Genetically altered LysM receptors with altered agonist specificity and affinity

Information

  • Patent Grant
  • 12190997
  • Patent Number
    12,190,997
  • Date Filed
    Tuesday, August 13, 2019
    5 years ago
  • Date Issued
    Tuesday, January 7, 2025
    18 days ago
Abstract
Aspects of the present disclosure relates to genetically altered LysM receptors. In particular, the present disclosure relates to a hydrophobic patch into the LysM2 domain which can increase affinity and/or selectivity for LCOs and by replacement of regions in the LysM1 domain with the corresponding regions of the LysM1 domain from a donor LysM receptor that can alter the affinity and/or selectivity for the oligosaccharide particularly for LCOs and can alter the specificity between LCO when using regions from a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor. The present disclosure also relates to genetically altering LysM receptors in plants to include a hydrophobic patch or alter the hydrophobic patch and to genetically altering LysM receptors in plants by replacement of regions in the LysM2 domain.
Description
SUBMISSION OF SEQUENCE LISTING AS ASCII TEXT FILE

The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 794542000400SUBSEQLIST.TXT, date recorded: Dec. 23, 2022, size: 305,165 bytes).


TECHNICAL FIELD

The present disclosure relates to genetically altered LysM receptors. In particular, the present disclosure relates to a hydrophobic patch into the LysM2 domain which can increase affinity and/or selectivity for LCOs and by replacement of regions in the LysM1 domain with the corresponding regions of the LysM1 domain from a donor LysM receptor that can alter the affinity and/or selectivity for the oligosaccharide, particularly for LCOs, and can alter the specificity between LCOs when using regions from a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor. The present disclosure also relates to genetically altering LysM receptors in plants to include a hydrophobic patch or alter the hydrophobic patch and to genetically altering LysM receptors in plants by replacement of regions in the LysM2 domain.


BACKGROUND

Plants are exposed to a wide variety of microbes in their environment, both benign and pathogenic. To protect against the pathogenic microbes, plants have the ability to recognize specific molecular signals of the microbes through an array of receptors and, depending upon the pattern of the signals, can initiate an appropriate immune response. The molecular signals are derived from secreted materials, cell-wall components, and even cytosolic proteins of the microbes. Chitooligosaccharides (COs) are an important fungal molecular signal that plants recognize through the chitin receptors CEBiP, CERK1, LYK5, and CERK6 (previously called LYS6) found on the plasma membrane. These receptors are in the LysM class of receptors and recognize the size and the acetylation of COs from fungi. Lipo-chitooligosaccharides (LCOs) are another important molecular signal that can be found on both bacteria and fungi that are recognized by other LysM receptors.


In addition to benign and pathogenic microbes, some microbes can be beneficial to plants through association or symbiosis. Plants that enter into symbiotic relationships with certain nitrogen fixing bacteria and fungi need to be able to recognize the specific bacterial or fungal species to initiate the symbiosis while still being able to activate their immune systems to respond to other bacteria and fungi. One important mechanism that allows plants to recognize these specific bacteria or fungi is through specialized LysM receptors that have high affinity, high selectivity, and/or high specificity for the form of LCOs produced by the specific bacteria or fungi while LCOs from other bacteria and fungi are not recognized by these specialized LysM receptors.


Experimental and computational approaches have been used to identify a number of these specialized LysM receptors (also referred to as high affinity and specificity LCO receptors). As these receptors are required for recognizing symbiotic bacterial and fungal species, and for initiating symbiosis, these receptors represent an important component of any plant engineering strategy. Using these receptors, however, will not be particularly straightforward; transferring a specialized LysM receptor into a plant that does not currently have one may require codon optimization, the identification of suitable promoters, the use of targeting signals, and further engineering approaches needed to adapt exogenous sequences for optimal expression. Further, the number of these receptors that have been identified is currently limited.


Moreover, species that already have specialized LysM receptors, e.g., legumes, cannot be easily engineered with new specialized LysM receptors. Currently, legumes are limited to the specific bacterial or fungal species with which they form symbiotic associations. While legumes may have the benefit of existing symbiotic associations, their agricultural potential is limited. For example, legumes cannot currently be easily engineered to have different specificity for different symbiotic microbial species, which would allow legumes to better form associations with the bacterial or fungal species in different soils. Moreover, legumes cannot be easily engineered to have improved specialized LysM receptors. Further, legumes cannot currently be engineered to have synergistic symbiotic requirements with other crops grown in rotation with them. Editing approaches are needed for both the modification of endogenous LysM receptors into specialized LysM receptors able to perceive symbiotic bacterial and fungal species, and the modification of specialized LysM receptors into specialized LysM receptors with different specific recognition of symbiotic bacterial and fungal species.


BRIEF SUMMARY

In order to meet these needs, the present disclosure provides complementary means of modifying LysM receptors by introduction of a hydrophobic patch into the LysM2 domain which can increase affinity and/or selectivity for LCOs, and by replacement of regions in the LysM1 domain with the corresponding regions of the LysM1 domain from a donor LysM receptor that can alter the affinity and/or selectivity for the oligosaccharide, particularly for LCOs, and can alter the specificity between LCOs when using regions from a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor.


Certain aspects of the present disclosure relate to a modified plant LysM receptor comprising a LysM2 domain modified to comprise a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group consisting of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, and a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12E and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in red in FIGS. 12A-12E in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1.


In some aspects, the present disclosure relates to a modified plant LysM receptor comprising a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP (SEQ ID NO:55); and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP (SEQ ID NO:107). In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO: 31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO: 28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium hiaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a nucleic acid sequence encoding the modified plant LysM receptor of any one of the preceding embodiments. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a first nucleic acid sequence encoding a modified plant LysM receptor where the LysM1 domain has been modified as in any of the preceding embodiments relating to modification to the LysM1 domain and a second nucleic acid sequence encoding a modified plant LysM receptor where the LysM2 domain has been modified to include a hydrophobic patch as in any of the preceding embodiments relating to modifications to the LysM2 domain. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the first nucleic acid or second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof. In some embodiments, the plant part is a fruit, a kernel, or a grain.


In some aspects, the present disclosure relates to a pollen grain or an ovule of a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a protoplast from a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a tissue culture produced from protoplasts or cells from a genetically altered plant of any of the above embodiments relating to plants, wherein the cells or protoplasts are produced from a plant part selected from the group consisting of leaf, anther, pistil, stem, petiole, root, root primordia, root tip, fruit, seed, flower, cotyledon, hypocotyl, embryo, and meristematic cell.


In some aspects, the present disclosure relates to a method of producing the genetically altered plant of any one of the above embodiments relating to plants, comprising introducing a genetic alteration to the plant comprising the nucleic acid sequence. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter (KAY et al. Science, 236, 4805, 1987), a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is inserted into the genome of the plant so that the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to an endogenous promoter. In some embodiments, the endogenous promoter is a root specific promoter.


Additional aspects of the present disclosure relate to a modified plant LysM receptor including a LysM2 domain modified to include a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, or a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments of any of the above embodiments, the hydrophobic patch was generated by modifying an existing hydrophobic patch in the unmodified LysM receptor. In some embodiments, the unmodified LysM receptor was modified by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, substituting at least one hydrophobic amino acid residue with another hydrophobic amino acid residue, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the LysM domain three dimensional structure is a Lotus LYS11 ectodomain. In some embodiments, the unmodified LysM receptor is the Lotus LYS11 receptor and the existing hydrophobic patch amino acid residues of the LysM domain that are modified are or correspond to K100, E101, G102, E103, S104, Y105, Y106, N128, and Y129 of the Lotus LYS11 ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1. In some embodiments of any of the above embodiments, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the LysM2 domain of the unmodified LysM receptor were substituted or deleted to generate the modified plant LysM receptor, and (ii) the entire LysM2 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments of any of the above embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof.


In some aspects, the present disclosure relates to a modified plant LysM receptor including a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO: 31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP (SEQ ID NO:55); and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP (SEQ ID NO:107). In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO: 31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO: 28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the first LysM1 domain is further modified by substituting a fifth part of the first LysM1 domain with a sixth part of a second LysM1 domain. In some embodiments, the first LysM1 domain is SEQ ID NO:115 [LysM1 domain Lotus NFR1; LjNFR1/32-89] or SEQ ID NO:106 [LysM1 domain Lotus NFR1; LjNFR1/31-89] and the second LysM1 domain is SEQ ID NO:114 [LysM1 domain Medicago LYK3; MtLYK3/31-89] or SEQ ID NO:105 [LysM1 domain Medicago LYK3; MtLYK3/30-89]. In some embodiments, wherein the fifth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/56-92], and wherein the sixth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62]. In some embodiments, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO: 113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82]. In some embodiments, the first LysM1 domain is SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/31-89] and the second LysM1 domain is SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/32-89]. In some embodiments, the fifth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62], and the sixth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62]. In some embodiments of any of the above embodiments including the first LysM1 domain being SEQ ID NO:33 and the second LysM1 domain being SEQ ID NO:32, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82].


In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the first LysM1 domain were substituted or deleted with the corresponding amino acid residues of the second LysM1 domain, and (ii) the entire LysM1 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof and the second LysM2 domain is from the donor plant LysM receptor. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, including a nucleic acid sequence encoding the modified plant LysM receptor of any one of the preceding embodiments. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, soybean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof.


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, including a first nucleic acid sequence encoding a modified plant LysM receptor where the LysM1 domain has been modified as in any of the preceding embodiments relating to modification to the LysM1 domain and a second nucleic acid sequence encoding a modified plant LysM receptor where the LysM2 domain has been modified to include a hydrophobic patch as in any of the preceding embodiments relating to modifications to the LysM2 domain. In some embodiments, the modified plant LysM receptor has higher affinity, higher selectivity, and/or altered specificity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high affinity, high selectivity, and/or altered specificity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the first nucleic acid or second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn, rice, barley, wheat, Trema spp., apple, pear, plum, apricot, peach, almond, walnut, strawberry, raspberry, blackberry, red currant, black currant, melon, cucumber, pumpkin, squash, grape, bean, soybean, pea, chickpea, cowpea, pigeon pea, lentil, Bambara groundnut, lupin, pulses, Medicago spp., Lotus spp., forage legumes, indigo, legume trees, or hemp. In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof. In some embodiments, the plant part is a fruit, a kernel, or a grain.


In some aspects, the present disclosure relates to a pollen grain or an ovule of a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a protoplast from a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a tissue culture produced from protoplasts or cells from a genetically altered plant of any of the above embodiments relating to plants, wherein the cells or protoplasts are produced from a plant part selected from the group of leaf, anther, pistil, stem, petiole, root, root primordia, root tip, fruit, seed, flower, cotyledon, hypocotyl, embryo, or meristematic cell.


In some aspects, the present disclosure relates to a method of producing the genetically altered plant of any one of the above embodiments relating to plants, including introducing a genetic alteration to the plant having the nucleic acid sequence. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO: 24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter (KAY et al. Science, 236, 4805, 1987), a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is inserted into the genome of the plant so that the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to an endogenous promoter. In some embodiments, the endogenous promoter is a root specific promoter.


In further aspects, the present disclosure relates to methods for selection of a target plant LysM receptor for modifying the target plant LysM receptor to have a desired receptor characteristic, wherein the method includes the steps of: a) providing a structural model, a molecular model, a surface characteristics model, and/or an electrostatic potential model of a donor plant LysM receptor having the desired receptor characteristic and two or more potential target plant LysM receptors; b) comparing each of the two or more potential target plant LysM receptors with the structural model, the molecular model, the surface characteristics model, and/or the electrostatic potential model of the donor plant LysM receptor, and/or comparing each of the two or more potential target plant LysM receptors with the donor plant LysM receptor using structural overlay; and c) selecting the potential target plant LysM receptor with a suitable match for the donor plant LysM receptor to be the target plant LysM receptor. In some embodiments, the criteria for determining that the potential target plant LysM receptor is a suitable match for the donor plant LysM receptor in step (c) are selected from the group of goodness of fit to template structure; similarity; phylogenetic relation; surface potential; coverage to template structure; GMQE, QMEAN, and Local Quality estimates from SWISS-Model; or any combination thereof. In some embodiments, the structural model of a donor plant LysM receptor is a protein crystal structure, a molecular model, a cryo-EM structure, and a NMR structure. In some embodiments, the donor plant LysM receptor model is of an entire ectodomain and the two or more potential target plant LysM receptor models are of entire ectodomains. In some embodiments, the donor plant LysM receptor model is of a LysM1 domain, a LysM2 domain, a LysM3 domain, or any combination thereof, and the two or more potential target plant LysM receptor models are of LysM1 domains, LysM2 domains, LysM3 domains, or any combination thereof.


In some embodiments, the donor plant LysM receptor is Medicago NFP, Medicago LYK3, Lotus NFR1, Lotus NFR5, Lotus LYS11, or Arabidopsis CERK1. In some embodiments, the two or more target plant LysM receptors are additionally compared to Lotus CERK6. In some embodiments, the two or more potential target plant LysM receptor polypeptides are all from the same plant species or plant variety. In some embodiments, the desired receptor characteristic is affinity, selectivity, and/or specificity for an oligosaccharide or class of oligosaccharides. In some embodiments, the desired receptor characteristic is binding kinetics for an oligosaccharide or class of oligosaccharides, wherein the binding kinetics include off-rate and on-rate. In some embodiments, the class of oligosaccharides is selected from the group of LCOs, COs, beta-glucans, cyclic-beta-glucans, exopolysaccharides, or optionally LPS. In some embodiments, the class of oligosaccharides is LCOs or COs. In some embodiments, the class of oligosaccharides is LCOs, optionally produced by a produced by a nitrogen-fixing bacteria optionally selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof; or optionally produced by a mycorrhizal fungi optionally selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, pr any combination thereof. In some embodiments, the LCOs are M. loti LCO, S. meliloti LCO-IV, or S. meliloti LCO-V.


In some embodiments, the method further includes step d) identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a first oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor, and optionally identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a second oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor. In some embodiments, the method further includes step e) generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; generating a modified plant LysM receptor wherein the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; or generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM and the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM. In some embodiments, the first oligosaccharide binding feature is a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the second oligosaccharide binding feature is a part of the LysM1 domain of the donor plant LysM receptor.


In additional aspects, the present disclosure relates to a a modified plant LysM receptor produced using any one of the preceding methods, wherein the modified plant LysM receptor includes a LysM2 domain modified to include a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, or a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 20 Å, 10 Å, 7.5 Å, 5 Å, 4 Å, 3 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 75% sequence identity, at least 80% sequence identity, at least 85% sequence identity, at least 90% sequence identity, at least 95% sequence identity, at least 96% sequence identity, at least 97% sequence identity, at least 98% sequence identity, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments of any of the above embodiments, the hydrophobic patch was generated by modifying an existing hydrophobic patch in the unmodified LysM receptor. In some embodiments, the unmodified LysM receptor was modified by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, substituting at least one hydrophobic amino acid residue with another hydrophobic amino acid residue, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12E in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the LysM domain three dimensional structure is a Lotus LYS11 ectodomain. In some embodiments, the unmodified LysM receptor is the Lotus LYS 11 receptor and the existing hydrophobic patch amino acid residues of the LysM domain that are modified are or correspond to K100, E101, G102, E103, 5104, Y105, Y106, N128, and Y129 of the Lotus LYS11 ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1. In some embodiments of any of the above embodiments, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the LysM2 domain of the unmodified LysM receptor were substituted or deleted to generate the modified plant LysM receptor, and (ii) the entire LysM2 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments that may be combined with any of the preceding embodiments, the present disclosure related to a genetically altered plant or part thereof including the modified plant LysM receptor of any of the above embodiments.


In further aspects, the present disclosure relates to a a modified plant LysM receptor produced using any one of the preceding methods, wherein the modified plant LysM receptor includes a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP (SEQ ID NO:55); and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQ SSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP (SEQ ID NO:107). In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO: 31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO: 28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the first LysM1 domain is further modified by substituting a fifth part of the first LysM1 domain with a sixth part of a second LysM1 domain. In some embodiments, the first LysM1 domain is SEQ ID NO:115 [LysM1 domain Lotus NFR1; LjNFR1/32-89] or SEQ ID NO:106 [LysM1 domain Lotus NFR1; LjNFR1/31-89] and the second LysM1 domain is SEQ ID NO:114 [LysM1 domain Medicago LYK3; MtLYK3/31-89] or SEQ ID NO:105 [LysM1 domain Medicago LYK3; MtLYK3/30-89]. In some embodiments, wherein the fifth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62], and wherein the sixth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62]. In some embodiments, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82]. In some embodiments, the first LysM1 domain is SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/31-89] and the second LysM1 domain is SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/32-89]. In some embodiments, the fifth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62], and the sixth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62]. In some embodiments of any of the above embodiments including the first LysM1 domain being SEQ ID NO:33 and the second LysM1 domain being SEQ ID NO:32, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82].


In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, either or both (i) 80% or fewer, 70% or fewer, 60% or fewer, 50% or fewer, 40% or fewer, 30% or fewer, or 20% or fewer of amino acid residues in the first LysM1 domain were substituted or deleted with the corresponding amino acid residues of the second LysM1 domain, and (ii) the entire LysM1 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain. In some embodiments that may be combined with any of the preceding embodiments, the present disclosure related to a genetically altered plant or part thereof including the modified plant LysM receptor of any of the above embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 shows the structure of the NFP receptor ectodomain (NFP-ECD) with the three LysM domains labeled and colored in blue (LysM1), green (LysM2), and red (LysM3). Motifs within the LysM domains are also labeled: LysM1 motifs=α1, α2, β1, and β2; LysM2 motifs=α3, α4, β3, and β4; and LysM3 motifs=α5, α6, β5, and β6. Glycosylations (di-GlcNAc cores are shown (projecting from α1 at upper; additional cores visible at center adjacent to β2 and β1 as well as at bottom left behind α4), and disulfide bridges are indicated with arrows and labeled with the residue numbers (C47-C166; C39-C104; and C102-C164).



FIGS. 2A-2B show the hydrophobic patch in the Medicago NFP LysM2 domain, and binding assay measurements using mutants of important residues within the hydrophobic patch. FIG. 2A shows molecular docking of C04 (designated as “Ligand”) onto Medicago NFP colored with electrostatic surface potential (negative=red; hydrophobic=white; positive=blue). The hydrophobic patch is circled by a dashed black line, and the locations of important residues L147 and L154 are shown using arrows. The position of the LCO fatty-acid is depicted with a dashed orange line. FIG. 2B shows binding assay measurements comparing a wild type (WT) NFP (“NFP WT”; in green) with an NFP mutated at residues 147 and 154 (“NFP L147D L154D”; in black). The results shown for NFP WT are from seven replicates and the results shown for NFP L147D L154D are from four replicates.



FIG. 3 shows the general schematic of the construct used for mutant complementation experiments. Designations are as follows: T-DNA left border=LB, T-DNA right border=RB, nuclear localized triple yellow fluorescent protein=tYFPn1s, buffer sequence=buffer, constitutive ubiquitin promoter=pUbi, Nfr1 promoter=pNfr1, Cerk6 promoter=pCcrk6. The arrows indicate the directions of gene transcription.



FIGS. 4A-4B show complementation assays of Medicago nfp mutants. FIG. 4A shows complementation tested by inoculation with S. meliloti strain 2011. FIG. 4B shows complementation tested by inoculation with S. medicae. Columns represent the mean nodule numbers, while circles represent the individual counts. Empty circles=Medicago A17 wild type; filled circles=Medicago nfp mutant; EVC=empty vector control; and WT=wild type. Error bars show the SEM. Different letters indicate significant differences between the samples (ANOVA, Tukey, P<0.05).



FIGS. 5A-5B show results of functional studies measuring nodulation and defense using domain swaps between the Lotus japonicus (Lj) LCO receptor NFR1 and the Lotus japonicus (Lj) CO receptor CERK6. FIG. 5A shows complementation experiments of a Lotus nfr 1-1 single mutant with different domain-swapped protein constructs. Nodules were counted on hairy root transformed L. japonicus nfr1-1 mutant roots after the indicated days post inoculation (dpi) with M. loti R7A. FIG. 5B shows complementation of a Lotus cerk6 single mutant with different domain-swapped protein constructs. Ratios of CO8 and flg22 elicited ROS peak values are plotted normalized to the wild type sample (Gifu; transformed with the empty vector) set as 1. In FIGS. 5A-5B, black dots represent individual transformed plants, and error bars show the SEM. Different letters indicate significant differences among the samples (ANOVA, Tukey, P<0.01). The compositions of the recombinant receptors are shown by color-coding of the respective parts, with pink indicating LjNFR1 derived sequences and green indicating LjCERK6 derived sequences. Colored bars indicate multiple amino acid long region swaps (pink bars are LjNFR1 derived sequences; green bars are LjCERK6 derived sequences), while white bars with a red border indicate single amino acid mutations introducing a bulky amino acid (Trp) to the LysM structure. LysM domains are labelled at the left of the recombinant receptors as LysM1, LysM2, and LysM3, and transmembrane and intracellular domains are labelled at the left of the recombinant receptors as TM+IC.



FIG. 6 shows a 3D structure of the Lotus CERK6 ectodomain with the three LysM domains labeled and colored in blue (LysM1), green (LysM2), and red (LysM3). Region II and region IV in LysM1 are labeled and colored in yellow.



FIG. 7 shows complementation of Lotus japonicus nfr1-1 mutants with LjNFR1/MtLYK3 chimeras depicted at the bottom of the graph. Complementation was assayed by counting nodules formed per plant, which is shown at the top of FIG. 7. Black dots represent individual plants, columns indicate the mean values, and error bars show the SEM. Different letters indicate significant difference among the samples (ANOVA, Tukey, P<0.01). The schematics of the individual chimeric receptors tested are shown at the bottom of FIG. 7, with white indicating LjNFR1 domains, grey indicating MtLYK3 domains, and black indicating LjCERK6 domains (control). LysM domains are labelled as LysM1, LysM2, and LysM3; transmembrane and juxtamembrane domains are labelled as TM and JM; and the kinase domain is labelled as K



FIGS. 8A-8C show an alignment of selected LysM receptors from Arabidopsis thaliana (At; AT3G21630_CERK1 (SEQ ID NO:75), AT1G77630_LYP3 (SEQ ID NO:80), AT2G17120_LYP1 (SEQ ID NO:82)), Zea mays (Zm; ZM9_NP_001146346.1 (SEQ ID NO:72)), Hordeum vulgare (Hv; HvLysMRLK4_AK369594.1 (SEQ ID NO:73)), Medicago truncatula (Mt or Medtr; Mt_LYK9_XP_003601376 (SEQ ID NO:69), Mt_LYK3_XP_003616958 (SEQ ID NO:71), Mt_LYK10_XP_003613165 (SEQ ID NO:77), Medtr5g042440.1 (SEQ ID NO:79)), Oryza sativa (Os; XP_015611967_OsCERK1 (SEQ ID NO:74), OsCeBiP (SEQ ID NO:81)) and Lotus japonicus (Lj; BAI79273.1_CERK6 (SEQ ID NO:34), CAE02590.1_NFR1 (SEQ ID NO:70), BAI79284.1_EPR3 (SEQ ID NO:76), CAE02597.1_NFR5 (SEQ ID NO:78)). NFR1 and NFR5 are Nod factor receptors, EPR3 is an exopolysaccharide receptor, AtLYP1 and AtLYP3 are peptidoglycan receptors, AtCERK1, OsCERK1, OsCeBIP, CERK6 are chitooligosaccharide receptors. C(x)XXXC (SEQ ID NO:108) and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. FIG. 8A shows the first two portions of the alignment including all of the LysM1 domain and part of the LysM2 domain. FIG. 8B shows the third and fourth portions of the alignment including the rest of the LysM2 domain and all of the LysM3 domain. FIG. 8C shows the fifth portion of the alignment.



FIGS. 9A-9B show an alignment of selected LysM receptors from Arabidopsis thaliana (At; AT3G21630_CERK1 (SEQ ID NO:75)), Zea mays (Zm; XP_020399958_ZM1 (SEQ ID NO:20), XP_008652982.1_ZM5 (SEQ ID NO:21), AQK73561.1 ZM7 (SEQ ID NO:84), NP_001147981.1_ZM3 (SEQ ID NO:85), NP_001147941.2_ZM6 (SEQ ID NO:86), AQK58792.1_ZM4 (SEQ ID NO:87), ZM9_NP_001146346.1 (SEQ ID NO:72)), Hordeum vulgare (Hv; HORVU4Hr1G066170 HvLysMRLK10 (SEQ ID NO:19), AK357612_HvLysMRLK2 (SEQ ID NO:17), AK370300_HvLysmRLK1 (SEQ ID NO:16), AK372128_HvLysMRLK3 (SEQ ID NO:18), HvLysMRLK4_AK369594.1 (SEQ ID NO:73)), Oryza sativa (Os; XP_015611967_OsCERK1 (SEQ ID NO:74)), Medicago truncatula (Mt; XP_003613904.2_MtNFP (SEQ ID NO:83), Mt_LYK3_XP_003616958 (SEQ ID NO:71), Mt_LYK9_XP_003601376 (SEQ ID NO:69)), and Lotus japonicus (Lj; CAE02590.1_NFR1 (SEQ ID NO:70), CAE02597.1_NFR5 (SEQ ID NO:78), BAI79273.1_CERK6 (SEQ ID NO:34),). LjNFR1, LjNFR5, MtLYK3 and MtNFP are functional Nod factor receptors, AtCERK1, OsCERK1, LjCERK6 are functional chitin receptors. C(x)XXXC (SEQ ID NO:108) and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. The number of “X” residues in the C(x)XXXC motif (SEQ ID NO:108) located before LysM1 varies between receptors and therefore the location of LysM1 (black line) changes accordingly in the alignments in this figure and in successive figures. FIG. 9A shows the first and second portions of the alignment including all of the LysM1 domain and part of the LysM2 domain. FIG. 9B shows the third and fourth portions of the alignment including the rest of the LysM2 domain and all of the LysM3 domain.



FIGS. 10A-10B show an alignment of selected LysM receptors from Zea mays (Zm; ONM41523.1_ZM8 (SEQ ID NO:88), XP_008657477.1_ZM2 (SEQ ID NO:89), Zm00001d043516 ZM10 (SEQ ID NO:91)), Hordeum vulgare (Hv; MLOC_5489.2_HvLysM-RLK9 (SEQ ID NO:90), MLOC_18610.1_HvLysM-RLK8 (SEQ ID NO:92), MLOC_57536.1_HvLysM-RLK6 (SEQ ID NO:93)), Medicago truncatula (Mt; Mt_LYK10_XP_003613165 (SEQ ID NO:77), Mt_LYK3_XP_003616958 (SEQ ID NO:71), XP_003613904.2_MtNFP (SEQ ID NO:83)), and Lotus japonicus (Lj; BAI79284.1_EPR3 (SEQ ID NO:76), CAE02590.1 NFR1 (SEQ ID NO:70), CAE02597.1_NFR5 (SEQ ID NO:78)). LjNFR1, LjNFR5, MtLYK3 and MtNFP are functional Nod factor receptors, LjEPR3 is functional EPS receptor. C(x)XXXC (SEQ ID NO:108) and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. FIG. 10A shows the first, second, and third portions of the alignment including all of the LysM1 domain and all of the LysM2 domain. FIG. 10B shows the fourth, fifth, and sixth portions of the alignment including all of the LysM3 domain.



FIGS. 11A-11B show an alignment of selected LysM receptors from Arabidopsis thaliana (At; AT1G21880.2_LYP2(SEQ ID NO:94), AT1G77630_LYP3 (SEQ ID NO:80), AT2G17120_LYP1 (SEQ ID NO:82)), Oryza sativa (Os; OsCeBiP (SEQ ID NO:81)), and Lotus japonicus (Lj; LjLYP1 (SEQ ID NO:95), LjLYP2 (SEQ ID NO:96), LjLYP3 (SEQ ID NO:97), CAE02590.1_NFR1 (SEQ ID NO:70), CAE02597.1_NFR5 (SEQ ID NO:78)). LjNFR1, LjNFR5, are functional Nod factor receptors, AtLYP2 and AtLYP3, are PGN receptors, OsCeBiP is a functional chitin receptor. C(x)XXXC (SEQ ID NO:108) and CxC motifs flanking the three LysM domains are shown. LysM1 (black line), LysM2 (grey line) and LysM3 (grey line) are shown. FIG. 11A shows the first, second, third, and fourth portions of the alignment including all of the LysM1 domain, all of the LysM2 domain, and all of the LysM3 domain. FIG. 11B shows the fifth, sixth, and seventh portions of the alignment.



FIGS. 12A-12E show annotated amino acid sequences of previously known LCO receptors and newly identified LCO receptors. FIG. 12A shows the annotation key; the LysM1 domain is shown with a dashed underline, the LysM2 domain is shown with a solid underline, the hydrophobic patch residues are shown in bold, and the LysM3 domain is shown with residues italicized. Medicago NFP(MtNFP/1-595; SEQ ID NO:1), Lotus NFR5 (a known LCO receptor; LjNFR5/1-595; SEQ ID NO:2), Pea SYM10 (a known LCO receptor; Pea_SYM10/1-594; SEQ ID NO:3), and Soybean NFR5a (a known LCO receptor; GmNFR5α/1-598 max; SEQ ID NO:4) are shown. FIG. 12B shows Chickpea NFR5 (a new LCO receptor; ChickpeaNFR5/1-557 (Cicer arietinum); SEQ ID NO:5), Bean NFR5 (a new LCO receptor; BeanNFR5/1-597 (Phaseolus vulgaris); SEQ ID NO:7), Peanut NFR5 (a new LCO receptor; PeanutNFR5/1-595 [Arachis hypogaea subsp. hypogaea]; SEQ ID NO:9), and Lotus LYS11 (a new LCO receptor; LjLYS11/1-591; SEQ ID NO:11). FIG. 12C shows Medicago LYR1 (a new LCO receptor; MtLYR1/1-590; SEQ ID NO:12), Parasponia NFP1 (a new LCO receptor; PanNFP1/1-613; SEQ ID NO:13), Parasponia NFP2 (a known LCO receptor; PanNFP2/1-582; SEQ ID NO:14), and Barley receptor HvLysM-RLK1 (a new LCO receptor; HvLysM-RLK1 (AK370300); SEQ ID NO:16). FIG. 12D shows Barley receptor HvLysM-RLK2 (a new LCO receptor; HvLysM-RLK2 (AK357612); SEQ ID NO:17), Barley receptor HvLysM-RLK3 AK372128 (a new LCO receptor; HvLysM-RLK3 AK372128; SEQ ID NO:18), Barley receptor HvLysM-RLK10 (a new LCO receptor; HvLysM-RLK10 (HORVU4Hr1G066170); SEQ ID NO:19), and Maize receptor ZM1 (a new LCO receptor; ZM1 (XP_020399958); SEQ ID NO:20). FIG. 12E shows Maize receptor ZM5 (a new LCO receptor; ZM5 (XP_008652982.1); SEQ ID NO:21), Apple NFP5 (a new LCO receptor; XP_008338966.1 PREDICTED: serine/threonine receptor-like kinase NFP [Malus domestica]; SEQ ID NO:22), and Strawberry NFR5 (a new LCO receptor; XP_004300586.2 PREDICTED: protein LYK5-like [Fragaria vesca subsp. vesca]; SEQ ID NO:23).



FIGS. 13A-13C show structural modelling of the HvLysM-RLK2/37-247 LysM1-3 domains and selection of residues for modification to introduce a hydrophobic patch. FIG. 13A shows the PyMol visualization of the LysM1-3 domains of the HvLysM-RLK2/37-247 model with the LysM1 domain labeled and in dark grey, the LysM2 labeled and in light grey, and the LysM3 labeled and in light grey. FIG. 13B shows the electrostatic surface potential of the model with chitin modeled in the binding groove. FIG. 13C has the amino acid sequence of the HvLysM-RLK2/37-247 LysM1-3 domains (SEQ ID NO: 98) with the LysM1 domain with a dashed underline, the LysM2 domain with a solid underline, and the LysM3 domain with no underline, and the residues that can be modified to create the hydrophobic patch in bold.



FIG. 14 shows an alignment of the Lotus japonicus (Lj) NFR1 and Lotus japonicus (Lj) CERK6 LysM1 domains. Viewed top-down, LjNFR1 (NFR1_Lj2g2904690; SEQ ID NO:99) is shown in the top row, LjCERK6 (CERK6_AB503687; SEQ ID NO:100) is shown in the second row, sequence conservation is shown in the third row. Region II and region IV in the LysM1 domain are denoted by light grey arrows and labelled as “II.” or “IV.”



FIGS. 15A-15F show L. japonicus LjLYS11 ectodomain model and crystal structure, modified LjLYS11 ectodomains, and testing of modified LjLYS11 ectodomains. FIG. 15A shows a comparison of the LjLYS11 ectodomain model (LYS11-model; left) with the crystal structure of the LjLYS11 ectodomain (LYS11-crystal structure; right). FIG. 15B shows schematics of modified LjLYS11 ectodomains (LjLYS11-LjNFR5 chimeras) used for testing. The top schematic shows an ectodomain with entirely LjLYS11 domains (black), the middle schematic shows an ectodomain where the LysM2 domain from LjLYS11 was replaced with the LysM2 domain from LjNFR5 (grey), and the bottom schematic shows an ectodomain where key residues from LjLYS11 were replaced with key residues from LjNFR5 (grey) (N-terminus=N′; LysM1=M1; LysM2=M2; LysM3=M3; 6×HIS tag used for purification=6×HIS; C-terminus=C′). FIG. 15C shows the results of binding assays with the ectodomain with entirely LjLYS11 components (ectodomain schematic shown at top with LjLYS 11 domains in black; results of binding assays shown at bottom). The Kd is shown in the title of each graph (CO5 (Kd=11.4 μM), M. loti LCO (Kd=38.6 μM), and S. meliloti LCO (weak binding)). FIG. 15D shows the results of binding assays with the ectodomain where LysM2 from LjLYS11 was replaced with LysM2 from LjNFR5 (ectodomain schematic shown at top with LjLYS11 domains in black and LjNFR5 domains in grey; results of binding assays shown at bottom). FIG. 15E shows the results of binding assays with the ectodomain where key residues from LjLYS11 were replaced with key residues from LjNFR5 (ectodomain schematic shown at top with LjLYS11 domains in black and LjNFR5 residues in grey; results of binding assays shown at bottom). For FIGS. 15C-15E, binding in nm is shown on the y-axes, time in seconds (s) is shown on the x-axes, and the tested molecules are shown in the titles of the graphs (CO5, M. loti LCO, and S. meliloti LCO). FIG. 15F shows complementation of L. japonicus nfr5 (Ljnfr5) mutants with LjNFR5/LjLYS11 chimeras depicted at the bottom of the graph. Complementation was assayed by counting nodules formed per plant, which is shown at the top of FIG. 15F. Black dots represent individual plants, columns indicate the mean values, and error bars show the SEM. Different letters indicate significant difference among the samples (ANOVA, Tukey, P<0.01). The schematics of the individual chimeric ectodomains tested are shown at the bottom of FIG. 15F, with light grey indicating LjNFR5 domains, grey indicating LjLYS11 domains, and empty vector denoted by a label (LysM1, LysM2 and LysM3 are shown as boxes; transmembrane domain is shown as a wavy shape; kinase domain is shown as an oval shape). Below the receptor schematics, the number of plants (Plant), the number of plants without nodules (neg), the number of plants with nodules (pos), and the frequency (freq) of plants forming nodules when transformed with the depicted vector is provided.



FIGS. 16A-16H show homology modelling of the barley RLK10 receptor (HvRLK10) ectodomain and of the barley RLK4 receptor (HvRLK4) ectodomain as well as results of binding experiments using the HvRLK10 ectodomain and the HvRLK4 ectodomain. FIG. 16A shows a schematic of the purified HvRLK10 ectodomain at the top (N-terminus=N′; LysM1=M1; LysM2=M2; LysM3=M3; 6×HIS tag used for purification=6×HIS; C-terminus=C′) and the results of binding assays of HvRLK10 ectodomain with CO5 at the bottom. FIG. 16B shows homology modelling of the Barley receptor RLK10 (HvRLK10) ectodomain with surface representation shaded according to its electrostatic potential. The hydrophobic patch is circled by a dashed black line, and the ligand is shown at the top of the hydrophobic patch. FIG. 16C shows the results of binding assays of HvRLK10 ectodomain with M. loti LCO. FIG. 16D shows the results of binding assays of HvRLK10 ectodomain with S. meliloti LCO. FIG. 16E shows a schematic of the purified HvRLK4 ectodomain at the top (N-terminus=N′; LysM1=M1; LysM2=M2; LysM3=M3; 6×HIS tag used for purification=6×HIS; C-terminus=C′) and the results of binding assays of HvRLK4 ectodomain with CO5 at the bottom. FIG. 16F shows a 3D structure of the HvRLK4 ectodomain with a ligand shown at the top. FIG. 16G shows the results of binding assays of HvRLK4 ectodomain with M. loti LCO. FIG. 16H shows the results of binding assays of HvRLK4 ectodomain with S. meliloti LCO. For FIGS. 16A, 16C-16D, 16E, and 16G-16H, binding in nm is shown on the y-axes, time in seconds (s) is shown on the x-axes, and the tested molecules are shown in the titles of the graphs (CO5, M. loti LCO, and S. meliloti LCO).



FIGS. 17A-17B show complementation of Medicago truncatula lyk3 mutants with LjNFR1/MtLYK3 chimeras as well as the MtLYK3 ectodomain structure and schematics of LjNFR1/MtLYK3 chimeras. FIG. 17A shows complementation of Medicago lyk3 mutants (Mtlyk3) with LjNFR1/MtLYK3 chimeras depicted at the bottom of the graph. The controls Medicago wild type (WT) transformed with empty vector and Mtlyk3 transformed with empty vector were included. Complementation was assayed by counting nodules formed per plant, which is shown at the top of FIG. 17A. Black dots represent individual plants, columns indicate the mean values, and error bars show the SEM. Different letters indicate significant difference among the samples (ANOVA, Tukey, P<0.01). The schematics of the individual chimeric receptors tested are shown at the bottom of FIG. 17A, with grey indicating MtLYK3 domains, black indicating LjNFR1 domains, and empty vector denoted by a label. Below the receptor schematics, the frequency (freq) of plants forming nodules when transformed with the depicted vector is provided. LysM domains are labelled as LysM1, LysM2, and LysM3; transmembrane domain is labelled as TM; and the kinase domain is labelled as kinase. FIG. 17B shows the MtLYK3 ectodomain structure, with Region II (dark grey helix), Region III (light grey helix), and Region IV (grey linker) labeled (top); and schematic representation of the engineered LjNFR1 ectodomain (black) with indicated regions from the MtLYK3 ectodomain (grey; regions from the MtLYK3 ectodomain=regions II-IV (“2 to 4”), regions II, III, and IV (“2,3,4”), and regions II and IV (“2,4”)) (bottom).



FIGS. 18A-18F show BLI binding curves for A. thaliana CERK1 (AtCERK1) binding to chitopentaose (CO5) and chitooctaose (CO8), models of CO and LCO perception, and structural alignment of the ectodomains of Medicago NFP, Arabidopsis CERK1 and Lotus CERK6. FIG. 18A shows AtCERK1 binding to chitopentaose (Chitin (CO5)). FIG. 18B shows AtCERK1 binding to chitooctaose (Chitin (CO8)). For FIGS. 18A-18B, seven 2-fold dilution series of analyte (1.56-100 μM) were used for each experiment; experimental binding curves are represented in solid lines, fitting curves in dashed lines; goodness of fit is described by the global fit R2 on the mean value of each point; number of replicates performed using independent protein preparations (n) indicated; and kinetic parameters (kon and koff) are shown. FIG. 18C shows a model of CO perception by CO receptors (e.g., CERK1, LYK5). FIG. 18D shows a model of LCO perception by LCO receptors (e.g., NFP, LYK). FIG. 18E shows a model of LCO perception by hydrophobic patch mutant LCO receptors (e.g., NFP, LYK). FIG. 18F shows structural alignment of the ectodomains of Medicago NFP, Arabidopsis CERK1 and Lotus CERK6. Molecular fits (RMSD values) based on structural superposition of the ectodomains are shown in A (Angstrom). The structures (above) are shaded according to the schematic representation of the ectodomain (below). The conserved disulfide connectivity pattern between Medicago NFP, Arabidopsis CERK1 and Lotus CERK6 is highlighted.



FIGS. 19A-19D show BLI binding curves for WT NFP-ECD and hydrophobic patch mutant NFP-ECD (L147D/L154D) binding to S. meliloti LCO-IV and a schematic of the NFP receptor. FIG. 19A shows WT NFP-ECD binding to S. meliloti LCO-IV. FIG. 19B shows L147D/L154D NFP-ECD binding to S. meliloti LCO-IV. For FIGS. 19A-19B, seven 2-fold dilution series of analyte (1.56-100 μM) were used for each experiment; and experimental binding curves are represented in solid lines, fitting curves in dashed lines. FIG. 19C shows a table summarizing the kinetic parameters of FIGS. 19A-19B, with goodness of fit described by the global fit R2 on the mean value of each point, and number of replicates performed using independent protein preparations (n) indicated. FIG. 19D shows a schematic of the NFP receptor with LysM1, LysM2, LysM3, stem, and transmembrane (TM) and kinase domains labeled, and the location of the hydrophobic patch in LysM2 indicated by a grey bar. Numbers below the schematic provide the corresponding amino acid residues, and the locations of the CxC motifs flanking the LysM domains are shown.





DETAILED DESCRIPTION

The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.


Modified Plant LysM Receptors


Certain aspects of the present disclosure relate to a modified plant LysM receptor comprising a LysM2 domain modified to comprise a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group consisting of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, and a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 11 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 11 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide with at least 70% sequence identity, at least 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LJCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12E and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold in FIGS. 12A-12E and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold in FIGS. 12A-12E in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold in FIGS. 12A-12E in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1.


In some aspects, the present disclosure relates to a modified plant LysM receptor comprising a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities and/or selectivities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region 1143-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKD KILNDINIQSFQRLNIPFP (SEQ ID NO:55); and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP (SEQ ID NO:107). In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium hiaonginense, Frankia spp., and any combination thereof, or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifications to the LysM2 domain.


Additional aspects of the present disclosure relate to a modified plant LysM receptor including a LysM2 domain modified to include a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the modified LysM2 domain binds a lipo-chitooligosaccharide (LCO). In some embodiments, the modified LysM2 domain binds the LCO with higher affinity than the unmodified LysM2 domain. In some embodiments, the modified LysM2 domain binds the LCO with higher selectivity for the LCO than the unmodified LysM2 domain. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the LCO. In some embodiments, the higher affinity or higher selectivity is due to the hydrophobic patch interacting with the lipid of the LCO. In some embodiments, the LCO is produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof.


In some embodiments of any of the above embodiments, the LysM receptor is selected from the group of a LysM chitooligosaccharide (CO) receptor, a LysM LCO receptor, or a LysM peptidoglycan (PGN) receptor. In some embodiments, the hydrophobic patch is adjacent to a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 1 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1 Å of a chitin binding motif if the LysM receptor is the LysM CO receptor or the LysM LCO receptor. In some embodiments, the hydrophobic patch is adjacent to a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the hydrophobic patch is within 30 Å, 29 Å, 28 Å, 27 Å, 26 Å, 25 Å, 24 Å, 23 Å, 22 Å, 21 Å, 20 Å, 19 Å, 18 Å, 17 Å, 16 Å, 15 Å, 14 Å, 13 Å, 12 Å, 11 Å, 10 Å, 9.5 Å, 9 Å, 8.5 Å, 8 Å, 7.5 Å, 7 Å, 6.5 Å, 6 Å, 5.5 Å, 5 Å, 4.5 Å, 4 Å, 3.5 Å, 3 Å, 2.5 Å, 2 Å, 1.5 Å, or 1 Å of a glycan binding motif if the LysM receptor is the LysM PGN receptor. In some embodiments, the LysM receptor is not an exopolysaccharide (EPS) receptor.


In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having at least 70% sequence identity, at least 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or at least 99% sequence identity to SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6). In some embodiments of any of the above embodiments, the LysM receptor is a polypeptide having amino acid sequence SEQ ID NO:34 (i.e., Lotus CERK6; BAI79273.1_LjCERK6).


In some embodiments of any of the above embodiments, the hydrophobic patch was generated by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, or combinations thereof. In some embodiments of any of the above embodiments, the hydrophobic patch was generated by modifying an existing hydrophobic patch in the unmodified LysM receptor. In some embodiments, the unmodified LysM receptor was modified by deleting at least one non-hydrophobic amino acid residue, substituting at least one amino acid residue with a more hydrophobic amino acid, substituting at least one hydrophobic amino acid residue with another hydrophobic amino acid residue, or combinations thereof. In some embodiments, the at least one amino acid was identified by an amino acid sequence alignment with a LysM2 domain from a LysM high affinity LCO receptor that naturally has a hydrophobic patch that interacts with LCO. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G and FIG. 13C. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid corresponds to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor or corresponds to an amino acid that is immediately N-terminal or C-terminal to an amino acid that is in bold underline in FIGS. 12A-12G in a known LCO receptor. In some embodiments, the at least one amino acid was identified by structural modelling to identify a region in LysM2 where the hydrophobic patch can be engineered. In some embodiments, the structural modeling used the unmodified plant LysM amino acid sequence and a LysM domain three dimensional structure that has a known hydrophobic patch. In some embodiments, the LysM domain three dimensional structure is a Medicago NFP ectodomain. In some embodiments, the known hydrophobic patch amino acid residues of the LysM domain three dimensional structure are or correspond to L147, L151, L152, L154, T156, K157 and V158 of the Medicago NFP ectodomain. In some embodiments, the LysM domain three dimensional structure is a Lotus LYS11 ectodomain. In some embodiments, the unmodified LysM receptor is the Lotus LYS 11 receptor and the existing hydrophobic patch amino acid residues of the LysM domain that are modified are or correspond to K100, E101, G102, E103, 5104, Y105, Y106, N128, and Y129 of the Lotus LYS11 ectodomain. In some embodiments, the alpha carbon of at least one amino acid was within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue in the structural alignment. In some embodiments, the structural modeling was performed using SWISS-MODEL, PDB2PQR, APBS, PyMol, and APBS tools 2.1. In some embodiments of any of the above embodiments, either or both (i) 80% or fewer, 79% or fewer, 78% or fewer, 77% or fewer, 76% or fewer, 75% or fewer, 74% or fewer, 73% or fewer, 72% or fewer, 71% or fewer, 70% or fewer, 69% or fewer, 68% or fewer, 67% or fewer, 66% or fewer, 65% or fewer, 64% or fewer, 63% or fewer, 62% or fewer, 61% or fewer, 60% or fewer, 59% or fewer, 58% or fewer, 57% or fewer, 56% or fewer, 55% or fewer, 54% or fewer, 53% or fewer, 52% or fewer, 51% or fewer, 50% or fewer, 49% or fewer, 48% or fewer, 47% or fewer, 46% or fewer, 45% or fewer, 44% or fewer, 43% or fewer, 42% or fewer, 41% or fewer, 40% or fewer, 39% or fewer, 38% or fewer, 37% or fewer, 36% or fewer, 35% or fewer, 34% or fewer, 33% or fewer, 32% or fewer, 31% or fewer, 30% or fewer, 29% or fewer, 28% or fewer, 27% or fewer, 26% or fewer, 25% or fewer, 24% or fewer, 23% or fewer, 22% or fewer, 21% or fewer, or 20% or fewer of amino acid residues in the LysM2 domain of the unmodified LysM receptor were substituted or deleted to generate the modified plant LysM receptor, and (ii) the entire LysM2 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments of any of the above embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof.


In some aspects, the present disclosure relates to a modified plant LysM receptor including a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. In some embodiments, the first LysM1 domain is modified by substituting a first part of the first LysM1 domain with a third part of a second LysM1 domain and/or by substituting a second part of the first LysM1 domain with a fourth part of the second LysM1 domain. In some embodiments, the first LysM1 domain and the second LysM1 domain have different affinities, selectivities, and/or specificities for oligosaccharides and the modification of the first LysM1 domain alters the affinity, selectivity, and/or specificity to be more like the second LysM1 domain. In some embodiments, the first part and the third part correspond to SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI, SEQ ID NO:28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and wherein the second part and the fourth part correspond to SEQ ID NO:31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; SEQ ID NO:29 [Lotus NFR1 region IV 73-81], or LNDINIQSF. In some embodiments, the first LysM1 domain is selected from the group of SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/26-95], SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/25-95], or NFR1 DLALASYYILPGVFILQNITTFMQSEIVSSNDAITSYNKDKILNDINIQSFQRLNIPFP (SEQ ID NO:55); and the second LysM1 domain is CERK6: ALAQASYYLLNGSNLTYISEIMQSSLLTKPEDIVSYNQDTIASKDSVQAGQRINVPFP (SEQ ID NO:107). In some embodiments, the first part is selected from SEQ ID NO:30 [Lotus CERK6 region II 43-53] or NGSNLTYISEI; the second part is selected from SEQ ID NO: 31 [Lotus CERK6 region IV 74-82] or ASKDSVQAG; the third part is selected from SEQ ID NO: 28 [Lotus NFR1 region II 41-52] or PGVFILQNITTF; and the fourth part is selected from SEQ ID NO:29 [Lotus NFR1 region IV 73-81] or LNDINIQSF. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the first LysM1 domain is further modified by substituting a fifth part of the first LysM1 domain with a sixth part of a second LysM1 domain. In some embodiments, the first LysM1 domain is SEQ ID NO:115 [LysM1 domain Lotus NFR1; LjNFR1/32-89] or SEQ ID NO:106 [LysM1 domain Lotus NFR1; LjNFR1/31-89] and the second LysM1 domain is SEQ ID NO:114 [LysM1 domain Medicago LYK3; MtLYK3/31-89] or SEQ ID NO:105 [LysM1 domain Medicago LYK3; MtLYK3/30-89]. In some embodiments, wherein the fifth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/56-92], and wherein the sixth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62]. In some embodiments, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82]. In some embodiments, the first LysM1 domain is SEQ ID NO:33 [LysM1 domain Medicago LYK3; MtLYK3/31-89] and the second LysM1 domain is SEQ ID NO:32 [LysM1 domain Lotus NFR1; LjNFR1/32-89]. In some embodiments, the fifth part is SEQ ID NO:46 [Medicago LYK3 region III 57-62; MtLYK3/57-62], and the sixth part is SEQ ID NO:53 [Lotus NFR1 region III 59-62; LjNFR1/59-62]. In some embodiments of any of the above embodiments including the first LysM1 domain being SEQ ID NO:33 and the second LysM1 domain being SEQ ID NO:32, the first LysM1 domain is modified by substituting a seventh part of the first LysM1 domain, wherein the seventh part spans the first part of the first LysM1 domain, the second part of the first LysM1 domain, and the fifth part of the first LysM1 domain, with an eighth part of the second LysM1 domain, wherein the eighth part spans the third part of the second LysM1 domain, the fourth part of the second LysM1 domain, and the sixth part of the second LysM1 domain. In some embodiments, the seventh part of the first LysM1 domain is SEQ ID NO:51 [Lotus NFR1 regions II-IV 41-82; LjNFR1/41-82], and the eighth part of the second LysM1 domain is SEQ ID NO:113 [Medicago LYK3 regions II-IV 40-82; MtLYK3/40-82] or SEQ ID NO:104 [Medicago LYK3 regions II-IV 41-82; MtLYK3/41-82].


In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, the entire first LysM1 domain was replaced with the entire second LysM1 domain. In some embodiments of any of the above embodiments including the first LysM1 domain being modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain, either or both (i) 80% or fewer, 79% or fewer, 78% or fewer, 77% or fewer, 76% or fewer, 75% or fewer, 74% or fewer, 73% or fewer, 72% or fewer, 71% or fewer, 70% or fewer, 69% or fewer, 68% or fewer, 67% or fewer, 66% or fewer, 65% or fewer, 64% or fewer, 63% or fewer, 62% or fewer, 61% or fewer, 60% or fewer, 59% or fewer, 58% or fewer, 57% or fewer, 56% or fewer, 55% or fewer, 54% or fewer, 53% or fewer, 52% or fewer, 51% or fewer, 50% or fewer, 49% or fewer, 48% or fewer, 47% or fewer, 46% or fewer, 45% or fewer, 44% or fewer, 43% or fewer, 42% or fewer, 41% or fewer, 40% or fewer, 39% or fewer, 38% or fewer, 37% or fewer, 36% or fewer, 35% or fewer, 34% or fewer, 33% or fewer, 32% or fewer, 31% or fewer, 30% or fewer, 29% or fewer, 28% or fewer, 27% or fewer, 26% or fewer, 25% or fewer, 24% or fewer, 23% or fewer, 22% or fewer, 21% or fewer, or 20% or fewer of amino acid residues in the first LysM1 domain were substituted or deleted with the corresponding amino acid residues of the second LysM1 domain, and (ii) the entire LysM1 domain in the unmodified plant LysM receptor was not substituted with another entire LysM2 domain to generate the modified plant LysM receptor. In some embodiments, the modified LysM1 domain binds a lipo-chitooligosaccharide (LCO) produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCO is produced by nitrogen-fixing bacteria selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof, or by mycorrhizal fungi selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, or any combination thereof. In some embodiments, the modified LysM1 domain binds an LCO with higher affinity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with higher selectivity than an unmodified LysM1 domain. In some embodiments, the modified LysM1 domain binds LCOs with altered specificity as compared to an unmodified LysM1 domain. In some embodiments, structural modelling was used to define the LysM1 domain and was used to identify the first part, the second part, the third part, and/or the fourth part for substitution. In some embodiments, the unmodified plant LysM receptor was selected using the method of any one of the aspects of the present disclosure relating to such selection including any and all embodiments thereof and the second LysM2 domain is from the donor plant LysM receptor. In some embodiments, the receptor of the above embodiments further contains a LysM2 domain modified to contain a hydrophobic patch as in any one of the previous embodiments relating to modifying the LysM2 domain.


LysM receptors are a well known and well understood type of receptor. LysM receptors have three characteristic domains located in the ectodomain of the protein: LysM1, LysM2, and LysM3, which are present in this order on the protein sequence. The LysM1 domain is located toward the N-terminal end of the protein sequence, and is preceded by an N-terminal signal peptide as well as a C(x)xxxC motif (SEQ ID NO:108). The LysM1 domain is separated from the LysM2 domain by a CxC motif, and the LysM2 domain is separated from the LysM3 domain by a CxC motif as well. The three LysM domains, as well as the C(x)xxxC (SEQ ID NO:108) and CxC motif are clearly shown in FIGS. 8A-8C, FIGS. 9A-9B, FIGS. 10A-10B, and FIGS. 11A-11B that show individual alignments of Nod factor (e.g., LCO) LysM receptors, EPS LysM receptors, and chitin (CO) as well as PGN LysM receptors, again clearly depicting the three LysM domains as well as the C(x)xxxC (SEQ ID NO:108) and CxC motifs. The category of LysM receptors is therefore known by one of skill in the art.


As used in the present disclosure, the term “affinity” refers to affinity for LCOs generally. The LysM receptors of the present disclosure may contain a hydrophobic patch in their LysM2 domain. Without wanting to be limited to theory, it is believed that LysM receptors with the hydrophobic patch have higher affinity for LCOs as compared to LysM receptors without the hydrophobic patch, but LysM receptors with domain-swapped LysM1 domains would also provide higher affinity for LCOs and other agonists. Affinity can be measured using the methods described in the Examples below, and using other methods known in the art that measure binding kinetics, association, dissociation, and KD.


As used in the present disclosure, the term “selectivity” refers to the differentiation between different polysaccharide ligands, specifically between lipo-chitooligosaccharides (LCOs) as a class and other polysaccharide ligands, preferably chitooligosaccharides (COs). Without wanting to be limited to theory, it is believed that this hydrophobic patch confers selective recognition of LCOs over COs, and that therefore LysM receptors with the hydrophobic patch have increased selectivity as compared to LysM receptors without the hydrophobic patch. In addition, the LysM receptors with domain-swapped LysM1 domains should also have higher or altered selectivity depend upon the choice of the donor receptor.


As used in the present disclosure, the term “specificity” refers to the differentiation between different lipo-chitooligosaccharides (LCOs) produced by different nitrogen-fixing bacterial species and/or mycorrhizal fungi. The LysM receptors of the present disclosure may contain a LysM1 domain where regions (e.g., partial, entire) in the LysM1 domain have been replaced with the corresponding regions of the LysM1 domain from a donor LysM receptor. Without wanting to be limited to theory, it is believed that if the donor LysM receptor is a high affinity and specificity LCO LysM receptor such as a legume NFR1 receptor, this replacement can alter the specificity of the LysM receptor, but LysM receptors with a hydrophobic patch in the LysM2 domain may also provide specificity for specific LCOs. The LysM1 domain is clearly shown in FIG. 14, which shows an alignment between Lotus NFR1 and Lotus CERK6, and clearly designates region II and region IV within the LysM1 domain. LysM1 domain replacement can confer highly specific recognition of LCOs produced by particular nitrogen-fixing bacterial species and/or mycorrhizal fungal species, and therefore LysM receptors with the replaced domain can have altered specificity as compared to LysM receptors without the replaced domain, which allows the modified receptors to recognize different nitrogen-fixing bacterial species and/or mycorrhizal fungal species. For at least these reasons, the high affinity, high selectivity, and/or high specificity LysM receptors of the present disclosure will be readily understood by one of skill in the art.


Genetically Altered Plants and Seeds


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a nucleic acid sequence encoding a modified plant LysM receptor of any one of the embodiments described in the section “Modified plant LysM receptors”. In some embodiments, the modified plant LysM receptor has higher selectivity and/or affinity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high selectivity and/or affinity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the root cell is a root cortex cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn (e.g., maize, Zea mays), rice (e.g., Oryza sativa, Oryza glaberrima, Zizania spp.), barley (e.g., Hordeum vulgare), wheat (e.g., common wheat, spelt, durum, Triticum aestivum, Triticum spelta, Triticum durum, Triticum spp.), Trema spp. (e.g., Trema cannabina, Trema cubense, Trema discolor, Trema domingensis, Trema integerrima, Trema lamarckiana, Trema micrantha, Trema orientalis, Trema philippinensis, Trema strigilosa, Trema tomentosa), apple (e.g., Malus pumila), pear (e.g., Pyrus communis, Pyrus×bretschneideri, Pyrus pyrifolia, Pyrus sinkiangensis, Pyrus pashia, Pyrus spp.), plum (e.g., prune, damson, bullaces, Prunus domestica, Prunus salicina), apricot (e.g., Prunus armeniaca, Prunus brigantina, Prunus mandshurica, Prunus mume, Prunus sibirica), peach (e.g., nectarine, Prunus persica), almond (e.g., Prunus dulcis, Prunus amygdalus), walnut (e.g., Persian walnut, English walnut, black walnut, Juglans regia, Juglans nigra, Juglans cinerea, Juglans californica), strawberry (e.g., Fragaria× ananassa, Fragaria chiloensis, Fragaria virginiana, Fragaria vesca), raspberry (e.g., European red raspberry, black raspberry, Rubus idaeus, Rubus occidentalis, Rubus strigosus), blackberry (e.g., evergreen blackberry, Himalayan blackberry, Rubus fruticosus, Rubus ursinus, Rubus laciniatus, Rubus argutus, Rubus armeniacus, Rubus plicatus, Rubus ulmifolius, Rubus allegheniensis), red currant (e.g., Ribes rubrum, Ribes spicatum, Ribesbes alpinum, Ribes schlechtendalii, Ribes multiflorum, Ribes petraeum, Ribes triste), black currant (e.g., Ribes nigrum), melon (e.g., watermelon, winter melon, casabas, cantaloupe, honeydew, muskmelon, Citrullus lanatus, Benincasa hispida, Cucumis melo cantalupensis, Cucumis melo inodorus, Cucumis melo reticulatus), cucumber (e.g., slicing cucumbers, pickling cucumbers, English cucumber, Cucumis sativus), pumpkin (e.g., Cucurbita pepo, Cucurbita maxima), squash (e.g., gourd, Cucurbita argyrosperma, Cucurbita ficifolia, Cucurbita maxima, Cucurbita moschata), grape (e.g., Vitis vinifera, Vitis amurensis, Vitis labrusca, Vitis mustangensis, Vitis riparia, Vitis rotundifolia), bean (e.g., Phaseolus vulgaris, Phaseolus lunatus, Vigna angularis, Vigna radiate, Vigna mungo, Phaseolus coccineus, Vigna umbellate, Vigna acontifolia, Phaseolus acutifolius, Vicia faba, Vicia faba equine, Phaseolus spp., Vigna spp.), soybean (e.g., soy, soya bean, Glycine max, Glycine soja), pea (e.g., Pisum spp., Pisum sativum var. sativum, Pisum sativum var. arvense), chickpea (e.g., garbanzo, Bengal gram, Cicer arietinum), cowpea (e.g., black-eyed pea, blackeye bean, Vigna unguiculata), pigeon pea (e.g., Arhar/Toor, cajan pea, Congo bean, gandules, Caganus cajan), lentil (e.g., Lens culinaris), Bambara groundnut (e.g., earth pea, Vigna subterranea), lupin (e.g., Lupinus spp.), pulses (e.g., minor pulses, Lablab purpureaus, Canavalia ensiformis, Canavalia gladiate, Psophocarpus tetragonolobus, Mucuna pruriens var. utilis, Pachyrhizus erosus), Medicago spp. (e.g., Medicago sativa, Medicago truncatula, Medicago arborea), Lotus spp. (e.g., Lotus japonicus), forage legumes (e.g., Leucaena spp., Albizia spp., Cyamopsis spp., Sesbania spp., Stylosanthes spp., Trifolium spp., Vicia spp.), indigo (e.g., Indigofera spp., Indigofera tinctoria, Indigofera suffruticosa, Indigofera articulata, Indigofera oblongifolia, Indigofera aspalthoides, Indigofera suffruticosa, Indigofera arrecta), legume trees (e.g., locust trees, Gleditsia spp., Robinia spp., Kentucky coffeetree, Gymnocladus dioicus, Acacia spp., Laburnum spp., Wisteria spp.), or hemp (e.g., cannabis, Cannabis sativa).


In some aspects, the present disclosure relates to a genetically altered plant or part thereof, comprising a first nucleic acid sequence encoding a modified plant LysM receptor where the LysM1 domain has been modified as in any of the preceding embodiments relating to modification of the LysM1 domain and a second nucleic acid sequence encoding a modified plant LysM receptor where the LysM2 domain has been modified to include a hydrophobic patch as in any of the preceding embodiments relating to modification of the LysM2 domain. In some embodiments, the modified plant LysM receptor has higher selectivity and/or affinity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high selectivity and/or affinity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the root cell is a root cortex cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the first nucleic acid or second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn (e.g., maize, Zea mays), rice (e.g., Oryza sativa, Oryza glaberrima, Zizania spp.), barley (e.g., Hordeum vulgare), wheat (e.g., common wheat, spelt, durum, Triticum aestivum, Triticum spelta, Triticum durum, Triticum spp.), Trema spp. (e.g., Trema cannabina, Trema cubense, Trema discolor, Trema domingensis, Trema integerrima, Trema lamarckiana, Trema micrantha, Trema orientalis, Trema philippinensis, Trema strigilosa, Trema tomentosa), apple (e.g., Malus pumila), pear (e.g., Pyrus communis, Pyrus×bretschneideri, Pyrus pyrifolia, Pyrus sinkiangensis, Pyrus pashia, Pyrus spp.), plum (e.g., prune, damson, bullaces, Prunus domestica, Prunus salicina), apricot (e.g., Prunus armeniaca, Prunus brigantina, Prunus mandshurica, Prunus mume, Prunus sibirica), peach (e.g., nectarine, Prunus persica), almond (e.g., Prunus dulcis, Prunus amygdalus), walnut (e.g., Persian walnut, English walnut, black walnut, Juglans regia, Juglans nigra, Juglans cinerea, Juglans californica), strawberry (e.g., Fragaria×ananassa, Fragaria chiloensis, Fragaria virginiana, Fragaria vesca), raspberry (e.g., European red raspberry, black raspberry, Rubus idaeus, Rubus occidentalis, Rubus strigosus), blackberry (e.g., evergreen blackberry, Himalayan blackberry, Rubus fruticosus, Rubus ursinus, Rubus laciniatus, Rubus argutus, Rubus armeniacus, Rubus plicatus, Rubus ulmifolius, Rubus allegheniensis), red currant (e.g., Ribes rubrum, Ribes spicatum, Ribesbes alpinum, Ribes schlechtendalii, Ribes multiflorum, Ribes petraeum, Ribes triste), black currant (e.g., Ribes nigrum), melon (e.g., watermelon, winter melon, casabas, cantaloupe, honeydew, muskmelon, Citrullus lanatus, Benincasa hispida, Cucumis melo cantalupensis, Cucumis melo inodorus, Cucumis melo reticulatus), cucumber (e.g., slicing cucumbers, pickling cucumbers, English cucumber, Cucumis sativus), pumpkin (e.g., Cucurbita pepo, Cucurbita maxima), squash (e.g., gourd, Cucurbita argyrosperma, Cucurbita ficifolia, Cucurbita maxima, Cucurbita moschata), grape (e.g., Vitis vinifera, Vitis amurensis, Vitis labrusca, Vitis mustangensis, Vitis riparia, Vitis rotundifolia), bean (e.g., Phaseolus vulgaris, Phaseolus lunatus, Vigna angularis, Vigna radiate, Vigna mungo, Phaseolus coccineus, Vigna umbellata, Vigna acontifolia, Phaseolus acutifolius, Vicia faba, Vicia faba equine, Phaseolus spp., Vigna spp.), soybean (e.g., soy, soya bean, Glycine max, Glycine soja), pea (e.g., Pisum spp., Pisum sativum var. sativum, Pisum sativum var. arvense), chickpea (e.g., garbanzo, Bengal gram, Cicer arietinum), cowpea (e.g., black-eyed pea, blackeye bean, Vigna unguiculata), pigeon pea (e.g., Arhar/Toor, cajan pea, Congo bean, gandules, Caganus cajan), lentil (e.g., Lens culinaris), Bambara groundnut (e.g., earth pea, Vigna subterranea), lupin (e.g., Lupinus spp.), pulses (e.g., minor pulses, Lablab purpureaus, Canavalia ensiformis, Canavalia gladiate, Psophocarpus tetragonolobus, Mucuna pruriens var. utilis, Pachyrhizus erosus), Medicago spp. (e.g., Medicago sativa, Medicago truncatula, Medicago arborea), Lotus spp. (e.g., Lotus japonicus), forage legumes (e.g., Leucaena spp., Albizia spp., Cyamopsis spp., Sesbania spp., Stylosanthes spp., Trifolium spp., Vicia spp.), indigo (e.g., Indigofera spp., Indigofera tinctoria, Indigofera suffruticosa, Indigofera articulata, Indigofera oblongifolia, Indigofera aspalthoides, Indigofera suffruticosa, Indigofera arrecta), legume trees (e.g., locust trees, Gleditsia spp., Robinia spp., Kentucky coffeetree, Gymnocladus dioicus, Acacia spp., Laburnum spp., Wisteria spp.), or hemp (e.g., cannabis, Cannabis sativa). In some embodiments, the plant part is a leaf, a stem, a root, a root primordia, a flower, a seed, a fruit, a kernel, a grain, a cell, or a portion thereof. In some embodiments, the plant part is a fruit, a kernel, or a grain.


In some aspects, the present disclosure relates to a pollen grain or an ovule of a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a protoplast from a genetically altered plant of any of the above embodiments relating to plants.


In some aspects, the present disclosure relates to a tissue culture produced from protoplasts or cells from a genetically altered plant of any of the above embodiments relating to plants, wherein the cells or protoplasts are produced from a plant part selected from the group consisting of leaf, anther, pistil, stem, petiole, root, root primordia, root tip, fruit, seed, flower, cotyledon, hypocotyl, embryo, and meristematic cell.


Methods of Producing and Cultivating Genetically Altered Plants


Certain aspects of the present disclosure relate to a method of producing the genetically altered plant of any one of the above embodiments relating to plants as described in the section “Genetically altered plants and seeds”, comprising introducing a genetic alteration to the plant comprising the nucleic acid sequence. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter (KAY et al. Science, 236, 4805, 1987), a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is inserted into the genome of the plant so that the nucleic acid sequence, the first nucleic acid sequence, and/or the second nucleic acid sequence is operably linked to an endogenous promoter. In some embodiments, the endogenous promoter is a root specific promoter.


In some aspects, the present disclosure relates to a method of producing a genetically altered plant able to recognize LCOs, comprising the steps of: introducing a genetic alteration to the plant comprising the provision of an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized, thereby enabling the plant to recognize LCOs.


In some aspects, the present disclosure relates to a method of producing a genetically altered plant able to recognize LCOs, comprising the steps of: introducing a genetic alteration to the plant comprising the provision of an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with high affinity, high selectivity, and/or high specificity, thereby enabling the plant to recognize LCOs with high affinity, high selectivity, and/or high specificity.


In some aspects, the present disclosure relates to a method of producing a genetically altered plant able to recognize LCOs produced by a specific nitrogen-fixing bacterial species and/or a specific mycorrhizal fungal species, comprising the steps of: introducing a genetic alteration to the plant comprising the provision of an ability for LCOs produced by the specific nitrogen-fixing bacterial species and/or the specific mycorrhizal fungal species to be recognized with altered specificity, thereby enabling the plant to recognize LCOs with altered specificity. In some embodiments, the genetic alteration allows the genetically altered plant to recognize a different specific nitrogen-fixing bacterial species and/or specific mycorrhizal fungal species as compared to a plant without the genetic alteration. In some embodiments, the genetically altered plant is able to be grown in different agricultural conditions (e.g., different soils containing different symbiotic microbial species, etc.). In some embodiments, the genetic alteration allows the genetically altered plant to be grown in different agricultural conditions containing specific bacterial strains producing LCOs detected with high specificity, sensitivity, and/or selectivity by the genetically altered plant. In some embodiments, the bacterial strains are added as a seed coating or as a soil inoculum. In some embodiments, the genetically altered plant is able to be grown with different crop species (e.g., different crop rotations, etc.).


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs, comprising the steps of: providing a seed with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized, wherein the seed produces a plant with the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi; cultivating the plant under conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with high affinity, high selectivity, and/or high specificity, comprising the steps of: providing a seed with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with high affinity, high selectivity, and/or high specificity, wherein the seed produces a plant with the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity; cultivating the plant under conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with altered specificity, comprising the steps of: providing a seed with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with altered specificity, wherein the seed produces a plant with the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high specificity; cultivating the plant under conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with altered specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil. In some embodiments, the genetic alteration allows the genetically altered plant to recognize a different specific nitrogen-fixing bacterial species and/or specific mycorrhizal fungal species as compared to a plant without the genetic alteration. In some embodiments, the genetically altered plant is able to be grown in different agricultural conditions (e.g., different soils containing different symbiotic microbial species, etc.). In some embodiments, the genetically altered plant is able to be grown with different crop species (e.g., different crop rotations, etc.).


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs, comprising the steps of: providing a tissue culture or protoplast with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized; regenerating the tissue culture or protoplast into a plantlet; growing the plantlet into a plant, wherein the plant has the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi; transplanting the plant into conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with high affinity, high selectivity, and/or high specificity, comprising the steps of: providing a tissue culture or protoplast with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with high affinity, high selectivity, and/or high specificity, regenerating the tissue culture or protoplast into a plantlet; growing the plantlet into a plant, wherein the plant has the ability to recognize LCOs produced by produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity; transplanting the plant into conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high affinity, high selectivity, and/or high specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil.


In some aspects, the present disclosure relates to a method of cultivating a plant with the ability to recognize LCOs with altered specificity, comprising the steps of: providing a tissue culture or protoplast with one or more genetic alterations that provide an ability for LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi to be recognized with altered specificity, regenerating the tissue culture or protoplast into a plantlet; growing the plantlet into a plant, wherein the plant has the ability to recognize LCOs produced by produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with high specificity; transplanting the plant into conditions where the ability to recognize LCOs produced by nitrogen-fixing bacteria and/or mycorrhizal fungi with altered specificity results in increased growth, yield, and/or biomass, as compared to a plant grown under the same conditions that lacks the one or more genetic alterations. In some embodiments, the plant is cultivated in nutrient-poor soil. In some embodiments, the genetic alteration allows the genetically altered plant to recognize a different specific nitrogen-fixing bacterial species and/or specific mycorrhizal fungal species as compared to a plant without the genetic alteration. In some embodiments, the genetically altered plant is able to be grown in different agricultural conditions (e.g., different soils containing different symbiotic microbial species, etc.). In some embodiments, the genetically altered plant is able to be grown with different crop species (e.g., different crop rotations, etc.).


In some embodiments of any of the above methods, the ability to recognize LCOs is conferred by a nucleic acid sequence encoding a modified plant LysM receptor of any one of the embodiments described in the section “Modified plant LysM receptors”. In some embodiments, the modified plant LysM receptor has higher selectivity and/or affinity for LCOs than the unmodified plant LysM receptor and the expression of the modified plant LysM receptor allows the plant or part thereof to recognize LCOs with high selectivity and/or affinity. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria or by mycorrhizal fungi. In some embodiments, the LCOs are produced by nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof, or by or by mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof. In some embodiments, the modified polypeptide is localized to a plant cell plasma membrane. In some embodiments, the plant cell is a root cell. In some embodiments, the root cell is a root epidermal cell. In some embodiments, the root cell is a root cortex cell. In some embodiments, the modified polypeptide is expressed in a developing plant root system. In some embodiments, the nucleic acid sequence is operably linked to a promoter. In some embodiments, the promoter is a root specific promoter. In some embodiments, the promoter is selected from the group of a NFR1/LYK3/CERK6 or NFR5/NFP promoter, the Lotus NFR5 promoter (SEQ ID NO:24) and the Lotus NFR1 promoters (SEQ ID NO:25) the maize allothioneine promoter, the chitinase promoter, the maize ZRP2 promoter, the tomato LeExt1 promoter, the glutamine synthetase soybean root promoter, the RCC3 promoter, the rice antiquitine promoter, the LRR receptor kinase promoter, or the Arabidopsis pCO2 promoter. In some embodiments, the promoter is a constitutive promoter optionally selected from the group of the CaMV35S promoter, a derivative of the CaMV35S promoter, the maize ubiquitin promoter, the trefoil promoter, a vein mosaic cassava virus promoter, or the Arabidopsis UBQ10 promoter. In some embodiments, the plant is selected from the group of corn (e.g., maize, Zea mays), rice (e.g., Oryza sativa, Oryza glaberrima, Zizania spp.), barley (e.g., Hordeum vulgare), wheat (e.g., common wheat, spelt, durum, Triticum aestivum, Triticum spelta, Triticum durum, Triticum spp.), Trema spp. (e.g., Trema cannabina, Trema cubense, Trema discolor, Trema domingensis, Trema integerrima, Trema lamarckiana, Trema micrantha, Trema orientalis, Trema philippinensis, Trema strigilosa, Trema tomentosa), apple (e.g., Malus pumila), pear (e.g., Pyrus communis, Pyrus xbretschneideri, Pyrus pyrifolia, Pyrus sinkiangensis, Pyrus pashia, Pyrus spp.), plum (e.g., prune, damson, bullaces, Prunus domestica, Prunus salicina), apricot (e.g., Prunus armeniaca, Prunus brigantina, Prunus mandshurica, Prunus mume, Prunus sibirica), peach (e.g., nectarine, Prunus persica), almond (e.g., Prunus dulcis, Prunus amygdalus), walnut (e.g., Persian walnut, English walnut, black walnut, Juglans regia, Juglans nigra, Juglans cinerea, Juglans californica), strawberry (e.g., Fragaria×ananassa, Fragaria chiloensis, Fragaria virginiana, Fragaria vesca), raspberry (e.g., European red raspberry, black raspberry, Rubus idaeus, Rubus occidentalis, Rubus strigosus), blackberry (e.g., evergreen blackberry, Himalayan blackberry, Rubus fruticosus, Rubus ursinus, Rubus laciniatus, Rubus argutus, Rubus armeniacus, Rubus plicatus, Rubus ulmifolius, Rubus allegheniensis), red currant (e.g., Ribes rubrum, Ribes spicatum, Ribesbes alpinum, Ribes schlechtendalii, Ribes multiflorum, Ribes petraeum, Ribes triste), black currant (e.g., Ribes nigrum), melon (e.g., watermelon, winter melon, casabas, cantaloupe, honeydew, muskmelon, Citrullus lanatus, Benincasa hispida, Cucumis melo cantalupensis, Cucumis melo inodorus, Cucumis melo reticulatus), cucumber (e.g., slicing cucumbers, pickling cucumbers, English cucumber, Cucumis sativus), pumpkin (e.g., Cucurbita pepo, Cucurbita maxima), squash (e.g., gourd, Cucurbita argyrosperma, Cucurbita ficifolia, Cucurbita maxima, Cucurbita moschata), grape (e.g., Vitis vinifera, Vitis amurensis, Vitis labrusca, Vitis mustangensis, Vitis riparia, Vitis rotundifolia), bean (e.g., Phaseolus vulgaris, Phaseolus lunatus, Vigna angularis, Vigna radiate, Vigna mungo, Phaseolus coccineus, Vigna umbellate, Vigna acontifolia, Phaseolus acutifolius, Vicia faba, Vicia faba equine, Phaseolus spp., Vigna spp.), soybean (e.g., soy, soya bean, Glycine max, Glycine soja), pea (e.g., Pisum spp., Pisum sativum var. sativum, Pisum sativum var. arvense), chickpea (e.g., garbanzo, Bengal gram, Cicer arietinum), cowpea (e.g., black-eyed pea, blackeye bean, Vigna unguiculata), pigeon pea (e.g., Arhar/Toor, cajan pea, Congo bean, gandules, Caganus cajan), lentil (e.g., Lens culinaris), Bambara groundnut (e.g., earth pea, Vigna subterranea), lupin (e.g., Lupinus spp.), pulses (e.g., minor pulses, Lablab purpureaus, Canavalia ensiformis, Canavalia gladiate, Psophocarpus tetragonolobus, Mucuna pruriens var. utilis, Pachyrhizus erosus), Medicago spp. (e.g., Medicago sativa, Medicago truncatula, Medicago arborea), Lotus spp. (e.g., Lotus japonicus), forage legumes (e.g., Leucaena spp., Albizia spp., Cyamopsis spp., Sesbania spp., Stylosanthes spp., Trifolium spp., Vicia spp.), indigo (e.g., Indigofera spp., Indigofera tinctoria, Indigofera suffruticosa, Indigofera articulata, Indigofera oblongifolia, Indigofera aspalthoides, Indigofera suffruticosa, Indigofera arrecta), legume trees (e.g., locust trees, Gleditsia spp., Robinia spp., Kentucky coffeetree, Gymnocladus dioicus, Acacia spp., Laburnum spp., Wisteria spp.), or hemp (e.g., cannabis, Cannabis sativa).


Molecular Biological Methods to Produce Genetically Altered Plants and Plant Cells


One embodiment of the present invention provides a genetically altered plant or plant cell comprising one or more modified endogenous plant genes. For example, the present disclosure provides plants with genetically altered LysM receptors modified to include a hydrophobic patch or alter the hydrophobic patch in the LysM2 domain and plants with genetically altered LysM receptors modified by replacing regions in the LysM1 domain with corresponding donor LysM1 domain regions. Plants with these modified receptors can have increased affinity, selectivity, and/or specificity for LCOs.


Certain aspects of the present disclosure relate to methods for selection of a target plant LysM receptor for modifying the target plant LysM receptor to have a desired receptor characteristic, wherein the method includes the steps of: a) providing a structural model, a molecular model, a surface characteristics model, and/or an electrostatic potential model of a donor plant LysM receptor having the desired receptor characteristic and two or more potential target plant LysM receptors; b) comparing each of the two or more potential target plant LysM receptors with the structural model, the molecular model, the surface characteristics model, and/or the electrostatic potential model of the donor plant LysM receptor, and/or comparing each of the two or more potential target plant LysM receptors with the donor plant LysM receptor using structural overlay; and c) selecting the potential target plant LysM receptor with a suitable match for the donor plant LysM receptor to be the target plant LysM receptor. In some embodiments, the criteria for determining that the potential target plant LysM receptor is a suitable match for the donor plant LysM receptor in step (c) are selected from the group of goodness of fit to template structure; similarity; phylogenetic relation; surface potential; coverage to template structure; GMQE, QMEAN, and Local Quality estimates from SWISS-Model; or any combination thereof. In some embodiments, the structural model of a donor plant LysM receptor is a protein crystal structure, a molecular model, a cryo-EM structure, and a NMR structure. In some embodiments, the donor plant LysM receptor model is of an entire ectodomain and the two or more potential target plant LysM receptor models are of entire ectodomains. In some embodiments, the donor plant LysM receptor model is of a LysM1 domain, a LysM2 domain, a LysM3 domain, or any combination thereof, and the two or more potential target plant LysM receptor models are of LysM1 domains, LysM2 domains, LysM3 domains, or any combination thereof.


In some embodiments, the donor plant LysM receptor is Medicago NFP, Medicago LYK3, Lotus NFR1, Lotus NFR5, Lotus LYS11, or Arabidopsis CERK1. In some embodiments, the two or more target plant LysM receptors are additionally compared to Lotus CERK6. In some embodiments, the two or more potential target plant LysM receptor polypeptides are all from the same plant species or plant variety. In some embodiments, the desired receptor characteristic is affinity, selectivity, and/or specificity for an oligosaccharide or class of oligosaccharides. In some embodiments, the desired receptor characteristic is binding kinetics for an oligosaccharide or class of oligosaccharides, wherein the binding kinetics include off-rate and on-rate. In some embodiments, the class of oligosaccharides is selected from the group of LCOs, COs, beta-glucans, cyclic-beta-glucans, exopolysaccharides, or optionally LPS. In some embodiments, the class of oligosaccharides is LCOs or COs. In some embodiments, the class of oligosaccharides is LCOs, optionally produced by a produced by a nitrogen-fixing bacteria optionally selected from the group of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum optionally R. leguminosarum trifolii, R. leguminosarum viciae, and R. leguminosarum phaseoli, Burkholderiales optionally symbionts of Mimosa, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., or any combination thereof; or optionally produced by a mycorrhizal fungi optionally selected from the group of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, pr any combination thereof. In some embodiments, the LCOs are M. loti LCO, S. meliloti LCO-IV, or S. meliloti LCO-V.


In some embodiments, the method further includes step d) identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a first oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor, and optionally identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a second oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor. In some embodiments, the method further includes step e) generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; generating a modified plant LysM receptor wherein the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM; or generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM and the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor LysM. In some embodiments, the first oligosaccharide binding feature is a hydrophobic patch on the surface of the LysM2 domain. In some embodiments, the second oligosaccharide binding feature is a part of the LysM1 domain of the donor plant LysM receptor. In some embodiments, the modified LysM receptor is an endogenous LysM receptor modified using one or more gene editing components. In some embodiments, the one or more gene editing components target a nuclear genome sequence operably linked to a nucleic acid encoding an endogenous LysM receptor (e.g., a soybean LysM receptor). A further embodiment of this aspect includes the one or more gene editing components being selected from the group of a ribonucleoprotein complex that targets the nuclear genome sequence; a vector comprising a TALEN protein encoding sequence, wherein the TALEN protein targets the nuclear genome sequence; a vector comprising a ZFN protein encoding sequence, wherein the ZFN protein targets the nuclear genome sequence; an oligonucleotide donor (ODN), wherein the ODN targets the nuclear genome sequence; or a vector comprising a CRISPR/Cas enzyme encoding sequence and a targeting sequence, wherein the targeting sequence targets the nuclear genome sequence.


Additional aspects of the present disclosure relate to a modified plant LysM receptor produced using any one of the above methods, wherein the modified plant LysM receptor includes a LysM2 domain modified to comprise a hydrophobic patch on the surface of the LysM2 domain. Further aspects of the present disclosure relate to a modified plant LysM receptor produced using any one of the above methods, wherein the modified plant LysM receptor includes a first LysM1 domain modified to replace at least part of the first LysM1 domain with at least part of a second LysM1 domain. The modified plant LysM receptors of the present disclosure may be used to produce the genetically altered plant of any one of the above embodiments relating to plants as described in the section “Genetically altered plants and seeds”


Transformation and generation of genetically altered monocotyledonous and dicotyledonous plant cells is well known in the art. See, e.g., Weising, et al., Ann. Rev. Genet. 22:421-477 (1988); U.S. Pat. No. 5,679,558; Agrobacterium Protocols, ed: Gartland, Humana Press Inc. (1995); and Wang, et al. Acta Hort. 461:401-408 (1998). The choice of method varies with the type of plant to be transformed, the particular application and/or the desired result. The appropriate transformation technique is readily chosen by the skilled practitioner.


Any methodology known in the art to delete, insert or otherwise modify the cellular DNA (e.g., genomic DNA and organelle DNA) can be used in practicing the inventions disclosed herein. For example, a disarmed Ti plasmid, containing a genetic construct for deletion or insertion of a target gene, in Agrobacterium tumefaciens can be used to transform a plant cell, and thereafter, a transformed plant can be regenerated from the transformed plant cell using procedures described in the art, for example, in EP 0116718, EP 0270822, PCT publication WO 84/02913 and published European Patent application (“EP”) 0242246. Ti-plasmid vectors each contain the gene between the border sequences, or at least located to the left of the right border sequence, of the T-DNA of the Ti-plasmid. Of course, other types of vectors can be used to transform the plant cell, using procedures such as direct gene transfer (as described, for example in EP 0233247), pollen mediated transformation (as described, for example in EP 0270356, PCT publication WO 85/01856, and U.S. Pat. No. 4,684,611), plant RNA virus-mediated transformation (as described, for example in EP 0 067 553 and U.S. Pat. No. 4,407,956), liposome-mediated transformation (as described, for example in U.S. Pat. No. 4,536,475), and other methods such as the methods for transforming certain lines of corn (e.g., U.S. Pat. No. 6,140,553; Fromm et al., Bio/Technology (1990) 8, 833 839); Gordon-Kamm et al., The Plant Cell, (1990) 2, 603 618) and rice (Shimamoto et al., Nature, (1989) 338, 274 276; Datta et al., Bio/Technology, (1990) 8, 736 740) and the method for transforming monocots generally (PCT publication WO 92/09696). For cotton transformation, the method described in PCT patent publication WO 00/71733 can be used. For soybean transformation, reference is made to methods known in the art, e.g., Hinchee et al. (Bio/Technology, (1988) 6, 915) and Christou et al. (Trends Biotech, (1990) 8, 145) or the method of WO 00/42207.


Genetically altered plants of the present invention can be used in a conventional plant breeding scheme to produce more genetically altered plants with the same characteristics, or to introduce the genetic alteration(s) in other varieties of the same or related plant species. Seeds, which are obtained from the altered plants, preferably contain the genetic alteration(s) as a stable insert in chromosomal or organelle DNA or as modifications to an endogenous gene or promoter. Plants comprising the genetic alteration(s) in accordance with the invention include plants comprising, or derived from, root stocks of plants comprising the genetic alteration(s) of the invention, e.g., fruit trees or ornamental plants. Hence, any non-transgenic grafted plant parts inserted on a transformed plant or plant part are included in the invention.


Introduced genetic elements, whether in an expression vector or expression cassette, which result in the expression of an introduced gene will typically utilize a plant-expressible promoter. A ‘plant-expressible promoter’ as used herein refers to a promoter that ensures expression of the genetic alteration(s) of the invention in a plant cell. Examples of promoters directing constitutive expression in plants are known in the art and include: the strong constitutive 35S promoters (the “35S promoters”) of the cauliflower mosaic virus (CaMV), e.g., of isolates CM 1841 (Gardner et al., Nucleic Acids Res, (1981) 9, 2871 2887), CabbB S (Franck et al., Cell (1980) 21, 285 294) and CabbB JI (Hull and Howell, Virology, (1987) 86, 482 493); promoters from the ubiquitin family (e.g., the maize ubiquitin promoter of Christensen et al., Plant Mol Biol, (1992) 18, 675-689), the gos2 promoter (de Pater et al., The Plant J (1992) 2, 834-844), the emu promoter (Last et al., Theor Appl Genet, (1990) 81, 581-588), actin promoters such as the promoter described by An et al. (The Plant J, (1996) 10, 107), the rice actin promoter described by Zhang et al. (The Plant Cell, (1991) 3, 1155-1165); promoters of the Cassava vein mosaic virus (WO 97/48819, Verdaguer et al. (Plant Mol Biol, (1998) 37, 1055-1067), the pPLEX series of promoters from Subterranean Clover Stunt Virus (WO 96/06932, particularly the S4 or S7 promoter), an alcohol dehydrogenase promoter, e.g., pAdh1S (GenBank accession numbers X04049, X00581), and the TR1′ promoter and the TR2′ promoter (the “TR1′ promoter” and “TR2′ promoter”, respectively) which drive the expression of the 1′ and 2′ genes, respectively, of the T DNA (Velten et al., EMBO J, (1984) 3, 2723 2730).


Alternatively, a plant-expressible promoter can be a tissue-specific promoter, i.e., a promoter directing a higher level of expression in some cells or tissues of the plant, e.g., in root epidermal cells or root cortex cells. Examples of constitutive promoters that are often used in plant cells are the cauliflower mosaic (CaMV) 35S promoter (KAY et al. Science, 236, 4805, 1987), and various derivatives of the promoter, virus promoter vein mosaic cassava (International Application WO 97/48819), the maize ubiquitin promoter (CHRISTENSEN & QUAIL, Transgenic Res, 5, 213-8, 1996), trefoil (Ljubq1, MAEKAWA et al. Mol Plant Microbe Interact. 21, 375-82, 2008) and Arabidopsis (UBQ10, Norris et al. Plant Mol. Biol. 21, 895-906, 1993).


In preferred embodiments, root specific promoters will be used. Non-limiting examples include the promoter of the maize allothioneine (DE FRAMOND et al, FEBS 290, 103.-106, 1991 Application EP 452269), the chitinase promoter (SAMAC et al. Plant Physiol 93, 907-914, 1990), the glutamine synthetase soybean root promoter (HIREL et al. Plant Mol. Biol. 20, 207-218, 1992), the RCC3 promoter (PCT Application WO 2009/016104), the rice antiquitine promoter (PCT Application WO 2007/076115), the LRR receptor kinase promoter (PCT application WO 02/46439), the maize ZRP2 promoter (U.S. Pat. No. 5,633,363), the tomato LeExt1 promoter (Bucher et al. Plant Physiol. 128, 911-923, 2002), and the Arabidopsis pCO2 promoter (HEIDSTRA et al, Genes Dev. 18, 1964-1969, 2004). These plant promoters can be combined with enhancer elements, they can be combined with minimal promoter elements, or can comprise repeated elements to ensure the expression profile desired.


In some embodiments, genetic elements to increase expression in plant cells can be utilized. For example, an intron at the 5′ end or 3′ end of an introduced gene, or in the coding sequence of the introduced gene, e.g., the hsp70 intron. Other such genetic elements can include, but are not limited to, promoter enhancer elements, duplicated or triplicated promoter regions, 5′ leader sequences different from another transgene or different from an endogenous (plant host) gene leader sequence, 3′ trailer sequences different from another transgene used in the same plant or different from an endogenous (plant host) trailer sequence.


An introduced gene of the present invention can be inserted in host cell DNA so that the inserted gene part is upstream (i.e., 5′) of suitable 3′ end transcription regulation signals (e.g., transcript formation and polyadenylation signals). This is preferably accomplished by inserting the gene in the plant cell genome (nuclear or chloroplast). Preferred polyadenylation and transcript formation signals include those of the nopaline synthase gene (Depicker et al., J. Molec Appl Gen, (1982) 1, 561-573), the octopine synthase gene (Gielen et al., EMBO J, (1984) 3:835 845), the SCSV or the Malic enzyme terminators (Schunmann et al., Plant Funct Biol, (2003) 30:453-460), and the T DNA gene 7 (Velten and Schell, Nucleic Acids Res, (1985) 13, 6981 6998), which act as 3′ untranslated DNA sequences in transformed plant cells. In some embodiments, one or more of the introduced genes are stably integrated into the nuclear genome. Stable integration is present when the nucleic acid sequence remains integrated into the nuclear genome and continues to be expressed (e.g., detectable mRNA transcript or protein is produced) throughout subsequent plant generations. Stable integration into and/or editing of the nuclear genome can be accomplished by any known method in the art (e.g., microparticle bombardment, Agrobacterium-mediated transformation, CRISPR/Cas9, electroporation of protoplasts, microinjection, etc.).


The term recombinant or modified nucleic acids refers to polynucleotides which are made by the combination of two otherwise separated segments of sequence accomplished by the artificial manipulation of isolated segments of polynucleotides by genetic engineering techniques or by chemical synthesis. In so doing one may join together polynucleotide segments of desired functions to generate a desired combination of functions.


As used herein, the terms “overexpression” and “upregulation” refer to increased expression (e.g., of mRNA, polypeptides, etc.) relative to expression in a wild type organism (e.g., plant) as a result of genetic modification. In some embodiments, the increase in expression is a slight increase of about 10% more than expression in wild type. In some embodiments, the increase in expression is an increase of 50% or more (e.g., 60%, 70%, 80%, 100%, etc.) relative to expression in wild type. In some embodiments, an endogenous gene is overexpressed. In some embodiments, an exogenous gene is overexpressed by virtue of being expressed. Overexpression of a gene in plants can be achieved through any known method in the art, including but not limited to, the use of constitutive promoters, inducible promoters, high expression promoters (e.g., PsaD promoter), enhancers, transcriptional and/or translational regulatory sequences, codon optimization, modified transcription factors, and/or mutant or modified genes that control expression of the gene to be overexpressed.


Where a recombinant nucleic acid is intended for expression, cloning, or replication of a particular sequence, DNA constructs prepared for introduction into a host cell will typically comprise a replication system (e.g. vector) recognized by the host, including the intended DNA fragment encoding a desired polypeptide, and can also include transcription and translational initiation regulatory sequences operably linked to the polypeptide-encoding segment. Additionally, such constructs can include cellular localization signals (e.g., plasma membrane localization signals). In preferred embodiments, such DNA constructs are introduced into a host cell's genomic DNA, chloroplast DNA or mitochondrial DNA.


In some embodiments, a non-integrated expression system can be used to induce expression of one or more introduced genes. Expression systems (expression vectors) can include, for example, an origin of replication or autonomously replicating sequence (ARS) and expression control sequences, a promoter, an enhancer and necessary processing information sites, such as ribosome-binding sites, RNA splice sites, polyadenylation sites, transcriptional terminator sequences, and mRNA stabilizing sequences. Signal peptides can also be included where appropriate from secreted polypeptides of the same or related species, which allow the protein to cross and/or lodge in cell membranes, cell wall, or be secreted from the cell.


Selectable markers useful in practicing the methodologies of the invention disclosed herein can be positive selectable markers. Typically, positive selection refers to the case in which a genetically altered cell can survive in the presence of a toxic substance only if the recombinant polynucleotide of interest is present within the cell. Negative selectable markers and screenable markers are also well known in the art and are contemplated by the present invention. One of skill in the art will recognize that any relevant markers available can be utilized in practicing the inventions disclosed herein.


Screening and molecular analysis of recombinant strains of the present invention can be performed utilizing nucleic acid hybridization techniques. Hybridization procedures are useful for identifying polynucleotides, such as those modified using the techniques described herein, with sufficient homology to the subject regulatory sequences to be useful as taught herein. The particular hybridization techniques are not essential to the subject invention. As improvements are made in hybridization techniques, they can be readily applied by one of skill in the art. Hybridization probes can be labeled with any appropriate label known to those of skill in the art. Hybridization conditions and washing conditions, for example temperature and salt concentration, can be altered to change the stringency of the detection threshold. See, e.g., Sambrook et al. (1989) vide infra or Ausubel et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, NY, N.Y., for further guidance on hybridization conditions.


Additionally, screening and molecular analysis of genetically altered strains, as well as creation of desired isolated nucleic acids can be performed using Polymerase Chain Reaction (PCR). PCR is a repetitive, enzymatic, primed synthesis of a nucleic acid sequence. This procedure is well known and commonly used by those skilled in this art (see Mullis, U.S. Pat. Nos. 4,683,195, 4,683,202, and 4,800,159; Saiki et al. (1985) Science 230:1350-1354). PCR is based on the enzymatic amplification of a DNA fragment of interest that is flanked by two oligonucleotide primers that hybridize to opposite strands of the target sequence. The primers are oriented with the 3′ ends pointing towards each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences, and extension of the annealed primers with a DNA polymerase result in the amplification of the segment defined by the 5′ ends of the PCR primers. Because the extension product of each primer can serve as a template for the other primer, each cycle essentially doubles the amount of DNA template produced in the previous cycle. This results in the exponential accumulation of the specific target fragment, up to several million-fold in a few hours. By using a thermostable DNA polymerase such as the Taq polymerase, which is isolated from the thermophilic bacterium Thermus aquaticus, the amplification process can be completely automated. Other enzymes which can be used are known to those skilled in the art.


Nucleic acids and proteins of the present invention can also encompass homologues of the specifically disclosed sequences. Homology (e.g., sequence identity) can be 50%-100%. In some instances, such homology is greater than 80%, greater than 85%, greater than 90%, or greater than 95%. The degree of homology or identity needed for any intended use of the sequence(s) is readily identified by one of skill in the art. As used herein percent sequence identity of two nucleic acids is determined using an algorithm known in the art, such as that disclosed by Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul et al. (1990) J. Mol. Biol. 215:402-410. BLAST nucleotide searches are performed with the NBLAST program, score=100, wordlength=12, to obtain nucleotide sequences with the desired percent sequence identity. To obtain gapped alignments for comparison purposes, Gapped BLAST is used as described in Altschul et al. (1997) Nucl. Acids. Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (NBLAST and XBLAST) are used. See www.ncbi.nih.gov.


Preferred host cells are plant cells. Recombinant host cells, in the present context, are those which have been genetically modified to contain an isolated nucleic molecule, contain one or more deleted or otherwise non-functional genes normally present and functional in the host cell, or contain one or more genes to produce at least one recombinant protein. The nucleic acid(s) encoding the protein(s) of the present invention can be introduced by any means known to the art which is appropriate for the particular type of cell, including without limitation, transformation, lipofection, electroporation or any other methodology known by those skilled in the art.


Having generally described this invention, the same will be better understood by reference to certain specific examples, which are included herein to further illustrate the invention and are not intended to limit the scope of the invention as defined by the claims.


EXAMPLES

The present disclosure is described in further detail in the following examples which are not in any way intended to limit the scope of the disclosure as claimed. The attached figures are meant to be considered as integral parts of the specification and description of the disclosure. The following examples are offered to illustrate, but not to limit the claimed disclosure.


Example 1: Structural Characterization of Medicago NFP Ectodomain

The following example describes the structural characterization of the Medicago NFP protein ectodomain.


Materials and Methods

Expression and purification of Medicago NFP ectodomain: The Medicago truncatula NFP ectodomain (residues 28-246) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native NFP signal peptide (residues 1-27, predicted by SignalP 4.1) was replaced with the AcMNPV gp67 signal peptide to facilitate secretion and a hexa-histidine tag was added to the C-terminus. Recombinant baculoviruses were produced in Sf9 cells (Spodoptera frugiperda) using the FlashBac Gold kit (Oxford Expression technologies) according to the manufacturer's instructions with Lipofectin (ThermoFisher Scientific) as a transfection reagent. Protein expression was performed as follows. Suspension-cultured Sf9 cells were maintained with shaking at 299 K in serum-free MAX-XP (BD-Biosciences, discontinued) or HyClone SFX (GE Healthcare) medium supplemented with 1% Pen-Strep (10000 U/ml, Life technologies) and 1% CD lipid concentrate (Gibco). Protein expression was induced by adding recombinant passage 3 virus once the Sf9 cells reached a cell density of 1.0*10 {circumflex over ( )}≢cells/ml. After 5-7 days of expression, medium supernatant containing NFP ectodomains was harvested by centrifugation. This was followed by an overnight dialysis step against 50 mM Tris-HCl pH 8, 200 mM NaCl at 277 K. The NFP ectodomain was enriched by two subsequent steps of Ni-IMAC purification (HisTrap excel/HisTrap HP, both GE Healthcare). For crystallography, N-glycans were removed using the endoglycosidase PNGase F (1:15 (w/w), room temperature, overnight). As a final purification step, NFP ectodomains was purified by SEC on a Superdex 200 10/300 or HiLoad Superdex 200 16/600 (both GE Healthcare) in phosphate buffered saline at pH 7.2 supplemented to a total of 500 mM NaCl (for binding assays) or 50 mM Tris-HCl, 200 mM NaCl (for crystallography). NFP ectodomain elutes as a single, homogeneous peak corresponding to a monomer.


Crystallization and structure determination: Crystals of deglycosylated NFP ectodomain were obtained using a vapour diffusion setup at 3-5 mg/ml in 0.2 M Na-acetate, 0.1 M Na-cacodylate pH 6.5, and 30% (w/v) PEG-8000. Crystals were cryoprotected in their crystallization condition by supplementing with 5% (w/v) PEG-400 before being snap-frozen in liquid nitrogen. Complete diffraction data to 2.85 Å resolution was obtained at the MaxLab I911-3 beamline. The phase problem was solved by molecular replacement using Phaser from the PHENIX suite with a homology model based on the AtCERK1 ectodomain structure (PDB coordinates 4EBZ) as a search model. Model building and refinement was done using COOT and the PHENIX suite, respectively. The output pdb filled structural model was generated and its electrostatic surface potential was calculated using the PDB2PQR and APBS webservers (PMID: 21425296). The results were visualized in PyMol using APBS tools 2.1 (DeLano, W. L. (2002). PyMOL. DeLano Scientific, San Carlos, CA, 700.).


Results

The structure of Medicago NFP was determined by molecular replacement using a homology model based on the inner low B-factor scaffold of AtCERK1. The complete structure of NFP (residues 33-233) was built this way, including four N-glycosylations that were clearly resolved in the 2.8 Å electron density map. NFP forms a compact structure where three classical βααβ LysM domains are tightly interconnected and stabilized by 3 conserved disulfide bridges (C3-C104, C47-C166 and C102-C164) (FIG. 1). The disulfide connectivity pattern and the overall scaffold arrangement is shared with other LysM-RLK proteins involved in chitin defense signaling, supporting a common evolutionary origin of these class of receptors.


Example 2: Identification of Important Residues for Lipo-Chitooligosaccharide (LCO) Perception

The following example describes the use of a structurally-guided approach to identify important residues in NFP for LCO perception. After identifying important residues, NFP point mutations were created, and tested using ligand-binding assays.


Materials and Methods

Structurally-guided residue identification: The NFP ectodomain was structurally aligned to ligand-bound CERK1. Then, the electrostatic surface potential was mapped to the previously-developed structure of the NFP ectodomain. The predicted ligand-binding location and electrostatic surface potential are depicted in FIG. 2A.


Creation of NFP point mutations: The NFP leucine residues L147 and L154 were replaced with aspartate residues. Aspartate is similar in size to leucine, but negatively charged where leucine is hydrophobic. Point mutants of NFP were engineered using site-directed mutagenesis. In particular, a double-mutated NFP was engineered where the leucine residues L147 and L154 were replaced with aspartate residues to create the mutant NFP L147D L154D. Point mutated versions of NFP were expressed and purified as described in Example 1.


NFP mutant binding assays: The binding assay using NFP wild type (WT) protein was replicated seven times, while the binding assay using the NFP mutant NFP L147D L154D was replicated four times. A summary of results is shown in FIG. 2B.


Biolayer interferometry (BLI): Binding of NFP WT and NFP L147D/L154D mutant to S. meliloti LCO-IV was measured on an Octet RED 96 system (Pall ForteBio). S. meliloti LCO consists of a tetrameric/pentameric N-acetylglucosamine backbone that is O-sulfated on the reducing terminal residue, O-acetylated on the non-reducing terminal residue, and mono-N-acylated by unsaturated C16 acyl groups. Biotinylated ligand conjugates were immobilized on streptavidin biosensors (kinetic quality, Pall ForteBio) at a concentration of 125-250 nM for 5 minutes. The binding assays were replicated 7 times for the NFP WT, and 4 times for the NFP L147D/L154D mutant. Data analysis was performed in GraphPad Prism 6 software (GraphPad Software, Inc.). Equilibrium dissociation constants derived from the steady-state were determined by applying a non-linear regression (one site, specific binding) to the response at equilibrium plotted against the protein concentration. Kinetic parameters were determined by non-linear regression (association followed by dissociation) on the subtracted data. Results are shown in FIGS. 19A-19C. Binding of A. thaliana CERK1 (AtCERK1) to chitopentaose (CO5) and chitooctaose (CO8) was measured in the same way. Results are shown in FIGS. 18A-18B.


Results


FIG. 2A shows modelling of the NFP ectodomain bound to a ligand with predicted chitin and LCO fatty acid chain locations. Structural alignment of the NFP ectodomain with ligand-bound CERK1 positions chitin in the LysM2 binding groove of NFP without any obvious clashes. Strikingly, the electrostatic surface potential revealed a hydrophobic patch on the NFP ectodomain that is located near the non-reducing moiety of the docked chitin molecule, which potentially could accommodate the fatty acid chain of the LCO ligand. Two leucine residues (L147 and L154) were identified as the residues that give this patch its hydrophobic character.


To test the contribution of these two residues to LCO binding, both residues were replaced with similarly sized but negatively charged aspartate residues to produce NFP L147D L154D. Interestingly, the double mutated NFP L147D L154D ectodomain bound S. meliloti LCO-IV with approximately two times lower affinity; Kd of 48.0±1.0 μM (FIG. 2B). Closer inspection of the binding kinetics revealed that the association (Kon) was almost unaffected whereas the dissociation (Koff) was approximately 15 times faster in the double mutant. These results show that the hydrophobic patch of the NFP ectodomain is stabilizing the LCO bound state, and that this stabilization is most likely occurring via the fatty acid chain. Docking the LCO fatty acid in this hydrophobic patch and the chitin backbone in the LysM2 binding site (derived from CERK1) would place the sulphate and acetyl side groups facing K141.


Biochemical analysis of LCO binding to the hydrophobic patch mutant reveals that purified L147D/L154D NFP-ECD bound S. meliloti LCO-IV with 13-fold lower affinity (Kd of 166.7±4.2 μM) compared to WT NFP-ECD (FIGS. 19A-19C). The association rate (kon) was 4.5-fold faster and the dissociation rate (koff) was dramatically increased with 59-fold in the double mutant compared to the WT NFP-ECD, suggesting that the hydrophobic patch had a strong stabilizing effect on LCO binding mediated by the acyl chain.


The binding kinetics of AtCERK1 binding to chitin fragments were measured as a comparison. As shown in FIGS. 18A-18B, fast association and dissociation rates were seen. These kinetics were reminiscent of the kinetics observed for the mutant L147D/L154D NFP-ECD (FIG. 19B). The binding kinetics of AtCERK1 to chitin fragments were clearly different than the binding kinetics of NFP to LCO (FIG. 19A).


Together, the data provided evidence that the hydrophobic patch in NFP (shown in FIG. 19D) was a conserved structural imprint critical for LCO perception and symbiotic signaling.


Example 3: Complementation Test in Medicago Nfp Mutants

To confirm the biochemical observations described in the previous examples, next a complementation test was performed in Medicago nfp mutants using hairy root transformation.


Materials and Methods

Complementation assay: Construct assembly, plant growth conditions, hairy root transformations, nodulation and ROS assays were generally conducted as described in Bozsoki et al. (2017) (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127). A general schematic of the construct is provided in FIG. 3. The tested transgenes were the mutated LysM receptors described in Example 2.


Results


FIGS. 4A-4B shows the results of the complementation test. The results shown in FIG. 4A are complementation tests where the plants were inoculated with S. meliloti strain 2011. When Medicago nfp mutants are transformed with the wild type Nfp gene, complementation is seen, which is defined as an average of 10 nodules per plant 6-7 weeks after inoculation with S. meliloti strain 2011. In contrast, roots transformed with the double mutant construct (L147D/L154D) did not develop any nodules per plant 6-7 weeks after inoculation with S. meliloti strain 2011.


These complementation experiments were repeated using S. medicae inoculation, which has been reported to nodulate Medicago with higher efficiency. The results shown in FIG. 4B are complementation tests where the plants were inoculated with S. medicae. The S. medicae results confirm that the double mutant construct (L147D/L154D) complements poorly. Taken together, these results show that the hydrophobic patch in NFP is required for LCO recognition, and for functional symbiotic signaling.


Example 4: Functional Characterization of CO and LCO Receptors Using Domain Swaps

The following example describes functional characterization of the Lotus LCO receptor NFR1 and the Lotus CO receptor CERK6. This was done using domain swaps, and by measuring nodulation and defense (reactive oxygen species, ROS) responses to assess complementation.


Materials and Methods

Complementation assay: Construct assembly, plant growth conditions, hairy root transformations, nodulation and ROS assays were generally conducted as described in Bozsoki et al. (2017) (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127). A general schematic of the construct is provided in FIG. 3, whereby the pNfr1 promoter was used for the constructs tested in nodulation assays, and the pCerk6 promoter was used for the constructs tested in ROS assays. For functional complementation of nfr1 and cerk6 mutants, only plants expressing the YFP marker protein from the transformation control (FIG. 3) were used. For the nodulation assays, nodules were counted on hairy root transformed L. japonicus nfr1-1 mutant roots after the indicated days post inoculation (dpi) (e.g., 44 dpi, 49 dpi, and 50 dpi) with M. loti R7A (FIG. 5A). For the ROS assays, transformed roots were harvested from individual plants, then the root material was divided into two halves, each half being tested for ROS response to CO8 or flg22. For each transformed plant the ratio of CO8 and flg22 elicited ROS peak values after were plotted normalized to the wild type sample, which was set as 1 (FIG. 5B). The tested chimeric receptors are depicted as shaded block diagrams in FIGS. 5A-5B.


Results


FIGS. 5A-5B show results of functional studies measuring nodulation and defense using domain swaps between the Lotus LCO receptor NFR1 and the Lotus CO receptor CERK6. FIG. 5A shows complementation experiments of a Lotus nfr1 single mutant with different domain-swapped protein constructs expressed under the pNFR1 promoter. Nodulation was used to assess complementation. FIG. 5B shows complementation experiments of a Lotus cerk6 single mutant with different domain-swapped protein constructs expressed under the pCerk6 promoter. The level of elicited ROS response was used to assess complementation. The results of these experiments show that the LysM1 domain of the NFR1 ectodomain is important to perceive both LCO (in the case of NFR1) and CO (in the case of CERK6) ligands.


Additional experiments, also depicted in FIGS. 5A-5B, swapped smaller sections, referred to as regions, of the domains. These experiments showed that two regions, namely region II and region IV, were particularly important for specific recognition of a ligand. Taken together, these results show that swapping either the entire LysM1 domain, or swapping only region II and region IV, is sufficient to convert a CO receptor into an LCO receptor.


Example 5: Structural Characterization of Lotus CERK6 Ectodomain

The following example describes the structural characterization of the Lotus CERK6 protein ectodomain.


Materials and Methods

Modelling: The target LysM receptor amino acid sequence (Lotus CERK6) was aligned with a known receptor sequence (Medicago NFP). Then, the LysM1-3 domains of the target sequence were used as an input in SWISS-MODEL (Biasini 2014). The structural coordinate file (.pdb) of the Medicago NFP crystal structure as template file in SWISS-MODEL (Biasini 2014), and the modelling program was run using the command ‘Build Model’. The electrostatic surface potential of the output target (.pdb) model generated with SWISS-MODEL was calculated using PDB2PQR & APBS webservers (PMID: 21425296) and visualized in PyMol using APBS tools 2.1 (DeLano, W. L. 2002). The 3D structure of the Lotus CERK6 ectodomain is depicted in FIG. 6, and corresponds to that published by Bozsoki et al., 2017 (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127).


Results





    • The 3D structure of CERK6 shows that region II and region IV are located adjacent to each other as shown in FIG. 6. This indicates the potential involvement of these two regions in a possible binding site.





Example 6: Functional Characterization of LCO Receptors Using Domain Swaps

The following example describes functional characterization of the Lotus LCO receptor NFR1 and the Medicago LCO receptor LYK3. This was done using domain swaps, and by measuring nodulation to assess complementation.


Materials and Methods

Complementation assay: Construct assembly, plant growth conditions, hairy root transformations, nodulation and ROS assays were generally conducted as described in Bozsoki et al. (2017) (Bozsoki Z, Cheng J, Feng F, Gysel K, Vinther M, Andersen K R, Oldroyd G, Blaise M, Radutoiu S, Stougaard J (2017) Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception. Proc Natl Acad Sci 114: E8118-E8127). A general schematic of the construct is provided in FIG. 3, whereby the pNFR1 promoter was used to drive the chimeric constructs. The tested chimeric receptors in Lotus are depicted as block diagrams below the graph in FIG. 7, where NFR1 domains are shown in white and LYK3 domains are shown in grey, and transverse lines across the block depicting the LysM1 domain indicate sections II and IV. Unaltered Lotus CERK6 protein was used as a negative control (zero nodulation). Nodules were counted on hairy root transformed L. japonicus nfr1-1 mutant roots 35 days post inoculation with M. loti R7Å. M. loti R7A is the cognate N-fixing bacterial strain for L. japonicus, and is not recognized by M. truncatula.


The tested chimeric receptors in Medicago are depicted as block diagrams in FIGS. 17A-17B, where NFR1 domains are shown in black, LYK3 domains are shown in grey, and transverse lines across the block depicting the LysM1 domain indicate regions II, III, and IV. The pLYK3 promoter was used to drive the chimeric constructs. Nodules were counted on hairy root transformed M. truncatula WT or M. truncatula lyk3 mutant roots 35 days post inoculation with S. meliloti. S. meliloti is the cognate N-fixing bacterial strain for M. truncatula, and is not recognized by L. japonicus.


Results


FIG. 7 shows results of functional studies measuring nodulation using domain swaps between the Lotus LCO receptor NFR1 and the Medicago LCO receptor LYK3. In addition, LjCERK6 was included as a negative control (zero nodulation). In a Lotus nfr1-1 mutant, two recombinant receptors were able to complement. Domains of NFR1 (white) and LYK3 (grey) proteins were assembled in different chimeric constructs as shown in the diagram below the graph. Transversal lines across LysM1 show the where the section II and IV were derived from. CERK6 protein was used as control. Only chimeric receptors that contained regions II and IV of the LysM1 domain or the entire LysM1 domain from NFR1 complemented the nfr1 mutant when inoculated with M. loti. This indicates that the LysM1 domain is essential for allowing specific M. loti LCO recognition. The importance of region II and region IV is shown by a recombinant receptor entirely consisting of MtLYK3 except for LjNFR1 region Hand region IV, which was able to functionally complement the nfr1 mutant, even though the efficiency did not reach wild-type levels. This chimeric MtLYK3 receptor shows that the swap of regions II and IV is sufficient to change the specificity to M. loti LCO. Taken together, these results indicate that the LysM1 domain is essential for recognizing those LCOs produced by the cognate N-fixing bacterial strain of a legume species. Moreover, regions II and IV are particularly important for this recognition, because when they are replaced, recognition is lost.


The results from FIG. 7 showed that a chimeric MtLYK3 receptor with a swap of regions II and IV (rightmost receptor on graph) was sufficient to change the specificity of an otherwise fully MtLYK3 protein, which would normally recognize S. meliloti LCO, to M. loti LCO. Engineering the LjNFR1 receptor with regions II and IV from MtLyk3 resulted in a receptor that was not able to recognize M. loti LCO (receptor third from left on graph and receptor third from right on graph). This chimeric receptor showed that the swap of regions II and IV was sufficient to abolish recognition of M. loti by an otherwise fully LjNFR1 protein.



FIG. 17A shows that in a M. truncatula lyk3 mutant, recombinant receptors containing sections of LysM1 that included region III from MtLYK3 were able to complement. Region III is six amino acids located between region II and region IV (FIG. 17B). Engineered receptors that had the entire LysM1 from MtLYK3 (e.g., the receptor sixth from left (empty vectors counted) or the receptor sixth from right), a section of LysM1 spanning region II to region IV from MtLYK3 (e.g., the receptor fourth from left (empty vectors counted) or the receptor eighth from right), or region II, region III, and region IV from MtLYK3 (e.g., the receptor fifth from left (empty vectors counted) or the receptor seventh from right) were all able to complement the symbiotic deficient phenotype of the M. truncatula lyk3 mutant when inoculated with S. meliloti. In contrast, engineered receptors containing only region II and region IV from MtLYK3 (e.g., the receptor seventh from left (empty vectors counted) or the receptor fifth from right) were not able to specifically recognize S. meliloti LCO. It was observed that the chimeric receptor with the MtLYK3 transmembrane and kinase domains (receptor fifth from right) had a very low complementation ability (3 plants of the 15 analyzed had 1 or 2 nodules), which was thought to be due to the high efficiency of these additional regions from MtLYK3. This result was interpreted as region III being required for specific and efficient recognition of S. meliloti LCO, but regions II and IV being critical. Engineering the MtLYK3 receptor with regions II to IV from LjNFR1 (the receptor fourth from right), regions II, III, and IV from LjNFR1 (the receptor fourth from right), the entire LysM1 from LjNFR1 (the receptor second from right), or regions II and IV from LjNFR1 (the rightmost receptor) resulted in a receptor that was not able to recognize S. meliloti LCO.


Overall, these results indicated that the LysM1 domain was essential for recognizing those LCOs produced by the cognate N-fixing bacterial strain of a legume species. When the chimeric receptors were expressed in M. truncatula, the regions II, III, and IV of the LysM1 domain were identified as particularly important for this recognition. Replacing regions II and IV were sufficient to obtain a loss of recognition. Replacing regions II, III, and IV were required to obtain gain of recognition for S. meliloti LCO and optimal functionality of the receptor.


Example 7: Engineering Specific LCO Perception

The following example describes engineering of the Lotus receptor LYS11 (LjLYS 1l) to specifically perceive LCOs. This was done using domain swaps, by measuring ligand binding, and by measuring nodulation to assess complementation.


Materials and Methods

LjLYS11 ectodomain production and purification: The LjLYS11 ectodomain (residues 26-234; SEQ ID NO:60) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native LjLYS11 signal peptide was replaced with the gp64 signal peptide (SEQ ID NO:59) to facilitate secretion and a hexa-histidine (6×His; SEQ ID NO:61) tag was added to the C-terminus (LjLYS11-ecto (26-234), N-term gp64, C-term 6His=SEQ ID NO:56). Recombinant baculoviruses were produced in Sf9 cells (Spodoptera frugiperda) using the FlashBac Gold kit (Oxford Expression technologies) according to the manufacturer's instructions with Lipofectin (ThermoFisher Scientific) as a transfection reagent. Protein expression was performed as follows. Suspension-cultured Sf9 cells were maintained with shaking at 299 K in serum-free MAX-XP (BD-Biosciences, discontinued) or HyClone SFX (GE Healthcare) medium supplemented with 1% Pen-Strep (10000 U/ml, Life technologies) and 1% CD lipid concentrate (Gibco). Protein expression was induced by adding recombinant passage 3 virus once the Sf9 cells reached a cell density of 1.0*10 {circumflex over ( )}≢cells/ml. After 5-7 days of expression, medium supernatant containing LjLYS11 ectodomains was harvested by centrifugation. This was followed by an overnight dialysis step against 50 mM Tris-HCl pH 8, 200 mM NaCl at 277 K. The LjLYS11 ectodomain was enriched by two subsequent steps of Ni-IMAC purification (HisTrap excel/HisTrap HP, both GE Healthcare). For crystallography experiments, N-glycans were removed using the endoglycosidase PNGase F (1:15 (w/w), room temperature, overnight). As a final purification step, LjLYS 11 ectodomain was purified by SEC on a Superdex 200 10/300 or HiLoad Superdex 200 16/600 (both GE Healthcare) in phosphate buffered saline at pH 7.2 supplemented to a total of 500 mM NaCl (for binding assays) or 50 mM Tris-HCl, 200 mM NaCl (for crystallography).


Biolayer interferometry (BLI): Binding of LjLYS11 ectodomain and domain-swapped versions of LjLYS11 ectodomain to ligands was measured on an Octet RED 96 system (Pall ForteBio). The ligands used were CO5 chitin oligomer (corresponding to the backbone of S. meliloti LCO-V), M. loti LCO, and S. meliloti LCO. S. meliloti LCO consists of a tetrameric/pentameric N-acetylglucosamine backbone that is O-sulfated on the reducing terminal residue, O-acetylated on the non-reducing terminal residue, and mono-N-acylated by unsaturated C16 acyl groups. M. loti LCO is a pentameric N-acetylglucosamine with a cis-vaccenic acid and a carbamoyl group at the non-reducing terminal residue together with a 2,4-O-acetylfucose at the reducing terminal residue. Biotinylated ligand conjugates were immobilized on streptavidin biosensors (kinetic quality, Pall ForteBio) at a concentration of 125-250 nM for 5 minutes. Data analysis was performed in GraphPad Prism 6 software (GraphPad Software, Inc.). Equilibrium dissociation constants derived from the steady-state were determined by applying a non-linear regression (one site, specific binding) to the response at equilibrium plotted against the protein concentration. Kinetic parameters were determined by non-linear regression (association followed by dissociation) on the subtracted data. The tested chimeric receptors are depicted as block diagrams in FIG. 15B, with LjLYS11 domains shown in black and LjNFR5 and above the binding assay results in FIGS. 15C-15E.


Complementation assay: The complementation assay was done as in Example 6. The tested chimeric receptors are depicted as block diagrams in FIG. 15F, where LjNFR5 domains are shown in light grey, LjLYS11 domains are shown in grey, and transverse lines across the block depicting the LysM2 domain indicate regions QLGDSYD (SEQ ID NO:63) and GV (SEQ ID NO:64) from LjNFR5. Empty vector and full-length LjLYS11 were used as negative controls (zero nodulation). Nodules were counted on hairy root transformed L. japonicus nfr5-2 mutant roots 35 days post inoculation with M. loti R7A. M. loti R7A is the cognate N-fixing bacterial strain for L. japonicus.


Results

Based on modelling and crystal structure determination of LjLYS11 ectodomain (FIG. 15A), it was predicted that the receptor would likely be a LCO receptor. To experimentally validate this prediction, binding experiments were performed. As shown in FIG. 15C, LjLYS11 ectodomain was able to bind CO5 (left graph), M. loti LCO (middle graph; M. loti is the cognate N-fixing bacterial strain for L. japonicus), and S. meliloti LCO (right graph; weak binding). This result indicated that the identified hydrophobic patch in the LjLYS11 ectodomain allowed it to bind LCO. Therefore, the hydrophobic patch was predictive of LCO-binding ability.


Next, it was tested whether stringent and specific LCO recognition could be engineered. For these tests, LjLYS11 ectodomains were engineered to contain parts of LjNFR5 receptors. Either the entire LysM2 or key residues from the LysM2 hydrophobic patch from LjLYS11 were replaced with the corresponding regions QLGDSYD (SEQ ID NO:63) and GV (SEQ ID NO:64) from LjNFR5, and ligand binding of these chimeric ectodomains was measured. As shown in FIG. 15D, replacing the entire LysM2 resulted in improved affinity to LCOs (both M. loti and S. meliloti LCOs), and resulted in a loss of ability to bind CO. A similar result was seen when only key residues of LysM2 were replaced (FIG. 15E).


Then, chimeric receptors were tested in planta. For these tests, the same chimeric LjLYS11 ectodomains were used (the entire LysM2, or key residues from LysM2 from LjLYS11 were replaced with the corresponding regions from LjNFR5) or the entire LjLYS11 ectodomain (LysM1, LysM2, and LysM3) was used, and these were attached to the transmembrane domain (wavy shape in schematic of FIG. 15F) and kinase domain (oval shape in schematic of FIG. 15F) of LjNFR5. In addition, full-length LjNFR5 and full-length LjLYS 11 were tested. As shown in FIG. 15F, chimeric receptors with any one of these modifications (the receptors fourth from right, third from right, and second from right) retained their capacity to perceive the M. loti Nod factor and to initiate a symbiotic signaling event with similar efficiency as LjNFR5.


Interestingly, the chimeric LjLYS11/LjNFR5 ectodomains had different LCO binding kinetics with slow on/off rates that resembled the binding kinetics of M. truncatula NFP. As shown in FIG. 18D, slow on/off rate binding kinetics are thought to be important for functional symbiotic signaling. The fast on/off rate binding kinetics seen with hydrophobic patch mutants does not result in symbiotic signalling (FIG. 18E). Further, fast on/off kinetics also appear to be a hallmark of CO perception (FIG. 18C). As shown in FIG. 18F, NFP shared the cysteine bridge connectivity pattern and the overall arrangement of the scaffold with other LysM receptor kinases involved in chitin-elicited defence signalling. This result supported the hypothesis that despite their different function, these LysM receptors shared a common evolutionary origin (Zhang, X.-C. et al. Molecular evolution of lysin motif-type receptor-like kinases in plants. Plant Physiol. 144, 623-636 (2007)). The shared structural features of the LysM receptors provided further support for the ability to engineer these receptors to have different binding kinetics. For example, the altered binding kinetics observed with the chimeric LjLYS11/LjNFR5 ectodomains indicate that receptors can be engineered to have LCO binding kinetics characteristics of functional symbiotic signalling.


Taken together, the results seen with chimeric LjLYS11/LjNFR5 ectodomains show that LysM2 engineering can create receptors with higher stringency toward LCO as well as higher specificity toward LCO.


Example 8: Identifying Target LysM Receptors for Engineering

The following example describes homology modelling in barley (H. vulgare) to identify target LysM receptors for use in engineering.


Materials and Methods

Modelling: Homology modelling was performed with SWISS-MODEL (Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252-W258 (2014)). For barley RLK10 (HvRLK10), the crystal structure of Medicago NFP served as the template model onto which the amino acid sequence of the target receptor was mapped. For barley RLK4 (HvRLK4), the crystal structure of Medicago LYK3 served as the template model onto which the amino acid sequence of the target receptor was mapped. The output pdb filled structural model was generated and its electrostatic surface potential was calculated using the PDB2PQR and APBS webservers (PMID: 21425296). The results were visualized in PyMol using APBS tools 2.1 (DeLano, W. L. (2002). PyMOL. DeLano Scientific, San Carlos, CA, 700.).


Expression and purification of ectodomain: The HvRLK10 ectodomain (residues 25-231; SEQ ID NO:66) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native HvRLK10 signal peptide was replaced with the gp64 signal peptide (SEQ ID NO:59) to facilitate secretion and a hexa-histidine (6×HIS; SEQ ID NO:61) tag was added to the C-terminus (HvRLK10-ecto (25-231), N-term gp64, C-term 6His=SEQ ID NO:65). The HvRLK4 ectodomain (residues 27-228; SEQ ID NO:68) was codon-optimized for insect cell expression (Genscript, Piscataway, USA) and cloned into the pOET4 baculovirus transfer vector (Oxford Expression Technologies). The native HvRLK4 signal peptide was replaced with the gp64 signal peptide (SEQ ID NO:59) to facilitate secretion and a hexa-histidine (6×HIS; SEQ ID NO:61) tag was added to the C-terminus (RLK4-ecto (27-228), N-term gp64, C-term 6His=SEQ ID NO:67). Recombinant baculoviruses were produced in Sf9 cells (Spodoptera frugiperda) using the FlashBac Gold kit (Oxford Expression technologies) according to the manufacturer's instructions with Lipofectin (ThermoFisher Scientific) as a transfection reagent.


Protein expression was performed as follows. Suspension-cultured Sf9 cells were maintained with shaking at 299 K in serum-free MAX-XP (BD-Biosciences, discontinued) or HyClone SFX (GE Healthcare) medium supplemented with 1% Pen-Strep (10000 U/ml, Life technologies) and 1% CD lipid concentrate (Gibco). Protein expression was induced by adding recombinant passage 3 virus once the Sf9 cells reached a cell density of 1.0*10 {circumflex over ( )}≢cells/ml. After 5-7 days of expression, medium supernatant containing HvRLK10 ectodomain or HvRLK4 ectodomain was harvested by centrifugation. This was followed by an overnight dialysis step against 50 mM Tris-HCl pH 8, 200 mM NaCl at 277 K. The HvRLK10 ectodomain or HvRLK4 ectodomain was enriched by two subsequent steps of Ni-IMAC purification (HisTrap excel/HisTrap HP, both GE Healthcare).


Biolayer interferometry (BLI): Binding of HvRLK10 ectodomain or HvRLK4 ectodomain to ligands was measured on an Octet RED 96 system (Pall ForteBio). The ligands used were CO5 chitin oligomer (corresponding to the backbone of S. meliloti LCO-V), M. loti LCO, and S. meliloti LCO. S. meliloti LCO consists of a tetrameric/pentameric N-acetylglucosamine backbone that is O-sulfated on the reducing terminal residue, O-acetylated on the non-reducing terminal residue, and mono-N-acylated by unsaturated C16 acyl groups. M. loti LCO is a pentameric N-acetylglucosamine with a cis-vaccenic acid and a carbamoyl group at the non-reducing terminal residue together with a 2,4-O-acetylfucose at the reducing terminal residue. Biotinylated ligand conjugates were immobilized on streptavidin biosensors (kinetic quality, Pall ForteBio) at a concentration of 125-250 nM for 5 minutes. Data analysis was performed in GraphPad Prism 6 software (GraphPad Software, Inc.). Equilibrium dissociation constants derived from the steady-state were determined by applying a non-linear regression (one site, specific binding) to the response at equilibrium plotted against the protein concentration. Kinetic parameters were determined by non-linear regression (association followed by dissociation) on the subtracted data.


Results

Homology modelling of all ten barley LysM receptor-like kinases (RLKs) was done using the Medicago NFP structure as a template. Of the barley LysM RLKs, HvRLK10 was the receptor that was closest to Medicago NFP and modelled the best using this approach. FIG. 16B shows homology modelling results for HvRLK10, which revealed that the hydrophobic patch was indeed present in the equivalent positions immediately below the LysM2 domain of this receptor. This clear hydrophobic patch indicated that HvRLK10 was a NFP/NFR5 type of LCO receptor.


To experimentally validate this prediction, the HvRLK10 ectodomain was expressed and purified for use in binding experiments (ectodomain schematic shown at top of FIG. 16A). The HvRLK10 ectodomain was shown to bind both M. loti LCO (FIG. 16C) and S. meliloti LCO (FIG. 16D). In contrast, the HvRLK10 ectodomain did not bind CO5 (FIG. 16A). These results provided functional characterization of the HvRLK10 ectodomain, and showed that it bound LCOs, but not COs. The results confirmed that the HvRLK10 receptor was a LCO receptor, as had been predicted by the homology modelling.


In addition, homology modelling of all ten barley LysM RLKs was done using the Medicago LYK3 structure as a template. HvRLK4 was the receptor that was closest to Medicago LYK3 and modelled the best using this approach. FIG. 16F shows homology modelling results for HvRLK4. These results indicated that this receptor was a NFR1/LYK3 type of LCO receptor.


To experimentally validate this prediction, the HvRLK4 ectodomain was expressed and purified for use in binding experiments (ectodomain schematic shown at top of FIG. 16E). The HvRLK4 ectodomain was shown to bind both M. loti LCO (FIG. 16G) and S. meliloti LCO (FIG. 16H). In contrast, the HvRLK4 ectodomain did not bind CO5 (FIG. 16E). These results provided functional characterization of the HvRLK4 ectodomain, and showed that it bound LCOs, but not COs. The results confirmed that the HvRLK4 receptor was a LCO receptor, as had been predicted by the homology modelling.


Both HvRLK10 and HvRLK4 were initially identified by homology modelling, and then confirmed to be LCO receptors by biochemical characterization. HvRLK10 and HvRLK4 therefore represent promising target receptors for engineering in barley particularly for engineering receptors that recognize LCOs in a manner similar to the donor receptors used to select them, Medicago NFP and Medicago LYK3, respectively.


Overall, these results show that the homology modelling approach can be used to identify LCO receptors of both the NFP/NFR5 type and the NFR1/LYK3 type specifically and that this method may be used to identify good target LysM receptor to modify to alter a desired receptor characteristic to be that of the donor LysM receptor used to select the target LysM receptor.


Example 9: Exemplary Structural Alignment to Identify of Target Residues to Modify for Insertion of a Hydrophobic Patch

One of skill in the art would have no difficulty applying the teachings of this disclosure to genetically alter LysM receptors to include a hydrophobic patch or alter an existing hydrophobic patch. Exemplary steps would be:

    • 1. Align the target LysM receptor amino acid sequence with one or more known LCO receptor sequences (See, e.g., FIGS. 8A-8C, FIGS. 9A-9B, FIGS. 10A-10B, FIGS. 11A-11B) to identify the sequence of the LysM1-3 domains in the target amino acid sequence.


Applying this step to the HvLysM-RLK2/37-247 sequence produced the following amino acid sequence:









>HvLysM-RLK2/37-247


(SEQ ID NO: 98)


SVEGENCSANGTYPCQAYALYRAGLAGVPPDLSAAGDLFGVSRFMLAHA





NNLSTSAAPAAGQPLLVPLQCGCPSGSPNAYAPTQYQISSGDTFWIVSV





TKLQNLTQYQAVERVNPTVVPTKLEVGDMVTFPIFCQCPTAAQNATALV





TYVMQQGDTYASIAAAFAVDAQSLVSLNGPEQGTQLFSEILVPLRRQVP





KWLPPIVTRNDASAT








    • 2. Use the LysM1-3 domain amino acid sequence as the input sequence to be modeled in an appropriate molecular modeling program such as SWISS-MODEL (Biasini 2014). SWISS-MODEL can be readily accessed at swissmodel.expasy.org under interactive #structure.

    • 3. Input the structural template to the molecular modelling program, for example from a structural coordinate file (e.g., a pdb format file).





The HvLysM-RLK2/37-247 LysM1-3 domain amino acid sequence was entered into SWISS-MODEL as was the Medicago NFP receptor ectodomain crystal structure .pdb file (the atomic coordinates are reproduced at the end of the specification). The SWISS-MODEL program was run by the command ‘Build Model’. The Medicago NFP receptor ectodomain crystal structure was chosen as it has a known hydrophobic patch. One of skill in the art can readily select others based upon the teachings in this specification.

    • 4. Optionally create an electrostatic surface potential of the target model and structurally align with a structure with chitin (or glycan) bound to the LysM2 domain to align the ligand binding grooves.


An electrostatic surface potential of the output target (.pdb) model generated with SWISS-MODEL was calculated using PDB2PQR & APBS webservers (PMID: 21425296) and visualized in PyMol using APBS tools 2.1 (DeLano, W. L. 2002). The AtCERK1 ectodomain structure (PDB coordinates 4EBZ) which has the chitin bound in the structure was aligned to the target model in PyMol. One of skill in the art would readily understand the position of the chitin binding domain as the LysM chitin binding motif is defined structurally in Liu et al. Science 2012 for AtCERK1. This aligned the chitin (C04) ligand in the LysM2 ligand binding groove of the target model. FIGS. 13A-13B show the PyMol visualization of the LysM1-3 domains of the HvLysM-RLK2/37-247 model with the LysM1, LysM2, and LysM3 domains labeled (FIG. 13A), and the electrostatic surface potential of the model with chitin modeled in the binding groove (FIG. 13B).

    • 5. Select the residues from the alignment in the target model that align with the known hydrophobic patch.


From the sequence alignment (1), structural alignment of the target model with the crystal structure of Medicago NFP and the electrostatic surface potential information (5) the hydrophobic patch was identified (with the placed chitin from AtCERK1 as reference for locating the CO binding groove as shown in (FIG. 13B). Hot-spot residues corresponding to the Medicago NFP ectodomain hydrophobic patch (L147, L151, L152, L154, T156, K157 and V158) were identified based on the amino acid being within 3 Å of an alpha carbon of a known hydrophobic patch amino acid residue (Medicago NFP L147, L151, L152, L154, T156, K157 and V158) in the structural alignment. As one of skill in the art would appreciate, residues like lysine (K) and arginine (R) that are not classically characterized as hydrophobic, do contain hydrophobic properties related to the Calpha, Cbeta, Cgamma, Cdelta and Cepsilon atoms that might be important for LCO binding, selectivity, promiscuity, stringency, and affinity and therefore are still potentially important (e.g., K157 of the Medicago NFP hydrophobic patch). The identified residues in the HvLysM-RLK2/37-247 model (bolded in FIG. 13C) can be mutated, preferably with additional modeling, to obtain engineered LCO binding, LCO/CO selectivity, LCO promiscuity, LCO stringency, LCO affinity. One of skill in the art would appreciate that similar structural modeling can be used to structurally align LysM1 domains to identify regions II and IV in order to substitute and alter specificity, affinity and selectivity of a target LysM receptor for an agonist.












The Medicago NFP ectodomain crystal structure





























LINK

C1
NAG A
2076

O4
NAG A
1076








LINK

C1
NAG A
2123

O4
NAG A
1123








LINK

C1
NAG A
2144

O4
NAG A
1144








LINK

C1
NAG A
2228

O4
NAG A
1228








LINK

C1
NAG A
1076

ND2
ASN A
76








LINK

C1
NAG A
1123

ND2
ASN A
123








LINK

C1
NAG A
1144

ND2
ASN A
144








LINK

C1
NAG A
1228

ND2
ASN A
228








SSBOND
  1
CYS A
 50
CYS A
115











SSBOND
  2
CYS A
 58
CYS A
177











SSBOND
  3
CYS A
113
CYS A
175











CRYST1
 77.410
98.160
 71.890
90.00
90.00
90.00
C
2
2
21






SCALE1
  0.012918
 0.000000
 0.000000
0.00000












SCALE2
  0.000000
 0.010187
 0.000000
0.00000












SCALE3
  0.000000
 0.000000
 0.013910
0.00000












ATOM
  1
N
SER A
44
47.490
34.635
22.387


1.00
132.78

A
N


ANISOU
  1
N
SER A
44
14506
18967
16976
−687
−2436


7410
A
N


ATOM
  2
CA
SER A
44
48.575
35.497
22.832


1.00
128.50

A
C


ANISOU
  2
CA
SER A
44
14079
17864
16882
−714
−2577


7389
A
C


ATOM
  3
C
SER A
44
49.218
34.959
24.094


1.00
121.82

A
C


ANISOU
  3
C
SER A
44
13323
16878
16087
−720
−2520


7111
A
C


ATOM
  4
O
SER A
44
50.272
34.341
24.053


1.00
114.50

A
O


ANISOU
  4
O
SER A
44
12311
16241
14951
−801
−2396


7114
A
O


ATOM
  5
CB
SER A
44
48.060
36.911
23.094


1.00
126.83

A
C


ANISOU
  5
CB
SER A
44
13992
17346
16852
−547
−2697


7268
A
C


ATOM
  6
OG
SER A
44
49.010
37.665
23.828


1.00
128.24

A
O


ANISOU
  6
OG
SER A
44
14237
17006
17480
−596
−2848


7359
A
O


ATOM
  7
N
GLU A
45
48.551
35.184
25.216


1.00
120.97

A
N


ANISOU
  7
N
GLU A
45
13377
16340
16246
−626
−2607


6862
A
N


ATOM
  8
CA
GLU A
45
49.040
34.751
26.516


1.00
122.62

A
C


ANISOU
  8
CA
GLU A
45
13672
16343
16575
−651
−2584


6624
A
C


ATOM
  9
C
GLU A
45
49.060
33.238
26.635


1.00
120.68

A
C


ANISOU
  9
C
GLU A
45
13458
16423
15972
−535
−2435


6316
A
C


ATOM
 10
O
GLU A
45
48.274
32.543
25.998


1.00
122.15

A
O


ANISOU
 10
O
GLU A
45
13634
16922
15853
−411
−2368


6224
A
O


ATOM
 11
CB
GLU A
45
48.163
35.326
27.628


1.00
121.51

A
C


ANISOU
 11
CB
GLU A
45
13688
15639
16840
−586
−2726


6442
A
C


ATOM
 12
CG
GLU A
45
48.212
36.836
27.755


1.00
127.27

A
C


ANISOU
 12
CG
GLU A
45
14403
15998
17957
−715
−2869


6708
A
C


ATOM
 13
CD
GLU A
45
49.555
37.327
28.243


1.00
132.32

A
C


ANISOU
 13
CD
GLU A
45
14930
16696
18650
−952
−2852


6959
A
C


ATOM
 14
OE1
GLU A
45
49.586
38.123
29.205


1.00
136.87

A
O


ANISOU
 14
OE1
GLU A
45
15373
17434
19196
−1069
−2872


7310
A
O


ATOM
 15
OE2
GLU A
45
50.579
36.907
27.669


1.00
131.61

A
O1−


ANISOU
 15
OE2
GLU A
45
14877
16507
18623
−1022
−2821


6805
A
O1−


ATOM
 16
N
THR A
46
49.991
32.743
27.440


1.00
124.90

A
N


ANISOU
 16
N
THR A
46
14032
16873
16550
−581
−2389


6151
A
N


ATOM
 17
CA
THR A
46
50.130
31.318
27.669


1.00
110.09

A
C


ANISOU
 17
CA
THR A
46
12173
15318
14337
−492
−2238


5885
A
C


ATOM
 18
C
THR A
46
49.107
30.887
28.697


1.00
103.70

A
C


ANISOU
 18
C
THR A
46
11505
14437
13459
−283
−2255


5524
A
C


ATOM
 19
O
THR A
46
49.388
30.892
29.895


1.00
100.49

A
O


ANISOU
 19
O
THR A
46
11098
14391
12694
−175
−2139


5343
A
O


ATOM
 20
CB
THR A
46
51.526
30.968
28.209


1.00
90.86

A
C


ANISOU
 20
CB
THR A
46
9735
12798
11989
−599
−2195


5824
A
C


ATOM
 21
OG1
THR A
46
51.550
29.598
28.624


1.00
82.38

A
O


ANISOU
 21
OG1
THR A
46
8675
12043
10583
−499
−2045


5566
A
O


ATOM
 22
CG2
THR A
46
51.868
31.850
29.398


1.00
77.97

A
C


ANISOU
 22
CG2
THR A
46
8237
10610
10779
−617
−2337


5681
A
C


ATOM
 23
N
ASN A
47
47.911
30.561
28.230


1.00
89.04

A
N


ANISOU
 23
N
ASN A
47
9765
12123
11942
−226
−2396


5399
A
N


ATOM
 24
CA
ASN A
47
46.844
30.100
29.104


1.00
83.06

A
C


ANISOU
 24
CA
ASN A
47
9114
11294
11149
−31
−2436


5105
A
C


ATOM
 25
C
ASN A
47
46.404
31.034
30.221


1.00
80.85

A
C


ANISOU
 25
C
ASN A
47
8941
10474
11302
9
−2591


5004
A
C


ATOM
 26
O
ASN A
47
46.004
32.161
29.974


1.00
86.84

A
O


ANISOU
 26
O
ASN A
47
9724
11126
12145
112
−2671


5008
A
O


ATOM
 27
CB
ASN A
47
47.083
28.674
29.595


1.00
84.42

A
C


ANISOU
 27
CB
ASN A
47
9345
11671
11058
72
−2332


4752
A
C


ATOM
 28
CG
ASN A
47
46.851
27.659
28.508


1.00
86.04

A
C


ANISOU
 28
CG
ASN A
47
9512
12360
10818
171
−2218


4673
A
C


ATOM
 29
OD1
ASN A
47
46.815
26.461
28.751


1.00
87.76

A
O


ANISOU
 29
OD1
ASN A
47
9702
12671
10972
219
−2256


4778
A
O


ATOM
 30
ND2
ASN A
47
46.678
28.143
27.293


1.00
88.00

A
N


ANISOU
 30
ND2
ASN A
47
9761
12911
10762
198
−2077


4483
A
N


ATOM
 31
N
PHE A
48
46.498
30.555
31.453


1.00
77.89

A
N


ANISOU
 31
N
PHE A
48
8628
9762
11206
−71
−2633


4906
A
N


ATOM
 32
CA
PHE A
48
45.991
31.292
32.602


1.00
75.80

A
C


ANISOU
 32
CA
PHE A
48
8491
9027
11281
11
−2743


4640
A
C


ATOM
 33
C
PHE A
48
46.493
32.702
32.781


1.00
86.98

A
C


ANISOU
 33
C
PHE A
48
9926
10018
13104
−64
−2869


4809
A
C


ATOM
 34
O
PHE A
48
47.684
32.980
32.841


1.00
94.16

A
O


ANISOU
 34
O
PHE A
48
10808
10921
14046
−4
−2923


4965
A
O


ATOM
 35
CB
PHE A
48
46.320
30.503
33.864


1.00
65.86

A
C


ANISOU
 35
CB
PHE A
48
7303
7645
10076
−14
−2713


4362
A
C


ATOM
 36
CG
PHE A
48
46.172
29.034
33.683


1.00
63.01

A
C


ANISOU
 36
CG
PHE A
48
6933
7684
9323
87
−2597


4158
A
C


ATOM
 37
CD2
PHE A
48
47.112
28.323
32.976


1.00
62.96

A
C


ANISOU
 37
CD2
PHE A
48
6835
8073
9013
6
−2469


4295
A
C


ATOM
 38
CD1
PHE A
48
45.066
28.381
34.164


1.00
60.68

A
C


ANISOU
 38
CD1
PHE A
48
6713
7401
8941
267
−2609


3827
A
C


ATOM
 39
CE2
PHE A
48
46.969
26.974
32.779


1.00
60.62

A
C


ANISOU
 39
CE2
PHE A
48
6536
8154
8341
108
−2350


4087
A
C


ATOM
 40
CE1
PHE A
48
44.914
27.031
33.971


1.00
58.32

A
C


ANISOU
 40
CE1
PHE A
48
6413
7479
8266
348
−2488


3607
A
C


ATOM
 41
CZ
PHE A
48
45.864
26.329
33.274


1.00
58.33

A
C


ANISOU
 41
CZ
PHE A
48
6338
7852
7972
270
−2349


3723
A
C


ATOM
 42
N
THR A
49
45.510
33.574
32.909


1.00
82.31

A
N


ANISOU
 42
N
THR A
49
9387
9064
12823
−188
−2920


4756
A
N


ATOM
 43
CA
THR A
49
45.676
34.992
33.123


1.00
98.91

A
C


ANISOU
 43
CA
THR A
49
11496
10792
15293
−304
−3029


4935
A
C


ATOM
 44
C
THR A
49
44.436
35.410
33.889


1.00
99.11

A
C


ANISOU
 44
C
THR A
49
11606
10480
15570
−157
−3127


4794
A
C


ATOM
 45
O
THR A
49
43.357
34.846
33.711


1.00
96.68

A
O


ANISOU
 45
O
THR A
49
11283
9961
15491
−209
−3212


5006
A
O


ATOM
 46
CB
THR A
49
45.709
35.771
31.797


1.00
109.76

A
C


ANISOU
 46
CB
THR A
49
12731
12391
16580
−449
−3025


5389
A
C


ATOM
 47
OG1
THR A
49
44.666
35.294
30.938


1.00
106.67

A
O


ANISOU
 47
OG1
THR A
49
12281
12270
15978
−332
−3012


5538
A
O


ATOM
 48
CG2
THR A
49
47.041
35.602
31.095


1.00
111.16

A
C


ANISOU
 48
CG2
THR A
49
12807
12921
16508
−598
−2915


5529
A
C


ATOM
 49
N
CYS A
50
44.549
36.431
34.711


1.00
92.80

A
N


ANISOU
 49
N
CYS A
50
10892
9630
14739
27
−3116


4435
A
N


ATOM
 50
CA
CYS A
50
43.388
36.843
35.468


1.00
92.80

A
C


ANISOU
 50
CA
CYS A
50
10978
9292
14991
171
−3192


4217
A
C


ATOM
 51
C
CYS A
50
42.305
37.431
34.561


1.00
97.62

A
C


ANISOU
 51
C
CYS A
50
11539
9963
15591
278
−3243


4441
A
C


ATOM
 52
O
CYS A
50
42.612
38.040
33.542


1.00
93.35

A
O


ANISOU
 52
O
CYS A
50
10906
9567
14996
182
−3258


4821
A
O


ATOM
 53
CB
CYS A
50
43.807
37.863
36.515


1.00
100.59

A
C


ANISOU
 53
CB
CYS A
50
12040
9808
16371
64
−3262


4119
A
C


ATOM
 54
SG
CYS A
50
42.820
37.796
38.012


1.00
113.19

A
S


ANISOU
 54
SG
CYS A
50
13708
11276
18022
−52
−3216


3794
A
S


ATOM
 55
N
PRO A
51
41.028
37.208
34.907


1.00
111.76

A
N


ANISOU
 55
N
PRO A
51
13379
11653
17432
474
−3270


4214
A
N


ATOM
 56
CA
PRO A
51
39.911
37.793
34.166


1.00
113.17

A
C


ANISOU
 56
CA
PRO A
51
13516
11829
17655
585
−3332


4416
A
C


ATOM
 57
C
PRO A
51
39.756
39.242
34.592


1.00
105.69

A
C


ANISOU
 57
C
PRO A
51
12623
10423
17113
568
−3426


4447
A
C


ATOM
 58
O
PRO A
51
39.514
39.517
35.764


1.00
98.68

A
O


ANISOU
 58
O
PRO A
51
11831
9213
16451
618
−3441


4121
A
O


ATOM
 59
CB
PRO A
51
38.718
36.977
34.648


1.00
118.11

A
C


ANISOU
 59
CB
PRO A
51
14160
12600
18115
806
−3308


4130
A
C


ATOM
 60
CG
PRO A
51
39.086
36.599
36.038


1.00
118.64

A
C


ANISOU
 60
CG
PRO A
51
14325
12479
18272
816
−3271


3702
A
C


ATOM
 61
CD
PRO A
51
40.568
36.342
36.004


1.00
117.49

A
C


ANISOU
 61
CD
PRO A
51
14183
12346
18114
611
−3232


3770
A
C


ATOM
 62
N
VAL A
52
39.897
40.159
33.645


1.00
116.60

A
N


ANISOU
 62
N
VAL A
52
13941
11785
18577
498
−3487


4833
A
N


ATOM
 63
CA
VAL A
52
39.805
41.578
33.949


1.00
117.67

A
C


ANISOU
 63
CA
VAL A
52
14126
11488
19094
454
−3580


4905
A
C


ATOM
 64
C
VAL A
52
38.391
42.137
33.940


1.00
122.26

A
C


ANISOU
 64
C
VAL A
52
14743
11887
19825
673
−3636


4811
A
C


ATOM
 65
O
VAL A
52
38.127
43.157
34.571


1.00
120.01

A
O


ANISOU
 65
O
VAL A
52
14537
11203
19857
700
−3691


4683
A
O


ATOM
 66
CB
VAL A
52
40.659
42.406
32.975


1.00
116.82

A
C


ANISOU
 66
CB
VAL A
52
13934
11432
19022
267
−3627


5366
A
C


ATOM
 67
CG1
VAL A
52
40.126
43.825
32.878


1.00
118.92

A
C


ANISOU
 67
CG1
VAL A
52
14256
11249
19680
218
−3730


5446
A
C


ATOM
 68
CG2
VAL A
52
42.116
42.396
33.409


1.00
109.61

A
C


ANISOU
 68
CG2
VAL A
52
12973
10720
17953
53
−3562


5448
A
C


ATOM
 69
N
ASP A
53
37.478
41.484
33.230


1.00
118.46

A
N


ANISOU
 69
N
ASP A
53
14200
11702
19106
835
−3620


4860
A
N


ATOM
 70
CA
ASP A
53
36.112
42.001
33.169


1.00
124.86

A
C


ANISOU
 70
CA
ASP A
53
15021
12394
20024
1052
−3671


4808
A
C


ATOM
 71
C
ASP A
53
35.126
41.211
34.021


1.00
117.67

A
C


ANISOU
 71
C
ASP A
53
14162
11498
19050
1236
−3622


4372
A
C


ATOM
 72
O
ASP A
53
33.916
41.293
33.794


1.00
110.53

A
O


ANISOU
 72
O
ASP A
53
13233
10639
18122
1433
−3644


4330
A
O


ATOM
 73
CB
ASP A
53
35.624
42.040
31.724


1.00
139.47

A
C


ANISOU
 73
CB
ASP A
53
16759
14568
21665
1114
−3699


5161
A
C


ATOM
 74
CG
ASP A
53
36.545
42.840
30.834


1.00
155.01

A
C


ANISOU
 74
CG
ASP A
53
18664
16546
23688
929
−3746


5602
A
C


ATOM
 75
OD1
ASP A
53
37.265
43.718
31.374


1.00
159.96

A
O


ANISOU
 75
OD1
ASP A
53
19345
16824
24608
799
−3791


5646
A
O


ATOM
 76
OD2
ASP A
53
36.550
42.588
29.603


1.00
160.52

A
O1−


ANISOU
 76
OD2
ASP A
53
19253
17611
24126
906
−3738


5895
A
O1−


ATOM
 77
N
SER A
54
35.610
40.452
34.990


1.00
120.11

A
N


ANISOU
 77
N
SER A
54
14531
11779
19326
1172
−3556


4053
A
N


ATOM
 78
CA
SER A
54
34.790
39.596
35.836


1.00
123.38

A
C


ANISOU
 78
CA
SER A
54
14987
12234
19659
1316
−3500


3629
A
C


ATOM
 79
C
SER A
54
35.259
39.713
37.272


1.00
125.41

A
C


ANISOU
 79
C
SER A
54
15348
12172
20129
1235
−3474


3284
A
C


ATOM
 80
O
SER A
54
36.319
40.283
37.552


1.00
125.91

A
O


ANISOU
 80
O
SER A
54
15445
12038
20357
1058
−3494


3378
A
O


ATOM
 81
CB
SER A
54
34.856
38.128
35.376


1.00
119.00

A
C


ANISOU
 81
CB
SER A
54
14380
12123
18712
1326
−3429


3574
A
C


ATOM
 82
OG
SER A
54
34.328
37.982
34.070


1.00
118.74

A
O


ANISOU
 82
OG
SER A
54
14247
12423
18445
1404
−3447


3853
A
O


ATOM
 83
N
PRO A
55
34.482
39.189
38.219


1.00
130.50

A
N


ANISOU
 83
N
PRO A
55
16040
12781
20764
1353
−3428


2874
A
N


ATOM
 84
CA
PRO A
55
34.996
39.044
39.577


1.00
129.39

A
C


ANISOU
 84
CA
PRO A
55
15988
12434
20741
1257
−3383


2517
A
C


ATOM
 85
C
PRO A
55
36.197
38.126
39.585


1.00
123.67

A
C


ANISOU
 85
C
PRO A
55
15261
11884
19842
1090
−3336


2530
A
C


ATOM
 86
O
PRO A
55
36.288
37.184
38.775


1.00
126.40

A
O


ANISOU
 86
O
PRO A
55
15546
12573
19906
1106
−3308


2660
A
O


ATOM
 87
CB
PRO A
55
33.813
38.431
40.342


1.00
128.42

A
C


ANISOU
 87
CB
PRO A
55
15885
12361
20548
1424
−3330


2112
A
C


ATOM
 88
CG
PRO A
55
32.901
37.892
39.286


1.00
128.89

A
C


ANISOU
 88
CG
PRO A
55
15858
12736
20380
1582
−3339


2264
A
C


ATOM
 89
CD
PRO A
55
33.062
38.817
38.131


1.00
130.49

A
C


ANISOU
 89
CD
PRO A
55
16004
12921
20654
1573
−3416


2719
A
C


ATOM
 90
N
PRO A
56
37.157
38.366
40.475


1.00
118.72

A
N


ANISOU
 90
N
PRO A
56
14695
11054
19359
929
−3325


2403
A
N


ATOM
 91
CA
PRO A
56
38.400
37.588
40.446


1.00
108.59

A
C


ANISOU
 91
CA
PRO A
56
13402
9928
17929
763
−3286


2460
A
C


ATOM
 92
C
PRO A
56
38.343
36.302
41.258


1.00
102.85

A
C


ANISOU
 92
C
PRO A
56
12713
9342
17023
789
−3204


2076
A
C


ATOM
 93
O
PRO A
56
39.000
35.326
40.882


1.00
101.03

A
O


ANISOU
 93
O
PRO A
56
12454
9360
16571
734
−3165


2148
A
O


ATOM
 94
CB
PRO A
56
39.426
38.573
41.013


1.00
106.15

A
C


ANISOU
 94
CB
PRO A
56
13131
9329
17871
577
−3322


2519
A
C


ATOM
 95
CG
PRO A
56
38.631
39.431
41.954


1.00
108.06

A
C


ANISOU
 95
CG
PRO A
56
13441
9272
18345
663
−3339


2249
A
C


ATOM
 96
CD
PRO A
56
37.222
39.496
41.421


1.00
113.49

A
C


ANISOU
 96
CD
PRO A
56
14102
10022
18998
884
−3355


2260
A
C


ATOM
 97
N
SER A
57
37.572
36.266
42.350


1.00
94.60

A
N


ANISOU
 97
N
SER A
57
11727
8168
16048
871
−3171


1675
A
N


ATOM
 98
CA
SER A
57
37.539
35.116
43.241


1.00
87.59

A
C


ANISOU
 98
CA
SER A
57
10879
7404
15000
875
−3089


1290
A
C


ATOM
 99
C
SER A
57
36.227
34.364
43.073


1.00
79.26

A
C


ANISOU
 99
C
SER A
57
9804
6543
13768
1064
−3061


1108
A
C


ATOM
 100
O
SER A
57
35.162
34.981
42.975


1.00
89.94

A
O


ANISOU
 100
O
SER A
57
11141
7819
15214
1193
−3089


1097
A
O


ATOM
 101
CB
SER A
57
37.710
35.542
44.692


1.00
91.40

A
C


ANISOU
 101
CB
SER A
57
11426
7674
15629
798
−3052


955
A
C


ATOM
 102
OG
SER A
57
38.093
34.435
45.490


1.00
92.41

A
O


ANISOU
 102
OG
SER A
57
11581
7949
15581
742
−2969


660
A
O


ATOM
 103
N
CYS A
58
36.357
33.055
42.866


1.00
68.90

A
N


ANISOU
 103
N
CYS A
58
8492
5487
12201
1080
−3006


961
A
N


ATOM
 104
CA
CYS A
58
35.226
32.186
42.590


1.00
72.63

A
C


ANISOU
 104
CA
CYS A
58
8925
6227
12445
1243
−2991


883
A
C


ATOM
 105
C
CYS A
58
35.514
30.734
42.965


1.00
61.26

A
C


ANISOU
 105
C
CYS A
58
7515
5006
10756
1224
−2921


627
A
C


ATOM
 106
O
CYS A
58
36.592
30.418
43.450


1.00
56.36

A
O


ANISOU
 106
O
CYS A
58
6931
4354
10129
1096
−2892


599
A
O


ATOM
 107
CB
CYS A
58
34.888
32.277
41.093


1.00
85.20

A
C


ANISOU
 107
CB
CYS A
58
10428
8024
13921
1304
−3045


1309
A
C


ATOM
 108
SG
CYS A
58
35.994
31.399
39.947


1.00
103.73

A
S


ANISOU
 108
SG
CYS A
58
12751
10337
16325
1115
−3076


1740
A
S


ATOM
 109
N
GLU A
59
34.539
29.858
42.742


1.00
60.93

A
N


ANISOU
 109
N
GLU A
59
7452
5194
10503
1352
−2896


445
A
N


ATOM
 110
CA
GLU A
59
34.692
28.438
43.035


1.00
52.11

A
C


ANISOU
 110
CA
GLU A
59
6368
4304
9129
1349
−2831


184
A
C


ATOM
 111
C
GLU A
59
34.633
27.639
41.738


1.00
47.29

A
C


ANISOU
 111
C
GLU A
59
5684
4068
8215
1420
−2850


397
A
C


ATOM
 112
O
GLU A
59
33.701
27.807
40.946


1.00
52.46

A
O


ANISOU
 112
O
GLU A
59
6268
4876
8788
1525
−2886


529
A
O


ATOM
 113
CB
GLU A
59
33.606
27.967
44.008


1.00
46.43

A
C


ANISOU
 113
CB
GLU A
59
5685
3598
8360
1403
−2773


−244
A
C


ATOM
 114
CG
GLU A
59
33.389
28.875
45.241


1.00
60.21

A
C


ANISOU
 114
CG
GLU A
59
7464
5073
10340
1334
−2749


−438
A
C


ATOM
 115
CD
GLU A
59
34.557
28.856
46.271


1.00
75.79

A
C


ANISOU
 115
CD
GLU A
59
9490
6941
12367
1157
−2689


−564
A
C


ATOM
 116
OE1
GLU A
59
35.364
27.889
46.275


1.00
76.96

A
O


ANISOU
 116
OE1
GLU A
59
9668
7219
12355
1097
−2646


−613
A
O


ATOM
 117
OE2
GLU A
59
34.659
29.813
47.091


1.00
79.30

A
O1−


ANISOU
 117
OE2
GLU A
59
9937
7199
12994
1089
−2680


−609
A
O1−


ATOM
 118
N
THR A
60
35.623
26.779
41.521


1.00
45.71

A
N


ANISOU
 118
N
THR A
60
5493
4048
7825
1355
−2822


430
A
N


ATOM
 119
CA
THR A
60
35.731
26.019
40.266


1.00
52.03

A
C


ANISOU
 119
CA
THR A
60
6231
5286
8252
1352
−2770


620
A
C


ATOM
 120
C
THR A
60
36.275
24.623
40.587


1.00
42.81

A
C


ANISOU
 120
C
THR A
60
5128
4362
6776
1277
−2612


345
A
C


ATOM
 121
O
THR A
60
36.201
24.161
41.730


1.00
40.64

A
O


ANISOU
 121
O
THR A
60
4934
3952
6555
1266
−2565


−14
A
O


ATOM
 122
CB
THR A
60
36.581
26.793
39.229


1.00
48.35

A
C


ANISOU
 122
CB
THR A
60
5689
4858
7824
1278
−2816


1111
A
C


ATOM
 123
OG1
THR A
60
36.518
26.138
37.954


1.00
48.75

A
O


ANISOU
 123
OG1
THR A
60
5668
5355
7499
1287
−2764


1294
A
O


ATOM
 124
CG2
THR A
60
38.024
26.915
39.669


1.00
47.96

A
C


ANISOU
 124
CG2
THR A
60
5677
4680
7865
1117
−2761


1178
A
C


ATOM
 125
N
THR A
61
36.793
23.927
39.578


1.00
42.76

A
N


ANISOU
 125
N
THR A
61
5085
4722
6440
1233
−2528


506
A
N


ATOM
 126
CA
THR A
61
37.179
22.539
39.764


1.00
40.22

A
C


ANISOU
 126
CA
THR A
61
4826
4648
5808
1190
−2378


243
A
C


ATOM
 127
C
THR A
61
38.529
22.289
39.110


1.00
40.64

A
C


ANISOU
 127
C
THR A
61
4849
4896
5696
1087
−2289


482
A
C


ATOM
 128
O
THR A
61
38.967
23.032
38.240


1.00
43.93

A
O


ANISOU
 128
O
THR A
61
5181
5363
6147
1056
−2338


866
A
O


ATOM
 129
CB
THR A
61
36.124
21.571
39.203


1.00
39.50

A
C


ANISOU
 129
CB
THR A
61
4734
4882
5394
1272
−2342


75
A
C


ATOM
 130
CG
THR A
61
34.859
21.547
40.017


1.00
42.21

A
C


ANISOU
 130
CG
THR A
61
5109
5074
5854
1360
−2400


−233
A
C


ATOM
 131
CD1
THR A
61
33.833
22.463
39.791


1.00
48.15

A
C


ANISOU
 131
CD1
THR A
61
5789
5717
6788
1464
−2533


−114
A
C


ATOM
 132
CD2
THR A
61
34.690
20.619
41.019


1.00
43.46

A
C


ANISOU
 132
CD2
THR A
61
5362
5206
5945
1343
−2321


−634
A
C


ATOM
 133
CE1
THR A
61
32.667
22.448
40.565


1.00
50.86

A
C


ANISOU
 133
CE1
THR A
61
6149
5938
7239
1554
−2580


−403
A
C


ATOM
 134
CE2
THR A
61
33.542
20.594
41.797


1.00
42.89

A
C


ANISOU
 134
CE2
THR A
61
5309
5015
5972
1416
−2369


−917
A
C


ATOM
 135
CZ
THR A
61
32.535
21.497
41.581


1.00
48.98

A
C


ANISOU
 135
CZ
THR A
61
6003
5690
6918
1523
−2494


−811
A
C


ATOM
 136
OH
THR A
61
31.418
21.414
42.405


1.00
45.79

A
O


ANISOU
 136
OH
THR A
61
5609
5189
6600
1599
−2529


−1112
A
O


ATOM
 137
N
VAL A
62
39.182
21.228
39.552


1.00
38.47

A
N


ANISOU
 137
N
VAL A
62
4641
4735
5242
1038
−2156


254
A
N


ATOM
 138
CA
VAL A
62
40.508
20.850
39.098


1.00
38.61

A
C


ANISOU
 138
CA
VAL A
62
4633
4942
5096
953
−2050


421
A
C


ATOM
 139
C
VAL A
62
40.444
19.365
38.774


1.00
43.15

A
C


ANISOU
 139
C
VAL A
62
5257
5854
5282
986
−1909


191
A
C


ATOM
 140
O
VAL A
62
39.796
18.599
39.494


1.00
42.73

A
O


ANISOU
 140
O
VAL A
62
5294
5762
5178
1025
−1878


−168
A
O


ATOM
 141
CB
VAL A
62
41.567
21.143
40.184


1.00
37.82

A
C


ANISOU
 141
CB
VAL A
62
4566
4571
5233
852
−2033


371
A
C


ATOM
 142
CG1
VAL A
62
42.600
20.052
40.238


1.00
36.37

A
C


ANISOU
 142
CG1
VAL A
62
4406
4604
4808
806
−1876


275
A
C


ATOM
 143
CG2
VAL A
62
42.195
22.513
39.992


1.00
40.26

A
C


ANISOU
 143
CG2
VAL A
62
4800
4674
5823
772
−2134


742
A
C


ATOM
 144
N
ALA A
63
41.084
18.943
37.689


1.00
37.91

A
N


ANISOU
 144
N
ALA A
63
4540
5523
4340
971
−1824


389
A
N


ATOM
 145
CA
ALA A
63
40.997
17.540
37.298


1.00
36.64

A
C


ANISOU
 145
CA
ALA A
63
4436
5679
3807
1009
−1691


167
A
C


ATOM
 146
C
ALA A
63
42.219
16.762
37.774


1.00
35.29

A
C


ANISOU
 146
C
ALA A
63
4308
5545
3554
965
−1551


55
A
C


ATOM
 147
O
ALA A
63
43.356
17.193
37.580


1.00
36.35

A
O


ANISOU
 147
O
ALA A
63
4370
5696
3743
903
−1522


305
A
O


ATOM
 148
CB
ALA A
63
40.833
17.397
35.785


1.00
38.60

A
C


ANISOU
 148
CB
ALA A
63
4606
6310
3750
1036
−1670


399
A
C


ATOM
 149
N
THR A
64
41.975
15.599
38.362


1.00
33.11

A
N


ANISOU
 149
N
THR A
64
4144
5295
3141
997
−1464


−309
A
N


ATOM
 150
CA
THR A
64
42.981
14.803
39.034


1.00
31.59

A
C


ANISOU
 150
CA
THR A
64
4008
5088
2906
973
−1342


−467
A
C


ATOM
 151
C
THR A
64
42.871
13.361
38.587


1.00
30.73

A
C


ANISOU
 151
C
THR A
64
3980
5258
2440
1031
−1207


−692
A
C


ATOM
 152
O
THR A
64
41.800
12.882
38.238


1.00
36.32

A
O


ANISOU
 152
O
THR A
64
4739
6072
2988
1075
−1224


−850
A
O


ATOM
 153
CB
THR A
64
42.805
14.863
40.542


1.00
29.64

A
C


ANISOU
 153
CB
THR A
64
3839
4503
2920
944
−1384


−725
A
C


ATOM
 154
CG
THR A
64
44.008
14.414
41.308


1.00
28.55

A
C


ANISOU
 154
CG
THR A
64
3724
4304
2819
898
−1291


−793
A
C


ATOM
 155
CD1
THR A
64
44.259
13.067
41.527


1.00
27.03

A
C


ANISOU
 155
CD1
THR A
64
3620
4244
2407
937
−1161


−1041
A
C


ATOM
 156
CD2
THR A
64
44.907
15.346
41.830


1.00
29.18

A
C


ANISOU
 156
CD2
THR A
64
3736
4188
3161
814
−1339


−603
A
C


ATOM
 157
CE1
THR A
64
45.391
12.666
42.225


1.00
26.20

A
C


ANISOU
 157
CE1
THR A
64
3523
4091
2341
905
−1079


−1082
A
C


ATOM
 158
CE2
THR A
64
46.007
14.952
42.521


1.00
28.32

A
C


ANISOU
 158
CE2
THR A
64
3633
4046
3081
768
−1260


−652
A
C


ATOM
 159
CZ
THR A
64
46.254
13.613
42.720


1.00
26.82

A
C


ANISOU
 159
CZ
THR A
64
3520
4002
2670
820
−1130


−886
A
C


ATOM
 160
OH
THR A
64
47.381
13.238
43.420


1.00
26.12

A
O


ANISOU
 160
OH
THR A
64
3425
3884
2617
783
−1055


−914
A
O


ATOM
 161
N
ARG A
65
43.984
12.662
38.620


1.00
30.38

A
N


ANISOU
 161
N
ARG A
65
3946
5323
2273
1031
−1075


−710
A
N


ATOM
 162
CA
ARG A
65
44.068
11.316
38.084


1.00
33.86

A
C


ANISOU
 162
CA
ARG A
65
4446
5955
2464
1054
−889


−855
A
C


ATOM
 163
C
ARG A
65
44.681
10.402
39.134


1.00
41.31

A
C


ANISOU
 163
C
ARG A
65
5451
6680
3567
1006
−743


−1025
A
C


ATOM
 164
O
ARG A
65
45.781
10.668
39.626


1.00
51.64

A
O


ANISOU
 164
O
ARG A
65
6736
8007
4877
1031
−767


−989
A
O


ATOM
 165
CB
ARG A
65
44.889
11.309
36.788


1.00
42.50

A
C


ANISOU
 165
CB
ARG A
65
5448
7410
3290
1089
−824


−606
A
C


ATOM
 166
CG
ARG A
65
44.085
11.668
35.528


1.00
34.03

A
C


ANISOU
 166
CG
ARG A
65
4317
6541
2072
1091
−869


−439
A
C


ATOM
 167
CD
ARG A
65
44.997
12.183
34.411


1.00
40.56

A
C


ANISOU
 167
CD
ARG A
65
5004
7694
2713
1101
−856


−77
A
C


ATOM
 168
NE
ARG A
65
44.226
12.503
33.222


1.00
52.64

A
N


ANISOU
 168
NE
ARG A
65
6475
9397
4128
1085
−889


83
A
N


ATOM
 169
CZ
ARG A
65
43.484
11.604
32.576


1.00
68.98

A
C


ANISOU
 169
CZ
ARG A
65
8607
11503
6098
1066
−780


−102
A
C


ATOM
 170
NH1
ARG A
65
43.423
10.355
33.030


1.00
66.13

A
N1+


ANISOU
 170
NH1
ARG A
65
8358
10972
5797
1048
−639


−406
A
N1+


ATOM
 171
NH2
ARG A
65
42.794
11.941
31.489


1.00
79.93

A
N


ANISOU
 171
NH2
ARG A
65
9933
13063
7371
1049
−822


48
A
N


ATOM
 172
N
ALA A
66
43.962
9.339
39.487


1.00
43.87

A
N


ANISOU
 172
N
ALA A
66
7435
3386
5848
−754
216


−677
A
N


ATOM
 173
CA
ALA A
66
44.450
8.408
40.490


1.00
45.88

A
C


ANISOU
 173
CA
ALA A
66
7716
3568
6149
−692
181


−669
A
C


ATOM
 174
C
ALA A
66
45.790
7.821
40.058


1.00
53.76

A
C


ANISOU
 174
C
ALA A
66
8782
4455
7189
−527
228


−711
A
C


ATOM
 175
O
ALA A
66
45.982
7.460
38.893


1.00
59.13

A
O


ANISOU
 175
O
ALA A
66
9596
5089
7780
−507
285


−769
A
O


ATOM
 176
CB
ALA A
66
43.419
7.300
40.716


1.00
40.04

A
C


ANISOU
 176
CB
ALA A
66
7103
2812
5296
−851
128


−672
A
C


ATOM
 177
N
GLN A
67
46.727
7.818
41.001


1.00
47.91

A
N


ANISOU
 177
N
GLN A
67
7951
3671
6580
−404
204


−680
A
N


ATOM
 178
CA
GLN A
67
48.086
7.348
40.794


1.00
44.34

A
C


ANISOU
 178
CA
GLN A
67
7515
3123
6210
−232
245


−700
A
C


ATOM
 179
C
GLN A
67
48.243
5.998
41.449


1.00
47.46

A
C


ANISOU
 179
C
GLN A
67
8003
3422
6607
−216
207


−720
A
C


ATOM
 180
O
GLN A
67
47.653
5.733
42.485


1.00
39.50

A
O


ANISOU
 18C
O
GLN A
67
6979
2427
5604
−294
142


−686
A
O


ATOM
 181
CB
GLN A
67
49.094
8.336
41.366


1.00
42.20

A
C


ANISOU
 181
CB
GLN A
67
7045
2866
6123
−99
227


−639
A
C


ATOM
 182
CG
GLN A
67
49.000
9.737
40.786


1.00
50.85

A
C


ANISOU
 182
CG
GLN A
67
8037
4032
7251
−84
266


−605
A
C


ATOM
 183
CD
GLN A
67
49.956
10.708
41.451


1.00
62.56

A
C


ANISOU
 183
CD
GLN A
67
9331
5516
8923
40
195


−528
A
C


ATOM
 184
OE1
GLN A
67
51.122
10.392
41.671


1.00
75.67

A
O


ANISOU
 184
OE1
GLN A
67
10969
7105
10678
181
192


−508
A
O


ATOM
 185
NE2
GLN A
67
49.466
11.894
41.773


1.00
61.83

A
N


ANISOU
 185
NE2
GLN A
67
9119
5501
8872
−10
118


−484
A
N


ATOM
 186
N
SER A
68
49.053
5.149
40.837


1.00
58.67

A
N


ANISOU
 186
N
SER A
68
9521
4740
8029
−95
260


−768
A
N


ATOM
 187
CA
SER A
68
49.216
3.783
41.301


1.00
67.34

A
C


ANISOU
 187
CA
SER A
68
10770
5724
9091
−86
238


−810
A
C


ATOM
 188
C
SER A
68
49.768
3.559
42.702


1.00
61.51

A
C


ANISOU
 188
C
SER A
68
9951
4947
8473
−67
167


−760
A
C


ATOM
 189
O
SER A
68
49.242
2.730
43.436


1.00
71.08

A
O


ANISOU
 189
O
SER A
68
11287
6096
9624
−145
124


−771
A
O


ATOM
 190
CB
SER A
68
50.118
3.031
40.314


1.00
78.31

A
C


ANISOU
 190
CB
SER A
68
12272
7013
10471
78
326


−874
A
C


ATOM
 191
OG
SER A
68
49.957
3.503
38.985


1.00
76.80

A
O


ANISOU
 191
OG
SER A
68
12219
6837
10123
59
405


−934
A
O


ATOM
 192
N
PRO A
69
50.846
4.252
43.073


1.00
60.66

A
N


ANISOU
 192
N
PRO A
69
9651
4861
8538
31
146


−703
A
N


ATOM
 193
CA
PRO A
69
51.344
3.980
44.427


1.00
52.69

A
C


ANISOU
 193
CA
PRO A
69
8586
3813
7619
31
83


−658
A
C


ATOM
 194
C
PRO A
69
50.578
4.510
45.650


1.00
51.56

A
C


ANISOU
 194
C
PRO A
69
8364
3770
7455
−79
37


−601
A
C


ATOM
 195
O
PRO A
69
50.237
3.724
46.522


1.00
44.25

A
O


ANISOU
 195
O
PRO A
69
7544
2839
6429
−190
8


−588
A
O


ATOM
 196
CB
PRO A
69
52.747
4.602
44.414


1.00
53.75

A
C


ANISOU
 196
CB
PRO A
69
8572
3895
7955
199
85


−630
A
C


ATOM
 197
CG
PRO A
69
53.025
4.983
42.997


1.00
54.85

A
C


ANISOU
 197
CG
PRO A
69
8614
4104
8122
255
112


−622
A
C


ATOM
 198
CD
PRO A
69
51.701
5.188
42.339


1.00
53.14

A
C


ANISOU
 198
CD
PRO A
69
8557
3927
7704
168
180


−680
A
C


ATOM
 199
N
ASN A
70
50.243
5.796
45.681


1.00
47.40

A
N


ANISOU
 199
N
ASN A
70
7668
3328
7013
−47
32


−566
A
N


ATOM
 200
CA
ASN A
70
49.609
6.362
46.872


1.00
49.75

A
C


ANISOU
 200
CA
ASN A
70
7881
3701
7321
−98
−3


−516
A
C


ATOM
 201
C
ASN A
70
48.268
7.030
46.712


1.00
53.44

A
C


ANISOU
 201
C
ASN A
70
8381
4272
7652
−228
−5


−513
A
C


ATOM
 202
O
ASN A
70
47.674
7.441
47.696


1.00
56.95

A
O


ANISOU
 202
O
ASN A
70
8798
4768
8073
−269
−30


−477
A
O


ATOM
 203
CB
ASN A
70
50.524
7.421
47.486


1.00
53.92

A
C


ANISOU
 203
CB
ASN A
70
8208
4249
8029
6
−1


−478
A
C


ATOM
 204
CG
ASN A
70
51.985
7.063
47.395


1.00
55.37

A
C


ANISOU
 204
CG
ASN A
70
8333
4348
8359
128
18


−460
A
C


ATOM
 205
OD1
ASN A
70
52.468
6.200
48.114


1.00
56.47

A
O


ANISOU
 205
OD1
ASN A
70
8371
4503
8583
220
23


−446
A
O


ATOM
 206
ND2
ASN A
70
52.703
7.748
46.521


1.00
51.47

A
N


ANISOU
 206
ND2
ASN A
70
7917
3766
7875
132
15


−451
A
N


ATOM
 207
N
PHE A
71
47.784
7.148
45.491


1.00
58.34

A
N


ANISOU
 207
N
PHE A
71
9064
4922
8181
−289
28


−548
A
N


ATOM
 208
CA
PHE A
71
46.544
7.868
45.272


1.00
43.36

A
C


ANISOU
 208
CA
PHE A
71
7151
3129
6195
−403
32


−536
A
C


ATOM
 209
C
PHE A
71
45.328
7.092
44.798


1.00
41.88

A
C


ANISOU
 209
C
PHE A
71
7120
2944
5848
−559
47


−559
A
C


ATOM
 210
O
PHE A
71
44.518
7.608
44.047


1.00
45.19

A
O


ANISOU
 210
O
PHE A
71
7546
3425
6200
−639
71


−574
A
O


ATOM
 211
CB
PHE A
71
46.809
9.130
44.466


1.00
34.21

A
C


ANISOU
 211
CB
PHE A
71
5866
2022
5109
−340
51


−538
A
C


ATOM
 212
CG
PHE A
71
47.746
10.073
45.156


1.00
45.20

A
C


ANISOU
 212
CG
PHE A
71
7083
3419
6672
−221
12


−500
A
C


ATOM
 213
CD2
PHE A
71
49.109
9.890
45.083


1.00
44.16

A
C


ANISOU
 213
CD2
PHE A
71
6874
3215
6690
−86
4


−493
A
C


ATOM
 214
CD1
PHE A
71
47.262
11.114
45.916


1.00
53.96

A
C


ANISOU
 214
CD1
PHE A
71
8111
4595
7796
−247
−14


−472
A
C


ATOM
 215
CE2
PHE A
71
49.972
10.745
45.730


1.00
37.67

A
C


ANISOU
 215
CE2
PHE A
71
5874
2435
6005
−1
−10


−438
A
C


ATOM
 216
CE1
PHE A
71
48.121
11.975
46.567


1.00
39.41

A
C


ANISOU
 216
CE1
PHE A
71
6117
2756
6100
−147
−18


−441
A
C


ATOM
 217
CZ
PHE A
71
49.478
11.792
46.473


1.00
28.09

A
C


ANISOU
 217
CZ
PHE A
71
4595
1302
4774
−39
17


−413
A
C


ATOM
 218
N
LEU A
72
45.232
5.836
45.207


1.00
39.64

A
N


ANISOU
 218
N
LEU A
72
6964
2591
5508
−617
23


−553
A
N


ATOM
 219
CA
LEU A
72
44.085
5.014
44.845


1.00
43.24

A
C


ANISOU
 219
CA
LEU A
72
7562
3038
5828
−789
9


−555
A
C


ATOM
 220
C
LEU A
72
42.904
5.133
45.806


1.00
51.37

A
C


ANISOU
 220
C
LEU A
72
8597
4125
6795
−935
−14


−486
A
C


ATOM
 221
O
LEU A
72
41.952
4.360
45.674


1.00
66.20

A
O


ANISOU
 221
O
LEU A
72
10584
5988
8581
−1094
−38


−466
A
O


ATOM
 222
CB
LEU A
72
44.480
3.539
44.769


1.00
44.76

A
C


ANISOU
 222
CB
LEU A
72
7911
3100
5997
−781
−14


−583
A
C


ATOM
 223
CG
LEU A
72
45.483
3.108
43.701


1.00
42.58

A
C


ANISOU
 223
CG
LEU A
72
7693
2741
5746
−660
17


−659
A
C


ATOM
 224
CD1
LEU A
72
45.339
3.996
42.513


1.00
42.61

A
C


ANISOU
 224
CD1
LEU A
72
7659
2816
5716
−656
64


−695
A
C


ATOM
 225
CD2
LEU A
72
46.868
3.189
44.234


1.00
53.14

A
C


ANISOU
 225
CD2
LEU A
72
8941
4026
7224
−480
30


−656
A
C


ATOM
 226
N
SER A
73
42.930
6.042
46.782


1.00
46.27

A
N


ANISOU
 226
N
SER A
73
7851
3536
6194
−889
−10


−445
A
N


ATOM
 227
CA
SER A
73
41.781
6.273
47.641


1.00
32.79

A
C


ANISOU
 227
CA
SER A
73
6164
1882
4411
−1025
−12


−380
A
C


ATOM
 228
C
SER A
73
41.442
7.750
47.627


1.00
33.18

A
C


ANISOU
 228
C
SER A
73
6083
2038
4487
−1009
13


−375
A
C


ATOM
 229
O
SER A
73
42.331
8.610
47.605


1.00
38.74

A
O


ANISOU
 229
O
SER A
73
6677
2752
5289
−855
11


−403
A
O


ATOM
 230
CB
SER A
73
42.029
5.826
49.083


1.00
46.84

A
C


ANISOU
 230
CB
SER A
73
8013
3601
6182
−996
−34


−330
A
C


ATOM
 231
OG
SER A
73
42.698
6.829
49.822


1.00
44.92

A
O


ANISOU
 231
OG
SER A
73
7676
3381
6010
−853
−38


−332
A
O


ATOM
 232
N
LEU A
74
40.142
8.039
47.658


1.00
31.62

A
N


ANISOU
 232
N
LEU A
74
5888
1915
4210
−1178
32


−333
A
N


ATOM
 233
CA
LEU A
74
39.715
9.428
47.794


1.00
35.61

A
C


ANISOU
 233
CA
LEU A
74
6284
2512
4736
−1174
58


−325
A
C


ATOM
 234
C
LEU A
74
40.224
10.065
49.090


1.00
42.75

A
C


ANISOU
 234
C
LEU A
74
7185
3385
5672
−1044
51


−314
A
C


ATOM
 235
O
LEU A
74
40.401
11.288
49.154


1.00
46.89

A
O


ANISOU
 235
O
LEU A
74
7613
3947
6255
−954
49


−336
A
O


ATOM
 236
CB
LEU A
74
38.196
9.519
47.730


1.00
40.21

A
C


ANISOU
 236
CB
LEU A
74
6860
3183
5234
−1399
87


−265
A
C


ATOM
 237
CG
LEU A
74
37.577
9.108
46.405


1.00
48.99

A
C


ANISOU
 237
CG
LEU A
74
7952
4346
6317
−1533
69


−274
A
C


ATOM
 238
CD1
LEU A
74
36.079
9.229
46.463


1.00
50.42

A
C


ANISOU
 238
CD1
LEU A
74
8075
4640
6441
−1761
85


−190
A
C


ATOM
 239
CD2
LEU A
74
38.126
9.994
45.296


1.00
60.72

A
C


ANISOU
 239
CD2
LEU A
74
9341
5867
7862
−1430
71


−341
A
C


ATOM
 240
N
SER A
75
40.437
9.276
50.151


1.00
44.10

A
N


ANISOU
 240
N
SER A
75
7473
3480
5801
−1033
36


−280
A
N


ATOM
 241
CA
SER A
75
40.966
9.877
51.376


1.00
41.91

A
C


ANISOU
 241
CA
SER A
75
7217
3169
5539
−899
12


−275
A
C


ATOM
 242
C
SER A
75
42.369
10.426
51.139


1.00
44.10

A
C


ANISOU
 242
C
SER A
75
7359
3431
5964
−692
−38


−329
A
C


ATOM
 243
O
SER A
75
42.684
11.551
51.550


1.00
37.81

A
O


ANISOU
 243
O
SER A
75
6487
2656
5224
−581
−66


−346
A
O


ATOM
 244
CB
SER A
75
40.943
8.876
52.533


1.00
46.11

A
C


ANISOU
 244
CB
SER A
75
7916
3618
5984
−935
1


−218
A
C


ATOM
 245
OG
SER A
75
41.528
7.639
52.175


1.00
58.18

A
O


ANISOU
 245
OG
SER A
75
9479
5083
7542
−933
−27


−225
A
O


ATOM
 246
N
ASN A
76
43.189
9.688
50.377


1.00
47.35

A
N


ANISOU
 246
N
ASN A
76
7735
3808
6448
−649
−46


−355
A
N


ATOM
 247
CA
ASN A
76
44.579
10.085
50.134


1.00
41.60

A
C


ANISOU
 247
CA
ASN A
76
6872
3057
5876
−482
−71


−387
A
C


ATOM
 248
C
ASN A
76
44.683
11.368
49.298


1.00
33.03

A
C


ANISOU
 248
C
ASN A
76
5633
2037
4880
−434
−62


−411
A
C


ATOM
 249
O
ASN A
76
45.577
12.195
49.541


1.00
30.27

A
O


ANISOU
 249
O
ASN A
76
5160
1685
4656
−312
−78


−415
A
O


ATOM
 250
CB
ASN A
76
45.338
8.922
49.492


1.00
40.88

A
C


ANISOU
 250
CB
ASN A
76
6812
2897
5826
−461
−63


−406
A
C


ATOM
 251
CG
ASN A
76
45.993
8.026
50.530


1.00
55.01

A
C


ANISOU
 251
CG
ASN A
76
8677
4600
7623
−414
−93


−383
A
C


ATOM
 252
OD1
ASN A
76
45.516
7.922
51.650


1.00
60.05

A
O


ANISOU
 252
OD1
ASN A
76
9411
5229
8174
−451
−117


−345
A
O


ATOM
 253
ND2
ASN A
76
47.101
7.390
50.164


1.00
68.33

A
N


ANISOU
 253
ND2
ASN A
76
10337
6217
9410
−331
−90


−403
A
N


ATOM
 254
N
ILE A
77
43.795
11.546
48.305


1.00
30.11

A
N


ANISOU
 254
N
ILE A
77
5270
1723
4449
−542
−29


−421
A
N


ATOM
 255
CA
ILE A
77
43.771
12.767
47.488


1.00
26.61

A
C


ANISOU
 255
CA
ILE A
77
4700
1337
4076
−514
−25


−435
A
C


ATOM
 256
C
ILE A
77
43.168
13.923
48.267


1.00
28.36

A
C


ANISOU
 256
C
ILE A
77
4885
1600
4291
−505
−44


−424
A
C


ATOM
 257
O
ILE A
77
43.596
15.095
48.173


1.00
26.44

A
C


ANISOU
 257
O
ILE A
77
4517
1371
4157
−411
−67


−432
A
O


ATOM
 258
CB
ILE A
77
42.975
12.504
46.201


1.00
35.47

A
O


ANISOU
 258
CB
ILE A
77
5862
2503
5113
−648
18


−446
A
C


ATOM
 259
CG1
ILE A
77
43.558
11.298
45.464


1.00
27.74

A
C


ANISOU
 259
CG1
ILE A
77
4966
1461
4114
−642
35


−472
A
C


ATOM
 260
CG2
ILE A
77
42.886
13.769
45.354


1.00
26.02

A
C


ANISOU
 260
CG2
ILE A
77
4549
1362
3974
−634
23


−451
A
C


ATOM
 261
CD1
ILE A
77
42.601
10.698
44.478


1.00
28.51

A
C


ANISOU
 261
CD1
ILE A
77
5159
1588
4087
−801
65


−487
A
C


ATOM
 262
N
SER A
78
42.124
13.603
49.009


1.00
35.73

A
N


ANISOU
 262
N
SER A
78
5939
2544
5093
−613
−26


−404
A
N


ATOM
 263
CA
SER A
78
41.533
14.530
49.955


1.00
40.34

A
C


ANISOU
 263
CA
SER A
78
6551
3139
5638
−595
−37


−400
A
C


ATOM
 264
C
SER A
78
42.587
15.111
50.903


1.00
35.58

A
C


ANISOU
 264
C
SER A
78
5904
2493
5123
−404
−110


−413
A
C


ATOM
 265
O
SER A
78
42.535
16.297
51.274


1.00
27.11

A
O


ANISOU
 265
O
SER A
78
4783
1433
4084
−316
−151


−431
A
O


ATOM
 266
CB
SER A
78
40.454
13.779
50.726


1.00
47.62

A
C


ANISOU
 266
CB
SER A
78
7645
4050
6400
−748
17


−359
A
C


ATOM
 267
OG
SER A
78
39.876
14.626
51.695


1.00
66.19

A
O


ANISOU
 267
OG
SER A
78
10100
6354
8698
−661
−5


−356
A
O


ATOM
 268
N
ASP A
79
43.571
14.291
51.285


1.00
31.96

A
N


ANISOU
 268
N
ASP A
79
5457
1985
4703
−344
−128


−404
A
N


ATOM
 269
CA
ASP A
79
44.591
14.738
52.231


1.00
37.06

A
C


ANISOU
 269
CA
ASP A
79
6067
2602
5413
−200
−181


−403
A
C


ATOM
 270
C
ASP A
79
45.445
15.866
51.663


1.00
44.41

A
C


ANISOU
 270
C
ASP A
79
6832
3565
6475
−109
−173


−405
A
C


ATOM
 271
O
ASP A
79
45.833
16.781
52.403


1.00
51.82

A
O


ANISOU
 271
O
ASP A
79
7757
4516
7418
−14
−236


−397
A
O


ATOM
 272
CB
ASP A
79
45.467
13.559
52.668


1.00
42.08

A
C


ANISOU
 272
CB
ASP A
79
6753
3175
6060
−180
−187


−382
A
C


ATOM
 273
CG
ASP A
79
44.736
12.602
53.624


1.00
61.16

A
C


ANISOU
 273
CG
ASP A
79
9378
5547
8314
−253
−201


−356
A
C


ATOM
 274
OD1
ASP A
79
43.692
12.988
54.198


1.00
65.98

A
O


ANISOU
 274
OD1
ASP A
79
10106
6167
8797
−298
−198


−349
A
O


ATOM
 275
OD2
ASP A
79
45.208
11.465
53.841


1.00
65.70

A
O1−


ANISOU
 275
OD2
ASP A
79
10017
6064
8880
−268
−204


−336
A
O1−


ATOM
 276
N
ILE A
80
45.744
15.842
50.360


1.00
39.50

A
N


ANISOU
 276
N
ILE A
80
6122
2958
5930
−139
−103


−405
A
N


ATOM
 277
CA
ILE A
80
46.558
16.927
49.814


1.00
34.04

A
C


ANISOU
 277
CA
ILE A
80
5358
2296
5280
−63
−87


−372
A
C


ATOM
 278
C
ILE A
80
45.721
18.093
49.307


1.00
28.37

A
C


ANISOU
 278
C
ILE A
80
4593
1640
4548
−81
−124


−379
A
C


ATOM
 279
O
ILE A
80
46.294
19.135
48.960


1.00
23.66

A
O


ANISOU
 279
O
ILE A
80
3910
1082
3996
−9
−189


−342
A
O


ATOM
 280
CB
ILE A
80
47.508
16.426
48.708


1.00
35.19

A
C


ANISOU
 280
CB
ILE A
80
5498
2411
5460
−54
−3


−348
A
C


ATOM
 281
CG1
ILE A
80
46.761
16.162
47.409


1.00
41.25

A
C


ANISOU
 281
CG1
ILE A
80
6235
3218
6221
−148
51


−375
A
C


ATOM
 282
CG2
ILE A
80
48.172
15.132
49.138


1.00
33.60

A
C


ANISOU
 282
CG2
ILE A
80
5319
2150
5299
−42
25


−351
A
C


ATOM
 283
CD1
ILE A
80
47.638
15.507
46.337


1.00
26.52

A
C


ANISOU
 283
CD1
ILE A
80
4384
1326
4366
−125
124


−360
A
C


ATOM
 284
N
PHE A
81
44.386
17.970
49.258


1.00
33.24

A
N


ANISOU
 284
N
PHE A
81
5235
2267
5128
−175
−120


−418
A
N


ATOM
 285
CA
PHE A
81
43.590
19.120
48.829


1.00
32.09

A
C


ANISOU
 285
CA
PHE A
81
5033
2171
4988
−186
−167


−423
A
C


ATOM
 286
C
PHE A
81
42.785
19.835
49.907


1.00
46.01

A
C


ANISOU
 286
C
PHE A
81
6827
3935
6719
−132
−250


−452
A
C


ATOM
 287
O
PHE A
81
42.121
20.821
49.574


1.00
52.42

A
O


ANISOU
 287
O
PHE A
81
7557
4782
7579
−120
−302


−466
A
O


ATOM
 288
CB
PHE A
81
42.640
18.727
47.706


1.00
26.08

A
C


ANISOU
 288
CB
PHE A
81
4269
1427
4213
−342
−118


−437
A
C


ATOM
 289
CG
PHE A
81
43.339
18.484
46.396


1.00
23.48

A
C


ANISOU
 289
CG
PHE A
81
3915
1100
3906
−364
−60


−416
A
C


ATOM
 290
CD1
PHE A
81
43.894
19.545
45.675


1.00
22.98

A
C


ANISOU
 290
CD1
PHE A
81
3724
1081
3926
−287
−119


−374
A
C


ATOM
 291
CD2
PHE A
81
43.419
17.209
45.872


1.00
23.98

A
C


ANISOU
 291
CD2
PHE A
81
3983
1138
3990
−421
−63


−430
A
C


ATOM
 292
CE1
PHE A
81
44.524
19.333
44.513


1.00
23.01

A
C


ANISOU
 292
CE1
PHE A
81
3707
1077
3960
−292
−84


−349
A
C


ATOM
 293
CE2
PHE A
81
44.049
16.997
44.682


1.00
30.82

A
C


ANISOU
 293
CE2
PHE A
81
4844
1996
4872
−409
−72


−413
A
C


ATOM
 294
CZ
PHE A
81
44.614
18.061
44.006


1.00
25.71

A
C


ANISOU
 294
CZ
PHE A
81
4198
1361
4210
−360
−45


−370
A
C


ATOM
 295
N
ASN A
82
42.785
19.367
51.161


1.00
44.06

A
N


ANISOU
 295
N
ASN A
82
6698
3646
6395
−90
−271


−466
A
N


ATOM
 296
CA
ASN A
82
42.104
20.067
52.266


1.00
43.67

A
C


ANISOU
 296
CA
ASN A
82
6735
3585
6274
1
−345


−502
A
C


ATOM
 297
C
ASN A
82
40.588
20.057
52.119


1.00
38.27

A
C


ANISOU
 297
C
ASN A
82
6035
3043
5463
−95
−246


−492
A
C


ATOM
 298
O
ASN A
82
39.937
21.107
52.174


1.00
45.53

A
O


ANISOU
 298
O
ASN A
82
6839
4082
6377
−22
−251


−503
A
O


ATOM
 299
CB
ASN A
82
42.558
21.522
52.413


1.00
52.07

A
C


ANISOU
 299
CB
ASN A
82
7669
4691
7424
146
−442


−510
A
C


ATOM
 300
CG
ASN A
82
43.950
21.665
52.949


1.00
50.89

A
C


ANISOU
 300
CG
ASN A
82
7483
4544
7308
223
−500


−472
A
C


ATOM
 301
OD1
ASN A
82
44.602
20.685
53.340


1.00
53.99

A
O


ANISOU
 301
OD1
ASN A
82
7939
4899
7675
199
−470


−451
A
O


ATOM
 302
ND2
ASN A
82
44.415
22.912
52.990


1.00
42.82

A
N


ANISOU
 302
ND2
ASN A
82
6358
3561
6351
311
−602


−461
A
N


ATOM
 303
N
LEU A
83
40.021
18.875
51.909


1.00
27.33

A
N


ANISOU
 303
N
LEU A
83
4706
1705
3973
−261
−134


−450
A
N


ATOM
 304
CA
LEU A
83
38.567
18.731
51.894


1.00
28.54

A
C


ANISOU
 304
CA
LEU A
83
4783
2064
3996
−372
−12


−399
A
C


ATOM
 305
C
LEU A
83
38.237
17.257
52.101


1.00
30.85

A
C


ANISOU
 305
C
LEU A
83
5210
2335
4178
−539
67


−345
A
C


ATOM
 306
O
LEU A
83
39.120
16.402
52.113


1.00
31.30

A
O


ANISOU
 306
O
LEU A
83
5412
2216
4263
−562
28


−360
A
O


ATOM
 307
CB
LEU A
83
37.942
19.294
50.601


1.00
41.10

A
C


ANISOU
 307
CB
LEU A
83
6172
3793
5653
−456
17


−381
A
C


ATOM
 308
CG
LEU A
83
38.271
18.721
49.210


1.00
33.52

A
C


ANISOU
 308
CG
LEU A
83
5162
2756
4820
−514
−21


−396
A
C


ATOM
 309
CD1
LEU A
83
37.498
17.431
48.874


1.00
29.44

A
C


ANISOU
 309
CD1
LEU A
83
4772
2154
4261
−675
24


−384
A
C


ATOM
 310
CD2
LEU A
83
38.041
19.792
48.152


1.00
26.22

A
C


ANISOU
 310
CD2
LEU A
83
4034
1992
3938
−554
−8


−372
A
C


ATOM
 311
N
SER A
84
36.962
16.965
52.283


1.00
31.49

A
N


ANISOU
 311
N
SER A
84
5234
2589
4143
−653
173


−273
A
N


ATOM
 312
CA
SER A
84
36.576
15.604
52.613


1.00
32.35

A
C


ANISOU
 312
CA
SER A
84
5468
2675
4149
−819
237


−201
A
C


ATOM
 313
C
SER A
84
36.619
14.713
51.373


1.00
29.45

A
C


ANISOU
 313
C
SER A
84
5112
2243
3833
−1015
229


−194
A
C


ATOM
 314
O
SER A
84
36.458
15.192
50.252


1.00
40.82

A
O


ANISOU
 314
O
SER A
84
6418
3744
5346
−1055
216


−216
A
O


ATOM
 315
CB
SER A
84
35.177
15.616
53.224


1.00
43.32

A
C


ANISOU
 315
CB
SER A
84
6768
4282
5410
−880
356


−101
A
C


ATOM
 316
OG
SER A
84
34.304
16.553
52.566


1.00
49.11

A
O


ANISOU
 316
OG
SER A
84
7269
5208
6184
−881
391


−86
A
O


ATOM
 317
N
PRO A
85
36.809
13.403
51.535


1.00
30.18

A
N


ANISOU
 317
N
PRO A
85
5378
2209
3881
−1139
231


−165
A
N


ATOM
 318
CA
PRO A
85
36.553
12.512
50.394


1.00
30.48

A
C


ANISOU
 318
CA
PRO A
85
5440
2206
3936
−1343
226


−153
A
C


ATOM
 319
C
PRO A
85
35.150
12.662
49.838


1.00
50.41

A
C


ANISOU
 319
C
PRO A
85
7789
4939
6425
−1513
276


−74
A
C


ATOM
 320
O
PRO A
85
34.921
12.361
48.662


1.00
58.33

A
O


ANISOU
 320
O
PRO A
85
8766
5939
7458
−1651
246


−86
A
O


ATOM
 321
CB
PRO A
85
36.763
11.104
50.969


1.00
31.60

A
C


ANISOU
 321
CB
PRO A
85
5804
2187
4017
−1446
219


−114
A
C


ATOM
 322
CG
PRO A
85
37.378
11.264
52.291


1.00
31.62

A
C


ANISOU
 322
CG
PRO A
85
5906
2123
3986
−1278
209


−116
A
C


ATOM
 323
CD
PRO A
85
37.086
12.657
52.774


1.00
34.36

A
C


ANISOU
 323
CD
PRO A
85
6093
2637
4325
−1113
235


−128
A
C


ATOM
 324
N
LEU A
86
34.187
13.100
50.652


1.00
51.28

A
N


ANISOU
 324
N
LEU A
86
7779
5234
6470
−1502
351


12
A
N


ATOM
 325
CA
LEU A
86
32.821
13.248
50.160


1.00
54.62

A
C


ANISOU
 325
CA
LEU A
86
8006
5867
6879
−1660
399


108
A
C


ATOM
 326
C
LEU A
86
32.768
14.251
49.024


1.00
44.39

A
C


ANISOU
 326
C
LEU A
86
6543
4653
5672
−1619
358


49
A
C


ATOM
 327
O
LEU A
86
32.116
14.015
48.004


1.00
39.57

A
O


ANISOU
 327
O
LEU A
86
5849
4105
5081
−1795
331


84
A
O


ATOM
 328
CB
LEU A
86
31.882
13.693
51.274


1.00
59.57

A
C


ANISOU
 328
CB
LEU A
86
8513
6694
7426
−1601
509


210
A
C


ATOM
 329
CG
LEU A
86
30.438
13.975
50.857


1.00
60.40

A
C


ANISOU
 329
CG
LEU A
86
8370
7043
7538
−1736
569


328
A
C


ATOM
 330
CD1
LEU A
86
29.766
12.699
50.354


1.00
48.56

A
C


ANISOU
 330
CD1
LEU A
86
6895
5522
6035
−2043
546


439
A
C


ATOM
 331
CD2
LEU A
86
29.698
14.543
52.037


1.00
77.58

A
C


ANISOU
 331
CD2
LEU A
86
10434
9413
9630
−1607
700


414
A
C


ATOM
 332
N
ARG A
87
33.420
15.397
49.197


1.00
30.63

A
N


ANISOU
 332
N
ARG A
87
4749
2907
3980
−1392
340


−32
A
N


ATOM
 333
CA
ARG A
87
33.286
16.438
48.198


1.00
29.78

A
C


ANISOU
 333
CA
ARG A
87
4467
2891
3956
−1349
304


−65
A
C


ATOM
 334
C
ARG A
87
33.850
15.984
46.865


1.00
45.48

A
C


ANISOU
 334
C
ARG A
87
6521
4765
5994
−1452
236


−116
A
C


ATOM
 335
O
ARG A
87
33.266
16.254
45.805


1.00
49.67

A
O


ANISOU
 335
O
ARG A
87
6929
5396
6547
−1554
213


−95
A
O


ATOM
 336
CB
ARG A
87
33.975
17.700
48.667


1.00
28.72

A
C


ANISOU
 336
CB
ARG A
87
4291
2739
3882
−1093
274


−138
A
C


ATOM
 337
CG
ARG A
87
33.175
18.461
49.634


1.00
29.48

A
C


ANISOU
 337
CG
ARG A
87
4278
2997
3927
−976
338


−98
A
C


ATOM
 338
CD
ARG A
87
33.829
19.788
49.921


1.00
41.62

A
C


ANISOU
 338
CD
ARG A
87
5781
4497
5535
−730
273


−182
A
C


ATOM
 339
NE
ARG A
87
33.793
20.718
48.796


1.00
43.59

A
N


ANISOU
 339
NE
ARG A
87
5867
4797
5899
−717
215


−199
A
N


ATOM
 340
CZ
ARG A
87
34.089
22.012
48.925


1.00
48.77

A
C


ANISOU
 340
CZ
ARG A
87
6447
5450
6633
−525
152


−249
A
C


ATOM
 341
NH1
ARG A
87
34.031
22.812
47.864


1.00
41.79

A
N1+


ANISOU
 341
NH1
ARG A
87
5415
4610
5854
−530
97


−247
A
N1+


ATOM
 342
NH2
ARG A
87
34.435
22.507
50.132


1.00
48.53

A
N


ANISOU
 342
NH2
ARG A
87
6504
5365
6570
−328
131


−299
A
N


ATOM
 343
N
ILE A
88
34.978
15.273
46.903


1.00
42.69

A
N


ANISOU
 343
N
ILE A
88
6367
4204
5649
−1420
206


−181
A
N


ATOM
 344
CA
ILE A
88
35.557
14.744
45.678


1.00
37.36

A
C


ANISOU
 344
CA
ILE A
88
5782
3415
4998
−1494
163


−234
A
C


ATOM
 345
C
ILE A
88
34.618
13.710
45.067


1.00
41.23

A
C


ANISOU
 345
C
ILE A
88
6318
3932
5414
−1748
153


−183
A
C


ATOM
 346
O
ILE A
88
34.350
13.737
43.862


1.00
46.70

A
O


ANISOU
 346
O
ILE A
88
6977
4662
6106
−1845
115


−196
A
O


ATOM
 347
CB
ILE A
88
36.963
14.181
45.954


1.00
32.76

A
C


ANISOU
 347
CB
ILE A
88
5394
2605
4448
−1381
144


−306
A
C


ATOM
 348
CG1
ILE A
88
37.858
15.293
46.479


1.00
26.83

A
C


ANISOU
 348
CG1
ILE A
88
4573
1828
3792
−1147
122


−343
A
C


ATOM
 349
CG2
ILE A
88
37.573
13.616
44.684


1.00
37.72

A
C


ANISOU
 349
CG2
ILE A
88
6073
3174
5085
−1379
116


−352
A
C


ATOM
 350
CD1
ILE A
88
39.257
14.821
46.815


1.00
31.57

A
C


ANISOU
 350
CD1
ILE A
88
5304
2242
4450
−1008
88


−389
A
C


ATOM
 351
N
ALA A
89
34.044
12.829
45.897


1.00
37.95

A
N


ANISOU
 351
N
ALA A
89
5978
3506
4936
−1868
176


−113
A
N


ATOM
 352
CA
ALA A
89
33.108
11.828
45.379


1.00
32.60

A
C


ANISOU
 352
CA
ALA A
89
5329
2850
4206
−2115
141


−46
A
C


ATOM
 353
C
ALA A
89
31.901
12.475
44.709


1.00
37.73

A
C


ANISOU
 353
C
ALA A
89
5758
3710
4869
−2245
130


27
A
C


ATOM
 354
O
ALA A
89
31.416
11.985
43.684


1.00
46.97

A
O


ANISOU
 354
O
ALA A
89
6916
4908
6022
−2352
53


36
A
O


ATOM
 355
CB
ALA A
89
32.644
10.881
46.486


1.00
33.98

A
C


ANISOU
 355
CB
ALA A
89
5586
2998
4326
−2219
172


50
A
C


ATOM
 356
N
LYS A
90
31.386
13.565
45.273


1.00
36.57

A
N


ANISOU
 356
N
LYS A
90
5394
3750
4750
−2132
191


78
A
N


ATOM
 357
CA
LYS A
90
30.193
14.172
44.695


1.00
37.29

A
C


ANISOU
 357
CA
LYS A
90
5249
4055
4866
−2231
179


161
A
C


ATOM
 358
C
LYS A
90
30.526
14.975
43.450


1.00
44.55

A
C


ANISOU
 358
C
LYS A
90
6106
4991
5832
−2175
115


87
A
C


ATOM
 359
O
LYS A
90
29.705
15.045
42.523


1.00
53.45

A
O


ANISOU
 359
O
LYS A
90
7124
6220
6964
−2326
53


137
A
O


ATOM
 360
CB
LYS A
90
29.468
15.048
45.721


1.00
33.76

A
C


ANISOU
 360
CB
LYS A
90
4592
3806
4428
−2113
276


244
A
C


ATOM
 361
CG
LYS A
90
28.806
14.247
46.864


1.00
49.80

A
C


ANISOU
 361
CG
LYS A
90
6640
5884
6398
−2207
358


366
A
C


ATOM
 362
CD
LYS A
90
27.687
15.019
47.584


1.00
64.87

A
C


ANISOU
 362
CD
LYS A
90
8294
8049
8305
−2143
466


485
A
C


ATOM
 363
CE
LYS A
90
28.188
16.259
48.342


1.00
73.33

A
C


ANISOU
 363
CE
LYS A
90
9327
9163
9373
−1829
529


404
A
C


ATOM
 364
NZ
LYS A
90
27.077
16.921
49.102


1.00
76.22

A
N1+


ANISOU
 364
NZ
LYS A
90
9470
9774
9716
−1745
651


515
A
N1+


ATOM
 365
N
ALA A
91
31.730
15.550
43.385


1.00
37.90

A
N


ANISOU
 365
N
ALA A
91
5332
4044
5025
−1970
118


−19
A
N


ATOM
 366
CA
ALA A
91
32.117
16.278
42.182


1.00
29.97

A
C


ANISOU
 366
CA
ALA A
91
4275
3051
4062
−1918
66


−71
A
C


ATOM
 367
C
ALA A
91
32.497
15.337
41.037


1.00
38.82

A
C


ANISOU
 367
C
ALA A
91
5584
4042
5125
−2051
6


−125
A
C


ATOM
 368
O
ALA A
91
32.286
15.662
39.856


1.00
35.13

A
O


ANISOU
 368
O
ALA A
91
5070
3631
4647
−2106
−49


−130
A
O


ATOM
 369
CB
ALA A
91
33.255
17.233
42.501


1.00
28.41

A
C


ANISOU
 369
CB
ALA A
91
4067
2790
3939
−1666
86


−140
A
C


ATOM
 370
N
SER A
92
33.034
14.165
41.363


1.00
34.42

A
N


ANISOU
 370
N
SER A
92
5243
3316
4520
−2076
11


−165
A
N


ATOM
 371
CA
SER A
92
33.494
13.192
40.378


1.00
31.48

A
C


ANISOU
 371
CA
SER A
92
5041
2839
4082
−2075
−39


−226
A
C


ATOM
 372
C
SER A
92
32.397
12.252
39.890


1.00
38.94

A
C


ANISOU
 372
C
SER A
92
6008
3830
4955
−2264
−116


−172
A
C


ATOM
 373
O
SER A
92
32.632
11.476
38.957


1.00
45.25

A
O


ANISOU
 373
O
SER A
92
6961
4548
5685
−2287
−172


−227
A
O


ATOM
 374
CB
SER A
92
34.639
12.369
40.978


1.00
40.72

A
C


ANISOU
 374
CB
SER A
92
6394
3829
5248
−1938
−6


−288
A
C


ATOM
 375
OG
SER A
92
35.686
13.225
41.440


1.00
35.93

A
C


ANISOU
 375
OG
SER A
92
5758
3170
4723
−1751
46


−329
A
O


ATOM
 376
N
ASN A
93
31.213
12.298
40.505


1.00
41.81

A
N


ANISOU
 376
N
ASN A
93
6226
4321
5339
−2399
−120


−61
A
N


ATOM
 377
CA
ASN A
93
30.100
11.386
40.212


1.00
37.39

A
C


ANISOU
 377
CA
ASN A
93
5663
3804
4741
−2585
−202


16
A
C


ATOM
 378
C
ASN A
93
30.435
9.944
40.609


1.00
42.72

A
C


ANISOU
 378
C
ASN A
93
6550
4312
5368
−2610
−223


−3
A
C


ATOM
 379
O
ASN A
93
30.073
8.983
39.926


1.00
41.63

A
O


ANISOU
 379
O
ASN A
93
6522
4117
5180
−2717
−319


−6
A
O


ATOM
 380
CB
ASN A
93
29.661
11.484
38.748


1.00
36.98

A
C


ANISOU
 380
CB
ASN A
93
5600
3802
4649
−2659
−305


−1
A
C


ATOM
 381
CG
ASN A
93
28.337
10.795
38.481


1.00
48.90

A
C


ANISOU
 381
CG
ASN A
93
7052
5382
6147
−2857
−406


100
A
C


ATOM
 382
OD1
ASN A
93
27.369
10.906
39.244


1.00
49.43

A
O


ANISOU
 382
OD1
ASN A
93
6938
5571
6273
−2944
−383


225
A
O


ATOM
 383
ND2
ASN A
93
28.296
10.061
37.379


1.00
60.69

A
N


ANISOU
 383
ND2
ASN A
93
8705
6792
7561
−2930
−519


50
A
N


ATOM
 384
N
ILE A
94
31.062
9.787
41.769


1.00
53.62

A
N


ANISOU
 384
N
ILE A
94
7995
5611
6766
−2513
−143


−13
A
N


ATOM
 385
CA
ILE A
94
31.422
8.460
42.250


1.00
60.33

A
C


ANISOU
 385
CA
ILE A
94
9014
6322
7586
−2535
−154


−4
A
C


ATOM
 386
C
ILE A
94
30.409
7.959
43.276


1.00
62.25

A
C


ANISOU
 386
C
ILE A
94
9144
6660
7847
−2676
−119


145
A
C


ATOM
 387
O
ILE A
94
30.173
8.600
44.297


1.00
59.20

A
O


ANISOU
 387
O
ILE A
94
8623
6379
7489
−2650
−26


202
A
O


ATOM
 388
CB
ILE A
94
32.823
8.459
42.881


1.00
51.19

A
C


ANISOU
 388
CB
ILE A
94
7994
5018
6437
−2327
−95


−98
A
C


ATOM
 389
CG1
ILE A
94
33.858
8.929
41.865


1.00
47.82

A
C


ANISOU
 389
CG1
ILE A
94
7657
4515
5997
−2192
−114


−220
A
C


ATOM
 390
CG2
ILE A
94
33.176
7.075
43.391


1.00
51.23

A
C


ANISOU
 390
CG2
ILE A
94
8160
4888
6417
−2339
−109


−79
A
C


ATOM
 391
CD1
ILE A
94
35.281
8.828
42.357


1.00
50.65

A
C


ANISOU
 391
CD1
ILE A
94
8079
4771
6395
−1977
−55


−290
A
C


ATOM
 392
N
GLU A
95
29.800
6.815
42.980


1.00
64.94

A
N


ANISOU
 392
N
GLU A
95
9539
6966
8170
−2831
−189


218
A
N


ATOM
 393
CA
GLU A
95
28.798
6.213
43.857


1.00
80.14

A
C


ANISOU
 393
CA
GLU A
95
11343
8989
10116
−2973
−147


385
A
C


ATOM
 394
C
GLU A
95
29.319
5.760
45.221


1.00
81.49

A
C


ANISOU
 394
C
GLU A
95
11677
9023
10261
−2960
−115


413
A
C


ATOM
 395
O
GLU A
95
28.667
5.979
46.238


1.00
85.23

A
O


ANISOU
 395
O
GLU A
95
12070
9574
10741
−3068
−60


565
A
O


ATOM
 396
CB
GLU A
95
28.083
5.057
43.145


1.00
90.92

A
C


ANISOU
 396
CB
GLU A
95
12606
10435
11504
−3177
−250


490
A
C


ATOM
 397
CG
GLU A
95
29.007
3.977
42.603


1.00
99.86

A
C


ANISOU
 397
CG
GLU A
95
13949
11395
12600
−3245
−393


427
A
C


ATOM
 398
CD
GLU A
95
28.267
2.922
41.804


1.00
107.46

A
C


ANISOU
 398
CD
GLU A
95
14812
12431
13587
−3446
−519


521
A
C


ATOM
 399
OE1
GLU A
95
28.832
1.828
41.595


1.00
116.17

A
O


ANISOU
 399
OE1
GLU A
95
15891
13527
14721
−3602
−558


652
A
O


ATOM
 400
OE2
GLU A
95
27.121
3.188
41.384


1.00
104.53

A
O1−


ANISOU
 400
OE2
GLU A
95
14386
12124
13207
−3450
−584


473
A
O1−


ATOM
 401
N
ALA A
96
30.494
5.140
45.246


1.00
71.81

A
N


ANISOU
 401
N
ALA A
96
10668
7610
9009
−2822
−142


283
A
N


ATOM
 402
CA
ALA A
96
31.051
4.670
46.505


1.00
66.37

A
C


ANISOU
 402
CA
ALA A
96
10141
6778
8297
−2792
−130


302
A
C


ATOM
 403
C
ALA A
96
32.259
5.498
46.890


1.00
73.06

A
C


ANISOU
 403
C
ALA A
96
11011
7611
9137
−2635
−20


285
A
C


ATOM
 404
O
ALA A
96
33.271
5.502
46.198


1.00
77.47

A
O


ANISOU
 404
O
ALA A
96
11602
8162
9669
−2679
35


389
A
O


ATOM
 405
CE
ALA A
96
31.432
3.205
46.396


1.00
57.47

A
C


ANISOU
 405
CB
ALA A
96
9223
5461
7152
−2715
−220


181
A
C


ATOM
 406
N
GLU A
97
32.150
6.179
48.020


1.00
65.72

A
N


ANISOU
 406
N
GLU A
97
10071
6673
8227
−2454
7


163
A
N


ATOM
 407
CA
GLU A
97
33.216
7.029
48.520


1.00
56.65

A
C


ANISOU
 407
CA
GLU A
97
8947
5493
7085
−2284
86


124
A
C


ATOM
 408
C
GLU A
97
34.472
6.245
48.879


1.00
47.54

A
C


ANISOU
 408
C
GLU A
97
7976
4162
5925
−2141
60


69
A
C


ATOM
 409
O
GLU A
97
35.585
6.678
48.606


1.00
40.15

A
O


ANISOU
 409
O
GLU A
97
7070
3156
5028
−1933
57


−37
A
O


ATOM
 410
CB
GLU A
97
32.707
7.816
49.727


1.00
59.24

A
C


ANISOU
 410
CB
GLU A
97
9191
5939
7380
−2374
190


256
A
C


ATOM
 411
CG
GLU A
97
33.656
8.866
50.273


1.00
74.07

A
C


ANISOU
 411
CG
GLU A
97
11099
7784
9260
−2198
263


197
A
C


ATOM
 412
CD
GLU A
97
32.990
9.742
51.316


1.00
93.12

A
C


ANISOU
 412
CD
GLU A
97
13369
10401
11610
−2149
375


313
A
C


ATOM
 413
OE1
GLU A
97
33.630
10.058
52.340


1.00
90.17

A
O


ANISOU
 413
OE1
GLU A
97
13062
9999
11198
−1945
409


281
A
O


ATOM
 414
OE2
GLU A
97
31.814
10.105
51.116


1.00
106.91

A
O1−


ANISOU
 414
OE2
GLU A
97
14933
12344
13343
−2296
425


438
A
O1−


ATOM
 415
N
ASP A
98
34.280
5.082
49.489


1.00
53.16

A
N


ANISOU
 415
N
ASP A
98
8787
4812
6599
−2250
38


154
A
N


ATOM
 416
CA
ASP A
98
35.390
4.249
49.941


1.00
65.58

A
C


ANISOU
 416
CA
ASP A
98
10522
6225
8169
−2122
8


115
A
C


ATOM
 417
C
ASP A
98
35.971
3.263
48.934


1.00
61.88

A
C


ANISOU
 417
C
ASP A
98
10134
5649
7730
−2056
−72


16
A
C


ATOM
 418
O
ASP A
98
36.968
2.610
49.224


1.00
67.72

A
O


ANISOU
 418
O
ASP A
98
10968
6271
8490
−1905
−91


−38
A
O


ATOM
 419
CB
ASP A
98
34.987
3.496
51.210


1.00
77.98

A
C


ANISOU
 419
CB
ASP A
98
12180
7762
9687
−2261
17


255
A
C


ATOM
 420
CG
ASP A
98
34.719
4.424
52.374


1.00
93.26

A
C


ANISOU
 420
CG
ASP A
98
14093
9774
11568
−2275
121


355
A
C


ATOM
 421
OD1
ASP A
98
35.651
5.141
52.792


1.00
89.20

A
O


ANISOU
 421
OD1
ASP A
98
13623
9216
11053
−2087
150


283
A
O


ATOM
 422
OD2
ASP A
98
33.577
4.432
52.875


1.00
107.87

A
O1−


ANISOU
 422
OD2
ASP A
98
15873
11736
13375
−2469
177


515
A
O1−


ATOM
 423
N
LYS A
99
35.363
3.139
47.762


1.00
62.44

A
N


ANISOU
 423
N
LYS A
99
10169
5757
7797
−2162
−118


−5
A
N


ATOM
 424
CA
LYS A
99
35.872
2.193
46.776


1.00
64.48

A
C


ANISOU
 424
CA
LYS A
99
10545
5897
8056
−2122
−190


−90
A
C


ATOM
 425
C
LYS A
99
37.267
2.572
46.296


1.00
57.96

A
C


ANISOU
 425
C
LYS A
99
9725
5026
7273
−1878
−160


−214
A
C


ATOM
 426
O
LYS A
99
37.553
3.743
46.071


1.00
56.91

A
O


ANISOU
 426
O
LYS A
99
9473
4980
7171
−1780
−108


−248
A
O


ATOM
 427
CE
LYS A
99
34.916
2.081
45.589


1.00
69.66

A
C


ANISOU
 427
CB
LYS A
99
11178
6604
8686
−2286
−253


−90
A
C


ATOM
 428
CG
LYS A
99
35.383
1.111
44.516


1.00
77.75

A
C


ANISOU
 428
CG
LYS A
99
12353
7501
9688
−2245
−326


−189
A
C


ATOM
 429
CD
LYS A
99
34.251
0.732
43.578


1.00
80.79

A
C


ANISOU
 429
CD
LYS A
99
12765
7899
10033
−2455
−426


−157
A
C


ATOM
 430
CE
LYS A
99
33.577
1.963
43.001


1.00
78.59

A
C


ANISOU
 430
CE
LYS A
99
12333
7779
9747
−2514
−415


−154
A
C


ATOM
 431
NZ
LYS A
99
32.376
1.606
42.199


1.00
84.63

A
N1+


ANISOU
 431
NZ
LYS A
99
13114
8559
10481
−2730
−534


−107
A
N1+


ATOM
 432
N
LYS A
100
38.133
1.577
46.135


1.00
53.53

A
N


ANISOU
 432
N
LYS A
100
9290
4325
6722
−1782
−193


−269
A
N


ATOM
 433
CA
LYS A
100
39.488
1.833
45.672


1.00
50.73

A
C


ANISOU
 433
CA
LYS A
100
8925
3928
6422
−1558
−161


−368
A
C


ATOM
 434
C
LYS A
100
39.471
2.305
44.219


1.00
58.40

A
C


ANISOU
 434
C
LYS A
100
9872
4945
7374
−1546
−153


−444
A
C


ATOM
 435
O
LYS A
100
38.823
1.697
43.357


1.00
61.43

A
O


ANISOU
 435
O
LYS A
100
10347
5301
7691
−1673
−208


−462
A
O


ATOM
 436
CB
LYS A
100
40.350
0.573
45.822


1.00
51.07

A
C


ANISOU
 436
CB
LYS A
100
9109
3812
6483
−1476
−196


−402
A
C


ATOM
 437
CG
LYS A
100
41.860
0.828
45.638


1.00
61.24

A
C


ANISOU
 437
CG
LYS A
100
10356
5060
7854
−1238
−153


−478
A
C


ATOM
 438
CD
LYS A
100
42.737
−0.388
45.997


1.00
63.80

A
C


ANISOU
 438
CD
LYS A
100
10800
5230
8213
−1154
−183


−497
A
C


ATOM
 439
CE
LYS A
100
44.230
−0.064
45.824


1.00
68.69

A
C


ANISOU
 439
CE
LYS A
100
11343
5821
8934
−927
−137


−558
A
C


ATOM
 440
NZ
LYS A
100
45.147
−1.185
46.205


1.00
74.32

A
N1+


ANISOU
 440
NZ
LYS A
100
12152
6387
9698
−836
−162


−574
A
N1+


ATOM
 441
N
LEU A
101
40.185
3.396
43.954


1.00
53.74

A
N


ANISOU
 441
N
LEU A
101
9165
4416
6837
−1397
−94


−485
A
N


ATOM
 442
CA
LEU A
101
40.242
3.971
42.625


1.00
50.02

A
C


ANISOU
 442
CA
LEU A
101
8674
3991
6342
−1378
−75


−548
A
C


ATOM
 443
C
LEU A
101
41.080
3.102
41.695


1.00
63.10

A
C


ANISOU
 443
C
LEU A
101
10477
5525
7972
−1286
−80


−636
A
C


ATOM
 444
O
LEU A
101
41.923
2.307
42.125


1.00
64.95

A
O


ANISOU
 444
O
LEU A
101
10780
5650
8246
−1182
−81


−654
A
O


ATOM
 445
CB
LEU A
101
40.840
5.375
42.681


1.00
45.05

A
C


ANISOU
 445
CB
LEU A
101
7881
3446
5791
−1243
−14


−555
A
C


ATOM
 446
CG
LEU A
101
40.106
6.319
43.607


1.00
33.81

A
C


ANISOU
 446
CG
LEU A
101
6325
2130
4391
−1307
−4


−482
A
C


ATOM
 447
CD1
LEU A
101
40.797
7.675
43.726


1.00
32.04

A
C


ANISOU
 447
CD1
LEU A
101
5951
1962
4259
−1159
37


−492
A
C


ATOM
 448
CD2
LEU A
101
38.707
6.469
43.071


1.00
34.38

A
C


ANISOU
 448
CD2
LEU A
101
6383
2293
4388
−1515
−30


−448
A
C


ATOM
 449
N
ILE A
102
40.854
3.279
40.397


1.00
59.53

A
N


ANISOU
 449
N
ILE A
102
10082
5090
7448
−1321
−80


−691
A
N


ATOM
 450
CA
ILE A
102
41.634
2.585
39.379


1.00
58.07

A
C


ANISOU
 450
CA
ILE A
102
10060
4792
7212
−1223
−68


−785
A
C


ATOM
 451
C
ILE A
102
42.781
3.510
38.982


1.00
58.03

A
C


ANISOU
 451
C
ILE A
102
9969
4811
7268
−1030
30


−822
A
C


ATOM
 452
O
ILE A
102
42.587
4.736
38.963


1.00
55.93

A
O


ANISOU
 452
O
ILE A
102
9555
4660
7038
−1035
64


−790
A
O


ATOM
 453
CE
ILE A
102
40.756
2.202
38.180


1.00
56.86

A
C


ANISOU
 453
CB
ILE A
102
10051
4629
6925
−1369
−131


−827
A
C


ATOM
 454
CG1
ILE A
102
39.584
1.341
38.647


1.00
59.34

A
C


ANISOU
 454
CG1
ILE A
102
10422
4920
7206
−1576
−241


−767
A
C


ATOM
 455
CG2
ILE A
102
41.570
1.482
37.121


1.00
62.57

A
C


ANISOU
 455
CG2
ILE A
102
10977
5226
7572
−1251
−113


−935
A
C


ATOM
 456
CD1
ILE A
102
38.730
0.817
37.518


1.00
66.14

A
C


ANISOU
 456
CD1
ILE A
102
11434
5751
7947
−1728
−338


−803
A
C


ATOM
 457
N
PRO A
103
43.990
2.997
38.722


1.00
62.33

A
N


ANISOU
 457
N
PRO A
103
10592
5251
7842
−856
78


−879
A
N


ATOM
 458
CA
PRO A
103
45.060
3.871
38.211


1.00
54.11

A
C


ANISOU
 458
CA
PRO A
103
9475
4227
6857
−680
178


−903
A
C


ATOM
 459
C
PRO A
103
44.620
4.601
36.956


1.00
56.11

A
C


ANISOU
 459
C
PRO A
103
9772
4543
7004
−730
218


−938
A
C


ATOM
 460
O
PRO A
103
44.032
4.011
36.047


1.00
59.88

A
O


ANISOU
 460
O
PRO A
103
10428
4987
7336
−821
184


−995
A
O


ATOM
 461
CB
PRO A
103
46.213
2.904
37.930


1.00
49.39

A
C


ANISOU
 461
CB
PRO A
103
9005
3489
6270
−514
218


−965
A
C


ATOM
 462
CG
PRO A
103
46.023
1.817
38.949


1.00
56.93

A
C


ANISOU
 462
CG
PRO A
103
10002
4371
7259
−570
133


−941
A
C


ATOM
 463
CD
PRO A
103
44.512
1.683
39.161


1.00
64.17

A
C


ANISOU
 463
CD
PRO A
103
10945
5346
8093
−802
45


−901
A
C


ATOM
 464
N
ASP A
104
44.870
5.910
36.938


1.00
57.11

A
N


ANISOU
 464
N
ASP A
104
9737
4757
7204
−680
278


−900
A
N


ATOM
 465
CA
ASP A
104
44.496
6.860
35.882


1.00
57.32

A
C


ANISOU
 465
CA
ASP A
104
9768
4856
7155
−728
327


−916
A
C


ATOM
 466
C
ASP A
104
43.014
7.218
35.823


1.00
47.29

A
C


ANISOU
 466
C
ASP A
104
8460
3693
5815
−954
239


−885
A
C


ATOM
 467
O
ASP A
104
42.633
7.998
34.934


1.00
43.77

A
O


ANISOU
 467
O
ASP A
104
8017
3311
5303
−1015
262


−897
A
O


ATOM
 468
CB
ASP A
104
44.913
6.385
34.494


1.00
72.35

A
C


ANISOU
 468
CB
ASP A
104
11894
6684
8912
−655
398


−1009
A
C


ATOM
 469
CG
ASP A
104
45.339
7.524
33.610


1.00
89.28

A
C


ANISOU
 469
CG
ASP A
104
14010
8870
11043
−575
521


−1013
A
C


ATOM
 470
OD1
ASP A
104
45.462
8.663
34.119


1.00
92.67

A
O


ANISOU
 470
OD1
ASP A
104
14233
9368
11612
−563
547


−939
A
O


ATOM
 471
OD2
ASP A
104
45.546
7.272
32.402


1.00
100.17

A
O1−


ANISOU
 471
OD2
ASP A
104
15584
10208
12267
−519
594


−1089
A
O1−


ATOM
 472
N
GLN A
105
42.176
6.695
36.724


1.00
48.14

A
N


ANISOU
 472
N
GLN A
105
8532
3823
5938
−1081
146


−839
A
N


ATOM
 473
CA
GLN A
105
40.797
7.148
36.847


1.00
35.73

A
C


ANISOU
 473
CA
GLN A
105
6874
2367
4335
−1282
75


−785
A
C


ATOM
 474
C
GLN A
105
40.753
8.656
37.058


1.00
42.95

A
C


ANISOU
 474
C
GLN A
105
7585
3397
5338
−1264
117


−736
A
C


ATOM
 475
O
GLN A
105
41.622
9.230
37.714


1.00
42.73

A
O


ANISOU
 475
O
GLN A
105
7445
3358
5433
−1116
168


−714
A
O


ATOM
 476
CE
GLN A
105
40.128
6.398
37.993


1.00
36.09

A
C


ANISOU
 476
CB
GLN A
105
6899
2405
4408
−1379
5


−727
A
C


ATOM
 477
CG
GLN A
105
38.808
6.935
38.518


1.00
42.58

A
C


ANISOU
 477
CG
GLN A
105
7584
3354
5239
−1557
−44


−644
A
C


ATOM
 478
CD
GLN A
105
38.114
5.902
39.409


1.00
51.85

A
C


ANISOU
 478
CD
GLN A
105
8806
4491
6405
−1675
−107


−590
A
C


ATOM
 479
OE1
GLN A
105
38.721
4.902
39.815


1.00
64.31

A
O


ANISOU
 479
OE1
GLN A
105
10497
5949
7990
−1606
−113


−611
A
O


ATOM
 480
NE2
GLN A
105
36.843
6.131
39.702


1.00
50.34

A
N


ANISOU
 480
NE2
GLN A
105
8523
4401
6202
−1856
−153


−512
A
N


ATOM
 481
N
LEU A
106
39.759
9.310
36.461


1.00
46.07

A
N


ANISOU
 481
N
LEU A
106
5733
6445
5326
−922
1721


−1470
A
N


ATOM
 482
CA
LEU A
106
39.670
10.766
36.469


1.00
45.16

A
C


ANISOU
 482
CA
LEU A
106
5498
6507
5154
−817
1620


−1382
A
C


ATOM
 483
C
LEU A
106
38.638
11.233
37.498


1.00
44.35

A
C


ANISOU
 483
C
LEU A
106
5430
6310
5112
−864
1605


−1495
A
C


ATOM
 484
O
LEU A
106
37.521
10.699
37.566


1.00
48.19

A
O


ANISOU
 484
O
LEU A
106
5859
6822
5629
−979
1618


−1682
A
O


ATOM
 485
CB
LEU A
106
39.337
11.297
35.068


1.00
33.66

A
C


ANISOU
 485
CE
LEU A
106
3753
5467
3571
−757
1522


−1398
A
C


ATOM
 486
CG
LEU A
106
39.301
12.816
34.865


1.00
32.57

A
C


ANISOU
 486
CG
LEU A
106
3431
5585
3359
−630
1422


−1266
A
C


ATOM
 487
CD1
LEU A
106
40.721
13.418
34.869


1.00
28.83

A
C


ANISOU
 487
CD1
LEU A
106
3030
4991
2934
−527
1327


−899
A
C


ATOM
 488
CD2
LEU A
106
38.534
13.172
33.570


1.00
31.73

A
C


ANISOU
 488
CD2
LEU A
106
3027
5922
3107
−568
1305


−1329
A
C


ATOM
 489
N
LEU A
107
39.033
12.231
38.296


1.00
35.50

A
N


ANISOU
 489
N
LEU A
107
4392
5082
4014
−788
1588


−1384
A
N


ATOM
 490
CA
LEU A
107
38.264
12.808
39.384


1.00
27.85

A
C


ANISOU
 490
CA
LEU A
107
3481
3993
3106
−803
1570


−1474
A
C


ATOM
 491
C
LEU A
107
38.275
14.325
39.239


1.00
27.70

A
C


ANISOU
 491
C
LEU A
107
3328
4085
3111
−647
1382


−1337
A
C


ATOM
 492
O
LEU A
107
39.252
14.901
38.777


1.00
27.08

A
O


ANISOU
 492
O
LEU A
107
3230
3992
3069
−531
1219


−1034
A
O


ATOM
 493
CB
LEU A
107
38.867
12.458
40.767


1.00
38.01

A
C


ANISOU
 493
CB
LEU A
107
5071
4902
4469
−836
1637


−1383
A
C


ATOM
 494
CG
LEU A
107
39.169
11.110
41.452


1.00
41.12

A
C


ANISOU
 494
CG
LEU A
107
5679
5036
4909
−929
1743


−1341
A
C


ATOM
 495
CD1
LEU A
107
38.079
10.128
41.233


1.00
48.16

A
C


ANISOU
 495
CD1
LEU A
107
6483
5984
5831
−1081
1803


−1503
A
C


ATOM
 496
CD2
LEU A
107
40.473
10.528
41.027


1.00
50.97

A
C


ANISOU
 496
CD2
LEU A
107
7032
6202
6133
−870
1796


−1195
A
C


ATOM
 497
N
LEU A
108
37.223
14.993
39.696


1.00
32.50

A
N


ANISOU
 497
N
LEU A
108
3854
4741
3752
−622
1327


−1482
A
N


ATOM
 498
CA
LEU A
108
37.258
16.446
39.836


1.00
41.10

A
C


ANISOU
 498
CA
LEU A
108
4882
5785
4950
−443
1073


−1270
A
C


ATOM
 499
C
LEU A
108
37.277
16.827
41.315


1.00
51.67

A
C


ANISOU
 499
C
LEU A
108
6426
6802
6406
−461
1060


−1285
A
C


ATOM
 500
O
LEU A
108
36.597
16.211
42.142


1.00
46.08

A
C


ANISOU
 500
O
LEU A
108
5810
6032
5667
−589
1235


−1546
A
O


ATOM
 501
CB
LEU A
108
36.064
17.126
39.143


1.00
47.11

A
O


ANISOU
 501
CB
LEU A
108
5364
6871
5666
−333
978


−1396
A
C


ATOM
 502
CG
LEU A
108
35.942
17.146
37.607


1.00
42.34

A
C


ANISOU
 502
CG
LEU A
108
4504
6660
4924
−248
914


−1340
A
C


ATOM
 503
CD1
LEU A
108
37.252
17.498
36.938


1.00
30.35

A
C


ANISOU
 503
CD1
LEU A
108
3029
5079
3421
−163
793


−953
A
C


ATOM
 504
CD2
LEU A
108
35.406
15.844
37.070


1.00
34.62

A
C


ANISOU
 504
CD2
LEU A
108
3422
5948
3784
−424
1136


−1672
A
C


ATOM
 505
N
VAL A
109
38.053
17.854
41.641


1.00
45.38

A
N


ANISOU
 505
N
VAL A
109
5695
5812
5737
−346
866


−1015
A
N


ATOM
 506
CA
VAL A
109
38.298
18.298
43.005


1.00
27.02

A
C


ANISOU
 506
CA
VAL A
109
3556
3193
3516
−356
827


−1006
A
C


ATOM
 507
C
VAL A
109
37.893
19.762
43.087


1.00
35.67

A
C


ANISOU
 507
C
VAL A
109
4551
4250
4753
−209
629


−941
A
C


ATOM
 508
O
VAL A
109
38.447
20.590
42.355


1.00
46.49

A
O


ANISOU
 508
O
VAL A
109
5842
5621
6199
−93
468


−681
A
O


ATOM
 509
CB
VAL A
109
39.777
18.140
43.401


1.00
25.46

A
C


ANISOU
 509
CB
VAL A
109
3538
2782
3352
−370
783


−763
A
C


ATOM
 510
CG1
VAL A
109
40.045
18.740
44.795


1.00
25.30

A
C


ANISOU
 510
CG1
VAL A
109
3680
2507
3425
−370
711


−761
A
C


ATOM
 511
CG2
VAL A
109
40.202
16.677
43.298


1.00
24.96

A
C


ANISOU
 511
CG2
VAL A
109
3589
2732
3161
−475
985


−811
A
C


ATOM
 512
N
PRO A
110
36.975
20.132
43.979


1.00
27.98

A
N


ANISOU
 512
N
PRO A
110
3588
3220
3825
−208
648


−1163
A
N


ATOM
 513
CA
PRO A
110
36.577
21.539
44.103


1.00
29.10

A
C


ANISOU
 513
CA
PRO A
110
3645
3287
4124
−47
472


−1118
A
C


ATOM
 514
C
PRO A
110
37.703
22.399
44.651


1.00
32.87

A
C


ANISOU
 514
C
PRO A
110
4264
3463
4760
−18
329


−883
A
C


ATOM
 515
O
PRO A
110
38.524
21.949
45.455


1.00
37.50

A
O


ANISOU
 515
O
PRO A
110
5028
3894
5327
−130
371


−860
A
O


ATOM
 516
CB
PRO A
110
35.392
21.492
45.068


1.00
29.83

A
C


ANISOU
 516
CB
PRO A
110
3732
3396
4207
−88
571


−1463
A
C


ATOM
 517
CG
PRO A
110
35.018
20.051
45.153


1.00
31.54

A
C


ANISOU
 517
CG
PRO A
110
3985
3754
4243
−275
809


−1680
A
C


ATOM
 518
CD
PRO A
110
36.231
19.260
44.888


1.00
31.02

A
C


ANISOU
 518
CD
PRO A
110
4063
3604
4118
−357
854


−1471
A
C


ATOM
 519
N
VAL A
111
37.716
23.665
44.229


1.00
29.92

A
N


ANISOU
 519
N
VAL A
111
3811
3012
4546
138
163


−717
A
N


ATOM
 520
CA
VAL A
111
38.888
24.514
44.406


1.00
33.23

A
C


ANISOU
 520
CA
VAL A
111
4328
3171
5128
145
34


−463
A
C


ATOM
 521
C
VAL A
111
38.458
25.973
44.336


1.00
35.97

A
C


ANISOU
 521
C
VAL A
111
4620
3363
5684
312
−99


−400
A
C


ATOM
 522
O
VAL A
111
37.504
26.324
43.642


1.00
41.50

A
O


ANISOU
 522
O
VAL A
111
5173
4216
6378
475
−127


−418
A
O


ATOM
 523
CB
VAL A
111
39.963
24.177
43.338


1.00
29.33

A
C


ANISOU
 523
CB
VAL A
111
3807
2763
4576
120
13


−168
A
C


ATOM
 524
CG1
VAL A
111
40.603
25.421
42.830


1.00
30.58

A
C


ANISOU
 524
CG1
VAL A
111
3947
2759
4915
205
−131


123
A
C


ATOM
 525
CG2
VAL A
111
40.987
23.211
43.889


1.00
27.76

A
C


ANISOU
 525
CG2
VAL A
111
3744
2517
4288
−34
88


−161
A
C


ATOM
 526
N
THR A
112
39.187
26.832
45.045


1.00
38.61

A
N


ANISOU
 526
N
THR A
112
5070
3394
6205
280
−180


−328
A
N


ATOM
 527
CA
THR A
112
38.872
28.253
45.133


1.00
39.76

A
C


ANISOU
 527
CA
THR A
112
5207
3308
6591
422
−284


−285
A
C


ATOM
 528
C
THR A
112
39.954
29.026
44.388


1.00
46.00

A
C


ANISOU
 528
C
THR A
112
6022
3929
7525
429
−371


75
A
C


ATOM
 529
O
THR A
112
41.116
29.032
44.810


1.00
56.96

A
O


ANISOU
 529
O
THR A
112
7504
5173
8966
269
−385


152
A
O


ATOM
 530
CB
THR A
112
38.767
28.688
46.598


1.00
39.12

A
C


ANISOU
 530
CB
THR A
112
5235
2999
6628
355
−283


−544
A
C


ATOM
 531
OG1
THR A
112
37.807
27.858
47.275


1.00
37.11

A
O


ANISOU
 531
OG1
THR A
112
4964
2926
6208
319
−173


−866
A
O


ATOM
 532
CG2
THR A
112
38.343
30.153
46.721


1.00
37.45

A
C


ANISOU
 532
CG2
THR A
112
5019
2520
6689
512
−369


−545
A
C


ATOM
 533
N
CYS A
113
39.554
29.726
43.335


1.00
48.00

A
N


ANISOU
 533
N
CYS A
113
6185
4232
7823
613
−422


295
A
N


ATOM
 534
CA
CYS A
113
40.479
30.540
42.572


1.00
53.06

A
C


ANISOU
 534
CA
CYS A
113
6860
4680
8618
637
−485


656
A
C


ATOM
 535
C
CYS A
113
40.556
31.933
43.138


1.00
66.90

A
C


ANISOU
 535
C
CYS A
113
8725
6007
10686
660
−535


645
A
C


ATOM
 536
O
CYS A
113
39.559
32.498
43.578


1.00
75.07

A
O


ANISOU
 536
O
CYS A
113
9761
6934
11827
790
−548


429
A
O


ATOM
 537
CB
CYS A
113
39.975
30.766
41.153


1.00
56.88

A
C


ANISOU
 537
CB
CYS A
113
7227
5357
9029
859
−518


909
A
C


ATOM
 538
SG
CYS A
113
40.313
29.552
39.874


1.00
71.14

A
S


ANISOU
 538
SG
CYS A
113
8928
7527
10573
819
−489


1204
A
S


ATOM
 539
N
GLY A
114
41.757
32.479
43.130


1.00
72.53

A
N


ANISOU
 539
N
GLY A
114
9521
6480
11556
525
−551


864
A
N


ATOM
 540
CA
GLY A
114
41.958
33.868
43.477


1.00
74.83

A
C


ANISOU
 540
CA
GLY A
114
9917
6341
12174
542
−580


920
A
C


ATOM
 541
C
GLY A
114
42.963
34.456
42.510


1.00
70.71

A
C


ANISOU
 541
C
GLY A
114
9428
5734
11704
476
−563


1297
A
C


ATOM
 542
O
GLY A
114
43.636
33.728
41.778


1.00
57.89

A
O


ANISOU
 542
O
GLY A
114
7742
4320
9933
391
−552


1497
A
O


ATOM
 543
N
CYS A
115
43.081
35.769
42.570


1.00
68.06

A
N


ANISOU
 543
N
CYS A
115
9195
5144
11522
507
−534


1363
A
N


ATOM
 544
CA
CYS A
115
43.999
36.467
41.720


1.00
84.86

A
C


ANISOU
 544
CA
CYS A
115
11377
7210
13658
420
−482


1671
A
C


ATOM
 545
C
CYS A
115
45.105
37.110
42.523


1.00
97.68

A
C


ANISOU
 545
C
CYS A
115
13086
8618
15410
150
−434


1525
A
C


ATOM
 546
O
CYS A
115
44.857
37.977
43.355


1.00
99.49

A
O


ANISOU
 546
O
CYS A
115
13406
8595
15802
153
−421


1321
A
O


ATOM
 547
CB
CYS A
115
43.267
37.545
40.946


1.00
91.36

A
C


ANISOU
 547
CB
CYS A
115
12267
7904
14540
682
−475


1914
A
C


ATOM
 548
SG
CYS A
115
44.168
38.093
39.493


1.00
103.41

A
S


ANISOU
 548
SG
CYS A
115
13861
9421
16009
610
−402


2344
A
S


ATOM
 549
N
THR A
116
46.326
36.653
42.284


1.00
98.83

A
N


ANISOU
 549
N
THR A
116
13185
8890
15476
−78
−410


1608
A
N


ATOM
 550
CA
THR A
116
47.507
37.227
42.923


1.00
104.76

A
C


ANISOU
 55C
CA
THR A
116
13978
9488
16339
−342
−367


1503
A
C


ATOM
 551
C
THR A
116
48.481
37.706
41.851


1.00
101.85

A
C


ANISOU
 551
C
THR A
116
13620
9100
15978
−449
−295


1812
A
C


ATOM
 552
O
THR A
116
48.846
36.945
40.945


1.00
100.19

A
O


ANISOU
 552
O
THR A
116
13315
9149
15601
−449
−293


2019
A
O


ATOM
 553
CB
THR A
116
48.202
36.224
43.872


1.00
103.62

A
C


ANISOU
 553
CB
THR A
116
13745
9527
16099
−529
−411


1265
A
C


ATOM
 554
OG1
THR A
116
48.492
35.001
43.183


1.00
101.20

A
O


ANISOU
 554
OG1
THR A
116
13329
9526
15595
−524
−431


1417
A
O


ATOM
 555
CG2
THR A
116
47.326
35.926
45.092


1.00
101.92

A
C


ANISOU
 555
CG2
THR A
116
13550
9297
15879
−461
−461


925
A
C


ATOM
 556
N
LYS A
117
48.876
38.976
41.945


1.00
106.96

A
N


ANISOU
 556
N
LYS A
117
14390
9437
16814
−544
−224


1832
A
N


ATOM
 557
CA
LYS A
117
49.850
39.591
41.034


1.00
107.18

A
C


ANISOU
 557
CA
LYS A
117
14456
9391
16876
−684
−131


2097
A
C


ATOM
 558
C
LYS A
117
49.500
39.329
39.566


1.00
104.52

A
C


ANISOU
 558
C
LYS A
117
14101
9234
16377
−498
−118


2459
A
C


ATOM
 559
O
LYS A
117
50.333
38.896
38.769


1.00
113.63

A
O


ANISOU
 559
O
LYS A
117
15172
10593
17409
−608
−80


2646
A
O


ATOM
 560
CB
LYS A
117
51.271
39.117
41.366


1.00
101.15

A
C


ANISOU
 560
CB
LYS A
117
13574
8768
16089
−989
−114


2007
A
C


ATOM
 561
CG
LYS A
117
51.846
39.752
42.638


1.00
97.84

A
C


ANISOU
 561
CG
LYS A
117
13190
8135
15849
−1215
−103


1695
A
C


ATOM
 562
CD
LYS A
117
53.236
39.221
43.006


1.00
93.60

A
C


ANISOU
 562
CD
LYS A
117
12503
7781
15281
−1500
−108


1589
A
C


ATOM
 563
CE
LYS A
117
54.329
39.840
42.139


1.00
97.27

A
C


ANISOU
 563
CE
LYS A
117
12971
8180
15808
−1705
10


1808
A
C


ATOM
 564
NZ
LYS A
117
55.707
39.616
42.690


1.00
98.21

A
N1+


ANISOU
 564
NZ
LYS A
117
12938
8420
15955
−2019
13


1641
A
N1+


ATOM
 565
N
ASN A
118
48.260
39.665
39.220


1.00
103.91

A
N


ANISOU
 565
N
ASN A
118
14089
9107
16286
−203
−154


2546
A
N


ATOM
 566
CA
ASN A
118
47.709
39.528
37.868


1.00
91.53

A
C


ANISOU
 566
CA
ASN A
118
12514
7706
14555
20
−156


2881
A
C


ATOM
 567
C
ASN A
118
47.779
38.110
37.307


1.00
81.66

A
C


ANISOU
 567
C
ASN A
118
11074
6906
13047
56
−209


2935
A
C


ATOM
 568
O
ASN A
118
47.927
37.914
36.107


1.00
78.27

A
O


ANISOU
 568
O
ASN A
118
10608
6687
12443
205
−207


3204
A
O


ATOM
 569
CB
ASN A
118
48.326
40.557
36.904


1.00
88.71

A
C


ANISOU
 569
CB
ASN A
118
12269
7207
14229
−76
−48


3182
A
C


ATOM
 570
CG
ASN A
118
47.423
40.884
35.736


1.00
86.71

A
C


ANISOU
 570
CG
ASN A
118
12133
6890
13923
219
−49


3485
A
C


ATOM
 571
OD1
ASN A
118
46.834
39.998
35.121


1.00
81.39

A
O


ANISOU
 571
OD1
ASN A
118
11659
5846
13421
263
6


3574
A
O


ATOM
 572
ND2
ASN A
118
47.314
42.168
35.419


1.00
86.46

A
N


ANISOU
 572
ND2
ASN A
118
11978
7225
13646
425
−112


3642
A
N


ATOM
 573
N
HIS A
119
47.663
37.125
38.188


1.00
77.37

A
N


ANISOU
 573
N
HIS A
119
10415
6521
12459
−71
−254


2688
A
N


ATOM
 574
CA
HIS A
119
47.667
35.725
37.785


1.00
84.38

A
C


ANISOU
 574
CA
HIS A
119
11144
7801
13114
−30
−298


2708
A
C


ATOM
 575
C
HIS A
119
46.697
34.982
38.685


1.00
81.02

A
C


ANISOU
 575
C
HIS A
119
10685
7403
12697
54
−376


2423
A
C


ATOM
 576
O
HIS A
119
46.507
35.360
39.834


1.00
91.42

A
O


ANISOU
 576
O
HIS A
119
12060
8509
14165
−43
−390


2160
A
O


ATOM
 577
CB
HIS A
119
49.065
35.122
37.878


1.00
90.48

A
C


ANISOU
 577
CB
HIS A
119
11816
8763
13798
−282
−261


2710
A
C


ATOM
 578
CG
HIS A
119
49.966
35.507
36.747


1.00
93.10

A
C


ANISOU
 578
CG
HIS A
119
12154
9114
14107
−387
−173


2976
A
C


ATOM
 579
ND1
HIS A
119
50.772
36.623
36.784


1.00
97.41

A
N


ANISOU
 579
ND1
HIS A
119
12820
9346
14847
−524
−102


3018
A
N


ATOM
 580
CD2
HIS A
119
50.191
34.922
35.548


1.00
93.35

A
C


ANISOU
 580
CD2
HIS A
119
12089
9442
13938
−387
−132


3201
A
C


ATOM
 581
CE1
HIS A
119
51.453
36.711
35.657


1.00
100.49

A
C


ANISOU
 581
CE1
HIS A
119
13193
9826
15164
−607
−18


3269
A
C


ATOM
 582
NE2
HIS A
119
51.118
35.691
34.889


1.00
97.52

A
N


ANISOU
 582
NE2
HIS A
119
12681
9830
14544
−520
−39


3381
A
N


ATOM
 583
N
SER A
120
46.072
33.931
38.174


1.00
72.27

A
N


ANISOU
 583
N
SER A
120
9477
6562
11419
225
−420


2459
A
N


ATOM
 584
CA
SER A
120
45.103
33.202
38.985


1.00
62.39

A
C


ANISOU
 584
CA
SER A
120
8200
5313
10194
318
−481


2194
A
C


ATOM
 585
C
SER A
120
45.565
31.838
39.499


1.00
52.73

A
C


ANISOU
 585
C
SER A
120
6898
4332
8805
172
−476


2036
A
C


ATOM
 586
O
SER A
120
46.116
31.044
38.744


1.00
56.94

A
O


ANISOU
 586
O
SER A
120
7346
5146
9143
118
−440


2183
A
O


ATOM
 587
CB
SER A
120
43.735
33.129
38.300


1.00
65.19

A
C


ANISOU
 587
CB
SER A
120
8490
5791
10489
635
−529


2268
A
C


ATOM
 588
OG
SER A
120
43.850
32.680
36.967


1.00
70.96

A
O


ANISOU
 588
OG
SER A
120
9106
6896
10960
733
−517


2506
A
O


ATOM
 589
N
PHE A
121
45.317
31.565
40.781


1.00
43.47

A
N


ANISOU
 589
N
PHE A
121
5764
3099
7654
114
−490


1685
A
N


ATOM
 590
CA
PHE A
121
45.764
30.314
41.379


1.00
52.78

A
C


ANISOU
 590
CA
PHE A
121
6916
4492
8646
−22
−464


1474
A
C


ATOM
 591
C
PHE A
121
44.789
29.893
42.473


1.00
54.71

A
C


ANISOU
 591
C
PHE A
121
7199
4744
8844
28
−464


1114
A
C


ATOM
 592
O
PHE A
121
43.994
30.693
42.970


1.00
52.36

A
O


ANISOU
 592
O
PHE A
121
6946
4245
8704
125
−493


993
A
O


ATOM
 593
CB
PHE A
121
47.161
30.415
42.026


1.00
52.63

A
C


ANISOU
 593
CB
PHE A
121
6929
4342
8726
−253
−474


1465
A
C


ATOM
 594
CG
PHE A
121
48.302
30.553
41.052


1.00
57.08

A
C


ANISOU
 594
CG
PHE A
121
7431
4966
9293
−358
−449


1773
A
C


ATOM
 595
CD1
PHE A
121
48.848
29.442
40.423


1.00
52.86

A
C


ANISOU
 595
CD1
PHE A
121
6803
4757
8523
−388
−408


1847
A
C


ATOM
 596
CD2
PHE A
121
48.862
31.795
40.797


1.00
61.76

A
C


ANISOU
 596
CD2
PHE A
121
8055
5378
10031
−423
−428


1891
A
C


ATOM
 597
CE1
PHE A
121
49.918
29.579
39.536


1.00
49.64

A
C


ANISOU
 597
CE1
PHE A
121
6320
4432
8108
−490
−375


2110
A
C


ATOM
 598
CE2
PHE A
121
49.921
31.938
39.915


1.00
55.12

A
C


ANISOU
 598
CE2
PHE A
121
7152
4648
9143
−529
−377


2112
A
O


ATOM
 599
CZ
PHE A
121
50.453
30.828
39.285


1.00
46.92

A
C


ANISOU
 599
CZ
PHE A
121
6003
3916
7908
−561
−356


2215
A
C


ATOM
 600
N
ALA A
122
44.900
28.631
42.872


1.00
43.87

A
N


ANISOU
 600
N
ALA A
122
5817
3592
7260
−42
−416


945
A
N


ATOM
 601
CA
ALA A
122
44.227
28.101
44.041


1.00
35.63

A
C


ANISOU
 601
CA
ALA A
122
4832
2555
6149
−51
−388


613
A
C


ATOM
 602
C
ALA A
122
45.277
27.890
45.108


1.00
41.58

A
C


ANISOU
 602
C
ALA A
122
5664
3220
6916
−216
−406


515
A
C


ATOM
 603
O
ALA A
122
46.132
27.008
44.968


1.00
55.99

A
O


ANISOU
 603
O
ALA A
122
7475
5201
8597
−292
−378


584
A
O


ATOM
 604
CB
ALA A
122
43.544
26.788
43.720


1.00
35.19

A
C


ANISOU
 604
CB
ALA A
122
4730
2803
5837
−10
−294


498
A
C


ATOM
 605
N
ASN A
123
45.215
28.699
46.163


1.00
40.73

A
N


ANISOU
 605
N
ASN A
123
5625
2879
6972
−258
−454


346
A
N


ATOM
 606
CA
ASN A
123
46.131
28.564
47.287


1.00
40.16

A
C


ANISOU
 606
CA
ASN A
123
5609
2760
6889
−403
−487


213
A
C


ATOM
 607
C
ASN A
123
45.657
27.373
48.127


1.00
39.49

A
C


ANISOU
 607
C
ASN A
123
5592
2851
6563
−392
−421


−9
A
C


ATOM
 608
O
ASN A
123
44.535
27.372
48.641


1.00
42.92

A
O


ANISOU
 608
O
ASN A
123
6065
3269
6975
−330
−379


−218
A
O


ATOM
 609
CB
ASN A
123
46.185
29.898
48.046


1.00
43.73

A
C


ANISOU
 609
CB
ASN A
123
6101
2913
7603
−459
−553


89
A
C


ATOM
 610
CG
ASN A
123
46.972
29.839
49.374


1.00
62.73

A
C


ANISOU
 610
CG
ASN A
123
8549
5307
9979
−604
−600


−123
A
C


ATOM
 611
OD1
ASN A
123
47.501
28.795
49.772


1.00
71.30

A
O


ANISOU
 611
OD1
ASN A
123
9644
6607
10839
−640
−591


−152
A
O


ATOM
 612
ND2
ASN A
123
47.042
30.985
50.064


1.00
74.71

A
N


ANISOU
 612
ND2
ASN A
123
10085
6641
11659
−664
−625


−271
A
N


ATOM
 613
N
ILE A
124
46.483
26.331
48.205


1.00
36.45

A
N


ANISOU
 613
N
ILE A
124
5220
2636
5994
−443
−394


47
A
N


ATOM
 614
CA
ILE A
124
46.132
25.068
48.845


1.00
32.36

A
C


ANISOU
 614
CA
ILE A
124
4793
2268
5234
−425
−300


−99
A
C


ATOM
 615
C
ILE A
124
47.245
24.689
49.815


1.00
54.06

A
C


ANISOU
 615
C
ILE A
124
7599
5058
7883
−491
−348


−130
A
C


ATOM
 616
O
ILE A
124
48.372
24.429
49.391


1.00
58.16

A
O


ANISOU
 616
O
ILE A
124
8059
5661
8380
−515
−386


40
A
O


ATOM
 617
CB
ILE A
124
45.938
23.957
47.808


1.00
28.44

A
C


ANISOU
 617
CB
ILE A
124
4265
1959
4582
−374
−192


20
A
C


ATOM
 618
CG1
ILE A
124
44.582
24.114
47.127


1.00
30.24

A
C


ANISOU
 618
CG1
ILE A
124
4436
2221
4833
−297
−133


−41
A
C


ATOM
 619
CG2
ILE A
124
46.121
22.561
48.441


1.00
26.53

A
C


ANISOU
 619
CG2
ILE A
124
4141
1832
4105
−381
−85


−59
A
C


ATOM
 62C
CD1
ILE A
124
44.224
22.974
46.224


1.00
30.71

A
C


ANISOU
 620
CD1
ILE A
124
4457
2489
4721
−269
−9


−6
A
C


ATOM
 621
N
THR A
125
46.929
24.636
51.109


1.00
53.68

A
N


ANISOU
 621
N
THR A
125
7653
4986
7756
−508
−345


−351
A
N


ATOM
 622
CA
THR A
125
47.926
24.379
52.144


1.00
44.84

A
C


ANISOU
 622
CA
THR A
125
6581
3939
6518
−548
−412


−399
A
C


ATOM
 623
C
THR A
125
48.328
22.898
52.179


1.00
41.87

A
C


ANISOU
 623
C
THR A
125
6289
3736
5883
−480
−324


−303
A
C


ATOM
 624
O
THR A
125
47.463
22.007
52.141


1.00
32.26

A
O


ANISOU
 624
O
THR A
125
5176
2549
4532
−434
−175


−347
A
O


ATOM
 625
CB
THR A
125
47.379
24.839
53.500


1.00
37.68

A
C


ANISOU
 625
CB
THR A
125
5756
2973
5587
−580
−431


−672
A
C


ATOM
 626
OG1
THR A
125
47.144
26.254
53.446


1.00
41.68

A
O


ANISOU
 626
OG1
THR A
125
6185
3285
6366
−636
−510


−762
A
O


ATOM
 627
CG2
THR A
125
48.358
24.552
54.612


1.00
45.19

A
C


ANISOU
 627
CG2
THR A
125
6748
4053
6370
−603
−509


−732
A
C


ATOM
 628
N
THR A
126
49.629
22.652
52.273


1.00
37.19

A
N


ANISOU
 628
N
THR A
126
5646
3256
5229
−473
−408


−183
A
N


ATOM
 629
CA
THR A
126
50.164
21.301
52.347


1.00
30.10

A
C


ANISOU
 629
CA
THR A
126
4828
2507
4102
−373
−342


−75
A
C


ATOM
 630
C
THR A
126
51.186
21.222
53.478


1.00
35.51

A
C


ANISOU
 630
C
THR A
126
5527
3318
4646
−343
−458


−115
A
C


ATOM
 631
O
THR A
126
51.924
22.171
53.714


1.00
31.79

A
O


ANISOU
 631
O
THR A
126
4918
2870
4290
−425
−611


−161
A
O


ATOM
 632
CB
THR A
126
50.800
20.912
51.009


1.00
31.11

A
C


ANISOU
 632
CB
THR A
126
4841
2709
4271
−341
−319


147
A
C


ATOM
 633
CG
TYR A
126
51.470
19.557
50.989


1.00
28.17

A
C


ANISOU
 633
CG
TYR A
126
4543
2469
3692
−213
−246


258
A
C


ATOM
 634
CD1
TYR A
126
50.725
18.393
50.944


1.00
27.33

A
C


ANISOU
 634
CD1
TYR A
126
4598
2334
3450
−146
−56


252
A
C


ATOM
 635
CD2
TYR A
126
52.848
19.446
51.001


1.00
29.18

A
C


ANISOU
 635
CD2
TYR A
126
4571
2744
3771
−160
−356


360
A
C


ATOM
 636
CE1
TYR A
126
51.334
17.157
50.921


1.00
27.52

A
C


ANISOU
 636
CE1
TYR A
126
4716
2427
3312
−17
33


356
A
C


ATOM
 637
CE2
TYR A
126
53.464
18.215
50.980


1.00
29.34

A
C


ANISOU
 637
CE2
TYR A
126
4665
2872
3613
−4
−287


466
A
C


ATOM
 638
CZ
TYR A
126
52.701
17.076
50.939


1.00
28.52

A
C


ANISOU
 638
CZ
TYR A
126
4755
2691
3392
73
−86


471
A
C


ATOM
 639
OH
TYR A
126
53.313
15.849
50.917


1.00
36.25

A
O


ANISOU
 639
OH
TYR A
126
5838
3723
4213
239
9


578
A
O


ATOM
 640
N
SER A
127
51.222
20.095
54.181


1.00
30.67

A
N


ANISOU
 640
N
SER A
127
5081
2794
3778
−225
−377


−98
A
N


ATOM
 641
CA
SER A
127
52.180
19.906
55.259


1.00
32.33

A
C


ANISOU
 641
CA
SER A
127
5317
3175
3794
−142
−484


−108
A
C


ATOM
 642
C
SER A
127
53.256
18.969
54.757


1.00
36.73

A
C


ANISOU
 642
C
SER A
127
5824
3876
4255
−1
−495


102
A
C


ATOM
 643
O
SER A
127
52.975
17.857
54.328


1.00
35.95

A
O


ANISOU
 643
O
SER A
127
5864
3745
4051
112
−336


221
A
O


ATOM
 644
CB
SER A
127
51.513
19.322
56.501


1.00
32.94

A
C


ANISOU
 644
CB
SER A
127
5634
3257
3625
−77
−383


−205
A
C


ATOM
 645
OG
SER A
127
51.055
20.345
57.364


1.00
35.34

A
O


ANISOU
 645
OG
SER A
127
5913
3597
3919
−160
−498


−418
A
O


ATOM
 646
N
ILE A
128
54.499
19.416
54.843


1.00
33.78

A
N


ANISOU
 646
N
ILE A
128
5246
3664
3927
−13
−673


126
A
N


ATOM
 647
CA
ILE A
128
55.615
18.635
54.353


1.00
34.32

A
C


ANISOU
 647
CA
ILE A
128
5227
3906
3906
135
−699


303
A
C


ATOM
 648
C
ILE A
128
55.809
17.311
55.070


1.00
43.93

A
C


ANISOU
 648
C
ILE A
128
6671
5187
4832
370
−608


389
A
C


ATOM
 649
O
ILE A
128
55.661
17.214
56.282


1.00
53.83

A
O


ANISOU
 649
O
ILE A
128
8088
6462
5903
417
−611


303
A
O


ATOM
 650
CB
ILE A
128
56.933
19.418
54.480


1.00
36.23

A
C


ANISOU
 650
CB
ILE A
128
5207
4367
4192
83
−914


258
A
C


ATOM
 651
CG1
ILE A
128
56.895
20.684
53.629


1.00
40.89

A
C


ANISOU
 651
CG1
ILE A
128
5599
4845
5092
−162
−966


205
A
C


ATOM
 652
CG2
ILE A
128
58.106
18.546
54.070


1.00
37.08

A
C


ANISOU
 652
CG2
ILE A
128
5207
4694
4188
267
−944


424
A
C


ATOM
 653
CD1
ILE A
128
56.997
20.422
52.145


1.00
34.33

A
C


ANISOU
 653
CD1
ILE A
128
4699
3926
4420
−192
−857


384
A
C


ATOM
 654
N
LYS A
129
56.129
16.289
54.289


1.00
40.69

A
N


ANISOU
 654
N
LYS A
129
6290
4792
4379
521
−507


564
A
N


ATOM
 655
CA
LYS A
129
56.436
14.968
54.814


1.00
42.82

A
C


ANISOU
 655
CA
LYS A
129
6758
5112
4398
783
−423


692
A
C


ATOM
 656
C
LYS A
129
57.887
14.643
54.466


1.00
51.07

A
C


ANISOU
 656
C
LYS A
129
7605
6391
5407
957
−540


820
A
C


ATOM
 657
O
LYS A
129
58.565
15.410
53.776


1.00
47.58

A
O


ANISOU
 657
O
LYS A
129
6879
6062
5136
839
−661


799
A
O


ATOM
 658
CB
LYS A
129
55.464
13.919
54.250


1.00
46.49

A
C


ANISOU
 658
CB
LYS A
129
7467
5336
4860
812
−146


755
A
C


ATOM
 659
CG
LYS A
129
54.001
14.413
54.159


1.00
45.71

A
C


ANISOU
 659
CG
LYS A
129
7460
5035
4874
590
−29


600
A
C


ATOM
 660
CD
LYS A
129
53.086
13.407
53.430


1.00
43.43

A
C


ANISOU
 660
CD
LYS A
129
7349
4547
4603
580
248


625
A
C


ATOM
 661
CE
LYS A
129
51.605
13.699
53.670


1.00
53.17

A
C


ANISOU
 661
CE
LYS A
129
8702
5627
5874
401
376


452
A
C


ATOM
 662
NZ
LYS A
129
50.738
12.508
53.362


1.00
53.84

A
N1+


ANISOU
 662
NZ
LYS A
129
9012
5540
5905
400
672


446
A
N1+


ATOM
 663
N
GLN A
130
58.382
13.505
54.958


1.00
57.32

A
N


ANISOU
 663
N
GLN A
130
8548
7258
5974
1246
−498


956
A
N


ATOM
 664
CA
GLN A
130
59.803
13.196
54.799


1.00
62.21

A
C


ANISOU
 664
CA
GLN A
130
8962
8147
6529
1457
−632


1060
A
C


ATOM
 665
C
GLN A
130
60.107
12.847
53.346


1.00
65.58

A
C


ANISOU
 665
C
GLN A
130
9260
8521
7137
1446
−527


1142
A
C


ATOM
 666
O
GLN A
130
59.453
11.981
52.757


1.00
67.38

A
O


ANISOU
 666
O
GLN A
130
9688
8521
7391
1487
−300


1208
A
O


ATOM
 667
CB
GLN A
130
60.229
12.048
55.722


1.00
61.32

A
C


ANISOU
 667
CB
GLN A
130
9061
8121
6118
1820
−612


1207
A
C


ATOM
 668
CG
GLN A
130
61.751
11.820
55.791


1.00
74.05

A
C


ANISOU
 668
CG
GLN A
130
10428
10085
7623
2081
−798


1290
A
C


ATOM
 669
CD
GLN A
130
62.553
13.028
56.327


1.00
82.20

A
C


ANISOU
 669
CD
GLN A
130
11117
11469
8647
1956
−1090


1125
A
C


ATOM
 670
OE1
GLN A
130
62.176
13.651
57.322


1.00
78.95

A
O


ANISOU
 670
OE1
GLN A
130
10752
11111
8134
1852
−1187


996
A
O


ATOM
 671
NE2
GLN A
130
63.668
13.349
55.661


1.00
87.16

A
N


ANISOU
 671
NE2
GLN A
130
11391
12344
9382
1951
−1217


1109
A
N


ATOM
 672
N
GLY A
131
61.094
13.526
52.762


1.00
65.61

A
N


ANISOU
 672
N
GLY A
131
8920
8747
7262
1371
−681


1120
A
N


ATOM
 673
CA
GLY A
131
61.418
13.327
51.362


1.00
55.05

A
C


ANISOU
 673
CA
GLY A
131
7428
7402
6086
1333
−590


1186
A
C


ATOM
 674
C
GLY A
131
60.668
14.220
50.409


1.00
45.28

A
C


ANISOU
 674
C
GLY A
131
6112
6009
5084
1014
−532


1121
A
C


ATOM
 675
O
GLY A
131
60.667
13.951
49.208


1.00
52.13

A
O


ANISOU
 675
O
GLY A
131
6908
6843
6057
978
−416


1180
A
O


ATOM
 676
N
ASP A
132
60.035
15.273
50.897


1.00
36.09

A
N


ANISOU
 676
N
ASP A
132
4956
4760
3997
797
−609


1003
A
N


ATOM
 677
CA
ASP A
132
59.287
16.168
50.039


1.00
40.45

A
C


ANISOU
 677
CA
ASP A
132
5447
5153
4768
530
−563


961
A
C


ATOM
 678
C
ASP A
132
60.136
17.371
49.661


1.00
40.74

A
C


ANISOU
 678
C
ASP A
132
5173
5335
4970
341
−717


935
A
C


ATOM
 679
O
ASP A
132
60.843
17.942
50.497


1.00
39.54

A
O


ANISOU
 679
O
ASP A
132
4894
5341
4789
313
−885


847
A
O


ATOM
 680
CB
ASP A
132
57.999
16.640
50.726


1.00
42.67

A
C


ANISOU
 680
CB
ASP A
132
5928
5220
5066
410
−531


839
A
C


ATOM
 681
CG
ASP A
132
56.831
15.690
50.510


1.00
49.09

A
C


ANISOU
 681
CG
ASP A
132
7006
5829
5817
470
−309


852
A
C


ATOM
 682
OD1
ASP A
132
57.025
14.586
49.961


1.00
53.68

A
O


ANISOU
 682
OD1
ASP A
132
7653
6413
6330
617
−175


949
A
O


ATOM
 683
OD2
ASP A
132
55.705
16.053
50.888


1.00
51.49

A
O1−


ANISOU
 683
OD2
ASP A
132
7445
5971
6147
360
−259


744
A
O1−


ATOM
 684
N
ASN A
133
60.076
17.736
48.383


1.00
38.91

A
N


ANISOU
 684
N
ASN A
133
4818
5063
4904
203
−647


1008
A
N


ATOM
 685
CA
ASN A
133
60.546
19.033
47.923


1.00
45.30

A
C


ANISOU
 685
CA
ASN A
133
5393
5909
5911
−38
−739


998
A
C


ATOM
 686
C
ASN A
133
59.533
19.564
46.919


1.00
36.88

A
C


ANISOU
 686
C
ASN A
133
4380
4630
5002
−191
−629


1055
A
C


ATOM
 687
O
ASN A
133
58.673
18.831
46.438


1.00
46.45

A
O


ANISOU
 687
O
ASN A
133
5747
5745
6156
−106
−490


1093
A
O


ATOM
 688
CB
ASN A
133
61.940
18.948
47.298


1.00
50.09

A
C


ANISOU
 688
CB
ASN A
133
5718
6787
6528
−27
−782


1072
A
C


ATOM
 689
CG
ASN A
133
61.996
17.959
46.173


1.00
53.97

A
C


ANISOU
 689
CG
ASN A
133
6208
7330
6967
102
−631


1204
A
C


ATOM
 690
OD1
ASN A
133
61.637
18.279
45.042


1.00
61.80

A
C


ANISOU
 690
OD1
ASN A
133
7156
8255
8068
−27
−536


1286
A
C


ATOM
 691
ND2
ASN A
133
62.425
16.735
46.476


1.00
47.96

A
N


ANISOU
 691
ND2
ASN A
133
5506
6687
6032
371
−602


1224
A
N


ATOM
 692
N
PHE A
134
59.651
20.852
46.598


1.00
33.97

A
N


ANISOU
 692
N
PHE A
134
3879
4195
4832
−415
−687


1057
A
N


ATOM
 693
CA
PHE A
134
58.726
21.480
45.661


1.00
35.98

A
C


ANISOU
 693
CA
PHE A
134
4179
4261
5233
−533
−602


1138
A
C


ATOM
 694
C
PHE A
134
58.721
20.775
44.310


1.00
49.87

A
C


ANISOU
 694
C
PHE A
134
5890
6122
6938
−469
−471


1294
A
C


ATOM
 695
O
PHE A
134
57.668
20.629
43.675


1.00
55.12

A
O


ANISOU
 695
O
PHE A
134
6660
6682
7600
−451
−371


1330
A
O


ATOM
 696
CB
PHE A
134
59.089
22.952
45.465


1.00
34.56

A
C


ANISOU
 696
CB
PHE A
134
3860
3989
5281
−771
−669


1155
A
C


ATOM
 697
CG
PHE A
134
58.857
23.796
46.673


1.00
39.36

A
C


ANISOU
 697
CG
PHE A
134
4528
4448
5979
−864
−774


969
A
C


ATOM
 698
CD1
PHE A
134
58.482
23.229
47.880


1.00
40.06

A
C


ANISOU
 698
CD1
PHE A
134
4760
4548
5913
−736
−820


809
A
C


ATOM
 699
CD2
PHE A
134
59.009
25.171
46.601


1.00
52.37

A
C


ANISOU
 699
CD2
PHE A
134
6098
5934
7866
−1088
−812


951
A
C


ATOM
 700
CE1
PHE A
134
58.275
24.018
48.997


1.00
43.69

A
C


ANISOU
 700
CE1
PHE A
134
5262
4900
6437
−827
−915


614
A
C


ATOM
 701
CE2
PHE A
134
58.794
25.970
47.714


1.00
57.20

A
C


ANISOU
 701
CE2
PHE A
134
6760
6401
8573
−1184
−898


743
A
C


ATOM
 702
CZ
PHE A
134
58.417
25.392
48.913


1.00
48.62

A
C


ANISOU
 702
CZ
PHE A
134
5796
5365
7313
−1052
−955


564
A
C


ATOM
 703
N
PHE A
135
59.889
20.360
43.836


1.00
52.63

A
N


ANISOU
 703
N
PHE A
135
6057
6702
7238
−437
−470


1368
A
N


ATOM
 704
CA
PHE A
135
59.959
19.733
42.524


1.00
48.96

A
C


ANISOU
 704
CA
PHE A
135
5525
6360
6719
−388
−341


1495
A
C


ATOM
 705
C
PHE A
135
59.148
18.440
42.481


1.00
39.21

A
C


ANISOU
 705
C
PHE A
135
4480
5088
5330
−199
−219


1447
A
C


ATOM
 706
O
PHE A
135
58.219
18.297
41.669


1.00
32.73

A
O


ANISOU
 706
O
PHE A
135
3725
4209
4501
−213
−110


1475
A
O


ATOM
 707
CE
PHE A
135
61.406
19.460
42.155


1.00
42.16

A
C


ANISOU
 707
CB
PHE A
135
4423
5772
5823
−372
−360


1548
A
C


ATOM
 708
CG
PHE A
135
61.557
18.603
40.951


1.00
34.39

A
C


ANISOU
 708
CG
PHE A
135
3373
4945
4748
−283
−221


1638
A
C


ATOM
 709
CD1
PHE A
135
61.391
19.144
39.692


1.00
33.94

A
C


ANISOU
 709
CD1
PHE A
135
3220
4926
4749
−423
−144


1771
A
C


ATOM
 710
CD2
PHE A
135
61.867
17.258
41.068


1.00
33.72

A
C


ANISOU
 710
CD2
PHE A
135
3329
4971
4514
−52
−159


1589
A
C


ATOM
 711
CE1
PHE A
135
61.525
18.370
38.584


1.00
36.21

A
C


ANISOU
 711
CE1
PHE A
135
3435
5391
4934
−350
−15


1829
A
C


ATOM
 712
CE2
PHE A
135
62.011
16.476
39.946


1.00
35.50

A
C


ANISOU
 712
CE2
PHE A
135
3486
5336
4666
21
−18


1638
A
C


ATOM
 713
CZ
PHE A
135
61.844
17.034
38.705


1.00
35.81

A
C


ANISOU
 713
CZ
PHE A
135
3410
5446
4750
−135
50


1745
A
C


ATOM
 714
N
ILE A
136
59.480
17.488
43.363


1.00
34.00

A
N


ANISOU
 714
N
ILE A
136
3913
4465
4542
−19
−227


1370
A
N


ATOM
 715
CA
ILE A
136
58.830
16.182
43.318


1.00
31.46

A
C


ANISOU
 715
CA
ILE A
136
3785
4081
4087
151
−76


1328
A
C


ATOM
 716
C
ILE A
136
57.362
16.292
43.653


1.00
28.76

A
C


ANISOU
 716
C
ILE A
136
3658
3516
3755
99
−17


1239
A
C


ATOM
 717
O
ILE A
136
56.560
15.488
43.178


1.00
49.27

A
O


ANISOU
 717
O
ILE A
136
6373
6057
6290
144
142


1198
A
O


ATOM
 718
CB
ILE A
136
59.515
15.175
44.251


1.00
37.89

A
C


ANISOU
 718
CB
ILE A
136
4682
4952
4764
377
−90


1298
A
C


ATOM
 719
CG1
ILE A
136
59.110
13.766
43.833


1.00
51.14

A
C


ANISOU
 719
CG1
ILE A
136
6523
6571
6338
541
112


1286
A
C


ATOM
 720
CG2
ILE A
136
59.072
15.382
45.665


1.00
41.46

A
C


ANISOU
 720
CG2
ILE A
136
5312
5272
5169
399
−174


1212
A
C


ATOM
 721
CD1
ILE A
136
59.979
12.673
44.397


1.00
70.98

A
C


ANISOU
 721
CD1
ILE A
136
9092
9153
8726
808
129


1310
A
C


ATOM
 722
N
LEU A
137
56.972
17.295
44.442


1.00
28.75

A
N


ANISOU
 722
N
LEU A
137
3693
3394
3836
−8
−131


1184
A
N


ATOM
 723
CA
LEU A
137
55.549
17.524
44.674


1.00
35.47

A
C


ANISOU
 723
CA
LEU A
137
4709
4056
4711
−64
−76


1088
A
C


ATOM
 724
C
LEU A
137
54.862
17.940
43.384


1.00
33.12

A
C


ANISOU
 724
C
LEU A
137
4329
3764
4490
−156
−10


1147
A
C


ATOM
 725
O
LEU A
137
53.840
17.362
43.001


1.00
32.78

A
O


ANISOU
 725
O
LEU A
137
4382
3686
4389
−132
119


1078
A
O


ATOM
 726
CB
LEU A
137
55.341
18.586
45.746


1.00
28.02

A
C


ANISOU
 726
CB
LEU A
137
3800
2993
3853
−154
−214


1002
A
C


ATOM
 727
CG
LEU A
137
55.460
18.040
47.160


1.00
36.11

A
C


ANISOU
 727
CG
LEU A
137
4980
3999
4742
−47
−246


900
A
C


ATOM
 728
CD1
LEU A
137
55.272
19.174
48.117


1.00
30.01

A
C


ANISOU
 728
CD1
LEU A
137
4208
3137
4056
−157
−381


787
A
C


ATOM
 729
CD2
LEU A
137
54.435
16.946
47.406


1.00
40.36

A
C


ANISOU
 729
CD2
LEU A
137
5753
4435
5147
46
−74


829
A
C


ATOM
 730
N
SER A
138
55.429
18.949
42.706


1.00
33.06

A
N


ANISOU
 730
N
SER A
138
4138
3817
4606
−265
−93


1273
A
N


ATOM
 731
CA
SER A
138
54.926
19.409
41.416


1.00
27.54

A
C


ANISOU
 731
CA
SER A
138
3349
3160
3955
−330
−42


1379
A
C


ATOM
 732
C
SER A
138
54.682
18.254
40.467


1.00
26.93

A
C


ANISOU
 732
C
SER A
138
3263
3234
3735
−248
110


1373
A
C


ATOM
 733
O
SER A
138
53.594
18.122
39.897


1.00
42.35

A
O


ANISOU
 733
O
SER A
138
5253
5190
5649
−247
190


1327
A
O


ATOM
 734
CB
SER A
138
55.902
20.381
40.775


1.00
28.95

A
C


ANISOU
 734
CB
SER A
138
3336
3414
4248
−447
−115


1552
A
C


ATOM
 735
OG
SER A
138
55.726
21.689
41.267


1.00
35.51

A
O


ANISOU
 735
OG
SER A
138
4180
4058
5255
−562
−218


1562
A
O


ATOM
 736
N
ILE A
139
55.677
17.393
40.267


1.00
27.36

A
N


ANISOU
 736
N
ILE A
139
3255
3434
3707
−173
157


1399
A
N


ATOM
 737
CA
ILE A
139
55.515
16.419
39.187


1.00
33.21

A
C


ANISOU
 737
CA
ILE A
139
3958
4327
4334
−117
312


1386
A
C


ATOM
 738
C
ILE A
139
54.922
15.106
39.670


1.00
42.52

A
C


ANISOU
 738
C
ILE A
139
5330
5417
5409
−8
453


1216
A
C


ATOM
 739
O
ILE A
139
54.781
14.172
38.872


1.00
61.86

A
O


ANISOU
 739
O
ILE A
139
7768
7966
7771
35
605


1159
A
O


ATOM
 740
CB
ILE A
139
56.831
16.142
38.419


1.00
34.80

A
C


ANISOU
 740
CB
ILE A
139
3967
4753
4504
−92
328


1496
A
C


ATOM
 741
CG1
ILE A
139
57.896
15.498
39.308


1.00
37.89

A
C


ANISOU
 741
CG1
ILE A
139
4375
5153
4868
33
293


1465
A
C


ATOM
 742
CG2
ILE A
139
57.365
17.438
37.795


1.00
29.99

A
C


ANISOU
 742
CG2
ILE A
139
3168
4231
3994
−238
231


1676
A
C


ATOM
 743
CD1
ILE A
139
58.138
14.032
38.996


1.00
37.21

A
C


ANISOU
 743
CD1
ILE A
139
4336
5138
4666
197
451


1390
A
C


ATOM
 744
N
THR A
140
54.542
14.996
40.938


1.00
36.73

A
N


ANISOU
 744
N
THR A
140
4782
4495
4678
27
427


1125
A
N


ATOM
 745
CA
THR A
140
53.898
13.741
41.336


1.00
43.41

A
C


ANISOU
 745
CA
THR A
140
5836
5232
5426
108
600


979
A
C


ATOM
 746
C
THR A
140
52.613
13.964
42.114


1.00
43.64

A
C


ANISOU
 746
C
THR A
140
6032
5086
5464
44
622


845
A
C


ATOM
 747
O
THR A
140
51.516
13.659
41.623


1.00
32.52

A
O


ANISOU
 747
O
THR A
140
4655
3672
4027
−16
749


721
A
O


ATOM
 748
CB
THR A
140
54.808
12.869
42.192


1.00
42.70

A
C


ANISOU
 748
CB
THR A
140
5861
5094
5270
271
617


998
A
C


ATOM
 749
OG1
THR A
140
55.167
13.616
43.350


1.00
57.69

A
O


ANISOU
 749
OG1
THR A
140
7785
6935
7197
274
443


1034
A
O


ATOM
 750
CG2
THR A
140
56.066
12.474
41.432


1.00
37.57

A
C


ANISOU
 750
CG2
THR A
140
5039
4633
4605
363
620


1097
A
C


ATOM
 751
N
SER A
141
52.739
14.451
43.355


1.00
47.89

A
N


ANISOU
 751
N
SER A
141
6665
5506
6025
56
506


844
A
N


ATOM
 752
CA
SER A
141
51.568
14.622
44.210


1.00
42.12

A
C


ANISOU
 752
CA
SER A
141
6096
4619
5289
2
538


702
A
C


ATOM
 753
C
SER A
141
50.542
15.510
43.533


1.00
29.10

A
C


ANISOU
 753
C
SER A
141
4338
2994
3726
−112
511


653
A
C


ATOM
 754
O
SER A
141
49.338
15.226
43.570


1.00
27.69

A
O


ANISOU
 754
O
SER A
141
4239
2768
3516
−156
627


497
A
O


ATOM
 755
CB
SER A
141
51.960
15.209
45.580


1.00
49.10

A
C


ANISOU
 755
CB
SER A
141
7054
5419
6181
22
389


707
A
C


ATOM
 756
OG
SER A
141
52.416
14.211
46.493


1.00
46.62

A
C


ANISOU
 756
OG
SER A
141
6921
5057
5734
153
452


708
A
C


ATOM
 757
N
TYR A
142
50.998
16.568
42.881


1.00
24.32

A
N


ANISOU
 757
N
TYR A
142
3547
2469
3224
−154
370


789
A
N


ATOM
 758
CA
TYR A
142
50.089
17.527
42.281


1.00
34.59

A
C


ANISOU
 758
CA
TYR A
142
4754
3780
4607
−220
325


785
A
C


ATOM
 759
C
TYR A
142
50.009
17.425
40.749


1.00
31.57

A
C


ANISOU
 759
C
TYR A
142
4209
3597
4189
−225
379


871
A
C


ATOM
 760
O
TYR A
142
49.378
18.283
40.099


1.00
24.66

A
O


ANISOU
 760
O
TYR A
142
3235
2768
3365
−247
325


921
A
O


ATOM
 761
CB
TYR A
142
50.457
18.923
42.766


1.00
24.79

A
C


ANISOU
 761
CB
TYR A
142
3463
2433
3522
−267
143


871
A
C


ATOM
 762
CG
TYR A
142
50.083
19.098
44.235


1.00
35.82

A
C


ANISOU
 762
CG
TYR A
142
5015
3661
4934
−273
104


719
A
C


ATOM
 763
CD1
TYR A
142
48.753
19.173
44.623


1.00
43.35

A
C


ANISOU
 763
CD1
TYR A
142
6055
4534
5883
−283
161


549
A
C


ATOM
 764
CD2
TYR A
142
51.058
19.175
45.235


1.00
41.77

A
C


ANISOU
 764
CD2
TYR A
142
5809
4375
5686
−266
13


729
A
C


ATOM
 765
CE1
TYR A
142
48.394
19.320
45.939


1.00
46.57

A
C


ANISOU
 765
CE1
TYR A
142
6598
4812
6286
−293
140


401
A
C


ATOM
 766
CE2
TYR A
142
50.704
19.333
46.583


1.00
35.82

A
C


ANISOU
 766
CE2
TYR A
142
5192
3503
4913
−269
−22


582
A
C


ATOM
 767
CZ
TYR A
142
49.355
19.402
46.911


1.00
49.45

A
C


ANISOU
 767
CZ
TYR A
142
7015
5138
6636
−287
50


421
A
C


ATOM
 768
OH
TYR A
142
48.927
19.555
48.205


1.00
54.77

A
O


ANISOU
 768
OH
TYR A
142
7820
5715
7276
−298
34


263
A
O


ATOM
 769
N
GLN A
143
50.585
16.357
40.180


1.00
28.53

A
N


ANISOU
 769
N
GLN A
143
3803
3337
3701
−187
493


878
A
N


ATOM
 770
CA
GLN A
143
50.428
15.961
38.780


1.00
24.67

A
C


ANISOU
 770
CA
GLN A
143
3174
3070
3128
−192
584


894
A
C


ATOM
 771
C
GLN A
143
50.505
17.128
37.809


1.00
25.33

A
C


ANISOU
 771
C
GLN A
143
3078
3285
3262
−223
471


1084
A
C


ATOM
 772
O
GLN A
143
49.653
17.279
36.936


1.00
32.04

A
O


ANISOU
 772
O
GLN A
143
3839
4283
4050
−226
500


1061
A
O


ATOM
 773
CB
GLN A
143
49.116
15.235
38.548


1.00
30.30

A
C


ANISOU
 773
CB
GLN A
143
3936
3823
3751
−213
737


668
A
C


ATOM
 774
CG
GLN A
143
48.772
14.161
39.477


1.00
40.60

A
C


ANISOU
 774
CG
GLN A
143
5446
4966
5013
−210
885


478
A
C


ATOM
 775
CD
GLN A
143
47.372
13.672
39.198


1.00
42.17

A
C


ANISOU
 775
CD
GLN A
143
5657
5221
5146
−277
1033


236
A
C


ATOM
 776
OE1
GLN A
143
46.565
14.408
38.651


1.00
27.39

A
O


ANISOU
 776
OE1
GLN A
143
3648
3481
3277
−302
965


214
A
O


ATOM
 777
NE2
GLN A
143
47.089
12.421
39.530


1.00
58.71

A
N


ANISOU
 777
NE2
GLN A
143
7905
7224
7179
−304
1245


52
A
N


ATOM
 778
N
ASN A
144
51.509
17.981
37.964


1.00
30.12

A
N


ANISOU
 778
N
ASN A
144
3627
3843
3974
−249
345


1273
A
N


ATOM
 779
CA
ASN A
144
51.745
19.031
36.977


1.00
32.88

A
C


ANISOU
 779
CA
ASN A
144
3825
4298
4371
−289
271


1493
A
C


ATOM
 780
C
ASN A
144
50.541
19.960
36.860


1.00
31.21

A
C


ANISOU
 780
C
ASN A
144
3627
4017
4214
−277
212


1502
A
C


ATOM
 781
O
ASN A
144
50.310
20.576
35.816


1.00
28.30

A
O


ANISOU
 781
O
ASN A
144
3149
3783
3820
−264
192


1664
A
O


ATOM
 782
CB
ASN A
144
52.090
18.428
35.613


1.00
32.46

A
C


ANISOU
 782
CB
ASN A
144
3625
4539
4170
−277
368


1561
A
C


ATOM
 783
CG
ASN A
144
53.428
17.735
35.614


1.00
35.40

A
C


ANISOU
 783
CG
ASN A
144
3946
4990
4515
−273
411


1589
A
C


ATOM
 784
OD1
ASN A
144
54.440
18.335
36.005


1.00
52.45

A
O


ANISOU
 784
OD1
ASN A
144
6063
7086
6779
−317
321


1715
A
O


ATOM
 785
ND2
ASN A
144
53.450
16.459
35.205


1.00
36.56

A
N


ANISOU
 785
ND2
ASN A
144
4089
5274
4529
−218
554


1451
A
N


ATOM
 786
N
LEU A
145
49.726
20.009
37.926


1.00
34.60

A
N


ANISOU
 786
N
LEU A
145
4189
4255
4700
−263
193


1324
A
N


ATOM
 787
CA
LEU A
145
48.752
21.068
38.129


1.00
27.02

A
C


ANISOU
 787
CA
LEU A
145
3251
3169
3845
−238
111


1324
A
C


ATOM
 788
C
LEU A
145
49.387
22.328
38.693


1.00
33.66

A
C


ANISOU
 788
C
LEU A
145
4119
3778
4892
−290
−16


1467
A
C


ATOM
 789
O
LEU A
145
48.655
23.303
38.923


1.00
28.64

A
O


ANISOU
 789
O
LEU A
145
3515
2989
4378
−259
−83


1472
A
O


ATOM
 790
CB
LEU A
145
47.636
20.588
39.052


1.00
26.28

A
C


ANISOU
 790
CB
LEU A
145
3274
2985
3726
−216
161


1047
A
C


ATOM
 791
CG
LEU A
145
46.547
19.615
38.552


1.00
36.11

A
C


ANISOU
 791
CG
LEU A
145
4487
4427
4806
−188
293


846
A
C


ATOM
 792
CD1
LEU A
145
45.920
18.867
39.739


1.00
24.84

A
C


ANISOU
 792
CD1
LEU A
145
3216
2866
3355
−220
387


576
A
C


ATOM
 793
CD2
LEU A
145
45.473
20.347
37.734


1.00
26.78

A
C


ANISOU
 793
CD2
LEU A
145
3180
3386
3610
−113
244


873
A
C


ATOM
 794
N
THR A
146
50.721
22.303
38.904


1.00
34.60

A
N


ANISOU
 794
N
THR A
146
4215
3880
5053
−366
−40


1560
A
N


ATOM
 795
CA
THR A
146
51.568
23.398
39.386


1.00
37.87

A
C


ANISOU
 795
CA
THR A
146
4623
4109
5658
−462
−140


1672
A
C


ATOM
 796
C
THR A
146
53.002
23.183
38.904


1.00
48.23

A
C


ANISOU
 796
C
THR A
146
5813
5566
6945
−538
−128


1817
A
C


ATOM
 797
O
THR A
146
53.389
22.074
38.536


1.00
55.27

A
O


ANISOU
 797
O
THR A
146
6658
6663
7679
−494
−52


1787
A
O


ATOM
 798
CB
THR A
146
51.600
23.492
40.910


1.00
39.98

A
C


ANISOU
 798
CB
THR A
146
5006
4179
6006
−490
−202


1474
A
C


ATOM
 799
OG1
THR A
146
52.148
24.761
41.299


1.00
46.34

A
O


ANISOU
 799
OG1
THR A
146
5797
4787
7022
−597
−295


1544
A
O


ATOM
 800
CG2
THR A
146
52.497
22.408
41.480


1.00
36.85

A
C


ANISOU
 800
CG2
THR A
146
4618
3894
5488
−485
−179


1389
A
C


ATOM
 801
N
ASN A
147
53.797
24.259
38.928


1.00
46.89

A
N


ANISOU
 801
N
ASN A
147
5590
5282
6946
−659
−190


1958
A
N


ATOM
 802
CA
ASN A
147
55.201
24.240
38.529


1.00
39.37

A
C


ANISOU
 802
CA
ASN A
147
4494
4468
5997
−763
−179


2084
A
C


ATOM
 803
C
ASN A
147
56.086
24.379
39.745


1.00
42.28

A
C


ANISOU
 803
C
ASN A
147
4856
4751
6457
−847
−260


1947
A
C


ATOM
 804
O
ASN A
147
55.707
25.025
40.716


1.00
39.27

A
O


ANISOU
 804
O
ASN A
147
4572
4145
6205
−882
−333


1826
A
O


ATOM
 805
CB
ASN A
147
55.554
25.393
37.593


1.00
34.81

A
C


ANISOU
 805
CB
ASN A
147
3840
3845
5543
−878
−164


2349
A
C


ATOM
 806
CG
ASN A
147
55.056
25.182
36.203


1.00
59.27

A
C


ANISOU
 806
CG
ASN A
147
6887
7139
8493
−797
−83


2530
A
C


ATOM
 807
OD1
ASN A
147
54.845
24.047
35.776


1.00
69.48

A
O


ANISOU
 807
OD1
ASN A
147
8143
8671
9584
−697
−24


2452
A
O


ATOM
 808
ND2
ASN A
147
54.856
26.273
35.476


1.00
57.94

A
N


ANISOU
 808
ND2
ASN A
147
6727
6884
8403
−820
−75


2726
A
N


ATOM
 809
N
TYR A
148
57.293
23.816
39.666


1.00
47.38

A
N


ANISOU
 809
N
TYR A
148
5367
5602
7033
−877
−252


1958
A
N


ATOM
 810
CA
TYR A
148
58.303
24.136
40.679


1.00
44.51

A
C


ANISOU
 810
CA
TYR A
148
4938
5217
6758
−976
−345


1851
A
C


ATOM
 811
C
TYR A
148
58.563
25.642
40.751


1.00
43.93

A
C


ANISOU
 811
C
TYR A
148
4830
4933
6929
−1186
−385


1916
A
C


ATOM
 812
O
TYR A
148
58.730
26.206
41.838


1.00
47.71

A
O


ANISOU
 812
O
TYR A
148
5336
5267
7525
−1269
−472


1756
A
O


ATOM
 813
CB
TYR A
148
59.612
23.393
40.407


1.00
39.84

A
C


ANISOU
 813
CB
TYR A
148
4160
4917
6059
−966
−328


1872
A
C


ATOM
 814
CG
TYR A
148
60.802
24.075
41.040


1.00
55.21

A
C


ANISOU
 814
CG
TYR A
148
5954
6898
8127
−1130
−415


1813
A
C


ATOM
 815
CD1
TYR A
148
61.104
23.900
42.387


1.00
51.22

A
C


ANISOU
 815
CD1
TYR A
148
5467
6396
7598
−1091
−529


1606
A
C


ATOM
 816
CD2
TYR A
148
61.618
24.904
40.283


1.00
67.24

A
C


ANISOU
 816
CD2
TYR A
148
7304
8469
9774
−1336
−376


1957
A
C


ATOM
 817
CE1
TYR A
148
62.178
24.524
42.953


1.00
59.53

A
C


ANISOU
 817
CE1
TYR A
148
6348
7524
8745
−1250
−615


1516
A
C


ATOM
 818
CE2
TYR A
148
62.703
25.544
40.843


1.00
72.64

A
C


ANISOU
 818
CE2
TYR A
148
7823
9199
10577
−1522
−440


1869
A
C


ATOM
 819
CZ
TYR A
148
62.984
25.349
42.183


1.00
72.46

A
C


ANISOU
 819
CZ
TYR A
148
7798
9206
10527
−1478
−568


1633
A
C


ATOM
 820
OH
TYR A
148
64.074
25.978
42.762


1.00
86.28

A
O


ANISOU
 820
OH
TYR A
148
9352
11049
12381
−1670
−642


1505
A
O


ATOM
 821
N
LEU A
149
58.562
26.314
39.605


1.00
42.74

A
N


ANISOU
 821
N
LEU A
149
4633
4754
6854
−1273
−310


2149
A
N


ATOM
 822
CA
LEU A
149
58.855
27.742
39.597


1.00
49.24

A
C


ANISOU
 822
CA
LEU A
149
5446
5336
7928
−1484
−312


2238
A
C


ATOM
 823
C
LEU A
149
57.769
28.536
40.329


1.00
53.65

A
C


ANISOU
 823
C
LEU A
149
6192
5548
8645
−1457
−363


2139
A
C


ATOM
 824
O
LEU A
149
58.072
29.458
41.102


1.00
42.06

A
O


ANISOU
 824
O
LEU A
149
4737
3859
7383
−1615
−408


2028
A
O


ATOM
 825
CB
LEU A
149
59.029
28.201
38.146


1.00
50.97

A
C


ANISOU
 825
CB
LEU A
149
5607
5610
8150
−1544
−199


2537
A
C


ATOM
 826
CG
LEU A
149
59.166
29.692
37.904


1.00
52.16

A
C


ANISOU
 826
CG
LEU A
149
5824
5512
8481
−1667
−154


2590
A
C


ATOM
 827
CD1
LEU A
149
60.488
30.158
38.438


1.00
59.93

A
C


ANISOU
 827
CD1
LEU A
149
6664
6494
9612
−1927
−158


2502
A
C


ATOM
 828
CD2
LEU A
149
59.056
29.955
36.441


1.00
46.09

A
C


ANISOU
 828
CD2
LEU A
149
5062
4849
7599
−1605
−46


2822
A
C


ATOM
 829
N
GLU A
150
56.519
28.231
39.996


1.00
62.03

A
N


ANISOU
 829
N
GLU A
150
7385
6574
9609
−1262
−353


2143
A
N


ATOM
 830
CA
GLU A
150
55.352
28.859
40.604


1.00
60.71

A
C


ANISOU
 830
CA
GLU A
150
7380
6108
9579
−1205
−394


2041
A
C


ATOM
 831
C
GLU A
150
55.251
28.513
42.079


1.00
57.93

A
C


ANISOU
 831
C
GLU A
150
7089
5719
9203
−1182
−478


1723
A
C


ATOM
 832
O
GLU A
150
54.910
29.352
42.907


1.00
64.26

A
O


ANISOU
 832
O
GLU A
150
7965
6265
10184
−1250
−527


1579
A
O


ATOM
 833
CB
GLU A
150
54.081
28.446
39.868


1.00
48.37

A
C


ANISOU
 833
CB
GLU A
150
5894
4586
7899
−1003
−354


2137
A
C


ATOM
 834
CG
GLU A
150
54.035
28.944
38.438


1.00
45.40

A
C


ANISOU
 834
CG
GLU A
150
5465
4333
7452
−964
−273


2385
A
C


ATOM
 835
CD
GLU A
150
54.145
30.449
38.359


1.00
52.10

A
C


ANISOU
 835
CD
GLU A
150
6384
4924
8486
−1017
−252


2462
A
C


ATOM
 836
OE1
GLU A
150
53.542
31.137
39.204


1.00
56.22

A
O


ANISOU
 836
OE1
GLU A
150
6888
5508
8966
−999
−182


2686
A
O


ATOM
 837
OE2
GLU A
150
54.834
30.944
37.446


1.00
46.34

A
O1−


ANISOU
 837
OE2
GLU A
150
5740
3927
7940
−1076
−295


2292
A
O1−


ATOM
 838
N
PHE A
151
55.554
27.258
42.395


1.00
57.95

A
N


ANISOU
 838
N
PHE A
151
7073
5969
8976
−1076
−482


1616
A
N


ATOM
 839
CA
PHE A
151
55.521
26.764
43.763


1.00
34.94

A
C


ANISOU
 839
CA
PHE A
151
4205
3080
5991
−1054
−555


1357
A
C


ATOM
 840
C
PHE A
151
56.549
27.520
44.588


1.00
43.35

A
C


ANISOU
 840
C
PHE A
151
5178
4087
7207
−1243
−637


1255
A
C


ATOM
 841
O
PHE A
151
56.288
27.912
45.721


1.00
37.61

A
O


ANISOU
 841
O
PHE A
151
4516
3230
6545
−1281
−707


1036
A
O


ATOM
 842
CB
PHE A
151
55.867
25.279
43.763


1.00
33.35

A
C


ANISOU
 842
CB
PHE A
151
3974
3162
5535
−925
−525


1341
A
C


ATOM
 843
CG
PHE A
151
55.324
24.524
44.935


1.00
41.41

A
C


ANISOU
 843
CG
PHE A
151
5134
4190
6409
−800
−541


1137
A
C


ATOM
 844
CD1
PHE A
151
55.211
25.123
46.171


1.00
51.49

A
C


ANISOU
 844
CD1
PHE A
151
6490
5320
7752
−843
−619


942
A
C


ATOM
 845
CD2
PHE A
151
54.950
23.202
44.801


1.00
39.40

A
C


ANISOU
 845
CD2
PHE A
151
4939
4088
5944
−648
−460


1135
A
C


ATOM
 846
CE1
PHE A
151
54.717
24.422
47.251


1.00
51.23

A
C


ANISOU
 846
CE1
PHE A
151
6595
5314
7556
−732
−617


773
A
C


ATOM
 847
CE2
PHE A
151
54.460
22.493
45.874


1.00
29.52

A
C


ANISOU
 847
CE2
PHE A
151
3840
2824
4551
−544
−445


971
A
C


ATOM
 848
CZ
PHE A
151
54.342
23.105
47.102


1.00
36.55

A
C


ANISOU
 848
CZ
PHE A
151
4809
3591
5489
−584
−525


803
A
C


ATOM
 849
N
LYS A
152
57.728
27.710
44.007


1.00
47.68

A
N


ANISOU
 849
N
LYS A
152
5555
4754
7805
−1378
−621


1388
A
N


ATOM
 850
CA
LYS A
152
58.804
28.440
44.652


1.00
56.30

A
C


ANISOU
 850
CA
LYS A
152
6520
5840
9033
−1586
−689


1258
A
C


ATOM
 851
C
LYS A
152
58.452
29.905
44.873


1.00
58.92

A
C


ANISOU
 851
C
LYS A
152
6923
5805
9660
−1759
−679


1224
A
C


ATOM
 852
O
LYS A
152
58.750
30.461
45.923


1.00
66.57

A
O


ANISOU
 852
O
LYS A
152
7880
6677
10736
−1882
−752


984
A
O


ATOM
 853
CB
LYS A
152
60.086
28.326
43.831


1.00
57.30

A
C


ANISOU
 853
CB
LYS A
152
6423
6212
9137
−1700
−655


1394
A
C


ATOM
 854
CG
LYS A
152
61.316
28.891
44.516


1.00
60.53

A
C


ANISOU
 854
CG
LYS A
152
6650
6670
9679
−1942
−715


1241
A
C


ATOM
 855
CD
LYS A
152
62.563
28.646
43.684


1.00
64.48

A
C


ANISOU
 855
CD
LYS A
152
6902
7471
10127
−2037
−671


1362
A
C


ATOM
 856
CE
LYS A
152
62.520
29.408
42.369


1.00
61.10

A
C


ANISOU
 856
CE
LYS A
152
6463
6940
9813
−2151
−522


1666
A
C


ATOM
 857
NZ
LYS A
152
62.619
30.878
42.572


1.00
58.31

A
N1+


ANISOU
 857
NZ
LYS A
152
6069
6333
9755
−2470
−462


1688
A
N1+


ATOM
 858
N
ASN A
153
57.811
30.531
43.890


1.00
50.89

A
N


ANISOU
 858
N
ASN A
153
5987
4580
8769
−1753
−589


1456
A
N


ATOM
 859
CA
ASN A
153
57.464
31.940
44.022


1.00
48.84

A
C


ANISOU
 859
CA
ASN A
153
5828
3964
8766
−1860
−550


1422
A
C


ATOM
 860
C
ASN A
153
56.334
32.161
45.016


1.00
45.60

A
C


ANISOU
 860
C
ASN A
153
5581
3355
8391
−1742
−604


1192
A
C


ATOM
 861
O
ASN A
153
56.202
33.267
45.550


1.00
51.62

A
O


ANISOU
 861
O
ASN A
153
6417
3885
9313
−1818
−580


1034
A
O


ATOM
 862
CB
ASN A
153
57.088
32.535
42.666


1.00
60.23

A
C


ANISOU
 862
CB
ASN A
153
7344
5336
10204
−1777
−418


1693
A
C


ATOM
 863
CG
ASN A
153
58.221
32.450
41.638


1.00
81.82

A
C


ANISOU
 863
CG
ASN A
153
9926
8268
12895
−1907
−340


1907
A
C


ATOM
 864
OD1
ASN A
153
59.391
32.704
41.947


1.00
80.12

A
O


ANISOU
 864
OD1
ASN A
153
9568
8107
12767
−2137
−339


1826
A
O


ATOM
 865
ND2
ASN A
153
57.870
32.086
40.407


1.00
84.62

A
N


ANISOU
 865
ND2
ASN A
153
10292
8760
13100
−1763
−272


2156
A
N


ATOM
 866
N
PHE A
154
55.574
31.114
45.298


1.00
45.23

A
N


ANISOU
 866
N
PHE A
154
5598
3420
8167
−1550
−649


1147
A
N


ATOM
 867
CA
PHE A
154
54.470
31.184
46.243


1.00
54.36

A
C


ANISOU
 867
CA
PHE A
154
6895
4433
9327
−1441
−690


910
A
C


ATOM
 868
C
PHE A
154
54.917
31.074
47.703


1.00
52.99

A
C


ANISOU
 868
C
PHE A
154
6693
4336
9104
−1526
−783


588
A
C


ATOM
 869
O
PHE A
154
54.163
31.376
48.619


1.00
46.78

A
O


ANISOU
 869
O
PHE A
154
6008
3395
8371
−1500
−814


356
A
O


ATOM
 870
CB
PHE A
154
53.462
30.088
45.916


1.00
51.51

A
C


ANISOU
 870
CB
PHE A
154
6608
4237
8726
−1202
−661


949
A
C


ATOM
 871
CG
PHE A
154
52.039
30.547
45.936


1.00
58.75

A
C


ANISOU
 871
CG
PHE A
154
7652
4942
9727
−1066
−637


911
A
C


ATOM
 872
CD1
PHE A
154
51.089
29.858
46.658


1.00
63.32

A
C


ANISOU
 872
CD1
PHE A
154
8267
5336
10457
−1038
−579


1026
A
C


ATOM
 873
CD2
PHE A
154
51.653
31.664
45.229


1.00
58.55

A
C


ANISOU
 873
CD2
PHE A
154
7708
5006
9531
−920
−635


728
A
C


ATOM
 874
CE1
PHE A
154
49.778
30.275
46.674


1.00
64.91

A
C


ANISOU
 874
CE1
PHE A
154
8562
5410
10690
−867
−557


977
A
C


ATOM
 875
CE2
PHE A
154
50.344
32.088
45.242


1.00
58.93

A
C


ANISOU
 875
CE2
PHE A
154
7839
4904
9647
−789
−612


668
A
C


ATOM
 876
CZ
PHE A
154
49.405
31.394
45.968


1.00
61.90

A
C


ANISOU
 876
CZ
PHE A
154
8230
5085
10205
−750
−584


792
A
C


ATOM
 877
N
ASN A
155
56.150
30.634
47.907


1.00
56.07

A
N


ANISOU
 877
N
ASN A
155
6936
4984
9383
−1618
−830


560
A
N


ATOM
 878
CA
ASN A
155
56.707
30.463
49.244


1.00
42.99

A
C


ANISOU
 878
CA
ASN A
155
5227
3477
7631
−1674
−935


269
A
C


ATOM
 879
C
ASN A
155
58.071
31.121
49.302


1.00
53.14

A
C


ANISOU
 879
C
ASN A
155
6315
4824
9053
−1926
−971


215
A
C


ATOM
 880
O
ASN A
155
59.078
30.474
49.607


1.00
55.45

A
O


ANISOU
 880
O
ASN A
155
6450
5445
9172
−1934
−1041


163
A
O


ATOM
 881
CB
ASN A
155
56.806
28.983
49.583


1.00
40.81

A
C


ANISOU
 881
CB
ASN A
155
4957
3536
7012
−1477
−969


264
A
C


ATOM
 882
CG
ASN A
155
55.471
28.344
49.652


1.00
47.59

A
C


ANISOU
 882
CG
ASN A
155
6004
4333
7743
−1276
−913


265
A
C


ATOM
 883
OD1
ASN A
155
54.914
28.192
50.736


1.00
50.43

A
O


ANISOU
 883
OD1
ASN A
155
6468
4685
8007
−1219
−948


51
A
O


ATOM
 884
ND2
ASN A
155
54.915
28.003
48.494


1.00
37.01

A
N


ANISOU
 884
ND2
ASN A
155
4701
2964
6395
−1180
−820


491
A
N


ATOM
 885
N
PRO A
156
58.141
32.416
49.011


1.00
54.66

A
N


ANISOU
 885
N
PRO A
156
6504
4700
9563
−2134
−917


221
A
N


ATOM
 886
CA
PRO A
156
59.457
33.049
48.818


1.00
67.76

A
C


ANISOU
 886
CA
PRO A
156
7962
6406
11376
−2416
−907


204
A
C


ATOM
 887
C
PRO A
156
60.333
33.035
50.063


1.00
80.29

A
C


ANISOU
 887
C
PRO A
156
9388
8234
12885
−2544
−1032


−143
A
C


ATOM
 888
O
PRO A
156
61.564
33.003
49.949


1.00
89.55

A
O


ANISOU
 888
O
PRO A
156
10330
9651
14042
−2705
−1056


−168
A
O


ATOM
 889
CB
PRO A
156
59.091
34.475
48.388


1.00
64.42

A
C


ANISOU
 889
CB
PRO A
156
7673
5600
11203
−2522
−756


245
A
C


ATOM
 890
CG
PRO A
156
57.728
34.708
48.978


1.00
58.74

A
C


ANISOU
 890
CG
PRO A
156
7173
4673
10473
−2332
−756


118
A
C


ATOM
 891
CD
PRO A
156
57.031
33.384
48.935


1.00
52.19

A
C


ANISOU
 891
CD
PRO A
156
6379
3996
9454
−2103
−840


213
A
C


ATOM
 892
N
ASN A
157
59.742
33.049
51.261


1.00
79.61

A
N


ANISOU
 892
N
ASN A
157
9396
8125
12727
−2474
−1114


−426
A
N


ATOM
 893
CA
ASN A
157
60.574
33.012
52.458


1.00
88.43

A
C


ANISOU
 893
CA
ASN A
157
10346
9528
13724
−2577
−1245


−760
A
C


ATOM
 894
C
ASN A
157
61.174
31.625
52.663


1.00
86.80

A
C


ANISOU
 894
C
ASN A
157
10032
9807
13141
−2366
−1344


−700
A
C


ATOM
 895
O
ASN A
157
62.312
31.493
53.138


1.00
92.75

A
O


ANISOU
 895
O
ASN A
157
10552
10899
13789
−2455
−1444


−854
A
O


ATOM
 896
CB
ASN A
157
59.764
33.466
53.680


1.00
95.73

A
C


ANISOU
 896
CB
ASN A
157
11403
10304
14665
−2566
−1296


−1085
A
C


ATOM
 897
CG
ASN A
157
60.570
33.393
55.010


1.00
105.12

A
C


ANISOU
 897
CG
ASN A
157
12417
11849
15675
−2653
−1448


−1456
A
C


ATOM
 898
OD1
ASN A
157
60.221
32.631
55.924


1.00
103.15

A
O


ANISOU
 898
OD1
ASN A
157
12233
11836
15124
−2451
−1540


−1573
A
O


ATOM
 899
ND2
ASN A
157
61.647
34.193
55.112


1.00
108.12

A
N


ANISOU
 899
ND2
ASN A
157
12568
12281
16231
−2959
−1467


−1643
A
N


ATOM
 900
N
LEU A
158
60.399
30.602
52.321


1.00
84.78

A
N


ANISOU
 900
N
LEU A
158
9934
9594
12684
−2083
−1310


−484
A
N


ATOM
 901
CA
LEU A
158
60.802
29.205
52.471


1.00
77.27

A
C


ANISOU
 901
CA
LEU A
158
8937
9041
11381
−1848
−1385


−437
A
C


ATOM
 902
C
LEU A
158
61.840
28.750
51.459


1.00
65.84

A
C


ANISOU
 902
C
LEU A
158
7292
7821
9904
−1854
−1360


−219
A
C


ATOM
 903
O
LEU A
158
62.032
29.379
50.425


1.00
69.25

A
O


ANISOU
 903
O
LEU A
158
7591
8152
10571
−2081
−1297


−142
A
O


ATOM
 904
CB
LEU A
158
59.584
28.286
52.410


1.00
76.99

A
C


ANISOU
 904
CB
LEU A
158
9160
8934
11160
−1574
−1331


−327
A
C


ATOM
 905
CG
LEU A
158
58.614
28.415
53.579


1.00
90.51

A
C


ANISOU
 905
CG
LEU A
158
11040
10455
12896
−1583
−1350


−571
A
C


ATOM
 906
CD1
LEU A
158
57.597
27.286
53.540


1.00
92.23

A
C


ANISOU
 906
CD1
LEU A
158
11503
10589
12951
−1351
−1270


−486
A
C


ATOM
 907
CD2
LEU A
158
59.383
28.398
54.891


1.00
96.84

A
C


ANISOU
 907
CD2
LEU A
158
11735
11524
13535
−1626
−1497


−874
A
C


ATOM
 908
N
SER A
159
62.519
27.656
51.778


1.00
59.54

A
N


ANISOU
 908
N
SER A
159
6479
7328
8814
−1599
−1397


−121
A
N


ATOM
 909
CA
SER A
159
63.544
27.113
50.903


1.00
56.08

A
C


ANISOU
 909
CA
SER A
159
5841
7161
8308
−1556
−1383


48
A
C


ATOM
 910
C
SER A
159
63.128
25.783
50.300


1.00
57.78

A
C


ANISOU
 910
C
SER A
159
6212
7394
8350
−1277
−1291


292
A
C


ATOM
 911
O
SER A
159
62.741
24.869
51.017


1.00
59.75

A
O


ANISOU
 911
O
SER A
159
6672
7616
8415
−1063
−1292


274
A
O


ATOM
 912
CB
SER A
159
64.832
26.902
51.691


1.00
60.87

A
C


ANISOU
 912
CB
SER A
159
6204
8204
8719
−1507
−1539


−125
A
C


ATOM
 913
OG
SER A
159
64.659
25.875
52.652


1.00
60.11

A
O


ANISOU
 913
OG
SER A
159
6252
8250
8336
−1242
−1627


−208
A
O


ATOM
 914
N
PRO A
160
63.200
25.678
48.970


1.00
51.58

A
N


ANISOU
 914
N
PRO A
160
5328
6654
7618
−1291
−1195


508
A
N


ATOM
 915
CA
PRO A
160
62.878
24.451
48.242


1.00
44.60

A
C


ANISOU
 915
CA
PRO A
160
4537
5864
6545
−1027
−1112


694
A
C


ATOM
 916
C
PRO A
160
63.967
23.401
48.420


1.00
58.71

A
C


ANISOU
 916
C
PRO A
160
6196
8020
8090
−810
−1198


658
A
C


ATOM
 917
O
PRO A
160
65.112
23.777
48.673


1.00
69.53

A
O


ANISOU
 917
O
PRO A
160
7422
9596
9402
−839
−1341


479
A
O


ATOM
 918
CB
PRO A
160
62.837
24.914
46.791


1.00
49.03

A
C


ANISOU
 918
CB
PRO A
160
4997
6382
7250
−1149
−988


905
A
C


ATOM
 919
CG
PRO A
160
63.771
26.067
46.750


1.00
52.48

A
C


ANISOU
 919
CG
PRO A
160
5374
6599
7968
−1464
−984


866
A
C


ATOM
 920
CD
PRO A
160
63.601
26.766
48.065


1.00
45.65

A
C


ANISOU
 920
CD
PRO A
160
4415
5813
7117
−1567
−1126


596
A
C


ATOM
 921
N
THR A
161
63.565
22.128
48.391


1.00
59.31

A
N


ANISOU
 921
N
THR A
161
6321
8192
8021
−579
−1111


816
A
N


ATOM
 922
CA
THR A
161
64.388
20.896
48.471


1.00
54.15

A
C


ANISOU
 922
CA
THR A
161
5546
7872
7156
−328
−1165


829
A
C


ATOM
 923
C
THR A
161
64.794
20.464
49.875


1.00
52.62

A
C


ANISOU
 923
C
THR A
161
5466
7790
6739
−110
−1285


710
A
C


ATOM
 924
O
THR A
161
65.286
19.356
50.067


1.00
46.22

A
O


ANISOU
 924
O
THR A
161
4778
7059
5725
195
−1251


793
A
O


ATOM
 925
CB
THR A
161
65.613
20.840
47.511


1.00
54.54

A
C


ANISOU
 925
CB
THR A
161
5219
8231
7272
−461
−1235


794
A
C


ATOM
 926
OG1
THR A
161
66.657
21.696
47.993


1.00
62.79

A
O


ANISOU
 926
OG1
THR A
161
6115
9338
8403
−683
−1373


588
A
O


ATOM
 927
CG2
THR A
161
65.223
21.254
46.104


1.00
45.47

A
C


ANISOU
 927
CG2
THR A
161
3962
7011
6304
−658
−1096


944
A
C


ATOM
 928
N
LEU A
162
64.562
21.330
50.851


1.00
52.04

A
N


ANISOU
 928
N
LEU A
162
5354
7728
6692
−257
−1418


516
A
N


ATOM
 929
CA
LEU A
162
64.866
21.022
52.239


1.00
64.26

A
C


ANISOU
 929
CA
LEU A
162
6994
9420
8000
−69
−1543


392
A
C


ATOM
 930
C
LEU A
162
63.957
21.827
53.142


1.00
63.20

A
C


ANISOU
 930
C
LEU A
162
6996
9064
7952
−267
−1578


213
A
C


ATOM
 931
O
LEU A
162
64.129
23.034
53.279


1.00
64.43

A
O


ANISOU
 931
O
LEU A
162
6990
9167
8322
−563
−1625


71
A
O


ATOM
 932
CB
LEU A
162
66.328
21.331
52.566


1.00
77.78

A
C


ANISOU
 932
CB
LEU A
162
8390
11584
9581
−4
−1729


271
A
C


ATOM
 933
CG
LEU A
162
67.361
20.219
52.371


1.00
76.33

A
C


ANISOU
 933
CG
LEU A
162
8017
11739
9247
265
−1755


388
A
C


ATOM
 934
CD1
LEU A
162
68.765
20.748
52.612


1.00
72.25

A
C


ANISOU
 934
CD1
LEU A
162
7085
11662
8704
177
−1941


202
A
C


ATOM
 935
CD2
LEU A
162
67.061
19.048
53.291


1.00
76.28

A
C


ANISOU
 935
CD2
LEU A
162
8261
11778
8944
680
−1752


500
A
C


ATOM
 936
N
LEU A
163
62.992
21.167
53.761


1.00
61.17

A
N


ANISOU
 936
N
LEU A
163
7034
8675
7532
−107
−1542


208
A
N


ATOM
 937
CA
LEU A
163
62.094
21.860
54.661


1.00
52.53

A
C


ANISOU
 937
CA
LEU A
163
6079
7399
6481
−254
−1569


18
A
C


ATOM
 938
C
LEU A
163
61.801
20.948
55.832


1.00
45.80

A
C


ANISOU
 938
C
LEU A
163
5472
6613
5317
0
−1577


6
A
C


ATOM
 939
O
LEU A
163
61.715
19.737
55.664


1.00
45.72

A
O


ANISOU
 939
O
LEU A
163
5659
6547
5166
232
−1456


195
A
O


ATOM
 940
CB
LEU A
163
60.812
22.251
53.932


1.00
54.19

A
C


ANISOU
 940
CB
LEU A
163
6439
7205
6948
−430
−1419


63
A
C


ATOM
 941
CG
LEU A
163
60.172
23.566
54.371


1.00
64.23

A
C


ANISOU
 941
CG
LEU A
163
7739
8253
8412
−675
−1448


−151
A
C


ATOM
 942
CD1
LEU A
163
61.241
24.610
54.646


1.00
70.98

A
C


ANISOU
 942
CD1
LEU A
163
8314
9251
9404
−908
−1584


−343
A
C


ATOM
 943
CD2
LEU A
163
59.198
24.059
53.315


1.00
62.23

A
C


ANISOU
 943
CD2
LEU A
163
7596
7638
8411
−795
−1307


−58
A
C


ATOM
 944
N
PRO A
164
61.634
21.520
57.028


1.00
46.59

A
N


ANISOU
 944
N
PRO A
164
5574
6829
5298
−44
−1699


−213
A
N


ATOM
 945
CA
PRO A
164
61.360
20.616
58.159


1.00
60.42

A
C


ANISOU
 945
CA
PRO A
164
7540
8718
6698
220
−1716


−198
A
C


ATOM
 946
C
PRO A
164
60.024
19.900
58.023


1.00
61.61

A
C


ANISOU
 946
C
PRO A
164
8047
8552
6811
310
−1508


−70
A
C


ATOM
 947
O
PRO A
164
59.100
20.357
57.345


1.00
54.48

A
O


ANISOU
 947
O
PRO A
164
7222
7333
6143
135
−1384


−80
A
O


ATOM
 948
CB
PRO A
164
61.367
21.539
59.392


1.00
49.61

A
C


ANISOU
 948
CB
PRO A
164
6098
7493
5259
78
−1866


−500
A
C


ATOM
 949
CG
PRO A
164
61.987
22.786
58.938


1.00
53.51

A
C


ANISOU
 949
CG
PRO A
164
6290
7992
6050
−227
−1951


−673
A
C


ATOM
 950
CD
PRO A
164
61.711
22.925
57.466


1.00
48.12

A
C


ANISOU
 950
CD
PRO A
164
5608
7001
5675
−343
−1801


−490
A
C


ATOM
 951
N
LEU A
165
59.945
18.750
58.683


1.00
64.65

A
N


ANISOU
 951
N
LEU A
165
8644
9036
6885
592
−1465


53
A
N


ATOM
 952
CA
LEU A
165
58.727
17.958
58.677


1.00
48.19

A
C


ANISOU
 952
CA
LEU A
165
6905
6674
4732
671
−1247


159
A
C


ATOM
 953
C
LEU A
165
57.590
18.754
59.291


1.00
58.93

A
C


ANISOU
 953
C
LEU A
165
8379
7861
6149
467
−1211


−53
A
C


ATOM
 954
O
LEU A
165
57.779
19.464
60.284


1.00
76.17

A
O


ANISOU
 954
O
LEU A
165
10483
10215
8245
396
−1356


−258
A
O


ATOM
 955
CB
LEU A
165
58.969
16.678
59.454


1.00
48.92

A
C


ANISOU
 955
CB
LEU A
165
7209
6913
4466
1003
−1213


324
A
C


ATOM
 956
CG
LEU A
165
57.953
15.562
59.415


1.00
47.98

A
C


ANISOU
 956
CG
LEU A
165
7458
6526
4245
1123
−954


478
A
C


ATOM
 957
CD1
LEU A
165
57.933
14.995
58.007


1.00
42.01

A
C


ANISOU
 957
CD1
LEU A
165
6694
5576
3694
1134
−802


632
A
C


ATOM
 958
CD2
LEU A
165
58.321
14.498
60.460


1.00
48.24

A
C


ANISOU
 958
CD2
LEU A
165
7703
6731
3895
1454
−952


633
A
C


ATOM
 959
N
ASP A
166
56.409
18.641
58.686


1.00
54.54

A
N


ANISOU
 959
N
ASP A
166
7993
6989
5741
376
−1016


−28
A
N


ATOM
 960
CA
ASP A
166
55.166
19.290
59.105


1.00
57.07

A
C


ANISOU
 960
CA
ASP A
166
8430
7116
6138
206
−943


−219
A
C


ATOM
 961
C
ASP A
166
55.162
20.786
58.824


1.00
47.93

A
C


ANISOU
 961
C
ASP A
166
7052
5877
5283
−46
−1055


−416
A
C


ATOM
 962
O
ASP A
166
54.197
21.467
59.193


1.00
53.48

A
O


ANISOU
 962
O
ASP A
166
7820
6424
6075
−179
−1014


−603
A
O


ATOM
 963
CB
ASP A
166
54.850
19.033
60.588


1.00
61.25

A
C


ANISOU
 963
CB
ASP A
166
9139
7781
6354
290
−952


−327
A
C


ATOM
 964
CG
ASP A
166
54.318
17.619
60.839


1.00
74.83

A
C


ANISOU
 964
CG
ASP A
166
11174
9436
7822
487
−748


−139
A
C


ATOM
 965
OD1
ASP A
166
54.185
16.831
59.881


1.00
84.51

A
O


ANISOU
 965
OD1
ASP A
166
12476
10506
9129
551
−598


44
A
O


ATOM
 966
OD2
ASP A
166
54.019
17.285
62.001


1.00
81.83

A
O1−


ANISOU
 966
OD2
ASP A
166
12243
10423
8426
569
−720


−179
A
O1−


ATOM
 967
N
THR A
167
56.194
21.323
58.185


1.00
44.25

A
N


ANISOU
 967
N
THR A
167
6332
5498
4982
−118
−1178


−384
A
N


ATOM
 968
CA
THR A
167
56.174
22.717
57.782


1.00
47.51

A
C


ANISOU
 968
CA
THR A
167
6567
5769
5717
−368
−1243


−534
A
C


ATOM
 969
C
THR A
167
55.063
22.940
56.773


1.00
49.52

A
C


ANISOU
 969
C
THR A
167
6909
5700
6205
−445
−1087


−466
A
C


ATOM
 970
O
THR A
167
54.859
22.141
55.852


1.00
39.00

A
O


ANISOU
 970
O
THR A
167
5638
4311
4868
−352
−968


−261
A
O


ATOM
 971
CB
THR A
167
57.522
23.121
57.190


1.00
49.58

A
C


ANISOU
 971
CB
THR A
167
6548
6187
6103
−440
−1366


−481
A
C


ATOM
 972
OG1
THR A
167
58.476
23.214
58.251


1.00
56.55

A
C


ANISOU
 972
OG1
THR A
167
7298
7395
6792
−410
−1539


−629
A
C


ATOM
 973
CG2
THR A
167
57.428
24.464
56.498


1.00
55.13

A
C


ANISOU
 973
CG2
THR A
167
7111
6662
7174
−702
−1372


−563
A
C


ATOM
 974
N
LYS A
168
54.308
24.008
56.979


1.00
51.92

A
N


ANISOU
 974
N
LYS A
168
6625
6988
6112
−2440
−1048


−799
A
N


ATOM
 975
CA
LYS A
168
53.161
24.279
56.137


1.00
42.13

A
C


ANISOU
 975
CA
LYS A
168
5368
5684
4956
−2199
−873


−907
A
C


ATOM
 976
C
LYS A
168
53.621
25.152
54.980


1.00
39.36

A
C


ANISOU
 976
C
LYS A
168
4950
5136
4869
−2069
−869


−801
A
C


ATOM
 977
O
LYS A
168
54.306
26.158
55.193


1.00
40.91

A
O


ANISOU
 977
O
LYS A
168
5194
5185
5164
−2173
−951


−823
A
O


ATOM
 978
CB
LYS A
168
52.027
24.931
56.941


1.00
48.14

A
C


ANISOU
 978
CB
LYS A
168
6255
6441
5595
−2206
−751


−1219
A
C


ATOM
 979
CG
LYS A
168
51.295
23.958
57.901


1.00
54.24

A
C


ANISOU
 979
CG
LYS A
168
7061
7453
6096
−2290
−713


−1304
A
C


ATOM
 980
CD
LYS A
168
50.040
24.589
58.523


1.00
62.22

A
C


ANISOU
 980
CD
LYS A
168
8165
8474
7003
−2237
−537


−1596
A
C


ATOM
 981
CE
LYS A
168
50.352
25.792
59.424


1.00
71.52

A
C


ANISOU
 981
CE
LYS A
168
9524
9515
8134
−2379
−540


−1839
A
C


ATOM
 982
NZ
LYS A
168
49.103
26.391
59.996


1.00
78.54

A
N1+


ANISOU
 982
NZ
LYS A
168
10506
10402
8934
−2286
−321


−2133
A
N1+


ATOM
 983
N
VAL A
169
53.294
24.712
53.758


1.00
42.82

A
N


ANISOU
 983
N
VAL A
169
5282
5582
5407
−1866
−790


−668
A
N


ATOM
 984
CA
VAL A
169
53.573
25.411
52.509


1.00
42.56

A
C


ANISOU
 984
CA
VAL A
169
5165
5404
5600
−1724
−766


−541
A
C


ATOM
 985
C
VAL A
169
52.251
25.660
51.776


1.00
46.30

A
C


ANISOU
 985
C
VAL A
169
5616
5855
6120
−1532
−622


−628
A
C


ATOM
 986
O
VAL A
169
51.217
25.050
52.075


1.00
36.20

A
O


ANISOU
 986
O
VAL A
169
4358
4696
4699
−1497
−544


−733
A
O


ATOM
 987
CB
VAL A
169
54.553
24.630
51.595


1.00
41.33

A
C


ANISOU
 987
CB
VAL A
169
4894
5299
5510
−1670
−807


−255
A
C


ATOM
 988
CG1
VAL A
169
55.944
24.474
52.265


1.00
43.32

A
C


ANISOU
 988
CG1
VAL A
169
5121
5571
5767
−1852
−957


−106
A
C


ATOM
 989
CG2
VAL A
169
53.963
23.278
51.189


1.00
34.39

A
C


ANISOU
 989
CG2
VAL A
169
4000
4565
4503
−1570
−733


−212
A
C


ATOM
 990
N
SER A
170
52.321
26.559
50.779


1.00
41.45

A
N


ANISOU
 990
N
SER A
170
4938
5096
5716
−1420
−600


−545
A
N


ATOM
 991
CA
SER A
170
51.197
26.972
49.942


1.00
36.83

A
C


ANISOU
 991
CA
SER A
170
4296
4472
5224
−1246
−487


−563
A
C


ATOM
 992
C
SER A
170
51.411
26.462
48.522


1.00
38.80

A
C


ANISOU
 992
C
SER A
170
4442
4782
5519
−1138
−481


−327
A
C


ATOM
 993
O
SER A
170
52.249
26.987
47.775


1.00
42.38

A
O


ANISOU
 993
O
SER A
170
4831
5149
6122
−1119
−526


−163
A
O


ATOM
 994
CB
SER A
170
51.057
28.489
49.960


1.00
39.58

A
C


ANISOU
 994
CB
SER A
170
4658
4594
5788
−1214
−468


−650
A
C


ATOM
 995
OG
SER A
170
50.625
28.917
51.237


1.00
54.95

A
O


ANISOU
 995
OG
SER A
170
6732
6486
7660
−1290
−429


−914
A
O


ATOM
 996
N
VAL A
171
50.670
25.426
48.159


1.00
42.14

A
N


ANISOU
 996
N
VAL A
171
4857
5357
5797
−1082
−429


−308
A
N


ATOM
 997
CA
VAL A
171
50.707
24.895
46.804


1.00
39.99

A
C


ANISOU
 997
CA
VAL A
171
4527
5147
5520
−990
−409


−122
A
C


ATOM
 998
C
VAL A
171
49.867
25.831
45.945


1.00
45.35

A
C


ANISOU
 998
C
VAL A
171
5125
5761
6343
−884
−362


−79
A
C


ATOM
 999
O
VAL A
171
48.725
26.143
46.322


1.00
44.59

A
O


ANISOU
 999
O
VAL A
171
5018
5667
6256
−849
−309


−195
A
O


ATOM
1000
CB
VAL A
171
50.195
23.449
46.745


1.00
31.91

A
C


ANISOU
1000
CB
VAL A
171
3555
4286
4284
−998
−389


−126
A
C


ATOM
1001
CG1
VAL A
171
50.404
22.878
45.366


1.00
42.09

A
C


ANISOU
1001
CG1
VAL A
171
4832
5621
5541
−925
−367


42
A
C


ATOM
1002
CG2
VAL A
171
50.892
22.585
47.776


1.00
31.65

A
C


ANISOU
1002
CG2
VAL A
171
3587
4304
4134
−1108
−440


−167
A
C


ATOM
1003
N
PRO A
172
50.412
26.366
44.826


1.00
40.47

A
N


ANISOU
1003
N
PRO A
172
4432
5089
5858
−829
−376


105
A
N


ATOM
1004
CA
PRO A
172
49.580
27.149
43.904


1.00
46.71

A
C


ANISOU
1004
CA
PRO A
172
5125
5842
6779
−737
−346


195
A
C


ATOM
1005
C
PRO A
172
49.100
26.298
42.741


1.00
45.57

A
C


ANISOU
1005
C
PRO A
172
4966
5861
6489
−702
−326


330
A
C


ATOM
1006
O
PRO A
172
49.918
25.785
41.976


1.00
50.60

A
O


ANISOU
1006
O
PRO A
172
5620
6556
7051
−704
−332


457
A
O


ATOM
1007
CB
PRO A
172
50.530
28.256
43.431


1.00
41.01

A
C


ANISOU
1007
CB
PRO A
172
4333
4972
6279
−730
−392


333
A
C


ATOM
1008
CG
PRO A
172
51.842
27.586
43.415


1.00
38.19

A
C


ANISOU
1008
CG
PRO A
172
4007
4669
5833
−788
−428


415
A
C


ATOM
1009
CD
PRO A
172
51.841
26.524
44.511


1.00
37.99

A
C


ANISOU
1009
CD
PRO A
172
4090
4726
5617
−859
−427


250
A
C


ATOM
1010
N
LEU A
173
47.793
26.123
42.591


1.00
36.58

A
N


ANISOU
1010
N
LEU A
173
3799
4802
5297
−678
−300


309
A
N


ATOM
1011
CA
LEU A
173
47.268
25.366
41.465


1.00
39.04

A
C


ANISOU
1011
CA
LEU A
173
4114
5267
5454
−683
−307


441
A
C


ATOM
1012
C
LEU A
173
46.806
26.314
40.361


1.00
41.87

A
C


ANISOU
1012
C
LEU A
173
4336
5611
5962
−632
−320


634
A
C


ATOM
1013
O
LEU A
173
46.165
27.329
40.633


1.00
53.85

A
O


ANISOU
1013
O
LEU A
173
5742
7031
7688
−575
−307


636
A
O


ATOM
1014
CB
LEU A
173
46.122
24.460
41.916


1.00
41.92

A
C


ANISOU
1014
CB
LEU A
173
4521
5758
5647
−727
−302


349
A
C


ATOM
1015
CG
LEU A
173
46.455
23.409
42.978


1.00
38.39

A
C


ANISOU
1015
CG
LEU A
173
4200
5348
5039
−794
−302


188
A
C


ATOM
1016
CD1
LEU A
173
45.385
22.355
43.027


1.00
42.98

A
C


ANISOU
1016
CD1
LEU A
173
4824
6077
5428
−857
−320


168
A
C


ATOM
1017
CD2
LEU A
173
47.789
22.761
42.741


1.00
34.05

A
C


ANISOU
1017
CD2
LEU A
173
3745
4779
4414
−812
−312


218
A
C


ATOM
1018
N
PHE A
174
47.184
26.020
39.125


1.00
36.56

A
N


ANISOU
1018
N
PHE A
174
3674
5032
5186
−650
−339


802
A
N


ATOM
1019
CA
PHE A
174
46.785
26.850
37.999


1.00
47.05

A
C


ANISOU
1019
CA
PHE A
174
4869
6390
6615
−631
−369


1023
A
C


ATOM
1020
C
PHE A
174
45.283
26.750
37.899


1.00
60.55

A
C


ANISOU
1020
C
PHE A
174
6506
8197
8302
−648
−394


1067
A
C


ATOM
1021
O
PHE A
174
44.771
25.655
37.957


1.00
57.31

A
O


ANISOU
1021
O
PHE A
174
6191
7935
7650
−726
−413


1035
A
O


ATOM
1022
CB
PHE A
174
47.376
26.312
36.700


1.00
41.11

A
C


ANISOU
1022
CB
PHE A
174
4174
5766
5679
−671
−374


1179
A
C


ATOM
1023
CG
PHE A
174
48.848
26.520
36.567


1.00
42.57

A
C


ANISOU
1023
CG
PHE A
174
4369
5883
5923
−639
−342


1224
A
C


ATOM
1024
CD1
PHE A
174
49.357
27.772
36.312


1.00
42.26

A
C


ANISOU
1024
CD1
PHE A
174
4184
5724
6147
−601
−368


1361
A
C


ATOM
1025
CD2
PHE A
174
49.717
25.456
36.675


1.00
37.78

A
C


ANISOU
1025
CD2
PHE A
174
3905
5329
5122
−646
−285


1157
A
C


ATOM
1026
CE1
PHE A
174
50.712
27.964
36.182


1.00
42.70

A
C


ANISOU
1026
CE1
PHE A
174
4226
5738
6261
−587
−350


1441
A
C


ATOM
1027
CE2
PHE A
174
51.070
25.639
36.547


1.00
35.11

A
C


ANISOU
1027
CE2
PHE A
174
3540
4949
4850
−608
−246


1240
A
C


ATOM
1028
CZ
PHE A
174
51.571
26.895
36.301


1.00
37.24

A
C


ANISOU
1028
CZ
PHE A
174
3653
5123
5372
−588
−285


1388
A
C


ATOM
1029
N
CYS A
175
44.588
27.879
37.793


1.00
61.71

A
N


ANISOU
1029
N
CYS A
175
6479
8255
8714
−578
−395


1160
A
N


ATOM
1030
CA
CYS A
175
43.129
27.898
37.672


1.00
66.01

A
C


ANISOU
1030
CA
CYS A
175
6898
8901
9283
−581
−416


1270
A
C


ATOM
1031
C
CYS A
175
42.662
29.242
37.120


1.00
57.70

A
C


ANISOU
1031
C
CYS A
175
5628
7749
8544
−500
−432


1494
A
C


ATOM
1032
O
CYS A
175
43.449
30.176
37.050


1.00
47.99

A
O


ANISOU
1032
O
CYS A
175
4363
6347
7524
−442
−424


1524
A
O


ATOM
1033
CB
CYS A
175
42.466
27.637
39.013


1.00
63.25

A
C


ANISOU
1033
CB
CYS A
175
6557
8539
8936
−547
−352


1068
A
C


ATOM
1034
SG
CYS A
175
42.297
29.145
39.959


1.00
61.36

A
S


ANISOU
1034
SG
CYS A
175
6225
8034
9055
−391
−248


930
A
S


ATOM
1035
N
LYS A
176
41.393
29.348
36.731


1.00
57.88

A
N


ANISOU
1035
N
LYS A
176
5494
7882
8614
−505
−464


1677
A
N


ATOM
1036
CA
LYS A
176
40.874
30.605
36.183


1.00
55.23

A
C


ANISOU
1036
CA
LYS A
176
4926
7472
8586
−432
−490


1944
A
C


ATOM
1037
C
LYS A
176
39.350
30.760
36.267


1.00
63.84

A
C


ANISOU
1037
C
LYS A
176
5838
8662
9757
−404
−484


2068
A
C


ATOM
1038
O
LYS A
176
38.629
29.791
36.085


1.00
73.90

A
O


ANISOU
1038
O
LYS A
176
7174
10122
10783
−495
−505


2014
A
O


ATOM
1039
CB
LYS A
176
41.298
30.707
34.717


1.00
55.15

A
C


ANISOU
1039
CB
LYS A
176
4886
7588
8482
−538
−601


2224
A
C


ATOM
1040
CG
LYS A
176
41.101
32.064
34.076


1.00
52.95

A
C


ANISOU
1040
CG
LYS A
176
4368
7203
8549
−472
−643


2525
A
C


ATOM
1041
CD
LYS A
176
41.346
31.961
32.585


1.00
58.00

A
C


ANISOU
1041
CD
LYS A
176
4995
8028
9013
−611
−755


2800
A
C


ATOM
1042
CE
LYS A
176
41.197
33.301
31.891


1.00
72.41

A
C


ANISOU
1042
CE
LYS A
176
6594
9741
11179
−561
−809


3112
A
C


ATOM
1043
NZ
LYS A
176
41.327
33.159
30.416


1.00
71.50

A
N1+


ANISOU
1043
NZ
LYS A
176
6474
9828
10863
−709
−909


3382
A
N1+


ATOM
1044
N
CYS A
177
38.862
31.969
36.552


1.00
66.54

A
N


ANISOU
1044
N
CYS A
177
5945
8874
10463
−277
−458


2258
A
N


ATOM
1045
CA
CYS A
177
37.421
32.210
36.574


1.00
73.32

A
C


ANISOU
1045
CA
CYS A
177
6575
9817
11464
−219
−437


2434
A
C


ATOM
1046
C
CYS A
177
37.072
32.752
35.183


1.00
67.92

A
C


ANISOU
1046
C
CYS A
177
5637
9201
10967
−243
−549


2869
A
C


ATOM
1047
O
CYS A
177
37.906
33.385
34.541


1.00
70.67

A
O


ANISOU
1047
O
CYS A
177
5967
9462
11421
−256
−611


3008
A
O


ATOM
1048
CB
CYS A
177
37.011
33.200
37.673


1.00
80.74

A
C


ANISOU
1048
CB
CYS A
177
7449
10517
12711
2
−251


2235
A
C


ATOM
1049
SG
CYS A
177
37.404
32.751
39.387


1.00
90.22

A
S


ANISOU
1049
SG
CYS A
177
8896
11767
13615
−26
−148


1808
A
S


ATOM
1050
N
PRO A
178
35.840
32.512
34.711


1.00
63.67

A
N


ANISOU
1050
N
PRO A
178
4885
8845
10461
−269
−592


3124
A
N


ATOM
1051
CA
PRO A
178
35.400
32.924
33.368


1.00
64.27

A
C


ANISOU
1051
CA
PRO A
178
4729
9060
10631
−360
−746


3583
A
C


ATOM
1052
C
PRO A
178
35.217
34.427
33.128


1.00
68.37

A
C


ANISOU
1052
C
PRO A
178
5022
9316
11641
−172
−699


3780
A
C


ATOM
1053
O
PRO A
178
35.038
35.192
34.071


1.00
58.31

A
O


ANISOU
1053
O
PRO A
178
3702
7757
10695
59
−526


3603
A
O


ATOM
1054
CB
PRO A
178
34.050
32.209
33.205


1.00
72.69

A
C


ANISOU
1054
CB
PRO A
178
5604
10364
11652
−419
−789


3793
A
C


ATOM
1055
CG
PRO A
178
33.968
31.224
34.325


1.00
70.63

A
C


ANISOU
1055
CG
PRO A
178
5568
10163
11105
−446
−705


3418
A
C


ATOM
1056
CD
PRO A
178
34.778
31.805
35.437


1.00
57.85

A
C


ANISOU
1056
CD
PRO A
178
4124
8250
9606
−270
−533


3030
A
C


ATOM
1057
N
SER A
179
35.252
34.820
31.852


1.00
75.00

A
N


ANISOU
1057
N
SER A
179
5736
10246
12514
−286
−856


4144
A
N


ATOM
1058
CA
SER A
179
35.072
36.212
31.420


1.00
77.18

A
C


ANISOU
1058
CA
SER A
179
5771
10303
13251
−146
−849


4429
A
C


ATOM
1059
C
SER A
179
33.586
36.536
31.338


1.00
84.91

A
C


ANISOU
1059
C
SER A
179
6558
11293
14413
−77
−800


4676
A
C


ATOM
1060
O
SER A
179
32.778
35.603
31.394


1.00
93.34

A
O


ANISOU
1060
O
SER A
179
7611
12595
15260
−160
−821


4702
A
O


ATOM
1061
CB
SER A
179
35.708
36.422
30.052


1.00
75.06

A
C


ANISOU
1061
CB
SER A
179
5547
10127
12846
−332
−1006


4701
A
C


ATOM
1062
OG
SER A
179
35.151
35.532
29.103


1.00
72.12

A
C


ANISOU
1062
OG
SER A
179
5163
10066
12175
−557
−1143


4993
A
O


ATOM
1063
N
LYS A
180
33.242
37.844
31.319


1.00
85.37

A
N


ANISOU
1063
N
LYS A
180
6460
11089
14888
67
−735


4876
A
N


ATOM
1064
CA
LYS A
180
31.842
38.253
31.252


1.00
93.10

A
C


ANISOU
1064
CA
LYS A
180
7231
12071
16073
136
−675


5147
A
C


ATOM
1065
C
LYS A
180
31.115
37.485
30.153


1.00
80.47

A
C


ANISOU
1065
C
LYS A
180
5617
10844
14113
−148
−863


5486
A
C


ATOM
1066
O
LYS A
180
30.079
36.848
30.401


1.00
73.21

A
O


ANISOU
1066
O
LYS A
180
4637
10107
13075
−178
−856


5549
A
O


ATOM
1067
CB
LYS A
180
31.741
39.761
31.025


1.00
105.68

A
C


ANISOU
1067
CB
LYS A
180
8666
13335
18155
284
−598


5350
A
C


ATOM
1068
CG
LYS A
180
30.329
40.304
31.192


1.00
111.80

A
C


ANISOU
1068
CG
LYS A
180
9205
14049
19225
418
−479


5588
A
C


ATOM
1069
CD
LYS A
180
30.255
41.820
30.983


1.00
115.29

A
C


ANISOU
1069
CD
LYS A
180
9487
14143
20175
560
−393


5777
A
C


ATOM
1070
CE
LYS A
180
30.854
42.596
32.153


1.00
114.37

A
C


ANISOU
1070
CE
LYS A
180
9436
13608
20413
852
−187


5389
A
C


ATOM
1071
NZ
LYS A
180
30.531
44.055
32.078


1.00
116.90

A
N1+


ANISOU
1071
NZ
LYS A
180
9590
13575
21254
1011
−74


5559
A
N1+


ATOM
1072
N
ASN A
181
31.691
37.495
28.941


1.00
73.66

A
N


ANISOU
1072
N
ASN A
181
4827
10108
13052
−374
−1033


5698
A
N


ATOM
1073
CA
ASN A
181
31.139
36.760
27.807


1.00
75.90

A
C


ANISOU
1073
CA
ASN A
181
5137
10746
12957
−680
−1221


6005
A
C


ATOM
1074
C
ASN A
181
30.844
35.302
28.159


1.00
72.41

A
C


ANISOU
1074
C
ASN A
181
4842
10580
12092
−812
−1280


5813
A
C


ATOM
1075
O
ASN A
181
29.760
34.789
27.869


1.00
75.78

A
O


ANISOU
1075
O
ASN A
181
5209
11215
12370
−950
−1354


6032
A
O


ATOM
1076
CE
ASN A
181
32.101
36.850
26.618


1.00
82.18

A
C


ANISOU
1076
CB
ASN A
181
6038
11644
13541
−894
−1360


6143
A
C


ATOM
1077
CG
ASN A
181
32.109
38.228
25.981


1.00
102.84

A
C


ANISOU
1077
CG
ASN A
181
8473
14064
16536
−857
−1346


6463
A
C


ATOM
1078
OD1
ASN A
181
31.496
39.165
26.500


1.00
112.69

A
C


ANISOU
1078
OD1
ASN A
181
9529
15052
18234
−648
−1221


6543
A
O


ATOM
1079
ND2
ASN A
181
32.801
38.361
24.855


1.00
106.55

A
N


ANISOU
1079
ND2
ASN A
181
8993
14661
16830
−1069
−1461


6647
A
N


ATOM
1080
N
GLN A
182
31.792
34.613
28.785


1.00
74.11

A
N


ANISOU
1080
N
GLN A
182
5245
10797
12115
−789
−1252


5418
A
N


ATOM
1081
CA
GLN A
182
31.560
33.205
29.089


1.00
82.34

A
C


ANISOU
1081
CA
GLN A
182
6437
12093
12756
−944
−1314


5236
A
C


ATOM
1082
C
GLN A
182
30.464
33.033
30.130


1.00
94.59

A
C


ANISOU
1082
C
GLN A
182
7857
13622
14460
−798
−1197


5178
A
C


ATOM
1083
O
GLN A
182
29.760
32.017
30.125


1.00
108.30

A
O


ANISOU
1083
O
GLN A
182
9647
15596
15904
−969
−1281


5210
A
O


ATOM
1084
CB
GLN A
182
32.848
32.543
29.568


1.00
76.61

A
C


ANISOU
1084
CB
GLN A
182
5924
11360
11824
−954
−1295


4838
A
C


ATOM
1085
CG
GLN A
182
33.959
32.506
28.529


1.00
68.61

A
C


ANISOU
1085
CG
GLN A
182
5055
10428
10587
−1118
−1407


4887
A
C


ATOM
1086
CD
GLN A
182
35.307
32.146
29.143


1.00
65.51

A
C


ANISOU
1086
CD
GLN A
182
4881
9921
10089
−1052
−1318


4479
A
C


ATOM
1087
OE1
GLN A
182
35.849
32.884
29.976


1.00
70.21

A
O


ANISOU
1087
OE1
GLN A
182
5467
10218
10993
−821
−1165


4278
A
O


ATOM
1088
NE2
GLN A
182
35.856
31.005
28.740


1.00
56.66

A
N


ANISOU
1088
NE2
GLN A
182
4065
8976
8487
−1252
−1373


4307
A
N


ATOM
1089
N
LEU A
183
30.293
34.002
31.032


1.00
91.16

A
N


ANISOU
1089
N
LEU A
183
7257
12906
14474
−491
−996


5093
A
N


ATOM
1090
CA
LEU A
183
29.198
33.892
31.994


1.00
85.89

A
C


ANISOU
1090
CA
LEU A
183
6443
12236
13954
−338
−857


5062
A
C


ATOM
1091
C
LEU A
183
27.841
34.054
31.297


1.00
85.84

A
C


ANISOU
1091
C
LEU A
183
6258
12368
13990
−429
−932


5515
A
C


ATOM
1092
O
LEU A
183
26.934
33.240
31.499


1.00
86.51

A
O


ANISOU
1092
O
LEU A
183
6319
12666
13886
−529
−971


5588
A
O


ATOM
1093
CE
LEU A
183
29.388
34.901
33.136


1.00
83.75

A
C


ANISOU
1093
CB
LEU A
183
6061
11619
14140
18
−597


4832
A
C


ATOM
1094
CG
LEU A
183
30.509
34.593
34.150


1.00
69.40

A
C


ANISOU
1094
CG
LEU A
183
4399
9685
12284
115
−491


4363
A
C


ATOM
1095
CD1
LEU A
183
30.735
35.717
35.176


1.00
69.50

A
C


ANISOU
1095
CD1
LEU A
183
4329
9316
12761
456
−238


4147
A
C


ATOM
1096
CD2
LEU A
183
30.211
33.299
34.877


1.00
62.96

A
C


ANISOU
1096
CD2
LEU A
183
3661
9112
11148
17
−482


4158
A
C


ATOM
1097
N
ASN A
184
27.707
35.056
30.410


1.00
78.48

A
N


ANISOU
1097
N
ASN A
184
5202
11331
13286
−432
−971


5851
A
N


ATOM
1098
CA
ASN A
184
26.456
35.222
29.662


1.00
77.04

A
C


ANISOU
1098
CA
ASN A
184
4838
11289
13144
−552
−1055


6327
A
C


ATOM
1099
C
ASN A
184
26.118
33.978
28.838


1.00
76.55

A
C


ANISOU
1099
C
ASN A
184
4917
11598
12571
−924
−1292


6487
A
C


ATOM
1100
O
ASN A
184
24.959
33.562
28.797


1.00
80.77

A
O


ANISOU
1100
O
ASN A
184
5347
12304
13039
−1018
−1338


6730
A
O


ATOM
1101
CB
ASN A
184
26.516
36.466
28.766


1.00
87.69

A
C


ANISOU
1101
CB
ASN A
184
6044
12475
14798
−541
−1071


6665
A
C


ATOM
1102
CG
ASN A
184
25.140
36.836
28.159


1.00
107.46

A
C


ANISOU
1102
CG
ASN A
184
8300
15076
17454
−619
−1111


7183
A
C


ATOM
1103
OD1
ASN A
184
24.950
36.785
26.943


1.00
116.57

A
O


ANISOU
1103
OD1
ASN A
184
9442
16411
18438
−899
−1294


7548
A
O


ATOM
1104
ND2
ASN A
184
24.189
37.229
29.013


1.00
107.94

A
N


ANISOU
1104
ND2
ASN A
184
8154
15019
17839
−373
−926


7221
A
N


ATOM
1105
N
LYS A
185
27.111
33.364
28.182


1.00
79.07

A
N


ANISOU
1105
N
LYS A
185
5479
12041
12524
−1147
−1438


6356
A
N


ATOM
1106
CA
LYS A
185
26.912
32.079
27.494


1.00
80.45

A
C


ANISOU
1106
CA
LYS A
185
5842
12545
12182
−1512
−1641


6417
A
C


ATOM
1107
C
LYS A
185
26.541
30.944
28.440


1.00
71.90

A
C


ANISOU
1107
C
LYS A
185
4855
11574
10890
−1525
−1624


6158
A
C


ATOM
1108
O
LYS A
185
26.224
29.843
27.979


1.00
71.82

A
O


ANISOU
1108
O
LYS A
185
5002
11810
10476
−1834
−1782


6207
A
O


ATOM
1109
CB
LYS A
185
28.174
31.616
26.742


1.00
85.85

A
C


ANISOU
1109
CB
LYS A
185
6783
13317
12517
−1719
−1752


6249
A
C


ATOM
1110
CG
LYS A
185
28.488
32.285
25.405


1.00
92.80

A
C


ANISOU
1110
CG
LYS A
185
7626
14242
13391
−1890
−1843


6563
A
C


ATOM
1111
CD
LYS A
185
29.791
31.714
24.839


1.00
77.13

A
C


ANISOU
1111
CD
LYS A
185
5896
12362
11048
−2070
−1910


6327
A
C


ATOM
1112
CE
LYS A
185
30.209
32.415
23.566


1.00
72.78

A
C


ANISOU
1112
CE
LYS A
185
5289
11863
10500
−2206
−1978


6537
A
C


ATOM
1113
NZ
LYS A
185
31.489
31.872
23.067


1.00
79.48

A
N1+


ANISOU
1113
NZ
LYS A
185
6357
12821
11019
−2346
−2018


6265
A
N1+


ATOM
1114
N
GLY A
186
26.624
31.154
29.742


1.00
70.63

A
N


ANISOU
1114
N
GLY A
186
4621
11238
10979
−1227
−1429


5869
A
N


ATOM
1115
CA
GLY A
186
26.231
30.118
30.660


1.00
70.28

A
C


ANISOU
1115
CA
GLY A
186
4643
11311
10750
−1249
−1403


5651
A
C


ATOM
1116
C
GLY A
186
27.341
29.201
31.096


1.00
65.52

A
C


ANISOU
1116
C
GLY A
186
4307
10733
9854
−1325
−1418


5219
A
C


ATOM
1117
O
GLY A
186
27.051
28.125
31.640


1.00
64.43

A
O


ANISOU
1117
O
GLY A
186
4278
10735
9469
−1439
−1450


5067
A
O


ATOM
1118
N
ILE A
187
28.597
29.588
30.867


1.00
65.47

A
N


ANISOU
1118
N
ILE A
187
4408
10594
9872
−1276
−1400


5037
A
N


ATOM
1119
CA
ILE A
187
29.761
28.855
31.363


1.00
73.01

A
C


ANISOU
1119
CA
ILE A
187
5591
11539
10611
−1312
−1384


4629
A
C


ATOM
1120
C
ILE A
187
29.946
29.228
32.831


1.00
77.96

A
C


ANISOU
1120
C
ILE A
187
6111
11970
11540
−1014
−1150


4333
A
C


ATOM
1121
O
ILE A
187
30.180
30.397
33.160


1.00
84.30

A
O


ANISOU
1121
O
ILE A
187
6762
12531
12738
−754
−999


4322
A
O


ATOM
1122
CB
ILE A
187
31.027
29.189
30.545


1.00
69.03

A
C


ANISOU
1122
CB
ILE A
187
5215
10976
10036
−1367
−1443


4589
A
C


ATOM
1123
CG1
ILE A
187
30.790
29.057
29.028


1.00
61.27

A
C


ANISOU
1123
CG1
ILE A
187
4300
10185
8794
−1648
−1641


4923
A
C


ATOM
1124
CG2
ILE A
187
32.223
28.355
30.985


1.00
58.51

A
C


ANISOU
1124
CG2
ILE A
187
4185
9612
8433
−1412
−1408


4167
A
C


ATOM
1125
CD1
ILE A
187
30.728
27.630
28.502


1.00
60.46

A
C


ANISOU
1125
CD1
ILE A
187
4467
10338
8170
−1995
−1807


4861
A
C


ATOM
1126
N
LYS A
188
29.814
28.248
33.722


1.00
72.39

A
N


ANISOU
1126
N
LYS A
188
5492
11363
10651
−1064
−1117


4097
A
N


ATOM
1127
CA
LYS A
188
30.026
28.530
35.133


1.00
72.37

A
C


ANISOU
1127
CA
LYS A
188
5504
11153
10839
−797
−864


3756
A
C


ATOM
1128
C
LYS A
188
31.358
28.002
35.655


1.00
62.02

A
C


ANISOU
1128
C
LYS A
188
4584
9693
9289
−802
−799


3292
A
C


ATOM
1129
O
LYS A
188
31.783
28.403
36.744


1.00
54.58

A
O


ANISOU
1129
O
LYS A
188
3698
8541
8500
−592
−599


2991
A
O


ATOM
1130
CB
LYS A
188
28.860
27.974
35.962


1.00
77.56

A
C


ANISOU
1130
CB
LYS A
188
6003
11977
11489
−789
−809


3804
A
C


ATOM
1131
CG
LYS A
188
27.510
28.520
35.480


1.00
89.47

A
C


ANISOU
1131
CG
LYS A
188
7242
13559
13195
−747
−835


4227
A
C


ATOM
1132
CD
LYS A
188
26.347
28.191
36.396


1.00
92.88

A
C


ANISOU
1132
CD
LYS A
188
7521
14101
13669
−669
−721


4267
A
C


ATOM
1133
CE
LYS A
188
26.032
26.702
36.372


1.00
94.49

A
C


ANISOU
1133
CE
LYS A
188
7902
14562
13436
−975
−902


4250
A
C


ATOM
1134
NZ
LYS A
188
25.328
26.308
35.117


1.00
99.84

A
N1+


ANISOU
1134
NZ
LYS A
188
8624
15407
13905
−1245
−1152


4624
A
N1+


ATOM
1135
N
TYR A
189
32.053
27.161
34.893


1.00
60.77

A
N


ANISOU
1135
N
TYR A
189
4695
9628
8768
−1034
−954


3235
A
N


ATOM
1136
CA
TYR A
189
33.314
26.634
35.384


1.00
54.85

A
C


ANISOU
1136
CA
TYR A
189
4283
8740
7817
−1025
−884


2833
A
C


ATOM
1137
C
TYR A
189
34.344
26.543
34.269


1.00
53.00

A
C


ANISOU
1137
C
TYR A
189
4243
8499
7396
−1147
−986


2851
A
C


ATOM
1138
O
TYR A
189
34.051
26.018
33.195


1.00
51.29

A
C


ANISOU
1138
O
TYR A
189
4068
8480
6940
−1372
−1158


3061
A
C


ATOM
1139
CB
TYR A
189
33.092
25.260
36.015


1.00
47.86

A
C


ANISOU
1139
CB
TYR A
189
3588
7981
6615
−1168
−915


2642
A
C


ATOM
1140
CG
TYR A
189
32.078
25.277
37.146


1.00
48.77

A
C


ANISOU
1140
CG
TYR A
189
3510
8142
6879
−1058
−804


2631
A
C


ATOM
1141
CD1
TYR A
189
32.314
25.999
38.307


1.00
52.31

A
C


ANISOU
1141
CD1
TYR A
189
3908
8396
7572
−805
−583


2402
A
C


ATOM
1142
CD2
TYR A
189
30.903
24.558
37.057


1.00
52.35

A
C


ANISOU
1142
CD2
TYR A
189
3841
8840
7210
−1223
−919


2849
A
C


ATOM
1143
CE1
TYR A
189
31.398
26.015
39.331


1.00
64.50

A
C


ANISOU
1143
CE1
TYR A
189
5284
9997
9227
−697
−453


2383
A
C


ATOM
1144
CE2
TYR A
189
29.969
24.567
38.083


1.00
63.04

A
C


ANISOU
1144
CE2
TYR A
189
4995
10263
8695
−1117
−801


2864
A
C


ATOM
1145
CZ
TYR A
189
30.218
25.298
39.220


1.00
65.24

A
C


ANISOU
1145
CZ
TYR A
189
5226
10354
9208
−843
−554


2624
A
C


ATOM
1146
OH
TYR A
189
29.297
25.297
40.246


1.00
62.96

A
O


ANISOU
1146
OH
TYR A
189
4748
10150
9024
−732
−409


2627
A
O


ATOM
1147
N
LEU A
190
35.577
26.917
34.598


1.00
52.03

A
N


ANISOU
1147
N
LEU A
190
4237
8159
7371
−1009
−878


2639
A
N


ATOM
1148
CA
LEU A
190
36.736
26.753
33.730


1.00
49.76

A
C


ANISOU
1148
CA
LEU A
190
4184
7867
6857
−1107
−927


2573
A
C


ATOM
1149
C
LEU A
190
37.484
25.706
34.553


1.00
50.35

A
C


ANISOU
1149
C
LEU A
190
4550
7880
6699
−1118
−856


2206
A
C


ATOM
1150
O
LEU A
190
38.005
26.013
35.619


1.00
59.49

A
O


ANISOU
1150
O
LEU A
190
5744
8851
8010
−962
−727


1973
A
O


ATOM
1151
CB
LEU A
190
37.537
28.040
33.617


1.00
49.86

A
C


ANISOU
1151
CB
LEU A
190
4107
7697
7141
−966
−872


2636
A
C


ATOM
1152
CG
LEU A
190
36.985
29.101
32.669


1.00
48.62

A
C


ANISOU
1152
CG
LEU A
190
3647
7542
7283
−922
−931


3007
A
C


ATOM
1153
CD1
LEU A
190
37.837
30.357
32.717


1.00
48.76

A
C


ANISOU
1153
CD1
LEU A
190
3632
7368
7526
−813
−891


3042
A
C


ATOM
1154
CD2
LEU A
190
36.923
28.549
31.259


1.00
59.49

A
C


ANISOU
1154
CD2
LEU A
190
5001
9200
8405
−1161
−1112


3307
A
C


ATOM
1155
N
ILE A
191
37.534
24.474
34.059


1.00
43.06

A
N


ANISOU
1155
N
ILE A
191
3843
7106
5412
−1313
−947


2164
A
N


ATOM
1156
CA
ILE A
191
38.080
23.350
34.816


1.00
41.24

A
C


ANISOU
1156
CA
ILE A
191
3870
6834
4967
−1341
−898


1860
A
C


ATOM
1157
C
ILE A
191
39.513
23.103
34.358


1.00
44.18

A
C


ANISOU
1157
C
ILE A
191
4467
7119
5201
−1328
−849


1724
A
C


ATOM
1158
O
ILE A
191
39.759
22.857
33.178


1.00
63.43

A
O


ANISOU
1158
O
ILE A
191
7008
9653
7441
−1445
−913


1839
A
O


ATOM
1159
CB
ILE A
191
37.213
22.092
34.634


1.00
41.71

A
C


ANISOU
1159
CB
ILE A
191
4045
7073
4731
−1560
−1024


1893
A
C


ATOM
1160
CG1
ILE A
191
35.798
22.304
35.201


1.00
48.59

A
C


ANISOU
1160
CG1
ILE A
191
4660
8050
5753
−1564
−1060


2049
A
C


ATOM
1161
CG2
ILE A
191
37.880
20.886
35.240


1.00
40.88

A
C


ANISOU
1161
CG2
ILE A
191
4225
6905
4404
−1600
−987


1606
A
C


ATOM
1162
CD1
ILE A
191
35.040
21.017
35.506


1.00
43.05

A
C


ANISOU
1162
CD1
ILE A
191
4067
7487
4801
−1756
−1162


2022
A
C


ATOM
1163
N
THR A
192
40.453
23.138
35.279


1.00
54.21

A
N


ANISOU
1163
N
THR A
192
5810
8222
6564
−1194
−732


1493
A
N


ATOM
1164
CA
THR A
192
41.850
22.964
34.928


1.00
37.84

A
C


ANISOU
1164
CA
THR A
192
3898
6069
4409
−1158
−671


1406
A
C


ATOM
1165
C
THR A
192
42.112
21.488
34.716


1.00
37.19

A
C


ANISOU
1165
C
THR A
192
4098
6030
4001
−1265
−675


1251
A
C


ATOM
1166
O
THR A
192
41.721
20.664
35.517


1.00
36.39

A
O


ANISOU
1166
O
THR A
192
4074
5913
3841
−1289
−675


1098
A
O


ATOM
1167
CB
THR A
192
42.770
23.641
35.946


1.00
36.84

A
C


ANISOU
1167
CB
THR A
192
3714
5750
4534
−991
−567


1267
A
C


ATOM
1168
OG1
THR A
192
42.544
23.095
37.239


1.00
37.49

A
O


ANISOU
1168
OG1
THR A
192
3994
5771
4480
−984
−508


1056
A
O


ATOM
1169
CG2
THR A
192
42.518
25.147
35.952


1.00
37.08

A
C


ANISOU
1169
CG2
THR A
192
3572
5717
4801
−911
−543


1227
A
C


ATOM
1170
N
TYR A
193
42.805
21.173
33.631


1.00
37.82

A
N


ANISOU
1170
N
TYR A
193
4334
6167
3870
−1329
−673


1301
A
N


ATOM
1171
CA
TYR A
193
42.999
19.788
33.209


1.00
38.00

A
C


ANISOU
1171
CA
TYR A
193
4651
6229
3560
−1446
−677


1182
A
C


ATOM
1172
C
TYR A
193
44.421
19.603
32.695


1.00
46.25

A
C


ANISOU
1172
C
TYR A
193
5845
7206
4524
−1357
−546


1113
A
C


ATOM
1173
O
TYR A
193
44.898
20.407
31.893


1.00
49.56

A
O


ANISOU
1173
O
TYR A
193
6175
7664
4992
−1315
−515


1259
A
O


ATOM
1174
CB
TYR A
193
42.000
19.422
32.106


1.00
39.82

A
C


ANISOU
1174
CB
TYR A
193
4949
6637
3544
−1660
−814


1338
A
C


ATOM
1175
CG
TYR A
193
42.226
18.071
31.470


1.00
40.61

A
C


ANISOU
1175
CG
TYR A
193
5397
6757
3277
−1799
−817


1210
A
C


ATOM
1176
CD1
TYR A
193
41.845
16.911
32.123


1.00
40.22

A
C


ANISOU
1176
CD1
TYR A
193
5519
6659
3105
−1883
−859


1051
A
C


ATOM
1177
CD2
TYR A
193
42.822
17.948
30.219


1.00
42.03

A
C


ANISOU
1177
CD2
TYR A
193
5745
6996
3228
−1847
−771


1246
A
C


ATOM
1178
CE1
TYR A
193
42.055
15.664
31.546


1.00
42.08

A
C


ANISOU
1178
CE1
TYR A
193
6101
6868
3021
−2008
−858


919
A
C


ATOM
1179
CE2
TYR A
193
43.054
16.698
29.650


1.00
43.13

A
C


ANISOU
1179
CE2
TYR A
193
6241
7122
3026
−1961
−745


1093
A
C


ATOM
1180
CZ
TYR A
193
42.658
15.563
30.319


1.00
42.78

A
C


ANISOU
1180
CZ
TYR A
193
6375
6993
2886
−2039
−793


925
A
C


ATOM
1181
OH
TYR A
193
42.873
14.306
29.797


1.00
44.14

A
O


ANISOU
1181
OH
TYR A
193
6923
7106
2743
−2149
−766


758
A
O


ATOM
1182
N
VAL A
194
45.115
18.559
33.141


1.00
51.86

A
N


ANISOU
1182
N
VAL A
194
6761
7819
5123
−1321
−464


917
A
N


ATOM
1183
CA
VAL A
194
46.489
18.347
32.692


1.00
45.92

A
C


ANISOU
1183
CA
VAL A
194
6127
7004
4317
−1210
−313


870
A
C


ATOM
1184
C
VAL A
194
46.466
17.418
31.483


1.00
39.33

A
C


ANISOU
1184
C
VAL A
194
5572
6244
3128
−1322
−288


843
A
C


ATOM
1185
O
VAL A
194
46.066
16.253
31.582


1.00
39.54

A
O


ANISOU
1185
O
VAL A
194
5828
6237
2958
−1422
−319


706
A
O


ATOM
1186
CB
VAL A
194
47.379
17.803
33.817


1.00
44.75

A
C


ANISOU
1186
CE
VAL A
194
6023
6701
4281
−1086
−221


706
A
C


ATOM
1187
CG1
VAL A
194
48.585
17.068
33.240


1.00
40.42

A
C


ANISOU
1187
CG1
VAL A
194
5664
6097
3596
−997
−59


647
A
C


ATOM
1188
CG2
VAL A
194
47.871
18.956
34.684


1.00
44.46

A
C


ANISOU
1188
CG2
VAL A
194
5732
6595
4567
−966
−209


755
A
C


ATOM
1189
N
TRP A
195
46.906
17.945
30.344


1.00
45.74

A
N


ANISOU
1189
N
TRP A
195
6375
7153
3853
−1315
−232


974
A
N


ATOM
1190
CA
TRP A
195
46.798
17.271
29.062


1.00
42.69

A
C


ANISOU
1190
CA
TRP A
195
6250
6871
3098
−1446
−211


966
A
C


ATOM
1191
C
TRP A
195
47.727
16.072
28.989


1.00
52.83

A
C


ANISOU
1191
C
TRP A
195
7833
8033
4207
−1360
−30


753
A
C


ATOM
1192
O
TRP A
195
48.924
16.181
29.264


1.00
61.98

A
O


ANISOU
1192
O
TRP A
195
8938
9103
5510
−1159
141


728
A
O


ATOM
1193
CB
TRP A
195
47.116
18.270
27.959


1.00
44.02

A
C


ANISOU
1193
CB
TRP A
195
6292
7191
3242
−1447
−185


1183
A
C


ATOM
1194
CG
TRP A
195
46.815
17.824
26.545


1.00
55.90

A
C


ANISOU
1194
CG
TRP A
195
8034
8862
4344
−1631
−198


1222
A
C


ATOM
1195
CD1
TRP A
195
47.702
17.288
25.662


1.00
59.43

A
C


ANISOU
1195
CD1
TRP A
195
8721
9336
4523
−1591
−11


1141
A
C


ATOM
1196
CD2
TRP A
195
45.561
17.929
25.838


1.00
59.45

A
C


ANISOU
1196
CD2
TRP A
195
8496
9488
4605
−1891
−404


1368
A
C


ATOM
1197
NE1
TRP A
195
47.086
17.033
24.463


1.00
68.01

A
N


ANISOU
1197
NE1
TRP A
195
10003
10601
5238
−1822
−87


1196
A
N


ATOM
1198
CE2
TRP A
195
45.773
17.418
24.537


1.00
64.48

A
C


ANISOU
1198
CE2
TRP A
195
9415
10254
4832
−2023
−344


1350
A
C


ATOM
1199
CE3
TRP A
195
44.284
18.389
26.180


1.00
65.27

A
C


ANISOU
1199
CE3
TRP A
195
9029
10294
5477
−2025
−626


1523
A
C


ATOM
1200
CZ2
TRP A
195
44.757
17.358
23.571


1.00
53.06

A
C


ANISOU
1200
CZ2
TRP A
195
8043
8985
3132
−2296
−524


1471
A
C


ATOM
1201
CZ3
TRP A
195
43.262
18.325
25.208


1.00
66.43

A
C


ANISOU
1201
CZ3
TRP A
195
9235
10644
5360
−2303
−807


1690
A
C


ATOM
1202
CH2
TRP A
195
43.516
17.817
23.923


1.00
60.06

A
C


ANISOU
1202
CH2
TRP A
195
8692
9925
4202
−2424
−759


1641
A
C


ATOM
1203
N
GLN A
196
47.170
14.928
28.614


1.00
47.18

A
N


ANISOU
1203
N
GLN A
196
7429
7303
3194
−1516
−70


614
A
N


ATOM
1204
CA
GLN A
196
47.888
13.665
28.606


1.00
56.27

A
C


ANISOU
1204
CA
GLN A
196
8896
8294
4192
−1439
95


392
A
C


ATOM
1205
C
GLN A
196
48.454
13.347
27.225


1.00
74.85

A
C


ANISOU
1205
C
GLN A
196
11508
10711
6221
−1446
261


354
A
C


ATOM
1206
O
GLN A
196
48.047
13.913
26.202


1.00
69.83

A
O


ANISOU
1206
O
GLN A
196
10863
10271
5399
−1588
197


491
A
O


ATOM
1207
CB
GLN A
196
46.976
12.513
29.044


1.00
55.67

A
C


ANISOU
1207
CB
GLN A
196
9048
8122
3980
−1612
−41


240
A
C


ATOM
1208
CG
GLN A
196
46.531
12.514
30.503


1.00
43.32

A
C


ANISOU
1208
CG
GLN A
196
7288
6479
2694
−1591
−160


233
A
C


ATOM
1209
CD
GLN A
196
47.678
12.692
31.466


1.00
49.26

A
C


ANISOU
1209
CD
GLN A
196
7883
7097
3738
−1337
−10


199
A
C


ATOM
1210
OE1
GLN A
196
48.449
11.766
31.713


1.00
57.39

A
O


ANISOU
1210
OE1
GLN A
196
9089
7961
4757
−1228
126


63
A
O


ATOM
1211
NE2
GLN A
196
47.796
13.890
32.025


1.00
53.64

A
N


ANISOU
1211
NE2
GLN A
196
8104
7713
4564
−1251
−41


335
A
N


ATOM
1212
N
ASP A
197
49.405
12.409
27.220


1.00
91.15

A
N


ANISOU
1212
N
ASP A
197
13805
12607
8220
−1288
486


172
A
N


ATOM
1213
CA
ASP A
197
49.941
11.846
25.988


1.00
98.99

A
C


ANISOU
1213
CA
ASP A
197
15119
13621
8871
−1277
689


70
A
C


ATOM
1214
C
ASP A
197
48.802
11.261
25.169


1.00
90.90

A
C


ANISOU
1214
C
ASP A
197
14415
12672
7453
−1594
525


−11
A
C


ATOM
1215
O
ASP A
197
48.024
10.432
25.660


1.00
89.37

A
O


ANISOU
1215
O
ASP A
197
14390
12357
7211
−1743
373


−134
A
O


ATOM
1216
CB
ASP A
197
50.994
10.773
26.315


1.00
107.68

A
C


ANISOU
1216
CB
ASP A
197
16426
14476
10011
−1046
952


−130
A
C


ATOM
1217
CG
ASP A
197
51.927
10.465
25.138


1.00
111.71

A
C


ANISOU
1217
CG
ASP A
197
17172
15012
10262
−919
1260


−203
A
C


ATOM
1218
OD1
ASP A
197
51.861
11.164
24.100


1.00
114.07

A
O


ANISOU
1218
OD1
ASP A
197
17447
15542
10354
−1007
1273


−83
A
O


ATOM
1219
OD2
ASP A
197
52.732
9.514
25.268


1.00
111.30

A
O1−


ANISOU
1219
OD2
ASP A
197
17321
14748
10219
−723
1501


−371
A
O1−


ATOM
1220
N
ASN A
198
48.661
11.749
23.941


1.00
94.34

A
N


ANISOU
1220
N
ASN A
198
14894
13319
7630
−1715
525


91
A
N


ATOM
1221
CA
ASN A
198
47.660
11.256
23.000


1.00
100.27

A
C


ANISOU
1221
CA
ASN A
198
15803
14110
8184
−1945
348


40
A
C


ATOM
1222
C
ASN A
198
46.232
11.537
23.475


1.00
87.84

A
C


ANISOU
1222
C
ASN A
198
14031
12593
6754
−2174
8


176
A
C


ATOM
1223
O
ASN A
198
45.317
10.764
23.185


1.00
97.24

A
O


ANISOU
1223
O
ASN A
198
15376
13719
7850
−2370
−149


95
A
O


ATOM
1224
CB
ASN A
198
47.843
9.753
22.703


1.00
108.71

A
C


ANISOU
1224
CB
ASN A
198
17283
14943
9078
−1933
466


−265
A
C


ATOM
1225
CG
ASN A
198
49.178
9.425
21.981


1.00
105.86

A
C


ANISOU
1225
CG
ASN A
198
17131
14541
8550
−1703
831


−402
A
C


ATOM
1226
OD1
ASN A
198
49.709
10.232
21.206


1.00
100.80

A
O


ANISOU
1226
OD1
ASN A
198
16376
14108
7815
−1639
951


−264
A
O


ATOM
1227
ND2
ASN A
198
49.707
8.224
22.238


1.00
103.79

A
N


ANISOU
1227
ND2
ASN A
198
17160
14004
8270
−1573
1012


−657
A
N


ATOM
1228
N
ASP A
199
46.023
12.624
24.219


1.00
66.96

A
N


ANISOU
1228
N
ASP A
199
11035
10061
4346
−2151
−97


393
A
N


ATOM
1229
CA
ASP A
199
44.699
13.227
24.319


1.00
59.25

A
C


ANISOU
1229
CA
ASP A
199
9804
9212
3496
−2349
−384


597
A
C


ATOM
1230
C
ASP A
199
44.310
13.903
22.992


1.00
70.77

A
C


ANISOU
1230
C
ASP A
199
11185
10881
4823
−2492
−462


784
A
C


ATOM
1231
O
ASP A
199
45.166
14.368
22.235


1.00
59.16

A
O


ANISOU
1231
O
ASP A
199
9728
9508
3241
−2397
−302


835
A
O


ATOM
1232
CB
ASP A
199
44.672
14.255
25.452


1.00
58.12

A
C


ANISOU
1232
CB
ASP A
199
9309
9126
3649
−2257
−444


777
A
C


ATOM
1233
CG
ASP A
199
44.193
13.672
26.788


1.00
75.22

A
C


ANISOU
1233
CG
ASP A
199
11460
11147
5972
−2258
−534


669
A
C


ATOM
1234
OD1
ASP A
199
43.886
12.465
26.837


1.00
82.68

A
O


ANISOU
1234
OD1
ASP A
199
12655
11940
6822
−2331
−556


475
A
O


ATOM
1235
OD2
ASP A
199
44.121
14.425
27.793


1.00
68.22

A
O1−


ANISOU
1235
OD2
ASP A
199
10245
10238
5439
−2126
−564


761
A
O1−


ATOM
1236
N
ASN A
200
43.001
13.915
22.690


1.00
73.30

A
N


ANISOU
1236
N
ASN A
200
11420
11276
5153
−2732
−704


901
A
N


ATOM
1237
CA
ASN A
200
42.438
14.644
21.553


1.00
74.06

A
C


ANISOU
1237
CA
ASN A
200
11383
11583
5173
−2905
−827


1128
A
C


ATOM
1238
C
ASN A
200
41.486
15.718
22.053


1.00
66.84

A
C


ANISOU
1238
C
ASN A
200
10053
10794
4548
−2973
−1031


1429
A
C


ATOM
1239
O
ASN A
200
40.981
15.651
23.178


1.00
65.28

A
O


ANISOU
1239
O
ASN A
200
9725
10522
4558
−2945
−1109


1431
A
O


ATOM
1240
CB
ASN A
200
41.635
13.755
20.587


1.00
67.94

A
C


ANISOU
1240
CB
ASN A
200
10855
10810
4150
−3174
−943


1052
A
C


ATOM
1241
CG
ASN A
200
42.471
12.708
19.924


1.00
66.46

A
C


ANISOU
1241
CG
ASN A
200
11090
10504
3659
−3124
−745


765
A
C


ATOM
1242
OD1
ASN A
200
42.072
11.552
19.834


1.00
67.77

A
O


ANISOU
1242
OD1
ASN A
200
11535
10522
3691
−3252
−783


578
A
O


ATOM
1243
ND2
ASN A
200
43.648
13.096
19.467


1.00
66.40

A
N


ANISOU
1243
ND2
ASN A
200
11126
10553
3549
−2932
−520


739
A
N


ATOM
1244
N
VAL A
201
41.194
16.680
21.181


1.00
68.94

A
N


ANISOU
1244
N
VAL A
201
6377
15233
4583
−2088
787


548
A
N


ATOM
1245
CA
VAL A
201
40.238
17.711
21.546


1.00
67.74

A
C


ANISOU
1245
CA
VAL A
201
6240
15038
4458
−2096
678


889
A
C


ATOM
1246
C
VAL A
201
38.830
17.136
21.602


1.00
67.39

A
C


ANISOU
1246
C
VAL A
201
6265
15073
4265
−2155
531


715
A
C


ATOM
1247
O
VAL A
201
38.038
17.456
22.500


1.00
67.52

A
O


ANISOU
1247
O
VAL A
201
6362
14834
4456
−2173
398


818
A
O


ATOM
1248
CB
VAL A
201
40.334
18.891
20.569


1.00
69.85

A
C


ANISOU
1248
CB
VAL A
201
6402
15540
4597
−2030
731


1244
A
C


ATOM
1249
CG1
VAL A
201
39.276
19.921
20.921


1.00
68.77

A
C


ANISOU
1249
CG1
VAL A
201
6297
15277
4554
−1998
583


1552
A
C


ATOM
1250
CG2
VAL A
201
41.753
19.478
20.621


1.00
70.14

A
C


ANISOU
1250
CG2
VAL A
201
6374
15461
4814
−1994
897


1400
A
C


ATOM
1251
N
THR A
202
38.489
16.281
20.647


1.00
69.62

A
N


ANISOU
1251
N
THR A
202
6509
15687
4256
−2182
550


429
A
N


ATOM
1252
CA
THR A
202
37.164
15.671
20.663


1.00
69.57

A
C


ANISOU
1252
CA
THR A
202
6547
15721
4165
−2239
417


207
A
C


ATOM
1253
C
THR A
202
36.978
14.797
21.895


1.00
67.08

A
C


ANISOU
1253
C
THR A
202
6396
15004
4088
−2305
366


−62
A
C


ATOM
1254
O
THR A
202
35.919
14.816
22.530


1.00
71.06

A
O


ANISOU
1254
O
THR A
202
6974
15360
4667
−2354
241


−70
A
O


ATOM
1255
CB
THR A
202
36.952
14.836
19.406


1.00
72.63

A
C


ANISOU
1255
CB
THR A
202
6843
16436
4319
−2237
448


−95
A
C


ATOM
1256
OG1
THR A
202
37.362
15.594
18.266


1.00
78.79

A
O


ANISOU
1256
OG1
THR A
202
7490
17493
4954
−2141
502


142
A
O


ATOM
1257
CG2
THR A
202
35.500
14.439
19.286


1.00
73.02

A
C


ANISOU
1257
CG2
THR A
202
6885
16550
4308
−2283
325


−270
A
C


ATOM
1258
N
LEU A
203
38.001
14.018
22.241


1.00
66.72

A
N


ANISOU
1258
N
LEU A
203
6413
14711
4226
−2280
451


−291
A
N


ATOM
1259
CA
LEU A
203
37.918
13.096
23.367


1.00
68.17

A
C


ANISOU
1259
CA
LEU A
203
6775
14434
4694
−2298
410


−562
A
C


ATOM
1260
C
LEU A
203
37.710
13.851
24.678


1.00
67.47

A
C


ANISOU
1260
C
LEU A
203
6781
13919
4935
−2267
302


−299
A
C


ATOM
1261
O
LEU A
203
36.740
13.613
25.417


1.00
60.16

A
O


ANISOU
1261
O
LEU A
203
5969
12777
4112
−2320
201


−371
A
O


ATOM
1262
CB
LEU A
203
39.199
12.266
23.416


1.00
75.30

A
C


ANISOU
1262
CB
LEU A
203
7715
15184
5713
−2236
528


−808
A
C


ATOM
1263
CG
LEU A
203
39.373
11.275
24.557


1.00
86.53

A
C


ANISOU
1263
CG
LEU A
203
9338
16113
7427
−2209
516


−1081
A
C


ATOM
1264
CD1
LEU A
203
38.193
10.300
24.596


1.00
91.62

A
C


ANISOU
1264
CD1
LEU A
203
10088
16741
7983
−2318
484


−1394
A
C


ATOM
1265
CD2
LEU A
203
40.713
10.557
24.377


1.00
91.41

A
C


ANISOU
1265
CD2
LEU A
203
9958
16675
8101
−2124
639


−1302
A
C


ATOM
1266
N
VAL A
204
38.641
14.757
24.985


1.00
60.85

A
N


ANISOU
1266
N
VAL A
204
5891
12955
4274
−2185
332


−10
A
N


ATOM
1267
CA
VAL A
204
38.563
15.562
26.200


1.00
58.10

A
C


ANISOU
1267
CA
VAL A
204
5608
12223
4247
−2147
237


247
A
C


ATOM
1268
C
VAL A
204
37.214
16.262
26.276


1.00
57.43

A
C


ANISOU
1268
C
VAL A
204
5515
12228
4076
−2210
112


460
A
C


ATOM
1269
O
VAL A
204
36.503
16.194
27.293


1.00
63.08

A
O


ANISOU
1269
O
VAL A
204
6351
12632
4984
−2234
1


446
A
O


ATOM
1270
CB
VAL A
204
39.730
16.570
26.248


1.00
57.99

A
C


ANISOU
1270
CB
VAL A
204
5486
12166
4383
−2067
311


534
A
C


ATOM
1271
CG1
VAL A
204
39.459
17.645
27.289


1.00
55.56

A
C


ANISOU
1271
CG1
VAL A
204
5200
11560
4350
−2044
212


853
A
C


ATOM
1272
CG2
VAL A
204
41.051
15.850
26.507


1.00
58.13

A
C


ANISOU
1272
CG2
VAL A
204
5527
11999
4561
−1987
405


295
A
C


ATOM
1273
N
SER A
205
36.834
16.931
25.184


1.00
59.39

A
N


ANISOU
1273
N
SER A
205
5626
12916
4022
−2228
131


655
A
N


ATOM
1274
CA
SER A
205
35.606
17.716
25.205


1.00
58.96

A
C


ANISOU
1274
CA
SER A
205
5549
12978
3874
−2261
10


887
A
C


ATOM
1275
C
SER A
205
34.384
16.836
25.420


1.00
66.98

A
C


ANISOU
1275
C
SER A
205
6650
13986
4814
−2350
−88


586
A
C


ATOM
1276
O
SER A
205
33.416
17.266
26.057


1.00
72.08

A
O


ANISOU
1276
O
SER A
205
7339
14501
5548
−2382
−214


702
A
O


ATOM
1277
CB
SER A
205
35.457
18.538
23.918


1.00
61.54

A
C


ANISOU
1277
CB
SER A
205
5722
13807
3852
−2233
59


1142
A
C


ATOM
1278
OG
SER A
205
35.619
17.748
22.752


1.00
64.29

A
O


ANISOU
1278
OG
SER A
205
6000
14513
3913
−2238
142


878
A
O


ATOM
1279
N
SER A
206
34.407
15.602
24.920


1.00
70.00

A
N


ANISOU
1279
N
SER A
206
7054
14496
5049
−2399
−25


186
A
N


ATOM
1280
CA
SER A
206
33.249
14.742
25.127


1.00
66.46

A
C


ANISOU
1280
CA
SER A
206
6681
14025
4547
−2501
−92


−129
A
C


ATOM
1281
C
SER A
206
33.204
14.216
26.560


1.00
57.36

A
C


ANISOU
1281
C
SER A
206
5726
12306
3762
−2519
−129


−258
A
C


ATOM
1282
O
SER A
206
32.124
14.138
27.153


1.00
56.23

A
O


ANISOU
1282
O
SER A
206
5654
12026
3684
−2592
−223


−313
A
O


ATOM
1283
CB
SER A
206
33.267
13.596
24.120


1.00
62.73

A
C


ANISOU
1283
CB
SER A
206
6162
13867
3805
−2555
3


−529
A
C


ATOM
1284
OG
SER A
206
34.365
12.747
24.396


1.00
71.83

A
C


ANISOU
1284
OG
SER A
206
7405
14763
5124
−2522
116


−746
A
C


ATOM
1285
N
LYS A
207
34.361
13.855
27.133


1.00
62.27

A
N


ANISOU
1285
N
LYS A
207
6437
12602
4619
−2444
−54


−311
A
N


ATOM
1286
CA
LYS A
207
34.414
13.498
28.554


1.00
61.05

A
C


ANISOU
1286
CA
LYS A
207
6478
11905
4815
−2420
−93


−376
A
C


ATOM
1287
C
LYS A
207
33.789
14.580
29.418


1.00
54.39

A
C


ANISOU
1287
C
LYS A
207
5646
10871
4147
−2415
−228


−47
A
C


ATOM
1288
O
LYS A
207
32.980
14.295
30.304


1.00
57.02

A
O


ANISOU
1288
O
LYS A
207
6113
10925
4626
−2466
−298


−132
A
O


ATOM
1289
CB
LYS A
207
35.861
13.255
29.006


1.00
56.97

A
C


ANISOU
1289
CB
LYS A
207
6016
11120
4510
−2295
−12


−401
A
C


ATOM
1290
CG
LYS A
207
36.315
11.831
28.819


1.00
66.33

A
C


ANISOU
1290
CG
LYS A
207
7305
12235
5664
−2291
102


−816
A
C


ATOM
1291
CD
LYS A
207
37.805
11.688
28.909


1.00
74.49

A
C


ANISOU
1291
CD
LYS A
207
8331
13150
6820
−2156
186


−835
A
C


ATOM
1292
CE
LYS A
207
38.233
10.435
28.141


1.00
83.59

A
C


ANISOU
1292
CE
LYS A
207
9504
14448
7810
−2167
316


−1220
A
C


ATOM
1293
NZ
LYS A
207
39.693
10.148
28.252


1.00
87.90

A
N1+


ANISOU
1293
NZ
LYS A
207
10052
14869
8477
−2026
399


−1293
A
N1+


ATOM
1294
N
PHE A
208
34.152
15.830
29.172


1.00
51.45

A
N


ANISOU
1294
N
PHE A
208
5138
10641
3768
−2358
−253


329
A
N


ATOM
1295
CA
PHE A
208
33.703
16.910
30.035


1.00
52.14

A
C


ANISOU
1295
CA
PHE A
208
5234
10520
4055
−2341
−371


653
A
C


ATOM
1296
C
PHE A
208
32.404
17.562
29.583


1.00
56.75

A
C


ANISOU
1296
C
PHE A
208
5734
11392
4435
−2412
−471


808
A
C


ATOM
1297
O
PHE A
208
31.812
18.318
30.356


1.00
51.09

A
O


ANISOU
1297
O
PHE A
208
5041
10489
3880
−2415
−582


1026
A
O


ATOM
1298
CB
PHE A
208
34.798
17.966
30.152


1.00
56.47

A
C


ANISOU
1298
CB
PHE A
208
5689
11009
4758
−2241
−334


979
A
C


ATOM
1299
CG
PHE A
208
35.953
17.524
31.004


1.00
59.44

A
C


ANISOU
1299
CG
PHE A
208
6154
11010
5421
−2150
−285


861
A
C


ATOM
1300
CD1
PHE A
208
36.950
16.711
30.484


1.00
66.07

A
C


ANISOU
1300
CD1
PHE A
208
6986
11926
6191
−2107
−161


625
A
C


ATOM
1301
CD2
PHE A
208
36.010
17.868
32.347


1.00
55.08

A
C


ANISOU
1301
CD2
PHE A
208
5694
10034
5199
−2096
−368


962
A
C


ATOM
1302
CE1
PHE A
208
38.008
16.280
31.284


1.00
57.89

A
C


ANISOU
1302
CE1
PHE A
208
6031
10556
5409
−1999
−125


499
A
C


ATOM
1303
CE2
PHE A
208
37.058
17.448
33.146


1.00
51.66

A
C


ANISOU
1303
CE2
PHE A
208
5340
9278
5012
−1985
−333


839
A
C


ATOM
1304
CZ
PHE A
208
38.061
16.649
32.614


1.00
45.61

A
C


ANISOU
1304
CZ
PHE A
208
4564
8596
4171
−1932
−213


606
A
C


ATOM
1305
N
GLY A
209
31.901
17.174
28.418


1.00
66.58

A
N


ANISOU
1305
N
GLY A
209
6878
13093
5326
−2460
−441


690
A
N


ATOM
1306
CA
GLY A
209
30.677
17.751
27.897


1.00
59.09

A
C


ANISOU
1306
CA
GLY A
209
5836
12463
4151
−2502
−543


819
A
C


ATOM
1307
C
GLY A
209
30.813
19.235
27.648


1.00
55.88

A
C


ANISOU
1307
C
GLY A
209
5316
12148
3769
−2404
−562


1280
A
C


ATOM
1308
O
GLY A
209
29.890
20.013
27.871


1.00
52.05

A
O


ANISOU
1308
O
GLY A
209
4817
11516
3445
−2374
−645


1461
A
O


ATOM
1309
N
ALA A
210
31.993
19.620
27.184


1.00
64.40

A
N


ANISOU
1309
N
ALA A
210
6311
13395
4764
−2333
−450


1442
A
N


ATOM
1310
CA
ALA A
210
32.298
21.003
26.868


1.00
58.70

A
C


ANISOU
1310
CA
ALA A
210
5501
12602
4201
−2223
−435


1846
A
C


ATOM
1311
C
ALA A
210
32.527
21.082
25.371


1.00
57.43

A
C


ANISOU
1311
C
ALA A
210
5196
12779
3847
−2122
−379


1958
A
C


ATOM
1312
O
ALA A
210
33.151
20.198
24.790


1.00
57.64

A
O


ANISOU
1312
O
ALA A
210
5164
12735
4001
−2020
−390


2258
A
O


ATOM
1313
CB
ALA A
210
33.532
21.465
27.623


1.00
58.08

A
C


ANISOU
1313
CB
ALA A
210
5447
12330
4290
−2206
−333


1985
A
C


ATOM
1314
N
SER A
211
32.001
22.122
24.739


1.00
59.87

A
N


ANISOU
1314
N
SER A
211
5453
13432
3861
−2139
−322


1706
A
N


ATOM
1315
CA
SER A
211
32.158
22.270
23.300


1.00
76.19

A
C


ANISOU
1315
CA
SER A
211
7393
15848
5708
−2037
−255


1787
A
C


ATOM
1316
C
SER A
211
33.620
22.433
22.910


1.00
80.59

A
C


ANISOU
1316
C
SER A
211
7920
16415
6287
−1973
−123


1979
A
C


ATOM
1317
O
SER A
211
34.369
23.155
23.565


1.00
79.45

A
O


ANISOU
1317
O
SER A
211
7814
15975
6397
−1957
−101


2200
A
O


ATOM
1318
CB
SER A
211
31.374
23.487
22.809


1.00
87.70

A
C


ANISOU
1318
CB
SER A
211
8782
17365
7174
−1931
−325


2014
A
C


ATOM
1319
OG
SER A
211
31.911
24.684
23.350


1.00
86.65

A
O


ANISOU
1319
OG
SER A
211
8548
17571
6805
−1820
−253


2092
A
O


ATOM
1320
N
GLN A
212
34.018
21.774
21.825


1.00
94.03

A
N


ANISOU
1320
N
GLN A
212
9542
18451
7732
−1932
−28


1886
A
N


ATOM
1321
CA
GLN A
212
35.389
21.870
21.334


1.00
73.86

A
C


ANISOU
1321
CA
GLN A
212
6963
15934
5166
−1899
126


1967
A
C


ATOM
1322
C
GLN A
212
35.714
23.297
20.906


1.00
68.66

A
C


ANISOU
1322
C
GLN A
212
6280
15163
4645
−1784
174


2363
A
C


ATOM
1323
O
GLN A
212
36.815
23.783
21.131


1.00
68.36

A
O


ANISOU
1323
O
GLN A
212
6250
14967
4756
−1776
291


2483
A
O


ATOM
1324
CB
GLN A
212
35.668
20.862
20.216


1.00
71.09

A
C


ANISOU
1324
CB
GLN A
212
6538
15973
4501
−1891
204


1720
A
C


ATOM
1325
CG
GLN A
212
34.441
20.368
19.476


1.00
70.66

A
C


ANISOU
1325
CG
GLN A
212
6512
15998
4338
−2000
146


1295
A
C


ATOM
1326
CD
GLN A
212
34.676
19.025
18.811


1.00
78.81

A
C


ANISOU
1326
CD
GLN A
212
7458
17398
5090
−1994
207


1005
A
C


ATOM
1327
OE1
GLN A
212
35.773
18.474
18.874


1.00
87.67

A
O


ANISOU
1327
OE1
GLN A
212
8576
18575
6161
−2020
324


837
A
O


ATOM
1328
NE2
GLN A
212
33.642
18.489
18.174


1.00
75.62

A
N


ANISOU
1328
NE2
GLN A
212
6974
17243
4515
−1958
131


923
A
N


ATOM
1329
N
VAL A
213
34.753
23.964
20.283


1.00
74.66

A
N


ANISOU
1329
N
VAL A
213
7016
15968
5385
−1696
96


2550
A
N


ATOM
1330
CA
VAL A
213
34.957
25.337
19.862


1.00
70.77

A
C


ANISOU
1330
CA
VAL A
213
6512
15397
4982
−1574
167


2895
A
C


ATOM
1331
C
VAL A
213
35.206
26.206
21.088


1.00
68.00

A
C


ANISOU
1331
C
VAL A
213
6220
14608
5008
−1573
130


3102
A
C


ATOM
1332
O
VAL A
213
36.042
27.103
21.053


1.00
68.58

A
O


ANISOU
1332
O
VAL A
213
6302
14520
5234
−1504
230


3338
A
O


ATOM
1333
CB
VAL A
213
33.751
25.877
19.078


1.00
73.33

A
C


ANISOU
1333
CB
VAL A
213
6786
15984
5092
−1460
119


2982
A
C


ATOM
1334
CG1
VAL A
213
33.995
27.318
18.658


1.00
74.75

A
C


ANISOU
1334
CG1
VAL A
213
6982
16058
5362
−1324
191


3337
A
C


ATOM
1335
CG2
VAL A
213
33.479
25.001
17.868


1.00
76.22

A
C


ANISOU
1335
CG2
VAL A
213
7085
16763
5113
−1452
175


2773
A
C


ATOM
1336
N
GLU A
214
34.473
25.951
22.168


1.00
68.86

A
N


ANISOU
1336
N
GLU A
214
6373
14511
5281
−1647
−8


3006
A
N


ATOM
1337
CA
GLU A
214
34.675
26.729
23.386


1.00
65.76

A
C


ANISOU
1337
CA
GLU A
214
6029
13698
5259
−1638
−57


3175
A
C


ATOM
1338
C
GLU A
214
36.075
26.501
23.938


1.00
64.27

A
C


ANISOU
1338
C
GLU A
214
5869
13285
5266
−1685
39


3157
A
C


ATOM
1339
O
GLU A
214
36.771
27.446
24.334


1.00
69.95

A
O


ANISOU
1339
O
GLU A
214
6595
13743
6241
−1628
99


3344
A
O


ATOM
1340
CB
GLU A
214
33.613
26.382
24.424


1.00
71.17

A
C


ANISOU
1340
CB
GLU A
214
6753
14234
6053
−1700
−226


3070
A
C


ATOM
1341
CG
GLU A
214
32.237
26.915
24.072


1.00
85.00

A
C


ANISOU
1341
CG
GLU A
214
8465
16141
7690
−1633
−303


3123
A
C


ATOM
1342
CD
GLU A
214
32.224
28.424
23.942


1.00
98.77

A
C


ANISOU
1342
CD
GLU A
214
10194
17748
9586
−1500
−273


3417
A
C


ATOM
1343
OE1
GLU A
214
33.167
29.069
24.445


1.00
98.79

A
O


ANISOU
1343
OE1
GLU A
214
10225
17456
9854
−1475
−224


3561
A
O


ATOM
1344
OE2
GLU A
214
31.274
28.969
23.342


1.00
104.66

A
O1−


ANISOU
1344
OE2
GLU A
214
10904
18679
10181
−1415
−293


3485
A
O1−


ATOM
1345
N
MET A
215
36.509
25.245
23.910


1.00
61.93

A
N


ANISOU
1345
N
MET A
215
5586
13093
4852
−1784
72


2906
A
N


ATOM
1346
CA
MET A
215
37.833
24.905
24.389


1.00
60.37

A
C


ANISOU
1346
CA
MET A
215
5382
12780
4775
−1815
213


2856
A
C


ATOM
1347
C
MET A
215
38.867
25.617
23.547


1.00
62.68

A
C


ANISOU
1347
C
MET A
215
5618
13111
5084
−1731
373


3048
A
C


ATOM
1348
O
MET A
215
39.794
26.221
24.077


1.00
65.61

A
O


ANISOU
1348
O
MET A
215
5993
13190
5747
−1697
433


3195
A
O


ATOM
1349
CB
MET A
215
38.081
23.412
24.229


1.00
62.60

A
C


ANISOU
1349
CB
MET A
215
5659
13308
4817
−1905
277


2537
A
C


ATOM
1350
CG
MET A
215
37.535
22.534
25.330


1.00
66.60

A
C


ANISOU
1350
CG
MET A
215
6249
13701
5354
−2006
175


2318
A
C


ATOM
1351
SD
MET A
215
38.234
20.88
8 25.148


1.00
72.76

A
S


ANISOU
1351
SD
MET A
215
7044
14664
5937
−2078
282


1882
A
S


ATOM
1352
CE
MET A
215
39.973
21.248
25.348


1.00
67.92

A
C


ANISOU
1352
CE
MET A
215
6385
13768
5652
−2025
425


1881
A
C


ATOM
1353
N
LEU A
216
38.677
25.593
22.231


1.00
65.71

A
N


ANISOU
1353
N
LEU A
216
5957
13852
5158
−1695
447


3038
A
N


ATOM
1354
CA
LEU A
216
39.630
26.233
21.341


1.00
68.27

A
C


ANISOU
1354
CA
LEU A
216
6241
14243
5455
−1634
632


3185
A
C


ATOM
1355
C
LEU A
216
39.696
27.729
21.597


1.00
68.48

A
C


ANISOU
1355
C
LEU A
216
6295
14024
5701
−1543
651


3491
A
C


ATOM
1356
O
LEU A
216
40.772
28.314
21.598


1.00
72.05

A
O


ANISOU
1356
O
LEU A
216
6740
14320
6317
−1524
811


3605
A
O


ATOM
1357
CB
LEU A
216
39.279
25.961
19.879


1.00
80.18

A
C


ANISOU
1357
CB
LEU A
216
7706
16187
6573
−1601
684


3108
A
C


ATOM
1358
CG
LEU A
216
39.370
24.509
19.407


1.00
85.93

A
C


ANISOU
1358
CG
LEU A
216
8411
17058
7182
−1703
707


2767
A
C


ATOM
1359
CD1
LEU A
216
38.850
24.36
7 17.985


1.00
78.33

A
C


ANISOU
1359
CD1
LEU A
216
7395
16514
5851
−1690
758


2590
A
C


ATOM
1360
CD2
LEU A
216
40.790
23.985
19.522


1.00
99.52

A
C


ANISOU
1360
CD2
LEU A
216
10111
18564
9138
−1743
859


2736
A
C


ATOM
1361
N
ALA A
217
38.546
28.350
21.821


1.00
67.78

A
N


ANISOU
1361
N
ALA A
217
6235
13882
5637
−1492
502


3599
A
N


ATOM
1362
CA
ALA A
217
38.524
29.780
22.062


1.00
67.65

A
C


ANISOU
1362
CA
ALA A
217
6251
13588
5864
−1408
513


3849
A
C


ATOM
1363
C
ALA A
217
39.286
30.106
23.329


1.00
65.09

A
C


ANISOU
1363
C
ALA A
217
5948
12855
5929
−1444
534


3850
A
C


ATOM
1364
O
ALA A
217
40.053
31.061
23.376


1.00
65.90

A
O


ANISOU
1364
O
ALA A
217
6060
12761
6219
−1404
667


3995
A
O


ATOM
1365
CB
ALA A
217
37.092
30.272
22.170


1.00
66.83

A
C


ANISOU
1365
CB
ALA A
217
6162
13476
5755
−1357
335


3908
A
C


ATOM
1366
N
GLU A
218
39.055
29.308
24.363


1.00
62.20

A
N


ANISOU
1366
N
GLU A
218
5594
12356
5684
−1520
416


3673
A
N


ATOM
1367
CA
GLU A
218
39.727
29.504
25.642


1.00
63.47

A
C


ANISOU
1367
CA
GLU A
218
5773
12121
6221
−1532
412


3659
A
C


ATOM
1368
C
GLU A
218
41.237
29.262
25.640


1.00
75.47

A
C


ANISOU
1368
C
GLU A
218
7246
13603
7827
−1574
603


3574
A
C


ATOM
1369
O
GLU A
218
41.990
29.982
26.293


1.00
75.19

A
O


ANISOU
1369
O
GLU A
218
7203
13262
8104
−1557
664


3601
A
O


ATOM
1370
CB
GLU A
218
39.069
28.655
26.731


1.00
56.56

A
C


ANISOU
1370
CB
GLU A
218
4941
11102
5447
−1584
220


3509
A
C


ATOM
1371
CG
GLU A
218
39.656
28.867
28.116


1.00
61.42

A
C


ANISOU
1371
CG
GLU A
218
5582
11321
6434
−1580
189


3460
A
C


ATOM
1372
CD
GLU A
218
39.389
30.254
28.654


1.00
72.09

A
C


ANISOU
1372
CD
GLU A
218
6947
12385
8057
−1485
176


3620
A
C


ATOM
1373
OE1
GLU A
218
40.314
30.863
29.225


1.00
80.76

A
O


ANISOU
1373
OE1
GLU A
218
8018
13325
9341
−1464
320


3652
A
O


ATOM
1374
OE2
GLU A
218
38.252
30.739
28.503


1.00
69.14

A
O1−


ANISOU
1374
OE2
GLU A
218
6602
11949
7718
−1440
31


3686
A
O1−


ATOM
1375
N
ASN A
219
41.674
28.230
24.932


1.00
78.62

A
N


ANISOU
1375
N
ASN A
219
7598
14314
7959
−1625
705


3445
A
N


ATOM
1376
CA
ASN A
219
43.082
27.844
24.923


1.00
73.26

A
C


ANISOU
1376
CA
ASN A
219
6849
13623
7362
−1675
871


3295
A
C


ATOM
1377
C
ASN A
219
43.973
28.265
23.756


1.00
82.74

A
C


ANISOU
1377
C
ASN A
219
7998
14985
8455
−1657
1097


3372
A
C


ATOM
1378
O
ASN A
219
45.178
28.059
23.830


1.00
95.69

A
O


ANISOU
1378
O
ASN A
219
9563
16580
10216
−1694
1252


3253
A
O


ATOM
1379
CB
ASN A
219
43.181
26.326
25.058


1.00
64.39

A
C


ANISOU
1379
CB
ASN A
219
5701
12720
6043
−1753
841


3022
A
C


ATOM
1380
CG
ASN A
219
42.799
25.840
26.432


1.00
58.78

A
C


ANISOU
1380
CG
ASN A
219
5035
11780
5517
−1793
684


2897
A
C


ATOM
1381
OD1
ASN A
219
43.374
26.260
27.428


1.00
60.24

A
O


ANISOU
1381
OD1
ASN A
219
5185
11706
5997
−1799
711


2815
A
O


ATOM
1382
ND2
ASN A
219
41.831
24.943
26.491


1.00
57.87

A
N


ANISOU
1382
ND2
ASN A
219
4992
11760
5234
−1819
523


2867
A
N


ATOM
1383
N
ASN A
220
43.396
28.809
22.687


1.00
80.02

A
N


ANISOU
1383
N
ASN A
220
7685
14828
7890
−1598
1124


3552
A
N


ATOM
1384
CA
ASN A
220
44.159
29.235
21.499


1.00
82.61

A
C


ANISOU
1384
CA
ASN A
220
7983
15376
8029
−1579
1334


3621
A
C


ATOM
1385
C
ASN A
220
45.146
28.165
20.998


1.00
77.17

A
C


ANISOU
1385
C
ASN A
220
7207
14868
7246
−1648
1475


3383
A
C


ATOM
1386
O
ASN A
220
46.310
28.433
20.732


1.00
73.61

A
O


ANISOU
1386
O
ASN A
220
6699
14304
6965
−1674
1665


3359
A
O


ATOM
1387
CB
ASN A
220
44.693
30.693
21.538


1.00
88.14

A
C


ANISOU
1387
CB
ASN A
220
8712
15823
8953
−1535
1487


3852
A
C


ATOM
1388
CG
ASN A
220
45.834
30.908
22.513


1.00
90.15

A
C


ANISOU
1388
CG
ASN A
220
8914
15757
9582
−1590
1619


3771
A
C


ATOM
1389
OD1
ASN A
220
46.845
30.211
22.479


1.00
92.93

A
O


ANISOU
1389
OD1
ASN A
220
9217
15997
10095
−1637
1546


3576
A
O


ATOM
1390
ND2
ASN A
220
45.683
31.902
23.378


1.00
84.96

A
N


ANISOU
1390
ND2
ASN A
220
8266
14952
9063
−1582
1820


3909
A
N


ATOM
1391
N
HIS A
221
44.638
26.942
20.889


1.00
75.95

A
N


ANISOU
1391
N
HIS A
221
7037
15017
6802
−1676
1390


3185
A
N


ATOM
1392
CA
HIS A
221
45.401
25.776
20.453


1.00
72.96

A
C


ANISOU
1392
CA
HIS A
221
6582
14812
6327
−1740
1466


2884
A
C


ATOM
1393
C
HIS A
221
46.700
25.489
21.176


1.00
71.64

A
C


ANISOU
1393
C
HIS A
221
6339
14394
6488
−1782
1571


2760
A
C


ATOM
1394
O
HIS A
221
47.742
25.322
20.555


1.00
75.41

A
O


ANISOU
1394
O
HIS A
221
6752
14848
7051
−1783
1767


2783
A
O


ATOM
1395
CB
HIS A
221
45.612
25.682
18.950


1.00
80.28

A
C


ANISOU
1395
CB
HIS A
221
7463
16072
6966
−1727
1628


2834
A
C


ATOM
1396
CG
HIS A
221
46.214
24.377
18.536


1.00
79.83

A
C


ANISOU
1396
CG
HIS A
221
7346
16262
6722
−1778
1641


2483
A
C


ATOM
1397
ND1
HIS A
221
45.895
23.190
19.160


1.00
75.02

A
N


ANISOU
1397
ND1
HIS A
221
6767
15744
5991
−1813
1476


2269
A
N


ATOM
1398
CD2
HIS A
221
47.124
24.068
17.584


1.00
81.45

A
C


ANISOU
1398
CD2
HIS A
221
7467
16625
6855
−1801
1805


2285
A
C


ATOM
1399
CE1
HIS A
221
46.576
22.205
18.605


1.00
75.67

A
C


ANISOU
1399
CE1
HIS A
221
6795
16027
5930
−1850
1541


1949
A
C


ATOM
1400
NE2
HIS A
221
47.328
22.711
17.645


1.00
78.84

A
N


ANISOU
1400
NE2
HIS A
221
7120
16475
6359
−1838
1732


1952
A
N


ATOM
1401
N
ASN A
222
46.660
25.377
22.493


1.00
68.73

A
N


ANISOU
1401
N
ASN A
222
5966
13853
6295
−1816
1452


2604
A
N


ATOM
1402
CA
ASN A
222
47.888
25.104
23.217


1.00
80.29

A
C


ANISOU
1402
CA
ASN A
222
7324
15174
8009
−1842
1543


2393
A
C


ATOM
1403
C
ASN A
222
48.243
23.616
23.233


1.00
92.14

A
C


ANISOU
1403
C
ASN A
222
8757
16963
9290
−1876
1597


2052
A
C


ATOM
1404
O
ASN A
222
49.369
23.240
23.556


1.00
103.64

A
O


ANISOU
1404
O
ASN A
222
10096
18380
10903
−1879
1710


1843
A
O


ATOM
1405
CE
ASN A
222
47.808
25.654
24.643


1.00
98.25

A
C


ANISOU
1405
CB
ASN A
222
9618
17095
10615
−1840
1396


2385
A
C


ATOM
1406
CG
ASN A
222
49.181
25.937
25.238


1.00
113.99

A
C


ANISOU
1406
CG
ASN A
222
11580
18733
12999
−1805
1457


2539
A
C


ATOM
1407
OD1
ASN A
222
50.210
25.565
24.668


1.00
116.43

A
O


ANISOU
1407
OD1
ASN A
222
11767
18922
13551
−1804
1563


2384
A
O


ATOM
1408
ND2
ASN A
222
49.202
26.601
26.386


1.00
116.50

A
N


ANISOU
1408
ND2
ASN A
222
11998
18890
13375
−1770
1391


2809
A
N


ATOM
1409
N
PHE A
223
47.294
22.782
22.834


1.00
87.72

A
N


ANISOU
1409
N
PHE A
223
8260
16704
8366
−1890
1531


1971
A
N


ATOM
1410
CA
PHE A
223
47.448
21.321
22.858


1.00
82.07

A
C


ANISOU
1410
CA
PHE A
223
7553
16124
7506
−1915
1483


1602
A
C


ATOM
1411
C
PHE A
223
48.659
20.641
22.211


1.00
77.37

A
C


ANISOU
1411
C
PHE A
223
6875
15736
6785
−1904
1630


1312
A
C


ATOM
1412
O
PHE A
223
49.150
19.653
22.747


1.00
70.48

A
O


ANISOU
1412
O
PHE A
223
6062
14768
5949
−1865
1553


939
A
O


ATOM
1413
CB
PHE A
223
46.174
20.672
22.311


1.00
81.91

A
C


ANISOU
1413
CB
PHE A
223
7637
16310
7175
−1940
1343


1589
A
C


ATOM
1414
CG
PHE A
223
44.924
21.132
22.997


1.00
78.81

A
C


ANISOU
1414
CG
PHE A
223
7330
15706
6908
−1949
1178


1819
A
C


ATOM
1415
CD1
PHE A
223
44.352
20.377
24.002


1.00
73.06

A
C


ANISOU
1415
CD1
PHE A
223
6697
14567
6494
−1924
1023


1682
A
C


ATOM
1416
CD2
PHE A
223
44.325
22.326
22.640


1.00
83.58

A
C


ANISOU
1416
CD2
PHE A
223
7985
16361
7411
−1906
1103


2108
A
C


ATOM
1417
CE1
PHE A
223
43.202
20.802
24.635


1.00
81.86

A
C


ANISOU
1417
CE1
PHE A
223
7887
15490
7726
−1936
873


1888
A
C


ATOM
1418
CE2
PHE A
223
43.176
22.759
23.268


1.00
71.01

A
C


ANISOU
1418
CE2
PHE A
223
6472
14552
5957
−1899
938


2293
A
C


ATOM
1419
CZ
PHE A
223
42.613
21.996
24.267


1.00
74.79

A
C


ANISOU
1419
CZ
PHE A
223
6988
14762
6668
−1944
850


2210
A
C


ATOM
1420
N
THR A
224
49.140
21.116
21.073


1.00
85.28

A
N


ANISOU
1420
N
THR A
224
7792
16921
7691
−1902
1806


1438
A
N


ATOM
1421
CA
THR A
224
50.284
20.441
20.460


1.00
91.47

A
C


ANISOU
1421
CA
THR A
224
8474
17882
8399
−1900
1955


1139
A
C


ATOM
1422
C
THR A
224
51.539
20.448
21.337


1.00
93.58

A
C


ANISOU
1422
C
THR A
224
8645
17868
9045
−1871
2016


989
A
C


ATOM
1423
O
THR A
224
52.255
19.452
21.403


1.00
95.06

A
O


ANISOU
1423
O
THR A
224
8798
18057
9262
−1825
2043


635
A
O


ATOM
1424
CB
THR A
224
50.640
21.024
19.079


1.00
84.32

A
C


ANISOU
1424
CB
THR A
224
7541
17200
7298
−1886
2100


1264
A
C


ATOM
1425
OG1
THR A
224
50.570
22.454
19.127


1.00
80.96

A
O


ANISOU
1425
OG1
THR A
224
7151
16617
6993
−1870
2137


1657
A
O


ATOM
1426
CG2
THR A
224
49.686
20.506
18.021


1.00
80.74

A
C


ANISOU
1426
CG2
THR A
224
7144
17094
6438
−1882
2037


1163
A
C


ATOM
1427
N
ALA A
225
51.810
21.568
21.997


1.00
90.56

A
N


ANISOU
1427
N
ALA A
225
8231
17206
8972
−1874
2013


1226
A
N


ATOM
1428
CA
ALA A
225
52.997
21.684
22.844


1.00
92.73

A
C


ANISOU
1428
CA
ALA A
225
8390
17230
9611
−1835
2084


1092
A
C


ATOM
1429
C
ALA A
225
52.780
21.585
24.358


1.00
83.47

A
C


ANISOU
1429
C
ALA A
225
7293
15633
8788
−1759
1881


1006
A
C


ATOM
1430
O
ALA A
225
53.715
21.804
25.124


1.00
90.51

A
O


ANISOU
1430
O
ALA A
225
8082
16302
10006
−1713
1917


913
A
O


ATOM
1431
CB
ALA A
225
53.750
22.964
22.510


1.00
96.06

A
C


ANISOU
1431
CB
ALA A
225
8739
17582
10176
−1865
2262


1372
A
C


ATOM
1432
N
SER A
226
51.568
21.269
24.798


1.00
72.08

A
N


ANISOU
1432
N
SER A
226
6022
14081
7286
−1742
1673


1015
A
N


ATOM
1433
CA
SER A
226
51.296
21.208
26.238


1.00
64.73

A
C


ANISOU
1433
CA
SER A
226
5168
12748
6676
−1677
1493


1008
A
C


ATOM
1434
C
SER A
226
51.233
19.846
26.918


1.00
62.92

A
C


ANISOU
1434
C
SER A
226
5097
12346
6463
−1579
1318


652
A
C


ATOM
1435
O
SER A
226
50.841
19.770
28.076


1.00
60.54

A
O


ANISOU
1435
O
SER A
226
4930
11778
6295
−1543
1141


672
A
O


ATOM
1436
CB
SER A
226
50.026
21.985
26.585


1.00
63.08

A
C


ANISOU
1436
CB
SER A
226
5029
12475
6463
−1740
1404


1378
A
C


ATOM
1437
OG
SER A
226
48.901
21.412
25.951


1.00
62.59

A
O


ANISOU
1437
OG
SER A
226
5122
12523
6137
−1760
1268


1341
A
O


ATOM
1438
N
THR A
227
51.600
18.767
26.244


1.00
64.35

A
N


ANISOU
1438
N
THR A
227
5271
12659
6519
−1531
1374


325
A
N


ATOM
1439
CA
THR A
227
51.485
17.485
26.924


1.00
63.11

A
C


ANISOU
1439
CA
THR A
227
5277
12299
6403
−1422
1231


−14
A
C


ATOM
1440
C
THR A
227
52.078
17.577
28.331


1.00
61.15

A
C


ANISOU
1440
C
THR A
227
5040
11662
6533
−1284
1136


−110
A
C


ATOM
1441
O
THR A
227
53.120
18.202
28.533


1.00
61.68

A
O


ANISOU
1441
O
THR A
227
4937
11695
6804
−1247
1226


−102
A
O


ATOM
1442
CB
THR A
227
52.178
16.413
26.097


1.00
65.51

A
C


ANISOU
1442
CB
THR A
227
5557
12824
6511
−1391
1329


−344
A
C


ATOM
1443
OG1
THR A
227
51.631
16.424
24.760


1.00
67.26

A
O


ANISOU
1443
OG1
THR A
227
5748
13439
6370
−1517
1421


−242
A
O


ATOM
1444
CG2
THR A
227
52.012
15.042
26.760


1.00
64.24

A
C


ANISOU
1444
CG2
THR A
227
5588
12439
6380
−1274
1202


−691
A
C


ATOM
1445
N
ASN A
228
51.384
16.990
29.316


1.00
60.48

A
N


ANISOU
1445
N
ASN A
228
5151
11289
6541
−1207
959


−199
A
N


ATOM
1446
CA
ASN A
228
51.729
17.108
30.743


1.00
56.94

A
C


ANISOU
1446
CA
ASN A
228
4742
10463
6430
−1061
841


−257
A
C


ATOM
1447
C
ASN A
228
51.839
18.567
31.179


1.00
56.10

A
C


ANISOU
1447
C
ASN A
228
4483
10276
6555
−1110
855


53
A
C


ATOM
1448
O
ASN A
228
52.673
18.921
32.013


1.00
55.52

A
O


ANISOU
1448
O
ASN A
228
4315
10015
6765
−1001
840


−16
A
O


ATOM
1449
CB
ASN A
228
53.012
16.329
31.087


1.00
57.75

A
C


ANISOU
1449
CB
ASN A
228
4808
10483
6650
−880
867


−615
A
C


ATOM
1450
CG
ASN A
228
52.849
14.815
30.882


1.00
71.18

A
C


ANISOU
1450
CG
ASN A
228
6699
12180
8166
−804
838


−934
A
C


ATOM
1451
OD1
ASN A
228
51.733
14.296
30.974


1.00
72.60

A
O


ANISOU
1451
OD1
ASN A
228
7076
12284
8226
−852
755


−917
A
O


ATOM
1452
ND2
ASN A
228
53.969
14.104
30.608


1.00
99.89

A
N


ANISOU
1452
ND2
ASN A
228
10272
15894
11787
−689
917


−1238
A
N


ATOM
1453
N
ARG A
229
51.023
19.424
30.571


1.00
56.26

A
N


ANISOU
1453
N
ARG A
229
4472
10455
6449
−1269
894


384
A
N


ATOM
1454
CA
ARG A
229
50.807
20.794
30.998


1.00
55.28

A
C


ANISOU
1454
CA
ARG A
229
4252
10227
6525
−1330
895


716
A
C


ATOM
1455
C
ARG A
229
49.310
21.022
31.159


1.00
53.69

A
C


ANISOU
1455
C
ARG A
229
4202
9976
6224
−1409
763


952
A
C


ATOM
1456
O
ARG A
229
48.476
20.320
30.583


1.00
54.03

A
O


ANISOU
1456
O
ARG A
229
4371
10168
5991
−1458
723


903
A
O


ATOM
1457
CB
ARG A
229
51.378
21.812
30.015


1.00
57.50

A
C


ANISOU
1457
CB
ARG A
229
4327
10763
6757
−1442
1111


931
A
C


ATOM
1458
CG
ARG A
229
52.868
21.938
30.115


1.00
62.06

A
C


ANISOU
1458
CG
ARG A
229
4715
11328
7535
−1379
1243


741
A
C


ATOM
1459
CD
ARG A
229
53.415
23.161
29.386


1.00
63.73

A
C


ANISOU
1459
CD
ARG A
229
4721
11708
7784
−1500
1474


990
A
C


ATOM
1460
NE
ARG A
229
54.770
23.465
29.843


1.00
61.42

A
N


ANISOU
1460
NE
ARG A
229
4232
11318
7787
−1441
1575


809
A
N


ATOM
1461
CZ
ARG A
229
55.861
22.800
29.463


1.00
75.74

A
C


ANISOU
1461
CZ
ARG A
229
5947
13261
9569
−1381
1672


496
A
C


ATOM
1462
NH1
ARG A
229
55.763
21.795
28.599


1.00
75.41

A
N1+


ANISOU
1462
NH1
ARG A
229
5992
13448
9212
−1379
1688


341
A
N1+


ATOM
1463
NH2
ARG A
229
57.051
23.146
29.946


1.00
78.66

A
N


ANISOU
1463
NH2
ARG A
229
6120
13542
10225
−1325
1754


323
A
N


ATOM
1464
N
SER A
230
48.955
21.974
32.006


1.00
56.81

A
N


ANISOU
1464
N
SER A
230
4568
10167
6850
−1423
698


1194
A
N


ATOM
1465
CA
SER A
230
47.556
22.214
32.290


1.00
50.24

A
C


ANISOU
1465
CA
SER A
230
3879
9234
5978
−1475
548


1387
A
C


ATOM
1466
C
SER A
230
46.873
23.208
31.375


1.00
51.39

A
C


ANISOU
1466
C
SER A
230
3952
9627
5945
−1612
635


1751
A
C


ATOM
1467
O
SER A
230
47.416
24.257
31.060


1.00
52.25

A
O


ANISOU
1467
O
SER A
230
3905
9769
6178
−1653
765


1974
A
O


ATOM
1468
CB
SER A
230
47.382
22.631
33.743


1.00
47.73

A
C


ANISOU
1468
CB
SER A
230
3587
8542
6005
−1396
409


1430
A
C


ATOM
1469
OG
SER A
230
47.887
23.922
33.939


1.00
54.39

A
O


ANISOU
1469
OG
SER A
230
4278
9370
7019
−1464
478


1739
A
O


ATOM
1470
N
VAL A
231
45.649
22.857
30.995


1.00
51.59

A
N


ANISOU
1470
N
VAL A
231
4095
9830
5677
−1676
572


1795
A
N


ATOM
1471
CA
VAL A
231
44.806
23.647
30.113


1.00
52.52

A
C


ANISOU
1471
CA
VAL A
231
4191
10190
5574
−1775
603


2122
A
C


ATOM
1472
C
VAL A
231
43.419
23.784
30.724


1.00
50.28

A
C


ANISOU
1472
C
VAL A
231
4034
9736
5335
−1795
411


2251
A
C


ATOM
1473
O
VAL A
231
43.089
23.094
31.679


1.00
48.05

A
O


ANISOU
1473
O
VAL A
231
3850
9137
5268
−1739
272


2104
A
O


ATOM
1474
CB
VAL A
231
44.691
23.017
28.719


1.00
54.92

A
C


ANISOU
1474
CB
VAL A
231
4505
10895
5469
−1819
683


2023
A
C


ATOM
1475
CG1
VAL A
231
45.988
23.187
27.953


1.00
57.44

A
C


ANISOU
1475
CG1
VAL A
231
4676
11428
5722
−1819
900


1989
A
C


ATOM
1476
CG2
VAL A
231
44.319
21.552
28.829


1.00
54.30

A
C


ANISOU
1476
CG2
VAL A
231
4574
10777
5281
−1791
572


1652
A
C


ATOM
1477
N
LEU A
232
42.635
24.719
30.207


1.00
51.03

A
N


ANISOU
1477
N
LEU A
232
4127
10051
5209
−1865
404


2521
A
N


ATOM
1478
CA
LEU A
232
41.290
24.966
30.700


1.00
49.17

A
C


ANISOU
1478
CA
LEU A
232
4017
9634
5033
−1849
213


2649
A
C


ATOM
1479
C
LEU A
232
40.163
24.390
29.846


1.00
50.12

A
C


ANISOU
1479
C
LEU A
232
4196
10067
4782
−1913
152


2640
A
C


ATOM
1480
O
LEU A
232
40.169
24.506
28.632


1.00
63.63

A
O


ANISOU
1480
O
LEU A
232
5866
12081
6229
−1899
227


2706
A
O


ATOM
1481
CB
LEU A
232
41.078
26.464
30.816


1.00
49.13

A
C


ANISOU
1481
CB
LEU A
232
4026
9422
5219
−1743
186


2886
A
C


ATOM
1482
CG
LEU A
232
42.043
27.197
31.732


1.00
47.52

A
C


ANISOU
1482
CG
LEU A
232
3810
8827
5417
−1664
180


2887
A
C


ATOM
1483
CD1
LEU A
232
42.076
28.667
31.371


1.00
51.45

A
C


ANISOU
1483
CD1
LEU A
232
4299
9225
6023
−1582
228


3085
A
C


ATOM
1484
CD2
LEU A
232
41.611
27.012
33.172


1.00
44.54

A
C


ANISOU
1484
CD2
LEU A
232
3541
8151
5232
−1635
−13


2826
A
C


ATOM
1485
N
ILE A
233
39.205
23.754
30.513


1.00
48.36

A
N


ANISOU
1485
N
ILE A
233
4081
9738
4555
−1957
3


2525
A
N


ATOM
1486
CA
ILE A
233
38.008
23.176
29.913


1.00
49.07

A
C


ANISOU
1486
CA
ILE A
233
4238
10078
4328
−2013
−77


2431
A
C


ATOM
1487
C
ILE A
233
36.832
24.078
30.282


1.00
51.00

A
C


ANISOU
1487
C
ILE A
233
4519
10221
4638
−1994
−235


2650
A
C


ATOM
1488
O
ILE A
233
36.416
24.092
31.453


1.00
45.43

A
O


ANISOU
1488
O
ILE A
233
3896
9193
4172
−1998
−356


2637
A
O


ATOM
1489
CB
ILE A
233
37.753
21.740
30.396


1.00
48.14

A
C


ANISOU
1489
CB
ILE A
233
4265
9810
4216
−2023
−153


2024
A
C


ATOM
1490
CG1
ILE A
233
38.602
20.702
29.690


1.00
49.95

A
C


ANISOU
1490
CG1
ILE A
233
4485
10197
4298
−2006
−32


1723
A
C


ATOM
1491
CG2
ILE A
233
36.364
21.331
30.050


1.00
48.44

A
C


ANISOU
1491
CG2
ILE A
233
4363
10034
4007
−2096
−253


1945
A
C


ATOM
1492
CD1
ILE A
233
40.039
21.006
29.647


1.00
50.56

A
C


ANISOU
1492
CD1
ILE A
233
4464
10219
4526
−1940
100


1756
A
C


ATOM
1493
N
PRO A
234
36.271
24.863
29.341


1.00
50.40

A
N


ANISOU
1493
N
PRO A
234
4388
10352
4409
−1931
−256


2796
A
N


ATOM
1494
CA
PRO A
234
35.116
25.691
29.696


1.00
49.30

A
C


ANISOU
1494
CA
PRO A
234
4264
10082
4387
−1881
−412


2915
A
C


ATOM
1495
C
PRO A
234
33.828
24.891
29.617


1.00
51.11

A
C


ANISOU
1495
C
PRO A
234
4534
10477
4408
−1975
−514


2755
A
C


ATOM
1496
O
PRO A
234
33.408
24.463
28.530


1.00
51.09

A
O


ANISOU
1496
O
PRO A
234
4486
10838
4086
−1999
−477


2666
A
O


ATOM
1497
CB
PRO A
234
35.144
26.813
28.649


1.00
51.01

A
C


ANISOU
1497
CB
PRO A
234
4388
10460
4532
−1776
−347


3114
A
C


ATOM
1498
CG
PRO A
234
36.390
26.584
27.853


1.00
53.06

A
C


ANISOU
1498
CG
PRO A
234
4603
10894
4664
−1772
−165


3110
A
C


ATOM
1499
CD
PRO A
234
36.704
25.143
27.970


1.00
52.71

A
C


ANISOU
1499
CD
PRO A
234
4590
10969
4467
−1886
−126


2860
A
C


ATOM
1500
N
VAL A
235
33.207
24.699
30.783


1.00
50.00

A
N


ANISOU
1500
N
VAL A
235
4482
10053
4461
−2019
−639


2696
A
N


ATOM
1501
CA
VAL A
235
32.033
23.853
30.916


1.00
52.81

A
C


ANISOU
1501
CA
VAL A
235
4905
10495
4664
−2128
−721


2506
A
C


ATOM
1502
C
VAL A
235
30.898
24.636
31.573


1.00
52.27

A
C


ANISOU
1502
C
VAL A
235
4832
10207
4823
−2103
−835


2581
A
C


ATOM
1503
O
VAL A
235
31.109
25.398
32.533


1.00
62.35

A
O


ANISOU
1503
O
VAL A
235
6117
11143
6431
−2034
−897


2689
A
O


ATOM
1504
CB
VAL A
235
32.366
22.559
31.692


1.00
49.50

A
C


ANISOU
1504
CB
VAL A
235
4641
9944
4224
−2236
−720


2285
A
C


ATOM
1505
CG1
VAL A
235
32.413
22.794
33.193


1.00
41.14

A
C


ANISOU
1505
CG1
VAL A
235
3676
8401
3555
−2216
−807


2332
A
C


ATOM
1506
CG2
VAL A
235
31.382
21.471
31.327


1.00
62.52

A
C


ANISOU
1506
CG2
VAL A
235
6351
11764
5639
−2320
−765


1954
A
C


ATOM
1507
N
THR A
236
29.695
24.471
31.008


1.00
53.61

A
N


ANISOU
1507
N
THR A
236
4981
10579
4808
−2141
−845


2491
A
N


ATOM
1508
CA
THR A
236
28.501
25.154
31.505


1.00
65.00

A
C


ANISOU
1508
CA
THR A
236
6426
11851
6420
−2127
−901


2538
A
C


ATOM
1509
C
THR A
236
28.045
24.560
32.827


1.00
75.05

A
C


ANISOU
1509
C
THR A
236
7859
12779
7876
−2215
−955


2410
A
C


ATOM
1510
O
THR A
236
27.655
25.286
33.753


1.00
79.19

A
O


ANISOU
1510
O
THR A
236
8419
12979
8690
−2173
−992


2482
A
O


ATOM
1511
CB
THR A
236
27.379
25.032
30.477


1.00
60.90

A
C


ANISOU
1511
CB
THR A
236
5859
11662
5619
−2122
−881


2452
A
C


ATOM
1512
OG1
THR A
236
27.306
23.658
30.069


1.00
67.49

A
O


ANISOU
1512
OG1
THR A
236
6751
12709
6182
−2214
−864


2174
A
O


ATOM
1513
CG2
THR A
236
27.648
25.925
29.273


1.00
55.56

A
C


ANISOU
1513
CG2
THR A
236
5041
11260
4809
−1999
−830


2635
A
C


ATOM
1514
N
SER A
237
28.046
23.236
32.914


1.00
70.58

A
N


ANISOU
1514
N
SER A
237
7423
12258
7135
−2305
−955


2172
A
N


ATOM
1515
CA
SER A
237
27.749
22.543
34.157


1.00
68.98

A
C


ANISOU
1515
CA
SER A
237
7428
11694
7086
−2351
−1004


2024
A
C


ATOM
1516
C
SER A
237
28.769
21.429
34.394


1.00
60.64

A
C


ANISOU
1516
C
SER A
237
6451
10597
5992
−2394
−1025


1828
A
C


ATOM
1517
O
SER A
237
29.389
20.915
33.462


1.00
56.52

A
O


ANISOU
1517
O
SER A
237
5844
10400
5231
−2429
−989


1726
A
O


ATOM
1518
CB
SER A
237
26.331
21.968
34.133


1.00
65.84

A
C


ANISOU
1518
CB
SER A
237
7116
11322
6579
−2394
−1016


1791
A
C


ATOM
1519
OG
SER A
237
26.175
21.121
33.011


1.00
66.90

A
O


ANISOU
1519
OG
SER A
237
7179
11836
6404
−2452
−983


1552
A
O


ATOM
1520
N
LEU A
238
28.921
21.050
35.659


1.00
54.51

A
N


ANISOU
1520
N
LEU A
238
5837
9400
5475
−2375
−1070


1741
A
N


ATOM
1521
CA
LEU A
238
29.810
19.976
36.056


1.00
47.92

A
C


ANISOU
1521
CA
LEU A
238
5070
8408
4731
−2406
−1054


1495
A
C


ATOM
1522
C
LEU A
238
29.481
18.687
35.297


1.00
49.37

A
C


ANISOU
1522
C
LEU A
238
5305
8785
4667
−2489
−972


1118
A
C


ATOM
1523
O
LEU A
238
28.369
18.154
35.444


1.00
53.99

A
O


ANISOU
1523
O
LEU A
238
5959
9366
5188
−2596
−1012


924
A
O


ATOM
1524
CB
LEU A
238
29.710
19.762
37.563


1.00
44.25

A
C


ANISOU
1524
CB
LEU A
238
4802
7429
4583
−2342
−1092


1438
A
C


ATOM
1525
CG
LEU A
238
30.839
18.912
38.175


1.00
59.77

A
C


ANISOU
1525
CG
LEU A
238
6878
9110
6723
−2275
−1028


1251
A
C


ATOM
1526
CD1
LEU A
238
32.191
19.599
38.034


1.00
61.15

A
C


ANISOU
1526
CD1
LEU A
238
6929
9304
6999
−2152
−983


1444
A
C


ATOM
1527
CD2
LEU A
238
30.571
18.586
39.640


1.00
58.93

A
C


ANISOU
1527
CD2
LEU A
238
6966
8542
6884
−2240
−1085


1179
A
C


ATOM
1528
N
PRO A
239
30.414
18.148
34.510


1.00
48.71

A
N


ANISOU
1528
N
PRO A
239
5186
8866
4456
−2450
−851


987
A
N


ATOM
1529
CA
PRO A
239
30.156
16.871
33.835


1.00
41.94

A
C


ANISOU
1529
CA
PRO A
239
4380
8168
3387
−2528
−763


603
A
C


ATOM
1530
C
PRO A
239
29.867
15.740
34.807


1.00
41.46

A
C


ANISOU
1530
C
PRO A
239
4545
7709
3499
−2564
−735


295
A
C


ATOM
1531
O
PRO A
239
30.485
15.632
35.868


1.00
39.14

A
O


ANISOU
1531
O
PRO A
239
4386
7011
3474
−2471
−733


321
A
O


ATOM
1532
CB
PRO A
239
31.456
16.604
33.066


1.00
45.72

A
C


ANISOU
1532
CB
PRO A
239
4792
8802
3777
−2448
−639


557
A
C


ATOM
1533
CG
PRO A
239
32.483
17.486
33.730


1.00
46.05

A
C


ANISOU
1533
CG
PRO A
239
4808
8613
4075
−2323
−653


845
A
C


ATOM
1534
CD
PRO A
239
31.725
18.707
34.135


1.00
45.26

A
C


ANISOU
1534
CD
PRO A
239
4643
8499
4053
−2342
−780


1174
A
C


ATOM
1535
N
LYS A
240
28.918
14.885
34.415


1.00
44.16

A
N


ANISOU
1535
N
LYS A
240
4926
8178
3675
−2695
−703


−7
A
N


ATOM
1536
CA
LYS A
240
28.680
13.597
35.068


1.00
48.55

A
C


ANISOU
1536
CA
LYS A
240
5703
8401
4343
−2747
−617


−362
A
C


ATOM
1537
C
LYS A
240
29.616
12.581
34.428


1.00
46.22

A
C


ANISOU
1537
C
LYS A
240
5441
8167
3951
−2708
−466


−625
A
C


ATOM
1538
O
LYS A
240
29.315
12.018
33.374


1.00
56.94

A
O


ANISOU
1538
O
LYS A
240
6715
9863
5058
−2799
−399


−856
A
O


ATOM
1539
CB
LYS A
240
27.218
13.168
34.939


1.00
53.94

A
C


ANISOU
1539
CB
LYS A
240
6397
9188
4909
−2924
−633


−588
A
C


ATOM
1540
CG
LYS A
240
26.191
14.176
35.460


1.00
52.00

A
C


ANISOU
1540
CG
LYS A
240
6116
8871
4771
−2881
−738


−320
A
C


ATOM
1541
CD
LYS A
240
26.283
14.383
36.947


1.00
54.48

A
C


ANISOU
1541
CD
LYS A
240
6611
8681
5409
−2804
−781


−188
A
C


ATOM
1542
CE
LYS A
240
25.614
15.680
37.378


1.00
54.97

A
C


ANISOU
1542
CE
LYS A
240
6609
8707
5570
−2699
−885


154
A
C


ATOM
1543
NZ
LYS A
240
25.958
15.990
38.818


1.00
55.51

A
N1+


ANISOU
1543
NZ
LYS A
240
6832
8309
5950
−2571
−926


306
A
N1+


ATOM
1544
N
LEU A
241
30.769
12.365
35.054


1.00
42.94

A
N


ANISOU
1544
N
LEU A
241
5140
7445
3732
−2561
−418


−598
A
N


ATOM
1545
CA
LEU A
241
31.767
11.481
34.478


1.00
44.65

A
C


ANISOU
1545
CA
LEU A
241
5380
7714
3872
−2500
−283


−825
A
C


ATOM
1546
C
LEU A
241
31.309
10.031
34.511


1.00
52.03

A
C


ANISOU
1546
C
LEU A
241
6496
8496
4775
−2587
−155


−1247
A
C


ATOM
1547
O
LEU A
241
30.438
9.643
35.304


1.00
49.75

A
O


ANISOU
1547
O
LEU A
241
6372
7926
4604
−2662
−154


−1356
A
O


ATOM
1548
CB
LEU A
241
33.075
11.602
35.233


1.00
43.41

A
C


ANISOU
1548
CB
LEU A
241
5300
7252
3943
−2306
−272


−710
A
C


ATOM
1549
CG
LEU A
241
33.764
12.954
35.233


1.00
45.29

A
C


ANISOU
1549
CG
LEU A
241
5360
7598
4251
−2211
−360


−330
A
C


ATOM
1550
CD1
LEU A
241
35.139
12.734
35.839


1.00
41.88

A
C


ANISOU
1550
CD1
LEU A
241
4999
6897
4014
−2022
−316


−348
A
C


ATOM
1551
CD2
LEU A
241
33.847
13.528
33.814


1.00
50.48

A
C


ANISOU
1551
CD2
LEU A
241
5773
8776
4632
−2271
−343


−220
A
C


ATOM
1552
N
ASP A
242
31.924
9.224
33.638


1.00
49.18

A
N


ANISOU
1552
N
ASP A
242
6107
8317
4262
−2580
−31


−1492
A
N


ATOM
1553
CA
ASP A
242
31.718
7.780
33.640


1.00
61.67

A
C


ANISOU
1553
CA
ASP A
242
7869
9727
5835
−2644
123


−1909
A
C


ATOM
1554
C
ASP A
242
32.673
7.148
34.654


1.00
66.37

A
C


ANISOU
1554
C
ASP A
242
8709
9836
6674
−2467
195


−1966
A
C


ATOM
1555
O
ASP A
242
33.891
7.191
34.471


1.00
74.39

A
O


ANISOU
1555
O
ASP A
242
9683
10877
7705
−2314
217


−1913
A
O


ATOM
1556
CB
ASP A
242
31.924
7.194
32.241


1.00
68.49

A
C


ANISOU
1556
CB
ASP A
242
8585
11013
6423
−2712
223


−2160
A
C


ATOM
1557
CG
ASP A
242
31.648
5.684
32.177


1.00
82.35

A
C


ANISOU
1557
CG
ASP A
242
10516
12603
8172
−2798
400


−2619
A
C


ATOM
1558
OD1
ASP A
242
30.621
5.232
32.747


1.00
88.58

A
O


ANISOU
1558
OD1
ASP A
242
11444
13166
9046
−2919
433


−2777
A
O


ATOM
1559
OD2
ASP A
242
32.442
4.948
31.536


1.00
86.95

A
O1−


ANISOU
1559
OD2
ASP A
242
11091
13281
8667
−2752
517


−2831
A
O1−


ATOM
1560
N
GLN A
243
32.119
6.561
35.724


1.00
61.50

A
N


ANISOU
1560
N
GLN A
243
8347
8781
6240
−2478
238


−2078
A
N


ATOM
1561
CA
GLN A
243
32.899
5.956
36.797


1.00
58.37

A
C


ANISOU
1561
CA
GLN A
243
8213
7897
6066
−2287
302


−2122
A
C


ATOM
1562
C
GLN A
243
32.560
4.472
36.948


1.00
67.62

A
C


ANISOU
1562
C
GLN A
243
9641
8795
7256
−2343
499


−2514
A
C


ATOM
1563
O
GLN A
243
31.439
4.051
36.630


1.00
66.00

A
O


ANISOU
1563
O
GLN A
243
9430
8664
6982
−2531
562


−2688
A
O


ATOM
1564
CB
GLN A
243
32.650
6.668
38.136


1.00
49.50

A
C


ANISOU
1564
CB
GLN A
243
7203
6431
5174
−2204
182


−1852
A
C


ATOM
1565
CG
GLN A
243
32.934
8.176
38.167


1.00
42.32

A
C


ANISOU
1565
CG
GLN A
243
6062
5720
4296
−2149
−4


−1456
A
C


ATOM
1566
CD
GLN A
243
34.427
8.513
38.178


1.00
49.20

A
C


ANISOU
1566
CD
GLN A
243
6859
6603
5233
−1932
−26


−1328
A
C


ATOM
1567
OE1
GLN A
243
35.295
7.628
38.170


1.00
51.33

A
O


ANISOU
1567
OE1
GLN A
243
7245
6742
5515
−1803
83


−1530
A
O


ATOM
1568
NE2
GLN A
243
34.728
9.807
38.190


1.00
43.34

A
N


ANISOU
1568
NE2
GLN A
243
5915
6017
4534
−1892
−159


−1000
A
N


ATOM
1569
N
PRO A
244
33.512
3.650
37.422


1.00
70.28

A
N


ANISOU
1569
N
PRO A
244
10189
8812
7701
−2152
606


−2641
A
N


ATOM
1570
CA
PRO A
244
33.291
2.206
37.623


1.00
75.79

A
C


ANISOU
1570
CA
PRO A
244
11103
9214
8480
−2098
794


−2887
A
C


ATOM
1571
C
PRO A
244
32.114
1.882
38.541


1.00
74.33

A
C


ANISOU
1571
C
PRO A
244
11039
8727
8477
−2086
807


−2776
A
C


ATOM
1572
O
PRO A
244
32.092
2.435
39.640


1.00
74.30

A
O


ANISOU
1572
O
PRO A
244
11138
8467
8624
−1979
712


−2559
A
O


ATOM
1573
CB
PRO A
244
34.603
1.738
38.252


1.00
73.27

A
C


ANISOU
1573
CB
PRO A
244
10976
8587
8277
−1819
838


−2904
A
C


ATOM
1574
CG
PRO A
244
35.623
2.703
37.720


1.00
68.87

A
C


ANISOU
1574
CG
PRO A
244
10197
8350
7622
−1766
721


−2771
A
C


ATOM
1575
CD
PRO A
244
34.922
4.025
37.652


1.00
63.85

A
C


ANISOU
1575
CD
PRO A
244
9337
7961
6960
−1897
544


−2470
A
C


HETATM
1576
C1
NAG A
1076
47.849
6.531
51.063


1.00
44.10

A
C


HETATM
1577
C2
NAG A
1076
47.870
5.043
50.676


1.00
57.73

A
C


HETATM
1578
C3
NAG A
1076
48.738
4.258
51.649


1.00
62.74

A
C


HETATM
1579
C4
NAG A
1076
50.134
4.860
51.736


1.00
73.55

A
C


HETATM
1580
C5
NAG A
1076
50.074
6.367
52.006


1.00
66.00

A
C


HETATM
1581
C6
NAG A
1076
51.433
7.025
51.850


1.00
77.39

A
C


HETATM
1582
C7
NAG A
1076
45.835
4.269
49.503


1.00
69.45

A
C


HETATM
1583
CE
NAG A
1076
44.486
3.638
49.680


1.00
73.06

A
C


HETATM
1584
N2
NAG A
1076
46.531
4.472
50.630


1.00
67.87

A
N


HETATM
1585
O3
NAG A
1076
48.812
2.907
51.207


1.00
61.48

A
O


HETATM
1586
O4
NAG A
1076
50.834
4.262
52.824


1.00
86.01

A
O


HETATM
1587
O5
NAG A
1076
49.177
7.032
51.099


1.00
44.53

A
O


HETATM
1588
O6
NAG A
1076
51.359
8.424
51.609


1.00
83.18

A
O


HETATM
1589
O7
NAG A
1076
46.264
4.592
48.392


1.00
59.22

A
O


HETATM
1590
C1
NAG A
2076
51.704
3.148
52.511


1.00
89.75

A
C


HETATM
1591
C2
NAG A
2076
52.777
3.076
53.594


1.00
84.61

A
C


HETATM
1592
C3
NAG A
2076
53.721
1.911
53.318


1.00
85.99

A
C


HETATM
1593
C4
NAG A
2076
52.918
0.618
53.266


1.00
85.51

A
C


HETATM
1594
C5
NAG A
2076
51.825
0.728
52.199


1.00
92.45

A
C


HETATM
1595
C6
NAG A
2076
50.898
−0.470
52.172


1.00
89.30

A
C


HETATM
1596
C7
NAG A
2076
53.343
5.169
54.748


1.00
82.17

A
C


HETATM
1597
C8
NAG A
2076
54.144
6.438
54.698


1.00
79.48

A
C


HETATM
1598
N2
NAG A
2076
53.500
4.334
53.709


1.00
82.34

A
N


HETATM
1599
O3
NAG A
2076
54.714
1.836
54.336


1.00
95.43

A
O


HETATM
1600
O4
NAG A
2076
53.761
−0.499
53.000


1.00
83.01

A
O


HETATM
1601
O5
NAG A
2076
50.999
1.883
52.440


1.00
95.99

A
O


HETATM
1602
O6
NAG A
2076
49.529
−0.093
52.076


1.00
83.95

A
O


HETATM
1603
O7
NAG A
2076
52.591
4.908
55.693


1.00
78.70

A
O


HETATM
1604
C1
NAG A
1123
47.703
31.112
51.348


1.00
63.05

A
C


HETATM
1605
C2
NAG A
1123
48.304
32.500
51.518


1.00
72.32

A
C


HETATM
1606
C3
NAG A
1123
48.864
32.659
52.930


1.00
76.90

A
C


HETATM
1607
C4
NAG A
1123
47.778
32.420
53.977


1.00
85.17

A
C


HETATM
1608
C5
NAG A
1123
47.071
31.072
53.759


1.00
75.98

A
C


HETATM
1609
C6
NAG A
1123
45.790
30.947
54.564


1.00
66.09

A
C


HETATM
1610
C7
NAG A
1123
49.136
33.360
49.363


1.00
71.99

A
C


HETATM
1611
C8
NAG A
1123
50.348
33.540
48.494


1.00
68.30

A
C


HETATM
1612
N2
NAG A
1123
49.344
32.750
50.534


1.00
74.04

A
N


HETATM
1613
O3
NAG A
1123
49.408
33.969
53.060


1.00
73.86

A
O


HETATM
1614
O4
NAG A
1123
48.360
32.443
55.283


1.00
97.38

A
O


HETATM
1615
O5
NAG A
1123
46.695
30.884
52.381


1.00
77.46

A
O


HETATM
1616
O6
NAG A
1123
45.575
29.627
55.047


1.00
67.23

A
O


HETATM
1617
O7
NAG A
1123
48.021
33.741
49.014


1.00
73.84

A
O


HETATM
1618
C1
NAG A
2123
47.809
33.471
56.171


1.00
101.53

A
C


HETATM
1619
C2
NAG A
2123
48.615
33.558
57.507


1.00
98.63

A
C


HETATM
1620
C3
NAG A
2123
48.119
34.727
58.370


1.00
103.69

A
C


HETATM
1621
C4
NAG A
2123
48.083
36.025
57.574


1.00
109.93

A
C


HETATM
1622
C5
NAG A
2123
47.220
35.822
56.331


1.00
112.93

A
C


HETATM
1623
C6
NAG A
2123
47.087
37.055
55.460


1.00
112.42

A
C


HETATM
1624
C7
NAG A
2123
49.181
31.201
57.925


1.00
93.84

A
C


HETATM
1625
C8
NAG A
2123
48.955
30.016
58.818


1.00
90.46

A
C


HETATM
1626
N2
NAG A
2123
48.513
32.311
58.250


1.00
93.20

A
N


HETATM
1627
O3
NAG A
2123
48.935
34.886
59.527


1.00
100.98

A
O


HETATM
1628
O4
NAG A
2123
47.558
37.076
58.380


1.00
108.32

A
O


HETATM
1629
O5
NAG A
2123
47.794
34.783
55.522


1.00
111.35

A
O


HETATM
1630
O6
NAG A
2123
48.292
37.378
54.780


1.00
114.76

A
O


HETATM
1631
O7
NAG A
2123
49.932
31.153
56.951


1.00
98.48

A
O


HETATM
1632
C1
NAG A
1144
54.671
15.656
35.163


1.00
37.73

A
C


HETATM
1633
C2
NAG A
1144
54.274
14.196
35.065


1.00
37.73

A
C


HETATM
1634
C3
NAG A
1144
55.503
13.302
34.960


1.00
50.44

A
C


HETATM
1635
C4
NAG A
1144
56.531
13.777
33.938


1.00
51.62

A
C


HETATM
1636
C5
NAG A
1144
56.778
15.283
34.077


1.00
47.74

A
C


HETATM
1637
C6
NAG A
1144
57.543
15.877
32.914


1.00
55.32

A
C


HETATM
1638
C7
NAG A
1144
52.472
12.987
36.222


1.00
51.27

A
C


HETATM
1639
C8
NAG A
1144
51.855
12.689
37.554


1.00
50.70

A
C


HETATM
1640
N2
NAG A
1144
53.515
13.814
36.241


1.00
42.75

A
N


HETATM
1641
O3
NAG A
1144
55.056
11.989
34.646


1.00
60.19

A
O


HETATM
1642
O4
NAG A
1144
57.685
12.994
34.250


1.00
60.95

A
O


HETATM
1643
O5
NAG A
1144
55.528
15.984
34.100


1.00
47.14

A
O


HETATM
1644
O6
NAG A
1144
56.804
16.883
32.230


1.00
61.36

A
O


HETATM
1645
O7
NAG A
1144
52.016
12.538
35.177


1.00
59.72

A
O


HETATM
1646
C1
NAG A
2144
58.955
12.890
33.530


1.00
83.73

A
C


HETATM
1647
C2
NAG A
2144
59.539
11.488
33.820


1.00
94.96

A
C


HETATM
1648
C3
NAG A
2144
60.887
11.315
33.114


1.00
103.58

A
C


HETATM
1649
C4
NAG A
2144
60.782
11.691
31.639


1.00
103.06

A
C


HETATM
1650
C5
NAG A
2144
60.091
13.044
31.444


1.00
93.13

A
C


HETATM
1651
C6
NAG A
2144
59.775
13.317
29.996


1.00
88.48

A
C


HETATM
1652
C7
NAG A
2144
58.862
10.457
35.937


1.00
89.36

A
C


HETATM
1653
C8
NAG A
2144
59.149
10.326
37.405


1.00
83.94

A
C


HETATM
1654
N2
NAG A
2144
59.684
11.256
35.247


1.00
91.04

A
N


HETATM
1655
O3
NAG A
2144
61.315
9.960
33.242


1.00
102.99

A
O


HETATM
1656
O4
NAG A
2144
62.078
11.733
31.048


1.00
106.07

A
O


HETATM
1657
O5
NAG A
2144
58.829
13.066
32.129


1.00
93.17

A
O


HETATM
1658
O6
NAG A
2144
59.024
12.239
29.453


1.00
86.36

A
O


HETATM
1659
O7
NAG A
2144
57.921
9.870
35.399


1.00
93.33

A
O


HETATM
1660
C1
NAG A
1228
54.131
12.661
30.331


1.00
73.34

A
C


HETATM
1661
C2
NAG A
1228
55.401
12.376
29.460


1.00
83.15

A
C


HETATM
1662
C3
NAG A
1228
55.578
10.871
29.213


1.00
92.37

A
C


HETATM
1663
C4
NAG A
1228
55.493
10.061
30.498


1.00
93.75

A
C


HETATM
1664
C5
NAG A
1228
54.194
10.379
31.232


1.00
90.93

A
C


HETATM
1665
C6
NAG A
1228
54.052
9.631
32.538


1.00
89.70

A
C


HETATM
1666
C7
NAG A
1228
55.953
14.259
27.962


1.00
62.50

A
C


HETATM
1667
C8
NAG A
1228
55.801
14.820
26.580


1.00
61.44

A
C


HETATM
1668
N2
NAG A
1228
55.354
13.082
28.186


1.00
77.40

A
N


HETATM
1669
O3
NAG A
1228
56.846
10.634
28.609


1.00
97.10

A
O


HETATM
1670
O4
NAG A
1228
55.536
8.679
30.152


1.00
98.74

A
O


HETATM
1671
O5
NAG A
1228
54.141
11.786
31.533


1.00
87.29

A
O


HETATM
1672
O6
NAG A
1228
55.154
9.888
33.397


1.00
97.52

A
O


HETATM
1673
O7
NAG A
1228
56.570
14.855
28.842


1.00
51.25

A
O


HETATM
1674
C1
NAG A
2228
56.712
7.979
30.648


1.00
105.75

A
C


HETATM
1675
C2
NAG A
2228
56.432
6.506
30.363


1.00
109.04

A
C


HETATM
1676
C3
NAG A
2228
57.551
5.638
30.941


1.00
114.26

A
C


HETATM
1677
C4
NAG A
2228
58.904
6.090
30.393


1.00
114.48

A
C


HETATM
1678
C5
NAG A
2228
59.110
7.592
30.626


1.00
116.17

A
C


HETATM
1679
C6
NAG A
2228
60.393
8.132
30.026


1.00
116.84

A
C


HETATM
1680
C7
NAG A
2228
54.072
5.897
30.099


1.00
103.32

A
C


HETATM
1681
C8
NAG A
2228
54.306
6.058
28.626


1.00
104.80

A
C


HETATM
1682
N2
NAG A
2228
55.133
6.111
30.886


1.00
105.10

A
N


HETATM
1683
O3
NAG A
2228
57.316
4.272
30.614


1.00
114.03

A
O


HETATM
1684
O4
NAG A
2228
59.957
5.358
31.014


1.00
109.16

A
O


HETATM
1685
O5
NAG A
2228
58.018
8.350
30.070


1.00
113.09

A
O


HETATM
1686
O6
NAG A
2228
60.410
8.042
28.608


1.00
118.16

A
O


HETATM
1687
O7
NAG A
2228
52.975
5.578
30.552


1.00
99.40

A
O


TER
1688

NAG A
2228












HETATM
1688
O
HOH S
1
31.421
19.873
44.880


1.00
42.21

S
O


HETATM
1689
O
HOH S
3
41.885
20.609
55.460


1.00
40.39

S
O


HETATM
1690
O
HOH S
4
60.490
20.808
51.222


1.00
39.49

S
O


HETATM
1691

HOH S
5
29.548
12.649
29.611


1.00
24.15

S
O


TER
1693

HOH S
5












END








Claims
  • 1. A method for selection of a target plant lysin motif (LysM) receptor and modifying the target plant LysM receptor to have a desired receptor characteristic, comprising: (a) providing a structural model, a molecular model, a surface characteristics model, an electrostatic potential model, or combinations thereof of a donor plant LysM receptor having the desired receptor characteristic and two or more potential target plant LysM receptors, wherein the desired receptor characteristic is affinity, selectivity, specificity, or combinations thereof for an oligosaccharide or class of oligosaccharides;(b) comparing each of the two or more potential target plant LysM receptors with the structural model, the molecular model, the surface characteristics model, the electrostatic potential model of the donor plant LysM receptor, or combinations thereof; or comparing each of the two or more potential target plant LysM receptors with the donor plant LysM receptor using structural overlay;(c) selecting the potential target plant LysM receptor for modification;(d) identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a first oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor; and(e) generating a modified plant LysM receptor wherein the one or more amino acid residues in the first oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor plant LysM receptor; wherein (i) the one or more amino acid residues in the first oligosaccharide binding feature include amino acids corresponding to SEQ ID NO: 63 and SEQ ID NO: 64 of Lotus japonicus NFR5, (ii) the one or more amino acid residues in the first oligosaccharide binding feature include amino acids corresponding to L147, L151, L152, L154, T156, K157, and V158 of Medicago NFP (SEQ ID NO: 1), (iii) the one or more amino acid residues in the first oligosaccharide binding feature include amino acids corresponding to SEQ ID NO: 28 and SEQ ID NO: 29 of Lotus NFR1 and/or SEQ ID NO: 30 and SEQ ID NO: 31 of Lotus CERK6, or (iv) the one or more amino acid residues in the first oligosaccharide binding feature include combinations of (i)-(iii).
  • 2. The method of claim 1, wherein the criteria for selecting the potential target plant LysM receptor for modification in step (c) are selected from the group consisting of goodness of fit to template structure; similarity; surface potential; coverage to template structure; Global Model Quality Estimation (GMQE), Qualitative Model Energy ANalysis (QMEAN), and Local Quality estimates from SWISS-Model; and any combination thereof.
  • 3. The method of claim 1, wherein the structural model of the donor plant LysM receptor is a protein crystal structure, a molecular model, a cryo-EM structure, or a NMR structure.
  • 4. The method of claim 1, wherein the donor plant LysM receptor model is of a LysM1 domain, a LysM2 domain, a LysM3 domain, or any combination thereof; and the two or more potential target plant LysM receptor models are of corresponding LysM1 domains, LysM2 domains, LysM3 domains, or any combination thereof.
  • 5. The method of claim 1, wherein the donor plant LysM receptor is Medicago NFP (SEQ ID NO: 1), Medicago LYK3 (SEQ ID NO: 71), Lotus NFR1 (SEQ ID NO: 99), Lotus NFR5 (SEQ ID NO: 2), Lotus LYS11 (SEQ ID NO: 11), or Arabidopsis CERK1 (SEQ ID NO: 75).
  • 6. The method of claim 5, wherein the two or more target plant LysM receptors are additionally compared to Lotus CERK6.
  • 7. The method of claim 1, wherein the two or more potential target plant LysM receptor polypeptides are all from the same plant species or plant variety.
  • 8. The method of claim 1, wherein the desired receptor characteristic is binding kinetics for an oligosaccharide or class of oligosaccharides, wherein the binding kinetics comprise off-rate and on-rate.
  • 9. The method of claim 1, wherein the class of oligosaccharides is selected from the group consisting of lipo-chitooligosaccharides (LCOs), chitooligosaccharides (COs), beta-glucans, cyclic-beta-glucans, exopolysaccharides, and lipopolysaccharides (LPS).
  • 10. The method of claim 9, wherein the class of oligosaccharides is LCOs or COs.
  • 11. The method of claim 10, wherein the class of oligosaccharides is LCOs, and wherein the LCOs are produced by a nitrogen-fixing bacteria selected from the group consisting of Mesorhizobium loti, Mesorhizobium huakuii, Mesorhizobium mediterraneum, Mesorhizobium ciceri, Mesorhizobium spp., Rhizobium mongolense, Rhizobium tropici, Rhizobium etli phaseoli, Rhizobium giardinii, Rhizobium leguminosarum, Burkholderiales, Sinorhizobium meliloti, Sinorhizobium medicae, Sinorhizobium fredii, Sinorhizobium NGR234, Azorhizobium caulinodans, Bradyrhizobium japonicum, Bradyrhizobium elkanii, Bradyrhizobium liaonginense, Frankia spp., and any combination thereof; or produced by a mycorrhizal fungi selected from the group consisting of Acaulosporaceae spp., Diversisporaceae spp., Gigasporaceae spp., Pacisporaceae spp., Funneliformis spp., Glomus spp., Rhizophagus spp., Sclerocystis spp., Septoglomus spp., Claroideoglomus spp., Ambispora spp., Archaeospora spp., Geosiphon pyriformis, Paraglomus spp., other species in the division Glomeromycota, and any combination thereof.
  • 12. The method of claim 11, wherein at least one of the LCOs is M. loti LCO, S. meliloti LCO-IV, or S. meliloti LCO-V.
  • 13. The method of claim 1, wherein the first oligosaccharide binding feature is a hydrophobic patch on the surface of the LysM2 domain.
  • 14. The method of claim 1, wherein step (d) further comprises identifying one or more amino acid residues for modification in the target LysM receptor by comparing amino acid residues of a second oligosaccharide binding feature in the donor plant LysM receptor with the corresponding amino acid residues in the target plant LysM receptor; wherein step (e) further comprises the one or more amino acid residues in the second oligosaccharide binding feature of the target plant LysM receptor have been substituted with corresponding amino acid residues from the donor plant LysM receptor; andwherein the second oligosaccharide binding feature is a part of the LysM1 domain of the donor plant LysM receptor.
  • 15. The method of claim 1, wherein the one or more amino acid residues in the first oligosaccharide binding feature include amino acids corresponding to SEQ ID NO: 63 and SEQ ID NO: 64 of Lotus japonicus NFR5.
  • 16. The method of claim 1, wherein the one or more amino acid residues in the first oligosaccharide binding feature include amino acids corresponding to L147, L151, L152, L154, T156, K157, and V158 of Medicago NFP (SEQ ID NO: 1).
  • 17. The method of claim 1, wherein the one or more amino acid residues in the first oligosaccharide binding feature include amino acids corresponding to SEQ ID NO: 28 and SEQ ID NO: 29 of Lotus japonicus NFR1 or SEQ ID NO: 30 and SEQ ID NO: 31 of Lotus japonicus CERK6.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national stage application under 35 U.S.C. § 371 of International Application No. PCT/EP2019/071705, filed Aug. 13, 2019, which claims the benefit of U.S. Provisional Application No. 62/718,282, filed Aug. 13, 2018, which are hereby incorporated by reference in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/071705 8/13/2019 WO
Publishing Document Publishing Date Country Kind
WO2020/035488 2/20/2020 WO A
US Referenced Citations (26)
Number Name Date Kind
4407956 Howell Oct 1983 A
4536475 Anderson Aug 1985 A
4683195 Mullis et al. Jul 1987 A
4683202 Mullis Jul 1987 A
4684611 Schilperoort et al. Aug 1987 A
4800159 Mullis et al. Jan 1989 A
5633363 Colbert et al. May 1997 A
5679558 Gobel et al. Oct 1997 A
6140553 D'Halluin Oct 2000 A
7915485 Jensen Mar 2011 B2
8361462 Pandey et al. Jan 2013 B2
10167482 Coffin Jan 2019 B2
20060150283 Alexandrov et al. Jul 2006 A1
20120159672 Alexandrov et al. Jun 2012 A1
20130097725 Indrasumunar et al. Apr 2013 A1
20140090106 Wan et al. Mar 2014 A1
20150232876 Bono Aug 2015 A1
20150368342 Wu et al. Dec 2015 A1
20180237793 Aasen et al. Aug 2018 A1
20200096507 Bonnet et al. Mar 2020 A1
20210163574 Schneider et al. Jun 2021 A1
20210163976 Andersen et al. Jun 2021 A1
20210363217 Pule et al. Nov 2021 A1
20210366320 Radutoiu et al. Nov 2021 A1
20220135630 Zhou et al. May 2022 A1
20230078124 Coruzzi et al. Mar 2023 A1
Foreign Referenced Citations (32)
Number Date Country
105982 Nov 2017 AR
109136243 Jan 2019 CN
109734785 May 2019 CN
112739820 Apr 2021 CN
108728425 Dec 2021 CN
67553 Dec 1982 EP
116718 Aug 1984 EP
223247 Nov 1986 EP
242246 Oct 1987 EP
270356 Jun 1988 EP
270822 Jun 1988 EP
452269 Oct 1991 EP
3837357 Jun 2021 EP
144268 Apr 1978 IN
5229783 Jul 2013 JP
20200085159 Jul 2020 KR
WO-1984002913 Aug 1984 WO
WO-1985001856 May 1985 WO
WO-1992009696 Jun 1992 WO
WO-1996006932 Mar 1996 WO
WO-1997048819 Dec 1997 WO
WO-2000042207 Jul 2000 WO
WO-2000071733 Nov 2000 WO
WO-2002046439 Jun 2002 WO
WO-2005003338 Jan 2005 WO
WO-2007076115 Jul 2007 WO
WO-2009016104 Feb 2009 WO
WO-2014033672 Mar 2014 WO
WO-2017103582 Jun 2017 WO
WO-2020035488 Feb 2020 WO
WO-2020104524 May 2020 WO
WO-2022026618 Feb 2022 WO
Non-Patent Literature Citations (135)
Entry
Simona et al, LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. The EMBO Journal (2007) 26,3923-3935.
Radutoiu et al, LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. The EMBO Journal (2007) 26, 3923-3935.
Wang et al, Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus. The Plant Journal (2014) 78, 56-69.
Zhukov et al, The Pea Sym37 Receptor Kinase Gene Controls Infection-Thread Initiation and Nodule Development . MPMI (Molecular Plant-Microbe Interactions) vol. 21, No. 12, 2008, pp. 1600-1608.
Smit et al, Medicago LYK3, an Entry Receptor in Rhizobial Nodulation Factor Signaling. Plant Physiology, Sep. 2007, vol. 145, pp. 183-191.
Knox et al., The Challenges of Analysing Highly Diverse Picobirnavirus Sequence Data. Viruses, 2018, vol. 10, 685, pp. 1-13. (Year: 2018).
Malkov et al., Molecular basis of lipo-chitooligosaccharide recognition by the lysin motif receptor-like kinase LYR3 in legumes. Biochem. J., 2016, vol. 473: 1369-1378. (Year: 2016).
Rouge et al., Chapter 27 Docking of Chitin Oligomers and Nod Factors on Lectin Domains of the LysM-RLK Receptors in the Medicago-Rhizobium Symbiosis. The Mol. Immunol. Complex Carbohydrates-3, 2011: 511-521. (Year: 2011).
Waterhouse et al., SWISS-MODEL: homology modelling of protein structures and complexes. Nuc. Acids Res., 2018, vol. 46: W296-W303. (Year: 2018).
Hohmann et al., The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. Annu. Rev. Plant Biol., 2017, vol. 68: 109-137. (Year: 2017).
Igolkina et al., Structural Insight Into the Role of Mutual Polymorphism and Conservatism in the Contact Zone of the NFR5-K1 Heterodimer With the Nod Factor. Frontiers in Plant Sci., 2018, vol. 9, Article 344, pp. 1-14. (Year: 2018).
Malkov et al., Molecular basis of lipo-chitooligosaccharide recognition by the lysin motif receptor-like kinase LYR3 in legumes. Biochem. J., 2016, vol. 473: 1369-1378, and supplementary data. (Year: 2016).
Adams et al., (2010). “PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta crystallographica,” Section D, Biological crystallography, 66(2):213-221.
Altschul et al., (1997). “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic acids research, 25(17):3389-3402.
Altschul et al., (1990). “Basic local alignment search tool,” Journal of molecular biology, 215(3):403-410.
An et al., (1996). “Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues,” The Plant Journal, 10(1):107-121.
Ardourel et al., (1994). “Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses,” The Plant Cell, 6(10):1357-1374.
Arrighi et al., (2006). “The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes,” Plant Physiology, 142:265-279, 19 pages.
Bensmihen et al., (2011). “Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Midicago trunculata/Sinorhizobium meliloti Symbiosis,” PLOS One, 6:e26114, 11 pages.
Biasini et al., (2014). “SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information,” Nucleic acids research, 42(W1):W252-W258.
Bozsoki et al., (2017). “Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception,” Proceedings of the National Academy of Sciences, 114(38):E8118-E8127.
Bucher et al., (2002). “The expression of an extensin-like protein correlates with cellular tip growth in tomato,” Plant Physiology, 128(3):911-923.
Christensen et al., (1992). “Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation,” Plant molecular biology, 18(4):675-689.
Christensen et al., (1996). “Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants,” Transgenic research, 5(3):213-218.
Christou et al., (1990). “Soybean genetic engineering-commercial production of transgenic plants,” Trends in Biotechnology, 8:145-151.
Datta et al., (1990). “Genetically engineered fertile indica-rice recovered from protoplasts,” Bio/technology, 8(8):736-740.
De Framond, (1991). “A metallothionein-like gene from maize (Zea mays) Cloning and characterization,” FEBS letters, 290(1-2):103-106.
De Lorenzo et al., (2011). “Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs),” FEBS Letters, 585:1521-1528.
De Pater et al., (1992). “The promoter of the rice gene GOS2 is active in various different monocot tissues and binds rice nuclear factor ASF-1,” The Plant Journal, 2(6):837-844.
DeLano, (2002). “Pymol: An open-source molecular graphics tool,” CCP4 Newsletter on protein crystallography, 10 pages.
Depicker et al., (1982). “Nopaline synthase: transcript mapping and DNA sequence,” Journal of molecular and applied genetics, 1(6):561-573.
Emsley et al., (2010). “Features and development of Coot,” Acta Crystallographica Section D: Biological Crystallography, 66(4):486-501.
Engler et al., (2008). “A one pot, one step, precision cloning method with high throughput capability,” PloS one, 3(11):e3647, 7 pages.
Franck et al., (1980). “Nucleotide sequence of cauliflower mosaic virus DNA,” Cell, 21(1):285-294.
Franke et al., (2009). “DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering,” Journal of applied crystallography, 42(2):342-346.
Fromm et al., (1990). “Inheritance and expression of chimeric genes in the progeny of transgenic maize plants,” Bio/technology, 8(9):833-839.
Gardner et al., (1981). “The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing,” Nucleic acids research, 9(12):2871-2888.
GenBank Accession No. X04049, “Maize alcohol dehydrogenase 1 gene (Adh1-1S),” Nov. 14, 2006, 4 pages.
GenBank Accession No. XM 004511944, “PREDICTED: Cicer arietinum protein LYK5-like (LOC101515074), transcript variant X2, mRNA,” Jun. 8, 2015, 2 pages.
GenBank Accession No. XM 012719006, “PREDICTED: Cicer arietinum protein LYK5-like (LOC101515074), transcript variant X1, mRNA,” Jun. 8, 2015, 2 pages.
Gielen et al., (1984). “The complete nucleotide sequence of the TL-DNA of the Agrobacterium tumefaciens plasmid pTiAch5,” The EMBO Journal, 3(4):835-846.
Gomez et al., (2009). “Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis,” BMC Plant Biology, 9(10):1-19.
Gordon-Kamm et al., (1990). “Transformation of Maize Cells and Regeneration of Fertile Transgenic Plants,” The Plant cell, 2(7):603-618.
Gough et al., (2018). “Evolutionary History of Plant LysM Receptor Proteins Related to Root Endosymbiosis,” Frontiers In Plant Science, 9:923, 9 pages.
Gust et al., (2012). “Plant LysM proteins: modules mediating symbiosis and immunity,” Trends in Plant Science, 17:495-502.
Hansen et al., (1989). “Hairy roots—a short cut to transgenic root nodules,” Plant Cell Reports, 8(1):12-15.
Heidstra et al., (2004). “Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division,” Genes & Development, 18(16):1964-1969.
Hinchee et al., (1988). “Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer,” Bio/technology, 6.8:915-922.
Hirel et al., (1992). “Forcing expression of a soybean root glutamine synthetase gene in tobacco leaves induces a native gene encoding cytosolic enzyme,” Plant molecular biology, 20(2):207-218.
Hopkins et al., (2017). “BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis,” Journal of applied crystallography, 50(5):1545-1553.
Hull et al., (1978). “Structure of the cauliflower mosaic virus genome. II. Variation in DNA structure and sequence between isolates,” Virology, 86(2):482-493.
Indrasumunar et al., (2010). “Inactivation of duplicated nod factor receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.),” Plant and cell physiology, 51(2):201-214.
Irvine, (2016). “A Receptor for All Occasions,” Cell, 164:599-600.
Kabsch, (2010). “Integration, scaling, space-group assignment and post-refinement,” Acta Crystallographica Section D: Biological Crystallography, 66(2):133-144.
Karlin et al., (1990). “Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes,” Proceedings of the National Academy of Sciences, 87(6):2264-2268.
Karlin et al., (1993). “Applications and statistics for multiple high-scoring segments in molecular sequences,” Proceedings of the National Academy of Sciences, 90(12):5873-5877.
Kay et al., (1987). “Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes,” Science, 236(4806):1299-1302.
Kelly et al., (2013). “Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis,” Molecular plant-microbe interactions, 26(3):319-329.
Konarev et al., (2003). “PRIMUS: a Windows PC-based system for small-angle scattering data analysis,” Journal of applied crystallography, 36(5):1277-1282.
Last et al., (1991). “pEmu: an improved promoter for gene expression in cereal cells.” TAG. Theoretical and applied genetics, 81(5):581-588.
Lerouge et al., (1990). “Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal,” Nature, 344(6268):781-784.
Li et al., (2016). “Plant pattern-recognition receptors controlling innate immunity,” Science China Life Sciences, 59:878-888.
Liu et al., (2012). “Chitin-induced dimerization activates a plant immune receptor,” Science, 336(6085):1160-1164.
Madsen et al., (2003). “A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals,” Nature, 425:637-640.
Maekawa et al., (2008). “Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus,” Molecular Plant-Microbe Interactions, 21(4):375-382.
McCoy et al., (2007). “Phaser crystallographic software,” Journal of applied crystallography, 40(4):658-674.
Mulder et al., (2006). “LysM domains of Medicago truncatula NFP protein involved in Nod factor perception. Glycosylation state, molecular modeling and docking of chitooligosaccharides and Nod factors,” Glycobiology, 16(9):801-809.
Murakami et al., (2018). “Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus,” Elife, 7:e33506, 21 pages.
Nakagawa et al., (2011). From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis, The Plant Journal, 65(2):169-180.
Norris et al., (1993). “The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression,” Plant molecular biology, 21(5):895-906.
Oldroyd et al., (2001). “Evidence for structurally specific negative feedback in the Nod factor signal transduction pathway,” The Plant Journal, 28(2):191-199.
Oldroyd et al., (2011). “The rules of engagement in the legume-rhizobial symbiosis,” Annual review of genetics, 45:119-144.
Radutoiu et al., (2003). “Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases,” Nature, 425(6958):585-592.
Radutoiu et al., (2007). “LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range,” The EMBO Journal, 26:3923-3935.
Rasmussen et al., (2016). “Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor,” Scientific reports, 6:29733, 12 pages.
Rodpothong et al., (2009). “Nodulation Gene Mutants of Mesorhizobium loti R7A-nodZ and nolL Mutants Have Host-Specific Phenotypes on Lotus spp.,” Molecular plant-microbe interactions, 22(12):1546-1554.
Saiki et al., (1985). “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia,” Science, 230(4732):1350-1354.
Samac et al., (1990). “Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana,” Plant physiology, 93(3):907-914.
Schindelin et al., (2012). “Fiji: an open-source platform for biological-image analysis,” Nature methods, 9(7):676-682.
Schünmann et al., (2003). “A suite of novel promoters and terminators for plant biotechnology. II. The pPLEX series for use in monocots,” Functional plant biology, 30(4):453-460.
Shimamoto et al., (1989). “Fertile transgenic rice plants regenerated from transformed protoplasts,” Nature, 338(6212):274-276.
Smit et al., (2007). “Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling,” Plant physiology, 145(1):183-191.
Stougaard, (1995). “Agrobacterium rhizogenes as a vector for transforming higher plants, application in Lotus corniculatus transformation,” Plant gene transfer and expression protocols, 49-61.
Svergun, (1992). “Determination of the regularization parameter in indirect-transform methods using perceptual criteria,” Journal of applied crystallography, 25(4):495-503.
Svergun et al., (1995). “CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates,” Journal of applied crystallography, 28(6):768-773.
Svergun, (1999). “Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing,” Biophysical journal, 76(6):2879-2886.
Trinick, (1973). “Symbiosis between Rhizobium and the non-legume, Trema aspera,” Nature, 244(5416):459-460.
Unni et al., (2011). “Web servers and services for electrostatics calculations with APBS and PDB2PQR,” Journal of computational chemistry, 32(7):1488-1491, 6 pages.
Velten et al., (1984). “Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens,” The EMBO Journal, 3(12):2723-2730.
Velten et al., (1985). “Selection-expression plasmid vectors for use in genetic transformation of higher plants,” Nucleic Acids Research, 13(19):6981-6998.
Verdaguer et al., (1998). “Functional organization of the cassava vein mosaic virus (CsVMV) promoter,” Plant molecular biology, 37(6):1055-1067.
Wang et al., (1997). “Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants,” ISHS Acta Horticulturae 461: International Symposium on Biotechnology of Tropical and Subtropical Species Part 2, 461 (pp. 401-408).
Wang et al., (2014). “Functional analysis of chimeric lysin motif domain receptors mediating Nod factor-induced defense signaling in Arabidopsis thaliana and chitin-induced nodulation signaling in Lotus japonicus,” The Plant Journal, 78(1):56-69.
Weber et al., (2011). “A modular cloning system for standardized assembly of multigene constructs,” PloS one, 6(2):e16765, 11 pages.
Weising et al., (1988). “Foreign genes in plants: transfer, structure, expression, and applications,” Annual review of genetics, 22(1):421-477.
Wheeler et al., (2014). “Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models,” BMC bioinformatics, 15(7):1-9, 9 pages.
Wriggers et al., (2001). “Using Situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering,” Journal of applied crystallography, 34(6):773-776.
Zhang et al., (1991). “Analysis of rice Act1 5′ region activity in transgenic rice plants,” The Plant Cell, 3(11):1155-1165.
Zhang et al., (2007). “Molecular evolution of lysin motif-type receptor-like kinases in plants,” Plant physiology, 144(2):623-636.
Zhukov et al., (2008). “The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development,” Molecular Plant-Microbe Interactions, 21(12):1600-1608.
Cao et al., (2014). “The kinase L YK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1,” ELIFE, 3:E03766, 19 pages.
UNIPROT, (2018). “EBI accession No. A0A2SOBYZ2: Nod-factor receptor 5,” available online at <https://rest.uniprot.org/uniprotkb/A0A2S0BYZ2/txt>, 2 pages.
Guo et al., (2004). “Protein tolerance to random amino acid change,” PNAS USA, 101:9205-9210.
Rhoads et al., (1998). “Regulation of the cyanide-resistant alternative oxidase of plant mitochondria. Identification of the cysteine residue involved in alpha-keto acid stimulation and intersubunit disulfide bond formation,” J Biol Chem, 273(46):30750-30756.
Sun et al., (2004). “Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein,” Plant J, 37:517-527.
GenBank Accession No. ANS10208.1, “Nod-factor receptor 5 [Arachis hypogaea subsp. hypogaea],” Apr. 26, 2017, 2 pages.
GenBank Accession No. XP_020148045.1, “serine/threonine receptor-like kinase NFP [Aegilops tauschii subsp. strangulata],” Dec. 2, 2021, 2 pages.
GenBank Accession No. XP_020399958.1, “serine/threonine receptor-like kinase NFP [Zea mays],” Sep. 1, 2020, 2 pages.
Gysel et al., (2021). “Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors,” PNAS USA, 118(44):e2111031118, 10 pages.
Tian et al., (2013). “Progress and Perspectives in Research of Chitin Triggered Immunity in Plant,” Scientia Agricultura Sinica, 46(15):3115-3124. English abstract.
Wang et al., (2015). “Progress and Prospects in the Research on Wheat Receptor-like Kinases and Derivative Proteins,” Chinese Bulletin of Botany, 50(2):255-262. English abstract on the last page.
Bai et al., (2022). “Engineering Chimeras by Fusing Plant Receptor-like Kinase EMS1 and BRI1 Reveals the Two Receptors' Structural Specificity and Molecular Mechanisms,” Int. J. Mol. Sci., 23:2155, 18 pages.
Bozsoki et al., (2020). “Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity,” Science, 369:663-670.
Brinkmann et al., (2017). “The making of bispecific antibodies,” MABS, 9(2):182-212.
Chen et al., (2021). “A Promising Intracellular Protein-Degradation Strategy: TRIMbody—Away Technique Based on Nanobody Fragment,” Biomolecules, 11:1512, 15 pages.
Desaki et al., (2018). “MAMP-triggered plant immunity mediated by the LysM-receptor kinase CERK1,” Journal of General Plant Pathology, 85, 11 pages.
Ekerljung et al., (2012). “Generation and Evaluation of Bispecific Affibody Molecules for Simultaneous Targeting of EGFR and HER2,” Bioconjugate Chemistry, 23(9):1802-1811.
Gil et al., (2020). “Optogenetic control of protein binding using light-switchable nanobodies,” Nature Communications, 11:4044, 12 pages.
Hu et al., (2021). “Lysin Motif (LysM) Proteins: Interlinking Manipulation of Plant Immunity and Fungi,” Int. J. Mol. Sci., 22:3114, 12 pages.
Ingram et al., (2018). “Exploiting Nanobodies' Singular Traits,” Annual Review of Immunology, 36:695-715.
Keller et al., (2019). “Selection and Characterization of a Nanobody Biosensor of GTP- Bound RHO Activities,” Antibodies, 8:8, 17 pages.
Liu et al., (2016). “Intracellularly expressed nanobodies against non-structural protein 4 of porcine reproductive and respiratory syndrome virus inhibit virus replication,” Biotechnol Lett, 38:1081-1088.
Madsen et al., (2011). “Autophosphorylation is essential for the in vivo function of the Lotus japonicus Nod factor receptor 1 and receptor-mediated signalling in cooperation with Nod factor receptor 5,” Plant Journal, 65:404-417.
Miyata et al., (2016). “Evaluation of the Role of the LysM Receptor-Like Kinase, OsNFR5/OsRLK2 for AM Symbiosis in Rice,” Plant Cell Physiol, 57:2283-2290.
Mossner et al., (2020). “Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands,” PLoS One, 15(4):e0230804, 19 pages.
Muthuswamy et al., (1999). “Controlled Dimerization of ErbB Receptors Provides Evidence for Differential Signaling by Homo- and Heterodimers,” Molecular And Cellular Biology, 19(10):6845-6857.
Petutschnig et al., (2010). “The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation,” JBC, 285(37):28902-28911.
Prole et al., (2019). “A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling,” BMC Biology, 17:41, 24 pages.
Rubsam et al., (2023). “Nanobody-driven signaling reveals the core receptor complex in root nodule symbiosis,” Science, 379(6629):272-277.
Søgaard et al., (2023). “Transmembrane signaling by a synthetic receptor in artificial cells,” Nature Communications, 14:1646, 10 pages.
Suthaus et al., (2010). “Forced Homo- and Heterodimerization of All gp130- Type Receptor Complexes Leads to Constitutive Ligand-independent Signaling and Cytokine- independent Growth,” Molecular Biology of the Cell, 21:2797-2807.
Wouters et al., (2019). “Luminescence- and Fluorescence-Based Complementation Assays to Screen for GPCR Oligomerization: Current State of the Art,” International Journal Of Molecular Sciences, 20:2958; 35 pages.
Young et al., (2009). “Translating Medicago truncatula genomics to crop legumes,” Curr Opin Plant Biol, 12:193-201.
Yu et al., (2019). “Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins,” Nature Methods, 16:1095-1100.
Zhou et al., (2019). “The juxtamembrane domains of Arabidopsis CERK1, BAK1, and FLS2 play a conserved role in chitin-induced signaling,” JIPB, 62(5):556-562.
Related Publications (1)
Number Date Country
20210233608 A1 Jul 2021 US
Provisional Applications (1)
Number Date Country
62718282 Aug 2018 US