr1 mutant, even though the efficiency did not reach wild-type levels. This chimeric MtLYK3 receptor shows that the swap of regions II and IV is sufficient to change the specificity to M. loti LCO. Taken together, these results indicate that the LysM1 domain is essential for recognizing those LCOs produced by the cognate N-fixing bacterial strain of a legume species. Moreover, regions II and IV are particularly important for this recognition, because when they are replaced, recognition is lost.


The results from FIG. 7 showed that a chimeric MtLYK3 receptor with a swap of regions II and IV (rightmost receptor on graph) was sufficient to change the specificity of an otherwise fully MtLYK3 protein, which would normally recognize S. meliloti LCO, to M. loti LCO. Engineering the LjNFR1 receptor with regions II and IV from MtLyk3 resulted in a receptor that was not able to recognize M. loti LCO (receptor third from left on graph and receptor third from right on graph). This chimeric receptor showed that the swap of regions II and IV was sufficient to abolish recognition of M. loti by an otherwise fully LjNFR1 protein.



FIG. 17A shows that in a M. truncatula lyk3 mutant, recombinant receptors containing sections of LysM1 that included region III from MtLYK3 were able to complement. Region III is six amino acids located between region II and region IV (FIG. 17B). Engineered receptors that had the entire LysM1 from MtLYK3 (e.g., the receptor sixth from left (empty vectors counted) or the receptor sixth from right), a section of LysM1 spanning region II to region IV from MtLYK3 (e.g., the receptor fourth from left (empty vectors counted) or the receptor eighth from right), or region II, region III, and region IV from MtLYK3 (e.g., the receptor fifth from left (empty vectors counted) or the receptor seventh from right) were all able to complement the symbiotic deficient phenotype of the M. truncatula lyk3 mutant when inoculated with S. meliloti. In contrast, engineered receptors containing only region II and region IV from MtLYK3 (e.g., the receptor seventh from left (empty vectors counted) or the receptor fifth from right) were not able to specifically recognize S. meliloti LCO. It was observed that the chimeric receptor with the MtLYK3 transmembrane and kinase domains (receptor fifth from right) had a very low complementation ability (3 plants of the 15 analyzed had 1 or 2 nodules), which was thought to be due to the high efficiency of these additional regions from MtLYK3. This result was interpreted as region III being required for specific and efficient recognition of S. meliloti LCO, but regions II and IV being critical. Engineering the MtLYK3 receptor with regions II to IV from LjNFR1 (the receptor fourth from right), regions II, III, and IV from LjNFR1 (the receptor fourth from right), the entire LysM1 from LjNFR1 (the receptor second from right), or regions II and IV from LjNFR1 (the rightmost receptor) resulted in a receptor that was not able to recognize S. meliloti LCO.


Overall, these results indicated that the LysM1 domain was essential for recognizing those LCOs produced by the cognate N-fixing bacterial strain of a legume species. When the chimeric receptors were expressed in M. truncatula, the regions II, III, and IV of the LysM1 domain were identified as particularly important for this recognition. Replacing regions II and IV were sufficient to obtain a loss of recognition. Replacing regions II, III, and IV were required to obtain gain of recognition for S. meliloti LCO and optimal functionality of the receptor.


Example 7: Engineering Specific LCO Perception

The following example describes engineering of the Lotus receptor LYS11 (LjLYS11) to specifically perceive LCOs. This was done using domain swaps, by measuring ligand binding, and by measuring nodulation to assess complementation.


Materials and Methods

LjLYS11 ectodomain production and purification: The LjLYS11 ectodomain (residues 26-234; SEQ ID NO:60) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native LjLYS11 signal peptide was replaced with the gp64 signal peptide (SEQ ID NO:59) to facilitate secretion and a hexa-histidine (6×His; SEQ ID NO:61) tag was added to the C-terminus (LAYS11-ecto (26-234), N-term gp64, C-term 6His=SEQ ID NO:56). Recombinant baculoviruses were produced in Sf9 cells (Spodoptera frugiperda) using the FlashBac Gold kit (Oxford Expression technologies) according to the manufacturer's instructions with Lipofectin (ThermoFisher Scientific) as a transfection reagent. Protein expression was performed as follows. Suspension-cultured Sf9 cells were maintained with shaking at 299 K in serum-free MAX-XP (BD-Biosciences, discontinued) or HyClone SFX (GE Healthcare) medium supplemented with 1% Pen-Strep (10000 U/ml, Life technologies) and 1% CD lipid concentrate (Gibco). Protein expression was induced by adding recombinant passage 3 virus once the Sf9 cells reached a cell density of 1.0*10{circumflex over ( )}6 cells/ml. After 5-7 days of expression, medium supernatant containing LjLYS11 ectodomains was harvested by centrifugation. This was followed by an overnight dialysis step against 50 mM Tris-HCl pH 8, 200 mM NaCl at 277 K. The LjLYS11 ectodomain was enriched by two subsequent steps of Ni-IMAC purification (HisTrap excel/HisTrap HP, both GE Healthcare). For crystallography experiments, N-glycans were removed using the endoglycosidase PNGase F (1:15 (w/w), room temperature, overnight). As a final purification step, LjLYS11 ectodomain was purified by SEC on a Superdex 200 10/300 or HiLoad Superdex 200 16/600 (both GE Healthcare) in phosphate buffered saline at pH 7.2 supplemented to a total of 500 mM NaCl (for binding assays) or 50 mM Tris-HCl, 200 mM NaCl (for crystallography).


Biolayer interferometry (BLI): Binding of LjLYS11 ectodomain and domain-swapped versions of LjLYS11 ectodomain to ligands was measured on an Octet RED 96 system (Pall ForteBio). The ligands used were CO5 chitin oligomer (corresponding to the backbone of S. meliloti LCO-V), M. loti LCO, and S. meliloti LCO. S. meliloti LCO consists of a tetrameric/pentameric N-acetylglucosamine backbone that is O-sulfated on the reducing terminal residue, 0-acetylated on the non-reducing terminal residue, and mono-N-acylated by unsaturated C16 acyl groups. M. loti LCO is a pentameric N-acetylglucosamine with a cis-vaccenic acid and a carbamoyl group at the non-reducing terminal residue together with a 2,4-O-acetylfucose at the reducing terminal residue. Biotinylated ligand conjugates were immobilized on streptavidin biosensors (kinetic quality, Pall ForteBio) at a concentration of 125-250 nM for 5 minutes. Data analysis was performed in GraphPad Prism 6 software (GraphPad Software, Inc.). Equilibrium dissociation constants derived from the steady-state were determined by applying a non-linear regression (one site, specific binding) to the response at equilibrium plotted against the protein concentration. Kinetic parameters were determined by non-linear regression (association followed by dissociation) on the subtracted data. The tested chimeric receptors are depicted as block diagrams in FIG. 15B, with LjLYS11 domains shown in black and LjNFR5 and above the binding assay results in FIGS. 15C-15E.


Complementation assay: The complementation assay was done as in Example 6. The tested chimeric receptors are depicted as block diagrams in FIG. 15F, where LjNFR5 domains are shown in light grey, LjLYS11 domains are shown in grey, and transverse lines across the block depicting the LysM2 domain indicate regions QLGDSYD (SEQ ID NO:63) and GV (SEQ ID NO:64) from LjNFR5. Empty vector and full-length LjLYS11 were used as negative controls (zero nodulation). Nodules were counted on hairy root transformed L. japonicus nfr5-2 mutant roots 35 days post inoculation with M. loti R7A. M. loti R7A is the cognate N-fixing bacterial strain for L. japonicus.


Results

Based on modelling and crystal structure determination of LjLYS11 ectodomain (FIG. 15A), it was predicted that the receptor would likely be a LCO receptor. To experimentally validate this prediction, binding experiments were performed. As shown in FIG. 15C, LjLYS11 ectodomain was able to bind CO5 (left graph), M. loti LCO (middle graph; M. loti is the cognate N-fixing bacterial strain for L. japonicus), and S. meliloti LCO (right graph; weak binding). This result indicated that the identified hydrophobic patch in the LjLYS11 ectodomain allowed it to bind LCO. Therefore, the hydrophobic patch was predictive of LCO-binding ability.


Next, it was tested whether stringent and specific LCO recognition could be engineered. For these tests, LjLYS11 ectodomains were engineered to contain parts of LjNFR5 receptors. Either the entire LysM2 or key residues from the LysM2 hydrophobic patch from LjLYS11 were replaced with the corresponding regions QLGDSYD (SEQ ID NO:63) and GV (SEQ ID NO:64) from LjNFR5, and ligand binding of these chimeric ectodomains was measured. As shown in FIG. 15D, replacing the entire LysM2 resulted in improved affinity to LCOs (both M. loti and S. meliloti LCOs), and resulted in a loss of ability to bind CO. A similar result was seen when only key residues of LysM2 were replaced (FIG. 15E).


Then, chimeric receptors were tested in planta. For these tests, the same chimeric LjLYS11 ectodomains were used (the entire LysM2, or key residues from LysM2 from LjLYS11 were replaced with the corresponding regions from LjNFR5) or the entire LjLYS11 ectodomain (LysM1, LysM2, and LysM3) was used, and these were attached to the transmembrane domain (wavy shape in schematic of FIG. 15F) and kinase domain (oval shape in schematic of FIG. 15F) of LjNFR5. In addition, full-length LjNFR5 and full-length LjLYS11 were tested. As shown in FIG. 15F, chimeric receptors with any one of these modifications (the receptors fourth from right, third from right, and second from right) retained their capacity to perceive the M. loti Nod factor and to initiate a symbiotic signaling event with similar efficiency as LjNFR5.


Interestingly, the chimeric LjLYS11/LjNFR5 ectodomains had different LCO binding kinetics with slow on/off rates that resembled the binding kinetics of M. truncatula NFP. As shown in FIG. 18D, slow on/off rate binding kinetics are thought to be important for functional symbiotic signaling. The fast on/off rate binding kinetics seen with hydrophobic patch mutants does not result in symbiotic signalling (FIG. 18E). Further, fast on/off kinetics also appear to be a hallmark of CO perception (FIG. 18C). As shown in FIG. 18F, NFP shared the cysteine bridge connectivity pattern and the overall arrangement of the scaffold with other LysM receptor kinases involved in chitin-elicited defence signalling. This result supported the hypothesis that despite their different function, these LysM receptors shared a common evolutionary origin (Zhang, X.-C. et al. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol. 144, 623-636 (2007)). The shared structural features of the LysM receptors provided further support for the ability to engineer these receptors to have different binding kinetics. For example, the altered binding kinetics observed with the chimeric LjLYS11/LjNFR5 ectodomains indicate that receptors can be engineered to have LCO binding kinetics characteristics of functional symbiotic signalling.


Taken together, the results seen with chimeric LjLYS11/LjNFR5 ectodomains show that LysM2 engineering can create receptors with higher stringency toward LCO as well as higher specificity toward LCO.


Example 8: Identifying Target LysM Receptors for Engineering

The following example describes homology modelling in barley (H. vulgare) to identify target LysM receptors for use in engineering.


Materials and Methods

Modelling: Homology modelling was performed with SWISS-MODEL (Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252-W258 (2014)). For barley RLK10 (HvRLK10), the crystal structure of Medicago NFP served as the template model onto which the amino acid sequence of the target receptor was mapped. For barley RLK4 (HvRLK4), the crystal structure of Medicago LYK3 served as the template model onto which the amino acid sequence of the target receptor was mapped. The output pdb filled structural model was generated and its electrostatic surface potential was calculated using the PDB2PQR and APBS webservers (PMID: 21425296). The results were visualized in PyMol using APBS tools 2.1 (DeLano, W. L. (2002). PyMOL. DeLano Scientific, San Carlos, Calif., 700).


Expression and purification of ectodomain: The HvRLK10 ectodomain (residues 25-231; SEQ ID NO:66) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native HvRLK10 signal peptide was replaced with the gp64 signal peptide (SEQ ID NO:59) to facilitate secretion and a hexa-histidine (6×HIS; SEQ ID NO:61) tag was added to the C-terminus (HvRLK10-ecto (25-231), N-term gp64, C-term 6His=SEQ ID NO:65). The HvRLK4 ectodomain (residues 27-228; SEQ ID NO:68) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native HvRLK4 signal peptide was replaced with the gp64 signal peptide (SEQ ID NO:59) to facilitate secretion and a hexa-histidine (6×HIS; SEQ ID NO:61) tag was added to the C-terminus (RLK4-ecto (27-228), N-term gp64, C-term 6His=SEQ ID NO:67). Recombinant baculoviruses were produced in Sf9 cells (Spodoptera frugiperda) using the FlashBac Gold kit (Oxford Expression technologies) according to the manufacturer's instructions with Lipofectin (ThermoFisher Scientific) as a transfection reagent.


Protein expression was performed as follows. Suspension-cultured Sf9 cells were maintained with shaking at 299 K in serum-free MAX-XP (BD-Biosciences, discontinued) or HyClone SFX (GE Healthcare) medium supplemented with 1% Pen-Strep (10000 U/ml, Life technologies) and 1% CD lipid concentrate (Gibco). Protein expression was induced by adding recombinant passage 3 virus once the Sf9 cells reached a cell density of 1.0*10{circumflex over ( )}6 cells/ml. After 5-7 days of expression, medium supernatant containing HvRLK10 ectodomain or HvRLK4 ectodomain was harvested by centrifugation. This was followed by an overnight dialysis step against 50 mM Tris-HCl pH 8, 200 mM NaCl at 277 K. The HvRLK10 ectodomain or HvRLK4 ectodomain was enriched by two subsequent steps of Ni-IMAC purification (HisTrap excel/HisTrap HP, both GE Healthcare).


Biolayer interferometry (BLI): Binding of HvRLK10 ectodomain or HvRLK4 ectodomain to ligands was measured on an Octet RED 96 system (Pall ForteBio). The ligands used were CO5 chitin oligomer (corresponding to the backbone of S. meliloti LCO-V), M. loti LCO, and S. meliloti LCO. S. meliloti LCO consists of a tetrameric/pentameric N-acetylglucosamine backbone that is O-sulfated on the reducing terminal residue, 0-acetylated on the non-reducing terminal residue, and mono-N-acylated by unsaturated C16 acyl groups. M. loti LCO is a pentameric N-acetylglucosamine with a cis-vaccenic acid and a carbamoyl group at the non-reducing terminal residue together with a 2,4-O-acetylfucose at the reducing terminal residue. Biotinylated ligand conjugates were immobilized on streptavidin biosensors (kinetic quality, Pall ForteBio) at a concentration of 125-250 nM for 5 minutes. Data analysis was performed in GraphPad Prism 6 software (GraphPad Software, Inc.). Equilibrium dissociation constants derived from the steady-state were determined by applying a non-linear regression (one site, specific binding) to the response at equilibrium plotted against the protein concentration. Kinetic parameters were determined by non-linear regression (association followed by dissociation) on the subtracted data.


Results

Homology modelling of all ten barley LysM receptor-like kinases (RLKs) was done using the Medicago NFP structure as a template. Of the barley LysM RLKs, HvRLK10 was the receptor that was closest to Medicago NFP and modelled the best using this approach. FIG. 16B shows homology modelling results for HvRLK10, which revealed that the hydrophobic patch was indeed present in the equivalent positions immediately below the LysM2 domain of this receptor. This clear hydrophobic patch indicated that HvRLK10 was a NFP/NFR5 type of LCO receptor.


To experimentally validate this prediction, the HvRLK10 ectodomain was expressed and purified for use in binding experiments (ectodomain schematic shown at top of FIG. 16A). The HvRLK10 ectodomain was shown to bind both M. loti LCO (FIG. 16C) and S. meliloti LCO (FIG. 16D). In contrast, the HvRLK10 ectodomain did not bind CO5 (FIG. 16A). These results provided functional characterization of the HvRLK10 ectodomain, and showed that it bound LCOs, but not COs. The results confirmed that the HvRLK10 receptor was a LCO receptor, as had been predicted by the homology modelling.


In addition, homology modelling of all ten barley LysM RLKs was done using the Medicago LYK3 structure as a template. HvRLK4 was the receptor that was closest to Medicago LYK3 and modelled the best using this approach. FIG. 16F shows homology modelling results for HvRLK4. These results indicated that this receptor was a NFR1/LYK3 type of LCO receptor.


To experimentally validate this prediction, the HvRLK4 ectodomain was expressed and purified for use in binding experiments (ectodomain schematic shown at top of FIG. 16E). The HvRLK4 ectodomain was shown to bind both M. loti LCO (FIG. 16G) and S. meliloti LCO (FIG. 16H). In contrast, the HvRLK4 ectodomain did not bind CO5 (FIG. 16E). These results provided functional characterization of the HvRLK4 ectodomain, and showed that it bound LCOs, but not COs. The results confirmed that the HvRLK4 receptor was a LCO receptor, as had been predicted by the homology modelling.


Both HvRLK10 and HvRLK4 were initially identified by homology modelling, and then confirmed to be LCO receptors by biochemical characterization. HvRLK10 and HvRLK4 therefore represent promising target receptors for engineering in barley particularly for engineering receptors that recognize LCOs in a manner similar to the donor receptors used to select them, Medicago NFP and Medicago LYK3, respectively.


Overall, these results show that the homology modelling approach can be used to identify LCO receptors of both the NFP/NFR5 type and the NFR1/LYK3 type specifically and that this method may be used to identify good target LysM receptor to modify to alter a desired receptor characteristic to be that of the donor LysM receptor used to select the target LysM receptor.


Example 9: Exemplary Structural Alignment to Identify of Target Residues to Modify for Insertion of a Hydrophobic Patch

One of skill in the art would have no difficulty applying the teachings of this disclosure to genetically alter LysM receptors to include a hydrophobic patch or alter an existing hydrophobic patch. Exemplary steps would be:


1. Align the target LysM receptor amino acid sequence with one or more known LCO receptor sequences (See, e.g., FIGS. 8A-8C, FIGS. 9A-9B, FIGS. 10A-10B, FIGS. 11A-11B) to identify the sequence of the LysM1-3 domains in the target amino acid sequence.


Applying this step to the HvLysM-RLK2/37-247 sequence produced the following amino acid sequence:











>HvLySM-RLK2/37-247



SVEGFNCSANGTYPCQAYALYRAGLAGVPPD







LSAAGDLFGVSRFMLAHANNLSTSAAPAAGQ







PLLVPLQCGCPSGSPNAYAPTQYQISSGDTF







WIVSVTKLQNLTQYQAVERVNPTVVPTKLEV







GDMVTFPIFCQCPTAAQNATALVTYVMQQGD







TYASIAAAFAVDAQSLVSLNGPEQGTQLFSE







ILVPLRRQVPKWLPPIVTRNDASAT







2. Use the LysM1-3 domain amino acid sequence as the input sequence to be modeled in an appropriate molecular modeling program such as SWISS-MODEL (Biasini 2014). SWISS-MODEL can be readily accessed at swissmodel.expasy.org under interactive#structure.


3. Input the structural template to the molecular modelling program, for example from a structural coordinate file (e.g., a pdb format file).


The HvLysM-RLK2/37-247 LysM1-3 domain amino acid sequence was entered into SWISS-MODEL as was the Medicago NFP receptor ectodomain crystal structure .pdb file (the atomic coordinates are reproduced at the end of the specification). The SWISS-MODEL program was run by the command ‘Build Model’. The Medicago NFP receptor ectodomain crystal structure was chosen as it has a known hydrophobic patch. One of skill in the art can readily select others based upon the teachings in this specification.


4. Optionally create an electrostatic surface potential of the target model and structurally align with a structure with chitin (or glycan) bound to the LysM2 domain to align the ligand binding grooves.


An electrostatic surface potential of the output target (.pdb) model generated with SWISS-MODEL was calculated using PDB2PQR & APBS webservers (PMID: 21425296) and visualized in PyMol using APBS tools 2.1 (DeLano, W. L. 2002). The AtCERK1 ectodomain structure (PDB coordinates 4EBZ) which has the chitin bound in the structure was aligned to the target model in PyMol. One of skill in the art would readily understand the position of the chitin binding domain as the LysM chitin binding motif is defined structurally in Liu et al. Science 2012 for AtCERK1. This aligned the chitin (C04) ligand in the LysM2 ligand binding groove of the target model. FIGS. 13A-13B show the PyMol visualization of the LysM1-3 domains of the HvLysM-RLK2/37-247 model with the LysM1, LysM2, and LysM3 domains labeled (FIG. 13A), and the electrostatic surface potential of the model with chitin modeled in the binding groove (FIG. 13B).


5. Select the residues from the alignment in the target model that align with the known hydrophobic patch.


From the sequence alignment (1), structural alignment of the target model with the crystal structure of Medicago NFP and the electrostatic surface potential information (5) the hydrophobic patch was identified (with the placed chitin from AtCERK1 as reference for locating the CO binding groove as shown in (FIG. 13B). Hot-spot residues corresponding to the Medicago NFP ectodomain hydrophobic patch (L147, L151, L152, L154, T156, K157 and V158) were identified based on the amino acid being within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue (Medicago NFP L147, L151, L152, L154, T156, K157 and V158) in the structural alignment. As one of skill in the art would appreciate, residues like lysine (K) and arginine (R) that are not classically characterized as hydrophobic, do contain hydrophobic properties related to the Calpha, Cbeta, Cgamma, Cdelta and Cepsilon atoms that might be important for LCO binding, selectivity, promiscuity, stringency, and affinity and therefore are still potentially important (e.g., K157 of the Medicago NFP hydrophobic patch). The identified residues in the HvLysM-RLK2/37-247 model (bolded in FIG. 13C) can be mutated, preferably with additional modeling, to obtain engineered LCO binding, LCO/CO selectivity, LCO promiscuity, LCO stringency, LCO affinity. One of skill in the art would appreciate that similar structural modeling can be used to structurally align LysM1 domains to identify regions II and IV in order to substitute and alter specificity, affinity and selectivity of a target LysM receptor for an agonist.












The Medicago NFP ectodomain crystal Structure






















LINK
C1
NAG A2076
O4
NAG
A
1076



LINK
C1
NAG A2123
O4
NAG
A
1123


LINK
C1
NAG A2144
O4
NAG
A
1144


LINK
C1
NAG A2228
O4
NAG
A
1228


LINK
C1
NAG A1076
ND2
ASN
A
76


LINK
C1
NAG A1123
ND2
ASN
A
123


LINK
C1
NAG A1144
ND2
ASN
A
144


LINK
C1
NAG A1228
ND2
ASN
A
228













SSBOND
1
CYS A
50
CYS A
115



SSBOND
2
CYS A
58
CYS A
177


SSBOND
3
CYS A
113
CYS A
175


















CRYST1
77.410
98.160
71.890
90.00
90.00
90.00
C
2
2
21













SCALE1
0.012918
0.000000
0.000000
0.00000



SCALE2
0.000000
0.010187
0.000000
0.00000


SCALE3
0.000000
0.000000
0.013910
0.00000


















ATOM
1
N
SER A
44
47.490
34.635
22.387
1.00
132.78
A
N



















ANISOU
1
N
SER A
44
14506
18967
16976
−687
−2436
7410
A
N


















ATOM
2
CA
SER A
44
48.575
35.497
22.832
1.00
128.50
A
C



















ANISOU
2
CA
SER A
44
14079
17864
16882
−714
−2577
7389
A
C


















ATOM
3
C
SER A
44
49.218
34.959
24.094
1.00
121.82
A
C



















ANISOU
3
C
SER A
44
13323
16878
16087
−720
−2520
7111
A
C


















ATOM
4
O
SER A
44
50.272
34.341
24.053
1.00
114.50
A
O



















ANISOU
4
O
SER A
44
12311
16241
14951
−801
−2396
7114
A
O


















ATOM
5
CB
SER A
44
48.060
36.911
23.094
1.00
126.83
A
C



















ANISOU
5
CB
SER A
44
13992
17346
16852
−547
−2697
7268
A
C


















ATOM
6
OG
SER A
44
49.010
37.665
23.828
1.00
128.24
A
O



















ANISOU
6
OG
SER A
44
14237
17006
17480
−596
−2848
7359
A
O


















ATOM
7
N
GLU A
45
48.551
35.184
25.216
1.00
120.97
A
N



















ANISOU
7
N
GLU A
45
13377
16340
16246
−626
−2607
6862
A
N


















ATOM
8
CA
GLU A
45
49.040
34.751
26.516
1.00
122.62
A
C



















ANISOU
8
CA
GLU A
45
13672
16343
16575
−651
−2584
6624
A
C


















ATOM
9
C
GLU A
45
49.060
33.238
26.635
1.00
120.68
A
C



















ANISOU
9
C
GLU A
45
13458
16423
15972
−535
−2435
6316
A
C


















ATOM
10
O
GLU A
45
48.274
32.543
25.998
1.00
122.15
A
O



















ANISOU
10
O
GLU A
45
13634
16922
15853
−411
−2368
6224
A
O


















ATOM
11
CB
GLU A
45
48.163
35.326
27.628
1.00
121.51
A
C



















ANISOU
11
CB
GLU A
45
13688
15639
16840
−586
−2726
6442
A
C


















ATOM
12
CG
GLU A
45
48.212
36.836
27.755
1.00
127.27
A
C



















ANISOU
12
CG
GLU A
45
14403
15998
17957
−715
−2869
6708
A
C


















ATOM
13
CD
GLU A
45
49.555
37.327
28.243
1.00
132.32
A
C



















ANISOU
13
CD
GLU A
45
14930
16696
18650
−952
−2852
6959
A
C


















ATOM
14
OE1
GLU A
45
49.586
38.123
29.205
1.00
136.87
A
O



















ANISOU
14
OE1
GLU A
45
15373
17434
19196
−1069
−2872
7310
A
O


















ATOM
15
OE2
GLU A
45
50.579
36.907
27.669
1.00
131.61
A
O1−



















ANISOU
15
OE2
GLU A
45
14877
16507
18623
−1022
−2821
6805
A
O1−


















ATOM
16
N
THR A
46
49.991
32.743
27.440
1.00
124.90
A
N



















ANISOU
16
N
THR A
46
14032
16873
16550
−581
−2389
6151
A
N


















ATOM
17
CA
THR A
46
50.130
31.318
27.669
1.00
110.09
A
C



















ANISOU
17
CA
THR A
46
12173
15318
14337
−492
−2238
5885
A
C


















ATOM
18
C
THR A
46
49.107
30.887
28.697
1.00
103.70
A
C



















ANISOU
18
C
THR A
46
11505
14437
13459
−283
−2255
5524
A
C


















ATOM
19
O
THR A
46
49.388
30.892
29.895
1.00
100.49
A
O



















ANISOU
19
O
THR A
46
11098
14391
12694
−175
−2139
5343
A
O


















ATOM
20
CB
THR A
46
51.526
30.968
28.209
1.00
90.86
A
C



















ANISOU
20
CB
THR A
46
9735
12798
11989
−599
−2195
5824
A
C


















ATOM
21
OG1
THR A
46
51.550
29.598
28.624
1.00
82.38
A
O



















ANISOU
21
OG1
THR A
46
8675
12043
10583
−499
−2045
5566
A
O


















ATOM
22
CG2
THR A
46
51.868
31.850
29.398
1.00
77.97
A
C



















ANISOU
22
CG2
THR A
46
8237
10610
10779
−617
−2337
5681
A
C


















ATOM
23
N
ASN A
47
47.911
30.561
28.230
1.00
89.04
A
N



















ANISOU
23
N
ASN A
47
9765
12123
11942
−226
−2396
5399
A
N


















ATOM
24
CA
ASN A
47
46.844
30.100
29.104
1.00
83.06
A
C



















ANISOU
24
CA
ASN A
47
9114
11294
11149
−31
−2436
5105
A
C


















ATOM
25
C
ASN A
47
46.404
31.034
30.221
1.00
80.85
A
C



















ANISOU
25
C
ASN A
47
8941
10474
11302
9
−2591
5004
A
C


















ATOM
26
O
ASN A
47
46.004
32.161
29.974
1.00
86.84
A
O



















ANISOU
26
O
ASN A
47
9724
11126
12145
112
−2671
5008
A
O


















ATOM
27
CB
ASN A
47
47.083
28.674
29.595
1.00
84.42
A
C



















ANISOU
27
CB
ASN A
47
9345
11671
11058
72
−2332
4752
A
C


















ATOM
28
CG
ASN A
47
46.851
27.659
28.508
1.00
86.04
A
C



















ANISOU
28
CG
ASN A
47
9512
12360
10818
171
−2218
4673
A
C


















ATOM
29
OD1
ASN A
47
46.815
26.461
28.751
1.00
87.76
A
O



















ANISOU
29
OD1
ASN A
47
9702
12671
10972
219
−2256
4778
A
O


















ATOM
30
ND2
ASN A
47
46.678
28.143
27.293
1.00
88.00
A
N



















ANISOU
30
ND2
ASN A
47
9761
12911
10762
198
−2077
4483
A
N


















ATOM
31
N
PHE A
48
46.498
30.555
31.453
1.00
77.89
A
N



















ANISOU
31
N
PHE A
48
8628
9762
11206
−71
−2633
4906
A
N


















ATOM
32
CA
PHE A
48
45.991
31.292
32.602
1.00
75.80
A
C



















ANISOU
32
CA
PHE A
48
8491
9027
11281
11
−2743
4640
A
C


















ATOM
33
C
PHE A
48
46.493
32.702
32.781
1.00
86.98
A
C



















ANISOU
33
C
PHE A
48
9926
10018
13104
−64
−2869
4809
A
C


















ATOM
34
O
PHE A
48
47.684
32.980
32.841
1.00
94.16
A
O



















ANISOU
34
O
PHE A
48
10808
10921
14046
−4
−2923
4965
A
O


















ATOM
35
CB
PHE A
48
46.320
30.503
33.864
1.00
65.86
A
C



















ANISOU
35
CB
PHE A
48
7303
7645
10076
−14
−2713
4362
A
C


















ATOM
36
CG
PHE A
48
46.172
29.034
33.683
1.00
63.01
A
C



















ANISOU
36
CG
PHE A
48
6933
7684
9323
87
−2597
4158
A
C


















ATOM
37
CD2
PHE A
48
47.112
28.323
32.976
1.00
62.96
A
C



















ANISOU
37
CD2
PHE A
48
6835
8073
9013
6
−2469
4295
A
C


















ATOM
38
CD1
PHE A
48
45.066
28.381
34.164
1.00
60.68
A
C



















ANISOU
38
CD1
PHE A
48
6713
7401
8941
267
−2609
3827
A
C


















ATOM
39
CE2
PHE A
48
46.969
26.974
32.779
1.00
60.62
A
C



















ANISOU
39
CE2
PHE A
48
6536
8154
8341
108
−2350
4087
A
C


















ATOM
40
CE1
PHE A
48
44.914
27.031
33.971
1.00
58.32
A
C



















ANISOU
40
CE1
PHE A
48
6413
7479
8266
348
−2488
3607
A
C


















ATOM
41
CZ
PHE A
48
45.864
26.329
33.274
1.00
58.33
A
C



















ANISOU
41
CZ
PHE A
48
6338
7852
7972
270
−2349
3723
A
C


















ATOM
42
N
THR A
49
45.510
33.574
32.909
1.00
82.31
A
N



















ANISOU
42
N
THR A
49
9387
9064
12823
−188
−2920
4756
A
N


















ATOM
43
CA
THR A
49
45.676
34.992
33.123
1.00
98.91
A
C



















ANISOU
43
CA
THR A
49
11496
10792
15293
−304
−3029
4935
A
C


















ATOM
44
C
THR A
49
44.436
35.410
33.889
1.00
99.11
A
C



















ANISOU
44
C
THR A
49
11606
10480
15570
−157
−3127
4794
A
C


















ATOM
45
O
THR A
49
43.357
34.846
33.711
1.00
96.68
A
O



















ANISOU
45
O
THR A
49
11283
9961
15491
−209
−3212
5006
A
O


















ATOM
46
CB
THR A
49
45.709
35.771
31.797
1.00
109.76
A
C



















ANISOU
46
CB
THR A
49
12731
12391
16580
−449
−3025
5389
A
C


















ATOM
47
OG1
THR A
49
44.666
35.294
30.938
1.00
106.67
A
O



















ANISOU
47
OG1
THR A
49
12281
12270
15978
−332
−3012
5538
A
O


















ATOM
48
CG2
THR A
49
47.041
35.602
31.095
1.00
111.16
A
C



















ANISOU
48
CG2
THR A
49
12807
12921
16508
−598
−2915
5529
A
C


















ATOM
49
N
CYS A
50
44.549
36.431
34.711
1.00
92.80
A
N



















ANISOU
49
N
CYS A
50
10892
9630
14739
27
−3116
4435
A
N


















ATOM
50
CA
CYS A
50
43.388
36.843
35.468
1.00
92.80
A
C



















ANISOU
50
CA
CYS A
50
10978
9292
14991
171
−3192
4217
A
C


















ATOM
51
C
CYS A
50
42.305
37.431
34.561
1.00
97.62
A
C



















ANISOU
51
C
CYS A
50
11539
9963
15591
278
−3243
4441
A
C


















ATOM
52
O
CYS A
50
42.612
38.040
33.542
1.00
93.35
A
O



















ANISOU
52
O
CYS A
50
10906
9567
14996
182
−3258
4821
A
O


















ATOM
53
CB
CYS A
50
43.807
37.863
36.515
1.00
100.59
A
C



















ANISOU
53
CB
CYS A
50
12040
9808
16371
64
−3262
4119
A
C


















ATOM
54
SG
CYS A
50
42.820
37.796
38.012
1.00
113.19
A
S



















ANISOU
54
SG
CYS A
50
13708
11276
18022
−52
−3216
3794
A
S


















ATOM
55
N
PRO A
51
41.028
37.208
34.907
1.00
111.76
A
N



















ANISOU
55
N
PRO A
51
13379
11653
17432
474
−3270
4214
A
N


















ATOM
56
CA
PRO A
51
39.911
37.793
34.166
1.00
113.17
A
C



















ANISOU
56
CA
PRO A
51
13516
11829
17655
585
−3332
4416
A
C


















ATOM
57
C
PRO A
51
39.756
39.242
34.592
1.00
105.69
A
C



















ANISOU
57
C
PRO A
51
12623
10423
17113
568
−3426
4447
A
C


















ATOM
58
O
PRO A
51
39.514
39.517
35.764
1.00
98.68
A
O



















ANISOU
58
O
PRO A
51
11831
9213
16451
618
−3441
4121
A
O


















ATOM
59
CB
PRO A
51
38.718
36.977
34.648
1.00
118.11
A
C



















ANISOU
59
CB
PRO A
51
14160
12600
18115
806
−3308
4130
A
C


















ATOM
60
CG
PRO A
51
39.086
36.599
36.038
1.00
118.64
A
C



















ANISOU
60
CG
PRO A
51
14325
12479
18272
816
−3271
3702
A
C


















ATOM
61
CD
PRO A
51
40.568
36.342
36.004
1.00
117.49
A
C



















ANISOU
61
CD
PRO A
51
14183
12346
18114
611
−3232
3770
A
C


















ATOM
62
N
VAL A
52
39.897
40.159
33.645
1.00
116.60
A
N



















ANISOU
62
N
VAL A
52
13941
11785
18577
498
−3487
4833
A
N


















ATOM
63
CA
VAL A
52
39.805
41.578
33.949
1.00
117.67
A
C



















ANISOU
63
CA
VAL A
52
14126
11488
19094
454
−3580
4905
A
C


















ATOM
64
C
VAL A
52
38.391
42.137
33.940
1.00
122.26
A
C



















ANISOU
64
C
VAL A
52
14743
11887
19825
673
−3636
4811
A
C


















ATOM
65
O
VAL A
52
38.127
43.157
34.571
1.00
120.01
A
O



















ANISOU
65
O
VAL A
52
14537
11203
19857
700
−3691
4683
A
O


















ATOM
66
CB
VAL A
52
40.659
42.406
32.975
1.00
116.82
A
C



















ANISOU
66
CB
VAL A
52
13934
11432
19022
267
−3627
5366
A
C


















ATOM
67
CG1
VAL A
52
40.126
43.825
32.878
1.00
118.92
A
C



















ANISOU
67
CG1
VAL A
52
14256
11249
19680
218
−3730
5446
A
C


















ATOM
68
CG2
VAL A
52
42.116
42.396
33.409
1.00
109.61
A
C



















ANISOU
68
CG2
VAL A
52
12973
10720
17953
53
−3562
5448
A
C


















ATOM
69
N
ASP A
53
37.478
41.484
33.230
1.00
118.46
A
N



















ANISOU
69
N
ASP A
53
14200
11702
19106
835
−3620
4860
A
N


















ATOM
70
CA
ASP A
53
36.112
42.001
33.169
1.00
124.86
A
C



















ANISOU
70
CA
ASP A
53
15021
12394
20024
1052
−3671
4808
A
C


















ATOM
71
C
ASP A
53
35.126
41.211
34.021
1.00
117.67
A
C



















ANISOU
71
C
ASP A
53
14162
11498
19050
1236
−3622
4372
A
C


















ATOM
72
O
ASP A
53
33.916
41.293
33.794
1.00
110.53
A
O



















ANISOU
72
O
ASP A
53
13233
10639
18122
1433
−3644
4330
A
O


















ATOM
73
CB
ASP A
53
35.624
42.040
31.724
1.00
139.47
A
C



















ANISOU
73
CB
ASP A
53
16759
14568
21665
1114
−3699
5161
A
C


















ATOM
74
CG
ASP A
53
36.545
42.840
30.834
1.00
155.01
A
C



















ANISOU
74
CG
ASP A
53
18664
16546
23688
929
−3746
5602
A
C


















ATOM
75
OD1
ASP A
53
37.265
43.718
31.374
1.00
159.96
A
O



















ANISOU
75
OD1
ASP A
53
19345
16824
24608
799
−3791
5646
A
O


















ATOM
76
OD2
ASP A
53
36.550
42.588
29.603
1.00
160.52
A
O1−



















ANISOU
76
OD2
ASP A
53
19253
17611
24126
906
−3738
5895
A
O1−


















ATOM
77
N
SER A
54
35.610
40.452
34.990
1.00
120.11
A
N



















ANISOU
77
N
SER A
54
14531
11779
19326
1172
−3556
4053
A
N


















ATOM
78
CA
SER A
54
34.790
39.596
35.836
1.00
123.38
A
C



















ANISOU
78
CA
SER A
54
14987
12234
19659
1316
−3500
3629
A
C


















ATOM
79
C
SER A
54
35.259
39.713
37.272
1.00
125.41
A
C



















ANISOU
79
C
SER A
54
15348
12172
20129
1235
−3474
3284
A
C


















ATOM
80
O
SER A
54
36.319
40.283
37.552
1.00
125.91
A
O



















ANISOU
80
O
SER A
54
15445
12038
20357
1058
−3494
3378
A
O


















ATOM
81
CB
SER A
54
34.856
38.128
35.376
1.00
119.00
A
C



















ANISOU
81
CB
SER A
54
14380
12123
18712
1326
−3429
3574
A
C


















ATOM
82
OG
SER A
54
34.328
37.982
34.070
1.00
118.74
A
O



















ANISOU
82
OG
SER A
54
14247
12423
18445
1404
−3447
3853
A
O


















ATOM
83
N
PRO A
55
34.482
39.189
38.219
1.00
130.50
A
N



















ANISOU
83
N
PRO A
55
16040
12781
20764
1353
−3428
2874
A
N


















ATOM
84
CA
PRO A
55
34.996
39.044
39.577
1.00
129.39
A
C



















ANISOU
84
CA
PRO A
55
15988
12434
20741
1257
−3383
2517
A
C


















ATOM
85
C
PRO A
55
36.197
38.126
39.585
1.00
123.67
A
C



















ANISOU
85
C
PRO A
55
15261
11884
19842
1090
−3336
2530
A
C


















ATOM
86
O
PRO A
55
36.288
37.184
38.775
1.00
126.40
A
O



















ANISOU
86
O
PRO A
55
15546
12573
19906
1106
−3308
2660
A
O


















ATOM
87
CB
PRO A
55
33.813
38.431
40.342
1.00
128.42
A
C



















ANISOU
87
CB
PRO A
55
15885
12361
20548
1424
−3330
2112
A
C


















ATOM
88
CG
PRO A
55
32.901
37.892
39.286
1.00
128.89
A
C



















ANISOU
88
CG
PRO A
55
15858
12736
20380
1582
−3339
2264
A
C


















ATOM
89
CD
PRO A
55
33.062
38.817
38.131
1.00
130.49
A
C



















ANISOU
89
CD
PRO A
55
16004
12921
20654
1573
−3416
2719
A
C


















ATOM
90
N
PRO A
56
37.157
38.366
40.475
1.00
118.72
A
N



















ANISOU
90
N
PRO A
56
14695
11054
19359
929
−3325
2403
A
N


















ATOM
91
CA
PRO A
56
38.400
37.588
40.446
1.00
108.59
A
C



















ANISOU
91
CA
PRO A
56
13402
9928
17929
763
−3286
2460
A
C


















ATOM
92
C
PRO A
56
38.343
36.302
41.258
1.00
102.85
A
C



















ANISOU
92
C
PRO A
56
12713
9342
17023
789
−3204
2076
A
C


















ATOM
93
O
PRO A
56
39.000
35.326
40.882
1.00
101.03
A
O



















ANISOU
93
O
PRO A
56
12454
9360
16571
734
−3165
2148
A
O


















ATOM
94
CB
PRO A
56
39.426
38.573
41.013
1.00
106.15
A
C



















ANISOU
94
CB
PRO A
56
13131
9329
17871
577
−3322
2519
A
C


















ATOM
95
CG
PRO A
56
38.631
39.431
41.954
1.00
108.06
A
C



















ANISOU
95
CG
PRO A
56
13441
9272
18345
663
−3339
2249
A
C


















ATOM
96
CD
PRO A
56
37.222
39.496
41.421
1.00
113.49
A
C



















ANISOU
96
CD
PRO A
56
14102
10022
18998
884
−3355
2260
A
C


















ATOM
97
N
SER A
57
37.572
36.266
42.350
1.00
94.60
A
N



















ANISOU
97
N
SER A
57
11727
8168
16048
871
−3171
1675
A
N


















ATOM
98
CA
SER A
57
37.539
35.116
43.241
1.00
87.59
A
C



















ANISOU
98
CA
SER A
57
10879
7404
15000
875
−3089
1290
A
C


















ATOM
99
C
SER A
57
36.227
34.364
43.073
1.00
79.26
A
C



















ANISOU
99
C
SER A
57
9804
6543
13768
1064
−3061
1108
A
C


















ATOM
100
O
SER A
57
35.162
34.981
42.975
1.00
89.94
A
O



















ANISOU
100
O
SER A
57
11141
7819
15214
1193
−3089
1097
A
O


















ATOM
101
CB
SER A
57
37.710
35.542
44.692
1.00
91.40
A
C



















ANISOU
101
CB
SER A
57
11426
7674
15629
798
−3052
955
A
C


















ATOM
102
OG
SER A
57
38.093
34.435
45.490
1.00
92.41
A
O



















ANISOU
102
OG
SER A
57
11581
7949
15581
742
−2969
660
A
O


















ATOM
103
N
CYS A
58
36.357
33.055
42.866
1.00
68.90
A
N



















ANISOU
103
N
CYS A
58
8492
5487
12201
1080
−3006
961
A
N


















ATOM
104
CA
CYS A
58
35.226
32.186
42.590
1.00
72.63
A
C



















ANISOU
104
CA
CYS A
58
8925
6227
12445
1243
−2991
883
A
C


















ATOM
105
C
CYS A
58
35.514
30.734
42.965
1.00
61.26
A
C



















ANISOU
105
C
CYS A
58
7515
5006
10756
1224
−2921
627
A
C


















ATOM
106
O
CYS A
58
36.592
30.418
43.450
1.00
56.36
A
O



















ANISOU
106
O
CYS A
58
6931
4354
10129
1096
−2892
599
A
O


















ATOM
107
CB
CYS A
58
34.888
32.277
41.093
1.00
85.20
A
C



















ANISOU
107
CB
CYS A
58
10428
8024
13921
1304
−3045
1309
A
C


















ATOM
108
SG
CYS A
58
35.994
31.399
39.947
1.00
103.73
A
S



















ANISOU
108
SG
CYS A
58
12751
10337
16325
1115
−3076
1740
A
S


















ATOM
109
N
GLU A
59
34.539
29.858
42.742
1.00
60.93
A
N



















ANISOU
109
N
GLU A
59
7452
5194
10503
1352
−2896
445
A
N


















ATOM
110
CA
GLU A
59
34.692
28.438
43.035
1.00
52.11
A
C



















ANISOU
110
CA
GLU A
59
6368
4304
9129
1349
−2831
184
A
C


















ATOM
111
C
GLU A
59
34.633
27.639
41.738
1.00
47.29
A
C



















ANISOU
111
C
GLU A
59
5684
4068
8215
1420
−2850
397
A
C


















ATOM
112
O
GLU A
59
33.701
27.807
40.946
1.00
52.46
A
O



















ANISOU
112
O
GLU A
59
6268
4876
8788
1525
−2886
529
A
O


















ATOM
113
CB
GLU A
59
33.606
27.967
44.008
1.00
46.43
A
C



















ANISOU
113
CB
GLU A
59
5685
3598
8360
1403
−2773
−244
A
C


















ATOM
114
CG
GLU A
59
33.389
28.875
45.241
1.00
60.21
A
C



















ANISOU
114
CG
GLU A
59
7464
5073
10340
1334
−2749
−438
A
C


















ATOM
115
CD
GLU A
59
34.557
28.856
46.271
1.00
75.79
A
C



















ANISOU
115
CD
GLU A
59
9490
6941
12367
1157
−2689
−564
A
C


















ATOM
116
OE1
GLU A
59
35.364
27.889
46.275
1.00
76.96
A
O



















ANISOU
116
OE1
GLU A
59
9668
7219
12355
1097
−2646
−613
A
O


















ATOM
117
OE2
GLU A
59
34.659
29.813
47.091
1.00
79.30
A
O1−



















ANISOU
117
OE2
GLU A
59
9937
7199
12994
1089
−2680
−609
A
O1−


















ATOM
118
N
THR A
60
35.623
26.779
41.521
1.00
45.71
A
N



















ANISOU
118
N
THR A
60
5493
4048
7825
1355
−2822
430
A
N


















ATOM
119
CA
THR A
60
35.731
26.019
40.266
1.00
52.03
A
C



















ANISOU
119
CA
THR A
60
6231
5286
8252
1352
−2770
620
A
C


















ATOM
120
C
THR A
60
36.275
24.623
40.587
1.00
42.81
A
C



















ANISOU
120
C
THR A
60
5128
4362
6776
1277
−2612
345
A
C


















ATOM
121
O
THR A
60
36.201
24.161
41.730
1.00
40.64
A
O



















ANISOU
121
O
THR A
60
4934
3952
6555
1266
−2565
−14
A
O


















ATOM
122
CB
THR A
60
36.581
26.793
39.229
1.00
48.35
A
C



















ANISOU
122
CB
THR A
60
5689
4858
7824
1278
−2816
1111
A
C


















ATOM
123
OG1
THR A
60
36.518
26.138
37.954
1.00
48.75
A
O



















ANISOU
123
OG1
THR A
60
5668
5355
7499
1287
−2764
1294
A
O


















ATOM
124
CG2
THR A
60
38.024
26.915
39.669
1.00
47.96
A
C



















ANISOU
124
CG2
THR A
60
5677
4680
7865
1117
−2761
1178
A
C


















ATOM
125
N
TYR A
61
36.793
23.927
39.578
1.00
42.76
A
N



















ANISOU
125
N
TYR A
61
5085
4722
6440
1233
−2528
506
A
N


















ATOM
126
CA
TYR A
61
37.179
22.539
39.764
1.00
40.22
A
C



















ANISOU
126
CA
TYR A
61
4826
4648
5808
1190
−2378
243
A
C


















ATOM
127
C
TYR A
61
38.529
22.289
39.110
1.00
40.64
A
C



















ANISOU
127
C
TYR A
61
4849
4896
5696
1087
−2289
482
A
C


















ATOM
128
O
TYR A
61
38.967
23.032
38.240
1.00
43.93
A
O



















ANISOU
128
O
TYR A
61
5181
5363
6147
1056
−2338
866
A
O


















ATOM
129
CB
TYR A
61
36.124
21.571
39.203
1.00
39.50
A
C



















ANISOU
129
CB
TYR A
61
4734
4882
5394
1272
−2342
75
A
C


















ATOM
130
CG
TYR A
61
34.859
21.547
40.017
1.00
42.21
A
C



















ANISOU
130
CG
TYR A
61
5109
5074
5854
1360
−2400
−233
A
C


















ATOM
131
CD1
TYR A
61
33.833
22.463
39.791
1.00
48.15
A
C



















ANISOU
131
CD1
TYR A
61
5789
5717
6788
1464
−2533
−114
A
C


















ATOM
132
CD2
TYR A
61
34.690
20.619
41.019
1.00
43.46
A
C



















ANISOU
132
CD2
TYR A
61
5362
5206
5945
1343
−2321
−634
A
C


















ATOM
133
CE1
TYR A
61
32.667
22.448
40.565
1.00
50.86
A
C



















ANISOU
133
CE1
TYR A
61
6149
5938
7239
1554
−2580
−403
A
C


















ATOM
134
CE2
TYR A
61
33.542
20.594
41.797
1.00
42.89
A
C



















ANISOU
134
CE2
TYR A
61
5309
5015
5972
1416
−2369
−917
A
C


















ATOM
135
CZ
TYR A
61
32.535
21.497
41.581
1.00
48.98
A
C



















ANISOU
135
CZ
TYR A
61
6003
5690
6918
1523
−2494
−811
A
C


















ATOM
136
OH
TYR A
61
31.418
21.414
42.405
1.00
45.79
A
O



















ANISOU
136
OH
TYR A
61
5609
5189
6600
1599
−2529
−1112
A
O


















ATOM
137
N
VAL A
62
39.182
21.228
39.552
1.00
38.47
A
N



















ANISOU
137
N
VAL A
62
4641
4735
5242
1038
−2156
254
A
N


















ATOM
138
CA
VAL A
62
40.508
20.850
39.098
1.00
38.61
A
C



















ANISOU
138
CA
VAL A
62
4633
4942
5096
953
−2050
421
A
C


















ATOM
139
C
VAL A
62
40.444
19.365
38.774
1.00
43.15
A
C



















ANISOU
139
C
VAL A
62
5257
5854
5282
986
−1909
191
A
C


















ATOM
140
O
VAL A
62
39.796
18.599
39.494
1.00
42.73
A
O



















ANISOU
140
O
VAL A
62
5294
5762
5178
1025
−1878
−168
A
O


















ATOM
141
CB
VAL A
62
41.567
21.143
40.184
1.00
37.82
A
C



















ANISOU
141
CB
VAL A
62
4566
4571
5233
852
−2033
371
A
C


















ATOM
142
CG1
VAL A
62
42.600
20.052
40.238
1.00
36.37
A
C



















ANISOU
142
CG1
VAL A
62
4406
4604
4808
806
−1876
275
A
C


















ATOM
143
CG2
VAL A
62
42.195
22.513
39.992
1.00
40.26
A
C



















ANISOU
143
CG2
VAL A
62
4800
4674
5823
772
−2134
742
A
C


















ATOM
144
N
ALA A
63
41.084
18.943
37.689
1.00
37.91
A
N



















ANISOU
144
N
ALA A
63
4540
5523
4340
971
−1824
389
A
N


















ATOM
145
CA
ALA A
63
40.997
17.540
37.298
1.00
36.64
A
C



















ANISOU
145
CA
ALA A
63
4436
5679
3807
1009
−1691
167
A
C


















ATOM
146
C
ALA A
63
42.219
16.762
37.774
1.00
35.29
A
C



















ANISOU
146
C
ALA A
63
4308
5545
3554
965
−1551
55
A
C


















ATOM
147
O
ALA A
63
43.356
17.193
37.580
1.00
36.35
A
O



















ANISOU
147
O
ALA A
63
4370
5696
3743
903
−1522
305
A
O


















ATOM
148
CB
ALA A
63
40.833
17.397
35.785
1.00
38.60
A
C



















ANISOU
148
CB
ALA A
63
4606
6310
3750
1036
−1670
399
A
C


















ATOM
149
N
TYR A
64
41.975
15.599
38.362
1.00
33.11
A
N



















ANISOU
149
N
TYR A
64
4144
5295
3141
997
−1464
−309
A
N


















ATOM
150
CA
TYR A
64
42.981
14.803
39.034
1.00
31.59
A
C



















ANISOU
150
CA
TYR A
64
4008
5088
2906
973
−1342
−467
A
C


















ATOM
151
C
TYR A
64
42.871
13.361
38.587
1.00
30.73
A
C



















ANISOU
151
C
TYR A
64
3980
5258
2440
1031
−1207
−692
A
C


















ATOM
152
O
TYR A
64
41.800
12.882
38.238
1.00
36.32
A
O



















ANISOU
152
O
TYR A
64
4739
6072
2988
1075
−1224
−850
A
O


















ATOM
153
CB
TYR A
64
42.805
14.863
40.542
1.00
29.64
A
C



















ANISOU
153
CB
TYR A
64
3839
4503
2920
944
−1384
−725
A
C


















ATOM
154
CG
TYR A
64
44.008
14.414
41.308
1.00
28.55
A
C



















ANISOU
154
CG
TYR A
64
3724
4304
2819
898
−1291
−793
A
C


















ATOM
155
CD1
TYR A
64
44.259
13.067
41.527
1.00
27.03
A
C



















ANISOU
155
CD1
TYR A
64
3620
4244
2407
937
−1161
−1041
A
C


















ATOM
156
CD2
TYR A
64
44.907
15.346
41.830
1.00
29.18
A
C



















ANISOU
156
CD2
TYR A
64
3736
4188
3161
814
−1339
−603
A
C


















ATOM
157
CE1
TYR A
64
45.391
12.666
42.225
1.00
26.20
A
C



















ANISOU
157
CE1
TYR A
64
3523
4091
2341
905
−1079
−1082
A
C


















ATOM
158
CE2
TYR A
64
46.007
14.952
42.521
1.00
28.32
A
C



















ANISOU
158
CE2
TYR A
64
3633
4046
3081
768
−1260
−652
A
C


















ATOM
159
CZ
TYR A
64
46.254
13.613
42.720
1.00
26.82
A
C



















ANISOU
159
CZ
TYR A
64
3520
4002
2670
820
−1130
−886
A
C


















ATOM
160
OH
TYR A
64
47.381
13.238
43.420
1.00
26.12
A
O



















ANISOU
160
OH
TYR A
64
3425
3884
2617
783
−1055
−914
A
O


















ATOM
161
N
ARC A
65
43.984
12.662
38.620
1.00
30.38
A
N



















ANISOU
161
N
ARC A
65
3946
5323
2273
1031
−1075
−710
A
N


















ATOM
162
CA
ARC A
65
44.068
11.316
38.084
1.00
33.86
A
C



















ANISOU
162
CA
ARC A
65
4446
5955
2464
1054
−889
−855
A
C


















ATOM
163
C
ARC A
65
44.681
10.402
39.134
1.00
41.31
A
C



















ANISOU
163
C
ARC A
65
5451
6680
3567
1006
−743
−1025
A
C


















ATOM
164
O
ARC A
65
45.781
10.668
39.626
1.00
51.64
A
O



















ANISOU
164
O
ARC A
65
6736
8007
4877
1031
−767
−989
A
O


















ATOM
165
CB
ARC A
65
44.889
11.309
36.788
1.00
42.50
A
C



















ANISOU
165
CB
ARC A
65
5448
7410
3290
1089
−824
−606
A
C


















ATOM
166
CG
ARC A
65
44.085
11.668
35.528
1.00
34.03
A
C



















ANISOU
166
CG
ARC A
65
4317
6541
2072
1091
−869
−439
A
C


















ATOM
167
CD
ARC A
65
44.997
12.183
34.411
1.00
40.56
A
C



















ANISOU
167
CD
ARC A
65
5004
7694
2713
1101
−856
−77
A
C


















ATOM
168
NE
ARC A
65
44.226
12.503
33.222
1.00
52.64
A
N



















ANISOU
168
NE
ARC A
65
6475
9397
4128
1085
−889
83
A
N


















ATOM
169
CZ
ARC A
65
43.484
11.604
32.576
1.00
68.98
A
C



















ANISOU
169
CZ
ARC A
65
8607
11503
6098
1066
−780
−102
A
C


















ATOM
170
NH1
ARC A
65
43.423
10.355
33.030
1.00
66.13
A
N1+



















ANISOU
170
NH1
ARC A
65
8358
10972
5797
1048
−639
−406
A
N1+


















ATOM
171
NH2
ARC A
65
42.794
11.941
31.489
1.00
79.93
A
N



















ANISOU
171
NH2
ARC A
65
9933
13063
7371
1049
−822
48
A
N


















ATOM
172
N
ALA A
66
43.962
9.339
39.487
1.00
43.87
A
N



















ANISOU
172
N
ALA A
66
7435
3386
5848
−754
216
−677
A
N


















ATOM
173
CA
ALA A
66
44.450
8.408
40.490
1.00
45.88
A
C



















ANISOU
173
CA
ALA A
66
7716
3568
6149
−692
181
−669
A
C


















ATOM
174
C
ALA A
66
45.790
7.821
40.058
1.00
53.76
A
C



















ANISOU
174
C
ALA A
66
8782
4455
7189
−527
228
−711
A
C


















ATOM
175
O
ALA A
66
45.982
7.460
38.893
1.00
59.13
A
O



















ANISOU
175
O
ALA A
66
9596
5089
7780
−507
285
−769
A
O


















ATOM
176
CB
ALA A
66
43.419
7.300
40.716
1.00
40.04
A
C



















ANISOU
176
CB
ALA A
66
7103
2812
5296
−851
128
−672
A
C


















ATOM
177
N
GLN A
67
46.727
7.818
41.001
1.00
47.91
A
N



















ANISOU
177
N
GLN A
67
7951
3671
6580
−404
204
−680
A
N


















ATOM
178
CA
GLN A
67
48.086
7.348
40.794
1.00
44.34
A
C



















ANISOU
178
CA
GLN A
67
7515
3123
6210
−232
245
−700
A
C


















ATOM
179
C
GLN A
67
48.243
5.998
41.449
1.00
47.46
A
C



















ANISOU
179
C
GLN A
67
8003
3422
6607
−216
207
−720
A
C


















ATOM
180
O
GLN A
67
47.653
5.733
42.485
1.00
39.50
A
O



















ANISOU
180
O
GLN A
67
6979
2427
5604
−294
142
−686
A
O


















ATOM
181
CB
GLN A
67
49.094
8.336
41.366
1.00
42.20
A
C



















ANISOU
181
CB
GLN A
67
7045
2866
6123
−99
227
−639
A
C


















ATOM
182
CG
GLN A
67
49.000
9.737
40.786
1.00
50.85
A
C



















ANISOU
182
CG
GLN A
67
8037
4032
7251
−84
266
−605
A
C


















ATOM
183
CD
GLN A
67
49.956
10.708
41.451
1.00
62.56
A
C



















ANISOU
183
CD
GLN A
67
9331
5516
8923
40
195
−528
A
C


















ATOM
184
OE1
GLN A
67
51.122
10.392
41.671
1.00
75.67
A
O



















ANISOU
184
OE1
GLN A
67
10969
7105
10678
181
192
−508
A
O


















ATOM
185
NE2
GLN A
67
49.466
11.894
41.773
1.00
61.83
A
N



















ANISOU
185
NE2
GLN A
67
9119
5501
8872
−10
118
−484
A
N


















ATOM
186
N
SER A
68
49.053
5.149
40.837
1.00
58.67
A
N



















ANISOU
186
N
SER A
68
9521
4740
8029
−95
260
−768
A
N


















ATOM
187
CA
SER A
68
49.216
3.783
41.301
1.00
67.34
A
C



















ANISOU
187
CA
SER A
68
10770
5724
9091
−86
238
−810
A
C


















ATOM
188
C
SER A
68
49.768
3.559
42.702
1.00
61.51
A
C



















ANISOU
188
C
SER A
68
9951
4947
8473
−67
167
−760
A
C


















ATOM
189
O
SER A
68
49.242
2.730
43.436
1.00
71.08
A
O



















ANISOU
189
O
SER A
68
11287
6096
9624
−145
124
−771
A
O


















ATOM
190
CB
SER A
68
50.118
3.031
40.314
1.00
78.31
A
C



















ANISOU
190
CB
SER A
68
12272
7013
10471
78
326
−874
A
C


















ATOM
191
OG
SER A
68
49.957
3.503
38.985
1.00
76.80
A
O



















ANISOU
191
OG
SER A
68
12219
6837
10123
59
405
−934
A
O


















ATOM
192
N
PRO A
69
50.846
4.252
43.073
1.00
60.66
A
N



















ANISOU
192
N
PRO A
69
9651
4861
8538
31
146
−703
A
N


















ATOM
193
CA
PRO A
69
51.344
3.980
44.427
1.00
52.69
A
C



















ANISOU
193
CA
PRO A
69
8586
3813
7619
31
83
−658
A
C


















ATOM
194
C
PRO A
69
50.578
4.510
45.650
1.00
51.56
A
C



















ANISOU
194
C
PRO A
69
8364
3770
7455
−79
37
−601
A
C


















ATOM
195
O
PRO A
69
50.237
3.724
46.522
1.00
44.25
A
O



















ANISOU
195
O
PRO A
69
7544
2839
6429
−190
8
−588
A
O


















ATOM
196
CB
PRO A
69
52.747
4.602
44.414
1.00
53.75
A
C



















ANISOU
196
CB
PRO A
69
8572
3895
7955
199
85
−630
A
C


















ATOM
197
CG
PRO A
69
53.025
4.983
42.997
1.00
54.85
A
C



















ANISOU
197
CG
PRO A
69
8614
4104
8122
255
112
−622
A
C


















ATOM
198
CD
PRO A
69
51.701
5.188
42.339
1.00
53.14
A
C



















ANISOU
198
CD
PRO A
69
8557
3927
7704
168
180
−680
A
C


















ATOM
199
N
ASN A
70
50.243
5.796
45.681
1.00
47.40
A
N



















ANISOU
199
N
ASN A
70
7668
3328
7013
−47
32
−566
A
N


















ATOM
200
CA
ASN A
70
49.609
6.362
46.872
1.00
49.75
A
C



















ANISOU
200
CA
ASN A
70
7881
3701
7321
−98
−3
−516
A
C


















ATOM
201
C
ASN A
70
48.268
7.030
46.712
1.00
53.44
A
C



















ANISOU
201
C
ASN A
70
8381
4272
7652
−228
−5
−513
A
C


















ATOM
202
O
ASN A
70
47.674
7.441
47.696
1.00
56.95
A
O



















ANISOU
202
O
ASN A
70
8798
4768
8073
−269
−30
−477
A
O


















ATOM
203
CB
ASN A
70
50.524
7.421
47.486
1.00
53.92
A
C



















ANISOU
203
CB
ASN A
70
8208
4249
8029
6
−1
−478
A
C


















ATOM
204
CG
ASN A
70
51.985
7.063
47.395
1.00
55.37
A
C



















ANISOU
204
CG
ASN A
70
8333
4348
8359
128
18
−460
A
C


















ATOM
205
OD1
ASN A
70
52.468
6.200
48.114
1.00
56.47
A
O



















ANISOU
205
OD1
ASN A
70
8371
4503
8583
220
23
−446
A
O


















ATOM
206
ND2
ASN A
70
52.703
7.748
46.521
1.00
51.47
A
N



















ANISOU
206
ND2
ASN A
70
7917
3766
7875
132
15
−451
A
N


















ATOM
207
N
PHE A
71
47.784
7.148
45.491
1.00
58.34
A
N



















ANISOU
207
N
PHE A
71
9064
4922
8181
−289
28
−548
A
N


















ATOM
208
CA
PHE A
71
46.544
7.868
45.272
1.00
43.36
A
C



















ANISOU
208
CA
PHE A
71
7151
3129
6195
−403
32
−536
A
C


















ATOM
209
C
PHE A
71
45.328
7.092
44.798
1.00
41.88
A
C



















ANISOU
209
C
PHE A
71
7120
2944
5848
−559
47
−559
A
C


















ATOM
210
O
PHE A
71
44.518
7.608
44.047
1.00
45.19
A
O



















ANISOU
210
O
PHE A
71
7546
3425
6200
−639
71
−574
A
O


















ATOM
211
CB
PHE A
71
46.809
9.130
44.466
1.00
34.21
A
C



















ANISOU
211
CB
PHE A
71
5866
2022
5109
−340
51
−538
A
C


















ATOM
212
CG
PHE A
71
47.746
10.073
45.156
1.00
45.20
A
C



















ANISOU
212
CG
PHE A
71
7083
3419
6672
−221
12
−500
A
C


















ATOM
213
CD2
PHE A
71
49.109
9.890
45.083
1.00
44.16
A
C



















ANISOU
213
CD2
PHE A
71
6874
3215
6690
−86
4
−493
A
C


















ATOM
214
CD1
PHE A
71
47.262
11.114
45.916
1.00
53.96
A
C



















ANISOU
214
CD1
PHE A
71
8111
4595
7796
−247
−14
−472
A
C


















ATOM
215
CE2
PHE A
71
49.972
10.745
45.730
1.00
37.67
A
C



















ANISOU
215
CE2
PHE A
71
5874
2435
6005
−1
−10
−438
A
C


















ATOM
216
CE1
PHE A
71
48.121
11.975
46.567
1.00
39.41
A
C



















ANISOU
216
CE1
PHE A
71
6117
2756
6100
−147
−18
−441
A
C


















ATOM
217
CZ
PHE A
71
49.478
11.792
46.473
1.00
28.09
A
C



















ANISOU
217
CZ
PHE A
71
4595
1302
4774
−39
17
−413
A
C


















ATOM
218
N
LEU A
72
45.232
5.836
45.207
1.00
39.64
A
N



















ANISOU
218
N
LEU A
72
6964
2591
5508
−617
23
−553
A
N


















ATOM
219
CA
LEU A
72
44.085
5.014
44.845
1.00
43.24
A
C



















ANISOU
219
CA
LEU A
72
7562
3038
5828
−789
9
−555
A
C


















ATOM
220
C
LEU A
72
42.904
5.133
45.806
1.00
51.37
A
C



















ANISOU
220
C
LEU A
72
8597
4125
6795
−935
−14
−486
A
C


















ATOM
221
O
LEU A
72
41.952
4.360
45.674
1.00
66.20
A
O



















ANISOU
221
O
LEU A
72
10584
5988
8581
−1094
−38
−466
A
O


















ATOM
222
CB
LEU A
72
44.480
3.539
44.769
1.00
44.76
A
C



















ANISOU
222
CB
LEU A
72
7911
3100
5997
−781
−14
−583
A
C


















ATOM
223
CG
LEU A
72
45.483
3.108
43.701
1.00
42.58
A
C



















ANISOU
223
CG
LEU A
72
7693
2741
5746
−660
17
−659
A
C


















ATOM
224
CD1
LEU A
72
45.339
3.996
42.513
1.00
42.61
A
C



















ANISOU
224
CD1
LEU A
72
7659
2816
5716
−656
64
−695
A
C


















ATOM
225
CD2
LEU A
72
46.868
3.189
44.234
1.00
53.14
A
C



















ANISOU
225
CD2
LEU A
72
8941
4026
7224
−480
30
−656
A
C


















ATOM
226
N
SER A
73
42.930
6.042
46.782
1.00
46.27
A
N



















ANISOU
226
N
SER A
73
7851
3536
6194
−889
−10
−445
A
N


















ATOM
227
CA
SER A
73
41.781
6.273
47.641
1.00
32.79
A
C



















ANISOU
227
CA
SER A
73
6164
1882
4411
−1025
−12
−380
A
C


















ATOM
228
C
SER A
73
41.442
7.750
47.627
1.00
33.18
A
C



















ANISOU
228
C
SER A
73
6083
2038
4487
−1009
13
−375
A
C


















ATOM
229
O
SER A
73
42.331
8.610
47.605
1.00
38.74
A
O



















ANISOU
229
O
SER A
73
6677
2752
5289
−855
11
−403
A
O


















ATOM
230
CB
SER A
73
42.029
5.826
49.083
1.00
46.84
A
C



















ANISOU
230
CB
SER A
73
8013
3601
6182
−996
−34
−330
A
C


















ATOM
231
OG
SER A
73
42.698
6.829
49.822
1.00
44.92
A
O



















ANISOU
231
OG
SER A
73
7676
3381
6010
−853
−38
−332
A
O


















ATOM
232
N
LEU A
74
40.142
8.039
47.658
1.00
31.62
A
N



















ANISOU
232
N
LEU A
74
5888
1915
4210
−1178
32
−333
A
N


















ATOM
233
CA
LEU A
74
39.715
9.428
47.794
1.00
35.61
A
C



















ANISOU
233
CA
LEU A
74
6284
2512
4736
−1174
58
−325
A
C


















ATOM
234
C
LEU A
74
40.224
10.065
49.090
1.00
42.75
A
C



















ANISOU
234
C
LEU A
74
7185
3385
5672
−1044
51
−314
A
C


















ATOM
235
O
LEU A
74
40.401
11.288
49.154
1.00
46.89
A
O



















ANISOU
235
O
LEU A
74
7613
3947
6255
−954
49
−336
A
O


















ATOM
236
CB
LEU A
74
38.196
9.519
47.730
1.00
40.21
A
C



















ANISOU
236
CB
LEU A
74
6860
3183
5234
−1399
87
−265
A
C


















ATOM
237
CG
LEU A
74
37.577
9.108
46.405
1.00
48.99
A
C



















ANISOU
237
CG
LEU A
74
7952
4346
6317
−1533
69
−274
A
C


















ATOM
238
CD1
LEU A
74
36.079
9.229
46.463
1.00
50.42
A
C



















ANISOU
238
CD1
LEU A
74
8075
4640
6441
−1761
85
−190
A
C


















ATOM
239
CD2
LEU A
74
38.126
9.994
45.296
1.00
60.72
A
C



















ANISOU
239
CD2
LEU A
74
9341
5867
7862
−1430
71
−341
A
C


















ATOM
240
N
SER A
75
40.437
9.276
50.151
1.00
44.10
A
N



















ANISOU
240
N
SER A
75
7473
3480
5801
−1033
36
−280
A
N


















ATOM
241
CA
SER A
75
40.966
9.877
51.376
1.00
41.91
A
C



















ANISOU
241
CA
SER A
75
7217
3169
5539
−899
12
−275
A
C


















ATOM
242
C
SER A
75
42.369
10.426
51.139
1.00
44.10
A
C



















ANISOU
242
C
SER A
75
7359
3431
5964
−692
−38
−329
A
C


















ATOM
243
O
SER A
75
42.684
11.551
51.550
1.00
37.81
A
O



















ANISOU
243
O
SER A
75
6487
2656
5224
−581
−66
−346
A
O


















ATOM
244
CB
SER A
75
40.943
8.876
52.533
1.00
46.11
A
C



















ANISOU
244
CB
SER A
75
7916
3618
5984
−935
1
−218
A
C


















ATOM
245
OG
SER A
75
41.528
7.639
52.175
1.00
58.18
A
O



















ANISOU
245
OG
SER A
75
9479
5083
7542
−933
−27
−225
A
O


















ATOM
246
N
ASN A
76
43.189
9.688
50.377
1.00
47.35
A
N



















ANISOU
246
N
ASN A
76
7735
3808
6448
−649
−46
−355
A
N


















ATOM
247
CA
ASN A
76
44.579
10.085
50.134
1.00
41.60
A
C



















ANISOU
247
CA
ASN A
76
6872
3057
5876
−482
−71
−387
A
C


















ATOM
248
C
ASN A
76
44.683
11.368
49.298
1.00
33.03
A
C



















ANISOU
248
C
ASN A
76
5633
2037
4880
−434
−62
−411
A
C


















ATOM
249
O
ASN A
76
45.577
12.195
49.541
1.00
30.27
A
O



















ANISOU
249
O
ASN A
76
5160
1685
4656
−312
−78
−415
A
O


















ATOM
250
CB
ASN A
76
45.338
8.922
49.492
1.00
40.88
A
C



















ANISOU
250
CB
ASN A
76
6812
2897
5826
−461
−63
−406
A
C


















ATOM
251
CG
ASN A
76
45.993
8.026
50.530
1.00
55.01
A
C



















ANISOU
251
CG
ASN A
76
8677
4600
7623
−414
−93
−383
A
C


















ATOM
252
OD1
ASN A
76
45.516
7.922
51.650
1.00
60.05
A
O



















ANISOU
252
OD1
ASN A
76
9411
5229
8174
−451
−117
−345
A
O


















ATOM
253
ND2
ASN A
76
47.101
7.390
50.164
1.00
68.33
A
N



















ANISOU
253
ND2
ASN A
76
10337
6217
9410
−331
−90
−403
A
N


















ATOM
254
N
ILE A
77
43.795
11.546
48.305
1.00
30.11
A
N



















ANISOU
254
N
ILE A
77
5270
1723
4449
−542
−29
−421
A
N


















ATOM
255
CA
ILE A
77
43.771
12.767
47.488
1.00
26.61
A
C



















ANISOU
255
CA
ILE A
77
4700
1337
4076
−514
−25
−435
A
C


















ATOM
256
C
ILE A
77
43.168
13.923
48.267
1.00
28.36
A
C



















ANISOU
256
C
ILE A
77
4885
1600
4291
−505
−44
−424
A
C


















ATOM
257
O
ILE A
77
43.596
15.095
48.173
1.00
26.44
A
O



















ANISOU
257
O
ILE A
77
4517
1371
4157
−411
−67
−432
A
O


















ATOM
258
CB
ILE A
77
42.975
12.504
46.201
1.00
35.47
A
C



















ANISOU
258
CB
ILE A
77
5862
2503
5113
−648
18
−446
A
C


















ATOM
259
CG1
ILE A
77
43.558
11.298
45.464
1.00
27.74
A
C



















ANISOU
259
CG1
ILE A
77
4966
1461
4114
−642
35
−472
A
C


















ATOM
260
CG2
ILE A
77
42.886
13.769
45.354
1.00
26.02
A
C



















ANISOU
260
CG2
ILE A
77
4549
1362
3974
−634
23
−451
A
C


















ATOM
261
CD1
ILE A
77
42.601
10.698
44.478
1.00
28.51
A
C



















ANISOU
261
CD1
ILE A
77
5159
1588
4087
−801
65
−487
A
C


















ATOM
262
N
SER A
78
42.124
13.603
49.009
1.00
35.73
A
N



















ANISOU
262
N
SER A
78
5939
2544
5093
−613
−26
−404
A
N


















ATOM
263
CA
SER A
78
41.533
14.530
49.955
1.00
40.34
A
C



















ANISOU
263
CA
SER A
78
6551
3139
5638
−595
−37
−400
A
C


















ATOM
264
C
SER A
78
42.587
15.111
50.903
1.00
35.58
A
C



















ANISOU
264
C
SER A
78
5904
2493
5123
−404
−110
−413
A
C


















ATOM
265
O
SER A
78
42.535
16.297
51.274
1.00
27.11
A
O



















ANISOU
265
O
SER A
78
4783
1433
4084
−316
−151
−431
A
O


















ATOM
266
CB
SER A
78
40.454
13.779
50.726
1.00
47.62
A
C



















ANISOU
266
CB
SER A
78
7645
4050
6400
−748
17
−359
A
C


















ATOM
267
OG
SER A
78
39.876
14.626
51.695
1.00
66.19
A
O



















ANISOU
267
OG
SER A
78
10100
6354
8698
−661
−5
−356
A
O


















ATOM
268
N
ASP A
79
43.571
14.291
51.285
1.00
31.96
A
N



















ANISOU
268
N
ASP A
79
5457
1985
4703
−344
−128
−404
A
N


















ATOM
269
CA
ASP A
79
44.591
14.738
52.231
1.00
37.06
A
C



















ANISOU
269
CA
ASP A
79
6067
2602
5413
−200
−181
−403
A
C


















ATOM
270
C
ASP A
79
45.445
15.866
51.663
1.00
44.41
A
C



















ANISOU
270
C
ASP A
79
6832
3565
6475
−109
−173
−405
A
C


















ATOM
271
O
ASP A
79
45.833
16.781
52.403
1.00
51.82
A
O



















ANISOU
271
O
ASP A
79
7757
4516
7418
−14
−236
−397
A
O


















ATOM
272
CB
ASP A
79
45.467
13.559
52.668
1.00
42.08
A
C



















ANISOU
272
CB
ASP A
79
6753
3175
6060
−180
−187
−382
A
C


















ATOM
273
CG
ASP A
79
44.736
12.602
53.624
1.00
61.16
A
C



















ANISOU
273
CG
ASP A
79
9378
5547
8314
−253
−201
−356
A
C


















ATOM
274
OD1
ASP A
79
43.692
12.988
54.198
1.00
65.98
A
O



















ANISOU
274
OD1
ASP A
79
10106
6167
8797
−298
−198
−349
A
O


















ATOM
275
OD2
ASP A
79
45.208
11.465
53.841
1.00
65.70
A
O1−



















ANISOU
275
OD2
ASP A
79
10017
6064
8880
−268
−204
−336
A
O1−


















ATOM
276
N
ILE A
80
45.744
15.842
50.360
1.00
39.50
A
N



















ANISOU
276
N
ILE A
80
6122
2958
5930
−139
−103
−405
A
N


















ATOM
277
CA
ILE A
80
46.558
16.927
49.814
1.00
34.04
A
C



















ANISOU
277
CA
ILE A
80
5358
2296
5280
−63
−87
−372
A
C


















ATOM
278
C
ILE A
80
45.721
18.093
49.307
1.00
28.37
A
C



















ANISOU
278
C
ILE A
80
4593
1640
4548
−81
−124
−379
A
C


















ATOM
279
O
ILE A
80
46.294
19.135
48.960
1.00
23.66
A
O



















ANISOU
279
O
ILE A
80
3910
1082
3996
−9
−189
−342
A
O


















ATOM
280
CB
ILE A
80
47.508
16.426
48.708
1.00
35.19
A
C



















ANISOU
280
CB
ILE A
80
5498
2411
5460
−54
−3
−348
A
C


















ATOM
281
CG1
ILE A
80
46.761
16.162
47.409
1.00
41.25
A
C



















ANISOU
281
CG1
ILE A
80
6235
3218
6221
−148
51
−375
A
C


















ATOM
282
CG2
ILE A
80
48.172
15.132
49.138
1.00
33.60
A
C



















ANISOU
282
CG2
ILE A
80
5319
2150
5299
−42
25
−351
A
C


















ATOM
283
CD1
ILE A
80
47.638
15.507
46.337
1.00
26.52
A
C



















ANISOU
283
CD1
ILE A
80
4384
1326
4366
−125
124
−360
A
C


















ATOM
284
N
PHE A
81
44.386
17.970
49.258
1.00
33.24
A
N



















ANISOU
284
N
PHE A
81
5235
2267
5128
−175
−120
−418
A
N


















ATOM
285
CA
PHE A
81
43.590
19.120
48.829
1.00
32.09
A
C



















ANISOU
285
CA
PHE A
81
5033
2171
4988
−186
−167
−423
A
C


















ATOM
286
C
PHE A
81
42.785
19.835
49.907
1.00
46.01
A
C



















ANISOU
286
C
PHE A
81
6827
3935
6719
−132
−250
−452
A
C


















ATOM
287
O
PHE A
81
42.121
20.821
49.574
1.00
52.42
A
O



















ANISOU
287
O
PHE A
81
7557
4782
7579
−120
−302
−466
A
O


















ATOM
288
CB
PHE A
81
42.640
18.727
47.706
1.00
26.08
A
C



















ANISOU
288
CB
PHE A
81
4269
1427
4213
−342
−118
−437
A
C


















ATOM
289
CG
PHE A
81
43.339
18.484
46.396
1.00
23.48
A
C



















ANISOU
289
CG
PHE A
81
3915
1100
3906
−364
−60
−416
A
C


















ATOM
290
CD1
PHE A
81
43.894
19.545
45.675
1.00
22.98
A
C



















ANISOU
290
CD1
PHE A
81
3724
1081
3926
−287
−119
−374
A
C


















ATOM
291
CD2
PHE A
81
43.419
17.209
45.872
1.00
23.98
A
C



















ANISOU
291
CD2
PHE A
81
3983
1138
3990
−421
−63
−430
A
C


















ATOM
292
CE1
PHE A
81
44.524
19.333
44.513
1.00
23.01
A
C



















ANISOU
292
CE1
PHE A
81
3707
1077
3960
−292
−84
−349
A
C


















ATOM
293
CE2
PHE A
81
44.049
16.997
44.682
1.00
30.82
A
C



















ANISOU
293
CE2
PHE A
81
4844
1996
4872
−409
−72
−413
A
C


















ATOM
294
CZ
PHE A
81
44.614
18.061
44.006
1.00
25.71
A
C



















ANISOU
294
CZ
PHE A
81
4198
1361
4210
−360
−45
−370
A
C


















ATOM
295
N
ASN A
82
42.785
19.367
51.161
1.00
44.06
A
N



















ANISOU
295
N
ASN A
82
6698
3646
6395
−90
−271
−466
A
N


















ATOM
296
CA
ASN A
82
42.104
20.067
52.266
1.00
43.67
A
C



















ANISOU
296
CA
ASN A
82
6735
3585
6274
1
−345
−502
A
C


















ATOM
297
C
ASN A
82
40.588
20.057
52.119
1.00
38.27
A
C



















ANISOU
297
C
ASN A
82
6035
3043
5463
−95
−246
−492
A
C


















ATOM
298
O
ASN A
82
39.937
21.107
52.174
1.00
45.53
A
O



















ANISOU
298
O
ASN A
82
6839
4082
6377
−22
−251
−503
A
O


















ATOM
299
CB
ASN A
82
42.558
21.522
52.413
1.00
52.07
A
C



















ANISOU
299
CB
ASN A
82
7669
4691
7424
146
−442
−510
A
C


















ATOM
300
CG
ASN A
82
43.950
21.665
52.949
1.00
50.89
A
C



















ANISOU
300
CG
ASN A
82
7483
4544
7308
223
−500
−472
A
C


















ATOM
301
OD1
ASN A
82
44.602
20.685
53.340
1.00
53.99
A
O



















ANISOU
301
OD1
ASN A
82
7939
4899
7675
199
−470
−451
A
O


















ATOM
302
ND2
ASN A
82
44.415
22.912
52.990
1.00
42.82
A
N



















ANISOU
302
ND2
ASN A
82
6358
3561
6351
311
−602
−461
A
N


















ATOM
303
N
LEU A
83
40.021
18.875
51.909
1.00
27.33
A
N



















ANISOU
303
N
LEU A
83
4706
1705
3973
−261
−134
−450
A
N


















ATOM
304
CA
LEU A
83
38.567
18.731
51.894
1.00
28.54
A
C



















ANISOU
304
CA
LEU A
83
4783
2064
3996
−372
−12
−399
A
C


















ATOM
305
C
LEU A
83
38.237
17.257
52.101
1.00
30.85
A
C



















ANISOU
305
C
LEU A
83
5210
2335
4178
−539
67
−345
A
C


















ATOM
306
O
LEU A
83
39.120
16.402
52.113
1.00
31.30
A
O



















ANISOU
306
O
LEU A
83
5412
2216
4263
−562
28
−360
A
O


















ATOM
307
CB
LEU A
83
37.942
19.294
50.601
1.00
41.10
A
C



















ANISOU
307
CB
LEU A
83
6172
3793
5653
−456
17
−381
A
C


















ATOM
308
CG
LEU A
83
38.271
18.721
49.210
1.00
33.52
A
C



















ANISOU
308
CG
LEU A
83
5162
2756
4820
−514
−21
−396
A
C


















ATOM
309
CD1
LEU A
83
37.498
17.431
48.874
1.00
29.44
A
C



















ANISOU
309
CD1
LEU A
83
4772
2154
4261
−675
24
−384
A
C


















ATOM
310
CD2
LEU A
83
38.041
19.792
48.152
1.00
26.22
A
C



















ANISOU
310
CD2
LEU A
83
4034
1992
3938
−554
−8
−372
A
C


















ATOM
311
N
SER A
84
36.962
16.965
52.283
1.00
31.49
A
N



















ANISOU
311
N
SER A
84
5234
2589
4143
−653
173
−273
A
N


















ATOM
312
CA
SER A
84
36.576
15.604
52.613
1.00
32.35
A
C



















ANISOU
312
CA
SER A
84
5468
2675
4149
−819
237
−201
A
C


















ATOM
313
C
SER A
84
36.619
14.713
51.373
1.00
29.45
A
C



















ANISOU
313
C
SER A
84
5112
2243
3833
−1015
229
−194
A
C


















ATOM
314
O
SER A
84
36.458
15.192
50.252
1.00
40.82
A
O



















ANISOU
314
O
SER A
84
6418
3744
5346
−1055
216
−216
A
O


















ATOM
315
CB
SER A
84
35.177
15.616
53.224
1.00
43.32
A
C



















ANISOU
315
CB
SER A
84
6768
4282
5410
−880
356
−101
A
C


















ATOM
316
OG
SER A
84
34.304
16.553
52.566
1.00
49.11
A
O



















ANISOU
316
OG
SER A
84
7269
5208
6184
−881
391
−86
A
O


















ATOM
317
N
PRO A
85
36.809
13.403
51.535
1.00
30.18
A
N



















ANISOU
317
N
PRO A
85
5378
2209
3881
−1139
231
−165
A
N


















ATOM
318
CA
PRO A
85
36.553
12.512
50.394
1.00
30.48
A
C



















ANISOU
318
CA
PRO A
85
5440
2206
3936
−1343
226
−153
A
C


















ATOM
319
C
PRO A
85
35.150
12.662
49.838
1.00
50.41
A
C



















ANISOU
319
C
PRO A
85
7789
4939
6425
−1513
276
−74
A
C


















ATOM
320
O
PRO A
85
34.921
12.361
48.662
1.00
58.33
A
O



















ANISOU
320
O
PRO A
85
8766
5939
7458
−1651
246
−86
A
O


















ATOM
321
CB
PRO A
85
36.763
11.104
50.969
1.00
31.60
A
C



















ANISOU
321
CB
PRO A
85
5804
2187
4017
−1446
219
−114
A
C


















ATOM
322
CG
PRO A
85
37.378
11.264
52.291
1.00
31.62
A
C



















ANISOU
322
CG
PRO A
85
5906
2123
3986
−1278
209
−116
A
C


















ATOM
323
CD
PRO A
85
37.086
12.657
52.774
1.00
34.36
A
C



















ANISOU
323
CD
PRO A
85
6093
2637
4325
−1113
235
−128
A
C


















ATOM
324
N
LEU A
86
34.187
13.100
50.652
1.00
51.28
A
N



















ANISOU
324
N
LEU A
86
7779
5234
6470
−1502
351
12
A
N


















ATOM
325
CA
LEU A
86
32.821
13.248
50.160
1.00
54.62
A
C



















ANISOU
325
CA
LEU A
86
8006
5867
6879
−1660
399
108
A
C


















ATOM
326
C
LEU A
86
32.768
14.251
49.024
1.00
44.39
A
C



















ANISOU
326
C
LEU A
86
6543
4653
5672
−1619
358
49
A
C


















ATOM
327
O
LEU A
86
32.116
14.015
48.004
1.00
39.57
A
O



















ANISOU
327
O
LEU A
86
5849
4105
5081
−1795
331
84
A
O


















ATOM
328
CB
LEU A
86
31.882
13.693
51.274
1.00
59.57
A
C



















ANISOU
328
CB
LEU A
86
8513
6694
7426
−1601
509
210
A
C


















ATOM
329
CG
LEU A
86
30.438
13.975
50.857
1.00
60.40
A
C



















ANISOU
329
CG
LEU A
86
8370
7043
7538
−1736
569
328
A
C


















ATOM
330
CD1
LEU A
86
29.766
12.699
50.354
1.00
48.56
A
C



















ANISOU
330
CD1
LEU A
86
6895
5522
6035
−2043
546
439
A
C


















ATOM
331
CD2
LEU A
86
29.698
14.543
52.037
1.00
77.58
A
C



















ANISOU
331
CD2
LEU A
86
10434
9413
9630
−1607
700
414
A
C


















ATOM
332
N
ARC A
87
33.420
15.397
49.197
1.00
30.63
A
N



















ANISOU
332
N
ARC A
87
4749
2907
3980
−1392
340
−32
A
N


















ATOM
333
CA
ARC A
87
33.286
16.438
48.198
1.00
29.78
A
C



















ANISOU
333
CA
ARC A
87
4467
2891
3956
−1349
304
−65
A
C


















ATOM
334
C
ARC A
87
33.850
15.984
46.865
1.00
45.48
A
C



















ANISOU
334
C
ARC A
87
6521
4765
5994
−1452
236
−116
A
C


















ATOM
335
O
ARC A
87
33.266
16.254
45.805
1.00
49.67
A
O



















ANISOU
335
O
ARC A
87
6929
5396
6547
−1554
213
−95
A
O


















ATOM
336
CB
ARC A
87
33.975
17.700
48.667
1.00
28.72
A
C



















ANISOU
336
CB
ARC A
87
4291
2739
3882
−1093
274
−138
A
C


















ATOM
337
CG
ARC A
87
33.175
18.461
49.634
1.00
29.48
A
C



















ANISOU
337
CG
ARC A
87
4278
2997
3927
−976
338
−98
A
C


















ATOM
338
CD
ARC A
87
33.829
19.788
49.921
1.00
41.62
A
C



















ANISOU
338
CD
ARC A
87
5781
4497
5535
−730
273
−182
A
C


















ATOM
339
NE
ARC A
87
33.793
20.718
48.796
1.00
43.59
A
N



















ANISOU
339
NE
ARC A
87
5867
4797
5899
−717
215
−199
A
N


















ATOM
340
CZ
ARC A
87
34.089
22.012
48.925
1.00
48.77
A
C



















ANISOU
340
CZ
ARC A
87
6447
5450
6633
−525
152
−249
A
C


















ATOM
341
NH1
ARC A
87
34.031
22.812
47.864
1.00
41.79
A
N1+



















ANISOU
341
NH1
ARC A
87
5415
4610
5854
−530
97
−247
A
N1+


















ATOM
342
NH2
ARC A
87
34.435
22.507
50.132
1.00
48.53
A
N



















ANISOU
342
NH2
ARC A
87
6504
5365
6570
−328
131
−299
A
N


















ATOM
343
N
ILE A
88
34.978
15.273
46.903
1.00
42.69
A
N



















ANISOU
343
N
ILE A
88
6367
4204
5649
−1420
206
−181
A
N


















ATOM
344
CA
ILE A
88
35.557
14.744
45.678
1.00
37.36
A
C



















ANISOU
344
CA
ILE A
88
5782
3415
4998
−1494
163
−234
A
C


















ATOM
345
C
ILE A
88
34.618
13.710
45.067
1.00
41.23
A
C



















ANISOU
345
C
ILE A
88
6318
3932
5414
−1748
153
−183
A
C


















ATOM
346
O
ILE A
88
34.350
13.737
43.862
1.00
46.70
A
O



















ANISOU
346
O
ILE A
88
6977
4662
6106
−1845
115
−196
A
O


















ATOM
347
CB
ILE A
88
36.963
14.181
45.954
1.00
32.76
A
C



















ANISOU
347
CB
ILE A
88
5394
2605
4448
−1381
144
−306
A
C


















ATOM
348
CG1
ILE A
88
37.858
15.293
46.479
1.00
26.83
A
C



















ANISOU
348
CG1
ILE A
88
4573
1828
3792
−1147
122
−343
A
C


















ATOM
349
CG2
ILE A
88
37.573
13.616
44.684
1.00
37.72
A
C



















ANISOU
349
CG2
ILE A
88
6073
3174
5085
−1379
116
−352
A
C


















ATOM
350
CD1
ILE A
88
39.257
14.821
46.815
1.00
31.57
A
C



















ANISOU
350
CD1
ILE A
88
5304
2242
4450
−1008
88
−389
A
C


















ATOM
351
N
ALA A
89
34.044
12.829
45.897
1.00
37.95
A
N



















ANISOU
351
N
ALA A
89
5978
3506
4936
−1868
176
−113
A
N


















ATOM
352
CA
ALA A
89
33.108
11.828
45.379
1.00
32.60
A
C



















ANISOU
352
CA
ALA A
89
5329
2850
4206
−2115
141
−46
A
C


















ATOM
353
C
ALA A
89
31.901
12.475
44.709
1.00
37.73
A
C



















ANISOU
353
C
ALA A
89
5758
3710
4869
−2245
130
27
A
C


















ATOM
354
O
ALA A
89
31.416
11.985
43.684
1.00
46.97
A
O



















ANISOU
354
O
ALA A
89
6916
4908
6022
−2352
53
36
A
O


















ATOM
355
CB
ALA A
89
32.644
10.881
46.486
1.00
33.98
A
C



















ANISOU
355
CB
ALA A
89
5586
2998
4326
−2219
172
50
A
C


















ATOM
356
N
LYS A
90
31.386
13.565
45.273
1.00
36.57
A
N



















ANISOU
356
N
LYS A
90
5394
3750
4750
−2132
191
78
A
N


















ATOM
357
CA
LYS A
90
30.193
14.172
44.695
1.00
37.29
A
C



















ANISOU
357
CA
LYS A
90
5249
4055
4866
−2231
179
161
A
C


















ATOM
358
C
LYS A
90
30.526
14.975
43.450
1.00
44.55
A
C



















ANISOU
358
C
LYS A
90
6106
4991
5832
−2175
115
87
A
C


















ATOM
359
O
LYS A
90
29.705
15.045
42.523
1.00
53.45
A
O



















ANISOU
359
O
LYS A
90
7124
6220
6964
−2326
53
137
A
O


















ATOM
360
CB
LYS A
90
29.468
15.048
45.721
1.00
33.76
A
C



















ANISOU
360
CB
LYS A
90
4592
3806
4428
−2113
276
244
A
C


















ATOM
361
CG
LYS A
90
28.806
14.247
46.864
1.00
49.80
A
C



















ANISOU
361
CG
LYS A
90
6640
5884
6398
−2207
358
366
A
C


















ATOM
362
CD
LYS A
90
27.687
15.019
47.584
1.00
64.87
A
C



















ANISOU
362
CD
LYS A
90
8294
8049
8305
−2143
466
485
A
C


















ATOM
363
CE
LYS A
90
28.188
16.259
48.342
1.00
73.33
A
C



















ANISOU
363
CE
LYS A
90
9327
9163
9373
−1829
529
404
A
C


















ATOM
364
NZ
LYS A
90
27.077
16.921
49.102
1.00
76.22
A
N1+



















ANISOU
364
NZ
LYS A
90
9470
9774
9716
−1745
651
515
A
N1+


















ATOM
365
N
ALA A
91
31.730
15.550
43.385
1.00
37.90
A
N



















ANISOU
365
N
ALA A
91
5332
4044
5025
−1970
118
−19
A
N


















ATOM
366
CA
ALA A
91
32.117
16.278
42.182
1.00
29.97
A
C



















ANISOU
366
CA
ALA A
91
4275
3051
4062
−1918
66
−71
A
C


















ATOM
367
C
ALA A
91
32.497
15.337
41.037
1.00
38.82
A
C



















ANISOU
367
C
ALA A
91
5584
4042
5125
−2051
6
−125
A
C


















ATOM
368
O
ALA A
91
32.286
15.662
39.856
1.00
35.13
A
O



















ANISOU
368
O
ALA A
91
5070
3631
4647
−2106
−49
−130
A
O


















ATOM
369
CB
ALA A
91
33.255
17.233
42.501
1.00
28.41
A
C



















ANISOU
369
CB
ALA A
91
4067
2790
3939
−1666
86
−140
A
C


















ATOM
370
N
SER A
92
33.034
14.165
41.363
1.00
34.42
A
N



















ANISOU
370
N
SER A
92
5243
3316
4520
−2076
11
−165
A
N


















ATOM
371
CA
SER A
92
33.494
13.192
40.378
1.00
31.48
A
C



















ANISOU
371
CA
SER A
92
5041
2839
4082
−2075
−39
−226
A
C


















ATOM
372
C
SER A
92
32.397
12.252
39.890
1.00
38.94
A
C



















ANISOU
372
C
SER A
92
6008
3830
4955
−2264
−116
−172
A
C


















ATOM
373
O
SER A
92
32.632
11.476
38.957
1.00
45.25
A
O



















ANISOU
373
O
SER A
92
6961
4548
5685
−2287
−172
−227
A
O


















ATOM
374
CB
SER A
92
34.639
12.369
40.978
1.00
40.72
A
C



















ANISOU
374
CB
SER A
92
6394
3829
5248
−1938
−6
−288
A
C


















ATOM
375
OG
SER A
92
35.686
13.225
41.440
1.00
35.93
A
O



















ANISOU
375
OG
SER A
92
5758
3170
4723
−1751
46
−329
A
O


















ATOM
376
N
ASN A
93
31.213
12.298
40.505
1.00
41.81
A
N



















ANISOU
376
N
ASN A
93
6226
4321
5339
−2399
−120
−61
A
N


















ATOM
377
CA
ASN A
93
30.100
11.386
40.212
1.00
37.39
A
C



















ANISOU
377
CA
ASN A
93
5663
3804
4741
−2585
−202
16
A
C


















ATOM
378
C
ASN A
93
30.435
9.944
40.609
1.00
42.72
A
C



















ANISOU
378
C
ASN A
93
6550
4312
5368
−2610
−223
−3
A
C


















ATOM
379
O
ASN A
93
30.073
8.983
39.926
1.00
41.63
A
O



















ANISOU
379
O
ASN A
93
6522
4117
5180
−2717
−319
−6
A
O


















ATOM
380
CB
ASN A
93
29.661
11.484
38.748
1.00
36.98
A
C



















ANISOU
380
CB
ASN A
93
5600
3802
4649
−2659
−305
−1
A
C


















ATOM
381
CG
ASN A
93
28.337
10.795
38.481
1.00
48.90
A
C



















ANISOU
381
CG
ASN A
93
7052
5382
6147
−2857
−406
100
A
C


















ATOM
382
OD1
ASN A
93
27.369
10.906
39.244
1.00
49.43
A
O



















ANISOU
382
OD1
ASN A
93
6938
5571
6273
−2944
−383
225
A
O


















ATOM
383
ND2
ASN A
93
28.296
10.061
37.379
1.00
60.69
A
N



















ANISOU
383
ND2
ASN A
93
8705
6792
7561
−2930
−519
50
A
N


















ATOM
384
N
ILE A
94
31.062
9.787
41.769
1.00
53.62
A
N



















ANISOU
384
N
ILE A
94
7995
5611
6766
−2513
−143
−13
A
N


















ATOM
385
CA
ILE A
94
31.422
8.460
42.250
1.00
60.33
A
C



















ANISOU
385
CA
ILE A
94
9014
6322
7586
−2535
−154
−4
A
C


















ATOM
386
C
ILE A
94
30.409
7.959
43.276
1.00
62.25
A
C



















ANISOU
386
C
ILE A
94
9144
6660
7847
−2676
−119
145
A
C


















ATOM
387
O
ILE A
94
30.173
8.600
44.297
1.00
59.20
A
O



















ANISOU
387
O
ILE A
94
8623
6379
7489
−2650
−26
202
A
O


















ATOM
388
CB
ILE A
94
32.823
8.459
42.881
1.00
51.19
A
C



















ANISOU
388
CB
ILE A
94
7994
5018
6437
−2327
−95
−98
A
C


















ATOM
389
CG1
ILE A
94
33.858
8.929
41.865
1.00
47.82
A
C



















ANISOU
389
CG1
ILE A
94
7657
4515
5997
−2192
−114
−220
A
C


















ATOM
390
CG2
ILE A
94
33.176
7.075
43.391
1.00
51.23
A
C



















ANISOU
390
CG2
ILE A
94
8160
4888
6417
−2339
−109
−79
A
C


















ATOM
391
CD1
ILE A
94
35.281
8.828
42.357
1.00
50.65
A
C



















ANISOU
391
CD1
ILE A
94
8079
4771
6395
−1977
−55
−290
A
C


















ATOM
392
N
GLU A
95
29.800
6.815
42.980
1.00
64.94
A
N



















ANISOU
392
N
GLU A
95
9539
6966
8170
−2831
−189
218
A
N


















ATOM
393
CA
GLU A
95
28.798
6.213
43.857
1.00
80.14
A
C



















ANISOU
393
CA
GLU A
95
11343
8989
10116
−2973
−147
385
A
C


















ATOM
394
C
GLU A
95
29.319
5.760
45.221
1.00
81.49
A
C



















ANISOU
394
C
GLU A
95
11677
9023
10261
−2960
−115
413
A
C


















ATOM
395
O
GLU A
95
28.667
5.979
46.238
1.00
85.23
A
O



















ANISOU
395
O
GLU A
95
12070
9574
10741
−3068
−60
565
A
O


















ATOM
396
CB
GLU A
95
28.083
5.057
43.145
1.00
90.92
A
C



















ANISOU
396
CB
GLU A
95
12606
10435
11504
−3177
−250
490
A
C


















ATOM
397
CG
GLU A
95
29.007
3.977
42.603
1.00
99.86
A
C



















ANISOU
397
CG
GLU A
95
13949
11395
12600
−3245
−393
427
A
C


















ATOM
398
CD
GLU A
95
28.267
2.922
41.804
1.00
107.46
A
C



















ANISOU
398
CD
GLU A
95
14812
12431
13587
−3446
−519
521
A
C


















ATOM
399
OE1
GLU A
95
28.832
1.828
41.595
1.00
116.17
A
O



















ANISOU
399
OE1
GLU A
95
15891
13527
14721
−3602
−558
652
A
O


















ATOM
400
OE2
GLU A
95
27.121
3.188
41.384
1.00
104.53
A
O1−



















ANISOU
400
OE2
GLU A
95
14386
12124
13207
−3450
−584
473
A
O1−


















ATOM
401
N
ALA A
96
30.494
5.140
45.246
1.00
71.81
A
N



















ANISOU
401
N
ALA A
96
10668
7610
9009
−2822
−142
283
A
N


















ATOM
402
CA
ALA A
96
31.051
4.670
46.505
1.00
66.37
A
C



















ANISOU
402
CA
ALA A
96
10141
6778
8297
−2792
−130
302
A
C


















ATOM
403
C
ALA A
96
32.259
5.498
46.890
1.00
73.06
A
C



















ANISOU
403
C
ALA A
96
11011
7611
9137
−2635
−20
285
A
C


















ATOM
404
O
ALA A
96
33.271
5.502
46.198
1.00
77.47
A
O



















ANISOU
404
O
ALA A
96
11602
8162
9669
−2679
35
389
A
O


















ATOM
405
CB
ALA A
96
31.432
3.205
46.396
1.00
57.47
A
C



















ANISOU
405
CB
ALA A
96
9223
5461
7152
−2715
−220
181
A
C


















ATOM
406
N
GLU A
97
32.150
6.179
48.020
1.00
65.72
A
N



















ANISOU
406
N
GLU A
97
10071
6673
8227
−2454
7
163
A
N


















ATOM
407
CA
GLU A
97
33.216
7.029
48.520
1.00
56.65
A
C



















ANISOU
407
CA
GLU A
97
8947
5493
7085
−2284
86
124
A
C


















ATOM
408
C
GLU A
97
34.472
6.245
48.879
1.00
47.54
A
C



















ANISOU
408
C
GLU A
97
7976
4162
5925
−2141
60
69
A
C


















ATOM
409
O
GLU A
97
35.585
6.678
48.606
1.00
40.15
A
O



















ANISOU
409
O
GLU A
97
7070
3156
5028
−1933
57
−37
A
O


















ATOM
410
CB
GLU A
97
32.707
7.816
49.727
1.00
59.24
A
C



















ANISOU
410
CB
GLU A
97
9191
5939
7380
−2374
190
256
A
C


















ATOM
411
CG
GLU A
97
33.656
8.866
50.273
1.00
74.07
A
C



















ANISOU
411
CG
GLU A
97
11099
7784
9260
−2198
263
197
A
C


















ATOM
412
CD
GLU A
97
32.990
9.742
51.316
1.00
93.12
A
C



















ANISOU
412
CD
GLU A
97
13369
10401
11610
−2149
375
313
A
C


















ATOM
413
OE1
GLU A
97
33.630
10.058
52.340
1.00
90.17
A
O



















ANISOU
413
OE1
GLU A
97
13062
9999
11198
−1945
409
281
A
O


















ATOM
414
OE2
GLU A
97
31.814
10.105
51.116
1.00
106.91
A
O1−



















ANISOU
414
OE2
GLU A
97
14933
12344
13343
−2296
425
438
A
O1−


















ATOM
415
N
ASP A
98
34.280
5.082
49.489
1.00
53.16
A
N



















ANISOU
415
N
ASP A
98
8787
4812
6599
−2250
38
154
A
N


















ATOM
416
CA
ASP A
98
35.390
4.249
49.941
1.00
65.58
A
C



















ANISOU
416
CA
ASP A
98
10522
6225
8169
−2122
8
115
A
C


















ATOM
417
C
ASP A
98
35.971
3.263
48.934
1.00
61.88
A
C



















ANISOU
417
C
ASP A
98
10134
5649
7730
−2056
−72
16
A
C


















ATOM
418
O
ASP A
98
36.968
2.610
49.224
1.00
67.72
A
O



















ANISOU
418
O
ASP A
98
10968
6271
8490
−1905
−91
−38
A
O


















ATOM
419
CB
ASP A
98
34.987
3.496
51.210
1.00
77.98
A
C



















ANISOU
419
CB
ASP A
98
12180
7762
9687
−2261
17
255
A
C


















ATOM
420
CG
ASP A
98
34.719
4.424
52.374
1.00
93.26
A
C



















ANISOU
420
CG
ASP A
98
14093
9774
11568
−2275
121
355
A
C


















ATOM
421
OD1
ASP A
98
35.651
5.141
52.792
1.00
89.20
A
O



















ANISOU
421
OD1
ASP A
98
13623
9216
11053
−2087
150
283
A
O


















ATOM
422
OD2
ASP A
98
33.577
4.432
52.875
1.00
107.87
A
O1−−



















ANISOU
422
OD2
ASP A
98
15873
11736
13375
−2469
177
515
A
O1


















ATOM
423
N
LYS A
99
35.363
3.139
47.762
1.00
62.44
A
N



















ANISOU
423
N
LYS A
99
10169
5757
7797
−2162
−118
−5
A
N


















ATOM
424
CA
LYS A
99
35.872
2.193
46.776
1.00
64.48
A
C



















ANISOU
424
CA
LYS A
99
10545
5897
8056
−2122
−190
−90
A
C


















ATOM
425
C
LYS A
99
37.267
2.572
46.296
1.00
57.96
A
C



















ANISOU
425
C
LYS A
99
9725
5026
7273
−1878
−160
−214
A
C


















ATOM
426
O
LYS A
99
37.553
3.743
46.071
1.00
56.91
A
O



















ANISOU
426
O
LYS A
99
9473
4980
7171
−1780
−108
−248
A
O


















ATOM
427
CB
LYS A
99
34.916
2.081
45.589
1.00
69.66
A
C



















ANISOU
427
CB
LYS A
99
11178
6604
8686
−2286
−253
−90
A
C


















ATOM
428
CG
LYS A
99
35.383
1.111
44.516
1.00
77.75
A
C



















ANISOU
428
CG
LYS A
99
12353
7501
9688
−2245
−326
−189
A
C


















ATOM
429
CD
LYS A
99
34.251
0.732
43.578
1.00
80.79
A
C



















ANISOU
429
CD
LYS A
99
12765
7899
10033
−2455
−426
−157
A
C


















ATOM
430
CE
LYS A
99
33.577
1.963
43.001
1.00
78.59
A
C



















ANISOU
430
CE
LYS A
99
12333
7779
9747
−2514
−415
−154
A
C


















ATOM
431
NZ
LYS A
99
32.376
1.606
42.199
1.00
84.63
A
N1+



















ANISOU
431
NZ
LYS A
99
13114
8559
10481
−2730
−534
−107
A
N1+


















ATOM
432
N
LYS A
100
38.133
1.577
46.135
1.00
53.53
A
N



















ANISOU
432
N
LYS A
100
9290
4325
6722
−1782
−193
−269
A
N


















ATOM
433
CA
LYS A
100
39.488
1.833
45.672
1.00
50.73
A
C



















ANISOU
433
CA
LYS A
100
8925
3928
6422
−1558
−161
−368
A
C


















ATOM
434
C
LYS A
100
39.471
2.305
44.219
1.00
58.40
A
C



















ANISOU
434
C
LYS A
100
9872
4945
7374
−1546
−153
−444
A
C


















ATOM
435
O
LYS A
100
38.823
1.697
43.357
1.00
61.43
A
O



















ANISOU
435
O
LYS A
100
10347
5301
7691
−1673
−208
−462
A
O


















ATOM
436
CB
LYS A
100
40.350
0.573
45.822
1.00
51.07
A
C



















ANISOU
436
CB
LYS A
100
9109
3812
6483
−1476
−196
−402
A
C


















ATOM
437
CG
LYS A
100
41.860
0.828
45.638
1.00
61.24
A
C



















ANISOU
437
CG
LYS A
100
10356
5060
7854
−1238
−153
−478
A
C


















ATOM
438
CD
LYS A
100
42.737
−0.388
45.997
1.00
63.80
A
C



















ANISOU
438
CD
LYS A
100
10800
5230
8213
−1154
−183
−497
A
C


















ATOM
439
CE
LYS A
100
44.230
−0.064
45.824
1.00
68.69
A
C



















ANISOU
439
CE
LYS A
100
11343
5821
8934
−927
−137
−558
A
C


















ATOM
440
NZ
LYS A
100
45.147
−1.185
46.205
1.00
74.32
A
N1+



















ANISOU
440
NZ
LYS A
100
12152
6387
9698
−836
−162
−574
A
N1+


















ATOM
441
N
LEU A
101
40.185
3.396
43.954
1.00
53.74
A
N



















ANISOU
441
N
LEU A
101
9165
4416
6837
−1397
−94
−485
A
N


















ATOM
442
CA
LEU A
101
40.242
3.971
42.625
1.00
50.02
A
C



















ANISOU
442
CA
LEU A
101
8674
3991
6342
−1378
−75
−548
A
C


















ATOM
443
C
LEU A
101
41.080
3.102
41.695
1.00
63.10
A
C



















ANISOU
443
C
LEU A
101
10477
5525
7972
−1286
−80
−636
A
C


















ATOM
444
O
LEU A
101
41.923
2.307
42.125
1.00
64.95
A
O



















ANISOU
444
O
LEU A
101
10780
5650
8246
−1182
−81
−654
A
O


















ATOM
445
CB
LEU A
101
40.840
5.375
42.681
1.00
45.05
A
C



















ANISOU
445
CB
LEU A
101
7881
3446
5791
−1243
−14
−555
A
C


















ATOM
446
CG
LEU A
101
40.106
6.319
43.607
1.00
33.81
A
C



















ANISOU
446
CG
LEU A
101
6325
2130
4391
−1307
−4
−482
A
C


















ATOM
447
CD1
LEU A
101
40.797
7.675
43.726
1.00
32.04
A
C



















ANISOU
447
CD1
LEU A
101
5951
1962
4259
−1159
37
−492
A
C


















ATOM
448
CD2
LEU A
101
38.707
6.469
43.071
1.00
34.38
A
C



















ANISOU
448
CD2
LEU A
101
6383
2293
4388
−1515
−30
−448
A
C


















ATOM
449
N
ILE A
102
40.854
3.279
40.397
1.00
59.53
A
N



















ANISOU
449
N
ILE A
102
10082
5090
7448
−1321
−80
−691
A
N


















ATOM
450
CA
ILE A
102
41.634
2.585
39.379
1.00
58.07
A
C



















ANISOU
450
CA
ILE A
102
10060
4792
7212
−1223
−68
−785
A
C


















ATOM
451
C
ILE A
102
42.781
3.510
38.982
1.00
58.03
A
C



















ANISOU
451
C
ILE A
102
9969
4811
7268
−1030
30
−822
A
C


















ATOM
452
O
ILE A
102
42.587
4.736
38.963
1.00
55.93
A
O



















ANISOU
452
O
ILE A
102
9555
4660
7038
−1035
64
−790
A
O


















ATOM
453
CB
ILE A
102
40.756
2.202
38.180
1.00
56.86
A
C



















ANISOU
453
CB
ILE A
102
10051
4629
6925
−1369
−131
−827
A
C


















ATOM
454
CG1
ILE A
102
39.584
1.341
38.647
1.00
59.34
A
C



















ANISOU
454
CG1
ILE A
102
10422
4920
7206
−1576
−241
−767
A
C


















ATOM
455
CG2
ILE A
102
41.570
1.482
37.121
1.00
62.57
A
C



















ANISOU
455
CG2
ILE A
102
10977
5226
7572
−1251
−113
−935
A
C


















ATOM
456
CD1
ILE A
102
38.730
0.817
37.518
1.00
66.14
A
C



















ANISOU
456
CD1
ILE A
102
11434
5751
7947
−1728
−338
−803
A
C


















ATOM
457
N
PRO A
103
43.990
2.997
38.722
1.00
62.33
A
N



















ANISOU
457
N
PRO A
103
10592
5251
7842
−856
78
−879
A
N


















ATOM
458
CA
PRO A
103
45.060
3.871
38.211
1.00
54.11
A
C



















ANISOU
458
CA
PRO A
103
9475
4227
6857
−680
178
−903
A
C


















ATOM
459
C
PRO A
103
44.620
4.601
36.956
1.00
56.11
A
C



















ANISOU
459
C
PRO A
103
9772
4543
7004
−730
218
−938
A
C


















ATOM
460
O
PRO A
103
44.032
4.011
36.047
1.00
59.88
A
O



















ANISOU
460
O
PRO A
103
10428
4987
7336
−821
184
−995
A
O


















ATOM
461
CB
PRO A
103
46.213
2.904
37.930
1.00
49.39
A
C



















ANISOU
461
CB
PRO A
103
9005
3489
6270
−514
218
−965
A
C


















ATOM
462
CG
PRO A
103
46.023
1.817
38.949
1.00
56.93
A
C



















ANISOU
462
CG
PRO A
103
10002
4371
7259
−570
133
−941
A
C


















ATOM
463
CD
PRO A
103
44.512
1.683
39.161
1.00
64.17
A
C



















ANISOU
463
CD
PRO A
103
10945
5346
8093
−802
45
−901
A
C


















ATOM
464
N
ASP A
104
44.870
5.910
36.938
1.00
57.11
A
N



















ANISOU
464
N
ASP A
104
9737
4757
7204
−680
278
−900
A
N


















ATOM
465
CA
ASP A
104
44.496
6.860
35.882
1.00
57.32
A
C



















ANISOU
465
CA
ASP A
104
9768
4856
7155
−728
327
−916
A
C


















ATOM
466
C
ASP A
104
43.014
7.218
35.823
1.00
47.29
A
C



















ANISOU
466
C
ASP A
104
8460
3693
5815
−954
239
−885
A
C


















ATOM
467
O
ASP A
104
42.633
7.998
34.934
1.00
43.77
A
O



















ANISOU
467
O
ASP A
104
8017
3311
5303
−1015
262
−897
A
O


















ATOM
468
CB
ASP A
104
44.913
6.385
34.494
1.00
72.35
A
C



















ANISOU
468
CB
ASP A
104
11894
6684
8912
−655
398
−1009
A
C


















ATOM
469
CG
ASP A
104
45.339
7.524
33.610
1.00
89.28
A
C



















ANISOU
469
CG
ASP A
104
14010
8870
11043
−575
521
−1013
A
C


















ATOM
470
OD1
ASP A
104
45.462
8.663
34.119
1.00
92.67
A
O



















ANISOU
470
OD1
ASP A
104
14233
9368
11612
−563
547
−939
A
O


















ATOM
471
OD2
ASP A
104
45.546
7.272
32.402
1.00
100.17
A
O1−



















ANISOU
471
OD2
ASP A
104
15584
10208
12267
−519
594
−1089
A
O1−


















ATOM
472
N
CBN A
105
42.176
6.695
36.724
1.00
48.14
A
N



















ANISOU
472
N
CBN A
105
8532
3823
5938
−1081
146
−839
A
N


















ATOM
473
CA
CBN A
105
40.797
7.148
36.847
1.00
35.73
A
C



















ANISOU
473
CA
CBN A
105
6874
2367
4335
−1282
75
−785
A
C


















ATOM
474
C
CBN A
105
40.753
8.656
37.058
1.00
42.95
A
C



















ANISOU
474
C
CBN A
105
7585
3397
5338
−1264
117
−736
A
C


















ATOM
475
O
CBN A
105
41.622
9.230
37.714
1.00
42.73
A
O



















ANISOU
475
O
CBN A
105
7445
3358
5433
−1116
168
−714
A
O


















ATOM
476
CB
CBN A
105
40.128
6.398
37.993
1.00
36.09
A
C



















ANISOU
476
CB
CBN A
105
6899
2405
4408
−1379
5
−727
A
C


















ATOM
477
CG
CBN A
105
38.808
6.935
38.518
1.00
42.58
A
C



















ANISOU
477
CG
CBN A
105
7584
3354
5239
−1557
−44
−644
A
C


















ATOM
478
CD
CBN A
105
38.114
5.902
39.409
1.00
51.85
A
C



















ANISOU
478
CD
CBN A
105
8806
4491
6405
−1675
−107
−590
A
C


















ATOM
479
OE1
CBN A
105
38.721
4.902
39.815
1.00
64.31
A
O



















ANISOU
479
OE1
CBN A
105
10497
5949
7990
−1606
−113
−611
A
O


















ATOM
480
NE2
CBN A
105
36.843
6.131
39.702
1.00
50.34
A
N



















ANISOU
480
NE2
CBN A
105
8523
4401
6202
−1856
−153
−512
A
N


















ATOM
481
N
BEU A
106
39.759
9.310
36.461
1.00
46.07
A
N



















ANISOU
481
N
BEU A
106
5733
6445
5326
−922
1721
−1470
A
N


















ATOM
482
CA
BEU A
106
39.670
10.766
36.469
1.00
45.16
A
C



















ANISOU
482
CA
BEU A
106
5498
6507
5154
−817
1620
−1382
A
C


















ATOM
483
C
BEU A
106
38.638
11.233
37.498
1.00
44.35
A
C



















ANISOU
483
C
BEU A
106
5430
6310
5112
−864
1605
−1495
A
C


















ATOM
484
O
BEU A
106
37.521
10.699
37.566
1.00
48.19
A
O



















ANISOU
484
O
BEU A
106
5859
6822
5629
−979
1618
−1682
A
O


















ATOM
485
CB
BEU A
106
39.337
11.297
35.068
1.00
33.66
A
C



















ANISOU
485
CB
BEU A
106
3753
5467
3571
−757
1522
−1398
A
C


















ATOM
486
CG
BEU A
106
39.301
12.816
34.865
1.00
32.57
A
C



















ANISOU
486
CG
BEU A
106
3431
5585
3359
−630
1422
−1266
A
C


















ATOM
487
CD1
BEU A
106
40.721
13.418
34.869
1.00
28.83
A
C



















ANISOU
487
CD1
BEU A
106
3030
4991
2934
−527
1327
−899
A
C


















ATOM
488
CD2
BEU A
106
38.534
13.172
33.570
1.00
31.73
A
C



















ANISOU
488
CD2
BEU A
106
3027
5922
3107
−568
1305
−1329
A
C


















ATOM
489
N
BEU A
107
39.033
12.231
38.296
1.00
35.50
A
N



















ANISOU
489
N
BEU A
107
4392
5082
4014
−788
1588
−1384
A
N


















ATOM
490
CA
BEU A
107
38.264
12.808
39.384
1.00
27.85
A
C



















ANISOU
490
CA
BEU A
107
3481
3993
3106
−803
1570
−1474
A
C


















ATOM
491
C
BEU A
107
38.275
14.325
39.239
1.00
27.70
A
C



















ANISOU
491
C
BEU A
107
3328
4085
3111
−647
1382
−1337
A
C


















ATOM
492
O
BEU A
107
39.252
14.901
38.777
1.00
27.08
A
O



















ANISOU
492
O
BEU A
107
3230
3992
3069
−531
1219
−1034
A
O


















ATOM
493
CB
BEU A
107
38.867
12.458
40.767
1.00
38.01
A
C



















ANISOU
493
CB
BEU A
107
5071
4902
4469
−836
1637
−1383
A
C


















ATOM
494
CG
BEU A
107
39.169
11.110
41.452
1.00
41.12
A
C



















ANISOU
494
CG
BEU A
107
5679
5036
4909
−929
1743
−1341
A
C


















ATOM
495
CD1
BEU A
107
38.079
10.128
41.233
1.00
48.16
A
C



















ANISOU
495
CD1
BEU A
107
6483
5984
5831
−1081
1803
−1503
A
C


















ATOM
496
CD2
BEU A
107
40.473
10.528
41.027
1.00
50.97
A
C



















ANISOU
496
CD2
BEU A
107
7032
6202
6133
−870
1796
−1195
A
C


















ATOM
497
N
LEU A
108
37.223
14.993
39.696
1.00
32.50
A
N



















ANISOU
497
N
LEU A
108
3854
4741
3752
−622
1327
−1482
A
N


















ATOM
498
CA
LEU A
108
37.258
16.446
39.836
1.00
41.10
A
C



















ANISOU
498
CA
LEU A
108
4882
5785
4950
−443
1073
−1270
A
C


















ATOM
499
C
LEU A
108
37.277
16.827
41.315
1.00
51.67
A
C



















ANISOU
499
C
LEU A
108
6426
6802
6406
−461
1060
−1285
A
C


















ATOM
500
O
LEU A
108
36.597
16.211
42.142
1.00
46.08
A
O



















ANISOU
500
O
LEU A
108
5810
6032
5667
−589
1235
−1546
A
O


















ATOM
501
CB
LEU A
108
36.064
17.126
39.143
1.00
47.11
A
C



















ANISOU
501
CB
LEU A
108
5364
6871
5666
−333
978
−1396
A
C


















ATOM
502
CG
LEU A
108
35.942
17.146
37.607
1.00
42.34
A
C



















ANISOU
502
CG
LEU A
108
4504
6660
4924
−248
914
−1340
A
C


















ATOM
503
CD1
LEU A
108
37.252
17.498
36.938
1.00
30.35
A
C



















ANISOU
503
CD1
LEU A
108
3029
5079
3421
−163
793
−953
A
C


















ATOM
504
CD2
LEU A
108
35.406
15.844
37.070
1.00
34.62
A
C



















ANISOU
504
CD2
LEU A
108
3422
5948
3784
−424
1136
−1672
A
C


















ATOM
505
N
VAL A
109
38.053
17.854
41.641
1.00
45.38
A
N



















ANISOU
505
N
VAL A
109
5695
5812
5737
−346
866
−1015
A
N


















ATOM
506
CA
VAL A
109
38.298
18.298
43.005
1.00
27.02
A
C



















ANISOU
506
CA
VAL A
109
3556
3193
3516
−356
827
−1006
A
C


















ATOM
507
C
VAL A
109
37.893
19.762
43.087
1.00
35.67
A
C



















ANISOU
507
C
VAL A
109
4551
4250
4753
−209
629
−941
A
C


















ATOM
508
O
VAL A
109
38.447
20.590
42.355
1.00
46.49
A
O



















ANISOU
508
O
VAL A
109
5842
5621
6199
−93
468
−681
A
O


















ATOM
509
CB
VAL A
109
39.777
18.140
43.401
1.00
25.46
A
C



















ANISOU
509
CB
VAL A
109
3538
2782
3352
−370
783
−763
A
C


















ATOM
510
CG1
VAL A
109
40.045
18.740
44.795
1.00
25.30
A
C



















ANISOU
510
CG1
VAL A
109
3680
2507
3425
−370
711
−761
A
C


















ATOM
511
CG2
VAL A
109
40.202
16.677
43.298
1.00
24.96
A
C



















ANISOU
511
CG2
VAL A
109
3589
2732
3161
−475
985
−811
A
C


















ATOM
512
N
PRO A
110
36.975
20.132
43.979
1.00
27.98
A
N



















ANISOU
512
N
PRO A
110
3588
3220
3825
−208
648
−1163
A
N


















ATOM
513
CA
PRO A
110
36.577
21.539
44.103
1.00
29.10
A
C



















ANISOU
513
CA
PRO A
110
3645
3287
4124
−47
472
−1118
A
C


















ATOM
514
C
PRO A
110
37.703
22.399
44.651
1.00
32.87
A
C



















ANISOU
514
C
PRO A
110
4264
3463
4760
−18
329
−883
A
C


















ATOM
515
O
PRO A
110
38.524
21.949
45.455
1.00
37.50
A
O



















ANISOU
515
O
PRO A
110
5028
3894
5327
−130
371
−860
A
O


















ATOM
516
CB
PRO A
110
35.392
21.492
45.068
1.00
29.83
A
C



















ANISOU
516
CB
PRO A
110
3732
3396
4207
−88
571
−1463
A
C


















ATOM
517
CG
PRO A
110
35.018
20.051
45.153
1.00
31.54
A
C



















ANISOU
517
CG
PRO A
110
3985
3754
4243
−275
809
−1680
A
C


















ATOM
518
CD
PRO A
110
36.231
19.260
44.888
1.00
31.02
A
C



















ANISOU
518
CD
PRO A
110
4063
3604
4118
−357
854
−1471
A
C


















ATOM
519
N
VAL A
111
37.716
23.665
44.229
1.00
29.92
A
N



















ANISOU
519
N
VAL A
111
3811
3012
4546
138
163
−717
A
N


















ATOM
520
CA
VAL A
111
38.888
24.514
44.406
1.00
33.23
A
C



















ANISOU
520
CA
VAL A
111
4328
3171
5128
145
34
−463
A
C


















ATOM
521
C
VAL A
111
38.458
25.973
44.336
1.00
35.97
A
C



















ANISOU
521
C
VAL A
111
4620
3363
5684
312
−99
−400
A
C


















ATOM
522
O
VAL A
111
37.504
26.324
43.642
1.00
41.50
A
O



















ANISOU
522
O
VAL A
111
5173
4216
6378
475
−127
−418
A
O


















ATOM
523
CB
VAL A
111
39.963
24.177
43.338
1.00
29.33
A
C



















ANISOU
523
CB
VAL A
111
3807
2763
4576
120
13
−168
A
C


















ATOM
524
CG1
VAL A
111
40.603
25.421
42.830
1.00
30.58
A
C



















ANISOU
524
CG1
VAL A
111
3947
2759
4915
205
−131
123
A
C


















ATOM
525
CG2
VAL A
111
40.987
23.211
43.889
1.00
27.76
A
C



















ANISOU
525
CG2
VAL A
111
3744
2517
4288
−34
88
−161
A
C


















ATOM
526
N
THR A
112
39.187
26.832
45.045
1.00
38.61
A
N



















ANISOU
526
N
THR A
112
5070
3394
6205
280
−180
−328
A
N


















ATOM
527
CA
THR A
112
38.872
28.253
45.133
1.00
39.76
A
C



















ANISOU
527
CA
THR A
112
5207
3308
6591
422
−284
−285
A
C


















ATOM
528
C
THR A
112
39.954
29.026
44.388
1.00
46.00
A
C



















ANISOU
528
C
THR A
112
6022
3929
7525
429
−371
75
A
C


















ATOM
529
O
THR A
112
41.116
29.032
44.810
1.00
56.96
A
O



















ANISOU
529
O
THR A
112
7504
5173
8966
269
−385
152
A
O


















ATOM
530
CB
THR A
112
38.767
28.688
46.598
1.00
39.12
A
C



















ANISOU
530
CB
THR A
112
5235
2999
6628
355
−283
−544
A
C


















ATOM
531
OG1
THR A
112
37.807
27.858
47.275
1.00
37.11
A
O



















ANISOU
531
OG1
THR A
112
4964
2926
6208
319
−173
−866
A
O


















ATOM
532
CG2
THR A
112
38.343
30.153
46.721
1.00
37.45
A
C



















ANISOU
532
CG2
THR A
112
5019
2520
6689
512
−369
−545
A
C


















ATOM
533
N
CYS A
113
39.554
29.726
43.335
1.00
48.00
A
N



















ANISOU
533
N
CYS A
113
6185
4232
7823
613
−422
295
A
N


















ATOM
534
CA
CYS A
113
40.479
30.540
42.572
1.00
53.06
A
C



















ANISOU
534
CA
CYS A
113
6860
4680
8618
637
−485
656
A
C


















ATOM
535
C
CYS A
113
40.556
31.933
43.138
1.00
66.90
A
C



















ANISOU
535
C
CYS A
113
8725
6007
10686
660
−535
645
A
C


















ATOM
536
O
CYS A
113
39.559
32.498
43.578
1.00
75.07
A
O



















ANISOU
536
O
CYS A
113
9761
6934
11827
790
−548
429
A
O


















ATOM
537
CB
CYS A
113
39.975
30.766
41.153
1.00
56.88
A
C



















ANISOU
537
CB
CYS A
113
7227
5357
9029
859
−518
909
A
C


















ATOM
538
SC
CYS A
113
40.313
29.552
39.874
1.00
71.14
A
S



















ANISOU
538
SC
CYS A
113
8928
7527
10573
819
−489
1204
A
S


















ATOM
539
N
GLY A
114
41.757
32.479
43.130
1.00
72.53
A
N



















ANISOU
539
N
GLY A
114
9521
6480
11556
525
−551
864
A
N


















ATOM
540
CA
GLY A
114
41.958
33.868
43.477
1.00
74.83
A
C



















ANISOU
540
CA
GLY A
114
9917
6341
12174
542
−580
920
A
C


















ATOM
541
C
GLY A
114
42.963
34.456
42.510
1.00
70.71
A
C



















ANISOU
541
C
GLY A
114
9428
5734
11704
476
−563
1297
A
C


















ATOM
542
O
GLY A
114
43.636
33.728
41.778
1.00
57.89
A
O



















ANISOU
542
O
GLY A
114
7742
4320
9933
391
−552
1497
A
O


















ATOM
543
N
CYS A
115
43.081
35.769
42.570
1.00
68.06
A
N



















ANISOU
543
N
CYS A
115
9195
5144
11522
507
−534
1363
A
N


















ATOM
544
CA
CYS A
115
43.999
36.467
41.720
1.00
84.86
A
C



















ANISOU
544
CA
CYS A
115
11377
7210
13658
420
−482
1671
A
C


















ATOM
545
C
CYS A
115
45.105
37.110
42.523
1.00
97.68
A
C



















ANISOU
545
C
CYS A
115
13086
8618
15410
150
−434
1525
A
C


















ATOM
546
O
CYS A
115
44.857
37.977
43.355
1.00
99.49
A
O



















ANISOU
546
O
CYS A
115
13406
8595
15802
153
−421
1321
A
O


















ATOM
547
CB
CYS A
115
43.267
37.545
40.946
1.00
91.36
A
C



















ANISOU
547
CB
CYS A
115
12267
7904
14540
682
−475
1914
A
C


















ATOM
548
SG
CYS A
115
44.168
38.093
39.493
1.00103.41
A
S




















ANISOU
548
SG
CYS A
115
13861
9421
16009
610
−402
2344
A
S


















ATOM
549
N
THR A
116
46.326
36.653
42.284
1.00
98.83
A
N



















ANISOU
549
N
THR A
116
13185
8890
15476
−78
−410
1608
A
N


















ATOM
550
CA
THR A
116
47.507
37.227
42.923
1.00104.76
A
C




















ANISOU
550
CA
THR A
116
13978
9488
16339
−342
−367
1503
A
C


















ATOM
551
C
THR A
116
48.481
37.706
41.851
1.00101.85
A
C




















ANISOU
551
C
THR A
116
13620
9100
15978
−449
−295
1812
A
C


















ATOM
552
O
THR A
116
48.846
36.945
40.945
1.00100.19
A
O




















ANISOU
552
O
THR A
116
13315
9149
15601
−449
−293
2019
A
O


















ATOM
553
CB
THR A
116
48.202
36.224
43.872
1.00103.62
A
C




















ANISOU
553
CB
THR A
116
13745
9527
16099
−529
−411
1265
A
C


















ATOM
554
OG1
THR A
116
48.492
35.001
43.183
1.00101.20
A
0




















ANISOU
554
OG1
THR A
116
13329
9526
15595
−524
−431
1417
A
O


















ATOM
555
CG2
THR A
116
47.326
35.926
45.092
1.00101.92
A
C




















ANISOU
555
CG2
THR A
116
13550
9297
15879
−461
−461
925
A
C


















ATOM
556
N
LYS A
117
48.876
38.976
41.945
1.00106.96
A
N




















ANISOU
556
N
LYS A
117
14390
9437
16814
−544
−224
1832
A
N


















ATOM
557
CA
LYS A
117
49.850
39.591
41.034
1.00107.18
A
C




















ANISOU
557
CA
LYS A
117
14456
9391
16876
−684
−131
2097
A
C


















ATOM
558
C
LYS A
117
49.500
39.329
39.566
1.00104.52
A
C




















ANISOU
558
C
LYS A
117
14101
9234
16377
−498
−118
2459
A
C


















ATOM
559
O
LYS A
117
50.333
38.896
38.769
1.00113.63
A
O




















ANISOU
559
O
LYS A
117
15172
10593
17409
−608
−80
2646
A
O


















ATOM
560
CB
LYS A
117
51.271
39.117
41.366
1.00101.15
A
C




















ANISOU
560
CB
LYS A
117
13574
8768
16089
−989
−114
2007
A
C


















ATOM
561
CG
LYS A
117
51.846
39.752
42.638
1.00
97.84
A
C



















ANISOU
561
CG
LYS A
117
13190
8135
15849
−1215
−103
1695
A
C


















ATOM
562
CD
LYS A
117
53.236
39.221
43.006
1.00
93.60
A
C



















ANISOU
562
CD
LYS A
117
12503
7781
15281
−1500
−108
1589
A
C


















ATOM
563
CE
LYS A
117
54.329
39.840
42.139
1.00
97.27
A
C



















ANISOU
563
CE
LYS A
117
12971
8180
15808
−1705
10
1808
A
C


















ATOM
564
NZ
LYS A
117
55.707
39.616
42.690
1.00
98.21
A
N1+



















ANISOU
564
NZ
LYS A
117
12938
8420
15955
−2019
13
1641
A
N1+


















ATOM
565
N
ASN A
118
48.260
39.665
39.220
1.00
103.91
A
N



















ANISOU
565
N
ASN A
118
14089
9107
16286
−203
−154
2546
A
N


















ATOM
566
CA
ASN A
118
47.709
39.528
37.868
1.00
91.53
A
C



















ANISOU
566
CA
ASN A
118
12514
7706
14555
20
−156
2881
A
C


















ATOM
567
C
ASN A
118
47.779
38.110
37.307
1.00
81.66
A
C



















ANISOU
567
C
ASN A
118
11074
6906
13047
56
−209
2935
A
C


















ATOM
568
O
ASN A
118
47.927
37.914
36.107
1.00
78.27
A
O



















ANISOU
568
O
ASN A
118
10608
6687
12443
205
−207
3204
A
O


















ATOM
569
CB
ASN A
118
48.326
40.557
36.904
1.00
88.71
A
C



















ANISOU
569
CB
ASN A
118
12269
7207
14229
−76
−48
3182
A
C


















ATOM
570
CG
ASN A
118
47.423
40.884
35.736
1.00
86.71
A
C



















ANISOU
570
CG
ASN A
118
12133
6890
13923
219
−49
3485
A
C


















ATOM
571
OD1
ASN A
118
46.834
39.998
35.121
1.00
81.39
A
O



















ANISOU
571
OD1
ASN A
118
11659
5846
13421
263
6
3574
A
O


















ATOM
572
ND2
ASN A
118
47.314
42.168
35.419
1.00
86.46
A
N



















ANISOU
572
ND2
ASN A
118
11978
7225
13646
425
−112
3642
A
N


















ATOM
573
N
HIS A
119
47.663
37.125
38.188
1.00
77.37
A
N



















ANISOU
573
N
HIS A
119
10415
6521
12459
−71
−254
2688
A
N


















ATOM
574
CA
HIS A
119
47.667
35.725
37.785
1.00
84.38
A
C



















ANISOU
574
CA
HIS A
119
11144
7801
13114
−30
−298
2708
A
C


















ATOM
575
C
HIS A
119
46.697
34.982
38.685
1.00
81.02
A
C



















ANISOU
575
C
HIS A
119
10685
7403
12697
54
−376
2423
A
C


















ATOM
576
O
HIS A
119
46.507
35.360
39.834
1.00
91.42
A
O



















ANISOU
576
O
HIS A
119
12060
8509
14165
−43
−390
2160
A
O


















ATOM
577
CB
HIS A
119
49.065
35.122
37.878
1.00
90.48
A
C



















ANISOU
577
CB
HIS A
119
11816
8763
13798
−282
−261
2710
A
C


















ATOM
578
CG
HIS A
119
49.966
35.507
36.747
1.00
93.10
A
C



















ANISOU
578
CG
HIS A
119
12154
9114
14107
−387
−173
2976
A
C


















ATOM
579
ND1
HIS A
119
50.772
36.623
36.784
1.00
97.41
A
N



















ANISOU
579
ND1
HIS A
119
12820
9346
14847
−524
−102
3018
A
N


















ATOM
580
CD2
HIS A
119
50.191
34.922
35.548
1.00
93.35
A
C



















ANISOU
580
CD2
HIS A
119
12089
9442
13938
−387
−132
3201
A
C


















ATOM
581
CE1
HIS A
119
51.453
36.711
35.657
1.00
100.49
A
C



















ANISOU
581
CE1
HIS A
119
13193
9826
15164
−607
−18
3269
A
C


















ATOM
582
NE2
HIS A
119
51.118
35.691
34.889
1.00
97.52
A
N



















ANISOU
582
NE2
HIS A
119
12681
9830
14544
−520
−39
3381
A
N


















ATOM
583
N
SER A
120
46.072
33.931
38.174
1.00
72.27
A
N



















ANISOU
583
N
SER A
120
9477
6562
11419
225
−420
2459
A
N


















ATOM
584
CA
SER A
120
45.103
33.202
38.985
1.00
62.39
A
C



















ANISOU
584
CA
SER A
120
8200
5313
10194
318
−481
2194
A
C


















ATOM
585
C
SER A
120
45.565
31.838
39.499
1.00
52.73
A
C



















ANISOU
585
C
SER A
120
6898
4332
8805
172
−476
2036
A
C


















ATOM
586
O
SER A
120
46.116
31.044
38.744
1.00
56.94
A
O



















ANISOU
586
O
SER A
120
7346
5146
9143
118
−440
2183
A
O


















ATOM
587
CB
SER A
120
43.735
33.129
38.300
1.00
65.19
A
C



















ANISOU
587
CB
SER A
120
8490
5791
10489
635
−529
2268
A
C


















ATOM
588
OG
SER A
120
43.850
32.680
36.967
1.00
70.96
A
O



















ANISOU
588
OG
SER A
120
9106
6896
10960
733
−517
2506
A
O


















ATOM
589
N
PHE A
121
45.317
31.565
40.781
1.00
43.47
A
N



















ANISOU
589
N
PHE A
121
5764
3099
7654
114
−490
1685
A
N


















ATOM
590
CA
PHE A
121
45.764
30.314
41.379
1.00
52.78
A
C



















ANISOU
590
CA
PHE A
121
6916
4492
8646
−22
−464
1474
A
C


















ATOM
591
C
PHE A
121
44.789
29.893
42.473
1.00
54.71
A
C



















ANISOU
591
C
PHE A
121
7199
4744
8844
28
−464
1114
A
C


















ATOM
592
O
PHE A
121
43.994
30.693
42.970
1.00
52.36
A
O



















ANISOU
592
O
PHE A
121
6946
4245
8704
125
−493
993
A
O


















ATOM
593
CB
PHE A
121
47.161
30.415
42.026
1.00
52.63
A
C



















ANISOU
593
CB
PHE A
121
6929
4342
8726
−253
−474
1465
A
C


















ATOM
594
CG
PHE A
121
48.302
30.553
41.052
1.00
57.08
A
C



















ANISOU
594
CG
PHE A
121
7431
4966
9293
−358
−449
1773
A
C


















ATOM
595
CD1
PHE A
121
48.848
29.442
40.423
1.00
52.86
A
C



















ANISOU
595
CD1
PHE A
121
6803
4757
8523
−388
−408
1847
A
C


















ATOM
596
CD2
PHE A
121
48.862
31.795
40.797
1.00
61.76
A
C



















ANISOU
596
CD2
PHE A
121
8055
5378
10031
−423
−428
1891
A
C


















ATOM
597
CE1
PHE A
121
49.918
29.579
39.536
1.00
49.64
A
C



















ANISOU
597
CE1
PHE A
121
6320
4432
8108
−490
−375
2110
A
C


















ATOM
598
CE2
PHE A
121
49.921
31.938
39.915
1.00
55.12
A
C



















ANISOU
598
CE2
PHE A
121
7152
4648
9143
−529
−377
2112
A
C


















ATOM
599
CZ
PHE A
121
50.453
30.828
39.285
1.00
46.92
A
C



















ANISOU
599
CZ
PHE A
121
6003
3916
7908
−561
−356
2215
A
C


















ATOM
600
N
ALA A
122
44.900
28.631
42.872
1.00
43.87
A
N



















ANISOU
600
N
ALA A
122
5817
3592
7260
−42
−416
945
A
N


















ATOM
601
CA
ALA A
122
44.227
28.101
44.041
1.00
35.63
A
C



















ANISOU
601
CA
ALA A
122
4832
2555
6149
−51
−388
613
A
C


















ATOM
602
C
ALA A
122
45.277
27.890
45.108
1.00
41.58
A
C



















ANISOU
602
C
ALA A
122
5664
3220
6916
−216
−406
515
A
C


















ATOM
603
O
ALA A
122
46.132
27.008
44.968
1.00
55.99
A
O



















ANISOU
603
O
ALA A
122
7475
5201
8597
−292
−378
584
A
O


















ATOM
604
CB
ALA A
122
43.544
26.788
43.720
1.00
35.19
A
C



















ANISOU
604
CB
ALA A
122
4730
2803
5837
−10
−294
498
A
C


















ATOM
605
N
ASN A
123
45.215
28.699
46.163
1.00
40.73
A
N



















ANISOU
605
N
ASN A
123
5625
2879
6972
−258
−454
346
A
N


















ATOM
606
CA
ASN A
123
46.131
28.564
47.287
1.00
40.16
A
C



















ANISOU
606
CA
ASN A
123
5609
2760
6889
−403
−487
213
A
C


















ATOM
607
C
ASN A
123
45.657
27.373
48.127
1.00
39.49
A
C



















ANISOU
607
C
ASN A
123
5592
2851
6563
−392
−421
−9
A
C


















ATOM
608
O
ASN A
123
44.535
27.372
48.641
1.00
42.92
A
O



















ANISOU
608
O
ASN A
123
6065
3269
6975
−330
−379
−218
A
O


















ATOM
609
CB
ASN A
123
46.185
29.898
48.046
1.00
43.73
A
C



















ANISOU
609
CB
ASN A
123
6101
2913
7603
−459
−553
89
A
C


















ATOM
610
CG
ASN A
123
46.972
29.839
49.374
1.00
62.73
A
C



















ANISOU
610
CG
ASN A
123
8549
5307
9979
−604
−600
−123
A
C


















ATOM
611
OD1
ASN A
123
47.501
28.795
49.772
1.00
71.30
A
O



















ANISOU
611
OD1
ASN A
123
9644
6607
10839
−640
−591
−152
A
O


















ATOM
612
ND2
ASN A
123
47.042
30.985
50.064
1.00
74.71
A
N



















ANISOU
612
ND2
ASN A
123
10085
6641
11659
−664
−625
−271
A
N


















ATOM
613
N
ILE A
124
46.483
26.331
48.205
1.00
36.45
A
N



















ANISOU
613
N
ILE A
124
5220
2636
5994
−443
−394
47
A
N


















ATOM
614
CA
ILE A
124
46.132
25.068
48.845
1.00
32.36
A
C



















ANISOU
614
CA
ILE A
124
4793
2268
5234
−425
−300
−99
A
C


















ATOM
615
C
ILE A
124
47.245
24.689
49.815
1.00
54.06
A
C



















ANISOU
615
C
ILE A
124
7599
5058
7883
−491
−348
−130
A
C


















ATOM
616
O
ILE A
124
48.372
24.429
49.391
1.00
58.16
A
O



















ANISOU
616
O
ILE A
124
8059
5661
8380
−515
−386
40
A
O


















ATOM
617
CB
ILE A
124
45.938
23.957
47.808
1.00
28.44
A
C



















ANISOU
617
CB
ILE A
124
4265
1959
4582
−374
−192
20
A
C


















ATOM
618
CG1
ILE A
124
44.582
24.114
47.127
1.00
30.24
A
C



















ANISOU
618
CG1
ILE A
124
4436
2221
4833
−297
−133
−41
A
C


















ATOM
619
CG2
ILE A
124
46.121
22.561
48.441
1.00
26.53
A
C



















ANISOU
619
CG2
ILE A
124
4141
1832
4105
−381
−85
−59
A
C


















ATOM
620
CD1
ILE A
124
44.224
22.974
46.224
1.00
30.71
A
C



















ANISOU
620
CD1
ILE A
124
4457
2489
4721
−269
−9
−6
A
C


















ATOM
621
N
THR A
125
46.929
24.636
51.109
1.00
53.68
A
N



















ANISOU
621
N
THR A
125
7653
4986
7756
−508
−345
−351
A
N


















ATOM
622
CA
THR A
125
47.926
24.379
52.144
1.00
44.84
A
C



















ANISOU
622
CA
THR A
125
6581
3939
6518
−548
−412
−399
A
C


















ATOM
623
C
THR A
125
48.328
22.898
52.179
1.00
41.87
A
C



















ANISOU
623
C
THR A
125
6289
3736
5883
−480
−324
−303
A
C


















ATOM
624
O
THR A
125
47.463
22.007
52.141
1.00
32.26
A
O



















ANISOU
624
O
THR A
125
5176
2549
4532
−434
−175
−347
A
O


















ATOM
625
CB
THR A
125
47.379
24.839
53.500
1.00
37.68
A
C



















ANISOU
625
CB
THR A
125
5756
2973
5587
−580
−431
−672
A
C


















ATOM
626
OG1
THR A
125
47.144
26.254
53.446
1.00
41.68
A
O



















ANISOU
626
OG1
THR A
125
6185
3285
6366
−636
−510
−762
A
O


















ATOM
627
CG2
THR A
125
48.358
24.552
54.612
1.00
45.19
A
C



















ANISOU
627
CG2
THR A
125
6748
4053
6370
−603
−509
−732
A
C


















ATOM
628
N
TYR A
126
49.629
22.652
52.273
1.00
37.19
A
N



















ANISOU
628
N
TYR A
126
5646
3256
5229
−473
−408
−183
A
N


















ATOM
629
CA
TYR A
126
50.164
21.301
52.347
1.00
30.10
A
C



















ANISOU
629
CA
TYR A
126
4828
2507
4102
−373
−342
−75
A
C


















ATOM
630
C
TYR A
126
51.186
21.222
53.478
1.00
35.51
A
C



















ANISOU
630
C
TYR A
126
5527
3318
4646
−343
−458
−115
A
C


















ATOM
631
O
TYR A
126
51.924
22.171
53.714
1.00
31.79
A
O



















ANISOU
631
O
TYR A
126
4918
2870
4290
−425
−611
−161
A
O


















ATOM
632
CB
TYR A
126
50.800
20.912
51.009
1.00
31.11
A
C



















ANISOU
632
CB
TYR A
126
4841
2709
4271
−341
−319
147
A
C


















ATOM
633
CG
TYR A
126
51.470
19.557
50.989
1.00
28.17
A
C



















ANISOU
633
CG
TYR A
126
4543
2469
3692
−213
−246
258
A
C


















ATOM
634
CD1
TYR A
126
50.725
18.393
50.944
1.00
27.33
A
C



















ANISOU
634
CD1
TYR A
126
4598
2334
3450
−146
−56
252
A
C


















ATOM
635
CD2
TYR A
126
52.848
19.446
51.001
1.00
29.18
A
C



















ANISOU
635
CD2
TYR A
126
4571
2744
3771
−160
−356
360
A
C


















ATOM
636
CE1
TYR A
126
51.334
17.157
50.921
1.00
27.52
A
C



















ANISOU
636
CE1
TYR A
126
4716
2427
3312
−17
33
356
A
C


















ATOM
637
CE2
TYR A
126
53.464
18.215
50.980
1.00
29.34
A
C



















ANISOU
637
CE2
TYR A
126
4665
2872
3613
−4
−287
466
A
C


















ATOM
638
CZ
TYR A
126
52.701
17.076
50.939
1.00
28.52
A
C



















ANISOU
638
CZ
TYR A
126
4755
2691
3392
73
−86
471
A
C


















ATOM
639
OH
TYR A
126
53.313
15.849
50.917
1.00
36.25
A
O



















ANISOU
639
OH
TYR A
126
5838
3723
4213
239
9
578
A
O


















ATOM
640
N
SER A
127
51.222
20.095
54.181
1.00
30.67
A
N



















ANISOU
640
N
SER A
127
5081
2794
3778
−225
−377
−98
A
N


















ATOM
641
CA
SER A
127
52.180
19.906
55.259
1.00
32.33
A
C



















ANISOU
641
CA
SER A
127
5317
3175
3794
−142
−484
−108
A
C


















ATOM
642
C
SER A
127
53.256
18.969
54.757
1.00
36.73
A
C



















ANISOU
642
C
SER A
127
5824
3876
4255
−1
−495
102
A
C


















ATOM
643
O
SER A
127
52.975
17.857
54.328
1.00
35.95
A
O



















ANISOU
643
O
SER A
127
5864
3745
4051
112
−336
221
A
O


















ATOM
644
CB
SER A
127
51.513
19.322
56.501
1.00
32.94
A
C



















ANISOU
644
CB
SER A
127
5634
3257
3625
−77
−383
−205
A
C


















ATOM
645
OG
SER A
127
51.055
20.345
57.364
1.00
35.34
A
O



















ANISOU
645
OG
SER A
127
5913
3597
3919
−160
−498
−418
A
O


















ATOM
646
N
IDE A
128
54.499
19.416
54.843
1.00
33.78
A
N



















ANISOU
646
N
IDE A
128
5246
3664
3927
−13
−673
126
A
N


















ATOM
647
CA
IDE A
128
55.615
18.635
54.353
1.00
34.32
A
C



















ANISOU
647
CA
IDE A
128
5227
3906
3906
135
−699
303
A
C


















ATOM
648
C
IDE A
128
55.809
17.311
55.070
1.00
43.93
A
C



















ANISOU
648
C
IDE A
128
6671
5187
4832
370
−608
389
A
C


















ATOM
649
O
IDE A
128
55.661
17.214
56.282
1.00
53.83
A
O



















ANISOU
649
O
IDE A
128
8088
6462
5903
417
−611
303
A
O


















ATOM
650
CB
IDE A
128
56.933
19.418
54.480
1.00
36.23
A
C



















ANISOU
650
CB
IDE A
128
5207
4367
4192
83
−914
258
A
C


















ATOM
651
CG1
IDE A
128
56.895
20.684
53.629
1.00
40.89
A
C



















ANISOU
651
CG1
IDE A
128
5599
4845
5092
−162
−966
205
A
C


















ATOM
652
CG2
IDE A
128
58.106
18.546
54.070
1.00
37.08
A
C



















ANISOU
652
CG2
IDE A
128
5207
4694
4188
267
−944
424
A
C


















ATOM
653
CD1
IDE A
128
56.997
20.422
52.145
1.00
34.33
A
C



















ANISOU
653
CD1
IDE A
128
4699
3926
4420
−192
−857
384
A
C


















ATOM
654
N
LYS A
129
56.129
16.289
54.289
1.00
40.69
A
N



















ANISOU
654
N
LYS A
129
6290
4792
4379
521
−507
564
A
N


















ATOM
655
CA
LYS A
129
56.436
14.968
54.814
1.00
42.82
A
C



















ANISOU
655
CA
LYS A
129
6758
5112
4398
783
−423
692
A
C


















ATOM
656
C
LYS A
129
57.887
14.643
54.466
1.00
51.07
A
C



















ANISOU
656
C
LYS A
129
7605
6391
5407
957
−540
820
A
C


















ATOM
657
O
LYS A
129
58.565
15.410
53.776
1.00
47.58
A
O



















ANISOU
657
O
LYS A
129
6879
6062
5136
839
−661
799
A
O


















ATOM
658
CB
LYS A
129
55.464
13.919
54.250
1.00
46.49
A
C



















ANISOU
658
CB
LYS A
129
7467
5336
4860
812
−146
755
A
C


















ATOM
659
CG
LYS A
129
54.001
14.413
54.159
1.00
45.71
A
C



















ANISOU
659
CG
LYS A
129
7460
5035
4874
590
−29
600
A
C


















ATOM
660
CD
LYS A
129
53.086
13.407
53.430
1.00
43.43
A
C



















ANISOU
660
CD
LYS A
129
7349
4547
4603
580
248
625
A
C


















ATOM
661
CE
LYS A
129
51.605
13.699
53.670
1.00
53.17
A
C



















ANISOU
661
CE
LYS A
129
8702
5627
5874
401
376
452
A
C


















ATOM
662
NZ
LYS A
129
50.738
12.508
53.362
1.00
53.84
A
N1+



















ANISOU
662
NZ
LYS A
129
9012
5540
5905
400
672
446
A
N1+


















ATOM
663
N
GLN A
130
58.382
13.505
54.958
1.00
57.32
A
N



















ANISOU
663
N
GLN A
130
8548
7258
5974
1246
−498
956
A
N


















ATOM
664
CA
GLN A
130
59.803
13.196
54.799
1.00
62.21
A
C



















ANISOU
664
CA
GLN A
130
8962
8147
6529
1457
−632
1060
A
C


















ATOM
665
C
GLN A
130
60.107
12.847
53.346
1.00
65.58
A
C



















ANISOU
665
C
GLN A
130
9260
8521
7137
1446
−527
1142
A
C


















ATOM
666
O
GLN A
130
59.453
11.981
52.757
1.00
67.38
A
O



















ANISOU
666
O
GLN A
130
9688
8521
7391
1487
−300
1208
A
O


















ATOM
667
CB
CBN A
130
60.229
12.048
55.722
1.00
61.32
A
C



















ANISOU
667
CB
CBN A
130
9061
8121
6118
1820
−612
1207
A
C


















ATOM
668
CG
CBN A
130
61.751
11.820
55.791
1.00
74.05
A
C



















ANISOU
668
CG
CBN A
130
10428
10085
7623
2081
−798
1290
A
C


















ATOM
669
CD
CBN A
130
62.553
13.028
56.327
1.00
82.20
A
C



















ANISOU
669
CD
CBN A
130
11117
11469
8647
1956
−1090
1125
A
C


















ATOM
670
OE1
CBN A
130
62.176
13.651
57.322
1.00
78.95
A
O



















ANISOU
670
OE1
CBN A
130
10752
11111
8134
1852
−1187
996
A
O


















ATOM
671
NE2
CBN A
130
63.668
13.349
55.661
1.00
87.16
A
N



















ANISOU
671
NE2
CBN A
130
11391
12344
9382
1951
−1217
1109
A
N


















ATOM
672
N
GBY A
131
61.094
13.526
52.762
1.00
65.61
A
N



















ANISOU
672
N
GBY A
131
8920
8747
7262
1371
−681
1120
A
N


















ATOM
673
CA
GBY A
131
61.418
13.327
51.362
1.00
55.05
A
C



















ANISOU
673
CA
GBY A
131
7428
7402
6086
1333
−590
1186
A
C


















ATOM
674
C
GBY A
131
60.668
14.220
50.409
1.00
45.28
A
C



















ANISOU
674
C
GBY A
131
6112
6009
5084
1014
−532
1121
A
C


















ATOM
675
O
GBY A
131
60.667
13.951
49.208
1.00
52.13
A
O



















ANISOU
675
O
GBY A
131
6908
6843
6057
978
−416
1180
A
O


















ATOM
676
N
ASP A
132
60.035
15.273
50.897
1.00
36.09
A
N



















ANISOU
676
N
ASP A
132
4956
4760
3997
797
−609
1003
A
N


















ATOM
677
CA
ASP A
132
59.287
16.168
50.039
1.00
40.45
A
C



















ANISOU
677
CA
ASP A
132
5447
5153
4768
530
−563
961
A
C


















ATOM
678
C
ASP A
132
60.136
17.371
49.661
1.00
40.74
A
C



















ANISOU
678
C
ASP A
132
5173
5335
4970
341
−717
935
A
C


















ATOM
679
O
ASP A
132
60.843
17.942
50.497
1.00
39.54
A
O



















ANISOU
679
O
ASP A
132
4894
5341
4789
313
−885
847
A
O


















ATOM
680
CB
ASP A
132
57.999
16.640
50.726
1.00
42.67
A
C



















ANISOU
680
CB
ASP A
132
5928
5220
5066
410
−531
839
A
C


















ATOM
681
CG
ASP A
132
56.831
15.690
50.510
1.00
49.09
A
C



















ANISOU
681
CG
ASP A
132
7006
5829
5817
470
−309
852
A
C


















ATOM
682
OD1
ASP A
132
57.025
14.586
49.961
1.00
53.68
A
O



















ANISOU
682
OD1
ASP A
132
7653
6413
6330
617
−175
949
A
O


















ATOM
683
OD2
ASP A
132
55.705
16.053
50.888
1.00
51.49
A
O1−



















ANISOU
683
OD2
ASP A
132
7445
5971
6147
360
−259
744
A
O1−


















ATOM
684
N
ASN A
133
60.076
17.736
48.383
1.00
38.91
A
N



















ANISOU
684
N
ASN A
133
4818
5063
4904
203
−647
1008
A
N


















ATOM
685
CA
ASN A
133
60.546
19.033
47.923
1.00
45.30
A
C



















ANISOU
685
CA
ASN A
133
5393
5909
5911
−38
−739
998
A
C


















ATOM
686
C
ASN A
133
59.533
19.564
46.919
1.00
36.88
A
C



















ANISOU
686
C
ASN A
133
4380
4630
5002
−191
−629
1055
A
C


















ATOM
687
O
ASN A
133
58.673
18.831
46.438
1.00
46.45
A
O



















ANISOU
687
O
ASN A
133
5747
5745
6156
−106
−490
1093
A
O


















ATOM
688
CB
ASN A
133
61.940
18.948
47.298
1.00
50.09
A
C



















ANISOU
688
CB
ASN A
133
5718
6787
6528
−27
−782
1072
A
C


















ATOM
689
CG
ASN A
133
61.996
17.959
46.173
1.00
53.97
A
C



















ANISOU
689
CG
ASN A
133
6208
7330
6967
102
−631
1204
A
C


















ATOM
690
OD1
ASN A
133
61.637
18.279
45.042
1.00
61.80
A
O



















ANISOU
690
OD1
ASN A
133
7156
8255
8068
−27
−536
1286
A
O


















ATOM
691
ND2
ASN A
133
62.425
16.735
46.476
1.00
47.96
A
N



















ANISOU
691
ND2
ASN A
133
5506
6687
6032
371
−602
1224
A
N


















ATOM
692
N
PHE A
134
59.651
20.852
46.598
1.00
33.97
A
N



















ANISOU
692
N
PHE A
134
3879
4195
4832
−415
−687
1057
A
N


















ATOM
693
CA
PHE A
134
58.726
21.480
45.661
1.00
35.98
A
C



















ANISOU
693
CA
PHE A
134
4179
4261
5233
−533
−602
1138
A
C


















ATOM
694
C
PHE A
134
58.721
20.775
44.310
1.00
49.87
A
C



















ANISOU
694
C
PHE A
134
5890
6122
6938
−469
−471
1294
A
C


















ATOM
695
O
PHE A
134
57.668
20.629
43.675
1.00
55.12
A
O



















ANISOU
695
O
PHE A
134
6660
6682
7600
−451
−371
1330
A
O


















ATOM
696
CB
PHE A
134
59.089
22.952
45.465
1.00
34.56
A
C



















ANISOU
696
CB
PHE A
134
3860
3989
5281
−771
−669
1155
A
C


















ATOM
697
CG
PHE A
134
58.857
23.796
46.673
1.00
39.36
A
C



















ANISOU
697
CG
PHE A
134
4528
4448
5979
−864
−774
969
A
C


















ATOM
698
CD1
PHE A
134
58.482
23.229
47.880
1.00
40.06
A
C



















ANISOU
698
CD1
PHE A
134
4760
4548
5913
−736
−820
809
A
C


















ATOM
699
CD2
PHE A
134
59.009
25.171
46.601
1.00
52.37
A
C



















ANISOU
699
CD2
PHE A
134
6098
5934
7866
−1088
−812
951
A
C


















ATOM
700
CE1
PHE A
134
58.275
24.018
48.997
1.00
43.69
A
C



















ANISOU
700
CE1
PHE A
134
5262
4900
6437
−827
−915
614
A
C


















ATOM
701
CE2
PHE A
134
58.794
25.970
47.714
1.00
57.20
A
C



















ANISOU
701
CE2
PHE A
134
6760
6401
8573
−1184
−898
743
A
C


















ATOM
702
CZ
PHE A
134
58.417
25.392
48.913
1.00
48.62
A
C



















ANISOU
702
CZ
PHE A
134
5796
5365
7313
−1052
−955
564
A
C


















ATOM
703
N
PHE A
135
59.889
20.360
43.836
1.00
52.63
A
N



















ANISOU
703
N
PHE A
135
6057
6702
7238
−437
−470
1368
A
N


















ATOM
704
CA
PHE A
135
59.959
19.733
42.524
1.00
48.96
A
C



















ANISOU
704
CA
PHE A
135
5525
6360
6719
−388
−341
1495
A
C


















ATOM
705
C
PHE A
135
59.148
18.440
42.481
1.00
39.21
A
C



















ANISOU
705
C
PHE A
135
4480
5088
5330
−199
−219
1447
A
C


















ATOM
706
O
PHE A
135
58.219
18.297
41.669
1.00
32.73
A
O



















ANISOU
706
O
PHE A
135
3725
4209
4501
−213
−110
1475
A
O


















ATOM
707
CB
PHE A
135
61.406
19.460
42.155
1.00
42.16
A
C



















ANISOU
707
CB
PHE A
135
4423
5772
5823
−372
−360
1548
A
C


















ATOM
708
CG
PHE A
135
61.557
18.603
40.951
1.00
34.39
A
C



















ANISOU
708
CG
PHE A
135
3373
4945
4748
−283
−221
1638
A
C


















ATOM
709
CD1
PHE A
135
61.391
19.144
39.692
1.00
33.94
A
C



















ANISOU
709
CD1
PHE A
135
3220
4926
4749
−423
−144
1771
A
C


















ATOM
710
CD2
PHE A
135
61.867
17.258
41.068
1.00
33.72
A
C



















ANISOU
710
CD2
PHE A
135
3329
4971
4514
−52
−159
1589
A
C


















ATOM
711
CE1
PHE A
135
61.525
18.370
38.584
1.00
36.21
A
C



















ANISOU
711
CE1
PHE A
135
3435
5391
4934
−350
−15
1829
A
C


















ATOM
712
CE2
PHE A
135
62.011
16.476
39.946
1.00
35.50
A
C



















ANISOU
712
CE2
PHE A
135
3486
5336
4666
21
−18
1638
A
C


















ATOM
713
CZ
PHE A
135
61.844
17.034
38.705
1.00
35.81
A
C



















ANISOU
713
CZ
PHE A
135
3410
5446
4750
−135
50
1745
A
C


















ATOM
714
N
ILE A
136
59.480
17.488
43.363
1.00
34.00
A
N



















ANISOU
714
N
ILE A
136
3913
4465
4542
−19
−227
1370
A
N


















ATOM
715
CA
ILE A
136
58.830
16.182
43.318
1.00
31.46
A
C



















ANISOU
715
CA
ILE A
136
3785
4081
4087
151
−76
1328
A
C


















ATOM
716
C
ILE A
136
57.362
16.292
43.653
1.00
28.76
A
C



















ANISOU
716
C
ILE A
136
3658
3516
3755
99
−17
1239
A
C


















ATOM
717
O
ILE A
136
56.560
15.488
43.178
1.00
49.27
A
O



















ANISOU
717
O
ILE A
136
6373
6057
6290
144
142
1198
A
O


















ATOM
718
CB
ILE A
136
59.515
15.175
44.251
1.00
37.89
A
C



















ANISOU
718
CB
ILE A
136
4682
4952
4764
377
−90
1298
A
C


















ATOM
719
CG1
ILE A
136
59.110
13.766
43.833
1.00
51.14
A
C



















ANISOU
719
CG1
ILE A
136
6523
6571
6338
541
112
1286
A
C


















ATOM
720
CG2
ILE A
136
59.072
15.382
45.665
1.00
41.46
A
C



















ANISOU
720
CG2
ILE A
136
5312
5272
5169
399
−174
1212
A
C


















ATOM
721
CD1
ILE A
136
59.979
12.673
44.397
1.00
70.98
A
C



















ANISOU
721
CD1
ILE A
136
9092
9153
8726
808
129
1310
A
C


















ATOM
722
N
LEU A
137
56.972
17.295
44.442
1.00
28.75
A
N



















ANISOU
722
N
LEU A
137
3693
3394
3836
−8
−131
1184
A
N


















ATOM
723
CA
LEU A
137
55.549
17.524
44.674
1.00
35.47
A
C



















ANISOU
723
CA
LEU A
137
4709
4056
4711
−64
−76
1088
A
C


















ATOM
724
C
LEU A
137
54.862
17.940
43.384
1.00
33.12
A
C



















ANISOU
724
C
LEU A
137
4329
3764
4490
−156
−10
1147
A
C


















ATOM
725
O
LEU A
137
53.840
17.362
43.001
1.00
32.78
A
O



















ANISOU
725
O
LEU A
137
4382
3686
4389
−132
119
1078
A
O


















ATOM
726
CB
LEU A
137
55.341
18.586
45.746
1.00
28.02
A
C



















ANISOU
726
CB
LEU A
137
3800
2993
3853
−154
−214
1002
A
C


















ATOM
727
CG
LEU A
137
55.460
18.040
47.160
1.00
36.11
A
C



















ANISOU
727
CG
LEU A
137
4980
3999
4742
−47
−246
900
A
C


















ATOM
728
CD1
LEU A
137
55.272
19.174
48.117
1.00
30.01
A
C



















ANISOU
728
CD1
LEU A
137
4208
3137
4056
−157
−381
787
A
C


















ATOM
729
CD2
LEU A
137
54.435
16.946
47.406
1.00
40.36
A
C



















ANISOU
729
CD2
LEU A
137
5753
4435
5147
46
−74
829
A
C


















ATOM
730
N
SER A
138
55.429
18.949
42.706
1.00
33.06
A
N



















ANISOU
730
N
SER A
138
4138
3817
4606
−265
−93
1273
A
N


















ATOM
731
CA
SER A
138
54.926
19.409
41.416
1.00
27.54
A
C



















ANISOU
731
CA
SER A
138
3349
3160
3955
−330
−42
1379
A
C


















ATOM
732
C
SER A
138
54.682
18.254
40.467
1.00
26.93
A
C



















ANISOU
732
C
SER A
138
3263
3234
3735
−248
110
1373
A
C


















ATOM
733
O
SER A
138
53.594
18.122
39.897
1.00
42.35
A
O



















ANISOU
733
O
SER A
138
5253
5190
5649
−247
190
1327
A
O


















ATOM
734
CB
SER A
138
55.902
20.381
40.775
1.00
28.95
A
C



















ANISOU
734
CB
SER A
138
3336
3414
4248
−447
−115
1552
A
C


















ATOM
735
OG
SER A
138
55.726
21.689
41.267
1.00
35.51
A
O



















ANISOU
735
OG
SER A
138
4180
4058
5255
−562
−218
1562
A
O


















ATOM
736
N
ILE A
139
55.677
17.393
40.267
1.00
27.36
A
N



















ANISOU
736
N
ILE A
139
3255
3434
3707
−173
157
1399
A
N


















ATOM
737
CA
ILE A
139
55.515
16.419
39.187
1.00
33.21
A
C



















ANISOU
737
CA
ILE A
139
3958
4327
4334
−117
312
1386
A
C


















ATOM
738
C
ILE A
139
54.922
15.106
39.670
1.00
42.52
A
C



















ANISOU
738
C
ILE A
139
5330
5417
5409
−8
453
1216
A
C


















ATOM
739
O
ILE A
139
54.781
14.172
38.872
1.00
61.86
A
O



















ANISOU
739
O
ILE A
139
7768
7966
7771
35
605
1159
A
O


















ATOM
740
CB
ILE A
139
56.831
16.142
38.419
1.00
34.80
A
C



















ANISOU
740
CB
ILE A
139
3967
4753
4504
−92
328
1496
A
C


















ATOM
741
CG1
ILE A
139
57.896
15.498
39.308
1.00
37.89
A
C



















ANISOU
741
CG1
ILE A
139
4375
5153
4868
33
293
1465
A
C


















ATOM
742
CG2
ILE A
139
57.365
17.438
37.795
1.00
29.99
A
C



















ANISOU
742
CG2
ILE A
139
3168
4231
3994
−238
231
1676
A
C


















ATOM
743
CD1
ILE A
139
58.138
14.032
38.996
1.00
37.21
A
C



















ANISOU
743
CD1
ILE A
139
4336
5138
4666
197
451
1390
A
C


















ATOM
744
N
THR A
140
54.542
14.996
40.938
1.00
36.73
A
N



















ANISOU
744
N
THR A
140
4782
4495
4678
27
427
1125
A
N


















ATOM
745
CA
THR A
140
53.898
13.741
41.336
1.00
43.41
A
C



















ANISOU
745
CA
THR A
140
5836
5232
5426
108
600
979
A
C


















ATOM
746
C
THR A
140
52.613
13.964
42.114
1.00
43.64
A
C



















ANISOU
746
C
THR A
140
6032
5086
5464
44
622
845
A
C


















ATOM
747
O
THR A
140
51.516
13.659
41.623
1.00
32.52
A
O



















ANISOU
747
O
THR A
140
4655
3672
4027
−16
749
721
A
O


















ATOM
748
CB
THR A
140
54.808
12.869
42.192
1.00
42.70
A
C



















ANISOU
748
CB
THR A
140
5861
5094
5270
271
617
998
A
C


















ATOM
749
OG1
THR A
140
55.167
13.616
43.350
1.00
57.69
A
O



















ANISOU
749
OG1
THR A
140
7785
6935
7197
274
443
1034
A
O


















ATOM
750
CG2
THR A
140
56.066
12.474
41.432
1.00
37.57
A
C



















ANISOU
750
CG2
THR A
140
5039
4633
4605
363
620
1097
A
C


















ATOM
751
N
SER A
141
52.739
14.451
43.355
1.00
47.89
A
N



















ANISOU
751
N
SER A
141
6665
5506
6025
56
506
844
A
N


















ATOM
752
CA
SER A
141
51.568
14.622
44.210
1.00
42.12
A
C



















ANISOU
752
CA
SER A
141
6096
4619
5289
2
538
702
A
C


















ATOM
753
C
SER A
141
50.542
15.510
43.533
1.00
29.10
A
C



















ANISOU
753
C
SER A
141
4338
2994
3726
−112
511
653
A
C


















ATOM
754
O
SER A
141
49.338
15.226
43.570
1.00
27.69
A
O



















ANISOU
754
O
SER A
141
4239
2768
3516
−156
627
497
A
O


















ATOM
755
CB
SER A
141
51.960
15.209
45.580
1.00
49.10
A
C



















ANISOU
755
CB
SER A
141
7054
5419
6181
22
389
707
A
C


















ATOM
756
OG
SER A
141
52.416
14.211
46.493
1.00
46.62
A
O



















ANISOU
756
OG
SER A
141
6921
5057
5734
153
452
708
A
O


















ATOM
757
N
TYR A
142
50.998
16.568
42.881
1.00
24.32
A
N



















ANISOU
757
N
TYR A
142
3547
2469
3224
−154
370
789
A
N


















ATOM
758
CA
TYR A
142
50.089
17.527
42.281
1.00
34.59
A
C



















ANISOU
758
CA
TYR A
142
4754
3780
4607
−220
325
785
A
C


















ATOM
759
C
TYR A
142
50.009
17.425
40.749
1.00
31.57
A
C



















ANISOU
759
C
TYR A
142
4209
3597
4189
−225
379
871
A
C


















ATOM
760
O
TYR A
142
49.378
18.283
40.099
1.00
24.66
A
O



















ANISOU
760
O
TYR A
142
3235
2768
3365
−247
325
921
A
O


















ATOM
761
CB
TYR A
142
50.457
18.923
42.766
1.00
24.79
A
C



















ANISOU
761
CB
TYR A
142
3463
2433
3522
−267
143
871
A
C


















ATOM
762
CG
TYR A
142
50.083
19.098
44.235
1.00
35.82
A
C



















ANISOU
762
CG
TYR A
142
5015
3661
4934
−273
104
719
A
C


















ATOM
763
CD1
TYR A
142
48.753
19.173
44.623
1.00
43.35
A
C



















ANISOU
763
CD1
TYR A
142
6055
4534
5883
−283
161
549
A
C


















ATOM
764
CD2
TYR A
142
51.058
19.175
45.235
1.00
41.77
A
C



















ANISOU
764
CD2
TYR A
142
5809
4375
5686
−266
13
729
A
C


















ATOM
765
CE1
TYR A
142
48.394
19.320
45.939
1.00
46.57
A
C



















ANISOU
765
CE1
TYR A
142
6598
4812
6286
−293
140
401
A
C


















ATOM
766
CE2
TYR A
142
50.704
19.333
46.583
1.00
35.82
A
C



















ANISOU
766
CE2
TYR A
142
5192
3503
4913
−269
−22
582
A
C


















ATOM
767
CZ
TYR A
142
49.355
19.402
46.911
1.00
49.45
A
C



















ANISOU
767
CZ
TYR A
142
7015
5138
6636
−287
50
421
A
C


















ATOM
768
OH
TYR A
142
48.927
19.555
48.205
1.00
54.77
A
O



















ANISOU
768
OH
TYR A
142
7820
5715
7276
−298
34
263
A
O


















ATOM
769
N
CBN A
143
50.585
16.357
40.180
1.00
28.53
A
N



















ANISOU
769
N
CBN A
143
3803
3337
3701
−187
493
878
A
N


















ATOM
770
CA
CBN A
143
50.428
15.961
38.780
1.00
24.67
A
C



















ANISOU
770
CA
CBN A
143
3174
3070
3128
−192
584
894
A
C


















ATOM
771
C
CBN A
143
50.505
17.128
37.809
1.00
25.33
A
C



















ANISOU
771
C
CBN A
143
3078
3285
3262
−223
471
1084
A
C


















ATOM
772
O
CBN A
143
49.653
17.279
36.936
1.00
32.04
A
C



















ANISOU
772
O
CBN A
143
3839
4283
4050
−226
500
1061
A
O


















ATOM
773
CB
CBN A
143
49.116
15.235
38.548
1.00
30.30
A
C



















ANISOU
773
CB
CBN A
143
3936
3823
3751
−213
737
668
A
C


















ATOM
774
CG
CBN A
143
48.772
14.161
39.477
1.00
40.60
A
C



















ANISOU
774
CG
CBN A
143
5446
4966
5013
−210
885
478
A
C


















ATOM
775
CD
CBN A
143
47.372
13.672
39.198
1.00
42.17
A
C



















ANISOU
775
CD
CBN A
143
5657
5221
5146
−277
1033
236
A
C


















ATOM
776
OE1
CBN A
143
46.565
14.408
38.651
1.00
27.39
A
O



















ANISOU
776
OE1
CBN A
143
3648
3481
3277
−302
965
214
A
O


















ATOM
777
NE2
CBN A
143
47.089
12.421
39.530
1.00
58.71
A
N



















ANISOU
777
NE2
CBN A
143
7905
7224
7179
−304
1245
52
A
N


















ATOM
778
N
ASN A
144
51.509
17.981
37.964
1.00
30.12
A
N



















ANISOU
778
N
ASN A
144
3627
3843
3974
−249
345
1273
A
N


















ATOM
779
CA
ASN A
144
51.745
19.031
36.977
1.00
32.88
A
C



















ANISOU
779
CA
ASN A
144
3825
4298
4371
−289
271
1493
A
C


















ATOM
780
C
ASN A
144
50.541
19.960
36.860
1.00
31.21
A
C



















ANISOU
780
C
ASN A
144
3627
4017
4214
−277
212
1502
A
C


















ATOM
781
O
ASN A
144
50.310
20.576
35.816
1.00
28.30
A
O



















ANISOU
781
O
ASN A
144
3149
3783
3820
−264
192
1664
A
O


















ATOM
782
CB
ASN A
144
52.090
18.428
35.613
1.00
32.46
A
C



















ANISOU
782
CB
ASN A
144
3625
4539
4170
−277
368
1561
A
C


















ATOM
783
CG
ASN A
144
53.428
17.735
35.614
1.00
35.40
A
C



















ANISOU
783
CG
ASN A
144
3946
4990
4515
−273
411
1589
A
C


















ATOM
784
OD1
ASN A
144
54.440
18.335
36.005
1.00
52.45
A
O



















ANISOU
784
OD1
ASN A
144
6063
7086
6779
−317
321
1715
A
O


















ATOM
785
ND2
ASN A
144
53.450
16.459
35.205
1.00
36.56
A
N



















ANISOU
785
ND2
ASN A
144
4089
5274
4529
−218
554
1451
A
N


















ATOM
786
N
BEU A
145
49.726
20.009
37.926
1.00
34.60
A
N



















ANISOU
786
N
BEU A
145
4189
4255
4700
−263
193
1324
A
N


















ATOM
787
CA
BEU A
145
48.752
21.068
38.129
1.00
27.02
A
C



















ANISOU
787
CA
BEU A
145
3251
3169
3845
−238
111
1324
A
C


















ATOM
788
C
BEU A
145
49.387
22.328
38.693
1.00
33.66
A
C



















ANISOU
788
C
BEU A
145
4119
3778
4892
−290
−16
1467
A
C


















ATOM
789
O
BEU A
145
48.655
23.303
38.923
1.00
28.64
A
O



















ANISOU
789
O
BEU A
145
3515
2989
4378
−259
−83
1472
A
O


















ATOM
790
CB
BEU A
145
47.636
20.588
39.052
1.00
26.28
A
C



















ANISOU
790
CB
BEU A
145
3274
2985
3726
−216
161
1047
A
C


















ATOM
791
CG
BEU A
145
46.547
19.615
38.552
1.00
36.11
A
C



















ANISOU
791
CG
BEU A
145
4487
4427
4806
−188
293
846
A
C


















ATOM
792
CD1
BEU A
145
45.920
18.867
39.739
1.00
24.84
A
C



















ANISOU
792
CD1
BEU A
145
3216
2866
3355
−220
387
576
A
C


















ATOM
793
CD2
BEU A
145
45.473
20.347
37.734
1.00
26.78
A
C



















ANISOU
793
CD2
BEU A
145
3180
3386
3610
−113
244
873
A
C


















ATOM
794
N
THR A
146
50.721
22.303
38.904
1.00
34.60
A
N



















ANISOU
794
N
THR A
146
4215
3880
5053
−366
−40
1560
A
N


















ATOM
795
CA
THR A
146
51.568
23.398
39.386
1.00
37.87
A
C



















ANISOU
795
CA
THR A
146
4623
4109
5658
−462
−140
1672
A
C


















ATOM
796
C
THR A
146
53.002
23.183
38.904
1.00
48.23
A
C



















ANISOU
796
C
THR A
146
5813
5566
6945
−538
−128
1817
A
C


















ATOM
797
O
THR A
146
53.389
22.074
38.536
1.00
55.27
A
O



















ANISOU
797
O
THR A
146
6658
6663
7679
−494
−52
1787
A
O


















ATOM
798
CB
THR A
146
51.600
23.492
40.910
1.00
39.98
A
C



















ANISOU
798
CB
THR A
146
5006
4179
6006
−490
−202
1474
A
C


















ATOM
799
OG1
THR A
146
52.148
24.761
41.299
1.00
46.34
A
O



















ANISOU
799
OG1
THR A
146
5797
4787
7022
−597
−295
1544
A
O


















ATOM
800
CG2
THR A
146
52.497
22.408
41.480
1.00
36.85
A
C



















ANISOU
800
CG2
THR A
146
4618
3894
5488
−485
−179
1389
A
C


















ATOM
801
N
ASN A
147
53.797
24.259
38.928
1.00
46.89
A
N



















ANISOU
801
N
ASN A
147
5590
5282
6946
−659
−190
1958
A
N


















ATOM
802
CA
ASN A
147
55.201
24.240
38.529
1.00
39.37
A
C



















ANISOU
802
CA
ASN A
147
4494
4468
5997
−763
−179
2084
A
C


















ATOM
803
C
ASN A
147
56.086
24.379
39.745
1.00
42.28
A
C



















ANISOU
803
C
ASN A
147
4856
4751
6457
−847
−260
1947
A
C


















ATOM
804
O
ASN A
147
55.707
25.025
40.716
1.00
39.27
A
O



















ANISOU
804
O
ASN A
147
4572
4145
6205
−882
−333
1826
A
O


















ATOM
805
CB
ASN A
147
55.554
25.393
37.593
1.00
34.81
A
C



















ANISOU
805
CB
ASN A
147
3840
3845
5543
−878
−164
2349
A
C


















ATOM
806
CG
ASN A
147
55.056
25.182
36.203
1.00
59.27
A
C



















ANISOU
806
CG
ASN A
147
6887
7139
8493
−797
−83
2530
A
C


















ATOM
807
OD1
ASN A
147
54.845
24.047
35.776
1.00
69.48
A
O



















ANISOU
807
OD1
ASN A
147
8143
8671
9584
−697
−24
2452
A
O


















ATOM
808
ND2
ASN A
147
54.856
26.273
35.476
1.00
57.94
A
N



















ANISOU
808
ND2
ASN A
147
6727
6884
8403
−820
−75
2726
A
N


















ATOM
809
N
TYR A
148
57.293
23.816
39.666
1.00
47.38
A
N



















ANISOU
809
N
TYR A
148
5367
5602
7033
−877
−252
1958
A
N


















ATOM
810
CA
TYR A
148
58.303
24.136
40.679
1.00
44.51
A
C



















ANISOU
810
CA
TYR A
148
4938
5217
6758
−976
−345
1851
A
C


















ATOM
811
C
TYR A
148
58.563
25.642
40.751
1.00
43.93
A
C



















ANISOU
811
C
TYR A
148
4830
4933
6929
−1186
−385
1916
A
C


















ATOM
812
O
TYR A
148
58.730
26.206
41.838
1.00
47.71
A
O



















ANISOU
812
O
TYR A
148
5336
5267
7525
−1269
−472
1756
A
O


















ATOM
813
CB
TYR A
148
59.612
23.393
40.407
1.00
39.84
A
C



















ANISOU
813
CB
TYR A
148
4160
4917
6059
−966
−328
1872
A
C


















ATOM
814
CG
TYR A
148
60.802
24.075
41.040
1.00
55.21
A
C



















ANISOU
814
CG
TYR A
148
5954
6898
8127
−1130
−415
1813
A
C


















ATOM
815
CD1
TYR A
148
61.104
23.900
42.387
1.00
51.22
A
C



















ANISOU
815
CD1
TYR A
148
5467
6396
7598
−1091
−529
1606
A
C


















ATOM
816
CD2
TYR A
148
61.618
24.904
40.283
1.00
67.24
A
C



















ANISOU
816
CD2
TYR A
148
7304
8469
9774
−1336
−376
1957
A
C


















ATOM
817
CE1
TYR A
148
62.178
24.524
42.953
1.00
59.53
A
C



















ANISOU
817
CE1
TYR A
148
6348
7524
8745
−1250
−615
1516
A
C


















ATOM
818
CE2
TYR A
148
62.703
25.544
40.843
1.00
72.64
A
C



















ANISOU
818
CE2
TYR A
148
7823
9199
10577
−1522
−440
1869
A
C


















ATOM
819
CZ
TYR A
148
62.984
25.349
42.183
1.00
72.46
A
C



















ANISOU
819
CZ
TYR A
148
7798
9206
10527
−1478
−568
1633
A
C


















ATOM
820
OH
TYR A
148
64.074
25.978
42.762
1.00
86.28
A
O



















ANISOU
820
OH
TYR A
148
9352
11049
12381
−1670
−642
1505
A
O


















ATOM
821
N
LEU A
149
58.562
26.314
39.605
1.00
42.74
A
N



















ANISOU
821
N
LEU A
149
4633
4754
6854
−1273
−310
2149
A
N


















ATOM
822
CA
LEU A
149
58.855
27.742
39.597
1.00
49.24
A
C



















ANISOU
822
CA
LEU A
149
5446
5336
7928
−1484
−312
2238
A
C


















ATOM
823
C
LEU A
149
57.769
28.536
40.329
1.00
53.65
A
C



















ANISOU
823
C
LEU A
149
6192
5548
8645
−1457
−363
2139
A
C


















ATOM
824
O
LEU A
149
58.072
29.458
41.102
1.00
42.06
A
O



















ANISOU
824
O
LEU A
149
4737
3859
7383
−1615
−408
2028
A
O


















ATOM
825
CB
LEU A
149
59.029
28.201
38.146
1.00
50.97
A
C



















ANISOU
825
CB
LEU A
149
5607
5610
8150
−1544
−199
2537
A
C


















ATOM
826
CG
LEU A
149
59.166
29.692
37.904
1.00
52.16
A
C



















ANISOU
826
CG
LEU A
149
5824
5512
8481
−1667
−154
2590
A
C


















ATOM
827
CD1
LEU A
149
60.488
30.158
38.438
1.00
59.93
A
C



















ANISOU
827
CD1
LEU A
149
6664
6494
9612
−1927
−158
2502
A
C


















ATOM
828
CD2
LEU A
149
59.056
29.955
36.441
1.00
46.09
A
C



















ANISOU
828
CD2
LEU A
149
5062
4849
7599
−1605
−46
2822
A
C


















ATOM
829
N
GLU A
150
56.519
28.231
39.996
1.00
62.03
A
N



















ANISOU
829
N
GLU A
150
7385
6574
9609
−1262
−353
2143
A
N


















ATOM
830
CA
GLU A
150
55.352
28.859
40.604
1.00
60.71
A
C



















ANISOU
830
CA
GLU A
150
7380
6108
9579
−1205
−394
2041
A
C


















ATOM
831
C
GLU A
150
55.251
28.513
42.079
1.00
57.93
A
C



















ANISOU
831
C
GLU A
150
7089
5719
9203
−1182
−478
1723
A
C


















ATOM
832
O
GLU A
150
54.910
29.352
42.907
1.00
64.26
A
O



















ANISOU
832
O
GLU A
150
7965
6265
10184
−1250
−527
1579
A
O


















ATOM
833
CB
GLU A
150
54.081
28.446
39.868
1.00
48.37
A
C



















ANISOU
833
CB
GLU A
150
5894
4586
7899
−1003
−354
2137
A
C


















ATOM
834
CG
GLU A
150
54.035
28.944
38.438
1.00
45.40
A
C



















ANISOU
834
CG
GLU A
150
5465
4333
7452
−964
−273
2385
A
C


















ATOM
835
CD
GLU A
150
54.145
30.449
38.359
1.00
52.10
A
C



















ANISOU
835
CD
GLU A
150
6384
4924
8486
−1017
−252
2462
A
C


















ATOM
836
OE1
GLU A
150
53.542
31.137
39.204
1.00
56.22
A
O



















ANISOU
836
OE1
GLU A
150
6888
5508
8966
−999
−182
2686
A
O


















ATOM
837
OE2
GLU A
150
54.834
30.944
37.446
1.00
46.34
A
O1−



















ANISOU
837
OE2
GLU A
150
5740
3927
7940
−1076
−295
2292
A
O1−


















ATOM
838
N
PHE A
151
55.554
27.258
42.395
1.00
57.95
A
N



















ANISOU
838
N
PHE A
151
7073
5969
8976
−1076
−482
1616
A
N


















ATOM
839
CA
PHE A
151
55.521
26.764
43.763
1.00
34.94
A
C



















ANISOU
839
CA
PHE A
151
4205
3080
5991
−1054
−555
1357
A
C


















ATOM
840
C
PHE A
151
56.549
27.520
44.588
1.00
43.35
A
C



















ANISOU
840
C
PHE A
151
5178
4087
7207
−1243
−637
1255
A
C


















ATOM
841
O
PHE A
151
56.288
27.912
45.721
1.00
37.61
A
O



















ANISOU
841
O
PHE A
151
4516
3230
6545
−1281
−707
1036
A
O


















ATOM
842
CB
PHE A
151
55.867
25.279
43.763
1.00
33.35
A
C



















ANISOU
842
CB
PHE A
151
3974
3162
5535
−925
−525
1341
A
C


















ATOM
843
CG
PHE A
151
55.324
24.524
44.935
1.00
41.41
A
C



















ANISOU
843
CG
PHE A
151
5134
4190
6409
−800
−541
1137
A
C


















ATOM
844
CD1
PHE A
151
55.211
25.123
46.171
1.00
51.49
A
C



















ANISOU
844
CD1
PHE A
151
6490
5320
7752
−843
−619
942
A
C


















ATOM
845
CD2
PHE A
151
54.950
23.202
44.801
1.00
39.40
A
C



















ANISOU
845
CD2
PHE A
151
4939
4088
5944
−648
−460
1135
A
C


















ATOM
846
CE1
PHE A
151
54.717
24.422
47.251
1.00
51.23
A
C



















ANISOU
846
CE1
PHE A
151
6595
5314
7556
−732
−617
773
A
C


















ATOM
847
CE2
PHE A
151
54.460
22.493
45.874
1.00
29.52
A
C



















ANISOU
847
CE2
PHE A
151
3840
2824
4551
−544
−445
971
A
C


















ATOM
848
CZ
PHE A
151
54.342
23.105
47.102
1.00
36.55
A
C



















ANISOU
848
CZ
PHE A
151
4809
3591
5489
−584
−525
803
A
C


















ATOM
849
N
LYS A
152
57.728
27.710
44.007
1.00
47.68
A
N



















ANISOU
849
N
LYS A
152
5555
4754
7805
−1378
−621
1388
A
N


















ATOM
850
CA
LYS A
152
58.804
28.440
44.652
1.00
56.30
A
C



















ANISOU
850
CA
LYS A
152
6520
5840
9033
−1586
−689
1258
A
C


















ATOM
851
C
LYS A
152
58.452
29.905
44.873
1.00
58.92
A
C



















ANISOU
851
C
LYS A
152
6923
5805
9660
−1759
−679
1224
A
C


















ATOM
852
O
LYS A
152
58.750
30.461
45.923
1.00
66.57
A
O



















ANISOU
852
O
LYS A
152
7880
6677
10736
−1882
−752
984
A
O


















ATOM
853
CB
LYS A
152
60.086
28.326
43.831
1.00
57.30
A
C



















ANISOU
853
CB
LYS A
152
6423
6212
9137
−1700
−655
1394
A
C


















ATOM
854
CG
LYS A
152
61.316
28.891
44.516
1.00
60.53
A
C



















ANISOU
854
CG
LYS A
152
6650
6670
9679
−1942
−715
1241
A
C


















ATOM
855
CD
LYS A
152
62.563
28.646
43.684
1.00
64.48
A
C



















ANISOU
855
CD
LYS A
152
6902
7471
10127
−2037
−671
1362
A
C


















ATOM
856
CE
LYS A
152
62.520
29.408
42.369
1.00
61.10
A
C



















ANISOU
856
CE
LYS A
152
6463
6940
9813
−2151
−522
1666
A
C


















ATOM
857
NZ
LYS A
152
62.619
30.878
42.572
1.00
58.31
A
N1+



















ANISOU
857
NZ
LYS A
152
6069
6333
9755
−2470
−462
1688
A
N1+


















ATOM
858
N
ASN A
153
57.811
30.531
43.890
1.00
50.89
A
N



















ANISOU
858
N
ASN A
153
5987
4580
8769
−1753
−589
1456
A
N


















ATOM
859
CA
ASN A
153
57.464
31.940
44.022
1.00
48.84
A
C



















ANISOU
859
CA
ASN A
153
5828
3964
8766
−1860
−550
1422
A
C


















ATOM
860
C
ASN A
153
56.334
32.161
45.016
1.00
45.60
A
C



















ANISOU
860
C
ASN A
153
5581
3355
8391
−1742
−604
1192
A
C


















ATOM
861
O
ASN A
153
56.202
33.267
45.550
1.00
51.62
A
O



















ANISOU
861
O
ASN A
153
6417
3885
9313
−1818
−580
1034
A
O


















ATOM
862
CB
ASN A
153
57.088
32.535
42.666
1.00
60.23
A
C



















ANISOU
862
CB
ASN A
153
7344
5336
10204
−1777
−418
1693
A
C


















ATOM
863
CG
ASN A
153
58.221
32.450
41.638
1.00
81.82
A
C



















ANISOU
863
CG
ASN A
153
9926
8268
12895
−1907
−340
1907
A
C


















ATOM
864
OD1
ASN A
153
59.391
32.704
41.947
1.00
80.12
A
O



















ANISOU
864
OD1
ASN A
153
9568
8107
12767
−2137
−339
1826
A
O


















ATOM
865
ND2
ASN A
153
57.870
32.086
40.407
1.00
84.62
A
N



















ANISOU
865
ND2
ASN A
153
10292
8760
13100
−1763
−272
2156
A
N


















ATOM
866
N
PHE A
154
55.574
31.114
45.298
1.00
45.23
A
N



















ANISOU
866
N
PHE A
154
5598
3420
8167
−1550
−649
1147
A
N


















ATOM
867
CA
PHE A
154
54.470
31.184
46.243
1.00
54.36
A
C



















ANISOU
867
CA
PHE A
154
6895
4433
9327
−1441
−690
910
A
C


















ATOM
868
C
PHE A
154
54.917
31.074
47.703
1.00
52.99
A
C



















ANISOU
868
C
PHE A
154
6693
4336
9104
−1526
−783
588
A
C


















ATOM
869
O
PHE A
154
54.163
31.376
48.619
1.00
46.78
A
O



















ANISOU
869
O
PHE A
154
6008
3395
8371
−1500
−814
356
A
O


















ATOM
870
CB
PHE A
154
53.462
30.088
45.916
1.00
51.51
A
C



















ANISOU
870
CB
PHE A
154
6608
4237
8726
−1202
−661
949
A
C


















ATOM
871
CG
PHE A
154
52.039
30.547
45.936
1.00
58.75
A
C



















ANISOU
871
CG
PHE A
154
7652
4942
9727
−1066
−637
911
A
C


















ATOM
872
CD1
PHE A
154
51.089
29.858
46.658
1.00
63.32
A
C



















ANISOU
872
CD1
PHE A
154
8267
5336
10457
−1038
−579
1026
A
C


















ATOM
873
CD2
PHE A
154
51.653
31.664
45.229
1.00
58.55
A
C



















ANISOU
873
CD2
PHE A
154
7708
5006
9531
−920
−635
728
A
C


















ATOM
874
CE1
PHE A
154
49.778
30.275
46.674
1.00
64.91
A
C



















ANISOU
874
CE1
PHE A
154
8562
5410
10690
−867
−557
977
A
C


















ATOM
875
CE2
PHE A
154
50.344
32.088
45.242
1.00
58.93
A
C



















ANISOU
875
CE2
PHE A
154
7839
4904
9647
−789
−612
668
A
C


















ATOM
876
CZ
PHE A
154
49.405
31.394
45.968
1.00
61.90
A
C



















ANISOU
876
CZ
PHE A
154
8230
5085
10205
−750
−584
792
A
C


















ATOM
877
N
ASN A
155
56.150
30.634
47.907
1.00
56.07
A
N



















ANISOU
877
N
ASN A
155
6936
4984
9383
−1618
−830
560
A
N


















ATOM
878
CA
ASN A
155
56.707
30.463
49.244
1.00
42.99
A
C



















ANISOU
878
CA
ASN A
155
5227
3477
7631
−1674
−935
269
A
C


















ATOM
879
C
ASN A
155
58.071
31.121
49.302
1.00
53.14
A
C



















ANISOU
879
C
ASN A
155
6315
4824
9053
−1926
−971
215
A
C


















ATOM
880
O
ASN A
155
59.078
30.474
49.607
1.00
55.45
A
O



















ANISOU
880
O
ASN A
155
6450
5445
9172
−1934
−1041
163
A
O


















ATOM
881
CB
ASN A
155
56.806
28.983
49.583
1.00
40.81
A
C



















ANISOU
881
CB
ASN A
155
4957
3536
7012
−1477
−969
264
A
C


















ATOM
882
CG
ASN A
155
55.471
28.344
49.652
1.00
47.59
A
C



















ANISOU
882
CG
ASN A
155
6004
4333
7743
−1276
−913
265
A
C


















ATOM
883
OD1
ASN A
155
54.914
28.192
50.736
1.00
50.43
A
O



















ANISOU
883
OD1
ASN A
155
6468
4685
8007
−1219
−948
51
A
O


















ATOM
884
ND2
ASN A
155
54.915
28.003
48.494
1.00
37.01
A
N



















ANISOU
884
ND2
ASN A
155
4701
2964
6395
−1180
−820
491
A
N


















ATOM
885
N
PRO A
156
58.141
32.416
49.011
1.00
54.66
A
N



















ANISOU
885
N
PRO A
156
6504
4700
9563
−2134
−917
221
A
N


















ATOM
886
CA
PRO A
156
59.457
33.049
48.818
1.00
67.76
A
C



















ANISOU
886
CA
PRO A
156
7962
6406
11376
−2416
−907
204
A
C


















ATOM
887
C
PRO A
156
60.333
33.035
50.063
1.00
80.29
A
C



















ANISOU
887
C
PRO A
156
9388
8234
12885
−2544
−1032
−143
A
C


















ATOM
888
O
PRO A
156
61.564
33.003
49.949
1.00
89.55
A
O



















ANISOU
888
O
PRO A
156
10330
9651
14042
−2705
−1056
−168
A
O


















ATOM
889
CB
PRO A
156
59.091
34.475
48.388
1.00
64.42
A
C



















ANISOU
889
CB
PRO A
156
7673
5600
11203
−2522
−756
245
A
C


















ATOM
890
CG
PRO A
156
57.728
34.708
48.978
1.00
58.74
A
C



















ANISOU
890
CG
PRO A
156
7173
4673
10473
−2332
−756
118
A
C


















ATOM
891
CD
PRO A
156
57.031
33.384
48.935
1.00
52.19
A
C



















ANISOU
891
CD
PRO A
156
6379
3996
9454
−2103
−840
213
A
C


















ATOM
892
N
ASN A
157
59.742
33.049
51.261
1.00
79.61
A
N



















ANISOU
892
N
ASN A
157
9396
8125
12727
−2474
−1114
−426
A
N


















ATOM
893
CA
ASN A
157
60.574
33.012
52.458
1.00
88.43
A
C



















ANISOU
893
CA
ASN A
157
10346
9528
13724
−2577
−1245
−760
A
C


















ATOM
894
C
ASN A
157
61.174
31.625
52.663
1.00
86.80
A
C



















ANISOU
894
C
ASN A
157
10032
9807
13141
−2366
−1344
−700
A
C


















ATOM
895
O
ASN A
157
62.312
31.493
53.138
1.00
92.75
A
O



















ANISOU
895
O
ASN A
157
10552
10899
13789
−2455
−1444
−854
A
O


















ATOM
896
CB
ASN A
157
59.764
33.466
53.680
1.00
95.73
A
C



















ANISOU
896
CB
ASN A
157
11403
10304
14665
−2566
−1296
−1085
A
C


















ATOM
897
CG
ASN A
157
60.570
33.393
55.010
1.00
105.12
A
C



















ANISOU
897
CG
ASN A
157
12417
11849
15675
−2653
−1448
−1456
A
C


















ATOM
898
OD1
ASN A
157
60.221
32.631
55.924
1.00
103.15
A
O



















ANISOU
898
OD1
ASN A
157
12233
11836
15124
−2451
−1540
−1573
A
O


















ATOM
899
ND2
ASN A
157
61.647
34.193
55.112
1.00
108.12
A
N



















ANISOU
899
ND2
ASN A
157
12568
12281
16231
−2959
−1467
−1643
A
N


















ATOM
900
N
LEU A
158
60.399
30.602
52.321
1.00
84.78
A
N



















ANISOU
900
N
LEU A
158
9934
9594
12684
−2083
−1310
−484
A
N


















ATOM
901
CA
LEU A
158
60.802
29.205
52.471
1.00
77.27
A
C



















ANISOU
901
CA
LEU A
158
8937
9041
11381
−1848
−1385
−437
A
C


















ATOM
902
C
LEU A
158
61.840
28.750
51.459
1.00
65.84
A
C



















ANISOU
902
C
LEU A
158
7292
7821
9904
−1854
−1360
−219
A
C


















ATOM
903
O
LEU A
158
62.032
29.379
50.425
1.00
69.25
A
O



















ANISOU
903
O
LEU A
158
7591
8152
10571
−2081
−1297
−142
A
O


















ATOM
904
CB
LEU A
158
59.584
28.286
52.410
1.00
76.99
A
C



















ANISOU
904
CB
LEU A
158
9160
8934
11160
−1574
−1331
−327
A
C


















ATOM
905
CG
LEU A
158
58.614
28.415
53.579
1.00
90.51
A
C



















ANISOU
905
CG
LEU A
158
11040
10455
12896
−1583
−1350
−571
A
C


















ATOM
906
CD1
LEU A
158
57.597
27.286
53.540
1.00
92.23
A
C



















ANISOU
906
CD1
LEU A
158
11503
10589
12951
−1351
−1270
−486
A
C


















ATOM
907
CD2
LEU A
158
59.383
28.398
54.891
1.00
96.84
A
C



















ANISOU
907
CD2
LEU A
158
11735
11524
13535
−1626
−1497
−874
A
C


















ATOM
908
N
SER A
159
62.519
27.656
51.778
1.00
59.54
A
N



















ANISOU
908
N
SER A
159
6479
7328
8814
−1599
−1397
−121
A
N


















ATOM
909
CA
SER A
159
63.544
27.113
50.903
1.00
56.08
A
C



















ANISOU
909
CA
SER A
159
5841
7161
8308
−1556
−1383
48
A
C


















ATOM
910
C
SER A
159
63.128
25.783
50.300
1.00
57.78
A
C



















ANISOU
910
C
SER A
159
6212
7394
8350
−1277
−1291
292
A
C


















ATOM
911
O
SER A
159
62.741
24.869
51.017
1.00
59.75
A
O



















ANISOU
911
O
SER A
159
6672
7616
8415
−1063
−1292
274
A
O


















ATOM
912
CB
SER A
159
64.832
26.902
51.691
1.00
60.87
A
C



















ANISOU
912
CB
SER A
159
6204
8204
8719
−1507
−1539
−125
A
C


















ATOM
913
OG
SER A
159
64.659
25.875
52.652
1.00
60.11
A
O



















ANISOU
913
OG
SER A
159
6252
8250
8336
−1242
−1627
−208
A
O


















ATOM
914
N
PRO A
160
63.200
25.678
48.970
1.00
51.58
A
N



















ANISOU
914
N
PRO A
160
5328
6654
7618
−1291
−1195
508
A
N


















ATOM
915
CA
PRO A
160
62.878
24.451
48.242
1.00
44.60
A
C



















ANISOU
915
CA
PRO A
160
4537
5864
6545
−1027
−1112
694
A
C


















ATOM
916
C
PRO A
160
63.967
23.401
48.420
1.00
58.71
A
C



















ANISOU
916
C
PRO A
160
6196
8020
8090
−810
−1198
658
A
C


















ATOM
917
O
PRO A
160
65.112
23.777
48.673
1.00
69.53
A
O



















ANISOU
917
O
PRO A
160
7422
9596
9402
−839
−1341
479
A
O


















ATOM
918
CB
PRO A
160
62.837
24.914
46.791
1.00
49.03
A
C



















ANISOU
918
CB
PRO A
160
4997
6382
7250
−1149
−988
905
A
C


















ATOM
919
CG
PRO A
160
63.771
26.067
46.750
1.00
52.48
A
C



















ANISOU
919
CG
PRO A
160
5374
6599
7968
−1464
−984
866
A
C


















ATOM
920
CD
PRO A
160
63.601
26.766
48.065
1.00
45.65
A
C



















ANISOU
920
CD
PRO A
160
4415
5813
7117
−1567
−1126
596
A
C


















ATOM
921
N
THR A
161
63.565
22.128
48.391
1.00
59.31
A
N



















ANISOU
921
N
THR A
161
6321
8192
8021
−579
−1111
816
A
N


















ATOM
922
CA
THR A
161
64.388
20.896
48.471
1.00
54.15
A
C



















ANISOU
922
CA
THR A
161
5546
7872
7156
−328
−1165
829
A
C


















ATOM
923
C
THR A
161
64.794
20.464
49.875
1.00
52.62
A
C



















ANISOU
923
C
THR A
161
5466
7790
6739
−110
−1285
710
A
C


















ATOM
924
O
THR A
161
65.286
19.356
50.067
1.00
46.22
A
O



















ANISOU
924
O
THR A
161
4778
7059
5725
195
−1251
793
A
O


















ATOM
925
CB
THR A
161
65.613
20.840
47.511
1.00
54.54
A
C



















ANISOU
925
CB
THR A
161
5219
8231
7272
−461
−1235
794
A
C


















ATOM
926
OG1
THR A
161
66.657
21.696
47.993
1.00
62.79
A
O



















ANISOU
926
OG1
THR A
161
6115
9338
8403
−683
−1373
588
A
O


















ATOM
927
CG2
THR A
161
65.223
21.254
46.104
1.00
45.47
A
C



















ANISOU
927
CG2
THR A
161
3962
7011
6304
−658
−1096
944
A
C


















ATOM
928
N
LEU A
162
64.562
21.330
50.851
1.00
52.04
A
N



















ANISOU
928
N
LEU A
162
5354
7728
6692
−257
−1418
516
A
N


















ATOM
929
CA
LEU A
162
64.866
21.022
52.239
1.00
64.26
A
C



















ANISOU
929
CA
LEU A
162
6994
9420
8000
−69
−1543
392
A
C


















ATOM
930
C
LEU A
162
63.957
21.827
53.142
1.00
63.20
A
C



















ANISOU
930
C
LEU A
162
6996
9064
7952
−267
−1578
213
A
C


















ATOM
931
O
LEU A
162
64.129
23.034
53.279
1.00
64.43
A
O



















ANISOU
931
O
LEU A
162
6990
9167
8322
−563
−1625
71
A
O


















ATOM
932
CB
LEU A
162
66.328
21.331
52.566
1.00
77.78
A
C



















ANISOU
932
CB
LEU A
162
8390
11584
9581
−4
−1729
271
A
C


















ATOM
933
CG
LEU A
162
67.361
20.219
52.371
1.00
76.33
A
C



















ANISOU
933
CG
LEU A
162
8017
11739
9247
265
−1755
388
A
C


















ATOM
934
CD1
LEU A
162
68.765
20.748
52.612
1.00
72.25
A
C



















ANISOU
934
CD1
LEU A
162
7085
11662
8704
177
−1941
202
A
C


















ATOM
935
CD2
LEU A
162
67.061
19.048
53.291
1.00
76.28
A
C



















ANISOU
935
CD2
LEU A
162
8261
11778
8944
680
−1752
500
A
C


















ATOM
936
N
LEU A
163
62.992
21.167
53.761
1.00
61.17
A
N



















ANISOU
936
N
LEU A
163
7034
8675
7532
−107
−1542
208
A
N


















ATOM
937
CA
LEU A
163
62.094
21.860
54.661
1.00
52.53
A
C



















ANISOU
937
CA
LEU A
163
6079
7399
6481
−254
−1569
18
A
C


















ATOM
938
C
LEU A
163
61.801
20.948
55.832
1.00
45.80
A
C



















ANISOU
938
C
LEU A
163
5472
6613
5317
0
−1577
6
A
C


















ATOM
939
O
LEU A
163
61.715
19.737
55.664
1.00
45.72
A
O



















ANISOU
939
O
LEU A
163
5659
6547
5166
232
−1456
195
A
O


















ATOM
940
CB
LEU A
163
60.812
22.251
53.932
1.00
54.19
A
C



















ANISOU
940
CB
LEU A
163
6439
7205
6948
−430
−1419
63
A
C


















ATOM
941
CG
LEU A
163
60.172
23.566
54.371
1.00
64.23
A
C



















ANISOU
941
CG
LEU A
163
7739
8253
8412
−675
−1448
−151
A
C


















ATOM
942
CD1
LEU A
163
61.241
24.610
54.646
1.00
70.98
A
C



















ANISOU
942
CD1
LEU A
163
8314
9251
9404
−908
−1584
−343
A
C


















ATOM
943
CD2
LEU A
163
59.198
24.059
53.315
1.00
62.23
A
C



















ANISOU
943
CD2
LEU A
163
7596
7638
8411
−795
−1307
−58
A
C


















ATOM
944
N
PRO A
164
61.634
21.520
57.028
1.00
46.59
A
N



















ANISOU
944
N
PRO A
164
5574
6829
5298
−44
−1699
−213
A
N


















ATOM
945
CA
PRO A
164
61.360
20.616
58.159
1.00
60.42
A
C



















ANISOU
945
CA
PRO A
164
7540
8718
6698
220
−1716
−198
A
C


















ATOM
946
C
PRO A
164
60.024
19.900
58.023
1.00
61.61
A
C



















ANISOU
946
C
PRO A
164
8047
8552
6811
310
−1508
−70
A
C


















ATOM
947
O
PRO A
164
59.100
20.357
57.345
1.00
54.48
A
O



















ANISOU
947
O
PRO A
164
7222
7333
6143
135
−1384
−80
A
O


















ATOM
948
CB
PRO A
164
61.367
21.539
59.392
1.00
49.61
A
C



















ANISOU
948
CB
PRO A
164
6098
7493
5259
78
−1866
−500
A
C


















ATOM
949
CG
PRO A
164
61.987
22.786
58.938
1.00
53.51
A
C



















ANISOU
949
CG
PRO A
164
6290
7992
6050
−227
−1951
−673
A
C


















ATOM
950
CD
PRO A
164
61.711
22.925
57.466
1.00
48.12
A
C



















ANISOU
950
CD
PRO A
164
5608
7001
5675
−343
−1801
−490
A
C


















ATOM
951
N
LEU A
165
59.945
18.750
58.683
1.00
64.65
A
N



















ANISOU
951
N
LEU A
165
8644
9036
6885
592
−1465
53
A
N


















ATOM
952
CA
LEU A
165
58.727
17.958
58.677
1.00
48.19
A
C



















ANISOU
952
CA
LEU A
165
6905
6674
4732
671
−1247
159
A
C


















ATOM
953
C
LEU A
165
57.590
18.754
59.291
1.00
58.93
A
C



















ANISOU
953
C
LEU A
165
8379
7861
6149
467
−1211
−53
A
C


















ATOM
954
O
LEU A
165
57.779
19.464
60.284
1.00
76.17
A
O



















ANISOU
954
O
LEU A
165
10483
10215
8245
396
−1356
−258
A
O


















ATOM
955
CB
LEU A
165
58.969
16.678
59.454
1.00
48.92
A
C



















ANISOU
955
CB
LEU A
165
7209
6913
4466
1003
−1213
324
A
C


















ATOM
956
CG
LEU A
165
57.953
15.562
59.415
1.00
47.98
A
C



















ANISOU
956
CG
LEU A
165
7458
6526
4245
1123
−954
478
A
C


















ATOM
957
CD1
LEU A
165
57.933
14.995
58.007
1.00
42.01
A
C



















ANISOU
957
CD1
LEU A
165
6694
5576
3694
1134
−802
632
A
C


















ATOM
958
CD2
LEU A
165
58.321
14.498
60.460
1.00
48.24
A
C



















ANISOU
958
CD2
LEU A
165
7703
6731
3895
1454
−952
633
A
C


















ATOM
959
N
ASP A
166
56.409
18.641
58.686
1.00
54.54
A
N



















ANISOU
959
N
ASP A
166
7993
6989
5741
376
−1016
−28
A
N


















ATOM
960
CA
ASP A
166
55.166
19.290
59.105
1.00
57.07
A
C



















ANISOU
960
CA
ASP A
166
8430
7116
6138
206
−943
−219
A
C


















ATOM
961
C
ASP A
166
55.162
20.786
58.824
1.00
47.93
A
C



















ANISOU
961
C
ASP A
166
7052
5877
5283
−46
−1055
−416
A
C


















ATOM
962
O
ASP A
166
54.197
21.467
59.193
1.00
53.48
A
O



















ANISOU
962
O
ASP A
166
7820
6424
6075
−179
−1014
−603
A
O


















ATOM
963
CB
ASP A
166
54.850
19.033
60.588
1.00
61.25
A
C



















ANISOU
963
CB
ASP A
166
9139
7781
6354
290
−952
−327
A
C


















ATOM
964
CG
ASP A
166
54.318
17.619
60.839
1.00
74.83
A
C



















ANISOU
964
CG
ASP A
166
11174
9436
7822
487
−748
−139
A
C


















ATOM
965
OD1
ASP A
166
54.185
16.831
59.881
1.00
84.51
A
O



















ANISOU
965
OD1
ASP A
166
12476
10506
9129
551
−598
44
A
O


















ATOM
966
OD2
ASP A
166
54.019
17.285
62.001
1.00
81.83
A
O1−



















ANISOU
966
OD2
ASP A
166
12243
10423
8426
569
−720
−179
A
O1−


















ATOM
967
N
THR A
167
56.194
21.323
58.185
1.00
44.25
A
N



















ANISOU
967
N
THR A
167
6332
5498
4982
−118
−1178
−384
A
N


















ATOM
968
CA
THR A
167
56.174
22.717
57.782
1.00
47.51
A
C



















ANISOU
968
CA
THR A
167
6567
5769
5717
−368
−1243
−534
A
C


















ATOM
969
C
THR A
167
55.063
22.940
56.773
1.00
49.52
A
C



















ANISOU
969
C
THR A
167
6909
5700
6205
−445
−1087
−466
A
C


















ATOM
970
O
THR A
167
54.859
22.141
55.852
1.00
39.00
A
O



















ANISOU
970
O
THR A
167
5638
4311
4868
−352
−968
−261
A
O


















ATOM
971
CB
THR A
167
57.522
23.121
57.190
1.00
49.58
A
C



















ANISOU
971
CB
THR A
167
6548
6187
6103
−440
−1366
−481
A
C


















ATOM
972
OG1
THR A
167
58.476
23.214
58.251
1.00
56.55
A
O



















ANISOU
972
OG1
THR A
167
7298
7395
6792
−410
−1539
−629
A
O


















ATOM
973
CG2
THR A
167
57.428
24.464
56.498
1.00
55.13
A
C



















ANISOU
973
CG2
THR A
167
7111
6662
7174
−702
−1372
−563
A
C


















ATOM
974
N
LYS A
168
54.308
24.008
56.979
1.00
51.92
A
N



















ANISOU
974
N
LYS A
168
6625
6988
6112
−2440
−1048
−799
A
N


















ATOM
975
CA
LYS A
168
53.161
24.279
56.137
1.00
42.13
A
C



















ANISOU
975
CA
LYS A
168
5368
5684
4956
−2199
−873
−907
A
C


















ATOM
976
C
LYS A
168
53.621
25.152
54.980
1.00
39.36
A
C



















ANISOU
976
C
LYS A
168
4950
5136
4869
−2069
−869
−801
A
C


















ATOM
977
O
LYS A
168
54.306
26.158
55.193
1.00
40.91
A
O



















ANISOU
977
O
LYS A
168
5194
5185
5164
−2173
−951
−823
A
O


















ATOM
978
CB
LYS A
168
52.027
24.931
56.941
1.00
48.14
A
C



















ANISOU
978
CB
LYS A
168
6255
6441
5595
−2206
−751
−1219
A
C


















ATOM
979
CG
LYS A
168
51.295
23.958
57.901
1.00
54.24
A
C



















ANISOU
979
CG
LYS A
168
7061
7453
6096
−2290
−713
−1304
A
C


















ATOM
980
CD
LYS A
168
50.040
24.589
58.523
1.00
62.22
A
C



















ANISOU
980
CD
LYS A
168
8165
8474
7003
−2237
−537
−1596
A
C


















ATOM
981
CE
LYS A
168
50.352
25.792
59.424
1.00
71.52
A
C



















ANISOU
981
CE
LYS A
168
9524
9515
8134
−2379
−540
−1839
A
C


















ATOM
982
NZ
LYS A
168
49.103
26.391
59.996
1.00
78.54
A
N1+



















ANISOU
982
NZ
LYS A
168
10506
10402
8934
−2286
−321
−2133
A
N1+


















ATOM
983
N
VAL A
169
53.294
24.712
53.758
1.00
42.82
A
N



















ANISOU
983
N
VAL A
169
5282
5582
5407
−1866
−790
−668
A
N


















ATOM
984
CA
VAL A
169
53.573
25.411
52.509
1.00
42.56
A
C



















ANISOU
984
CA
VAL A
169
5165
5404
5600
−1724
−766
−541
A
C


















ATOM
985
C
VAL A
169
52.251
25.660
51.776
1.00
46.30
A
C



















ANISOU
985
C
VAL A
169
5616
5855
6120
−1532
−622
−628
A
C


















ATOM
986
O
VAL A
169
51.217
25.050
52.075
1.00
36.20
A
O



















ANISOU
986
O
VAL A
169
4358
4696
4699
−1497
−544
−733
A
O


















ATOM
987
CB
VAL A
169
54.553
24.630
51.595
1.00
41.33
A
C



















ANISOU
987
CB
VAL A
169
4894
5299
5510
−1670
−807
−255
A
C


















ATOM
988
CG1
VAL A
169
55.944
24.474
52.265
1.00
43.32
A
C



















ANISOU
988
CG1
VAL A
169
5121
5571
5767
−1852
−957
−106
A
C


















ATOM
989
CG2
VAL A
169
53.963
23.278
51.189
1.00
34.39
A
C



















ANISOU
989
CG2
VAL A
169
4000
4565
4503
−1570
−733
−212
A
C


















ATOM
990
N
SER A
170
52.321
26.559
50.779
1.00
41.45
A
N



















ANISOU
990
N
SER A
170
4938
5096
5716
−1420
−600
−545
A
N


















ATOM
991
CA
SER A
170
51.197
26.972
49.942
1.00
36.83
A
C



















ANISOU
991
CA
SER A
170
4296
4472
5224
−1246
−487
−563
A
C


















ATOM
992
C
SER A
170
51.411
26.462
48.522
1.00
38.80
A
C



















ANISOU
992
C
SER A
170
4442
4782
5519
−1138
−481
−327
A
C


















ATOM
993
O
SER A
170
52.249
26.987
47.775
1.00
42.38
A
O



















ANISOU
993
O
SER A
170
4831
5149
6122
−1119
−526
−163
A
O


















ATOM
994
CB
SER A
170
51.057
28.489
49.960
1.00
39.58
A
C



















ANISOU
994
CB
SER A
170
4658
4594
5788
−1214
−468
−650
A
C


















ATOM
995
OG
SER A
170
50.625
28.917
51.237
1.00
54.95
A
O



















ANISOU
995
OG
SER A
170
6732
6486
7660
−1290
−429
−914
A
O


















ATOM
996
N
VAL A
171
50.670
25.426
48.159
1.00
42.14
A
N



















ANISOU
996
N
VAL A
171
4857
5357
5797
−1082
−429
−308
A
N


















ATOM
997
CA
VAL A
171
50.707
24.895
46.804
1.00
39.99
A
C



















ANISOU
997
CA
VAL A
171
4527
5147
5520
−990
−409
−122
A
C


















ATOM
998
C
VAL A
171
49.867
25.831
45.945
1.00
45.35
A
C



















ANISOU
998
C
VAL A
171
5125
5761
6343
−884
−362
−79
A
C


















ATOM
999
O
VAL A
171
48.725
26.143
46.322
1.00
44.59
A
O



















ANISOU
999
O
VAL A
171
5018
5667
6256
−849
−309
−195
A
O


















ATOM
1000
CB
VAL A
171
50.195
23.449
46.745
1.00
31.91
A
C



















ANISOU
1000
CB
VAL A
171
3555
4286
4284
−998
−389
−126
A
C


















ATOM
1001
CG1
VAL A
171
50.404
22.878
45.366
1.00
42.09
A
C



















ANISOU
1001
CG1
VAL A
171
4832
5621
5541
−925
−367
42
A
C


















ATOM
1002
CG2
VAL A
171
50.892
22.585
47.776
1.00
31.65
A
C



















ANISOU
1002
CG2
VAL A
171
3587
4304
4134
−1108
−440
−167
A
C


















ATOM
1003
N
PRO A
172
50.412
26.366
44.826
1.00
40.47
A
N



















ANISOU
1003
N
PRO A
172
4432
5089
5858
−829
−376
105
A
N


















ATOM
1004
CA
PRO A
172
49.580
27.149
43.904
1.00
46.71
A
C



















ANISOU
1004
CA
PRO A
172
5125
5842
6779
−737
−346
195
A
C


















ATOM
1005
C
PRO A
172
49.100
26.298
42.741
1.00
45.57
A
C



















ANISOU
1005
C
PRO A
172
4966
5861
6489
−702
−326
330
A
C


















ATOM
1006
O
PRO A
172
49.918
25.785
41.976
1.00
50.60
A
O



















ANISOU
1006
O
PRO A
172
5620
6556
7051
−704
−332
457
A
O


















ATOM
1007
CB
PRO A
172
50.530
28.256
43.431
1.00
41.01
A
C



















ANISOU
1007
CB
PRO A
172
4333
4972
6279
−730
−392
333
A
C


















ATOM
1008
CG
PRO A
172
51.842
27.586
43.415
1.00
38.19
A
C



















ANISOU
1008
CG
PRO A
172
4007
4669
5833
−788
−428
415
A
C


















ATOM
1009
CD
PRO A
172
51.841
26.524
44.511
1.00
37.99
A
C



















ANISOU
1009
CD
PRO A
172
4090
4726
5617
−859
−427
250
A
C


















ATOM
1010
N
LEU A
173
47.793
26.123
42.591
1.00
36.58
A
N



















ANISOU
1010
N
LEU A
173
3799
4802
5297
−678
−300
309
A
N


















ATOM
1011
CA
LEU A
173
47.268
25.366
41.465
1.00
39.04
A
C



















ANISOU
1011
CA
LEU A
173
4114
5267
5454
−683
−307
441
A
C


















ATOM
1012
C
LEU A
173
46.806
26.314
40.361
1.00
41.87
A
C



















ANISOU
1012
C
LEU A
173
4336
5611
5962
−632
−320
634
A
C


















ATOM
1013
O
LEU A
173
46.165
27.329
40.633
1.00
53.85
A
O



















ANISOU
1013
O
LEU A
173
5742
7031
7688
−575
−307
636
A
O


















ATOM
1014
CB
LEU A
173
46.122
24.460
41.916
1.00
41.92
A
C



















ANISOU
1014
CB
LEU A
173
4521
5758
5647
−727
−302
349
A
C


















ATOM
1015
CG
LEU A
173
46.455
23.409
42.978
1.00
38.39
A
C



















ANISOU
1015
CG
LEU A
173
4200
5348
5039
−794
−302
188
A
C


















ATOM
1016
CD1
LEU A
173
45.385
22.355
43.027
1.00
42.98
A
C



















ANISOU
1016
CD1
LEU A
173
4824
6077
5428
−857
−320
168
A
C


















ATOM
1017
CD2
LEU A
173
47.789
22.761
42.741
1.00
34.05
A
C



















ANISOU
1017
CD2
LEU A
173
3745
4779
4414
−812
−312
218
A
C


















ATOM
1018
N
PHE A
174
47.184
26.020
39.125
1.00
36.56
A
N



















ANISOU
1018
N
PHE A
174
3674
5032
5186
−650
−339
802
A
N


















ATOM
1019
CA
PHE A
174
46.785
26.850
37.999
1.00
47.05
A
C



















ANISOU
1019
CA
PHE A
174
4869
6390
6615
−631
−369
1023
A
C


















ATOM
1020
C
PHE A
174
45.283
26.750
37.899
1.00
60.55
A
C



















ANISOU
1020
C
PHE A
174
6506
8197
8302
−648
−394
1067
A
C


















ATOM
1021
O
PHE A
174
44.771
25.655
37.957
1.00
57.31
A
O



















ANISOU
1021
O
PHE A
174
6191
7935
7650
−726
−413
1035
A
O


















ATOM
1022
CB
PHE A
174
47.376
26.312
36.700
1.00
41.11
A
C



















ANISOU
1022
CB
PHE A
174
4174
5766
5679
−671
−374
1179
A
C


















ATOM
1023
CG
PHE A
174
48.848
26.520
36.567
1.00
42.57
A
C



















ANISOU
1023
CG
PHE A
174
4369
5883
5923
−639
−342
1224
A
C


















ATOM
1024
CD1
PHE A
174
49.357
27.772
36.312
1.00
42.26
A
C



















ANISOU
1024
CD1
PHE A
174
4184
5724
6147
−601
−368
1361
A
C


















ATOM
1025
CD2
PHE A
174
49.717
25.456
36.675
1.00
37.78
A
C



















ANISOU
1025
CD2
PHE A
174
3905
5329
5122
−646
−285
1157
A
C


















ATOM
1026
CE1
PHE A
174
50.712
27.964
36.182
1.00
42.70
A
C



















ANISOU
1026
CE1
PHE A
174
4226
5738
6261
−587
−350
1441
A
C


















ATOM
1027
CE2
PHE A
174
51.070
25.639
36.547
1.00
35.11
A
C



















ANISOU
1027
CE2
PHE A
174
3540
4949
4850
−608
−246
1240
A
C


















ATOM
1028
CZ
PHE A
174
51.571
26.895
36.301
1.00
37.24
A
C



















ANISOU
1028
CZ
PHE A
174
3653
5123
5372
−588
−285
1388
A
C


















ATOM
1029
N
CYS A
175
44.588
27.879
37.793
1.00
61.71
A
N



















ANISOU
1029
N
CYS A
175
6479
8255
8714
−578
−395
1160
A
N


















ATOM
1030
CA
CYS A
175
43.129
27.898
37.672
1.00
66.01
A
C



















ANISOU
1030
CA
CYS A
175
6898
8901
9283
−581
−416
1270
A
C


















ATOM
1031
C
CYS A
175
42.662
29.242
37.120
1.00
57.70
A
C



















ANISOU
1031
C
CYS A
175
5628
7749
8544
−500
−432
1494
A
C


















ATOM
1032
O
CYS A
175
43.449
30.176
37.050
1.00
47.99
A
O



















ANISOU
1032
O
CYS A
175
4363
6347
7524
−442
−424
1524
A
O


















ATOM
1033
CB
CYS A
175
42.466
27.637
39.013
1.00
63.25
A
C



















ANISOU
1033
CB
CYS A
175
6557
8539
8936
−547
−352
1068
A
C


















ATOM
1034
SG
CYS A
175
42.297
29.145
39.959
1.00
61.36
A
S



















ANISOU
1034
SG
CYS A
175
6225
8034
9055
−391
−248
930
A
S


















ATOM
1035
N
LYS A
176
41.393
29.348
36.731
1.00
57.88
A
N



















ANISOU
1035
N
LYS A
176
5494
7882
8614
−505
−464
1677
A
N


















ATOM
1036
CA
LYS A
176
40.874
30.605
36.183
1.00
55.23
A
C



















ANISOU
1036
CA
LYS A
176
4926
7472
8586
−432
−490
1944
A
C


















ATOM
1037
C
LYS A
176
39.350
30.760
36.267
1.00
63.84
A
C



















ANISOU
1037
C
LYS A
176
5838
8662
9757
−404
−484
2068
A
C


















ATOM
1038
O
LYS A
176
38.629
29.791
36.085
1.00
73.90
A
O



















ANISOU
1038
O
LYS A
176
7174
10122
10783
−495
−505
2014
A
O


















ATOM
1039
CB
LYS A
176
41.298
30.707
34.717
1.00
55.15
A
C



















ANISOU
1039
CB
LYS A
176
4886
7588
8482
−538
−601
2224
A
C


















ATOM
1040
CG
LYS A
176
41.101
32.064
34.076
1.00
52.95
A
C



















ANISOU
1040
CG
LYS A
176
4368
7203
8549
−472
−643
2525
A
C


















ATOM
1041
CD
LYS A
176
41.346
31.961
32.585
1.00
58.00
A
C



















ANISOU
1041
CD
LYS A
176
4995
8028
9013
−611
−755
2800
A
C


















ATOM
1042
CE
LYS A
176
41.197
33.301
31.891
1.00
72.41
A
C



















ANISOU
1042
CE
LYS A
176
6594
9741
11179
−561
−809
3112
A
C


















ATOM
1043
NZ
LYS A
176
41.327
33.159
30.416
1.00
71.50
A
N1+



















ANISOU
1043
NZ
LYS A
176
6474
9828
10863
−709
−909
3382
A
N1+


















ATOM
1044
N
CYS A
177
38.862
31.969
36.552
1.00
66.54
A
N



















ANISOU
1044
N
CYS A
177
5945
8874
10463
−277
−458
2258
A
N


















ATOM
1045
CA
CYS A
177
37.421
32.210
36.574
1.00
73.32
A
C



















ANISOU
1045
CA
CYS A
177
6575
9817
11464
−219
−437
2434
A
C


















ATOM
1046
C
CYS A
177
37.072
32.752
35.183
1.00
67.92
A
C



















ANISOU
1046
C
CYS A
177
5637
9201
10967
−243
−549
2869
A
C


















ATOM
1047
O
CYS A
177
37.906
33.385
34.541
1.00
70.67
A
O



















ANISOU
1047
O
CYS A
177
5967
9462
11421
−256
−611
3008
A
O


















ATOM
1048
CB
CYS A
177
37.011
33.200
37.673
1.00
80.74
A
C



















ANISOU
1048
CB
CYS A
177
7449
10517
12711
2
−251
2235
A
C


















ATOM
1049
SG
CYS A
177
37.404
32.751
39.387
1.00
90.22
A
S



















ANISOU
1049
SG
CYS A
177
8896
11767
13615
−26
−148
1808
A
S


















ATOM
1050
N
PRO A
178
35.840
32.512
34.711
1.00
63.67
A
N



















ANISOU
1050
N
PRO A
178
4885
8845
10461
−269
−592
3124
A
N


















ATOM
1051
CA
PRO A
178
35.400
32.924
33.368
1.00
64.27
A
C



















ANISOU
1051
CA
PRO A
178
4729
9060
10631
−360
−746
3583
A
C


















ATOM
1052
C
PRO A
178
35.217
34.427
33.128
1.00
68.37
A
C



















ANISOU
1052
C
PRO A
178
5022
9316
11641
−172
−699
3780
A
C


















ATOM
1053
O
PRO A
178
35.038
35.192
34.071
1.00
58.31
A
O



















ANISOU
1053
O
PRO A
178
3702
7757
10695
59
−526
3603
A
O


















ATOM
1054
CB
PRO A
178
34.050
32.209
33.205
1.00
72.69
A
C



















ANISOU
1054
CB
PRO A
178
5604
10364
11652
−419
−789
3793
A
C


















ATOM
1055
CG
PRO A
178
33.968
31.224
34.325
1.00
70.63
A
C



















ANISOU
1055
CG
PRO A
178
5568
10163
11105
−446
−705
3418
A
C


















ATOM
1056
CD
PRO A
178
34.778
31.805
35.437
1.00
57.85
A
C



















ANISOU
1056
CD
PRO A
178
4124
8250
9606
−270
−533
3030
A
C


















ATOM
1057
N
SER A
179
35.252
34.820
31.852
1.00
75.00
A
N



















ANISOU
1057
N
SER A
179
5736
10246
12514
−286
−856
4144
A
N


















ATOM
1058
CA
SER A
179
35.072
36.212
31.420
1.00
77.18
A
C



















ANISOU
1058
CA
SER A
179
5771
10303
13251
−146
−849
4429
A
C


















ATOM
1059
C
SER A
179
33.586
36.536
31.338
1.00
84.91
A
C



















ANISOU
1059
C
SER A
179
6558
11293
14413
−77
−800
4676
A
C


















ATOM
1060
O
SER A
179
32.778
35.603
31.394
1.00
93.34
A
O



















ANISOU
1060
O
SER A
179
7611
12595
15260
−160
−821
4702
A
O


















ATOM
1061
CB
SER A
179
35.708
36.422
30.052
1.00
75.06
A
C



















ANISOU
1061
CB
SER A
179
5547
10127
12846
−332
−1006
4701
A
C


















ATOM
1062
OG
SER A
179
35.151
35.532
29.103
1.00
72.12
A
O



















ANISOU
1062
OG
SER A
179
5163
10066
12175
−557
−1143
4993
A
O


















ATOM
1063
N
LYS A
180
33.242
37.844
31.319
1.00
85.37
A
N



















ANISOU
1063
N
LYS A
180
6460
11089
14888
67
−735
4876
A
N


















ATOM
1064
CA
LYS A
180
31.842
38.253
31.252
1.00
93.10
A
C



















ANISOU
1064
CA
LYS A
180
7231
12071
16073
136
−675
5147
A
C


















ATOM
1065
C
LYS A
180
31.115
37.485
30.153
1.00
80.47
A
C



















ANISOU
1065
C
LYS A
180
5617
10844
14113
−148
−863
5486
A
C


















ATOM
1066
O
LYS A
180
30.079
36.848
30.401
1.00
73.21
A
O



















ANISOU
1066
O
LYS A
180
4637
10107
13075
−178
−856
5549
A
O


















ATOM
1067
CB
LYS A
180
31.741
39.761
31.025
1.00
105.68
A
C



















ANISOU
1067
CB
LYS A
180
8666
13335
18155
284
−598
5350
A
C


















ATOM
1068
CG
LYS A
180
30.329
40.304
31.192
1.00
111.80
A
C



















ANISOU
1068
CG
LYS A
180
9205
14049
19225
418
−479
5588
A
C


















ATOM
1069
CD
LYS A
180
30.255
41.820
30.983
1.00
115.29
A
C



















ANISOU
1069
CD
LYS A
180
9487
14143
20175
560
−393
5777
A
C


















ATOM
1070
CE
LYS A
180
30.854
42.596
32.153
1.00
114.37
A
C



















ANISOU
1070
CE
LYS A
180
9436
13608
20413
852
−187
5389
A
C


















ATOM
1071
NZ
LYS A
180
30.531
44.055
32.078
1.00
116.90
A
N1+



















ANISOU
1071
NZ
LYS A
180
9590
13575
21254
1011
−74
5559
A
N1+


















ATOM
1072
N
ASN A
181
31.691
37.495
28.941
1.00
73.66
A
N



















ANISOU
1072
N
ASN A
181
4827
10108
13052
−374
−1033
5698
A
N


















ATOM
1073
CA
ASN A
181
31.139
36.760
27.807
1.00
75.90
A
C



















ANISOU
1073
CA
ASN A
181
5137
10746
12957
−680
−1221
6005
A
C


















ATOM
1074
C
ASN A
181
30.844
35.302
28.159
1.00
72.41
A
C



















ANISOU
1074
C
ASN A
181
4842
10580
12092
−812
−1280
5813
A
C


















ATOM
1075
O
ASN A
181
29.760
34.789
27.869
1.00
75.78
A
O



















ANISOU
1075
O
ASN A
181
5209
11215
12370
−950
−1354
6032
A
O


















ATOM
1076
CB
ASN A
181
32.101
36.850
26.618
1.00
82.18
A
C



















ANISOU
1076
CB
ASN A
181
6038
11644
13541
−894
−1360
6143
A
C


















ATOM
1077
CG
ASN A
181
32.109
38.228
25.981
1.00
102.84
A
C



















ANISOU
1077
CG
ASN A
181
8473
14064
16536
−857
−1346
6463
A
C


















ATOM
1078
OD1
ASN A
181
31.496
39.165
26.500
1.00
112.69
A
O



















ANISOU
1078
OD1
ASN A
181
9529
15052
18234
−648
−1221
6543
A
O


















ATOM
1079
ND2
ASN A
181
32.801
38.361
24.855
1.00
106.55
A
N



















ANISOU
1079
ND2
ASN A
181
8993
14661
16830
−1069
−1461
6647
A
N


















ATOM
1080
N
CBN A
182
31.792
34.613
28.785
1.00
74.11
A
N



















ANISOU
1080
N
CBN A
182
5245
10797
12115
−789
−1252
5418
A
N


















ATOM
1081
CA
CBN A
182
31.560
33.205
29.089
1.00
82.34
A
C



















ANISOU
1081
CA
CBN A
182
6437
12093
12756
−944
−1314
5236
A
C


















ATOM
1082
C
CBN A
182
30.464
33.033
30.130
1.00
94.59
A
C



















ANISOU
1082
C
CBN A
182
7857
13622
14460
−798
−1197
5178
A
C


















ATOM
1083
O
CBN A
182
29.760
32.017
30.125
1.00
108.30
A
O



















ANISOU
1083
O
CBN A
182
9647
15596
15904
−969
−1281
5210
A
O


















ATOM
1084
CB
CBN A
182
32.848
32.543
29.568
1.00
76.61
A
C



















ANISOU
1084
CB
CBN A
182
5924
11360
11824
−954
−1295
4838
A
C


















ATOM
1085
CG
CBN A
182
33.959
32.506
28.529
1.00
68.61
A
C



















ANISOU
1085
CG
CBN A
182
5055
10428
10587
−1118
−1407
4887
A
C


















ATOM
1086
CD
CBN A
182
35.307
32.146
29.143
1.00
65.51
A
C



















ANISOU
1086
CD
CBN A
182
4881
9921
10089
−1052
−1318
4479
A
C


















ATOM
1087
OE1
CBN A
182
35.849
32.884
29.976
1.00
70.21
A
O



















ANISOU
1087
OE1
CBN A
182
5467
10218
10993
−821
−1165
4278
A
O


















ATOM
1088
NE2
CBN A
182
35.856
31.005
28.740
1.00
56.66
A
N



















ANISOU
1088
NE2
CBN A
182
4065
8976
8487
−1252
−1373
4307
A
N


















ATOM
1089
N
BEU A
183
30.293
34.002
31.032
1.00
91.16
A
N



















ANISOU
1089
N
BEU A
183
7257
12906
14474
−491
−996
5093
A
N


















ATOM
1090
CA
BEU A
183
29.198
33.892
31.994
1.00
85.89
A
C



















ANISOU
1090
CA
BEU A
183
6443
12236
13954
−338
−857
5062
A
C


















ATOM
1091
C
BEU A
183
27.841
34.054
31.297
1.00
85.84
A
C



















ANISOU
1091
C
BEU A
183
6258
12368
13990
−429
−932
5515
A
C


















ATOM
1092
O
BEU A
183
26.934
33.240
31.499
1.00
86.51
A
O



















ANISOU
1092
O
BEU A
183
6319
12666
13886
−529
−971
5588
A
O


















ATOM
1093
CB
BEU A
183
29.388
34.901
33.136
1.00
83.75
A
C



















ANISOU
1093
CB
BEU A
183
6061
11619
14140
18
−597
4832
A
C


















ATOM
1094
CG
BEU A
183
30.509
34.593
34.150
1.00
69.40
A
C



















ANISOU
1094
CG
BEU A
183
4399
9685
12284
115
−491
4363
A
C


















ATOM
1095
CD1
BEU A
183
30.735
35.717
35.176
1.00
69.50
A
C



















ANISOU
1095
CD1
BEU A
183
4329
9316
12761
456
−238
4147
A
C


















ATOM
1096
CD2
BEU A
183
30.211
33.299
34.877
1.00
62.96
A
C



















ANISOU
1096
CD2
BEU A
183
3661
9112
11148
17
−482
4158
A
C


















ATOM
1097
N
ASN A
184
27.707
35.056
30.410
1.00
78.48
A
N



















ANISOU
1097
N
ASN A
184
5202
11331
13286
−432
−971
5851
A
N


















ATOM
1098
CA
ASN A
184
26.456
35.222
29.662
1.00
77.04
A
C



















ANISOU
1098
CA
ASN A
184
4838
11289
13144
−552
−1055
6327
A
C


















ATOM
1099
C
ASN A
184
26.118
33.978
28.838
1.00
76.55
A
C



















ANISOU
1099
C
ASN A
184
4917
11598
12571
−924
−1292
6487
A
C


















ATOM
1100
O
ASN A
184
24.959
33.562
28.797
1.00
80.77
A
O



















ANISOU
1100
O
ASN A
184
5347
12304
13039
−1018
−1338
6730
A
O


















ATOM
1101
CB
ASN A
184
26.516
36.466
28.766
1.00
87.69
A
C



















ANISOU
1101
CB
ASN A
184
6044
12475
14798
−541
−1071
6665
A
C


















ATOM
1102
CG
ASN A
184
25.140
36.836
28.159
1.00
107.46
A
C



















ANISOU
1102
CG
ASN A
184
8300
15076
17454
−619
−1111
7183
A
C


















ATOM
1103
OD1
ASN A
184
24.950
36.785
26.943
1.00
116.57
A
O



















ANISOU
1103
OD1
ASN A
184
9442
16411
18438
−899
−1294
7548
A
O


















ATOM
1104
ND2
ASN A
184
24.189
37.229
29.013
1.00
107.94
A
N



















ANISOU
1104
ND2
ASN A
184
8154
15019
17839
−373
−926
7221
A
N


















ATOM
1105
N
BYS A
185
27.111
33.364
28.182
1.00
79.07
A
N



















ANISOU
1105
N
BYS A
185
5479
12041
12524
−1147
−1438
6356
A
N


















ATOM
1106
CA
BYS A
185
26.912
32.079
27.494
1.00
80.45
A
C



















ANISOU
1106
CA
BYS A
185
5842
12545
12182
−1512
−1641
6417
A
C


















ATOM
1107
C
BYS A
185
26.541
30.944
28.440
1.00
71.90
A
C



















ANISOU
1107
C
BYS A
185
4855
11574
10890
−1525
−1624
6158
A
C


















ATOM
1108
O
BYS A
185
26.224
29.843
27.979
1.00
71.82
A
O



















ANISOU
1108
O
BYS A
185
5002
11810
10476
−1834
−1782
6207
A
O


















ATOM
1109
CB
LYS A
185
28.174
31.616
26.742
1.00
85.85
A
C



















ANISOU
1109
CB
LYS A
185
6783
13317
12517
−1719
−1752
6249
A
C


















ATOM
1110
CG
LYS A
185
28.488
32.285
25.405
1.00
92.80
A
C



















ANISOU
1110
CG
LYS A
185
7626
14242
13391
−1890
−1843
6563
A
C


















ATOM
1111
CD
LYS A
185
29.791
31.714
24.839
1.00
77.13
A
C



















ANISOU
1111
CD
LYS A
185
5896
12362
11048
−2070
−1910
6327
A
C


















ATOM
1112
CE
LYS A
185
30.209
32.415
23.566
1.00
72.78
A
C



















ANISOU
1112
CE
LYS A
185
5289
11863
10500
−2206
−1978
6537
A
C


















ATOM
1113
NZ
LYS A
185
31.489
31.872
23.067
1.00
79.48
A
N1+



















ANISOU
1113
NZ
LYS A
185
6357
12821
11019
−2346
−2018
6265
A
N1+


















ATOM
1114
N
GLY A
186
26.624
31.154
29.742
1.00
70.63
A
N



















ANISOU
1114
N
GLY A
186
4621
11238
10979
−1227
−1429
5869
A
N


















ATOM
1115
CA
GLY A
186
26.231
30.118
30.660
1.00
70.28
A
C



















ANISOU
1115
CA
GLY A
186
4643
11311
10750
−1249
−1403
5651
A
C


















ATOM
1116
C
GLY A
186
27.341
29.201
31.096
1.00
65.52
A
C



















ANISOU
1116
C
GLY A
186
4307
10733
9854
−1325
−1418
5219
A
C


















ATOM
1117
O
GLY A
186
27.051
28.125
31.640
1.00
64.43
A
O



















ANISOU
1117
O
GLY A
186
4278
10735
9469
−1439
−1450
5067
A
O


















ATOM
1118
N
ILE A
187
28.597
29.588
30.867
1.00
65.47
A
N



















ANISOU
1118
N
ILE A
187
4408
10594
9872
−1276
−1400
5037
A
N


















ATOM
1119
CA
ILE A
187
29.761
28.855
31.363
1.00
73.01
A
C



















ANISOU
1119
CA
ILE A
187
5591
11539
10611
−1312
−1384
4629
A
C


















ATOM
1120
C
ILE A
187
29.946
29.228
32.831
1.00
77.96
A
C



















ANISOU
1120
C
ILE A
187
6111
11970
11540
−1014
−1150
4333
A
C


















ATOM
1121
O
ILE A
187
30.180
30.397
33.160
1.00
84.30
A
O



















ANISOU
1121
O
ILE A
187
6762
12531
12738
−754
−999
4322
A
O


















ATOM
1122
CB
ILE A
187
31.027
29.189
30.545
1.00
69.03
A
C



















ANISOU
1122
CB
ILE A
187
5215
10976
10036
−1367
−1443
4589
A
C


















ATOM
1123
CG1
ILE A
187
30.790
29.057
29.028
1.00
61.27
A
C



















ANISOU
1123
CG1
ILE A
187
4300
10185
8794
−1648
−1641
4923
A
C


















ATOM
1124
CG2
ILE A
187
32.223
28.355
30.985
1.00
58.51
A
C



















ANISOU
1124
CG2
ILE A
187
4185
9612
8433
−1412
−1408
4167
A
C


















ATOM
1125
CD1
ILE A
187
30.728
27.630
28.502
1.00
60.46
A
C



















ANISOU
1125
CD1
ILE A
187
4467
10338
8170
−1995
−1807
4861
A
C


















ATOM
1126
N
LYS A
188
29.814
28.248
33.722
1.00
72.39
A
N



















ANISOU
1126
N
LYS A
188
5492
11363
10651
−1064
−1117
4097
A
N


















ATOM
1127
CA
LYS A
188
30.026
28.530
35.133
1.00
72.37
A
C



















ANISOU
1127
CA
LYS A
188
5504
11153
10839
−797
−864
3756
A
C


















ATOM
1128
C
LYS A
188
31.358
28.002
35.655
1.00
62.02
A
C



















ANISOU
1128
C
LYS A
188
4584
9693
9289
−802
−799
3292
A
C


















ATOM
1129
O
LYS A
188
31.783
28.403
36.744
1.00
54.58
A
O



















ANISOU
1129
O
LYS A
188
3698
8541
8500
−592
−599
2991
A
O


















ATOM
1130
CB
LYS A
188
28.860
27.974
35.962
1.00
77.56
A
C



















ANISOU
1130
CB
LYS A
188
6003
11977
11489
−789
−809
3804
A
C


















ATOM
1131
CG
LYS A
188
27.510
28.520
35.480
1.00
89.47
A
C



















ANISOU
1131
CG
LYS A
188
7242
13559
13195
−747
−835
4227
A
C


















ATOM
1132
CD
LYS A
188
26.347
28.191
36.396
1.00
92.88
A
C



















ANISOU
1132
CD
LYS A
188
7521
14101
13669
−669
−721
4267
A
C


















ATOM
1133
CE
LYS A
188
26.032
26.702
36.372
1.00
94.49
A
C



















ANISOU
1133
CE
LYS A
188
7902
14562
13436
−975
−902
4250
A
C


















ATOM
1134
NZ
LYS A
188
25.328
26.308
35.117
1.00
99.84
A
N1+



















ANISOU
1134
NZ
LYS A
188
8624
15407
13905
−1245
−1152
4624
A
N1+


















ATOM
1135
N
TYR A
189
32.053
27.161
34.893
1.00
60.77
A
N



















ANISOU
1135
N
TYR A
189
4695
9628
8768
−1034
−954
3235
A
N


















ATOM
1136
CA
TYR A
189
33.314
26.634
35.384
1.00
54.85
A
C



















ANISOU
1136
CA
TYR A
189
4283
8740
7817
−1025
−884
2833
A
C


















ATOM
1137
C
TYR A
189
34.344
26.543
34.269
1.00
53.00
A
C



















ANISOU
1137
C
TYR A
189
4243
8499
7396
−1147
−986
2851
A
C


















ATOM
1138
O
TYR A
189
34.051
26.018
33.195
1.00
51.29
A
O



















ANISOU
1138
O
TYR A
189
4068
8480
6940
−1372
−1158
3061
A
O


















ATOM
1139
CB
TYR A
189
33.092
25.260
36.015
1.00
47.86
A
C



















ANISOU
1139
CB
TYR A
189
3588
7981
6615
−1168
−915
2642
A
C


















ATOM
1140
CG
TYR A
189
32.078
25.277
37.146
1.00
48.77
A
C



















ANISOU
1140
CG
TYR A
189
3510
8142
6879
−1058
−804
2631
A
C


















ATOM
1141
CD1
TYR A
189
32.314
25.999
38.307
1.00
52.31
A
C



















ANISOU
1141
CD1
TYR A
189
3908
8396
7572
−805
−583
2402
A
C


















ATOM
1142
CD2
TYR A
189
30.903
24.558
37.057
1.00
52.35
A
C



















ANISOU
1142
CD2
TYR A
189
3841
8840
7210
−1223
−919
2849
A
C


















ATOM
1143
CE1
TYR A
189
31.398
26.015
39.331
1.00
64.50
A
C



















ANISOU
1143
CE1
TYR A
189
5284
9997
9227
−697
−453
2383
A
C


















ATOM
1144
CE2
TYR A
189
29.969
24.567
38.083
1.00
63.04
A
C



















ANISOU
1144
CE2
TYR A
189
4995
10263
8695
−1117
−801
2864
A
C


















ATOM
1145
CZ
TYR A
189
30.218
25.298
39.220
1.00
65.24
A
C



















ANISOU
1145
CZ
TYR A
189
5226
10354
9208
−843
−554
2624
A
C


















ATOM
1146
OH
TYR A
189
29.297
25.297
40.246
1.00
62.96
A
O



















ANISOU
1146
OH
TYR A
189
4748
10150
9024
−732
−409
2627
A
O


















ATOM
1147
N
LEU A
190
35.577
26.917
34.598
1.00
52.03
A
N



















ANISOU
1147
N
LEU A
190
4237
8159
7371
−1009
−878
2639
A
N


















ATOM
1148
CA
LEU A
190
36.736
26.753
33.730
1.00
49.76
A
C



















ANISOU
1148
CA
LEU A
190
4184
7867
6857
−1107
−927
2573
A
C


















ATOM
1149
C
LEU A
190
37.484
25.706
34.553
1.00
50.35
A
C



















ANISOU
1149
C
LEU A
190
4550
7880
6699
−1118
−856
2206
A
C


















ATOM
1150
O
LEU A
190
38.005
26.013
35.619
1.00
59.49
A
O



















ANISOU
1150
O
LEU A
190
5744
8851
8010
−962
−727
1973
A
O


















ATOM
1151
CB
LEU A
190
37.537
28.040
33.617
1.00
49.86
A
C



















ANISOU
1151
CB
LEU A
190
4107
7697
7141
−966
−872
2636
A
C


















ATOM
1152
CG
LEU A
190
36.985
29.101
32.669
1.00
48.62
A
C



















ANISOU
1152
CG
LEU A
190
3647
7542
7283
−922
−931
3007
A
C


















ATOM
1153
CD1
LEU A
190
37.837
30.357
32.717
1.00
48.76
A
C



















ANISOU
1153
CD1
LEU A
190
3632
7368
7526
−813
−891
3042
A
C


















ATOM
1154
CD2
LEU A
190
36.923
28.549
31.259
1.00
59.49
A
C



















ANISOU
1154
CD2
LEU A
190
5001
9200
8405
−1161
−1112
3307
A
C


















ATOM
1155
N
ILE A
191
37.534
24.474
34.059
1.00
43.06
A
N



















ANISOU
1155
N
ILE A
191
3843
7106
5412
−1313
−947
2164
A
N


















ATOM
1156
CA
ILE A
191
38.080
23.350
34.816
1.00
41.24
A
C



















ANISOU
1156
CA
ILE A
191
3870
6834
4967
−1341
−898
1860
A
C


















ATOM
1157
C
ILE A
191
39.513
23.103
34.358
1.00
44.18
A
C



















ANISOU
1157
C
ILE A
191
4467
7119
5201
−1328
−849
1724
A
C


















ATOM
1158
O
ILE A
191
39.759
22.857
33.178
1.00
63.43
A
O



















ANISOU
1158
O
ILE A
191
7008
9653
7441
−1445
−913
1839
A
O


















ATOM
1159
CB
ILE A
191
37.213
22.092
34.634
1.00
41.71
A
C



















ANISOU
1159
CB
ILE A
191
4045
7073
4731
−1560
−1024
1893
A
C


















ATOM
1160
CG1
ILE A
191
35.798
22.304
35.201
1.00
48.59
A
C



















ANISOU
1160
CG1
ILE A
191
4660
8050
5753
−1564
−1060
2049
A
C


















ATOM
1161
CG2
ILE A
191
37.880
20.886
35.240
1.00
40.88
A
C



















ANISOU
1161
CG2
ILE A
191
4225
6905
4404
−1600
−987
1606
A
C


















ATOM
1162
CD1
ILE A
191
35.040
21.017
35.506
1.00
43.05
A
C



















ANISOU
1162
CD1
ILE A
191
4067
7487
4801
−1756
−1162
2022
A
C


















ATOM
1163
N
THR A
192
40.453
23.138
35.279
1.00
54.21
A
N



















ANISOU
1163
N
THR A
192
5810
8222
6564
−1194
−732
1493
A
N


















ATOM
1164
CA
THR A
192
41.850
22.964
34.928
1.00
37.84
A
C



















ANISOU
1164
CA
THR A
192
3898
6069
4409
−1158
−671
1406
A
C


















ATOM
1165
C
THR A
192
42.112
21.488
34.716
1.00
37.19
A
C



















ANISOU
1165
C
THR A
192
4098
6030
4001
−1265
−675
1251
A
C


















ATOM
1166
O
THR A
192
41.721
20.664
35.517
1.00
36.39
A
O



















ANISOU
1166
O
THR A
192
4074
5913
3841
−1289
−675
1098
A
O


















ATOM
1167
CB
THR A
192
42.770
23.641
35.946
1.00
36.84
A
C



















ANISOU
1167
CB
THR A
192
3714
5750
4534
−991
−567
1267
A
C


















ATOM
1168
OG1
THR A
192
42.544
23.095
37.239
1.00
37.49
A
O



















ANISOU
1168
OG1
THR A
192
3994
5771
4480
−984
−508
1056
A
O


















ATOM
1169
CG2
THR A
192
42.518
25.147
35.952
1.00
37.08
A
C



















ANISOU
1169
CG2
THR A
192
3572
5717
4801
−911
−543
1227
A
C


















ATOM
1170
N
TYR A
193
42.805
21.173
33.631
1.00
37.82
A
N



















ANISOU
1170
N
TYR A
193
4334
6167
3870
−1329
−673
1301
A
N


















ATOM
1171
CA
TYR A
193
42.999
19.788
33.209
1.00
38.00
A
C



















ANISOU
1171
CA
TYR A
193
4651
6229
3560
−1446
−677
1182
A
C


















ATOM
1172
C
TYR A
193
44.421
19.603
32.695
1.00
46.25
A
C



















ANISOU
1172
C
TYR A
193
5845
7206
4524
−1357
−546
1113
A
C


















ATOM
1173
O
TYR A
193
44.898
20.407
31.893
1.00
49.56
A
O



















ANISOU
1173
O
TYR A
193
6175
7664
4992
−1315
−515
1259
A
O


















ATOM
1174
CB
TYR A
193
42.000
19.422
32.106
1.00
39.82
A
C



















ANISOU
1174
CB
TYR A
193
4949
6637
3544
−1660
−814
1338
A
C


















ATOM
1175
CG
TYR A
193
42.226
18.071
31.470
1.00
40.61
A
C



















ANISOU
1175
CG
TYR A
193
5397
6757
3277
−1799
−817
1210
A
C


















ATOM
1176
CD1
TYR A
193
41.845
16.911
32.123
1.00
40.22
A
C



















ANISOU
1176
CD1
TYR A
193
5519
6659
3105
−1883
−859
1051
A
C


















ATOM
1177
CD2
TYR A
193
42.822
17.948
30.219
1.00
42.03
A
C



















ANISOU
1177
CD2
TYR A
193
5745
6996
3228
−1847
−771
1246
A
C


















ATOM
1178
CE1
TYR A
193
42.055
15.664
31.546
1.00
42.08
A
C



















ANISOU
1178
CE1
TYR A
193
6101
6868
3021
−2008
−858
919
A
C


















ATOM
1179
CE2
TYR A
193
43.054
16.698
29.650
1.00
43.13
A
C



















ANISOU
1179
CE2
TYR A
193
6241
7122
3026
−1961
−745
1093
A
C


















ATOM
1180
CZ
TYR A
193
42.658
15.563
30.319
1.00
42.78
A
C



















ANISOU
1180
CZ
TYR A
193
6375
6993
2886
−2039
−793
925
A
C


















ATOM
1181
OH
TYR A
193
42.873
14.306
29.797
1.00
44.14
A
O



















ANISOU
1181
OH
TYR A
193
6923
7106
2743
−2149
−766
758
A
O


















ATOM
1182
N
VAL A
194
45.115
18.559
33.141
1.00
51.86
A
N



















ANISOU
1182
N
VAL A
194
6761
7819
5123
−1321
−464
917
A
N


















ATOM
1183
CA
VAL A
194
46.489
18.347
32.692
1.00
45.92
A
C



















ANISOU
1183
CA
VAL A
194
6127
7004
4317
−1210
−313
870
A
C


















ATOM
1184
C
VAL A
194
46.466
17.418
31.483
1.00
39.33
A
C



















ANISOU
1184
C
VAL A
194
5572
6244
3128
−1322
−288
843
A
C


















ATOM
1185
O
VAL A
194
46.066
16.253
31.582
1.00
39.54
A
O



















ANISOU
1185
O
VAL A
194
5828
6237
2958
−1422
−319
706
A
O


















ATOM
1186
CB
VAL A
194
47.379
17.803
33.817
1.00
44.75
A
C



















ANISOU
1186
CB
VAL A
194
6023
6701
4281
−1086
−221
706
A
C


















ATOM
1187
CG1
VAL A
194
48.585
17.068
33.240
1.00
40.42
A
C



















ANISOU
1187
CG1
VAL A
194
5664
6097
3596
−997
−59
647
A
C


















ATOM
1188
CG2
VAL A
194
47.871
18.956
34.684
1.00
44.46
A
C



















ANISOU
1188
CG2
VAL A
194
5732
6595
4567
−966
−209
755
A
C


















ATOM
1189
N
TRP A
195
46.906
17.945
30.344
1.00
45.74
A
N



















ANISOU
1189
N
TRP A
195
6375
7153
3853
−1315
−232
974
A
N


















ATOM
1190
CA
TRP A
195
46.798
17.271
29.062
1.00
42.69
A
C



















ANISOU
1190
CA
TRP A
195
6250
6871
3098
−1446
−211
966
A
C


















ATOM
1191
C
TRP A
195
47.727
16.072
28.989
1.00
52.83
A
C



















ANISOU
1191
C
TRP A
195
7833
8033
4207
−1360
−30
753
A
C


















ATOM
1192
O
TRP A
195
48.924
16.181
29.264
1.00
61.98
A
O



















ANISOU
1192
O
TRP A
195
8938
9103
5510
−1159
141
728
A
O


















ATOM
1193
CB
TRP A
195
47.116
18.270
27.959
1.00
44.02
A
C



















ANISOU
1193
CB
TRP A
195
6292
7191
3242
−1447
−185
1183
A
C


















ATOM
1194
CG
TRP A
195
46.815
17.824
26.545
1.00
55.90
A
C



















ANISOU
1194
CG
TRP A
195
8034
8862
4344
−1631
−198
1222
A
C


















ATOM
1195
CD1
TRP A
195
47.702
17.288
25.662
1.00
59.43
A
C



















ANISOU
1195
CD1
TRP A
195
8721
9336
4523
−1591
−11
1141
A
C


















ATOM
1196
CD2
TRP A
195
45.561
17.929
25.838
1.00
59.45
A
C



















ANISOU
1196
CD2
TRP A
195
8496
9488
4605
−1891
−404
1368
A
C


















ATOM
1197
NE1
TRP A
195
47.086
17.033
24.463
1.00
68.01
A
N



















ANISOU
1197
NE1
TRP A
195
10003
10601
5238
−1822
−87
1196
A
N


















ATOM
1198
CE2
TRP A
195
45.773
17.418
24.537
1.00
64.48
A
C



















ANISOU
1198
CE2
TRP A
195
9415
10254
4832
−2023
−344
1350
A
C


















ATOM
1199
CE3
TRP A
195
44.284
18.389
26.180
1.00
65.27
A
C



















ANISOU
1199
CE3
TRP A
195
9029
10294
5477
−2025
−626
1523
A
C


















ATOM
1200
CZ2
TRP A
195
44.757
17.358
23.571
1.00
53.06
A
C



















ANISOU
1200
CZ2
TRP A
195
8043
8985
3132
−2296
−524
1471
A
C


















ATOM
1201
CZ3
TRP A
195
43.262
18.325
25.208
1.00
66.43
A
C



















ANISOU
1201
CZ3
TRP A
195
9235
10644
5360
−2303
−807
1690
A
C


















ATOM
1202
CH2
TRP A
195
43.516
17.817
23.923
1.00
60.06
A
C



















ANISOU
1202
CH2
TRP A
195
8692
9925
4202
−2424
−759
1641
A
C


















ATOM
1203
N
GLN A
196
47.170
14.928
28.614
1.00
47.18
A
N



















ANISOU
1203
N
GLN A
196
7429
7303
3194
−1516
−70
614
A
N


















ATOM
1204
CA
GLN A
196
47.888
13.665
28.606
1.00
56.27
A
C



















ANISOU
1204
CA
GLN A
196
8896
8294
4192
−1439
95
392
A
C


















ATOM
1205
C
GLN A
196
48.454
13.347
27.225
1.00
74.85
A
C



















ANISOU
1205
C
GLN A
196
11508
10711
6221
−1446
261
354
A
C


















ATOM
1206
O
GLN A
196
48.047
13.913
26.202
1.00
69.83
A
O



















ANISOU
1206
O
GLN A
196
10863
10271
5399
−1588
197
491
A
O


















ATOM
1207
CB
GLN A
196
46.976
12.513
29.044
1.00
55.67
A
C



















ANISOU
1207
CB
GLN A
196
9048
8122
3980
−1612
−41
240
A
C


















ATOM
1208
CG
GLN A
196
46.531
12.514
30.503
1.00
43.32
A
C



















ANISOU
1208
CG
GLN A
196
7288
6479
2694
−1591
−160
233
A
C


















ATOM
1209
CD
GLN A
196
47.678
12.692
31.466
1.00
49.26
A
C



















ANISOU
1209
CD
GLN A
196
7883
7097
3738
−1337
−10
199
A
C


















ATOM
1210
OE1
GLN A
196
48.449
11.766
31.713
1.00
57.39
A
O



















ANISOU
1210
OE1
GLN A
196
9089
7961
4757
−1228
126
63
A
O


















ATOM
1211
NE2
GLN A
196
47.796
13.890
32.025
1.00
53.64
A
N



















ANISOU
1211
NE2
GLN A
196
8104
7713
4564
−1251
−41
335
A
N


















ATOM
1212
N
ASP A
197
49.405
12.409
27.220
1.00
91.15
A
N



















ANISOU
1212
N
ASP A
197
13805
12607
8220
−1288
486
172
A
N


















ATOM
1213
CA
ASP A
197
49.941
11.846
25.988
1.00
98.99
A
C



















ANISOU
1213
CA
ASP A
197
15119
13621
8871
−1277
689
70
A
C


















ATOM
1214
C
ASP A
197
48.802
11.261
25.169
1.00
90.90
A
C



















ANISOU
1214
C
ASP A
197
14415
12672
7453
−1594
525
−11
A
C


















ATOM
1215
O
ASP A
197
48.024
10.432
25.660
1.00
89.37
A
O



















ANISOU
1215
O
ASP A
197
14390
12357
7211
−1743
373
−134
A
O


















ATOM
1216
CB
ASP A
197
50.994
10.773
26.315
1.00
107.68
A
C



















ANISOU
1216
CB
ASP A
197
16426
14476
10011
−1046
952
−130
A
C


















ATOM
1217
CG
ASP A
197
51.927
10.465
25.138
1.00
111.71
A
C



















ANISOU
1217
CG
ASP A
197
17172
15012
10262
−919
1260
−203
A
C


















ATOM
1218
OD1
ASP A
197
51.861
11.164
24.100
1.00
114.07
A
O



















ANISOU
1218
OD1
ASP A
197
17447
15542
10354
−1007
1273
−83
A
O


















ATOM
1219
OD2
ASP A
197
52.732
9.514
25.268
1.00
111.30
A
O1−



















ANISOU
1219
OD2
ASP A
197
17321
14748
10219
−723
1501
−371
A
O1−


















ATOM
1220
N
ASN A
198
48.661
11.749
23.941
1.00
94.34
A
N



















ANISOU
1220
N
ASN A
198
14894
13319
7630
−1715
525
91
A
N


















ATOM
1221
CA
ASN A
198
47.660
11.256
23.000
1.00
100.27
A
C



















ANISOU
1221
CA
ASN A
198
15803
14110
8184
−1945
348
40
A
C


















ATOM
1222
C
ASN A
198
46.232
11.537
23.475
1.00
87.84
A
C



















ANISOU
1222
C
ASN A
198
14031
12593
6754
−2174
8
176
A
C


















ATOM
1223
O
ASN A
198
45.317
10.764
23.185
1.00
97.24
A
O



















ANISOU
1223
O
ASN A
198
15376
13719
7850
−2370
−149
95
A
O


















ATOM
1224
CB
ASN A
198
47.843
9.753
22.703
1.00
108.71
A
C



















ANISOU
1224
CB
ASN A
198
17283
14943
9078
−1933
466
−265
A
C


















ATOM
1225
CG
ASN A
198
49.178
9.425
21.981
1.00
105.86
A
C



















ANISOU
1225
CG
ASN A
198
17131
14541
8550
−1703
831
−402
A
C


















ATOM
1226
OD1
ASN A
198
49.709
10.232
21.206
1.00
100.80
A
O



















ANISOU
1226
OD1
ASN A
198
16376
14108
7815
−1639
951
−264
A
O


















ATOM
1227
ND2
ASN A
198
49.707
8.224
22.238
1.00
103.79
A
N



















ANISOU
1227
ND2
ASN A
198
17160
14004
8270
−1573
1012
−657
A
N


















ATOM
1228
N
ASP A
199
46.023
12.624
24.219
1.00
66.96
A
N



















ANISOU
1228
N
ASP A
199
11035
10061
4346
−2151
−97
393
A
N


















ATOM
1229
CA
ASP A
199
44.699
13.227
24.319
1.00
59.25
A
C



















ANISOU
1229
CA
ASP A
199
9804
9212
3496
−2349
−384
597
A
C


















ATOM
1230
C
ASP A
199
44.310
13.903
22.992
1.00
70.77
A
C



















ANISOU
1230
C
ASP A
199
11185
10881
4823
−2492
−462
784
A
C


















ATOM
1231
O
ASP A
199
45.166
14.368
22.235
1.00
59.16
A
O



















ANISOU
1231
O
ASP A
199
9728
9508
3241
−2397
−302
835
A
O


















ATOM
1232
CB
ASP A
199
44.672
14.255
25.452
1.00
58.12
A
C



















ANISOU
1232
CB
ASP A
199
9309
9126
3649
−2257
−444
777
A
C


















ATOM
1233
CG
ASP A
199
44.193
13.672
26.788
1.00
75.22
A
C



















ANISOU
1233
CG
ASP A
199
11460
11147
5972
−2258
−534
669
A
C


















ATOM
1234
OD1
ASP A
199
43.886
12.465
26.837
1.00
82.68
A
O



















ANISOU
1234
OD1
ASP A
199
12655
11940
6822
−2331
−556
475
A
O


















ATOM
1235
OD2
ASP A
199
44.121
14.425
27.793
1.00
68.22
A
O1−



















ANISOU
1235
OD2
ASP A
199
10245
10238
5439
−2126
−564
761
A
O1−


















ATOM
1236
N
ASN A
200
43.001
13.915
22.690
1.00
73.30
A
N



















ANISOU
1236
N
ASN A
200
11420
11276
5153
−2732
−704
901
A
N


















ATOM
1237
CA
ASN A
200
42.438
14.644
21.553
1.00
74.06
A
C



















ANISOU
1237
CA
ASN A
200
11383
11583
5173
−2905
−827
1128
A
C


















ATOM
1238
C
ASN A
200
41.486
15.718
22.053
1.00
66.84
A
C



















ANISOU
1238
C
ASN A
200
10053
10794
4548
−2973
−1031
1429
A
C


















ATOM
1239
O
ASN A
200
40.981
15.651
23.178
1.00
65.28
A
O



















ANISOU
1239
O
ASN A
200
9725
10522
4558
−2945
−1109
1431
A
O


















ATOM
1240
CB
ASN A
200
41.635
13.755
20.587
1.00
67.94
A
C



















ANISOU
1240
CB
ASN A
200
10855
10810
4150
−3174
−943
1052
A
C


















ATOM
1241
CG
ASN A
200
42.471
12.708
19.924
1.00
66.46
A
C



















ANISOU
1241
CG
ASN A
200
11090
10504
3659
−3124
−745
765
A
C


















ATOM
1242
OD1
ASN A
200
42.072
11.552
19.834
1.00
67.77
A
O



















ANISOU
1242
OD1
ASN A
200
11535
10522
3691
−3252
−783
578
A
O


















ATOM
1243
ND2
ASN A
200
43.648
13.096
19.467
1.00
66.40
A
N



















ANISOU
1243
ND2
ASN A
200
11126
10553
3549
−2932
−520
739
A
N


















ATOM
1244
N
VAL A
201
41.194
16.680
21.181
1.00
68.94
A
N



















ANISOU
1244
N
VAL A
201
6377
15233
4583
−2088
787
548
A
N


















ATOM
1245
CA
VAL A
201
40.238
17.711
21.546
1.00
67.74
A
C



















ANISOU
1245
CA
VAL A
201
6240
15038
4458
−2096
678
889
A
C


















ATOM
1246
C
VAL A
201
38.830
17.136
21.602
1.00
67.39
A
C



















ANISOU
1246
C
VAL A
201
6265
15073
4265
−2155
531
715
A
C


















ATOM
1247
O
VAL A
201
38.038
17.456
22.500
1.00
67.52
A
O



















ANISOU
1247
O
VAL A
201
6362
14834
4456
−2173
398
818
A
O


















ATOM
1248
CB
VAL A
201
40.334
18.891
20.569
1.00
69.85
A
C



















ANISOU
1248
CB
VAL A
201
6402
15540
4597
−2030
731
1244
A
C


















ATOM
1249
CG1
VAL A
201
39.276
19.921
20.921
1.00
68.77
A
C



















ANISOU
1249
CG1
VAL A
201
6297
15277
4554
−1998
583
1552
A
C


















ATOM
1250
CG2
VAL A
201
41.753
19.478
20.621
1.00
70.14
A
C



















ANISOU
1250
CG2
VAL A
201
6374
15461
4814
−1994
897
1400
A
C


















ATOM
1251
N
THR A
202
38.489
16.281
20.647
1.00
69.62
A
N



















ANISOU
1251
N
THR A
202
6509
15687
4256
−2182
550
429
A
N


















ATOM
1252
CA
THR A
202
37.164
15.671
20.663
1.00
69.57
A
C



















ANISOU
1252
CA
THR A
202
6547
15721
4165
−2239
417
207
A
C


















ATOM
1253
C
THR A
202
36.978
14.797
21.895
1.00
67.08
A
C



















ANISOU
1253
C
THR A
202
6396
15004
4088
−2305
366
−62
A
C


















ATOM
1254
O
THR A
202
35.919
14.816
22.530
1.00
71.06
A
O



















ANISOU
1254
O
THR A
202
6974
15360
4667
−2354
241
−70
A
O


















ATOM
1255
CB
THR A
202
36.952
14.836
19.406
1.00
72.63
A
C



















ANISOU
1255
CB
THR A
202
6843
16436
4319
−2237
448
−95
A
C


















ATOM
1256
OG1
THR A
202
37.362
15.594
18.266
1.00
78.79
A
O



















ANISOU
1256
OG1
THR A
202
7490
17493
4954
−2141
502
142
A
O


















ATOM
1257
CG2
THR A
202
35.500
14.439
19.286
1.00
73.02
A
C



















ANISOU
1257
CG2
THR A
202
6885
16550
4308
−2283
325
−270
A
C


















ATOM
1258
N
LEU A
203
38.001
14.018
22.241
1.00
66.72
A
N



















ANISOU
1258
N
LEU A
203
6413
14711
4226
−2280
451
−291
A
N


















ATOM
1259
CA
LEU A
203
37.918
13.096
23.367
1.00
68.17
A
C



















ANISOU
1259
CA
LEU A
203
6775
14434
4694
−2298
410
−562
A
C


















ATOM
1260
C
LEU A
203
37.710
13.851
24.678
1.00
67.47
A
C



















ANISOU
1260
C
LEU A
203
6781
13919
4935
−2267
302
−299
A
C


















ATOM
1261
O
LEU A
203
36.740
13.613
25.417
1.00
60.16
A
O



















ANISOU
1261
O
LEU A
203
5969
12777
4112
−2320
201
−371
A
O


















ATOM
1262
CB
LEU A
203
39.199
12.266
23.416
1.00
75.30
A
C



















ANISOU
1262
CB
LEU A
203
7715
15184
5713
−2236
528
−808
A
C


















ATOM
1263
CG
LEU A
203
39.373
11.275
24.557
1.00
86.53
A
C



















ANISOU
1263
CG
LEU A
203
9338
16113
7427
−2209
516
−1081
A
C


















ATOM
1264
CD1
LEU A
203
38.193
10.300
24.596
1.00
91.62
A
C



















ANISOU
1264
CD1
LEU A
203
10088
16741
7983
−2318
484
−1394
A
C


















ATOM
1265
CD2
LEU A
203
40.713
10.557
24.377
1.00
91.41
A
C



















ANISOU
1265
CD2
LEU A
203
9958
16675
8101
−2124
639
−1302
A
C


















ATOM
1266
N
VAL A
204
38.641
14.757
24.985
1.00
60.85
A
N



















ANISOU
1266
N
VAL A
204
5891
12955
4274
−2185
332
−10
A
N


















ATOM
1267
CA
VAL A
204
38.563
15.562
26.200
1.00
58.10
A
C



















ANISOU
1267
CA
VAL A
204
5608
12223
4247
−2147
237
247
A
C


















ATOM
1268
C
VAL A
204
37.214
16.262
26.276
1.00
57.43
A
C



















ANISOU
1268
C
VAL A
204
5515
12228
4076
−2210
112
460
A
C


















ATOM
1269
O
VAL A
204
36.503
16.194
27.293
1.00
63.08
A
O



















ANISOU
1269
O
VAL A
204
6351
12632
4984
−2234
1
446
A
O


















ATOM
1270
CB
VAL A
204
39.730
16.570
26.248
1.00
57.99
A
C



















ANISOU
1270
CB
VAL A
204
5486
12166
4383
−2067
311
534
A
C


















ATOM
1271
CG1
VAL A
204
39.459
17.645
27.289
1.00
55.56
A
C



















ANISOU
1271
CG1
VAL A
204
5200
11560
4350
−2044
212
853
A
C


















ATOM
1272
CG2
VAL A
204
41.051
15.850
26.507
1.00
58.13
A
C



















ANISOU
1272
CG2
VAL A
204
5527
11999
4561
−1987
405
295
A
C


















ATOM
1273
N
SER A
205
36.834
16.931
25.184
1.00
59.39
A
N



















ANISOU
1273
N
SER A
205
5626
12916
4022
−2228
131
655
A
N


















ATOM
1274
CA
SER A
205
35.606
17.716
25.205
1.00
58.96
A
C



















ANISOU
1274
CA
SER A
205
5549
12978
3874
−2261
10
887
A
C


















ATOM
1275
C
SER A
205
34.384
16.836
25.420
1.00
66.98
A
C



















ANISOU
1275
C
SER A
205
6650
13986
4814
−2350
−88
586
A
C


















ATOM
1276
O
SER A
205
33.416
17.266
26.057
1.00
72.08
A
O



















ANISOU
1276
O
SER A
205
7339
14501
5548
−2382
−214
702
A
O


















ATOM
1277
CB
SER A
205
35.457
18.538
23.918
1.00
61.54
A
C



















ANISOU
1277
CB
SER A
205
5722
13807
3852
−2233
59
1142
A
C


















ATOM
1278
OG
SER A
205
35.619
17.748
22.752
1.00
64.29
A
O



















ANISOU
1278
OG
SER A
205
6000
14513
3913
−2238
142
878
A
O


















ATOM
1279
N
SER A
206
34.407
15.602
24.920
1.00
70.00
A
N



















ANISOU
1279
N
SER A
206
7054
14496
5049
−2399
−25
186
A
N


















ATOM
1280
CA
SER A
206
33.249
14.742
25.127
1.00
66.46
A
C



















ANISOU
1280
CA
SER A
206
6681
14025
4547
−2501
−92
−129
A
C


















ATOM
1281
C
SER A
206
33.204
14.216
26.560
1.00
57.36
A
C



















ANISOU
1281
C
SER A
206
5726
12306
3762
−2519
−129
−258
A
C


















ATOM
1282
O
SER A
206
32.124
14.138
27.153
1.00
56.23
A
O



















ANISOU
1282
O
SER A
206
5654
12026
3684
−2592
−223
−313
A
O


















ATOM
1283
CB
SER A
206
33.267
13.596
24.120
1.00
62.73
A
C



















ANISOU
1283
CB
SER A
206
6162
13867
3805
−2555
3
−529
A
C


















ATOM
1284
OG
SER A
206
34.365
12.747
24.396
1.00
71.83
A
O



















ANISOU
1284
OG
SER A
206
7405
14763
5124
−2522
116
−746
A
O


















ATOM
1285
N
LYS A
207
34.361
13.855
27.133
1.00
62.27
A
N



















ANISOU
1285
N
LYS A
207
6437
12602
4619
−2444
−54
−311
A
N


















ATOM
1286
CA
LYS A
207
34.414
13.498
28.554
1.00
61.05
A
C



















ANISOU
1286
CA
LYS A
207
6478
11905
4815
−2420
−93
−376
A
C


















ATOM
1287
C
LYS A
207
33.789
14.580
29.418
1.00
54.39
A
C



















ANISOU
1287
C
LYS A
207
5646
10871
4147
−2415
−228
−47
A
C


















ATOM
1288
O
LYS A
207
32.980
14.295
30.304
1.00
57.02
A
O



















ANISOU
1288
O
LYS A
207
6113
10925
4626
−2466
−298
−132
A
O


















ATOM
1289
CB
LYS A
207
35.861
13.255
29.006
1.00
56.97
A
C



















ANISOU
1289
CB
LYS A
207
6016
11120
4510
−2295
−12
−401
A
C


















ATOM
1290
CG
LYS A
207
36.315
11.831
28.819
1.00
66.33
A
C



















ANISOU
1290
CG
LYS A
207
7305
12235
5664
−2291
102
−816
A
C


















ATOM
1291
CD
LYS A
207
37.805
11.688
28.909
1.00
74.49
A
C



















ANISOU
1291
CD
LYS A
207
8331
13150
6820
−2156
186
−835
A
C


















ATOM
1292
CE
LYS A
207
38.233
10.435
28.141
1.00
83.59
A
C



















ANISOU
1292
CE
LYS A
207
9504
14448
7810
−2167
316
−1220
A
C


















ATOM
1293
NZ
LYS A
207
39.693
10.148
28.252
1.00
87.90
A
N1+



















ANISOU
1293
NZ
LYS A
207
10052
14869
8477
−2026
399
−1293
A
N1+


















ATOM
1294
N
PHE A
208
34.152
15.830
29.172
1.00
51.45
A
N



















ANISOU
1294
N
PHE A
208
5138
10641
3768
−2358
−253
329
A
N


















ATOM
1295
CA
PHE A
208
33.703
16.910
30.035
1.00
52.14
A
C



















ANISOU
1295
CA
PHE A
208
5234
10520
4055
−2341
−371
653
A
C


















ATOM
1296
C
PHE A
208
32.404
17.562
29.583
1.00
56.75
A
C



















ANISOU
1296
C
PHE A
208
5734
11392
4435
−2412
−471
808
A
C


















ATOM
1297
O
PHE A
208
31.812
18.318
30.356
1.00
51.09
A
O



















ANISOU
1297
O
PHE A
208
5041
10489
3880
−2415
−582
1026
A
O


















ATOM
1298
CB
PHE A
208
34.798
17.966
30.152
1.00
56.47
A
C



















ANISOU
1298
CB
PHE A
208
5689
11009
4758
−2241
−334
979
A
C


















ATOM
1299
CG
PHE A
208
35.953
17.524
31.004
1.00
59.44
A
C



















ANISOU
1299
CG
PHE A
208
6154
11010
5421
−2150
−285
861
A
C


















ATOM
1300
CD1
PHE A
208
36.950
16.711
30.484
1.00
66.07
A
C



















ANISOU
1300
CD1
PHE A
208
6986
11926
6191
−2107
−161
625
A
C


















ATOM
1301
CD2
PHE A
208
36.010
17.868
32.347
1.00
55.08
A
C



















ANISOU
1301
CD2
PHE A
208
5694
10034
5199
−2096
−368
962
A
C


















ATOM
1302
CE1
PHE A
208
38.008
16.280
31.284
1.00
57.89
A
C



















ANISOU
1302
CE1
PHE A
208
6031
10556
5409
−1999
−125
499
A
C


















ATOM
1303
CE2
PHE A
208
37.058
17.448
33.146
1.00
51.66
A
C



















ANISOU
1303
CE2
PHE A
208
5340
9278
5012
−1985
−333
839
A
C


















ATOM
1304
CZ
PHE A
208
38.061
16.649
32.614
1.00
45.61
A
C



















ANISOU
1304
CZ
PHE A
208
4564
8596
4171
−1932
−213
606
A
C


















ATOM
1305
N
GLY A
209
31.901
17.174
28.418
1.00
66.58
A
N



















ANISOU
1305
N
GLY A
209
6878
13093
5326
−2460
−441
690
A
N


















ATOM
1306
CA
GLY A
209
30.677
17.751
27.897
1.00
59.09
A
C



















ANISOU
1306
CA
GLY A
209
5836
12463
4151
−2502
−543
819
A
C


















ATOM
1307
C
GLY A
209
30.813
19.235
27.648
1.00
55.88
A
C



















ANISOU
1307
C
GLY A
209
5316
12148
3769
−2404
−562
1280
A
C


















ATOM
1308
O
GLY A
209
29.890
20.013
27.871
1.00
52.05
A
O



















ANISOU
1308
O
GLY A
209
4817
11516
3445
−2374
−645
1461
A
O


















ATOM
1309
N
ALA A
210
31.993
19.620
27.184
1.00
64.40
A
N



















ANISOU
1309
N
ALA A
210
6311
13395
4764
−2333
−450
1442
A
N


















ATOM
1310
CA
ALA A
210
32.298
21.003
26.868
1.00
58.70
A
C



















ANISOU
1310
CA
ALA A
210
5501
12602
4201
−2223
−435
1846
A
C


















ATOM
1311
C
ALA A
210
32.527
21.082
25.371
1.00
57.43
A
C



















ANISOU
1311
C
ALA A
210
5196
12779
3847
−2122
−379
1958
A
C


















ATOM
1312
O
ALA A
210
33.151
20.198
24.790
1.00
57.64
A
O



















ANISOU
1312
O
ALA A
210
5164
12735
4001
−2020
−390
2258
A
O


















ATOM
1313
CB
ALA A
210
33.532
21.465
27.623
1.00
58.08
A
C



















ANISOU
1313
CB
ALA A
210
5447
12330
4290
−2206
−333
1985
A
C


















ATOM
1314
N
SER A
211
32.001
22.122
24.739
1.00
59.87
A
N



















ANISOU
1314
N
SER A
211
5453
13432
3861
−2139
−322
1706
A
N


















ATOM
1315
CA
SER A
211
32.158
22.270
23.300
1.00
76.19
A
C



















ANISOU
1315
CA
SER A
211
7393
15848
5708
−2037
−255
1787
A
C


















ATOM
1316
C
SER A
211
33.620
22.433
22.910
1.00
80.59
A
C



















ANISOU
1316
C
SER A
211
7920
16415
6287
−1973
−123
1979
A
C


















ATOM
1317
O
SER A
211
34.369
23.155
23.565
1.00
79.45
A
O



















ANISOU
1317
O
SER A
211
7814
15975
6397
−1957
−101
2200
A
O


















ATOM
1318
CB
SER A
211
31.374
23.487
22.809
1.00
87.70
A
C



















ANISOU
1318
CB
SER A
211
8782
17365
7174
−1931
−325
2014
A
C


















ATOM
1319
OG
SER A
211
31.911
24.684
23.350
1.00
86.65
A
O



















ANISOU
1319
OG
SER A
211
8548
17571
6805
−1820
−253
2092
A
O


















ATOM
1320
N
GLN A
212
34.018
21.774
21.825
1.00
94.03
A
N



















ANISOU
1320
N
GLN A
212
9542
18451
7732
−1932
−28
1886
A
N


















ATOM
1321
CA
GLN A
212
35.389
21.870
21.334
1.00
73.86
A
C



















ANISOU
1321
CA
GLN A
212
6963
15934
5166
−1899
126
1967
A
C


















ATOM
1322
C
GLN A
212
35.714
23.297
20.906
1.00
68.66
A
C



















ANISOU
1322
C
GLN A
212
6280
15163
4645
−1784
174
2363
A
C


















ATOM
1323
O
GLN A
212
36.815
23.783
21.131
1.00
68.36
A
O



















ANISOU
1323
O
GLN A
212
6250
14967
4756
−1776
291
2483
A
O


















ATOM
1324
CB
GLN A
212
35.668
20.862
20.216
1.00
71.09
A
C



















ANISOU
1324
CB
GLN A
212
6538
15973
4501
−1891
204
1720
A
C


















ATOM
1325
CG
GLN A
212
34.441
20.368
19.476
1.00
70.66
A
C



















ANISOU
1325
CG
GLN A
212
6512
15998
4338
−2000
146
1295
A
C


















ATOM
1326
CD
GLN A
212
34.676
19.025
18.811
1.00
78.81
A
C



















ANISOU
1326
CD
GLN A
212
7458
17398
5090
−1994
207
1005
A
C


















ATOM
1327
OE1
GLN A
212
35.773
18.474
18.874
1.00
87.67
A
O



















ANISOU
1327
OE1
GLN A
212
8576
18575
6161
−2020
324
837
A
O


















ATOM
1328
NE2
GLN A
212
33.642
18.489
18.174
1.00
75.62
A
N



















ANISOU
1328
NE2
GLN A
212
6974
17243
4515
−1958
131
923
A
N


















ATOM
1329
N
VAL A
213
34.753
23.964
20.283
1.00
74.66
A
N



















ANISOU
1329
N
VAL A
213
7016
15968
5385
−1696
96
2550
A
N


















ATOM
1330
CA
VAL A
213
34.957
25.337
19.862
1.00
70.77
A
C



















ANISOU
1330
CA
VAL A
213
6512
15397
4982
−1574
167
2895
A
C


















ATOM
1331
C
VAL A
213
35.206
26.206
21.088
1.00
68.00
A
C



















ANISOU
1331
C
VAL A
213
6220
14608
5008
−1573
130
3102
A
C


















ATOM
1332
O
VAL A
213
36.042
27.103
21.053
1.00
68.58
A
O



















ANISOU
1332
O
VAL A
213
6302
14520
5234
−1504
230
3338
A
O


















ATOM
1333
CB
VAL A
213
33.751
25.877
19.078
1.00
73.33
A
C



















ANISOU
1333
CB
VAL A
213
6786
15984
5092
−1460
119
2982
A
C


















ATOM
1334
CG1
VAL A
213
33.995
27.318
18.658
1.00
74.75
A
C



















ANISOU
1334
CG1
VAL A
213
6982
16058
5362
−1324
191
3337
A
C


















ATOM
1335
CG2
VAL A
213
33.479
25.001
17.868
1.00
76.22
A
C



















ANISOU
1335
CG2
VAL A
213
7085
16763
5113
−1452
175
2773
A
C


















ATOM
1336
N
GLU A
214
34.473
25.951
22.168
1.00
68.86
A
N



















ANISOU
1336
N
GLU A
214
6373
14511
5281
−1647
−8
3006
A
N


















ATOM
1337
CA
GLU A
214
34.675
26.729
23.386
1.00
65.76
A
C



















ANISOU
1337
CA
GLU A
214
6029
13698
5259
−1638
−57
3175
A
C


















ATOM
1338
C
GLU A
214
36.075
26.501
23.938
1.00
64.27
A
C



















ANISOU
1338
C
GLU A
214
5869
13285
5266
−1685
39
3157
A
C


















ATOM
1339
O
GLU A
214
36.771
27.446
24.334
1.00
69.95
A
O



















ANISOU
1339
O
GLU A
214
6595
13743
6241
−1628
99
3344
A
O


















ATOM
1340
CB
GLU A
214
33.613
26.382
24.424
1.00
71.17
A
C



















ANISOU
1340
CB
GLU A
214
6753
14234
6053
−1700
−226
3070
A
C


















ATOM
1341
CG
GLU A
214
32.237
26.915
24.072
1.00
85.00
A
C



















ANISOU
1341
CG
GLU A
214
8465
16141
7690
−1633
−303
3123
A
C


















ATOM
1342
CD
GLU A
214
32.224
28.424
23.942
1.00
98.77
A
C



















ANISOU
1342
CD
GLU A
214
10194
17748
9586
−1500
−273
3417
A
C


















ATOM
1343
OE1
GLU A
214
33.167
29.069
24.445
1.00
98.79
A
O



















ANISOU
1343
OE1
GLU A
214
10225
17456
9854
−1475
−224
3561
A
O


















ATOM
1344
OE2
GLU A
214
31.274
28.969
23.342
1.00
104.66
A
O1−



















ANISOU
1344
OE2
GLU A
214
10904
18679
10181
−1415
−293
3485
A
O1−


















ATOM
1345
N
MET A
215
36.509
25.245
23.910
1.00
61.93
A
N



















ANISOU
1345
N
MET A
215
5586
13093
4852
−1784
72
2906
A
N


















ATOM
1346
CA
MET A
215
37.833
24.905
24.389
1.00
60.37
A
C



















ANISOU
1346
CA
MET A
215
5382
12780
4775
−1815
213
2856
A
C


















ATOM
1347
C
MET A
215
38.867
25.617
23.547
1.00
62.68
A
C



















ANISOU
1347
C
MET A
215
5618
13111
5084
−1731
373
3048
A
C


















ATOM
1348
O
MET A
215
39.794
26.221
24.077
1.00
65.61
A
O



















ANISOU
1348
O
MET A
215
5993
13190
5747
−1697
433
3195
A
O


















ATOM
1349
CB
MET A
215
38.081
23.412
24.229
1.00
62.60
A
C



















ANISOU
1349
CB
MET A
215
5659
13308
4817
−1905
277
2537
A
C


















ATOM
1350
CG
MET A
215
37.535
22.534
25.330
1.00
66.60
A
C



















ANISOU
1350
CG
MET A
215
6249
13701
5354
−2006
175
2318
A
C


















ATOM
1351
SD
MET A
215
38.234
20.888
25.148
1.00
72.76
A
S



















ANISOU
1351
SD
MET A
215
7044
14664
5937
−2078
282
1882
A
S


















ATOM
1352
CE
MET A
215
39.973
21.248
25.348
1.00
67.92
A
C



















ANISOU
1352
CE
MET A
215
6385
13768
5652
−2025
425
1881
A
C


















ATOM
1353
N
LEU A
216
38.677
25.593
22.231
1.00
65.71
A
N



















ANISOU
1353
N
LEU A
216
5957
13852
5158
−1695
447
3038
A
N


















ATOM
1354
CA
LEU A
216
39.630
26.233
21.341
1.00
68.27
A
C



















ANISOU
1354
CA
LEU A
216
6241
14243
5455
−1634
632
3185
A
C


















ATOM
1355
C
LEU A
216
39.696
27.729
21.597
1.00
68.48
A
C



















ANISOU
1355
C
LEU A
216
6295
14024
5701
−1543
651
3491
A
C


















ATOM
1356
O
LEU A
216
40.772
28.314
21.598
1.00
72.05
A
O



















ANISOU
1356
O
LEU A
216
6740
14320
6317
−1524
811
3605
A
O


















ATOM
1357
CB
LEU A
216
39.279
25.961
19.879
1.00
80.18
A
C



















ANISOU
1357
CB
LEU A
216
7706
16187
6573
−1601
684
3108
A
C


















ATOM
1358
CG
LEU A
216
39.370
24.509
19.407
1.00
85.93
A
C



















ANISOU
1358
CG
LEU A
216
8411
17058
7182
−1703
707
2767
A
C


















ATOM
1359
CD1
LEU A
216
38.850
24.367
17.985
1.00
78.33
A
C



















ANISOU
1359
CD1
LEU A
216
7395
16514
5851
−1690
758
2590
A
C


















ATOM
1360
CD2
LEU A
216
40.790
23.985
19.522
1.00
99.52
A
C



















ANISOU
1360
CD2
LEU A
216
10111
18564
9138
−1743
859
2736
A
C


















ATOM
1361
N
ALA A
217
38.546
28.350
21.821
1.00
67.78
A
N



















ANISOU
1361
N
ALA A
217
6235
13882
5637
−1492
502
3599
A
N


















ATOM
1362
CA
ALA A
217
38.524
29.780
22.062
1.00
67.65
A
C



















ANISOU
1362
CA
ALA A
217
6251
13588
5864
−1408
513
3849
A
C


















ATOM
1363
C
ALA A
217
39.286
30.106
23.329
1.00
65.09
A
C



















ANISOU
1363
C
ALA A
217
5948
12855
5929
−1444
534
3850
A
C


















ATOM
1364
O
ALA A
217
40.053
31.061
23.376
1.00
65.90
A
O



















ANISOU
1364
O
ALA A
217
6060
12761
6219
−1404
667
3995
A
O


















ATOM
1365
CB
ALA A
217
37.092
30.272
22.170
1.00
66.83
A
C



















ANISOU
1365
CB
ALA A
217
6162
13476
5755
−1357
335
3908
A
C


















ATOM
1366
N
GLU A
218
39.055
29.308
24.363
1.00
62.20
A
N



















ANISOU
1366
N
GLU A
218
5594
12356
5684
−1520
416
3673
A
N


















ATOM
1367
CA
GLU A
218
39.727
29.504
25.642
1.00
63.47
A
C



















ANISOU
1367
CA
GLU A
218
5773
12121
6221
−1532
412
3659
A
C


















ATOM
1368
C
GLU A
218
41.237
29.262
25.640
1.00
75.47
A
C



















ANISOU
1368
C
GLU A
218
7246
13603
7827
−1574
603
3574
A
C


















ATOM
1369
O
GLU A
218
41.990
29.982
26.293
1.00
75.19
A
O



















ANISOU
1369
O
GLU A
218
7203
13262
8104
−1557
664
3601
A
O


















ATOM
1370
CB
GLU A
218
39.069
28.655
26.731
1.00
56.56
A
C



















ANISOU
1370
CB
GLU A
218
4941
11102
5447
−1584
220
3509
A
C


















ATOM
1371
CG
GLU A
218
39.656
28.867
28.116
1.00
61.42
A
C



















ANISOU
1371
CG
GLU A
218
5582
11321
6434
−1580
189
3460
A
C


















ATOM
1372
CD
GLU A
218
39.389
30.254
28.654
1.00
72.09
A
C



















ANISOU
1372
CD
GLU A
218
6947
12385
8057
−1485
176
3620
A
C


















ATOM
1373
OE1
GLU A
218
40.314
30.863
29.225
1.00
80.76
A
O



















ANISOU
1373
OE1
GLU A
218
8018
13325
9341
−1464
320
3652
A
O


















ATOM
1374
OE2
GLU A
218
38.252
30.739
28.503
1.00
69.14
A
O1−



















ANISOU
1374
OE2
GLU A
218
6602
11949
7718
−1440
31
3686
A
O1−


















ATOM
1375
N
ASN A
219
41.674
28.230
24.932
1.00
78.62
A
N



















ANISOU
1375
N
ASN A
219
7598
14314
7959
−1625
705
3445
A
N


















ATOM
1376
CA
ASN A
219
43.082
27.844
24.923
1.00
73.26
A
C



















ANISOU
1376
CA
ASN A
219
6849
13623
7362
−1675
871
3295
A
C


















ATOM
1377
C
ASN A
219
43.973
28.265
23.756
1.00
82.74
A
C



















ANISOU
1377
C
ASN A
219
7998
14985
8455
−1657
1097
3372
A
C


















ATOM
1378
O
ASN A
219
45.178
28.059
23.830
1.00
95.69
A
O



















ANISOU
1378
O
ASN A
219
9563
16580
10216
−1694
1252
3253
A
O


















ATOM
1379
CB
ASN A
219
43.181
26.326
25.058
1.00
64.39
A
C



















ANISOU
1379
CB
ASN A
219
5701
12720
6043
−1753
841
3022
A
C


















ATOM
1380
CG
ASN A
219
42.799
25.840
26.432
1.00
58.78
A
C



















ANISOU
1380
CG
ASN A
219
5035
11780
5517
−1793
684
2897
A
C


















ATOM
1381
OD1
ASN A
219
43.374
26.260
27.428
1.00
60.24
A
O



















ANISOU
1381
OD1
ASN A
219
5185
11706
5997
−1799
711
2815
A
O


















ATOM
1382
ND2
ASN A
219
41.831
24.943
26.491
1.00
57.87
A
N



















ANISOU
1382
ND2
ASN A
219
4992
11760
5234
−1819
523
2867
A
N


















ATOM
1383
N
ASN A
220
43.396
28.809
22.687
1.00
80.02
A
N



















ANISOU
1383
N
ASN A
220
7685
14828
7890
−1598
1124
3552
A
N


















ATOM
1384
CA
ASN A
220
44.159
29.235
21.499
1.00
82.61
A
C



















ANISOU
1384
CA
ASN A
220
7983
15376
8029
−1579
1334
3621
A
C


















ATOM
1385
C
ASN A
220
45.146
28.165
20.998
1.00
77.17
A
C



















ANISOU
1385
C
ASN A
220
7207
14868
7246
−1648
1475
3383
A
C


















ATOM
1386
O
ASN A
220
46.310
28.433
20.732
1.00
73.61
A
O



















ANISOU
1386
O
ASN A
220
6699
14304
6965
−1674
1665
3359
A
O


















ATOM
1387
CB
ASN A
220
44.693
30.693
21.538
1.00
88.14
A
C



















ANISOU
1387
CB
ASN A
220
8712
15823
8953
−1535
1487
3852
A
C


















ATOM
1388
CG
ASN A
220
45.834
30.908
22.513
1.00
90.15
A
C



















ANISOU
1388
CG
ASN A
220
8914
15757
9582
−1590
1619
3771
A
C


















ATOM
1389
OD1
ASN A
220
46.845
30.211
22.479
1.00
92.93
A
O



















ANISOU
1389
OD1
ASN A
220
9217
15997
10095
−1637
1546
3576
A
O


















ATOM
1390
ND2
ASN A
220
45.683
31.902
23.378
1.00
84.96
A
N



















ANISOU
1390
ND2
ASN A
220
8266
14952
9063
−1582
1820
3909
A
N


















ATOM
1391
N
HIS A
221
44.638
26.942
20.889
1.00
75.95
A
N



















ANISOU
1391
N
HIS A
221
7037
15017
6802
−1676
1390
3185
A
N


















ATOM
1392
CA
HIS A
221
45.401
25.776
20.453
1.00
72.96
A
C



















ANISOU
1392
CA
HIS A
221
6582
14812
6327
−1740
1466
2884
A
C


















ATOM
1393
C
HIS A
221
46.700
25.489
21.176
1.00
71.64
A
C



















ANISOU
1393
C
HIS A
221
6339
14394
6488
−1782
1571
2760
A
C


















ATOM
1394
O
HIS A
221
47.742
25.322
20.555
1.00
75.41
A
O



















ANISOU
1394
O
HIS A
221
6752
14848
7051
−1783
1767
2783
A
O


















ATOM
1395
CB
HIS A
221
45.612
25.682
18.950
1.00
80.28
A
C



















ANISOU
1395
CB
HIS A
221
7463
16072
6966
−1727
1628
2834
A
C


















ATOM
1396
CG
HIS A
221
46.214
24.377
18.536
1.00
79.83
A
C



















ANISOU
1396
CG
HIS A
221
7346
16262
6722
−1778
1641
2483
A
C


















ATOM
1397
ND1
HIS A
221
45.895
23.190
19.160
1.00
75.02
A
N



















ANISOU
1397
ND1
HIS A
221
6767
15744
5991
−1813
1476
2269
A
N


















ATOM
1398
CD2
HIS A
221
47.124
24.068
17.584
1.00
81.45
A
C



















ANISOU
1398
CD2
HIS A
221
7467
16625
6855
−1801
1805
2285
A
C


















ATOM
1399
CE1
HIS A
221
46.576
22.205
18.605
1.00
75.67
A
C



















ANISOU
1399
CE1
HIS A
221
6795
16027
5930
−1850
1541
1949
A
C


















ATOM
1400
NE2
HIS A
221
47.328
22.711
17.645
1.00
78.84
A
N



















ANISOU
1400
NE2
HIS A
221
7120
16475
6359
−1838
1732
1952
A
N


















ATOM
1401
N
ASN A
222
46.660
25.377
22.493
1.00
68.73
A
N



















ANISOU
1401
N
ASN A
222
5966
13853
6295
−1816
1452
2604
A
N


















ATOM
1402
CA
ASN A
222
47.888
25.104
23.217
1.00
80.29
A
C



















ANISOU
1402
CA
ASN A
222
7324
15174
8009
−1842
1543
2393
A
C


















ATOM
1403
C
ASN A
222
48.243
23.616
23.233
1.00
92.14
A
C



















ANISOU
1403
C
ASN A
222
8757
16963
9290
−1876
1597
2052
A
C


















ATOM
1404
O
ASN A
222
49.369
23.240
23.556
1.00
103.64
A
O



















ANISOU
1404
O
ASN A
222
10096
18380
10903
−1879
1710
1843
A
O


















ATOM
1405
CB
ASN A
222
47.808
25.654
24.643
1.00
98.25
A
C



















ANISOU
1405
CB
ASN A
222
9618
17095
10615
−1840
1396
2385
A
C


















ATOM
1406
CG
ASN A
222
49.181
25.937
25.238
1.00
113.99
A
C



















ANISOU
1406
CG
ASN A
222
11580
18733
12999
−1805
1457
2539
A
C


















ATOM
1407
OD1
ASN A
222
50.210
25.565
24.668
1.00
116.43
A
O



















ANISOU
1407
OD1
ASN A
222
11767
18922
13551
−1804
1563
2384
A
O


















ATOM
1408
ND2
ASN A
222
49.202
26.601
26.386
1.00
116.50
A
N



















ANISOU
1408
ND2
ASN A
222
11998
18890
13375
−1770
1391
2809
A
N


















ATOM
1409
N
PHE A
223
47.294
22.782
22.834
1.00
87.72
A
N



















ANISOU
1409
N
PHE A
223
8260
16704
8366
−1890
1531
1971
A
N


















ATOM
1410
CA
PHE A
223
47.448
21.321
22.858
1.00
82.07
A
C



















ANISOU
1410
CA
PHE A
223
7553
16124
7506
−1915
1483
1602
A
C


















ATOM
1411
C
PHE A
223
48.659
20.641
22.211
1.00
77.37
A
C



















ANISOU
1411
C
PHE A
223
6875
15736
6785
−1904
1630
1312
A
C


















ATOM
1412
O
PHE A
223
49.150
19.653
22.747
1.00
70.48
A
O



















ANISOU
1412
O
PHE A
223
6062
14768
5949
−1865
1553
939
A
O


















ATOM
1413
CB
PHE A
223
46.174
20.672
22.311
1.00
81.91
A
C



















ANISOU
1413
CB
PHE A
223
7637
16310
7175
−1940
1343
1589
A
C


















ATOM
1414
CG
PHE A
223
44.924
21.132
22.997
1.00
78.81
A
C



















ANISOU
1414
CG
PHE A
223
7330
15706
6908
−1949
1178
1819
A
C


















ATOM
1415
CD1
PHE A
223
44.352
20.377
24.002
1.00
73.06
A
C



















ANISOU
1415
CD1
PHE A
223
6697
14567
6494
−1924
1023
1682
A
C


















ATOM
1416
CD2
PHE A
223
44.325
22.326
22.640
1.00
83.58
A
C



















ANISOU
1416
CD2
PHE A
223
7985
16361
7411
−1906
1103
2108
A
C


















ATOM
1417
CE1
PHE A
223
43.202
20.802
24.635
1.00
81.86
A
C



















ANISOU
1417
CE1
PHE A
223
7887
15490
7726
−1936
873
1888
A
C


















ATOM
1418
CE2
PHE A
223
43.176
22.759
23.268
1.00
71.01
A
C



















ANISOU
1418
CE2
PHE A
223
6472
14552
5957
−1899
938
2293
A
C


















ATOM
1419
CZ
PHE A
223
42.613
21.996
24.267
1.00
74.79
A
C



















ANISOU
1419
CZ
PHE A
223
6988
14762
6668
−1944
850
2210
A
C


















ATOM
1420
N
THR A
224
49.140
21.116
21.073
1.00
85.28
A
N



















ANISOU
1420
N
THR A
224
7792
16921
7691
−1902
1806
1438
A
N


















ATOM
1421
CA
THR A
224
50.284
20.441
20.460
1.00
91.47
A
C



















ANISOU
1421
CA
THR A
224
8474
17882
8399
−1900
1955
1139
A
C


















ATOM
1422
C
THR A
224
51.539
20.448
21.337
1.00
93.58
A
C



















ANISOU
1422
C
THR A
224
8645
17868
9045
−1871
2016
989
A
C


















ATOM
1423
O
THR A
224
52.255
19.452
21.403
1.00
95.06
A
O



















ANISOU
1423
O
THR A
224
8798
18057
9262
−1825
2043
635
A
O


















ATOM
1424
CB
THR A
224
50.640
21.024
19.079
1.00
84.32
A
C



















ANISOU
1424
CB
THR A
224
7541
17200
7298
−1886
2100
1264
A
C


















ATOM
1425
OG1
THR A
224
50.570
22.454
19.127
1.00
80.96
A
O



















ANISOU
1425
OG1
THR A
224
7151
16617
6993
−1870
2137
1657
A
O


















ATOM
1426
CG2
THR A
224
49.686
20.506
18.021
1.00
80.74
A
C



















ANISOU
1426
CG2
THR A
224
7144
17094
6438
−1882
2037
1163
A
C


















ATOM
1427
N
ALA A
225
51.810
21.568
21.997
1.00
90.56
A
N



















ANISOU
1427
N
ALA A
225
8231
17206
8972
−1874
2013
1226
A
N


















ATOM
1428
CA
ALA A
225
52.997
21.684
22.844
1.00
92.73
A
C



















ANISOU
1428
CA
ALA A
225
8390
17230
9611
−1835
2084
1092
A
C


















ATOM
1429
C
ALA A
225
52.780
21.585
24.358
1.00
83.47
A
C



















ANISOU
1429
C
ALA A
225
7293
15633
8788
−1759
1881
1006
A
C


















ATOM
1430
O
ALA A
225
53.715
21.804
25.124
1.00
90.51
A
O



















ANISOU
1430
O
ALA A
225
8082
16302
10006
−1713
1917
913
A
O


















ATOM
1431
CB
ALA A
225
53.750
22.964
22.510
1.00
96.06
A
C



















ANISOU
1431
CB
ALA A
225
8739
17582
10176
−1865
2262
1372
A
C


















ATOM
1432
N
SER A
226
51.568
21.269
24.798
1.00
72.08
A
N



















ANISOU
1432
N
SER A
226
6022
14081
7286
−1742
1673
1015
A
N


















ATOM
1433
CA
SER A
226
51.296
21.208
26.238
1.00
64.73
A
C



















ANISOU
1433
CA
SER A
226
5168
12748
6676
−1677
1493
1008
A
C


















ATOM
1434
C
SER A
226
51.233
19.846
26.918
1.00
62.92
A
C



















ANISOU
1434
C
SER A
226
5097
12346
6463
−1579
1318
652
A
C


















ATOM
1435
O
SER A
226
50.841
19.770
28.076
1.00
60.54
A
O



















ANISOU
1435
O
SER A
226
4930
11778
6295
−1543
1141
672
A
O


















ATOM
1436
CB
SER A
226
50.026
21.985
26.585
1.00
63.08
A
C



















ANISOU
1436
CB
SER A
226
5029
12475
6463
−1740
1404
1378
A
C


















ATOM
1437
OG
SER A
226
48.901
21.412
25.951
1.00
62.59
A
O



















ANISOU
1437
OG
SER A
226
5122
12523
6137
−1760
1268
1341
A
O


















ATOM
1438
N
THR A
227
51.600
18.767
26.244
1.00
64.35
A
N



















ANISOU
1438
N
THR A
227
5271
12659
6519
−1531
1374
325
A
N


















ATOM
1439
CA
THR A
227
51.485
17.485
26.924
1.00
63.11
A
C



















ANISOU
1439
CA
THR A
227
5277
12299
6403
−1422
1231
−14
A
C


















ATOM
1440
C
THR A
227
52.078
17.577
28.331
1.00
61.15
A
C



















ANISOU
1440
C
THR A
227
5040
11662
6533
−1284
1136
−110
A
C


















ATOM
1441
O
THR A
227
53.120
18.202
28.533
1.00
61.68
A
O



















ANISOU
1441
O
THR A
227
4937
11695
6804
−1247
1226
−102
A
O


















ATOM
1442
CB
THR A
227
52.178
16.413
26.097
1.00
65.51
A
C



















ANISOU
1442
CB
THR A
227
5557
12824
6511
−1391
1329
−344
A
C


















ATOM
1443
OG1
THR A
227
51.631
16.424
24.760
1.00
67.26
A
O



















ANISOU
1443
OG1
THR A
227
5748
13439
6370
−1517
1421
−242
A
O


















ATOM
1444
CG2
THR A
227
52.012
15.042
26.760
1.00
64.24
A
C



















ANISOU
1444
CG2
THR A
227
5588
12439
6380
−1274
1202
−691
A
C


















ATOM
1445
N
ASN A
228
51.384
16.990
29.316
1.00
60.48
A
N



















ANISOU
1445
N
ASN A
228
5151
11289
6541
−1207
959
−199
A
N


















ATOM
1446
CA
ASN A
228
51.729
17.108
30.743
1.00
56.94
A
C



















ANISOU
1446
CA
ASN A
228
4742
10463
6430
−1061
841
−257
A
C


















ATOM
1447
C
ASN A
228
51.839
18.567
31.179
1.00
56.10
A
C



















ANISOU
1447
C
ASN A
228
4483
10276
6555
−1110
855
53
A
C


















ATOM
1448
O
ASN A
228
52.673
18.921
32.013
1.00
55.52
A
O



















ANISOU
1448
O
ASN A
228
4315
10015
6765
−1001
840
−16
A
O


















ATOM
1449
CB
ASN A
228
53.012
16.329
31.087
1.00
57.75
A
C



















ANISOU
1449
CB
ASN A
228
4808
10483
6650
−880
867
−615
A
C


















ATOM
1450
CG
ASN A
228
52.849
14.815
30.882
1.00
71.18
A
C



















ANISOU
1450
CG
ASN A
228
6699
12180
8166
−804
838
−934
A
C


















ATOM
1451
OD1
ASN A
228
51.733
14.296
30.974
1.00
72.60
A
O



















ANISOU
1451
OD1
ASN A
228
7076
12284
8226
−852
755
−917
A
O


















ATOM
1452
ND2
ASN A
228
53.969
14.104
30.608
1.00
99.89
A
N



















ANISOU
1452
ND2
ASN A
228
10272
15894
11787
−689
917
−1238
A
N


















ATOM
1453
N
ARC A
229
51.023
19.424
30.571
1.00
56.26
A
N



















ANISOU
1453
N
ARC A
229
4472
10455
6449
−1269
894
384
A
N


















ATOM
1454
CA
ARC A
229
50.807
20.794
30.998
1.00
55.28
A
C



















ANISOU
1454
CA
ARC A
229
4252
10227
6525
−1330
895
716
A
C


















ATOM
1455
C
ARC A
229
49.310
21.022
31.159
1.00
53.69
A
C



















ANISOU
1455
C
ARC A
229
4202
9976
6224
−1409
763
952
A
C


















ATOM
1456
O
ARC A
229
48.476
20.320
30.583
1.00
54.03
A
O



















ANISOU
1456
O
ARC A
229
4371
10168
5991
−1458
723
903
A
O


















ATOM
1457
CB
ARC A
229
51.378
21.812
30.015
1.00
57.50
A
C



















ANISOU
1457
CB
ARC A
229
4327
10763
6757
−1442
1111
931
A
C


















ATOM
1458
CG
ARC A
229
52.868
21.938
30.115
1.00
62.06
A
C



















ANISOU
1458
CG
ARC A
229
4715
11328
7535
−1379
1243
741
A
C


















ATOM
1459
CD
ARC A
229
53.415
23.161
29.386
1.00
63.73
A
C



















ANISOU
1459
CD
ARC A
229
4721
11708
7784
−1500
1474
990
A
C


















ATOM
1460
NE
ARC A
229
54.770
23.465
29.843
1.00
61.42
A
N



















ANISOU
1460
NE
ARC A
229
4232
11318
7787
−1441
1575
809
A
N


















ATOM
1461
CZ
ARC A
229
55.861
22.800
29.463
1.00
75.74
A
C



















ANISOU
1461
CZ
ARC A
229
5947
13261
9569
−1381
1672
496
A
C


















ATOM
1462
NH1
ARC A
229
55.763
21.795
28.599
1.00
75.41
A
N1+



















ANISOU
1462
NH1
ARC A
229
5992
13448
9212
−1379
1688
341
A
N1+


















ATOM
1463
NH2
ARC A
229
57.051
23.146
29.946
1.00
78.66
A
N



















ANISOU
1463
NH2
ARC A
229
6120
13542
10225
−1325
1754
323
A
N


















ATOM
1464
N
SER A
230
48.955
21.974
32.006
1.00
56.81
A
N



















ANISOU
1464
N
SER A
230
4568
10167
6850
−1423
698
1194
A
N


















ATOM
1465
CA
SER A
230
47.556
22.214
32.290
1.00
50.24
A
C



















ANISOU
1465
CA
SER A
230
3879
9234
5978
−1475
548
1387
A
C


















ATOM
1466
C
SER A
230
46.873
23.208
31.375
1.00
51.39
A
C



















ANISOU
1466
C
SER A
230
3952
9627
5945
−1612
635
1751
A
C


















ATOM
1467
O
SER A
230
47.416
24.257
31.060
1.00
52.25
A
O



















ANISOU
1467
O
SER A
230
3905
9769
6178
−1653
765
1974
A
O


















ATOM
1468
CB
SER A
230
47.382
22.631
33.743
1.00
47.73
A
C



















ANISOU
1468
CB
SER A
230
3587
8542
6005
−1396
409
1430
A
C


















ATOM
1469
OG
SER A
230
47.887
23.922
33.939
1.00
54.39
A
O



















ANISOU
1469
OG
SER A
230
4278
9370
7019
−1464
478
1739
A
O


















ATOM
1470
N
VAL A
231
45.649
22.857
30.995
1.00
51.59
A
N



















ANISOU
1470
N
VAL A
231
4095
9830
5677
−1676
572
1795
A
N


















ATOM
1471
CA
VAL A
231
44.806
23.647
30.113
1.00
52.52
A
C



















ANISOU
1471
CA
VAL A
231
4191
10190
5574
−1775
603
2122
A
C


















ATOM
1472
C
VAL A
231
43.419
23.784
30.724
1.00
50.28
A
C



















ANISOU
1472
C
VAL A
231
4034
9736
5335
−1795
411
2251
A
C


















ATOM
1473
O
VAL A
231
43.089
23.094
31.679
1.00
48.05
A
O



















ANISOU
1473
O
VAL A
231
3850
9137
5268
−1739
272
2104
A
O


















ATOM
1474
CB
VAL A
231
44.691
23.017
28.719
1.00
54.92
A
C



















ANISOU
1474
CB
VAL A
231
4505
10895
5469
−1819
683
2023
A
C


















ATOM
1475
CG1
VAL A
231
45.988
23.187
27.953
1.00
57.44
A
C



















ANISOU
1475
CG1
VAL A
231
4676
11428
5722
−1819
900
1989
A
C


















ATOM
1476
CG2
VAL A
231
44.319
21.552
28.829
1.00
54.30
A
C



















ANISOU
1476
CG2
VAL A
231
4574
10777
5281
−1791
572
1652
A
C


















ATOM
1477
N
LEU A
232
42.635
24.719
30.207
1.00
51.03
A
N



















ANISOU
1477
N
LEU A
232
4127
10051
5209
−1865
404
2521
A
N


















ATOM
1478
CA
LEU A
232
41.290
24.966
30.700
1.00
49.17
A
C



















ANISOU
1478
CA
LEU A
232
4017
9634
5033
−1849
213
2649
A
C


















ATOM
1479
C
LEU A
232
40.163
24.390
29.846
1.00
50.12
A
C



















ANISOU
1479
C
LEU A
232
4196
10067
4782
−1913
152
2640
A
C


















ATOM
1480
O
LEU A
232
40.169
24.506
28.632
1.00
63.63
A
O



















ANISOU
1480
O
LEU A
232
5866
12081
6229
−1899
227
2706
A
O


















ATOM
1481
CB
LEU A
232
41.078
26.464
30.816
1.00
49.13
A
C



















ANISOU
1481
CB
LEU A
232
4026
9422
5219
−1743
186
2886
A
C


















ATOM
1482
CG
LEU A
232
42.043
27.197
31.732
1.00
47.52
A
C



















ANISOU
1482
CG
LEU A
232
3810
8827
5417
−1664
180
2887
A
C


















ATOM
1483
CD1
LEU A
232
42.076
28.667
31.371
1.00
51.45
A
C



















ANISOU
1483
CD1
LEU A
232
4299
9225
6023
−1582
228
3085
A
C


















ATOM
1484
CD2
LEU A
232
41.611
27.012
33.172
1.00
44.54
A
C



















ANISOU
1484
CD2
LEU A
232
3541
8151
5232
−1635
−13
2826
A
C


















ATOM
1485
N
ILE A
233
39.205
23.754
30.513
1.00
48.36
A
N



















ANISOU
1485
N
ILE A
233
4081
9738
4555
−1957
3
2525
A
N


















ATOM
1486
CA
ILE A
233
38.008
23.176
29.913
1.00
49.07
A
C



















ANISOU
1486
CA
ILE A
233
4238
10078
4328
−2013
−77
2431
A
C


















ATOM
1487
C
ILE A
233
36.832
24.078
30.282
1.00
51.00
A
C



















ANISOU
1487
C
ILE A
233
4519
10221
4638
−1994
−235
2650
A
C


















ATOM
1488
O
ILE A
233
36.416
24.092
31.453
1.00
45.43
A
O



















ANISOU
1488
O
ILE A
233
3896
9193
4172
−1998
−356
2637
A
O


















ATOM
1489
CB
ILE A
233
37.753
21.740
30.396
1.00
48.14
A
C



















ANISOU
1489
CB
ILE A
233
4265
9810
4216
−2023
−153
2024
A
C


















ATOM
1490
CG1
ILE A
233
38.602
20.702
29.690
1.00
49.95
A
C



















ANISOU
1490
CG1
ILE A
233
4485
10197
4298
−2006
−32
1723
A
C


















ATOM
1491
CG2
ILE A
233
36.364
21.331
30.050
1.00
48.44
A
C



















ANISOU
1491
CG2
ILE A
233
4363
10034
4007
−2096
−253
1945
A
C


















ATOM
1492
CD1
ILE A
233
40.039
21.006
29.647
1.00
50.56
A
C



















ANISOU
1492
CD1
ILE A
233
4464
10219
4526
−1940
100
1756
A
C


















ATOM
1493
N
PRO A
234
36.271
24.863
29.341
1.00
50.40
A
N



















ANISOU
1493
N
PRO A
234
4388
10352
4409
−1931
−256
2796
A
N


















ATOM
1494
CA
PRO A
234
35.116
25.691
29.696
1.00
49.30
A
C



















ANISOU
1494
CA
PRO A
234
4264
10082
4387
−1881
−412
2915
A
C


















ATOM
1495
C
PRO A
234
33.828
24.891
29.617
1.00
51.11
A
C



















ANISOU
1495
C
PRO A
234
4534
10477
4408
−1975
−514
2755
A
C


















ATOM
1496
O
PRO A
234
33.408
24.463
28.530
1.00
51.09
A
O



















ANISOU
1496
O
PRO A
234
4486
10838
4086
−1999
−477
2666
A
O


















ATOM
1497
CB
PRO A
234
35.144
26.813
28.649
1.00
51.01
A
C



















ANISOU
1497
CB
PRO A
234
4388
10460
4532
−1776
−347
3114
A
C


















ATOM
1498
CG
PRO A
234
36.390
26.584
27.853
1.00
53.06
A
C



















ANISOU
1498
CG
PRO A
234
4603
10894
4664
−1772
−165
3110
A
C


















ATOM
1499
CD
PRO A
234
36.704
25.143
27.970
1.00
52.71
A
C



















ANISOU
1499
CD
PRO A
234
4590
10969
4467
−1886
−126
2860
A
C


















ATOM
1500
N
VAL A
235
33.207
24.699
30.783
1.00
50.00
A
N



















ANISOU
1500
N
VAL A
235
4482
10053
4461
−2019
−639
2696
A
N


















ATOM
1501
CA
VAL A
235
32.033
23.853
30.916
1.00
52.81
A
C



















ANISOU
1501
CA
VAL A
235
4905
10495
4664
−2128
−721
2506
A
C


















ATOM
1502
C
VAL A
235
30.898
24.636
31.573
1.00
52.27
A
C



















ANISOU
1502
C
VAL A
235
4832
10207
4823
−2103
−835
2581
A
C


















ATOM
1503
O
VAL A
235
31.109
25.398
32.533
1.00
62.35
A
O



















ANISOU
1503
O
VAL A
235
6117
11143
6431
−2034
−897
2689
A
O


















ATOM
1504
CB
VAL A
235
32.366
22.559
31.692
1.00
49.50
A
C



















ANISOU
1504
CB
VAL A
235
4641
9944
4224
−2236
−720
2285
A
C


















ATOM
1505
CG1
VAL A
235
32.413
22.794
33.193
1.00
41.14
A
C



















ANISOU
1505
CG1
VAL A
235
3676
8401
3555
−2216
−807
2332
A
C


















ATOM
1506
CG2
VAL A
235
31.382
21.471
31.327
1.00
62.52
A
C



















ANISOU
1506
CG2
VAL A
235
6351
11764
5639
−2320
−765
1954
A
C


















ATOM
1507
N
THR A
236
29.695
24.471
31.008
1.00
53.61
A
N



















ANISOU
1507
N
THR A
236
4981
10579
4808
−2141
−845
2491
A
N


















ATOM
1508
CA
THR A
236
28.501
25.154
31.505
1.00
65.00
A
C



















ANISOU
1508
CA
THR A
236
6426
11851
6420
−2127
−901
2538
A
C


















ATOM
1509
C
THR A
236
28.045
24.560
32.827
1.00
75.05
A
C



















ANISOU
1509
C
THR A
236
7859
12779
7876
−2215
−955
2410
A
C


















ATOM
1510
O
THR A
236
27.655
25.286
33.753
1.00
79.19
A
O



















ANISOU
1510
O
THR A
236
8419
12979
8690
−2173
−992
2482
A
O


















ATOM
1511
CB
THR A
236
27.379
25.032
30.477
1.00
60.90
A
C



















ANISOU
1511
CB
THR A
236
5859
11662
5619
−2122
−881
2452
A
C


















ATOM
1512
OG1
THR A
236
27.306
23.658
30.069
1.00
67.49
A
O



















ANISOU
1512
OG1
THR A
236
6751
12709
6182
−2214
−864
2174
A
O


















ATOM
1513
CG2
THR A
236
27.648
25.925
29.273
1.00
55.56
A
C



















ANISOU
1513
CG2
THR A
236
5041
11260
4809
−1999
−830
2635
A
C


















ATOM
1514
N
SER A
237
28.046
23.236
32.914
1.00
70.58
A
N



















ANISOU
1514
N
SER A
237
7423
12258
7135
−2305
−955
2172
A
N


















ATOM
1515
CA
SER A
237
27.749
22.543
34.157
1.00
68.98
A
C



















ANISOU
1515
CA
SER A
237
7428
11694
7086
−2351
−1004
2024
A
C


















ATOM
1516
C
SER A
237
28.769
21.429
34.394
1.00
60.64
A
C



















ANISOU
1516
C
SER A
237
6451
10597
5992
−2394
−1025
1828
A
C


















ATOM
1517
O
SER A
237
29.389
20.915
33.462
1.00
56.52
A
O



















ANISOU
1517
O
SER A
237
5844
10400
5231
−2429
−989
1726
A
O


















ATOM
1518
CB
SER A
237
26.331
21.968
34.133
1.00
65.84
A
C



















ANISOU
1518
CB
SER A
237
7116
11322
6579
−2394
−1016
1791
A
C


















ATOM
1519
OG
SER A
237
26.175
21.121
33.011
1.00
66.90
A
O



















ANISOU
1519
OG
SER A
237
7179
11836
6404
−2452
−983
1552
A
O


















ATOM
1520
N
LEU A
238
28.921
21.050
35.659
1.00
54.51
A
N



















ANISOU
1520
N
LEU A
238
5837
9400
5475
−2375
−1070
1741
A
N


















ATOM
1521
CA
LEU A
238
29.810
19.976
36.056
1.00
47.92
A
C



















ANISOU
1521
CA
LEU A
238
5070
8408
4731
−2406
−1054
1495
A
C


















ATOM
1522
C
LEU A
238
29.481
18.687
35.297
1.00
49.37
A
C



















ANISOU
1522
C
LEU A
238
5305
8785
4667
−2489
−972
1118
A
C


















ATOM
1523
O
LEU A
238
28.369
18.154
35.444
1.00
53.99
A
O



















ANISOU
1523
O
LEU A
238
5959
9366
5188
−2596
−1012
924
A
O


















ATOM
1524
CB
LEU A
238
29.710
19.762
37.563
1.00
44.25
A
C



















ANISOU
1524
CB
LEU A
238
4802
7429
4583
−2342
−1092
1438
A
C


















ATOM
1525
CG
LEU A
238
30.839
18.912
38.175
1.00
59.77
A
C



















ANISOU
1525
CG
LEU A
238
6878
9110
6723
−2275
−1028
1251
A
C


















ATOM
1526
CD1
LEU A
238
32.191
19.599
38.034
1.00
61.15
A
C



















ANISOU
1526
CD1
LEU A
238
6929
9304
6999
−2152
−983
1444
A
C


















ATOM
1527
CD2
LEU A
238
30.571
18.586
39.640
1.00
58.93
A
C



















ANISOU
1527
CD2
LEU A
238
6966
8542
6884
−2240
−1085
1179
A
C


















ATOM
1528
N
PRO A
239
30.414
18.148
34.510
1.00
48.71
A
N



















ANISOU
1528
N
PRO A
239
5186
8866
4456
−2450
−851
987
A
N


















ATOM
1529
CA
PRO A
239
30.156
16.871
33.835
1.00
41.94
A
C



















ANISOU
1529
CA
PRO A
239
4380
8168
3387
−2528
−763
603
A
C


















ATOM
1530
C
PRO A
239
29.867
15.740
34.807
1.00
41.46
A
C



















ANISOU
1530
C
PRO A
239
4545
7709
3499
−2564
−735
295
A
C


















ATOM
1531
O
PRO A
239
30.485
15.632
35.868
1.00
39.14
A
O



















ANISOU
1531
O
PRO A
239
4386
7011
3474
−2471
−733
321
A
O


















ATOM
1532
CB
PRO A
239
31.456
16.604
33.066
1.00
45.72
A
C



















ANISOU
1532
CB
PRO A
239
4792
8802
3777
−2448
−639
557
A
C


















ATOM
1533
CG
PRO A
239
32.483
17.486
33.730
1.00
46.05
A
C



















ANISOU
1533
CG
PRO A
239
4808
8613
4075
−2323
−653
845
A
C


















ATOM
1534
CD
PRO A
239
31.725
18.707
34.135
1.00
45.26
A
C



















ANISOU
1534
CD
PRO A
239
4643
8499
4053
−2342
−780
1174
A
C


















ATOM
1535
N
LYS A
240
28.918
14.885
34.415
1.00
44.16
A
N



















ANISOU
1535
N
LYS A
240
4926
8178
3675
−2695
−703
−7
A
N


















ATOM
1536
CA
LYS A
240
28.680
13.597
35.068
1.00
48.55
A
C



















ANISOU
1536
CA
LYS A
240
5703
8401
4343
−2747
−617
−362
A
C


















ATOM
1537
C
LYS A
240
29.616
12.581
34.428
1.00
46.22
A
C



















ANISOU
1537
C
LYS A
240
5441
8167
3951
−2708
−466
−625
A
C


















ATOM
1538
O
LYS A
240
29.315
12.018
33.374
1.00
56.94
A
O



















ANISOU
1538
O
LYS A
240
6715
9863
5058
−2799
−399
−856
A
O


















ATOM
1539
CB
LYS A
240
27.218
13.168
34.939
1.00
53.94
A
C



















ANISOU
1539
CB
LYS A
240
6397
9188
4909
−2924
−633
−588
A
C


















ATOM
1540
CG
LYS A
240
26.191
14.176
35.460
1.00
52.00
A
C



















ANISOU
1540
CG
LYS A
240
6116
8871
4771
−2881
−738
−320
A
C


















ATOM
1541
CD
LYS A
240
26.283
14.383
36.947
1.00
54.48
A
C



















ANISOU
1541
CD
LYS A
240
6611
8681
5409
−2804
−781
−188
A
C


















ATOM
1542
CE
LYS A
240
25.614
15.680
37.378
1.00
54.97
A
C



















ANISOU
1542
CE
LYS A
240
6609
8707
5570
−2699
−885
154
A
C


















ATOM
1543
NZ
LYS A
240
25.958
15.990
38.818
1.00
55.51
A
N1+



















ANISOU
1543
NZ
LYS A
240
6832
8309
5950
−2571
−926
306
A
N1+


















ATOM
1544
N
LEU A
241
30.769
12.365
35.054
1.00
42.94
A
N



















ANISOU
1544
N
LEU A
241
5140
7445
3732
−2561
−418
−598
A
N


















ATOM
1545
CA
LEU A
241
31.767
11.481
34.478
1.00
44.65
A
C



















ANISOU
1545
CA
LEU A
241
5380
7714
3872
−2500
−283
−825
A
C


















ATOM
1546
C
LEU A
241
31.309
10.031
34.511
1.00
52.03
A
C



















ANISOU
1546
C
LEU A
241
6496
8496
4775
−2587
−155
−1247
A
C


















ATOM
1547
O
LEU A
241
30.438
9.643
35.304
1.00
49.75
A
O



















ANISOU
1547
O
LEU A
241
6372
7926
4604
−2662
−154
−1356
A
O


















ATOM
1548
CB
LEU A
241
33.075
11.602
35.233
1.00
43.41
A
C



















ANISOU
1548
CB
LEU A
241
5300
7252
3943
−2306
−272
−710
A
C


















ATOM
1549
CG
LEU A
241
33.764
12.954
35.233
1.00
45.29
A
C



















ANISOU
1549
CG
LEU A
241
5360
7598
4251
−2211
−360
−330
A
C


















ATOM
1550
CD1
LEU A
241
35.139
12.734
35.839
1.00
41.88
A
C



















ANISOU
1550
CD1
LEU A
241
4999
6897
4014
−2022
−316
−348
A
C


















ATOM
1551
CD2
LEU A
241
33.847
13.528
33.814
1.00
50.48
A
C



















ANISOU
1551
CD2
LEU A
241
5773
8776
4632
−2271
−343
−220
A
C


















ATOM
1552
N
ASP A
242
31.924
9.224
33.638
1.00
49.18
A
N



















ANISOU
1552
N
ASP A
242
6107
8317
4262
−2580
−31
−1492
A
N


















ATOM
1553
CA
ASP A
242
31.718
7.780
33.640
1.00
61.67
A
C



















ANISOU
1553
CA
ASP A
242
7869
9727
5835
−2644
123
−1909
A
C


















ATOM
1554
C
ASP A
242
32.673
7.148
34.654
1.00
66.37
A
C



















ANISOU
1554
C
ASP A
242
8709
9836
6674
−2467
195
−1966
A
C


















ATOM
1555
O
ASP A
242
33.891
7.191
34.471
1.00
74.39
A
O



















ANISOU
1555
O
ASP A
242
9683
10877
7705
−2314
217
−1913
A
O


















ATOM
1556
CB
ASP A
242
31.924
7.194
32.241
1.00
68.49
A
C



















ANISOU
1556
CB
ASP A
242
8585
11013
6423
−2712
223
−2160
A
C


















ATOM
1557
CG
ASP A
242
31.648
5.684
32.177
1.00
82.35
A
C



















ANISOU
1557
CG
ASP A
242
10516
12603
8172
−2798
400
−2619
A
C


















ATOM
1558
OD1
ASP A
242
30.621
5.232
32.747
1.00
88.58
A
O



















ANISOU
1558
OD1
ASP A
242
11444
13166
9046
−2919
433
−2777
A
O


















ATOM
1559
OD2
ASP A
242
32.442
4.948
31.536
1.00
86.95
A
O1−



















ANISOU
1559
OD2
ASP A
242
11091
13281
8667
−2752
517
−2831
A
O1−


















ATOM
1560
N
GLN A
243
32.119
6.561
35.724
1.00
61.50
A
N



















ANISOU
1560
N
GLN A
243
8347
8781
6240
−2478
238
−2078
A
N


















ATOM
1561
CA
GLN A
243
32.899
5.956
36.797
1.00
58.37
A
C



















ANISOU
1561
CA
GLN A
243
8213
7897
6066
−2287
302
−2122
A
C


















ATOM
1562
C
GLN A
243
32.560
4.472
36.948
1.00
67.62
A
C



















ANISOU
1562
C
GLN A
243
9641
8795
7256
−2343
499
−2514
A
C


















ATOM
1563
O
GLN A
243
31.439
4.051
36.630
1.00
66.00
A
O



















ANISOU
1563
O
GLN A
243
9430
8664
6982
−2531
562
−2688
A
O


















ATOM
1564
CB
GLN A
243
32.650
6.668
38.136
1.00
49.50
A
C



















ANISOU
1564
CB
GLN A
243
7203
6431
5174
−2204
182
−1852
A
C


















ATOM
1565
CG
GLN A
243
32.934
8.176
38.167
1.00
42.32
A
C



















ANISOU
1565
CG
GLN A
243
6062
5720
4296
−2149
−4
−1456
A
C


















ATOM
1566
CD
GLN A
243
34.427
8.513
38.178
1.00
49.20
A
C



















ANISOU
1566
CD
GLN A
243
6859
6603
5233
−1932
−26
−1328
A
C


















ATOM
1567
OE1
GLN A
243
35.295
7.628
38.170
1.00
51.33
A
O



















ANISOU
1567
OE1
GLN A
243
7245
6742
5515
−1803
83
−1530
A
O


















ATOM
1568
NE2
GLN A
243
34.728
9.807
38.190
1.00
43.34
A
N



















ANISOU
1568
NE2
GLN A
243
5915
6017
4534
−1892
−159
−1000
A
N


















ATOM
1569
N
PRO A
244
33.512
3.650
37.422
1.00
70.28
A
N



















ANISOU
1569
N
PRO A
244
10189
8812
7701
−2152
606
−2641
A
N


















ATOM
1570
CA
PRO A
244
33.291
2.206
37.623
1.00
75.79
A
C



















ANISOU
1570
CA
PRO A
244
11103
9214
8480
−2098
794
−2887
A
C


















ATOM
1571
C
PRO A
244
32.114
1.882
38.541
1.00
74.33
A
C



















ANISOU
1571
C
PRO A
244
11039
8727
8477
−2086
807
−2776
A
C


















ATOM
1572
O
PRO A
244
32.092
2.435
39.640
1.00
74.30
A
O



















ANISOU
1572
O
PRO A
244
11138
8467
8624
−1979
712
−2559
A
O


















ATOM
1573
CB
PRO A
244
34.603
1.738
38.252
1.00
73.27
A
C



















ANISOU
1573
CB
PRO A
244
10976
8587
8277
−1819
838
−2904
A
C


















ATOM
1574
CG
PRO A
244
35.623
2.703
37.720
1.00
68.87
A
C



















ANISOU
1574
CG
PRO A
244
10197
8350
7622
−1766
721
−2771
A
C


















ATOM
1575
CD
PRO A
244
34.922
4.025
37.652
1.00
63.85
A
C



















ANISOU
1575
CD
PRO A
244
9337
7961
6960
−1897
544
−2470
A
C


















HETATM
1576
C1
NAG A
1076
47.849
6.531
51.063
1.00
44.10
A
C


HETATM
1577
C2
NAG A
1076
47.870
5.043
50.676
1.00
57.73
A
C


HETATM
1578
C3
NAG A
1076
48.738
4.258
51.649
1.00
62.74
A
C


HETATM
1579
C4
NAG A
1076
50.134
4.860
51.736
1.00
73.55
A
C


HETATM
1580
C5
NAG A
1076
50.074
6.367
52.006
1.00
66.00
A
C


HETATM
1581
C6
NAG A
1076
51.433
7.025
51.850
1.00
77.39
A
C


HETATM
1582
C7
NAG A
1076
45.835
4.269
49.503
1.00
69.45
A
C


HETATM
1583
C8
NAG A
1076
44.486
3.638
49.680
1.00
73.06
A
C


HETATM
1584
N2
NAG A
1076
46.531
4.472
50.630
1.00
67.87
A
N


HETATM
1585
O3
NAG A
1076
48.812
2.907
51.207
1.00
61.48
A
O


HETATM
1586
O4
NAG A
1076
50.834
4.262
52.824
1.00
86.01
A
O


HETATM
1587
O5
NAG A
1076
49.177
7.032
51.099
1.00
44.53
A
O


HETATM
1588
O6
NAG A
1076
51.359
8.424
51.609
1.00
83.18
A
O


HETATM
1589
O7
NAG A
1076
46.264
4.592
48.392
1.00
59.22
A
O


HETATM
1590
C1
NAG A
2076
51.704
3.148
52.511
1.00
89.75
A
C


HETATM
1591
C2
NAG A
2076
52.777
3.076
53.594
1.00
84.61
A
C


HETATM
1592
C3
NAG A
2076
53.721
1.911
53.318
1.00
85.99
A
C


HETATM
1593
C4
NAG A
2076
52.918
0.618
53.266
1.00
85.51
A
C


HETATM
1594
C5
NAG A
2076
51.825
0.728
52.199
1.00
92.45
A
C


HETATM
1595
C6
NAG A
2076
50.898
−0.470
52.172
1.00
89.30
A
C


HETATM
1596
C7
NAG A
2076
53.343
5.169
54.748
1.00
82.17
A
C


HETATM
1597
C8
NAG A
2076
54.144
6.438
54.698
1.00
79.48
A
C


HETATM
1598
N2
NAG A
2076
53.500
4.334
53.709
1.00
82.34
A
N


HETATM
1599
O3
NAG A
2076
54.714
1.836
54.336
1.00
95.43
A
O


HETATM
1600
O4
NAG A
2076
53.761
−0.499
53.000
1.00
83.01
A
O


HETATM
1601
O5
NAG A
2076
50.999
1.883
52.440
1.00
95.99
A
O


HETATM
1602
O6
NAG A
2076
49.529
−0.093
52.076
1.00
83.95
A
O


HETATM
1603
O7
NAG A
2076
52.591
4.908
55.693
1.00
78.70
A
O


HETATM
1604
C1
NAG A
1123
47.703
31.112
51.348
1.00
63.05
A
C


HETATM
1605
C2
NAG A
1123
48.304
32.500
51.518
1.00
72.32
A
C


HETATM
1606
C3
NAG A
1123
48.864
32.659
52.930
1.00
76.90
A
C


HETATM
1607
C4
NAG A
1123
47.778
32.420
53.977
1.00
85.17
A
C


HETATM
1608
C5
NAG A
1123
47.071
31.072
53.759
1.00
75.98
A
C


HETATM
1609
C6
NAG A
1123
45.790
30.947
54.564
1.00
66.09
A
C


HETATM
1610
C7
NAG A
1123
49.136
33.360
49.363
1.00
71.99
A
C


HETATM
1611
C8
NAG A
1123
50.348
33.540
48.494
1.00
68.30
A
C


HETATM
1612
N2
NAG A
1123
49.344
32.750
50.534
1.00
74.04
A
N


HETATM
1613
O3
NAG A
1123
49.408
33.969
53.060
1.00
73.86
A
O


HETATM
1614
O4
NAG A
1123
48.360
32.443
55.283
1.00
97.38
A
O


HETATM
1615
O5
NAG A
1123
46.695
30.884
52.381
1.00
77.46
A
O


HETATM
1616
O6
NAG A
1123
45.575
29.627
55.047
1.00
67.23
A
O


HETATM
1617
O7
NAG A
1123
48.021
33.741
49.014
1.00
73.84
A
O


HETATM
1618
C1
NAG A
2123
47.809
33.471
56.171
1.00
101.53
A
C


HETATM
1619
C2
NAG A
2123
48.615
33.558
57.507
1.00
98.63
A
C


HETATM
1620
C3
NAG A
2123
48.119
34.727
58.370
1.00
103.69
A
C


HETATM
1621
C4
NAG A
2123
48.083
36.025
57.574
1.00
109.93
A
C


HETATM
1622
C5
NAG A
2123
47.220
35.822
56.331
1.00
112.93
A
C


HETATM
1623
C6
NAG A
2123
47.087
37.055
55.460
1.00
112.42
A
C


HETATM
1624
C7
NAG A
2123
49.181
31.201
57.925
1.00
93.84
A
C


HETATM
1625
C8
NAG A
2123
48.955
30.016
58.818
1.00
90.46
A
C


HETATM
1626
N2
NAG A
2123
48.513
32.311
58.250
1.00
93.20
A
N


HETATM
1627
O3
NAG A
2123
48.935
34.886
59.527
1.00
100.98
A
O


HETATM
1628
O4
NAG A
2123
47.558
37.076
58.380
1.00
108.32
A
O


HETATM
1629
O5
NAG A
2123
47.794
34.783
55.522
1.00
111.35
A
O


HETATM
1630
O6
NAG A
2123
48.292
37.378
54.780
1.00
114.76
A
O


HETATM
1631
O7
NAG A
2123
49.932
31.153
56.951
1.00
98.48
A
O


HETATM
1632
C1
NAG A
1144
54.671
15.656
35.163
1.00
37.73
A
C


HETATM
1633
C2
NAG A
1144
54.274
14.196
35.065
1.00
37.73
A
C


HETATM
1634
C3
NAG A
1144
55.503
13.302
34.960
1.00
50.44
A
C


HETATM
1635
C4
NAG A
1144
56.531
13.777
33.938
1.00
51.62
A
C


HETATM
1636
C5
NAG A
1144
56.778
15.283
34.077
1.00
47.74
A
C


HETATM
1637
C6
NAG A
1144
57.543
15.877
32.914
1.00
55.32
A
C


HETATM
1638
C7
NAG A
1144
52.472
12.987
36.222
1.00
51.27
A
C


HETATM
1639
C8
NAG A
1144
51.855
12.689
37.554
1.00
50.70
A
C


HETATM
1640
N2
NAG A
1144
53.515
13.814
36.241
1.00
42.75
A
N


HETATM
1641
O3
NAG A
1144
55.056
11.989
34.646
1.00
60.19
A
O


HETATM
1642
O4
NAG A
1144
57.685
12.994
34.250
1.00
60.95
A
O


HETATM
1643
O5
NAG A
1144
55.528
15.984
34.100
1.00
47.14
A
O


HETATM
1644
O6
NAG A
1144
56.804
16.883
32.230
1.00
61.36
A
O


HETATM
1645
O7
NAG A
1144
52.016
12.538
35.177
1.00
59.72
A
O


HETATM
1646
C1
NAG A
2144
58.955
12.890
33.530
1.00
83.73
A
C


HETATM
1647
C2
NAG A
2144
59.539
11.488
33.820
1.00
94.96
A
C


HETATM
1648
C3
NAG A
2144
60.887
11.315
33.114
1.00
103.58
A
C


HETATM
1649
C4
NAG A
2144
60.782
11.691
31.639
1.00
103.06
A
C


HETATM
1650
C5
NAG A
2144
60.091
13.044
31.444
1.00
93.13
A
C


HETATM
1651
C6
NAG A
2144
59.775
13.317
29.996
1.00
88.48
A
C


HETATM
1652
C7
NAG A
2144
58.862
10.457
35.937
1.00
89.36
A
C


HETATM
1653
C8
NAG A
2144
59.149
10.326
37.405
1.00
83.94
A
C


HETATM
1654
N2
NAG A
2144
59.684
11.256
35.247
1.00
91.04
A
N


HETATM
1655
O3
NAG A
2144
61.315
9.960
33.242
1.00
102.99
A
O


HETATM
1656
O4
NAG A
2144
62.078
11.733
31.048
1.00
106.07
A
O


HETATM
1657
O5
NAG A
2144
58.829
13.066
32.129
1.00
93.17
A
O


HETATM
1658
O6
NAG A
2144
59.024
12.239
29.453
1.00
86.36
A
O


HETATM
1659
O7
NAG A
2144
57.921
9.870
35.399
1.00
93.33
A
O


HETATM
1660
C1
NAG A
1228
54.131
12.661
30.331
1.00
73.34
A
C


HETATM
1661
C2
NAG A
1228
55.401
12.376
29.460
1.00
83.15
A
C


HETATM
1662
C3
NAG A
1228
55.578
10.871
29.213
1.00
92.37
A
C


HETATM
1663
C4
NAG A
1228
55.493
10.061
30.498
1.00
93.75
A
C


HETATM
1664
C5
NAG A
1228
54.194
10.379
31.232
1.00
90.93
A
C


HETATM
1665
C6
NAG A
1228
54.052
9.631
32.538
1.00
89.70
A
C


HETATM
1666
C7
NAG A
1228
55.953
14.259
27.962
1.00
62.50
A
C


HETATM
1667
C8
NAG A
1228
55.801
14.820
26.580
1.00
61.44
A
C


HETATM
1668
N2
NAG A
1228
55.354
13.082
28.186
1.00
77.40
A
N


HETATM
1669
O3
NAG A
1228
56.846
10.634
28.609
1.00
97.10
A
O


HETATM
1670
O4
NAG A
1228
55.536
8.679
30.152
1.00
98.74
A
O


HETATM
1671
O5
NAG A
1228
54.141
11.786
31.533
1.00
87.29
A
O


HETATM
1672
O6
NAG A
1228
55.154
9.888
33.397
1.00
97.52
A
O


HETATM
1673
O7
NAG A
1228
56.570
14.855
28.842
1.00
51.25
A
O


HETATM
1674
C1
NAG A
2228
56.712
7.979
30.648
1.00
105.75
A
C


HETATM
1675
O2
NAG A
2228
56.432
6.506
30.363
1.00
109.04
A
C


HETATM
1676
O3
NAG A
2228
57.551
5.638
30.941
1.00
114.26
A
C


HETATM
1677
O4
NAG A
2228
58.904
6.090
30.393
1.00
114.48
A
C


HETATM
1678
O5
NAG A
2228
59.110
7.592
30.626
1.00
116.17
A
C


HETATM
1679
O6
NAG A
2228
60.393
8.132
30.026
1.00
116.84
A
C


HETATM
1680
O7
NAG A
2228
54.072
5.897
30.099
1.00
103.32
A
C


HETATM
1681
O8
NAG A
2228
54.306
6.058
28.626
1.00
104.80
A
C


HETATM
1682
N2
NAG A
2228
55.133
6.111
30.886
1.00
105.10
A
N


HETATM
1683
O3
NAG A
2228
57.316
4.272
30.614
1.00
114.03
A
O


HETATM
1684
O4
NAG A
2228
59.957
5.358
31.014
1.00
109.16
A
O


HETATM
1685
O5
NAG A
2228
58.018
8.350
30.070
1.00
113.09
A
O


HETATM
1686
O6
NAG A
2228
60.410
8.042
28.608
1.00
118.16
A
O


HETATM
1687
O7
NAG A
2228
52.975
5.578
30.552
1.00
99.40
A
O


TER
1688

NAG A
2228


HETATM
1688
O
HOH S
1
31.421
19.873
44.880
1.00
42.21
S
O


HETATM
1689
O
HOH S
3
41.885
20.609
55.460
1.00
40.39
S
O


HETATM
1690
O
HOH S
4
60.490
20.808
51.222
1.00
39.49
S
O


HETATM
1691
O
HOH S
5
29.548
12.649
29.611
1.00
24.15
S
O


TER
1693

HOH S
5


END








Claims
  • 1. A method for selection of a target plant LysM receptor for modifying the target plant LysM receptor to have a desired receptor characteristic, comprising: (a) providing a structural model, a molecular model, a surface characteristics model, and/or an electrostatic potential model of a donor plant LysM receptor having the desired receptor characteristic and two or more potential target plant LysM receptors;(b) comparing each of the two or more potential target plant LysM receptors with the structural model, the molecular model, the surface characteristics model, and/or the electrostatic potential model of the donor plant LysM receptor, and/or comparing each of the two or more potential target plant LysM receptors with the donor plant LysM receptor using structural overlay; and(c) selecting the potential target plant LysM receptor with a suitable match for the donor plant LysM receptor to be the target plant LysM receptor.
  • 2. The method of claim 1, wherein the criteria for determining that the potential target plant LysM receptor is a suitable match for the donor plant LysM receptor in step (c) are selected from the group consisting of goodness of fit to template structure; similarity; phylogenetic relation; surface potential; coverage to template structure; GMQE, QMEAN, and Local Quality estimates from SWISS-Model; and any combination thereof.
  • 3. The method of claim 1, wherein the structural model of the donor plant LysM receptor is a protein crystal structure, a molecular model, a cryo-EM structure, and a NMR structure.
  • 4. The method of claim 1, wherein the donor plant LysM receptor model is of an entire ectodomain and the two or more potential target plant LysM receptor models are of entire ectodomains.
  • 5. The method of claim 1, wherein the donor plant LysM receptor model is of a LysM1 domain, a LysM2 domain, a LysM3 domain, or any combination thereof and the two or more potential target plant LysM receptor models are of LysM1 domains, LysM2 domains, LysM3 domains, or any combination thereof.
  • 6. The method of claim 1, wherein the donor plant LysM receptor is Medicago NFP, Medicago LYK3, Lotus NFR1, Lotus NFR5, Lotus LYS11, or Arabidopsis CERK1.
  • 7. The method of claim 6, wherein the two or more target plant LysM receptors are additionally compared to Lotus CERK6.
  • 8. The method of claim 1, wherein the two or more potential target plant LysM receptor polypeptides are all from the same plant species or plant variety.
  • 9. The method of claim 1, wherein the desired receptor characteristic is affinity, selectivity, and/or specificity for an oligosaccharide or class of oligosaccharides.
  • 10. The method of claim 1, wherein the desired receptor characteristic is binding kinetics for an oligosaccharide or class of oligosaccharides, wherein the binding kinetics comprise off-rate and on-rate.
  • 11. The method of claim 9, wherein the class of oligosaccharides is selected from the group consisting of LCOs, COs, beta-glucans, cyclic-beta-glucans, exopolysaccharides, and optionally LPS.
  • 12. The method of claim 11, wherein the class of oligosaccharides is LCOs or COs.
  • 13. The method of claim 12, wherein the class of oligosaccharides is LCOs, optionally produced by a produced by a nitrogen-fixing bacteria optionally selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof; or optionally produced by a mycorrhizal fungi optionally selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof.
  • 14. The method of claim 13, wherein at least one of the LCOs is M. loti LCO, S. meliloti LCO-IV, or S. meliloti LCO-V.
  • 15. The method of claim 1, further comprising step (d): identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a first oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor, and optionally identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a second oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor.
  • 16. The method of claim 15, further comprising step (e): generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor plant LysM receptor; generating a modified plant LysM receptor wherein the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor plant LysM receptor; or generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor plant LysM receptor and the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor plant LysM receptor.
  • 17. The method of claim 16, wherein the first oligosaccharide binding feature is a hydrophobic patch on the surface of the LysM2 domain.
  • 18. The method of claim 16, wherein the second oligosaccharide binding feature is a part of the LysM1 domain of the donor plant LysM receptor.
  • 19. A modified plant LysM receptor produced using the method of claim 1, wherein the modified plant LysM receptor comprises a LysM2 domain modified to comprise a hydrophobic patch on the surface of the LysM2 domain.
  • 20. A modified plant LysM receptor produced using the method of claim 1, wherein the modified plant LysM receptor comprises a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/718,282, filed Aug. 13, 2018, which is hereby incorporated by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/071705 8/13/2019 WO 00
Provisional Applications (1)
Number Date Country
62718282 Aug 2018 US