This application is the National Phase entry of PCT/EP2013/071163, which claims priority to European Patent Application No. 12188198.1, filed Oct. 11, 2012. The content of these applications is incorporated herein by reference in their entirety.
The present invention relates to genetically engineered yeasts and their use in methods for production of 3-hydroxypropionic acid (3HP).
3HP is a platform chemical, which can be converted to acrylic acid, 1,3-propandiol, malonic acid, and other valuable products. Acrylic acid-derived products include superabsorbent polymers used in baby diapers and incontinence products, various plastics, coatings, adhesives, elastomers, and paints. Currently acrylic acid is derived from propylene, a by-product of ethylene and gasoline production. Establishment of 3HP production from glucose or other renewable carbon source would provide a biosustainable alternative to acrylic acid production from fossil resources. Several methods for production of 3HP from glucose have been described. The specific teachings however primarily use the bacterium Escherichia coli as the host. The present invention uses yeast as the host for 3HP production. This allows executing the process at low pH and thus makes it overall more economical.
US2010/0136638 describes, in general terms, production of 3-HP in micro-organisms including yeast by biocatalysis from beta-alanine. It is said that beta-alanine can be synthesized in cells from alpha-alanine by an enzyme having alanine 2,3-aminomutase activity, and sequences are given for relevant enzymes.
Also disclosed are methods of producing 3-HP from beta-alanine using beta-alanine/pyruvate aminotransferase (BAPAT) sequences. Transformed cells having BAPAT activity, which allows the cell to convert beta-alanine to 3-HP through a malonate semialdehyde intermediate, are disclosed.
Although the possibility of conducting such work in yeast is mentioned, there is no practical demonstration of this. We have found that enzymes in this pathway that are effective in E. coli are not effective in Saccharomyces cerevisiae. In particular, according to US2010/0136638 enzymes having BAPAT activity can be obtained from Pseudomonas putida or Pseudomonas aeruginosa. However, we have found that genes encoding these enzymes are not effective in S. cerevisiae.
Malonate semialdehyde (or malonic semialdehyde or 3-oxopropanoic acid) is a key intermediate in one pathway leading to 3HP, but many different routes to its production are possible.
US2012135481 describes a 3HP producing pathway in yeast including genes encoding gabT, 3-HPDH and HIBADH and others. However, other and better 3HP producing yeasts are needed.
We have now found that 3HP production from beta-alanine was obtained in yeast S. cerevisiae when an uncharacterized aminotransferase yhxA from Bacillus cereus AH1272 was heterologously expressed. The amino acid sequence of the said yhxA encoded aminotransferase is set out in SEQ ID NO1 and the DNA sequence is set out in SEQ ID NO2. SEQ ID NO2 is codon-optimized for S. cerevisiae.
It is our belief that the said aminotransferase YhxA from Bacillus cereus AH1272 catalyzes a transamination reaction between beta-alanine and pyruvate leading to L-alanine and malonic semialdehyde, in which case the enzyme would be beta-alanine-pyruvate aminotransferase E.C. 2.6.1.18 (BAPAT) rather than a gabT (E.C. 2.6.1.19).
US2012/0135481 discloses genetically modified yeast cells comprising an active 3-HP fermentation pathway including the BAAT gene (beta alanine amino transferase—EC 2.6.1.19) which catalyzes the conversion of [beta]-alanine to malonate semialdehyde. BAAT here is therefore synonymous with naturally occurring or genetically modified gabT. However, successful production of 3-HP by this method is not shown.
WO2005/118719 discloses, but does not demonstrate the effectiveness of, methods of producing 3-HP from beta-alanine using beta-alanine/pyruvate aminotransferase (BAPAT) sequences from any organism in a yeast cell. Identified sources for BAPAT here include Pseudomonas, Arabidopsis, rat and Xenopus. As mentioned above, we have established that a BAPAT genes from Pseudomonas is not effective in S. cerevisiae.
The Uniprot entry for yhxA provides a sequence but does not identify the enzyme as being a BAPAT.
Accordingly, the present invention now provides a genetically modified yeast cell comprising an active fermentation pathway producing 3-HP, wherein the cell comprises and expresses an exogenous gene coding for the production of an enzyme having at least 80% identity with SEQ ID NO: 1 and catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialdehyde.
Preferably, said yeast also expresses 3-hydroxyisobutyrate dehydrogenase (HIBADH), suitably from Pseudomonas aeruginosa, P. putida, Bacillus cereus, or Candida albicans and/or 3-hydroxypropanoate dehydrogenase (3-HPDH), optionally from Metallosphaera sedula, Sulfolobus tokadaii or E. coli.
To enable the synthesis of 3-hydroxypropionic acid directly from glucose is it preferred in addition to reconstructing pathway from beta-alanine to 3-hydroxypropionic acid to express heterologous aspartate 1-decarboxylase, preferably from insect, preferably red flour beetle (Tribolium castaneum). To further increase the flux towards 3-hydroxypropinic acid it is preferred to overexpress pyruvate carboxylase and or PEP carboxylase and aspartate aminotransferase. Additionally deletion of pyruvate decarboxylase activity (PDC1, PDC5, PDC6) or alcohol dehydrogenase (ADH) activity would allow anaerobic fermentation without formation of ethanol as a by-product.
Strains according to the invention can be evolved using adaptive laboratory evolution methods to improve glucose tolerance, remove acetate dependence and increase 3HP production.
The yeast is preferably S. cerevisiae but may be Saccharomyces kluyveri, Yarrowia lipolytica, Schizosaccharomyces pombe, Debaryomyces hansenii, Cyberlindnera jadinii, Rhodotula minuta, Rhodotula glutinis, Torulaspora delbrueckii, Pichia stipitis, Pichia pastoris, Kluyveromyces lactis, Kluyveromyces marxianus, or other yeast.
Yeast strains suitable for modification according to the invention can be selected for their tolerance to growth in the presence of 3HP.
The amino acid sequence of the native yhxA expression product of B. cereus AH1272 and the DNA sequence coding for it can be modified for use in this invention in various ways. First, the DNA sequence can be codon optimised for expression in the appropriate yeast. Secondly, the amino acid sequence may be modified by deletion, addition, or substitution of amino acids whilst not interfering with, or indeed whilst increasing, the enzyme activity. Such a modified enzyme may have at least 80%, more preferably at least 85%, or 90% or 95% homology with the native amino acid sequence.
The invention includes a method for the production of 3HP comprising culturing a yeast cell of the invention, and optionally recovering 3HP from the culture. The culture may be conducted in a culture medium including beta-alanine or a source thereof other than said yeast. Said source may be another micro-organism. However, the yeast of the invention may be engineered to produce beta-alanine, e.g. from L-aspartate, suitably by incorporating exogenous genes producing aspartate-1-decarboxylase (EC 4.1.1.11) or glutamate decarboxylase (EC 4.1.1.15) or from L-alanine by 2,3-alanine aminomutase. Due to its role in the synthesis of pantothenate, aspartate 1-decarboxylase is also known as PanD. A gene for this enzyme is not present in the genome of wild-type S. cerevisiae.
We have found that superior results are obtained using certain exogenous PanD genes encoding aspartate-1-decarboxylase compared to others. In particular, we have found that PanD genes from insects, especially flour beetles, more especially red flour beetle (Tribolium castaneum), provides better production titres and better yields of 3-HP compared to bacterial PanD genes.
Preferably, the production of 3HP by said yeast is such that at least 100 mg of 3HP per liter of culture medium is produced or is recovered from said culture medium, more preferably at least 200, or 300, or 400 or 500 or 1000 or 2000 or 14000 mg/l.
The invention will be further described and illustrated in the following non-limiting examples, in which reference will be made to the following Tables.
Pseudomonas aeruginosa
Candida albicans
Bacillus cereus
Pseudomonas putida
Metallosphaera sedula
Sulfolobus tokadaii
coli
Escherichia coli
coli
Escherichia coli
Pseudomonas putida
cerevisiae
S. cerevisiae
Clostridium
acetobutylicum ATCC
cerevisiae
cerevisiae
coli
Metallosphaera sedula
coli
Escherichia coli
castaneum
cerevisiae
cerevisiae
cerevisiae
cerevisiae
cerevisiae
The vector contains the same USER cloning cassette as the rest of the parent plasmids listed in Table 4.
Results obtained in the following Examples are in part given in the accompanying drawings, in which:
As illustrated in
Genes encoding a putative B. cereus aminotransferase yhxA (SEQ ID NO1), Pseudomonas putida beta-alanine-pyruvate aminotransferase (SEQ ID NO3), P. aeruginosa 3-hydroxybutyrate dehydrogenase (SEQ ID NO5), Candida albicans 3-hydroxybutyrate dehydrogenase (SEQ ID NO7), P. putida 3-hydroxybutyrate dehydrogenase (SEQ ID NO9), Bacillus cereus 3-hydroxybutyrate dehydrogenase (SEQ ID NO11), Metallosphaera sedula 3-hydroxypropanoate dehydrogenase (SEQ ID NO13), Sulfolobus tokadaii 3-hydroxypropanoate dehydrogenase (SEQ ID NO15), and Clostridium acetobutylicum gamma-aminobutyrate transaminase (SEQ ID NO17) were synthesized by GeneArt (Life Technologies) in versions codon-optimized for yeast S. cerevisiae (corresponding SEQ ID NO2, SEQ ID NO4, SEQ ID NO6, SEQ ID NO8, SEQ ID NO10, SEQ ID NO12, SEQ ID NO14, SEQ ID NO16, SEQ ID NO18).
The ordered gene constructs had a general structure: GGTACCAAAACAATGNN . . . NNTGAGTCGAC (SEQ ID NO67), where GGTACC is a KpnI restriction site, AAAACA is the Kozak sequence, ATG is the start codon, NN . . . NN represents the protein coding sequence without start and stop codons, TGA is the stop codon, GTCGAC is a SalI restriction site.
The synthetic genes were excised from the plasmids using KpnI and SalI, gel-purified and ligated into plasmid pE1 (SEQ ID 81) or pE2 (SEQ ID82), which were digested with the same enzyme pair. The resulting ligation mix was transformed into chemically competent E. coli DH5alpha using heat shock and the cells were selected on Luria-Bertani (LB) agar medium with 100 μg/ml amplicillin.
The clones with correct inserts were identified by colony PCR, inoculated in liquid LB medium with 100 μg/ml ampicillin and the plasmids were isolated (Table 2). The resulting plasmids were confirmed by sequencing.
The gene fragments carrying the genes and correct overhangs for USER-cloning were generated by PCR amplification using primers and templates as indicated in Table 3. The PCR mix contained: 28 μl water, 10 μl high fidelity Phusion® polymerase buffer (5×), 5 μl 2 mM dNTP, 1 μl Phusion® polymerase, 2.5 μl forward primer at 10 μM concentration, 2.5 μl reverse primer at 10 μM concentration, and 1 μl DNA template. The cycling program was: 95° C. for 2 min, 30 cycles of [95° C. for 10 sec, 50° C. for 20 sec, 68° C. for 2 min], 68° C. for 5 min, pause at 10° C. The gene fragments were resolved on 1% agarose gel containing SYBR®-SAFE (Invitrogen) and purified using NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel). The promoter fragments were also generated by PCR followed by gene purification (Table 3). The terminators were already present on the expression plasmids.
The parent plasmids pESC-Ura-USER (SEQ ID NO 85), pESC-His-USER (SEQ ID NO 83) and pESC-Leu-USER (SEQ ID NO 84) were linearized with FastDigest® AsiSI (Fermentas) for 1 hour at 37° C. and nicked with Nb.BsmI for 1 hour at 37° C. The resulting linearized nicked DNA was purified from the solution and eluted in 5 mM Tris buffer, pH 8.0.
The expression plasmids were created by USER-cloning using the following protocol. 1 μl of linearized and nicked parent plasmid was mixed with 1 μl of promoter fragment, 2 μl of gene fragment, 0.5 μl Taq polymerase buffer, 0.5 μl USER enzyme (NEB). The mix was incubated at 37° C. for 25 min, at 25° C. for 25 min and transformed into chemically competent E. coli DH5alpha. The clones with correct inserts were identified by colony PCR and the plasmids were isolated from overnight E. coli cultures and confirmed by sequencing. The expression plasmids are listed in Table 4.
The expression plasmids were transformed into S. cerevisiae cells using the lithium acetate transformation protocol. The cells were selected on synthetic complete (SC) agar medium without uracil, histidine and leucine. The resulting strains are listed in Table 5.
At least four independent yeast transformants were streak-purified on SC ura-his-leu-agar plates. Four single colonies originating from independent transformants were inoculated in 0.5 ml SC ura-his-leu- in a 96-deep well microtiter plate with air-penetrable lid (EnzyScreen). The plates were incubated at 30° C. with 250 rpm agitation at 5 cm orbit cast overnight. 50 μl of the overnight cultures were used to inoculate 0.5 ml minimal mineral (Delft) medium with 10 g/L β-alanine in a 96-deep well plate.
The composition of the of Delft medium was as following: 7.5 g (NH4)2SO4, 14.4 g KH2PO4, 0.5 g MgSO4.7H2O, 22 g dextrose, 2 mL trace metals solution, and 1 mL vitamins. pH of the medium was adjusted to 6. The trace metals solution contained per liter: 4.5 g CaCl2.2H2O, 4.5 g ZnSO4.7H2O, 3 g FeSO4.7H2O, 1 g H3BO3, 1 g MnCl2.4H2O, 0.4 g Na2MoO4.2H2O, 0.3 g CoCl2.6H2O, 0.1 g CuSO4.5H2O, 0.1 g KI, 15 g EDTA. The trace metals solution was prepared by dissolving all the components except EDTA in 900 mL ultra-pure water at pH 6 followed by gentle heating and addition of EDTA. Finally the trace metal solution pH was adjusted to 4, and the solution volume was adjusted to 1 L and autoclaved (121° C. in 20 min). Trace metals solution was stored at +4° C. The vitamins solution contained per liter: 50 mg biotin, 200 mg p-aminobenzoic acid, 1 g nicotinic acid, 1 g Ca-pantotenate, 1 g pyridoxine-HCl, 1 g thiamine-HCl, 25 g myo-inositol. Biotin was dissolved in 20 mL 0.1 M NaOH and 900 mL water is added. pH was adjusted to 6.5 with HCl and the rest of the vitamins was added. pH was re-adjusted to 6.5 just before and after adding m-inositol. The final volume of the vitamin solution was adjusted to 1 l and sterile-filtered before storage at +4° C.
Fermentation was carried out for 72 hours at the same conditions as above.
At the end of the cultivation the OD600 was measured. 10 μl of the sample was mixed with 190 μl water and absorbance was measured at 600 nm wave length in spectrophotometer (BioTek).
The culture broth was spun down and the supernatant analyzed for 3-hydroxypropionic acid concentration using enzymatic assay (Table 5). No 3HP production was obtained when P. putida beta-alanine-pyruvate aminotransferase or C. acetobutylicum gamma-aminobutyrate transaminase were used in combination with 3-hydroxybutyrate dehydrogenase or 3-hydroxypropanoate dehydrogenase. However 3HP production from beta-alanine was observed when putative B. cereus aminotransferase YhxA or S. cerevisiae gamma-aminobutyrate transaminase were combined with 3-hydroxybutyrate dehydrogenase or 3-hydroxypropanoate dehydrogenase (Table 5: strains 133-147). The best enzyme combination under the conditions tested was strain 147 expressing B. cereus aminotransferase YhxA and E. coli 3-hydroxypropanoate dehydrogenase YdfG, where 2,145±89 mg/L 3HP was obtained.
Enzymatic assay was carried out as follows. 20 μl of standards (3HP at concentrations from 0.03 to 1 g/L in Delft medium) and samples were added to a 96-well flat bottom transparent plate (Greiner). 180 μl of mix (14.8 ml water, 2 ml buffer (1 mM Tris, 25 mM MgCl2, pH 8.8), 1 ml NADP+ solution (50 mg/ml), and 0.2 ml purified YdfG enzyme in PBS buffer (1500 μg/ml)) was added per well using multichannel pipet. The start absorbance at 340 nm was measured, the plate was sealed and incubated at 30° C. for 1.5 hours. After that the end absorbance at 340 nm was measured again. The difference between the end and the start values corrected for the background were in linear correlation with 3HP concentrations. The concentration of 3HP in the samples was calculated from the standard curve.
The identity of 3-hydroxypropionic acid in the best sample was confirmed by NMR analysis (
Genes encoding E. coli aspartate 1-decarboxylase (SEQ ID NO50) and C. glutamicum aspartate 1-decarboxylase (SEQ ID NO52) were synthesized as gBLOCKs by Integrated DNA Technologies (in versions codon-optimized for yeast S. cerevisiae corresponding SEQ ID NO51 and SEQ ID NO53).
Gene encoding glutamate decarboxylase from Rattus norvegicus (SEQ ID NO58) was synthesized by GeneArt (Life Technologies) in version codon-optimized for yeast S. cerevisiae (SEQ ID NO59).
The ordered gene constructs had a general structure: GGTACCAAAACAATGNN . . . NNTGAGTCGAC (SEQ ID NO67), where GGTACC is a KpnI restriction site, AAAACA is the Kozak sequence, ATG is the start codon, NN . . . NN represents the protein coding sequence without start and stop codons, TGA is the stop codon, GTCGAC is a SalI restriction site.
The gene fragments carrying the genes and correct overhangs for USER-cloning were generated by PCR amplification using primers and templates as indicated in Table 3. The PCR mix contained: 28 μl water, 10 μl high fidelity Phusion® polymerase buffer (5×), 5 μl 2 mM dNTP, 1 μl Phusion® polymerase, 2.5 μl forward primer at 10 μM concentration, 2.5 μl reverse primer at 10 μM concentration, and 1 μl DNA template. The cycling program was: 95° C. for 2 min, 30 cycles of [95° C. for 10 sec, 50° C. for 20 sec, 68° C. for 2 min], 68° C. for 5 min, pause at 10° C. The gene fragments were resolved on 1% agarose gel containing SYBR®-SAFE (Invitrogen) and purified using NucleoSpin® Gel and PCR Clean-up kit (Macherey-Nagel). The promoter fragments were also generated by PCR followed by gene purification (Table 3). The terminators were already present on the expression plasmids.
The parent plasmids pESC-Ura-USER, pESC-His-USER and pESC-Leu-USER were linearized with FastDigest® AsiSI (Fermentas) for 1 hour at 37° C. and nicked with Nb.BsmI for 1 hour at 37° C. The resulting linearized nicked DNA was purified from the solution and eluted in 5 mM Tris buffer, pH 8.0.
The expression plasmids were created by USER-cloning using the following protocol. 1 μl of linearized and nicked parent plasmid was mixed with 1 μl of promoter fragment, 2 μl of gene fragment, 0.5 μl Taq polymerase buffer, 0.5 μl USER enzyme (NEB). The mix was incubated at 37° C. for 25 min, at 25° C. for 25 min and transformed into chemically competent E. coli DH5alpha. The clones with correct inserts were identified by colony PCR and the plasmids were isolated from overnight E. coli cultures and confirmed by sequencing. The expression plasmids are listed in Table 4.
The expression plasmids were transformed into S. cerevisiae cells using the lithium acetate transformation protocol. The cells were selected on synthetic complete (SC) agar medium without uracil, histidine and leucine. The resulting strains are listed in Table 6.
At least four independent yeast transformants were streak-purified on SC ura-his-leu-agar plates. Four single colonies originating from independent transformants were inoculated in 0.5 ml SC ura-his-leu- in a 96-deep well microtiter plate with air-penetrable lid (EnzyScreen). The plates were incubated at 30° C. with 250 rpm agitation at 5 cm orbit cast overnight. 50 μl of the overnight cultures were used to inoculate 0.5 ml Delft medium with 10 g/L L-aspartate in a 96-deep well plate. Fermentation was carried out for 72 hours at the same conditions as above.
The culture broth was spun down and the supernatant analyzed for 3-hydroxypropionic acid concentration using enzymatic assay as described in Example 2 (Table 6).
3HP production from L-aspartate was observed only when aspartate 1-decarboxylase from C. glutamicum was expressed in combination with enzymes converting beta-alanine into 3HP (putative B. cereus aminoransferase YhxA and E. coli 3-hydroxypropanoate dehydrogenase YdfG or Metallosphaera sedula 3-hydroxypropanoate dehydrogenase). The best combination was aspartate 1-decarboxylase from C. glutamicum, putative B. cereus aminoransferase YhxA and E. coli 3-hydroxypropanoate dehydrogenase YdfG, which resulted in 269±53 mg/L 3HP.
In this specification, unless expressly otherwise indicated, the word ‘or’ is used in the sense of an operator that returns a true value when either or both of the stated conditions is met, as opposed to the operator ‘exclusive or’ which requires that only one of the conditions is met. The word ‘comprising’ is used in the sense of ‘including’ rather than in to mean ‘consisting of’. All prior teachings acknowledged above are hereby incorporated by reference. No acknowledgement of any prior published document herein should be taken to be an admission or representation that the teaching thereof was common general knowledge in Australia or elsewhere at the date hereof.
The gene encoding Tribolium castaneum aspartate 1-decarboxylase TcPanD (SEQ ID 68) was synthesized in version codon-optimized for S. cerevisiae (SEQ ID 69) by GeneArt (LifeTech Sciences).
The TcPanD gene was amplified using PCR in order to generate USER-cloning compatible overhangs as described in Example 1 using primers TcPanD_U1_fw and Tc_PanD_rv (Table 3). The resulting DNA fragment TcPanD← was cloned into expression plasmid pESC-HIS-USER along with TEF1 promoter to result in plasmid pESC-HIS-TcPanD (Table 4). Correct insertion of TcPanD gene and the promoter was confirmed by sequencing.
The plasmids were transformed into S. cerevisiae strain using the lithium acetate transformation protocol; the resulting strains are shown in Table 7.
At least three independent yeast transformants were inoculated in 0.5 ml SC ura-his-leu- in a 96-deep well microtiter plate with air-penetrable lid (EnzyScreen). The plates were incubated at 30° C. with 250 rpm agitation at 5 cm orbit cast overnight. 50 μl of the overnight cultures were used to inoculate 0.5 ml minimal mineral (Delft) medium or 0.5 ml Feed-in-time medium (FIT) for S. cerevisiae (M2P Labs, Germany) in 96-deep well plates.
Fermentation was carried out for 72 hours at the same conditions as inoculum preparation. The culture broth was spun down and the supernatant was analyzed for 3-hydroxypropionic acid concentration using HPLC (Table 7).
HPLC analysis was performed on Dionex UltiMate 3000 system (Thermo Fisher Scientific) with Aminex HPX-87H column (Bio-Rad Laboratories, Hercules, Calif.) operating at 60° C. The injection volume was 20 μl. The mobile phase was 1 mM H2SO4 at a flow rate of 0.6 ml/min. 3HP was detected on DAD-3000 Diode Array Detector (Dionex) using the read at 210 nm. The calibration curve was made using 3-hydroxypropionic acid purchased from TCI. The identity of the 3-hydroxypropionic acid was additionally verified by comparison of the spectrum with the standard.
Aspartate 1-decarboxylase from T. castaneum resulted in almost 3-fold higher 3HP titer on Delft and 2-fold higher 3HP titer on FIT medium than aspartate 1-decarboxylase from C. glutamicum. Thus we have confirmed that if the strain capable of producing 3HP from β-alanine is supplemented with aspartate 1-decarboxylase enzyme from C. glutamicum or better from T. castaneum then it can produce 3HP directly from glucose.
Once the biosynthesis of 3HP from glucose via beta-alanine has been established in yeast, the next goal was to improve the expression of the biosynthetic genes and to increase the flux towards L-aspartate. As this would require stable simultaneous overexpression of several genes, we used EasyClone integrative vectors for yeast. We tested the effect of overexpressing native cytoplasmic aspartate aminotransferase Aat2p, pyruvate carboxylases Pyc1p and Pyc2p and of the combination thereof. We also investigated the effect of multiple chromosomal integration of the key biosynthetic genes leading from aspartate to 3HP.
The genes encoding aspartate aminotransferase AAT2 and pyruvate carboxylases PYC1 and PYC2 were amplified from gDNA of S. cerevisiae CEN.PK113-7D using primers as in Table 3 and PCR conditions as in Example 1. The resulting DNA fragments were purified and cloned into EasyClone expression vectors as described in Example 1 (see Table 4).
Strain ST724 (PYC1^, PYC2^, ura-his-) was created by transforming S. cerevisiae CEN.PK102-5B (ura-his-leu-) with plasmid pXI-1-LoxP-KlLEU2-PYC1←PTEF1-PPGK1→PYC2, selecting the transformants on SC drop-out medium without leucine and confirming the correct integration of the plasmid by PCR on genomic DNA of the transformant. Strain ST724 was used to create strain ST738 (PYC1^, PYC2^, ura-his-leu-) by looping out the KlLEU2 selection marker using LoxP-Cre-mediated recombination.
The yeast strains were transformed with expression plasmids according to Table 8 and transformants were selected on SC drop-out medium without uracil, histidine and leucine. The strains were cultivated and 3HP concentrations were analyzed as described in Example 5. The results are shown in
Increasing copy number of BcBAPAT/EcYdfG or of TcPanD lead to improvement of 3HP titer for all the four background strains tested (reference, overexpressing AAT2, overexpressing PYC1&PYC2 and overexpressing AAT2&PYC1&PYC2). The effect of multiple integrations of TcPanD was larger than that of multiple copies of BcBAPAT/EcYdfG.
The increased precursor supply (via overexpression of PYC1/PYC2 and/or AAT2) had a positive effect on 3HP production in strains with multiple copies of TcPanD or BcBAPAT/EcYdfG genes, but not in the strains that had only single copies of the latter genes. The positive effect of overexpressing pyruvate carboxylase genes was only observed on feed-in-time medium, which simulates fed-batch conditions. The highest titers were obtained for the strain SCE-R2-200 (AAT2↑PYC1↑PYC2↑BcBAPAT↑EcYdfG↑TcPanD↑↑): 1.27±0.28 g/L and 8.51±1.05 g/L on mineral and feed-in-time media correspondingly.
The best isolate of strain SCE-R2-200 described above was cultivated in aerobic fed-batch cultivation with glucose-limited feed at pH5 in triplicates.
SCE-R2-200 glycerol stock (0.3 ml) was inoculated in 150 ml Delft medium in 500-ml baffled shake flask and propagated at 30° C. with 250 rpm agitation for about 24 hours. The culture was concentrated down to 50 ml by centrifugation at 4,000×g for 2 min and used to inoculate 0.5 L medium in 1L-Sartorius reactor. The final medium in the reactors contained per liter: 15 g (NH4)2SO4, 6 g KH2PO4, 1 g MgSO4.7H2O, 4 ml trace metals solution, 2 ml vitamins solution, 0.4 ml antifoam A (Sigma-Aldrich), and 44 g dextrose. Dextrose was autoclaved separately, vitamins solution was sterile filtered and added to the medium after autoclavation. The trace metal and vitamins solutions are the same as described in Example 2. The agitation rate was 800 rpm, the temperature was 30° C., aeration was 1 L min−1 air and pH was maintained at 5.0 by automatic addition of 2N NaOH. Carbon dioxide concentration in the off-gas was monitored by acoustic gas analyzer (model number 1311, Bruël & Kjær). Once the glucose was exhausted, which was observed from decline in CO2 production and was also confirmed by residual glucose detection using glucose strips Glucose MQuant™ (Merck Millipore), the feed was started at 5 g h−1. The feed contained per liter: 45 g (NH4)2SO4, 18 g KH2PO4, 3 g MgSO4.7H2O, 12 ml trace metals solution, 6 ml vitamins solution, 0.6 ml antifoam A, and 176 g dextrose. Dextrose was autoclaved separately, vitamins solution was sterile filtered and added to the feed after autoclavation.
24 hours after the feed start the feed rate was ramped up to 10 g h−1 and 48 hours after the feed start it was further increased to 15 g h−1. The reactors were sampled twice a day to measure biomass dry weight and metabolites. For metabolites analysis the sample was immediately centrifuged and the supernatant was stored at −20° C. until HPLC analysis. HPLC analysis of glucose, succinate, acetate, 3HP, glycerol, ethanol, and pyruvate was carried out at described in Example 5. Glucose, glycerol and ethanol were detected using RI-101 Refractive Index Detector (Dionex). 3HP, pyruvate, succinate and acetate were detected with DAD-3000 Diode Array Detector at 210 nm (Dionex).
The strain produced 3-hydroxypropionic acid at 13.7±0.3 g·L-1 titer, 14±0% C-mol·C-mol-1 glucose yield and 0.24±0.0 g·L-1·h-1 productivity. No significant amounts of by-products as acetate, ethanol or glycerol were detected at the end of the fermentation. Results are shown in
In this specification, unless expressly otherwise indicated, the word ‘or’ is used in the sense of an operator that returns a true value when either or both of the stated conditions is met, as opposed to the operator ‘exclusive or’ which requires that only one of the conditions is met. The word ‘comprising’ is used in the sense of ‘including’ rather than in to mean ‘consisting of’. All prior teachings acknowledged above are hereby incorporated by reference. No acknowledgement of any prior published document herein should be taken to be an admission or representation that the teaching thereof was common general knowledge in Australia or elsewhere at the date hereof. The content of the sequence listing filed herewith forms part of the description of the invention.
Number | Date | Country | Kind |
---|---|---|---|
12188198 | Oct 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/071163 | 10/10/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/057036 | 4/17/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6852517 | Suthers et al. | Feb 2005 | B1 |
20070107080 | Liao | May 2007 | A1 |
20100136638 | Liao et al. | Jun 2010 | A1 |
20120135481 | Jessen et al. | May 2012 | A1 |
Number | Date | Country |
---|---|---|
2005118719 | Dec 2005 | WO |
2010031083 | Mar 2010 | WO |
Entry |
---|
International Search Report dated Nov. 18, 2013 in International Patent Application No. PCT/EP2013/071163. |
Author Unknown, “Uncharacterized Aminotransferase yhxA,” XP002692141, Retrieved from EBI accession No. UNIPROT:C2ZAL1, (7 pages). |
Author Unknown, “Aspartate 1-decarboxylase; EC=4.1.1.11,” XP002715871, Retrieved from EBI accession No. UNIPROT:A7U8C7, (7 pages). |
Author Unknown, “yhxA—Uncharacterized aminotransferase YhxA—Bacillus subtillis (strain 168),” UniProtKB—P33189 (YHXA—BACSU), http://www.uniprot.org/uniprot/P33189, pp. 1-8 (Jul. 8, 2015). |
Number | Date | Country | |
---|---|---|---|
20150267228 A1 | Sep 2015 | US |