GENETICALLY MODIFIED MICROORGANISM AND METHOD FOR PRODUCING DIAMINE COMPOUND

Abstract
Provided are a microorganism that produces a diamine compound and a method of producing a diamine compound.
Description
TECHNICAL FIELD

The present invention relates to a genetically modified microorganism that produces a diamine compound and a method of producing a diamine compound.


BACKGROUND ART

A diamine compound is widely used as a raw material of a polymer such as a polyamide resin. As the diamine compound that is industrially used, examples of representative compounds include hexamethylenediamine (1,6-diaminohexane), heptamethylenediamine (1,7-diaminoheptane), octamethylenediamine (1,8-diaminooctane), decamethylenediamine (1,10-diaminodecane), and dodecamethylenediamine (1,12-diaminododecane).


For example, hexamethylenediamine is synthesized by obtaining adiponitrile through hydrogenation of butadiene, electrolytic dimerization of acrylonitrile, or nitridation of adipic acid, and further performing hydrogenation using nickel as a catalyst. (Non Patent Literature 1) Hexamethylenediamine is industrially produced by this method, but adiponitrile is once synthesized, and then, a hydrogenation reaction is performed. In addition, as for decanediamine, octanediamine, dodecanediamine, or the like, similarly to the above adipic acid raw material, a method of obtaining a corresponding dinitrile and synthesizing the dinitrile by hydrogenation is known. (Patent Literatures 1 and 2)


In recent years, in a chemical product producing process, it is desired to switch from a fossil fuel-derived raw material which may be depleted and contributes to global warming to a renewable raw material such as a biomass-derived raw material. In order to solve this problem, a method of producing a diamine compound such as 1,3-diaminopropane (Non Patent Literature 2), 1,4-diaminobutane or 1,5-diaminopentane (Non Patent Literature 3), or 4-aminophenylethylamine (Non Patent Literature 4) using a microorganism metabolically modified by a genetic modification is disclosed.


Among them, a method of producing diamine obtained by combining an exogeneous enzyme, for example, a carboxylic acid decarboxylase or aminotransferase from a dicarboxylic acid or an aminocarboxylic acid, a dialdehyde, and the like in cells using a genetically modified microorganism has wide applicability of a compound as a substrate, and for example, hexamethylenediamine (Patent Literatures 3 and 4) and heptamethylenediamine (Patent Literature 5) have been reported.


Patent Literature 3 expects and exemplifies an enzyme gene whose yield is expected to improve due to deletion or disruption in a microbial host modified to have a hexamethylenediamine production pathway based on a metabolic simulation in in silico. However, neither a by-product derived from an intermediate in the hexamethylenediamine production pathway nor a method of suppressing the same is mentioned.


Patent Literature 4 describes a method of producing hexamethylenediamine by an enzymatic reaction pathway via 6-hydroxyhexanoic acid. However, neither production of a by-product derived from an intermediate in a hexamethylenediamine production pathway newly constructed by a genetic modification nor a suppression method thereof is mentioned.


Patent Literature 5 describes a method of producing heptamethylenediamine using an enzymatic reaction pathway via pimelic acid or the like. However, neither a by-product derived from an intermediate in a reaction pathway nor a suppression method thereof is mentioned.


Therefore, the prior arts do not disclose production of a by-product due to a conversion pathway to a diamine compound or a suppression method thereof, at all. In the production of the diamine compound by the genetically modified microorganism, a technique capable of more efficiently suppressing a by-product and efficiently producing a diamine compound is required.


CITATION LIST
Patent Literatures



  • Patent Literature 1: JP 57-70842 A

  • Patent Literature 2: JP 49-24446 B

  • Patent Literature 3: JP 2015-146810 A

  • Patent Literature 4: JP 2017-544854 A

  • Patent Literature 5: JP 2014-525741 A



Non Patent Literatures



  • Non Patent Literature 1: Process Economics Program Report 31B (IHS market)

  • Non Patent Literature 2: Chae, T. et al., Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine, Sci Rep. 2015 Aug. 11; 5:13040

  • Non Patent Literature 3: Tsuge, Y. et al., Engineering cell factories for producing building block chemicals for bio-polymer synthesis, Microb. Cell Fact., Vol., 15, 19 (2016)

  • Non Patent Literature 4: Masuo, S., et al, Bacterial fermentation platform for producing artificial aromatic amines, Scientific Reports volume 6, Article number: 25764 (2016)



SUMMARY OF INVENTION
Technical Problem

An object of the present invention is to provide a microorganism that produces a diamine compound and a method of producing a diamine compound.


Solution to Problem

In conducting the studies, the present inventors found that an alcohol form derived from a diamine biosynthetic pathway intermediate is generated as a by-product by an endogenous alcohol dehydrogenase activity in a microorganism having a diamine compound production pathway. As a result of conducting intensive studies, the present inventors achieved the present invention based on the findings that production of an alcohol form that is a by-product can be suppressed and/or a production amount of a diamine compound can be increased by performing a modification so as to reduce an alcohol dehydrogenase activity of a host microorganism.


That is, the present invention provides the following:


[1] A genetically modified microorganism that expresses an enzyme involved in synthesis of a diamine compound, in which


the diamine compound is represented by Formula: H2N—R—NH2


(wherein, R is a chain or cyclic organic group comprised of one or more atoms selected from the group consisting of C, H, O, N, and S), and


the genetically modified microorganism is modified to reduce an activity of an alcohol dehydrogenase compared to a non-reduced strain;


[2] The genetically modified microorganism according to [1], in which the modification performed to reduce the activity of the alcohol dehydrogenase compared to the non-reduced strain is


a modification to suppress expression of a gene encoding an alcohol dehydrogenase or


a modification to suppress expression of a gene encoding an alcohol dehydrogenase and to suppress an activity of an alcohol dehydrogenase;


[3] The modified microorganism according to [1] or [2], in which the alcohol dehydrogenase is a protein encoded by


DNA consisting of a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100,


DNA consisting of a base sequence having 85% or more of sequence identity with a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100 and encoding a protein having an alcohol dehydrogenase activity,


DNA consisting of a base sequence encoding a protein consisting of an amino acid sequence obtained by deleting, substituting, inserting, and/or adding 1 to 10 amino acids with respect to an amino acid sequence of a protein encoded by a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100 and encoding a protein having an alcohol dehydrogenase activity, or


DNA consisting of a degenerate isomer of a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100;


[4] The modified microorganism according to any one of [1] to [3], in which the alcohol dehydrogenase is a protein containing an amino acid sequence having 80% or more of sequence identity with an amino acid sequence selected from SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, and 99 and having an alcohol dehydrogenase activity;


[5] The genetically modified microorganism according to any one of [1] to [4], in which the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD, fucO, adhP, ybbO, eutG, ahr, yahK, adhE, ybdR, dkgA, yiaY, frmA, dkgB, yghA, ydjG, gldA, yohF, yeaE, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, SFA1, AAD3, AAD4, AAD10, AAD14, AAD15, YPR1, NCg10324, NCg10313, NCg10219, NCg12709, NCg11112, NCg12382, NCg10186, NCg10099, NCg12952, NCg11459, yogA, bdhK, bdhJ, akrN, yqkF, yccK, iolS, and yrpG;


[6] The genetically modified microorganism according to any one of [1] to [5], in which the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK;


[7] The genetically modified microorganism according to any one of [1] to [6], in which the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD and adhP;


[8] The genetically modified microorganism according to [7], in which the alcohol dehydrogenase is a protein encoded by an adhP gene;


[9] The genetically modified microorganism according to any one of [1] to [6], in which the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD, fucO, eutG, ybbO, ahr, and yahK;


[10] The genetically modified microorganism according to [9], in which the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of eutG, ybbO, ahr, and yahK;


[11] The genetically modified microorganism according to any one of [1] to [6], in which the alcohol dehydrogenase is a protein encoded by two or more genes selected from the group consisting of yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK;


[12] The genetically modified microorganism according to any one of [1] to [6], in which the alcohol dehydrogenase is a protein encoded by a gene of one combination selected from the group consisting of:

    • yqhD and fucO,
    • yqhD and adhP,
    • yqhD and eutG,
    • yqhD and ybbO,
    • yqhD and ahr,
    • yqhD and yahK,
    • yqhD, fucO, and adhP,
    • yqhD, fucO, adhP, and eutG,
    • yqhD, fucO, adhP, eutG, and ybbO,
    • yqhD, fucO, adhP, eutG, ybbO, and ahr,


      and
    • yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK;


[13] The modified microorganism according to any one of [1] to [12], in which the modification performed to reduce the activity of the alcohol dehydrogenase compared to the non-reduced strain is performed by one or more selected from the group consisting of


a reduction in transcription amount and/or translation amount of a gene encoding the alcohol dehydrogenase in the microorganism and


a disruption of a gene encoding the alcohol dehydrogenase in the microorganism;


[14] The genetically modified microorganism according to any one of [1] to [13], in which the genetically modified microorganism belongs to a genus selected from the group consisting of the genus Escherichia, the genus Corynebacterium, the genus Bacillus, the genus Acinetobacter, the genus Burkholderia, the genus Pseudomonas, the genus Clostridium, the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, the genus Candida, the genus Pichia, and the genus Aspergillus;


[15] The genetically modified microorganism according to any one of [1] to [14], in which the genetically modified microorganism is Escherichia coli;


[16] The genetically modified microorganism according to any one of [1] to [15], in which the genetically modified microorganism expresses an aminotransferase as the enzyme involved in the synthesis of the diamine compound;


[17] The genetically modified microorganism according to any one of [1] to [16], in which the genetically modified microorganism expresses a carboxylic acid reductase as the enzyme involved in the synthesis of the diamine compound;


[18] The genetically modified microorganism according to [17], in which the carboxylic acid reductase has an activity of converting a carboxyl group of a carboxylic acid semialdehyde, a dicarboxylic acid, or an aminocarboxylic acid into an aldehyde;


[19] The genetically modified microorganism according to any one of [1] to [18], in which the genetically modified microorganism


has an ability of producing a dicarboxylic acid, a carboxylic acid semialdehyde, or an aminocarboxylic acid, and


further expresses an aminotransferase and a carboxylic acid reductase;


[20] The genetically modified microorganism according to any one of [1] to [19], in which the genetically modified microorganism


has an ability of producing adipic acid, adipic acid semialdehyde, or 6-aminohexanoic acid, and


further expresses an aminotransferase and a carboxylic acid reductase;


[21] The genetically modified microorganism according to any one of [11] to [20], in which the genetically modified microorganism is further modified to increase an activity of a phosphopantetheinyl transferase;


[22] The genetically modified microorganism according to any one of [16] to [21], in which a gene encoding the aminotransferase is ygjG;


[23] The genetically modified microorganism according to any one of [17] to [22], in which a gene encoding the carboxylic acid reductase is MaCar;


[24] The genetically modified microorganism according to any one of [21] to [23], in which a gene encoding the phosphopantetheinyl transferase is Npt;


[25] The modified microorganism according to any one of [1] to [24], in which the modified microorganism contains


a base sequence having 85% or more of sequence identity with a base sequence set forth in SEQ ID NO: 115 and encoding a protein having an aminotransferase activity or


a base sequence having 85% or more of sequence identity with a base sequence encoding an amino acid sequence set forth in any one of SEQ ID NOs: 110 to 114 and encoding a protein having an aminotransferase activity;


[26] The modified microorganism according to any one of [1] to [25], in which the modified microorganism contains


a base sequence having 85% or more of sequence identity with a base sequence set forth in SEQ ID NO: 105 and encoding a protein having a carboxylic acid reductase activity or


a base sequence having 85% or more of sequence identity with a base sequence encoding an amino acid sequence set forth in any one of SEQ ID NOs: 101 to 104 and encoding a protein having a carboxylic acid reductase activity;


[27] The modified microorganism according to any one of [21] to [26], in which the modified microorganism contains


a base sequence having 85% or more of sequence identity with a base sequence set forth in SEQ ID NO: 109 and encoding a protein having a phosphopantetheinyl transferase activity or


a base sequence having 80% or more of sequence identity with a base sequence encoding an amino acid sequence set forth in any one of SEQ ID NOs: 106 to 108 and encoding a protein having a phosphopantetheinyl transferase activity;


[28] The genetically modified microorganism according to any one of [1] to [27], in which the genetically modified microorganism expresses one or more enzymes selected from the group consisting of


acyl-(acyl carrier protein (ACP)) reductase (AAR),


an enzyme that produces an aldehyde from acyl-CoA, and


an enzyme that produces an aldehyde from acyl phosphate;


[29] A method of producing a diamine compound using the genetically modified microorganism according to any one of [1] to [28];


[30] A method of producing a diamine compound, the method including a culture step of culturing the genetically modified microorganism according to [1] to [28] in a medium containing a carbon source and a nitrogen source to obtain a culture medium containing bacterial cells;


[31] The method of producing a diamine compound according to [30], in which the medium further contains a precursor of a diamine compound, or


in the culture step, the precursor is added to the medium;


[32] The method of producing a diamine compound according to [30] or [31], further including a reaction step of bringing the culture medium and/or the bacterial cells into contact with an aqueous solution containing a precursor of a diamine compound to obtain a reaction solution containing a diamine compound; and


[33] The method of producing a diamine compound according to [31] or [32], in which the precursor is selected from the group consisting of a dicarboxylic acid, a carboxylic acid semialdehyde, an aminocarboxylic acid, an aminoaldehyde, a dialdehyde, acyl-ACP, acyl-CoA, and acyl phosphate.


Advantageous Effects of Invention

According to the present invention, a diamine compound can be produced.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 schematically illustrates conversion of functional groups from various precursors into an amine as an example of a production pathway for a diamine compound in a genetically modified microorganism of the present invention.



FIG. 2 illustrates a concentration of 1,6-hexanediol in a culture supernatant after culturing an E. coli strain in which an ADH gene is disrupted in a medium containing 1,6-hexanediol for 48 hours.



FIG. 3 is a plasmid map of pDA56, in which “lacI” represents an lad gene, “T7 Promoter” represents a T7 promotor, “T7 Terminator” represents a T7 terminator, “ygjG” represents a ygjG gene derived from Escherichia coli, “MaCar” represents a carboxylic acid reductase gene derived from Mycobacterium abcessus, “Npt” represents a phosphopantetheinyl transferase gene derived from Nocardia iowensis, “CAT” represents a chloramphenicol acetyltransferase gene, and “P15Aori” represents a replication point.





DESCRIPTION OF EMBODIMENTS

Hereinafter, embodiments of the present invention will be described in detail.


A genetically modified microorganism according to the present invention is a genetically modified microorganism that has a diamine compound production pathway and, at the same time, is modified to reduce an alcohol dehydrogenase activity. Here, the modification includes substitution, deletion, insertion, and/or addition. Hereinafter, the “genetically modified microorganism” is simply referred to as a “modified microorganism”.


The modified microorganism expresses an enzyme involved in synthesis of a diamine compound or an enzyme group involved in synthesis of a diamine compound. Examples of the enzyme involved in synthesis of a diamine compound include a carboxylic acid reductase and an aminotransferase. As illustrated in FIG. 1, the carboxylic acid reductase has an activity of converting, for example, a carboxyl group of a carboxylic acid semialdehyde, a dicarboxylic acid, or an aminocarboxylic acid into an aldehyde. As illustrated in FIG. 1, the aminotransferase has an activity of converting an aldehyde into an amine. In the present invention, the microorganism “that expresses an enzyme involved in synthesis of a diamine compound or an enzyme group involved in synthesis of a diamine compound” means that a host microorganism itself may have an ability of expressing an enzyme or an enzyme group or a host microorganism may be modified to express an enzyme or an enzyme group.


The “diamine compound” (hereinafter, simply referred to as a “diamine”) in the present invention is represented by Formula: H2N—R—NH2. In the formula, R is a chain or cyclic divalent organic group comprised of one or more atoms selected from the group consisting of C, H, O, N, and S. A chain organic group includes a linear organic group and a branched organic group. A cyclic organic group includes an alicyclic organic group, a heterocyclic organic group, a polycyclic organic group, and an aromatic organic group.


Examples of the organic group constituting R include, but are not limited to, an aliphatic hydrocarbon group such as a methylene group, an ethylene group, a vinylene group, a trimethylene group, a propylene group, a propenylene group, a tetramethylene group, an isobutylene group, a pentamethylene group, a hexamethylene group, and an octamethylene group; an alicyclic hydrocarbon group such as a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, a cyclooctylene group, a cyclohexenylene group, and a cyclohexadienylene group; an aromatic hydrocarbon group such as an o-phenylene group, an m-phenylene group, a p-phenylene group, a diphenylene group, a naphthylene group, a 1,2-phenylenedimethylene group, a 1,3-phenylenedimethylene group, a 1,4-phenylenedimethylene group, a 1,4-phenylylenediethylene group, a methylene diphenylene group, and an ethylene diphenylene group; an oxygen-containing characteristic group such as an oxy group and a carbonyl group; an ether group such as a methylenedioxy group and an ethylenedioxy group; an acyl group such as an oxalyl group, a malonyl group, a succinyl group, a glutalyl group, an adipoyl group, a speroyl group, an o-phthaloyl group, an m-phthaloyl group, and a p-phthaloyl group; a sulfur-containing characteristic group such as a thio group and a thiocarbonyl group; a nitrogen-containing characteristic group such as an imino group and an azo group; and a combination thereof.


In addition, one or more substituents may be included in R. Examples of the substituent that can be included in R include, but are not limited to, an amino group, a carboxy group, a cyano group, a nitro group, a hydroxy group, and a thiol group.


In one aspect, R is a chain or cyclic hydrocarbon, and a linear and branched, saturated and unsaturated hydrocarbons are included in the chain hydrocarbon. In a preferred aspect, R is a hydrocarbon group having 3 to 20 carbon atoms. More preferably, R is a linear saturated hydrocarbon group represented by Formula: CH2(CH2)nCH2, wherein n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. Still more preferably, n is 2, 3, 4, 5, 6, 7, or 8, and particularly preferably, n is 4, 5, 6, 7, or 8.


Examples of a typical diamine compound include, but are not limited to, 1,3-diaminopropane (trimethylenediamine), 1,4-diaminobutane (tetramethylenediamine (putrescine)), 1,5-diaminopentane (pentamethylenediamine (cadaverine)), 1,6-diaminohexane (hexamethylenediamine), 1,7-diaminoheptane (heptamethylenediamine), 1,8-diaminooctane (octamethylenediamine), 1,9-diaminononane (nonamethylenediamine), 1,10-diaminodecane (decamethylenediamine), 1,11-diaminoundecane (undecamethylenediamine), 1,12-diaminododecane (dodecamethylenediamine), 3-aminobenzylamine, 4-aminobenzylamine, 2-methylpentamethylenediamine, 2-methylpentamethylenediamine, 2,2,4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, m-xylene diamine, p-xylene diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, bis(4-aminocyclohexyl)methane, bis(4-amino-3-methylcyclohexyl)methane, 1,4-bis(aminopropyl)piperazine, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, 1,3-phenylenediamine, 1,4-phenylenediamine, N-(3-aminopropyl)1,4-butanediamine (spermidine), 3,3′-diaminodipropylamine, N,N-bis(3-aminopropyl)methylamine, N,N′-bis(3-aminopropyl)ethylenediamine, N,N′-bis(2-aminoethyl)-1,3-propanediamine, N,N′-bis(3-aminopropyl)-1,4-butanediamine (spermine), 2,2′-dithiobis(ethylamine), and dipropylenetriamine. It is appreciated by those skilled in the art that the diamine has a neutral or ionized form including an arbitrary salt form and that the form depends on pH.


The “dicarboxylic acid” in the present specification refers to a compound having a structure represented by a chemical formula HOOC—R—COOH (wherein, R is as described above). An aliphatic dicarboxylic acid and an aromatic carboxylic acid are included in the dicarboxylic acid. Examples of a typical dicarboxylic acid include, but are not limited to, oxalic acid, malonic acid, succinic acid, fumaric acid, itaconic acid, glutaric acid, adipic acid, muconic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, malic acid, 2,5-furandicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, tartaric acid, and muconic acid. It is appreciated by those skilled in the art that the dicarboxylic acid has a neutral or ionized form including an arbitrary salt form and the form depends on pH.


The “carboxylic acid semialdehyde” in the present specification refers to a compound having a structure represented by a chemical formula HOOC—R—CHO (wherein, R is as described above). Examples of a typical carboxylic acid semialdehyde include, but are not limited to, succinic acid semialdehyde, glutaric acid semialdehyde, adipic acid semialdehyde, pimelic acid semialdehyde, suberic acid semialdehyde, azelaic acid semialdehyde, and sebacic acid semialdehyde. It is appreciated by those skilled in the art that the carboxylic acid semialdehyde has a neutral or ionized form including an arbitrary salt form and that the form depends on pH.


The “aminocarboxylic acid” in the present specification refers to a compound having a structure represented by a chemical formula H2N—R—COOH (wherein, R is as described above). Examples of a typical aminocarboxylic acid include, but are not limited to, glycine, β-alanine, 4-aminobutanoic acid, 5-aminopentanoic acid, 6-aminohexanoic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 10-aminodecanoic acid, and 12-aminododecanoic acid. It is appreciated by those skilled in the art that the aminocarboxylic acid has a neutral or ionized form including an arbitrary salt form and that the form depends on pH.


In the present specification, the term “endogenous” or “endogenous property” is used to mean that the host microorganism without a genetic modification has the gene referred to or the protein encoded by the same (typically, an enzyme), regardless of whether the gene or the protein is functionally expressed to the extent that a predominant biochemical reaction can proceed in the host cell.


In the present specification, the term “exogeneous” or “exogeneous property” is used to mean that a gene or a nucleic acid sequence according to the present invention is introduced into a host in a case where a pre-genetically modified host microorganism does not have a gene to be introduced according to the present invention, in a case where the pre-genetically modified host microorganism does not substantially express an enzyme by the gene, or in a case where the pre-genetically modified host microorganism does not express an endogenous enzyme activity corresponding to after the genetic modification although an amino acid sequence of the enzyme is encoded by a different gene. The term “exogeneous property” and “external property” are used interchangeably in the present specification.



FIG. 1 illustrates an example of conversion of functional groups of synthesis pathways for a diamine compound in the present invention. A diamine is synthesized using an aldehyde-inducible compound and/or an aldehyde as a precursor. The aldehyde is converted into an amine by an aminotransferase. The genetically modified microorganism according to the present invention is modified to reduce an activity of an alcohol dehydrogenase, thereby suppressing the conversion of the aldehyde that is an intermediate in the pathway into an alcohol. Here, the alcohol dehydrogenase includes one or more proteins having an alcohol dehydrogenase activity.


The host microorganism used in the present invention is not particularly limited, and may be either a prokaryote or a eukaryote. Any one of a microorganism isolated and preserved in advance, a microorganism newly isolated from nature, a microorganism subjected to a genetic modification, and a microorganism modified so that the compound can be metabolized can be arbitrarily selected. Examples thereof include, but are not limited to, a bacterium, for example, the genus Escherichia such as Escherichia coli (E. coli), the genus Pseudomonas such as Pseudomonas putida, the genus Bacillus such as Bacillus subtilis, the genus Corynebacterium such as Corynebacterium glutamicum, the genus Clostridium such as Clostridium acetobutylicum, the genus Acinetobacter, and the genus Burkholderia; a yeast, for example, the genus Saccharomyces such as Saccharomyces cerevisiae, the genus Schizosaccharomyces such as Schizosaccharomyces pombe, the genus Pichia such as Pichia pastoris, and the genus Yarrowia such as Yarrowia lipolytica; and a filamentous fungus, for example, the genus Aspergillus such as Aspergillus oryzae. In the present invention, E. coli is preferably used as a host microorganism.


The genetically modified microorganism according to the present invention is further modified to reduce an endogenous alcohol dehydrogenase (ADH) activity compared to a non-reduced strain. The present inventors found that in a host microorganism having a diamine compound production pathway, an alcohol form derived from a diamine biosynthetic pathway intermediate is produced as a by-product due to an endogenous alcohol dehydrogenase activity. After conducting further intensive studies, the present inventors found that production of an alcohol form that is a by-product can be suppressed and/or a production amount of a diamine compound is increased by modifying a host microorganism to reduce an activity of an alcohol dehydrogenase compared to a non-reduced strain, resulting in efficient production of a diamine compound.


The alcohol dehydrogenase is an enzyme having an activity of reducing an aldehyde and a ketone to be converted into an alcohol in the presence of an electron donor. Here, the alcohol dehydrogenase also includes a protein containing an amino acid sequence in which one or more amino acids are deleted, substituted, inserted, and/or added in an amino acid sequence of the enzyme, the protein being functionally equivalent to the enzyme. Here, the “functionally equivalent protein” is a protein having the equivalent activity to the activity of the enzyme. For example, the “functionally equivalent protein” includes a protein having 80%, 85%, 90%, 95%, 97%, 98%, or 99% or more of sequence identity with the amino acid sequence of the enzyme. Specifically, the term “alcohol dehydrogenase” includes a protein containing an amino acid sequence having 80%, 85%, 90%, 95%, 97%, 98%, or 99% or more of sequence identity with the amino acid sequence set forth in the following specific sequence number, and having an alcohol dehydrogenase activity.


The gene encoding an alcohol dehydrogenase contains:


DNA consisting of a base sequence set forth in the following specific sequence number,


DNA hybridizing to DNA containing a base sequence complementary to a base sequence set forth in the following specific sequence number under a stringent condition and encoding a protein having an alcohol dehydrogenase activity,


DNA consisting of a base sequence having 85%, 90%, 95%, 97%, 98%, or 99% or more of sequence identity with a base sequence set forth in the following specific sequence number and encoding a protein having an alcohol dehydrogenase activity,


DNA consisting of a base sequence encoding a protein consisting of an amino acid sequence in which one or more (for example, 1 to 10, preferably 1 to 7, more preferably 1 to 5, still more preferably 1 to 3, and still further preferably 1 or 2) of amino acids are deleted, substituted, inserted, and/or added in an amino acid sequence of a protein encoded by a base sequence set forth in the following sequence number, and encoding a protein having an alcohol dehydrogenase activity,


and


DNA consisting of a degenerate isomer of a base sequence set forth in the following specific sequence number.


The “stringent condition” is, for example, a condition of about “1×SSC, 0.1% SDS, 60° C.”, a more severe condition of about “0.1×SSC, 0.1% SDS, 60° C.”, and a still more severe condition of about “0.1×SSC, 0.1% SDS, 68° C.”.


In a preferred aspect of the present invention, an enzyme represented by EC 1.1.1.m (wherein, m is an integer of 1 or more) is included in the alcohol dehydrogenase. Examples of the alcohol dehydrogenase include, but are not limited to, enzymes classified as EC 1.1.1.1, EC 1.1.1.2, and EC 1.1.1.71.


In the case of E. coli, examples of the alcohol dehydrogenase include proteins encoded by yqhD, fucO, adhP, ybbO, eutG, ahr, yahK, adhE, ybdR, dkgA, yiaY, frmA, dkgB, yghA, ydjG, gldA, yohF, and yeaE genes.


In the case of Saccharomyces cerevisiae, examples of the alcohol dehydrogenase include proteins encoded by ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, SFA1, AAD3, AAD4, AAD10, AAD14, AAD15, and YPR1 genes. In the case of Corynebacterium glutamicum, examples of the alcohol dehydrogenase include proteins encoded by NCg10324, NCg10313, NCg10219, NCg12709, NCg11112, NCg12382, NCg10186, NCg10099, NCg12952, and NCg11459 genes. In the case of Bacillus subtilis, examples of the alcohol dehydrogenase include proteins encoded by a yogA, bdhK, bdhJ, akrN, yqkF, yccK, iolS, and yrpG genes. However, the alcohol dehydrogenase is not limited thereto as long as it has an alcohol dehydrogenase activity.


The alcohol dehydrogenase is a protein encoded by, for example, at least one gene selected from the group consisting of yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK. Modification of at least one gene selected from the group consisting of the above genes such that the activity of the alcohol dehydrogenase is reduced compared to a non-reduced strain can suppress production of an alcohol form that is a by-product and/or increase a production amount of a diamine compound, resulting in efficient production of a diamine compound.


The alcohol dehydrogenase is preferably encoded by at least one gene selected from the group consisting of yqhD, fucO, adhP, ybbO, eutG, ahr, and yahK genes, more preferably encoded by at least one gene selected from the group consisting of yqhD, ahr, and yahK genes, and still more preferably encoded by at least one gene selected from the group consisting of ahr and yahK genes.


The alcohol dehydrogenase is preferably encoded by at least one gene selected from the group consisting of yqhD and adhP genes, and more preferably encoded by an adhP gene. In the production of the diamine compound, by modifying the microorganism to reduce the activity of at least one of these genes, the production amount of the diamine compound can be increased in the genetically modified microorganism.


The alcohol dehydrogenase is preferably encoded by at least one gene selected from the group consisting of yqhD, fucO, eutG, ybbO, ahr, and yahK, and more preferably encoded by at least one gene selected from the group consisting of eutG, ybbO, ahr, and yahK. In the production of the diamine compound, by modifying the microorganism to reduce the activity of at least one of these genes, the production of an alcohol form that is a by-product can be suppressed in the genetically modified microorganism.


The alcohol dehydrogenase is preferably encoded by two or more genes selected from the group consisting of yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK, and more preferably encoded by a yqhD gene and one or more genes selected from the group consisting of fucO, adhP, eutG, ybbO, ahr, and yahK. In the production of the diamine compound, by modifying the microorganism to reduce the activities of two or more of these genes, the production amount of the diamine compound can be significantly increased, and production of an alcohol form that is a by-product can also be suppressed in the genetically modified microorganism.


The alcohol dehydrogenase is preferably encoded by a gene of one combination selected from the group consisting of

    • yqhD and fucO,
    • yqhD and adhP,
    • yqhD and eutG,
    • yqhD and ybbO,
    • yqhD and ahr,
    • yqhD and yahK,
    • yqhD, fucO, and adhP,
    • yqhD, fucO, adhP, and eutG,
    • yqhD, fucO, adhP, eutG, and ybbO,
    • yqhD, fucO, adhP, eutG, ybbO, and ahr,
    • and
    • yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK. As described above, in the production of the diamine compound, the production amount of the diamine compound can be significantly increased, and production of an alcohol form that is a by-product can also be significantly suppressed, by modifying the microorganism to reduce the activities of two or more genes.


Amino acid sequences of typical proteins encoded by the aforementioned alcohol dehydrogenase genes and base sequences of coding regions are shown in Tables 1-1 to 1-50. In the first row of each table, genes, protein names, accession numbers, and origins are shown.









TABLE 1-1





yqhD/ACT44688.1 Escherichia coli BL21(DE3)
















Amino acid
MNNFNLHTPTRILFGKGAIAGLREQIPHDARVLITYGGGSVKKTGVLDQVLDALKGM


sequence
DVLEFGGIEPNPAYETLMNAVKLVREQKVTFLLAVGGGSVLDGTKFIAAAANYPENID



PWHILQTGGKEIKSAIPMGCVLTLPATGSESNAGAVISRKTTGDKQAFHSAHVQPVFA



VLDPVYTYTLPPRQVANGVVDAFVHTVEQYVTKPVDAKIQDRFAEGILLTLIEDGPK



ALKEPENYDVRANVMWAATQALNGLIGAGVPQDWATHMLGHELTAMHGLDHAQT



LAIVLPALWNEKRDTKRAKLLQYAERVWNITEGSDDERIDAAIAATRNFFEQLGVPTH



LSDYGLDGSSIPALLKKLEEHGMTQLGENHDITLDVSRRIYEAAR



(SEQ ID NO: 1)





Base
ATGAACAACTTTAATCTGCACACCCCAACCCGCATTCTGTTTGGTAAAGGCGCAAT


sequence
CGCTGGTTTACGCGAACAAATTCCTCACGATGCTCGCGTATTGATTACCTACGGCG



GCGGCAGCGTGAAAAAAACCGGCGTTCTCGATCAAGTTCTGGATGCCCTGAAAGG



CATGGACGTGCTGGAATTTGGCGGTATTGAGCCAAACCCGGCTTATGAAACGCTG



ATGAACGCCGTGAAACTGGTTCGCGAACAGAAAGTGACTTTCCTGCTGGCGGTTG



GCGGCGGTTCTGTACTGGACGGCACCAAATTTATCGCCGCAGCGGCTAACTATCCG



GAAAATATCGATCCGTGGCACATTCTGCAAACGGGCGGTAAAGAGATTAAAAGCG



CCATCCCGATGGGCTGTGTGCTGACGCTGCCAGCAACCGGTTCAGAATCCAACGC



AGGCGCGGTGATCTCCCGTAAAACCACAGGCGACAAGCAGGCGTTCCATTCTGCC



CATGTTCAGCCGGTATTTGCCGTGCTCGATCCGGTTTATACCTACACCCTGCCGCCG



CGTCAGGTGGCTAACGGCGTAGTGGACGCCTTTGTACACACCGTGGAACAGTATG



TTACCAAACCGGTTGATGCCAAAATTCAGGACCGTTTCGCAGAAGGCATTTTGCTG



ACGCTAATCGAAGATGGTCCGAAAGCCCTGAAAGAGCCAGAAAACTACGATGTGC



GCGCCAACGTCATGTGGGCGGCGACTCAGGCGCTGAACGGTTTGATTGGCGCTGG



CGTACCGCAGGACTGGGCAACGCATATGCTGGGCCACGAACTGACTGCGATGCAC



GGTCTGGATCACGCGCAAACACTGGCTATCGTCCTGCCTGCACTGTGGAATGAAA



AACGCGATACCAAGCGCGCTAAGCTGCTGCAATATGCTGAACGCGTCTGGAACAT



CACTGAAGGTTCCGATGATGAGCGTATTGACGCCGCGATTGCCGCAACCCGCAATT



TCTTTGAGCAATTAGGCGTGCCGACCCACCTCTCCGACTACGGTCTGGACGGCAG



CTCCATCCCGGCTTTGCTGAAAAAACTGGAAGAGCACGGCATGACCCAACTGGGC



GAAAATCATGACATTACGTTGGATGTCAGCCGCCGTATATACGAAGCCGCCCGCTA



A



(SEQ ID NO: 2)
















TABLE 1-2





fucO/ACT44461.1/Escherichia coli BL21(DE3)
















Amino acid
MMANRMILNETAWFGRGAVGALTDEVKRRGYQKALIVTDKTLVQCGVVAKVTDKM


sequence
DAAGLAWAIYDGVVPNPTITVVKEGLGVFQNSGADYLIAIGGGSPQDTCKAIGIISNN



PEFADVRSLEGLSPTNKPSVPILAIPTTAGTAAEVTINYVITDEEKRRKFVCVDPHDIPQ



VAFIDADMMDGMPPALKAATGVDALTHAIEGYITRGAWALTDALHIKAIEIIAGALRG



SVAGDKDAGEEIALGQYVAGMGFSNVGLGLVHGMAHPLGAFYNTPHGVANAILLPH



VMRYNADFTGEKYRDIARVMGVKVEGMSLEEARNAAVEAVFALNRDVGIPPHLRDV



GVRKEDIPALAQAALNDVCTGGNPREATLEDIVELYHTAW



(SEQ ID NO: 3)





Base
ATGATGGCTAACAGAATGATTCTGAACGAAACGGCATGGTTTGGTCGGGGTGCTG


sequence
TTGGGGCTTTAACCGATGAGGTGAAACGCCGTGGTTATCAGAAGGCGCTGATCGT



CACCGATAAAACGCTGGTGCAATGCGGCGTGGTGGCGAAAGTGACCGATAAGATG



GATGCTGCAGGGCTGGCATGGGCGATTTACGACGGCGTAGTGCCCAACCCAACAA



TTACTGTCGTCAAAGAAGGGCTCGGTGTATTCCAGAATAGCGGCGCGGATTACCTG



ATCGCTATTGGTGGTGGTTCTCCACAGGATACTTGTAAAGCGATTGGCATTATCAGC



AACAACCCGGAGTTTGCCGATGTGCGTAGCCTGGAAGGGCTTTCCCCGACCAATA



AACCCAGTGTACCGATTCTGGCAATCCCCACCACAGCAGGCACTGCGGCAGAAGT



GACCATTAACTACGTGATCACTGACGAAGAAAAACGGCGCAAGTTTGTTTGCGTT



GATCCGCATGATATCCCGCAGGTGGCGTTTATTGACGCTGACATGATGGATGGTATG



CCTCCAGCGCTGAAAGCTGCGACGGGTGTCGATGCGCTCACTCATGCTATTGAGG



GGTATATTACCCGTGGCGCGTGGGCGCTAACCGATGCACTGCACATTAAAGCGATT



GAAATCATTGCTGGGGCGCTGCGAGGATCGGTTGCTGGTGATAAGGATGCCGGAG



AAGAAATAGCGCTCGGGCAGTATGTTGCGGGTATGGGCTTCTCGAATGTTGGGTTA



GGGTTGGTGCATGGTATGGCGCATCCACTGGGCGCGTTTTATAACACTCCACACGG



TGTTGCAAACGCCATCCTGCTACCGCATGTCATGCGCTATAACGCTGACTTTACCG



GTGAGAAGTACCGCGATATCGCGCGCGTTATGGGCGTGAAAGTGGAAGGTATGAG



CCTGGAAGAGGCGCGTAATGCCGCTGTTGAAGCGGTGTTTGCTCTCAACCGTGAT



GTCGGTATTCCGCCACATTTGCGTGATGTTGGGGTACGCAAGGAAGACATTCCGGC



ACTGGCGCAGGCGGCACTGAATGATGTTTGTACCGGTGGCAACCCGCGTGAAGCA



ACGCTTGAGGATATTGTAGAGCTTTACCATACCGCCTGGTAA



(SEQ ID NO: 4)
















TABLE 1-3





adhP/ACT43318.1/Escherichiacoli BL21(DE3)
















Amino acid
MKAAVVTKDHHVDVTYKTLRSLKHGEALLKMECCGVCHTDLHVKNGDFGDKTGVI


sequence
LGHEGIGVVAEVGPGVTSLKPGDRASVAWFYEGCGHCEYCNSGNETLCRSVKNAGY



SVDGGMAEECIVVADYAVKVPDGLDSAAASSITCAGVTTYKAVKLSKIRPGQWIAIY



GLGGLGNLALQYAKNVFNAKVIAIDVNDEQLKLATEMGADLAINSHTEDAAKIVQE



KTGGAHAAVVTAVAKAAFNSAVDAVRAGGRVVAVGLPPESMSLDIPRLVLDGIEVVG



SLVGTRQDLTEAFQFAAEGKVVPKVALRPLADINTIFTEMEEGKIRGRMVIDFRH



(SEQ ID NO: 5)





Base
ATGAAGGCTGCAGTTGTTACGAAGGATCATCATGTTGACGTTACGTATAAAACACT


sequence
GCGCTCACTGAAACATGGCGAAGCCCTGCTGAAAATGGAGTGTTGTGGTGTATGT



CATACCGATCTTCATGTTAAGAATGGCGATTTTGGTGACAAAACCGGCGTAATTCT



GGGCCATGAAGGCATCGGTGTGGTGGCAGAAGTGGGTCCAGGTGTCACCTCATTA



AAACCAGGCGATCGTGCCAGCGTGGCGTGGTTCTACGAAGGATGCGGTCATTGCG



AATACTGTAACAGTGGTAACGAAACGCTCTGCCGTTCAGTTAAAAATGCCGGATAC



AGCGTTGATGGCGGGATGGCGGAAGAGTGCATCGTGGTCGCCGATTACGCGGTAA



AAGTGCCAGATGGTCTGGACTCGGCGGCGGCCAGCAGCATTACCTGTGCGGGAGT



CACCACCTACAAAGCCGTTAAGCTGTCAAAAATTCGTCCAGGGCAGTGGATTGCT



ATCTACGGTCTTGGCGGTCTGGGTAACCTCGCCCTGCAATACGCGAAGAATGTCTT



TAACGCCAAAGTGATCGCCATTGATGTCAATGATGAGCAGTTAAAACTGGCAACC



GAAATGGGCGCAGATTTAGCGATTAACTCACACACCGAAGACGCCGCCAAAATTG



TGCAGGAGAAAACTGGTGGCGCTCACGCTGCGGTGGTAACAGCGGTAGCTAAAG



CTGCGTTTAACTCGGCAGTTGATGCTGTCCGTGCAGGCGGTCGTGTTGTGGCTGTC



GGTCTACCGCCGGAGTCTATGAGCCTGGATATCCCACGTCTTGTGCTGGATGGTATT



GAAGTGGTCGGTTCGCTGGTCGGCACGCGCCAGGATTTAACTGAAGCCTTCCAGT



TTGCCGCCGAAGGTAAAGTGGTGCCGAAAGTCGCCCTGCGTCCGTTAGCGGACAT



CAACACCATCTTTACTGAGATGGAAGAAGGCAAAATCCGTGGCCGCATGGTGATT



GATTTCCGTCACTAA



(SEQ ID NO: 6)
















TABLE 1-4





ybbO/ACT42343.1/Escherichiacoli BL21(DE3)
















Amino acid
MTHKATEILTGKVMQKSVLITGCSSGIGLESALELKRQGFHVLAGCRKPDDVERMNN


sequence
MGFTGVLIDLDSPESVDRAADEVIALTDNCLYGIFNNAGFGMYGPLSTISRAQMEQQF



SANFFGAHQLTMRLLPAMLPHGEGRIVMTSSVMGLISTPGRGAYAASKYALEAWSDA



LRMELRHSGIKVSLIEPGPIRTRFTDNVNQTQSDKPVENPGIAARFTLGPEAVVDKVR



HAFISEKPKMRYPVTLVTWAVMVLKRLLPGRVMDKILQG (SEQ ID NO: 7)





Base
ATGACTCATAAAGCAACGGAGATCCTGACAGGTAAAGTTATGCAAAAATCGGTCTT


sequence
AATTACCGGATGTTCCAGTGGAATTGGCCTGGAAAGCGCGCTCGAATTAAAACGC



CAGGGTTTTCATGTGCTGGCAGGTTGCCGAAAACCGGATGATGTTGAGCGTATGA



ACAACATGGGATTTACCGGCGTGTTGATCGATCTGGATTCACCAGAAAGTGTTGAT



CGCGCAGCAGACGAGGTGATCGCCCTGACCGATAATTGTCTGTATGGGATCTTTAA



CAATGCCGGATTCGGCATGTATGGCCCCCTTTCCACCATCAGCCGTGCGCAGATGG



AACAGCAGTTTTCCGCCAACTTTTTCGGCGCACACCAGCTCACCATGCGCCTGTTA



CCCGCGATGTTACCGCACGGTGAAGGGCGTATTGTGATGACATCATCGGTGATGGG



ATTAATCTCCACGCCGGGTCGTGGCGCTTACGCGGCCAGTAAATATGCGCTGGAGG



CGTGGTCAGACGCGCTGCGCATGGAGCTACGCCACAGCGGAATTAAAGTCAGCCT



GATCGAACCCGGTCCCATTCGTACTCGCTTCACCGACAACGTCAACCAGACGCAA



AGTGATAAACCAGTCGAAAATCCCGGCATCGCCGCCCGCTTTACGTTGGGACCGG



AAGCGGTGGTGGACAAAGTACGCCATGCTTTTATTAGCGAGAAGCCGAAGATGCG



CTATCCGGTAACGCTGGTGACCTGGGCAGTAATGGTGCTTAAGCGCCTGCTGCCGG



GGCGCGTGATGGACAAAATATTGCAGGGGTGA



(SEQ ID NO: 8)
















TABLE 1-5





eutG/ACT44165.1/Escherichiacoli BL21(DE3)
















Amino acid
MQNELQTALFQAFDTLNLQRVKTFSVPPVTLCGPGAVSSCGQQAQTRGLKHLFVMA


sequence
DSFLHQAGMTAGLTRSLAVKGIAMTLWPCPVGEPCITDVCAAVAQLRESGCDGVIAF



GGGSVLDAAKAVALLVTNPDSTLAEMSETSVLQPRLPLIAIPTTAGTGSETTNVTVIID



AVSGRKQVLAHASLMPDVAILDAALTEGVPSHVTAMTGIDALTHAIEAYSALNATPFT



DSLAIGAIAMIGKSLPKAVGYGHDLAARESMLLASCMAGMAFSSAGLGLCHAMAHQ



PGAALHIPHGLANAMLLPTVMEFNRMVCRERFSQIGRALRTKKSDDRDAINAVSELI



AEVGIGKRLGDVGATSAHYGAWAQAALEDICLRSNPRTASLEQIVGLYAAAQ



(SEQ ID NO: 9)





Base
ATGCAAAATGAATTGCAGACCGCGCTCTTTCAGGCGTTCGATACCCTGAATCTGCA


sequence
ACGGGTAAAAACATTTAGCGTTCCACCGGTGACGCTTTGCGGTCCGGGCGCGGTG



AGCAGTTGCGGGCAGCAAGCGCAAACGCGTGGGCTGAAACATCTGTTCGTGATG



GCAGACAGCTTTTTGCATCAGGCGGGGATGACCGCCGGGCTGACGCGCAGCCTGG



CTGTTAAAGGCATCGCCATGACGCTCTGGCCATGTCCGGTGGGCGAACCGTGCATT



ACCGACGTGTGTGCAGCCGTGGCGCAGTTGCGTGAGTCAGGCTGTGATGGGGTGA



TCGCATTTGGCGGCGGCTCGGTGCTGGATGCGGCGAAAGCCGTGGCGTTGCTGGT



GACGAACCCCGATAGCACGCTGGCAGAGATGTCAGAAACCAGCGTTCTGCAACC



GCGCTTGCCGCTGATTGCCATTCCAACGACCGCCGGAACCGGCTCTGAAACCACC



AATGTAACGGTGATTATCGACGCGGTGAGCGGGCGCAAGCAGGTGTTAGCCCATG



CCTCGCTGATGCCGGATGTGGCGATCCTCGACGCCGCATTGACCGAAGGTGTGCC



GTCGCATGTCACGGCGATGACCGGCATTGATGCGTTAACCCATGCCATTGAAGCAT



ACAGCGCCCTGAACGCTACACCGTTTACCGACAGCCTGGCGATTGGTGCCATTGC



GATGATTGGCAAATCGCTGCCGAAAGCGGTGGGCTACGGTCACGACCTTGCCGCG



CGCGAGAGCATGTTACTGGCTTCATGTATGGCGGGAATGGCGTTTTCCAGTGCGGG



TCTTGGGTTGTGCCACGCGATGGCGCATCAGCCGGGCGCGGCGCTGCATATTCCGC



ACGGTCTCGCGAACGCCATGTTGCTGCCAACGGTGATGGAATTTAACCGGATGGTT



TGTCGTGAACGCTTTAGTCAGATTGGTCGGGCACTGCGAACTAAAAAATCCGACG



ATCGTGACGCTATTAACGCGGTAAGTGAGCTGATTGCGGAAGTTGGGATTGGTAAA



CGACTGGGCGATGTTGGTGCGACATCTGCGCATTACGGCGCATGGGCGCAGGCCG



CGCTGGAAGATATTTGTCTGCGCAGTAACCCGCGTACCGCCAGCCTGGAGCAGATT



GTCGGCCTGTACGCAGCGGCGCAATAA



(SEQ ID NO: 10)
















TABLE 1-6





ahr/ACT45923.1/Escherichiacoli BL21(DE3)
















Amino acid
MSMIKSYAAKEAGGELEVYEYDPGELRPQDVEVQVDYCGICHSDLSMIDNEWGFSQ


sequence
YPLVAGHEVIGRVVALGSAAQDKGLQVGQRVGIGWTARSCGHCDACISGNQINCEQG



AVPTIMNRGGFAEKLRADWQWVIPLPENIDIESAGPLLCGGITVFKPLLMHHITATSRV



GVIGIGGLGHIAIKLLHAMGCEVTAFSSNPAKEQEVLAMGADKVVNSRDPQALKALA



GQFDLIINTVNVSLDWQPYFEALTYGGNFHTVGAVLTPLSVPAFTLIAGDRSVSGSATG



TPYELRKLMRFAARSKVAPTTELFPMSKINDAIQHVRDGKARYRVVLKADY



(SEQ ID NO: 11)





Base
ATGTCGATGATAAAAAGCTATGCCGCAAAAGAAGCGGGCGGAGAACTGGAAGTTT


sequence
ATGAGTACGATCCCGGTGAGCTGAGGCCACAAGATGTTGAAGTGCAGGTGGATTA



CTGCGGGATCTGCCATTCCGATCTGTCGATGATCGATAACGAATGGGGATTTTCAC



AATATCCGCTGGTTGCCGGGCATGAGGTGATTGGGCGCGTGGTGGCACTCGGGAG



CGCCGCGCAGGATAAAGGTTTGCAGGTCGGTCAGCGTGTCGGGATTGGCTGGACG



GCGCGTAGCTGTGGTCACTGCGACGCCTGTATTAGCGGTAATCAGATCAACTGCGA



GCAAGGTGCGGTGCCGACGATTATGAATCGCGGTGGCTTTGCCGAGAAGTTGCGT



GCGGACTGGCAATGGGTGATTCCACTGCCAGAAAATATTGATATCGAGTCCGCCGG



GCCGCTGTTGTGCGGCGGTATCACGGTCTTTAAACCACTGTTGATGCACCATATCA



CTGCTACCAGCCGCGTTGGGGTAATTGGTATTGGCGGGCTGGGGCATATCGCTATA



AAACTTCTGCACGCAATGGGATGCGAGGTGACAGCCTTTAGTTCTAATCCGGCGA



AAGAGCAGGAAGTGCTGGCGATGGGTGCCGATAAAGTGGTGAATAGCCGCGATCC



GCAGGCACTGAAAGCACTGGCGGGGCAGTTTGATCTCATTATCAACACCGTCAAC



GTCAGCCTCGACTGGCAGCCCTATTTTGAGGCGCTGACCTATGGCGGTAATTTCCA



TACGGTCGGTGCGGTTCTCACGCCGCTGTCTGTTCCGGCCTTTACGTTAATTGCGG



GCGATCGCAGCGTCTCTGGTTCTGCTACCGGCACGCCTTATGAGCTGCGTAAGCTG



ATGCGTTTTGCCGCCCGCAGCAAGGTTGCGCCGACCACCGAACTGTTCCCGATGT



CGAAAATTAACGACGCCATCCAGCATGTGCGCGACGGTAAGGCGCGTTACCGCGT



GGTGTTGAAAGCCGATTATTGA



(SEQ ID NO: 12)
















TABLE 1-7





yahK/ACT42179.1/Escherichiacoli BL21(DE3)
















Amino acid
MKIKAVGAYSAKQPLEPMDITRREPGPNDVKIEIAYCGVCHSDLHQVRSEWAGTVYP


sequence
CVPGHEIVGRVVAVGDQVEKYAPGDLVGVGCIVDSCKHCEECEDGLENYCDHMTGT



YNSPTPDEPGHTLGGYSQQIVVHERYVLRIRHPQEQLAAVAPLLCAGITTYSPLRHWQ



AGPGKKVGVVGIGGLGHMGIKLAHAMGAHVVAFTTSEAKREAAKALGADEVVNSR



NADEMAAHLKSFDFILNTVAAPHNLDDFTTLLKRDGTMTLVGAPATPHKSPEVFNLI



MKRRAIAGSMIGGIPETQEMLDFCAEHGIVADIEMIRADQINEAYERMLRGDVKYRF



VIDNRTLTD



(SEQ ID NO: 13)





Base
ATGAAGATCAAAGCTGTTGGTGCATATTCCGCTAAACAACCACTTGAACCGATGGA


sequence
TATCACCCGGCGTGAACCGGGACCGAATGATGTCAAAATCGAAATCGCTTACTGTG



GCGTTTGCCATTCCGATCTCCACCAGGTCCGTTCCGAGTGGGCGGGGACGGTTTAC



CCCTGCGTGCCGGGTCATGAAATTGTGGGGCGTGTGGTAGCCGTTGGTGATCAGG



TAGAAAAATATGCGCCGGGCGATCTGGTCGGTGTCGGCTGCATTGTCGACAGTTGT



AAACATTGCGAAGAGTGTGAAGACGGGTTGGAAAACTACTGTGATCACATGACCG



GCACCTATAACTCGCCGACGCCGGACGAACCGGGCCATACTCTGGGCGGCTACTC



ACAACAGATCGTCGTTCATGAGCGATATGTTCTGCGTATTCGTCACCCGCAAGAGC



AGCTGGCGGCGGTGGCTCCTTTGTTGTGTGCAGGGATCACCACGTATTCGCCGCTA



CGTCACTGGCAGGCCGGGCCGGGTAAAAAAGTGGGCGTGGTCGGCATCGGCGGT



CTGGGACATATGGGGATTAAGCTGGCCCACGCGATGGGGGCACATGTGGTGGCATT



TACCACTTCTGAGGCAAAACGCGAAGCGGCAAAAGCCCTGGGGGCCGATGAAGT



TGTTAACTCACGCAATGCCGATGAGATGGCGGCTCATCTGAAGAGTTTCGATTTCA



TTTTGAATACAGTAGCTGCGCCACATAATCTCGACGATTTTACCACCTTGCTGAAG



CGTGATGGCACCATGACGCTGGTTGGTGCGCCTGCGACACCGCATAAATCGCCGG



AAGTTTTCAACCTGATCATGAAACGCCGTGCGATAGCCGGTTCTATGATTGGCGGC



ATTCCAGAAACTCAGGAGATGCTCGATTTTTGCGCCGAACATGGCATCGTGGCTGA



TATAGAGATGATTCGGGCCGATCAAATTAATGAAGCCTATGAGCGAATGCTGCGCG



GTGATGTGAAATATCGTTTTGTTATCGATAATCGCACACTAACAGACTGA



(SEQ ID NO: 14)
















TABLE 1-8





adhE/ACT43105.1/Escherichiacoli BL21(DE3)
















Amino acid
MAVTNVAELNALVERVKKAQREYASFTQEQVDKIFRAAALAAADARIPLAKMAVAES


sequence
GMGIVEDKVIKNHFASEYIYNAYKDEKTCGVLSEDDTFGTITIAEPIGIICGIVPTTNPTS



TAIFKSLISLKTRNAIIFSPHPRAKDATNKAADIVLQAAIAAGAPKDLIGWIDQPSVELS



NALMHHPDINLILATGGPGMVKAAYSSGKPAIGVGAGNTPVVIDETADIKRAVASVL



MSKTFDNGVICASEQSVVVVDSVYDAVRERFATHGGYLLQGKELKAVQDVILKNGA



LNAAIVGQPAYKIAELAGFSVPENTKILIGEVTVVDESEPFAHEKLSPTLAMYRAKDFE



DAVEKAEKLVAMGGIGHTSCLYTDQDNQPARVSYFGQKMKTARILINTPASQGGIGDL



YNFKLAPSLTLGCGSWGGNSISENVGPKHLINKKTVAKRAENMLWHKLPKSIYFRRG



SLPIALDEVITDGHKRALIVTDRFLFNNGYADQITSVLKAAGVETEVFFEVEADPTLSI



VRKGAELANSFKPDVIIALGGGSPMDAAKIMWVMYEHPETHFEELALRFMDIRKRIY



KFPKMGVKAKMIAVTTTSGTGSEVTPFAVVTDDATGQKYPLADYALTPDMAIVDANL



VMDMPKSLCAFGGLDAVTHAMEAYVSVLASEFSDGQALQALKLLKEYLPASYHEGS



KNPVARERVHSAATIAGIAFANAFLGVCHSMAHKLGSQFHIPHGLANALLICNVIRYN



ANDNPTKQTAFSQYDRPQARRRYAEIADHLGLSAPGDRTAAKIEKLLAWLETLKAEL



GIPKSIREAGVQEADFLANVDKLSEDAFDDQCTGANPRYPLISELKQILLDTYYGRDY



VEGETAAKKEAAPAKAEKKAKKSA



(SEQ ID NO: 15)





Base
ATGGCTGTTACTAATGTCGCTGAACTTAACGCACTCGTAGAGCGTGTAAAAAAAGC


sequence
CCAGCGTGAATATGCCAGTTTCACTCAAGAGCAAGTAGACAAAATCTTCCGCGCC



GCCGCTCTGGCTGCTGCAGATGCTCGAATCCCACTCGCGAAAATGGCCGTTGCCG



AATCCGGCATGGGTATCGTCGAAGATAAAGTGATCAAAAACCACTTTGCTTCTGAA



TATATCTACAACGCCTATAAAGATGAAAAAACCTGTGGTGTTCTGTCTGAAGACGA



CACTTTTGGTACCATCACTATCGCTGAACCAATCGGTATTATTTGCGGTATCGTTCC



GACCACTAACCCGACTTCAACTGCTATCTTCAAATCGCTGATCAGTCTGAAGACCC



GTAACGCCATTATCTTCTCCCCGCACCCGCGTGCAAAAGATGCCACCAACAAAGC



GGCTGATATCGTTCTGCAGGCTGCTATCGCTGCCGGTGCTCCGAAAGATCTGATCG



GCTGGATCGATCAACCTTCTGTTGAACTGTCTAACGCACTGATGCACCACCCAGAC



ATCAACCTGATCCTCGCGACTGGTGGTCCGGGCATGGTTAAAGCCGCATACAGCTC



CGGTAAACCAGCTATCGGTGTAGGCGCGGGCAACACTCCAGTTGTTATCGATGAA



ACTGCTGATATCAAACGTGCAGTTGCATCTGTACTGATGTCCAAAACCTTCGACAA



CGGCGTAATCTGTGCTTCTGAACAGTCTGTTGTTGTTGTTGACTCTGTTTATGACGC



TGTACGTGAACGTTTTGCAACCCACGGCGGCTATCTGTTGCAGGGTAAAGAGCTG



AAAGCTGTTCAGGATGTTATCCTGAAAAACGGTGCGCTGAACGCGGCTATCGTTG



GTCAGCCAGCCTATAAAATTGCTGAACTGGCAGGCTTCTCTGTACCAGAAAACAC



CAAGATTCTGATCGGTGAAGTGACCGTTGTTGATGAAAGCGAACCGTTCGCACAT



GAAAAACTGTCCCCGACTCTGGCAATGTACCGCGCTAAAGATTTCGAAGACGCGG



TAGAAAAAGCAGAGAAACTGGTTGCTATGGGCGGTATCGGTCATACCTCTTGCCTG



TACACTGACCAGGATAACCAACCGGCTCGCGTTTCTTACTTCGGTCAGAAAATGA



AAACGGCGCGTATCCTGATTAACACCCCAGCGTCTCAGGGTGGTATCGGTGACCTG



TATAACTTCAAACTCGCACCTTCCCTGACTCTGGGTTGTGGTTCTTGGGGTGGTAA



CTCCATCTCTGAAAACGTTGGTCCGAAACACCTGATCAACAAGAAAACCGTTGCT



AAGCGAGCTGAAAACATGTTGTGGCACAAACTTCCGAAATCTATCTACTTCCGCCG



TGGCTCCCTGCCAATCGCGCTGGATGAAGTGATTACTGATGGCCACAAACGTGCG



CTCATCGTGACTGACCGCTTCCTGTTCAACAATGGTTATGCTGATCAGATCACTTCC



GTACTGAAAGCAGCAGGCGTTGAAACTGAAGTCTTCTTCGAAGTAGAAGCGGAC



CCGACCCTGAGCATCGTTCGTAAAGGTGCAGAACTGGCAAACTCCTTCAAACCAG



ACGTGATTATCGCGCTGGGTGGTGGTTCCCCGATGGACGCCGCGAAGATCATGTGG



GTTATGTACGAACATCCGGAAACTCACTTCGAAGAGCTGGCGCTGCGCTTTATGGA



TATCCGTAAACGTATCTACAAGTTCCCGAAAATGGGCGTGAAAGCGAAAATGATCG



CTGTCACCACCACTTCTGGTACAGGTTCTGAAGTCACTCCGTTTGCGGTTGTAACT



GACGACGCTACTGGTCAGAAATATCCGCTGGCAGACTATGCGCTGACTCCGGATAT



GGCGATTGTCGACGCCAACCTGGTTATGGACATGCCGAAGTCCCTGTGTGCTTTCG



GTGGTCTGGACGCAGTAACTCACGCCATGGAAGCTTATGTTTCTGTACTGGCATCT



GAGTTCTCTGATGGTCAGGCTCTGCAGGCACTGAAACTGCTGAAAGAATATCTGC



CAGCGTCCTACCACGAAGGGTCTAAAAATCCGGTAGCGCGTGAACGTGTTCACAG



TGCAGCGACTATCGCGGGTATCGCGTTTGCGAACGCCTTCCTGGGTGTATGTCACT



CAATGGCGCACAAACTGGGTTCCCAGTTCCATATTCCGCACGGTCTGGCAAACGC



CCTGCTGATTTGTAACGTTATTCGCTACAATGCGAACGACAACCCGACCAAGCAGA



CTGCATTCAGCCAGTATGACCGTCCGCAGGCTCGCCGTCGTTATGCTGAAATTGCC



GACCACTTGGGTCTGAGCGCACCGGGCGACCGTACTGCTGCTAAGATCGAGAAAC



TGCTGGCATGGCTGGAAACGCTGAAAGCTGAACTGGGTATTCCGAAATCTATCCGT



GAAGCTGGCGTTCAGGAAGCAGACTTCCTGGCGAACGTGGATAAACTGTCTGAA



GATGCATTCGATGACCAGTGCACCGGCGCTAACCCGCGTTACCCGCTGATCTCCGA



GCTGAAACAGATCCTGCTGGATACCTACTACGGTCGTGATTATGTAGAAGGTGAAA



CTGCAGCGAAAAAAGAAGCCGCTCCGGCTAAAGCTGAGAAAAAAGCGAAAAAAT



CCGCTTAA



(SEQ ID NO: 16)
















TABLE 1-9





ybdR/ACT42455.1/Escherichiacoli BL21(DE3)
















Amino acid
MKALTYHGPHHVQVENVPDPGIEQADDIILRITATAICGSDLHLYRGKIPQVKHGDIFG


sequence
HEFMGEVVETGKDVKNLQKGDRVVIPFVIACGDCFFCRLQQYAACENTNAGKGAAL



NKKQIPAPAALFGYSHLYGGVPGGQAEYVRVPKGNVGPFKVPPLLSDDKALFLSDILP



TAWQAAKNAQIQQGSSVAVYGAGPVGLLTIACARLLGAEQIFVVDHHPYRLHFAADR



YGAIPINFDEDSDPAQSIIEQTAGHRGVDAVIDAVGFEAKGSTTETVLTNLKLEGSSGK



ALRQCIAAVRRGGIVSVPGVYAGFIHGFLFGDAFDKGLSFKMGQTHVHAWLGELLPL



IEKGLLKPEEIVTHYMPFEEAARGYEIFEKREEECRKVILVPGAQSAEAAQKAVSGLV



NAMPGGTI (SEQ ID NO: 17)





Base
ATGAAAGCATTGACTTATCACGGCCCACATCACGTTCAGGTAGAAAATGTTCCCGA


sequence
TCCGGGCATTGAACAGGCAGATGATATTATTCTGCGTATTACGGCAACGGCGATCT



GTGGCTCTGACCTCCATCTTTATCGAGGCAAAATACCCCAGGTTAAACATGGCGAT



ATTTTTGGTCATGAATTTATGGGGGAAGTCGTTGAAACCGGAAAGGACGTAAAAA



ATTTGCAAAAAGGCGACCGGGTGGTAATTCCGTTTGTCATTGCTTGTGGCGACTGT



TTTTTCTGTCGATTACAGCAATATGCCGCCTGCGAAAATACCAATGCGGGTAAAGG



CGCTGCGCTCAATAAAAAACAGATACCAGCTCCCGCGGCATTGTTTGGTTATAGTC



ACCTGTATGGCGGCGTTCCTGGTGGGCAGGCGGAATATGTCCGCGTCCCTAAAGG



GAATGTGGGGCCGTTTAAAGTACCGCCTTTGCTTTCAGATGATAAAGCGCTTTTCC



TTTCTGATATTCTGCCAACGGCATGGCAGGCAGCAAAAAATGCGCAGATCCAACA



AGGTTCAAGCGTTGCAGTCTATGGTGCTGGTCCTGTGGGATTGTTGACAATCGCCT



GTGCACGGTTGCTCGGTGCGGAACAGATTTTTGTTGTTGATCATCATCCCTACCGC



TTGCATTTCGCCGCCGACCGCTACGGCGCGATCCCGATTAATTTTGATGAAGACAG



CGATCCGGCACAGTCAATTATTGAACAAACGGCAGGTCACCGGGGCGTGGATGCA



GTAATAGACGCCGTCGGTTTTGAAGCGAAAGGCAGCACCACGGAAACGGTGCTG



ACTAACCTGAAACTGGAGGGCAGCAGCGGTAAAGCGTTGCGTCAGTGTATTGCGG



CGGTCAGGCGTGGCGGCATTGTTAGCGTACCGGGCGTCTACGCTGGATTTATTCAC



GGTTTCCTGTTTGGCGACGCCTTTGATAAAGGGTTGTCGTTTAAAATGGGACAGAC



CCACGTTCACGCATGGCTGGGAGAATTATTACCGTTAATTGAGAAAGGATTACTGA



AACCAGAAGAAATTGTTACCCACTATATGCCGTTTGAAGAGGCCGCCCGGGGATAT



GAGATTTTCGAAAAACGTGAAGAGGAGTGCCGTAAGGTGATTCTGGTACCCGGTG



CACAAAGCGCAGAGGCGGCGCAGAAGGCGGTTTCAGGTCTAGTGAATGCGATGC



CGGGGGGAACAATATGA (SEQ ID NO: 18)
















TABLE 1-10





dkgA/ACT44689.1/Escherichiacoli BL21(DE3)
















Amino acid
MANPTVIKLQDGNVMPQLGLGVWQASNEEVITAIQKALEVGYRSIDTAAAYKNEEG


sequence
VGKALKNASVNREELFITTKLWNDDHKRPREALLDSLKKLQLDYIDLYLMHWPVPAI



DHYVEAWKGMIELQKEGLIKSIGVCNFQIHHLQRLIDETGVTPVINQIELHPLMQQRQ



LHAWNATHKIQTESWSPLAQGGKGVFDQKVIRDLADKYGKTPAQIVIRWHLDSGLV



VIPKSVTPSRIAENFDVWDFRLDKDELGEIAKLDQGKRLGPDPDQFGG (SEQ ID NO:



19)





Base
ATGGCTAATCCAACCGTTATTAAGCTACAGGATGGCAATGTCATGCCCCAGCTGGG


sequence
ACTGGGCGTCTGGCAAGCAAGTAATGAGGAAGTAATCACCGCCATTCAAAAAGCG



TTAGAAGTGGGTTATCGCTCGATTGATACCGCCGCGGCCTACAAGAACGAAGAAG



GTGTCGGCAAAGCCCTGAAAAATGCCTCAGTCAACAGAGAAGAACTGTTCATCAC



CACTAAGCTGTGGAACGACGACCACAAGCGCCCCCGCGAAGCCCTGCTCGACAG



CCTGAAAAAACTCCAGCTTGATTATATCGACCTCTACTTAATGCACTGGCCCGTTCC



CGCTATCGACCATTATGTCGAAGCATGGAAAGGCATGATCGAATTGCAAAAAGAG



GGATTAATCAAAAGCATCGGCGTGTGCAACTTCCAGATCCATCACCTGCAACGCCT



GATTGATGAAACTGGCGTGACGCCTGTGATAAACCAGATCGAACTTCATCCGCTGA



TGCAACAACGCCAGCTACACGCCTGGAACGCGACACACAAAATCCAGACCGAAT



CCTGGAGCCCATTAGCGCAAGGAGGGAAAGGCGTTTTCGATCAGAAAGTCATTCG



CGATCTGGCAGATAAATACGGCAAAACCCCGGCGCAGATTGTTATCCGCTGGCATC



TGGATAGCGGCCTGGTGGTGATCCCGAAATCGGTCACACCTTCACGTATTGCCGAA



AACTTTGATGTCTGGGATTTCCGTCTCGACAAAGACGAACTCGGCGAAATTGCAA



AACTCGATCAGGGCAAGCGTCTCGGTCCCGATCCTGACCAGTTCGGCGGCTAA



(SEQ ID NO: 20)
















TABLE 1-11





yiaY/ACT45243.1/Escherichiacoli BL21(DE3)
















Amino acid
MASSTFFIPSVNVIGADSLTDAMNMMADYGFTRTLIVTDNMLTKLGMAGDVQKALE


sequence
ERNIFSVIYDGTQPNPTTENVAAGLKLLKENNCDSVISLGGGSPHDCAKGIALVAANG



GDIRDYEGVDRSAKPQLPMIAINTTAGTASEMTRFCIITDEARHIKMAIVDKHVTPLLS



VNDSSLMIGMPKSLTAATGMDALTHAIEAYVSIAATPITDACALKAVTMIAENLPLAVE



DGSNAKAREAMAYAQFLAGMAFNNASLGYVHAMAHQLGGFYNLPHGVCNAVLLP



HVQVFNSKVAAARLRDCAAAMGVNVTGKNDAEGAEACINAIRELAKKVDIPAGLRD



LNVKEEDFAVLATNALKDACGFTNPIQATHEEIVAIYRAAM



(SEQ ID NO: 21)





Base
ATGGCATCTTCAACTTTCTTTATTCCTTCTGTGAATGTCATCGGCGCTGATTCATTGA


sequence
CTGATGCAATGAATATGATGGCAGATTATGGATTTACCCGTACCTTAATTGTCACTG



ACAATATGTTAACGAAATTAGGTATGGCGGGTGATGTGCAAAAAGCACTGGAAGA



ACGCAATATTTTTAGCGTTATTTATGATGGCACCCAACCTAACCCAACCACGGAAA



ACGTCGCCGCAGGTTTGAAATTACTTAAAGAAAATAATTGCGATAGCGTGATTTCC



TTAGGCGGTGGTTCTCCGCATGACTGTGCAAAAGGTATTGCGCTGGTGGCAGCCA



ATGGTGGTGATATCCGTGATTATGAAGGCGTTGACCGCTCTGCAAAACCGCAGCTG



CCGATGATCGCCATCAATACCACTGCGGGTACAGCATCAGAAATGACTCGTTTCTG



CATCATCACCGACGAAGCGCGTCACATCAAAATGGCGATTGTTGATAAGCACGTG



ACTCCGCTGCTTTCTGTCAATGACTCCTCGCTGATGATCGGTATGCCGAAGTCACT



GACCGCCGCCACTGGTATGGACGCCTTAACGCACGCTATCGAAGCGTATGTTTCTA



TTGCCGCCACGCCGATCACTGACGCTTGTGCACTGAAAGCCGTGACCATGATTGC



CGAAAACCTGCCGTTAGCCGTTGAAGATGGCAGTAATGCGAAAGCGCGTGAAGCA



ATGGCTTATGCCCAGTTCCTCGCCGGTATGGCGTTCAATAATGCTTCTCTGGGTTAT



GTTCATGCGATGGCGCACCAGCTGGGCGGTTTCTACAACCTGCCACACGGTGTATG



TAACGCCGTTTTGCTGCCGCATGTTCAGGTATTCAACAGCAAAGTCGCCGCCGCAC



GTCTGCGTGACTGTGCCGCTGCAATGGGCGTGAACGTGACAGGTAAAAACGATGC



GGAAGGTGCTGAAGCCTGCATTAACGCCATCCGTGAACTGGCGAAGAAAGTGGAT



ATCCCGGCAGGCCTACGCGACCTGAACGTGAAAGAAGAAGATTTCGCGGTTCTGG



CGACTAATGCCCTGAAAGATGCCTGTGGTTTTACTAACCCGATCCAGGCAACTCAC



GAAGAAATTGTGGCGATTTATCGCGCAGCGATGTAA



(SEQ ID NO: 22)
















TABLE 1-12





frmA/ACT42209.1/Escherichiacoli BL21(DE3)
















Amino acid
MKSRAAVAFAPGKPLEIVEIDVAPPKKGEVLIKVTHTGVCHTDAFTLSGDDPEGVFPV


sequence
VLGHEGAGVVVEVGEGVTSVKPGDHVIPLYTAECGECEFCRSGKTNLCVAVRETQGK



GLMPDGTTRFSYNGQPLYHYMGCSTFSEYTVVAEVSLAKINPEANHEHVCLLGCGVT



TGIGAVHNTAKVQPGDSVAVFGLGAIGLAVVQGARQAKAGRIIAIDTNPKKFDLARRF



GATDCINPNDYDKPIKDVLLDINKWGIDHTFECIGNVNVMRAALESAHRGWGQSVII



GVAGAGQEISTRPFQLVTGRVWKGSAFGGVKGRSQLPGMVEDAMKGDIDLEPFVTH



TMSLDEINDAFDLMHEGKSIRTVIRY (SEQ ID NO: 23)





Base
ATGAAATCACGTGCTGCCGTTGCATTTGCTCCCGGTAAACCGCTGGAAATCGTTGA


sequence
AATTGACGTTGCACCACCGAAAAAAGGTGAAGTGCTGATTAAAGTCACCCATACC



GGCGTTTGCCATACCGACGCATTTACCCTCTCCGGGGATGACCCGGAAGGTGTATT



CCCGGTGGTTCTCGGTCACGAAGGGGCCGGCGTTGTGGTTGAAGTCGGTGAAGG



CGTAACCAGCGTCAAACCTGGCGACCATGTGATCCCGCTTTACACCGCGGAGTGC



GGCGAGTGTGAGTTCTGTCGTTCTGGCAAAACTAACCTCTGTGTTGCGGTTCGCG



AAACCCAGGGTAAAGGCTTGATGCCAGACGGCACCACCCGTTTTTCTTACAACGG



GCAGCCGCTTTATCACTACATGGGATGCTCAACATTCAGTGAATACACCGTGGTCG



CGGAAGTGTCTCTGGCCAAAATTAATCCAGAAGCAAACCATGAACACGTCTGCCT



GCTGGGCTGTGGCGTGACCACCGGTATTGGCGCGGTGCACAACACAGCTAAAGTC



CAGCCAGGTGATTCTGTTGCCGTGTTTGGTCTTGGCGCGATTGGTCTGGCAGTGGT



TCAGGGCGCGCGTCAGGCGAAAGCGGGACGGATTATCGCTATCGATACCAACCCG



AAGAAATTCGATCTGGCTCGTCGCTTCGGTGCTACCGACTGCATTAACCCGAATGA



CTACGACAAACCGATTAAAGATGTCCTGCTGGATATCAACAAATGGGGTATCGACC



ATACCTTTGAATGCATCGGTAACGTCAACGTGATGCGTGCGGCGCTGGAAAGTGC



GCACCGCGGCTGGGGTCAGTCGGTGATCATCGGGGTAGCAGGTGCCGGTCAGGA



AATCTCCACCCGACCATTCCAGTTGGTCACCGGTCGCGTATGGAAAGGTTCCGCGT



TTGGCGGCGTGAAAGGTCGTTCCCAGTTACCGGGTATGGTTGAAGATGCGATGAA



AGGTGATATCGATCTGGAACCGTTTGTCACGCATACCATGAGCCTTGATGAAATTA



ATGACGCCTTCGACCTGATGCATGAAGGCAAATCCATTCGAACCGTAATTCGTTAC



TGA(SEQ ID NO: 24)
















TABLE 1-13





dkgB/ACT42101.1/Escherichiacoli BL21(DE3)
















Amino acid
MAIPAFGLGTFRLKDDVVISSVKTALELGYRAIDTAQIYDNEAAVGQAIAESGVPRHE


sequence
LYITTKIWIENLSKDKLIPSLKESLQKLRTDYVDLTLIHWPSPNDEVSVEEFMQELLEA



KKEGLTREIGISNFTIPLMEKAIAAVGAENIATNQIELSPYLQNRKVVAWAKQHGIHITS



YMTLAYGKALKDEVIARIAAKHNATPAQVILAWAMGEGYSVIPSSTKRKNLESNLKA



QNLQLDAEDKKAIAALDCNDRLVSPEGLAPEWD (SEQ ID NO: 25)





Base
ATGGCTATCCCTGCATTTGGTTTAGGTACTTTCCGTCTGAAAGACGACGTTGTTATT


sequence
TCATCTGTGAAAACGGCGCTTGAACTTGGTTATCGCGCAATTGATACTGCACAAAT



CTATGATAACGAAGCCGCAGTAGGTCAGGCGATTGCAGAAAGTGGCGTGCCACGT



CATGAACTCTACATCACCACTAAAATCTGGATTGAAAATCTCAGCAAAGACAAATT



GATCCCGAGTCTGAAAGAGAGCCTGCAAAAATTGCGTACTGATTATGTTGATCTGA



CTCTAATCCACTGGCCGTCACCAAACGATGAAGTCTCTGTTGAAGAGTTTATGCAG



GAGCTGCTGGAAGCCAAAAAAGAAGGGTTGACGCGTGAGATCGGTATTTCCAACT



TCACGATCCCATTGATGGAAAAGGCGATTGCTGCTGTTGGCGCTGAAAACATCGCT



ACTAACCAGATTGAACTCTCTCCTTATCTGCAAAACCGTAAAGTGGTTGCCTGGGC



TAAACAGCACGGCATCCATATTACTTCCTATATGACGCTGGCGTATGGTAAGGCCCT



GAAAGATGAGGTTATTGCTCGTATCGCAGCTAAACACAATGCGACTCCGGCACAA



GTGATTCTGGCGTGGGCTATGGGGGAAGGTTACTCAGTAATTCCTTCTTCTACTAA



ACGTAAAAACCTGGAAAGTAATCTTAAGGCACAAAATTTACAGCTTGATGCCGAA



GATAAAAAAGCGATCGCCGCACTGGATTGCAACGACCGCCTGGTTAGCCCGGAAG



GTCTGGCTCCTGAATGGGATTAA (SEQ ID NO: 26)
















TABLE 1-14





yghA/ACT44682.1/Escherichia coli BL21(DE3)
















Amino
MSHLKDPTTQYYTGEYPKQKQPTPGIQAKMTPVPDCGEKTY


acid
VGSGRLKDRKALVTGGDSGIGRAAAIAYAREGADVAISYLP


sequence
VEEEDAQDVKKIIEECGRKAVLLPGDLSDEKFARSLVHEAH



KALGGLDIMALVAGKQVAIPDIADLTSEQFQKTFAINVFAL



FWLTQEAIPLLPKGASIITTSSIQAYQPSPHLLDYAATKAA



ILNYSRGLAKQVAEKGIRVNIVAPGPIWTALQISGGQTQDK



IPQFGQQTPMKRAGQPAELAPVYVYLASQESSYVTAEVHGV



CGGEHLG



(SEQ ID NO: 27)





Base
ATGTCTCATTTAAAAGACCCGACCACGCAGTATTACACTGG


sequence
TGAATATCCCAAACAGAAACAACCGACGCCAGGCATCCAGG



CGAAGATGACACCGGTACCGGATTGCGGCGAGAAAACCTAT



GTTGGTAGCGGTCGCCTGAAAGATCGTAAAGCACTGGTGAC



AGGGGGCGATTCCGGAATAGGTCGCGCTGCCGCCATCGCTT



ACGCGCGTGAAGGGGCTGACGTGGCGATCAGTTATCTTCCC



GTGGAAGAAGAAGACGCTCAGGATGTGAAAAAGATCATTGA



AGAATGCGGACGCAAAGCCGTTCTGCTGCCAGGCGATTTAA



GCGATGAGAAATTTGCCCGTTCGCTGGTTCACGAAGCGCAC



AAGGCGTTAGGCGGGCTGGATATTATGGCGCTGGTCGCCGG



GAAACAGGTTGCCATTCCGGATATTGCAGACCTCACCAGCG



AACAGTTTCAAAAGACCTTTGCCATTAACGTTTTCGCGCTG



TTCTGGCTAACCCAGGAAGCGATCCCCCTGCTACCGAAAGG



TGCAAGTATCATCACCACTTCGTCAATCCAGGCATACCAGC



CAAGTCCGCATTTACTGGACTATGCGGCTACGAAGGCGGCG



ATTCTGAACTACAGCCGTGGCTTGGCAAAACAGGTCGCGGA



GAAAGGTATTCGGGTGAATATTGTCGCGCCAGGCCCGATCT



GGACAGCACTGCAAATTTCCGGCGGACAAACGCAGGATAAG



ATCCCGCAGTTTGGTCAGCAAACGCCGATGAAACGTGCGGG



GCAACCGGCGGAACTGGCCCCTGTATATGTTTATCTGGCAA



GTCAGGAGTCGAGCTACGTCACCGCAGAAGTGCACGGCGTG



TGCGGCGGCGAGCATTTAGGTTAA



(SEQ ID NO: 28)
















TABLE 1-15





ydjG/ACT43594.1/Escherichia coli BL21(DE3)
















Amino
MKKIPLGTTDITLSRMGLGTWAIGGGPAWNGDLDRQICIDT


acid
ILEAHRCGINLIDTAPGYNFGNSEVIVGQALKKLPREQVVV


sequence
ETKCGIVWERKGSLFNKVGDRQLYKNLSPESIREEVEASLQ



RLGIDYIDIYMTHWQSVPPFFTPIAETVAVLNELKAEGKIR



AIGAANVDADHIREYLQYGELDIIQAKYSILDRAMENELLP



LCRDNGIVVQVYSPLEQGLLTGTITRDYVPGGARANKVWFQ



RENMLKVIDMLEQWQPLCARYQCTIPTLALAWILKQSDLIS



ILSGATAPEQVRENVAALNINLSDADATLMREMAEALER



(SEQ ID NO: 29)





Base
ATGAAAAAAATACCTTTAGGCACAACGGATATTACGCTTTC


sequence
GCGAATGGGGTTGGGGACATGGGCCATTGGCGGCGGTCCTG



CATGGAATGGCGATCTCGATCGGCAAATATGTATTGATACG



ATTCTTGAAGCCCATCGTTGCGGCATTAATCTGATTGATAC



TGCACCAGGATATAACTTTGGCAATAGTGAAGTTATCGTCG



GTCAGGCGTTAAAAAAACTGCCCCGTGAACAGGTTGTAGTA



GAAACCAAATGCGGCATTGTCTGGGAACGAAAAGGAAGTTT



ATTCAACAAAGTTGGCGATCGGCAGTTGTATAAAAACCTTT



CCCCGGAATCTATCCGCGAAGAGGTAGAAGCCAGCTTGCAA



CGTCTGGGTATTGATTACATCGATATCTACATGACGCACTG



GCAGTCGGTGCCGCCATTTTTTACGCCGATAGCTGAAACTG



TCGCAGTGCTTAATGAGTTAAAAGCCGAAGGGAAAATTCGC



GCGATAGGCGCTGCTAACGTCGATGCTGACCATATCCGCGA



GTATCTGCAATATGGTGAACTGGATATTATTCAGGCGAAAT



ACAGTATCCTCGACCGGGCAATGGAAAACGAACTGCTGCCG



CTATGTCGTGATAATGGCATTGTGGTTCAGGTTTATTCCCC



GCTAGAGCAGGGATTGTTGACCGGCACCATCACTCGTGATT



ACGTTCCGGGCGGCGCTCGGGCAAATAAAGTCTGGTTCCAG



CGTGAAAACATGCTGAAAGTGATTGATATGCTTGAACAGTG



GCAGCCACTTTGTGCTCGTTATCAGTGCACAATTCCCACTC



TGGCACTGGCGTGGATATTAAAACAGAGTGATTTAATCTCC



ATTCTTAGTGGGGCTACTGCACCGGAACAGGTACGCGAAAA



TGTCGCGGCACTGAATATCAACTTATCGGATGCAGACGCAA



CATTGATGAGGGAAATGGCAGAGGCCCTGGAGCGTTAA



(SEQ ID NO: 30)
















TABLE 1-16





gldA/ACT45624.1/Escherichia coli BL21(DE3)
















Amino
MDRIIQSPGKYIQGADVINRLGEYLKPLAERWLVVGDKFVL


acid
GFAQSTVEKSFKDAGLVVEIAPFGGECSQNEIDRLRGIAET


sequence
AQCGAILGIGGGKTLDTAKALAHFMGVPVAIAPTIASTDAP



CSALSVIYTDEGEFDRYLLLPNNPNMVIVDTKIVAGAPARL



LAAGIGDALATWFEARACSRSGATTMAGGKCTQAALALAEL



CYNTLLEEGEKAMLAAEQHVVTPALERVIEANTYLSGVGFE



SGGLAAAHAVHNGLTAIPDAHHYYHGEKVAFGTLTQLVLEN



APVEEIETVAALSHAVGLPITLAQLDIKEDVPAKMRIVAEA



ACAEGETIHNMPGGATPDQVYAALLVADQYGQRFLQEWE



(SEQ ID NO: 31)





Base
ATGGACCGCATTATTCAATCACCGGGTAAATACATCCAGGG


sequence
CGCTGATGTGATTAATCGTCTGGGCGAATACCTGAAGCCGC



TGGCAGAACGCTGGTTAGTGGTGGGTGACAAATTTGTTTTA



GGTTTTGCTCAATCCACTGTCGAGAAAAGCTTTAAAGATGC



TGGACTGGTAGTAGAAATTGCGCCGTTTGGCGGTGAATGTT



CGCAAAATGAGATCGACCGTCTGCGTGGCATCGCGGAGACT



GCGCAGTGTGGCGCAATTCTCGGTATCGGTGGCGGAAAAAC



CCTCGATACTGCCAAAGCACTGGCACATTTCATGGGTGTTC



CGGTAGCGATCGCACCGACTATCGCCTCTACCGATGCACCG



TGCAGCGCATTGTCTGTTATCTACACCGATGAGGGTGAGTT



TGACCGCTATCTGCTGTTGCCAAATAACCCGAATATGGTCA



TTGTCGACACCAAAATCGTCGCTGGCGCACCTGCACGTCTG



TTAGCGGCGGGTATCGGCGATGCGCTGGCAACCTGGTTTGA



AGCGCGTGCCTGCTCTCGTAGCGGCGCGACCACCATGGCGG



GCGGCAAGTGCACCCAGGCTGCGCTGGCACTGGCTGAACTG



TGCTACAACACCCTGCTGGAAGAAGGCGAAAAAGCGATGCT



TGCTGCCGAACAGCATGTAGTGACTCCGGCGCTGGAGCGCG



TGATTGAAGCGAACACCTATTTGAGCGGTGTTGGTTTTGAA



AGTGGTGGTCTGGCTGCGGCGCACGCAGTGCATAACGGCCT



GACCGCTATCCCGGACGCGCATCACTATTATCACGGTGAAA



AAGTGGCATTCGGTACGCTGACGCAGCTGGTTCTGGAAAAC



GCGCCGGTGGAGGAAATCGAAACCGTAGCTGCGCTTAGCCA



TGCGGTAGGTTTGCCAATAACTCTCGCTCAACTGGATATTA



AAGAAGATGTCCCGGCGAAAATGCGAATTGTGGCAGAAGCG



GCATGTGCAGAAGGTGAAACCATCCACAACATGCCTGGCGG



CGCGACGCCAGATCAGGTTTACGCCGCTCTGCTGGTAGCCG



ACCAGTACGGTCAGCGTTTCCTGCAAGAGTGGGAATAA



(SEQ ID NO: 32)
















TABLE 1-17





yohF/ACT43891.1/Escherichia coli BL21(DE3)
















Amino
MAQVAIITASDSGIGKECALLLAQQGFDIGITWHSDEEGAK


acid
DTAREVVSHGVRAEIVQLDLGNLPEGALALEKLIQRLGRID


sequence
VLVNNAGAMTKAPFLDMAFDEWRKIFTVDVDGAFLCSQIAA



RQMVKQGQGGRIINITSVHEHTPLPDASAYTAAKHALGGLT



KAMALELVRHKILVNAVAPGAIATPMNGMDDSDVKPDAEPS



IPLRRFGATHEIASLVVWLCSEGANYTTGQSLIVDGGFMLA



NPQFNPE



(SEQ ID NO: 33)





Base
ATGGCACAGGTTGCGATTATTACCGCCTCCGATTCGGGGAT


sequence
CGGCAAAGAGTGCGCGTTATTACTGGCGCAGCAGGGGTTTG



ATATTGGTATTACCTGGCACTCAGATGAAGAAGGGGCAAAA



GATACCGCGCGTGAGGTAGTTAGCCACGGCGTACGTGCGGA



GATCGTGCAGCTGGATCTCGGCAATCTACCAGAAGGGGCAC



TGGCGCTGGAGAAACTCATTCAACGGCTGGGGCGCATTGAT



GTGCTGGTGAATAATGCGGGTGCAATGACCAAAGCGCCGTT



TCTTGATATGGCTTTTGATGAGTGGCGCAAGATTTTTACCG



TTGATGTCGATGGTGCATTCTTATGCTCGCAAATTGCGGCT



CGTCAGATGGTGAAACAAGGGCAGGGCGGTCGCATCATCAA



CATTACGTCGGTACATGAACATACGCCGCTGCCGGATGCCA



GCGCCTACACAGCCGCTAAACATGCGCTCGGTGGGTTAACC



AAAGCGATGGCGCTGGAGCTGGTCAGGCATAAGATTTTGGT



GAACGCAGTCGCGCCTGGGGCGATCGCCACGCCAATGAATG



GCATGGATGACAGCGACGTGAAGCCCGACGCGGAGCCTTCG



ATTCCCTTGCGGCGTTTTGGCGCAACGCATGAGATTGCCAG



CCTGGTGGTGTGGCTTTGTTCGGAGGGCGCAAATTACACCA



CCGGGCAGTCGTTGATAGTGGATGGCGGCTTTATGTTGGCG



AATCCACAGTTCAACCCAGAATAG



(SEQ ID NO: 34)
















TABLE 1-18





yeaE/ACT43604.1/Escherichia coli BL21(DE3)
















Amino
MQQKMIQFSGDVSLPAVGQGTWYMGEDASQRKTEVAALRAG


acid
IELGLTLIDTAEMYADGGAEKVVGEALTGLREKVFLVSKVY


sequence
PWNAGGQKAINACEASLRRLNTDYLDLYLLHWSGSFAFEET



VAAMEKLIAQGKIRRWGVSNLDYADMQELWQLPGGNQCATN



QVLYHLGSRGIEYDLLPWCQQQQMPVMAYSPLAQAGRLRNG



LLKNAVVNEIAHAHNISAAQVLLAWVISHQGVMAIPKAATI



AHVQQNAAVLEVELSSAELAMLDKAYPAPKGKTALDMV



(SEQ ID NO: 35)





Base
ATGCAACAAAAAATGATTCAATTTAGTGGCGATGTCTCACT


sequence
GCCAGCCGTAGGGCAGGGAACATGGTATATGGGCGAAGATG



CCAGTCAGCGCAAAACAGAAGTTGCTGCACTACGCGCGGGC



ATTGAACTCGGTTTAACCCTCATTGATACCGCCGAAATGTA



TGCCGATGGCGGTGCCGAAAAGGTGGTTGGGGAAGCATTAA



CCGGTCTGCGAGAGAAGGTCTTTCTCGTCTCTAAAGTCTAT



CCGTGGAATGCTGGCGGGCAAAAAGCGATAAATGCATGCGA



AGCCAGTTTACGCCGTCTCAATACTGATTATCTCGATCTTT



ACTTATTACACTGGTCTGGCAGTTTCGCTTTTGAAGAGACT



GTCGCAGCGATGGAAAAATTGATCGCCCAGGGAAAAATCCG



CCGCTGGGGCGTTTCTAACCTTGATTATGCTGATATGCAGG



AACTCTGGCAGCTGCCGGGGGGAAATCAGTGTGCCACTAAT



CAGGTGCTTTACCATCTCGGTTCACGAGGAATTGAGTACGA



TCTACTCCCCTGGTGCCAGCAACAGCAGATGCCGGTGATGG



CTTACAGTCCGTTAGCCCAGGCCGGGCGGTTGCGCAATGGA



CTGTTAAAAAACGCGGTAGTCAACGAAATTGCACATGCTCA



CAATATCAGCGCGGCACAAGTATTGTTGGCGTGGGTGATCA



GTCATCAGGGTGTGATGGCGATTCCAAAAGCGGCCACGATT



GCCCATGTCCAACAAAATGCGGCTGTGCTTGAGGTCGAACT



TTCTTCAGCGGAATTAGCTATGCTGGATAAGGCATATCCGG



CACCAAAAGGAAAAACTGCGCTGGATATGGTGTGA



(SEQ ID NO: 36)
















TABLE 1-19





ADH1/NP_014555.1/Saccharomyces cerevisiae S288C
















Amino
MSIPETQKGVIFYESHGKLEYKDIPVPKPKANELLINVKYS


acid
GVCHTDLHAWHGDWPLPVKLPLVGGHEGAGVVVGMGENVKG


sequence
WKIGDYAGIKWLNGSCMACEYCELGNESNCPHADLSGYTHD



GSFQQYATADAVQAAHIPQGTDLAQVAPILCAGITVYKALK



SANLMAGHWVAISGAAGGLGSLAVQYAKAMGYRVLGIDGGE



GKEELFRSIGGEVFIDFTKEKDIVGAVLKATDGGAHGVINV



SVSEAAIEASTRYVRANGTTVLVGMPAGAKCCSDVFNQVVK



SISIVGSYVGNRADTREALDFFARGLVKSPIKVVGLSTLPE



IYEKMEKGQIVGRYVVDTSK



(SEQ ID NO: 37)





Base
ATGTCTATCCCAGAAACTCAAAAAGGTGTTATCTTCTACGA


sequence
ATCCCACGGTAAGTTGGAATACAAAGATATTCCAGTTCCAA



AGCCAAAGGCCAACGAATTGTTGATCAACGTTAAATACTCT



GGTGTCTGTCACACTGACTTGCACGCTTGGCACGGTGACTG



GCCATTGCCAGTTAAGCTACCATTAGTCGGTGGTCACGAAG



GTGCCGGTGTCGTTGTCGGCATGGGTGAAAACGTTAAGGGC



TGGAAGATCGGTGACTACGCCGGTATCAAATGGTTGAACGG



TTCTTGTATGGCCTGTGAATACTGTGAATTGGGTAACGAAT



CCAACTGTCCTCACGCTGACTTGTCTGGTTACACCCACGAC



GGTTCTTTCCAACAATACGCTACCGCTGACGCTGTTCAAGC



CGCTCACATTCCTCAAGGTACCGACTTGGCCCAAGTCGCCC



CCATCTTGTGTGCTGGTATCACCGTCTACAAGGCTTTGAAG



TCTGCTAACTTGATGGCCGGTCACTGGGTTGCTATCTCCGG



TGCTGCTGGTGGTCTAGGTTCTTTGGCTGTTCAATACGCCA



AGGCTATGGGTTACAGAGTCTTGGGTATTGACGGTGGTGAA



GGTAAGGAAGAATTATTCAGATCCATCGGTGGTGAAGTCTT



CATTGACTTCACTAAGGAAAAGGACATTGTCGGTGCTGTTC



TAAAGGCCACTGACGGTGGTGCTCACGGTGTCATCAACGTT



TCCGTTTCCGAAGCCGCTATTGAAGCTTCTACCAGATACGT



TAGAGCTAACGGTACCACCGTTTTGGTCGGTATGCCAGCTG



GTGCCAAGTGTTGTTCTGATGTCTTCAACCAAGTCGTCAAG



TCCATCTCTATTGTTGGTTCTTACGTCGGTAACAGAGCTGA



CACCAGAGAAGCTTTGGACTTCTTCGCCAGAGGTTTGGTCA



AGTCTCCAATCAAGGTTGTCGGCTTGTCTACCTTGCCAGAA



ATTTACGAAAAGATGGAAAAGGGTCAAATCGTTGGTAGATA



CGTTGTTGACACTTCTAAATAA



(SEQ ID NO: 38)
















TABLE 1-20





ADH2/NP_014032.1/Saccharomyces cerevisiae S288C
















Amino
MSIPETQKAIIFYESNGKLEHKDIPVPKPKPNELLINVKYS


acid
GVCHTDLHAWHGDWPLPTKLPLVGGHEGAGVVVGMGENVKG


sequence
WKIGDYAGIKWLNGSCMACEYCELGNESNCPHADLSGYTHD



GSFQEYATADAVQAAHIPQGTDLAEVAPILCAGITVYKALK



SANLRAGHWAAISGAAGGLGSLAVQYAKAMGYRVLGIDGGP



GKEELFTSLGGEVFIDFTKEKDIVSAVVKATNGGAHGIINV



SVSEAAIEASTRYCRANGTVVLVGLPAGAKCSSDVFNHVVK



SISIVGSYVGNRADTREALDFFARGLVKSPIKVVGLSSLPE



IYEKMEKGQIAGRYVVDTSK



(SEQ ID NO: 39)





Base
ATGTCTATTCCAGAAACTCAAAAAGCCATTATCTTCTACGA


sequence
ATCCAACGGCAAGTTGGAGCATAAGGATATCCCAGTTCCAA



AGCCAAAGCCCAACGAATTGTTAATCAACGTCAAGTACTCT



GGTGTCTGCCACACCGATTTGCACGCTTGGCATGGTGACTG



GCCATTGCCAACTAAGTTACCATTAGTTGGTGGTCACGAAG



GTGCCGGTGTCGTTGTCGGCATGGGTGAAAACGTTAAGGGC



TGGAAGATCGGTGACTACGCCGGTATCAAATGGTTGAACGG



TTCTTGTATGGCCTGTGAATACTGTGAATTGGGTAACGAAT



CCAACTGTCCTCACGCTGACTTGTCTGGTTACACCCACGAC



GGTTCTTTCCAAGAATACGCTACCGCTGACGCTGTTCAAGC



CGCTCACATTCCTCAAGGTACTGACTTGGCTGAAGTCGCGC



CAATCTTGTGTGCTGGTATCACCGTATACAAGGCTTTGAAG



TCTGCCAACTTGAGAGCAGGCCACTGGGCGGCCATTTCTGG



TGCTGCTGGTGGTCTAGGTTCTTTGGCTGTTCAATATGCTA



AGGCGATGGGTTACAGAGTCTTAGGTATTGATGGTGGTCCA



GGAAAGGAAGAATTGTTTACCTCGCTCGGTGGTGAAGTATT



CATCGACTTCACCAAAGAGAAGGACATTGTTAGCGCAGTCG



TTAAGGCTACCAACGGCGGTGCCCACGGTATCATCAATGTT



TCCGTTTCCGAAGCCGCTATCGAAGCTTCTACCAGATACTG



TAGGGCGAACGGTACTGTTGTCTTGGTTGGTTTGCCAGCCG



GTGCAAAGTGCTCCTCTGATGTCTTCAACCACGTTGTCAAG



TCTATCTCCATTGTCGGCTCTTACGTGGGGAACAGAGCTGA



TACCAGAGAAGCCTTAGATTTCTTTGCCAGAGGTCTAGTCA



AGTCTCCAATAAAGGTAGTTGGCTTATCCAGTTTACCAGAA



ATTTACGAAAAGATGGAGAAGGGCCAAATTGCTGGTAGATA



CGTTGTTGACACTTCTAAATAA



(SEQ ID NO: 40)
















TABLE 1-21





ADH3/NP_013800.1/Saccharomyces cerevisiae S288C
















Amino
MLRTSTLFTRRVQPSLFSRNILRLQSTAAIPKTQKGVIFYE


acid
NKGKLHYKDIPVPEPKPNEILINVKYSGVCHTDLHAWHGDW


sequence
PLPVKLPLVGGHEGAGVVVKLGSNVKGWKVGDLAGIKWLNG



SCMTCEFCESGHESNCPDADLSGYTHDGSFQQFATADAIQA



AKIQQGTDLAEVAPILCAGVTVYKALKEADLKAGDWVAISG



AAGGLGSLAVQYATAMGYRVLGIDAGEEKEKLFKKLGGEVF



IDFTKTKNMVSDIQEATKGGPHGVINVSVSEAAISLSTEYV



RPCGTVVLVGLPANAYVKSEVFSHVVKSINIKGSYVGNRAD



TREALDFFSRGLIKSPIKIVGLSELPKVYDLMEKGKILGRY



VVDTSK



(SEQ ID NO: 41)





Base
ATGTTGAGAACGTCAACATTGTTCACCAGGCGTGTCCAACC


sequence
AAGCCTATTTTCTAGAAACATTCTTAGATTGCAATCCACAG



CTGCAATCCCTAAGACTCAAAAAGGTGTCATCTTTTATGAG



AATAAGGGGAAGCTGCATTACAAAGATATCCCTGTCCCCGA



GCCTAAGCCAAATGAAATTTTAATCAACGTTAAATATTCTG



GTGTATGTCACACCGATTTACATGCTTGGCACGGCGATTGG



CCATTACCTGTTAAACTACCATTAGTAGGTGGTCATGAAGG



TGCTGGTGTAGTTGTCAAACTAGGTTCCAATGTCAAGGGCT



GGAAAGTCGGTGATTTAGCAGGTATCAAATGGCTGAACGGT



TCTTGTATGACATGCGAATTCTGTGAATCAGGTCATGAATC



AAATTGTCCAGATGCTGATTTATCTGGTTACACTCATGATG



GTTCTTTCCAACAATTTGCGACCGCTGATGCTATTCAAGCC



GCCAAAATTCAACAGGGTACCGACTTGGCCGAAGTAGCCCC



AATATTATGTGCTGGTGTTACTGTATATAAAGCACTAAAAG



AGGCAGACTTGAAAGCTGGTGACTGGGTTGCCATCTCTGGT



GCTGCAGGTGGCTTGGGTTCCTTGGCCGTTCAATATGCAAC



TGCGATGGGTTACAGAGTTCTAGGTATTGATGCAGGTGAGG



AAAAGGAAAAACTTTTCAAGAAATTGGGGGGTGAAGTATTC



ATCGACTTTACTAAAACAAAGAATATGGTTTCTGACATTCA



AGAAGCTACCAAAGGTGGCCCTCATGGTGTCATTAACGTTT



CCGTTTCTGAAGCCGCTATTTCTCTATCTACGGAATATGTT



AGACCATGTGGTACCGTCGTTTTGGTTGGTTTGCCCGCTAA



CGCCTACGTTAAATCAGAGGTATTCTCTCATGTGGTGAAGT



CCATCAATATCAAGGGTTCTTATGTTGGTAACAGAGCTGAT



ACGAGAGAAGCCTTAGACTTCTTTAGCAGAGGTTTGATCAA



ATCACCAATCAAAATTGTTGGATTATCTGAATTACCAAAGG



TTTATGACTTGATGGAAAAGGGCAAGATTTTGGGTAGATAC



GTCGTCGATACTAGTAAATAA



(SEQ ID NO: 42)
















TABLE 1-22





ADH4/NP_011258.2/Saccharomyces cerevisiae S288C
















Amino
MSSVTGFYIPPISFFGEGALEETADYIKNKDYKKALIVTDP


acid
GIAAIGLSGRVQKMLEERDLNVAIYDKTQPNPNIANVTAGL


sequence
KVLKEQNSEIVVSIGGGSAHDNAKAIALLATNGGEIGDYEG



VNQSKKAALPLFAINTTAGTASEMTRFTIISNEEKKIKMAI



IDNNVTPAVAVNDPSTMFGLPPALTAATGLDALTHCIEAYV



STASNPITDACALKGIDLINESLVAAYKDGKDKKARTDMCY



AEYLAGMAFNNASLGYVHALAHQLGGFYHLPHGVCNAVLLP



HVQEANMQCPKAKKRLGEIALHFGASQEDPEETIKALHVLN



RTMNIPRNLKELGVKTEDFEILAEHAMHDACHLTNPVQFTK



EQVVAIIKKAYEY



(SEQ ID NO: 43)





Base
ATGTCTTCCGTTACTGGGTTTTACATTCCACCAATCTCTTT


sequence
CTTTGGTGAAGGTGCTTTAGAAGAAACCGCTGATTACATCA



AAAACAAGGATTACAAAAAGGCTTTGATCGTTACTGATCCT



GGTATTGCAGCTATTGGTCTCTCCGGTAGAGTCCAAAAGAT



GTTGGAAGAACGTGACTTAAACGTTGCTATCTATGACAAAA



CTCAACCAAACCCAAATATTGCCAATGTCACAGCTGGTTTG



AAGGTTTTGAAGGAACAAAACTCTGAAATTGTTGTTTCCAT



TGGTGGTGGTTCTGCTCACGACAATGCTAAGGCCATTGCTT



TATTGGCTACTAACGGTGGGGAAATCGGAGACTATGAAGGT



GTCAATCAATCTAAGAAGGCTGCTTTACCACTATTTGCCAT



CAACACTACTGCTGGTACTGCTTCCGAAATGACCAGATTCA



CTATTATCTCTAATGAAGAAAAGAAAATCAAGATGGCTATC



ATTGACAACAACGTCACTCCAGCTGTTGCTGTCAACGATCC



ATCTACCATGTTTGGTTTGCCACCTGCTTTGACTGCTGCTA



CTGGTCTAGATGCTTTGACTCACTGTATCGAAGCTTATGTT



TCCACCGCCTCTAACCCAATCACCGATGCCTGTGCTTTGAA



GGGTATTGATTTGATCAATGAAAGCTTAGTCGCTGCATACA



AAGACGGTAAAGACAAGAAGGCCAGAACTGACATGTGTTAC



GCTGAATACTTGGCAGGTATGGCTTTCAACAATGCTTCTCT



AGGTTATGTTCATGCCCTTGCTCATCAACTTGGTGGTTTCT



ACCACTTGCCTCATGGTGTTTGTAACGCTGTCTTGTTGCCT



CATGTTCAAGAGGCCAACATGCAATGTCCAAAGGCCAAGAA



GAGATTAGGTGAAATTGCTTTGCATTTCGGTGCTTCTCAAG



AAGATCCAGAAGAAACCATCAAGGCTTTGCACGTTTTAAAC



AGAACCATGAACATTCCAAGAAACTTGAAAGAATTAGGTGT



TAAAACCGAAGATTTTGAAATTTTGGCTGAACACGCCATGC



ATGATGCCTGCCATTTGACTAACCCAGTTCAATTCACCAAA



GAACAAGTGGTTGCCATTATCAAGAAAGCCTATGAATATTA



A



(SEQ ID NO: 44)
















TABLE 1-23





ADH5/NP_009703.3/Saccharomyces cerevisiae S288C
















Amino
MPSQVIPEKQKAIVFYETDGKLEYKDVTVPEPKPNEILVHV


acid
KYSGVCHSDLHAWHGDWPFQLKFPLIGGHEGAGVVVKLGSN


sequence
VKGWKVGDFAGIKWLNGTCMSCEYCEVGNESQCPYLDGTGF



THDGTFQEYATADAVQAAHIPPNVNLAEVAPILCAGITVYK



ALKRANVIPGQWVTISGACGGLGSLAIQYALAMGYRVIGID



GGNAKRKLFEQLGGEIFIDFTEEKDIVGAIIKATNGGSHGV



INVSVSEAAIEASTRYCRPNGTVVLVGMPAHAYCNSDVFNQ



VVKSISIVGSCVGNRADTREALDFFARGLIKSPIHLAGLSD



VPEIFAKMEKGEIVGRYWETSK



(SEQ ID NO: 45)





Base
ATGCCTTCGCAAGTCATTCCTGAAAAACAAAAGGCTATTGT


sequence
CTTTTATGAGACAGATGGAAAATTGGAATATAAAGACGTCA



CAGTTCCGGAACCTAAGCCTAACGAAATTTTAGTCCACGTT



AAATATTCTGGTGTTTGTCATAGTGACTTGCACGCGTGGCA



CGGTGATTGGCCATTTCAATTGAAATTTCCATTAATCGGTG



GTCACGAAGGTGCTGGTGTTGTTGTTAAGTTGGGATCTAAC



GTTAAGGGCTGGAAAGTCGGTGATTTTGCAGGTATAAAATG



GTTGAATGGGACTTGCATGTCCTGTGAATATTGTGAAGTAG



GTAATGAATCTCAATGTCCTTATTTGGATGGTACTGGCTTC



ACACATGATGGTACTTTTCAAGAATACGCAACTGCCGATGC



CGTTCAAGCTGCCCATATTCCACCAAACGTCAATCTTGCTG



AAGTTGCCCCAATCTTGTGTGCAGGTATCACTGTTTATAAG



GCGTTGAAAAGAGCCAATGTGATACCAGGCCAATGGGTCAC



TATATCCGGTGCATGCGGTGGCTTGGGTTCTCTGGCAATCC



AATACGCCCTTGCTATGGGTTACAGGGTCATTGGTATCGAT



GGTGGTAATGCCAAGCGAAAGTTATTTGAACAATTAGGCGG



AGAAATATTCATCGATTTCACGGAAGAAAAAGACATTGTTG



GTGCTATAATAAAGGCCACTAATGGCGGTTCTCATGGAGTT



ATTAATGTGTCTGTTTCTGAAGCAGCTATCGAGGCTTCTAC



GAGGTATTGTAGGCCCAATGGTACTGTCGTCCTGGTTGGTA



TGCCAGCTCATGCTTACTGCAATTCCGATGTTTTCAATCAA



GTTGTAAAATCAATCTCCATCGTTGGATCTTGTGTTGGAAA



TAGAGCTGATACAAGGGAGGCTTTAGATTTCTTCGCCAGAG



GTTTGATCAAATCTCCGATCCACTTAGCTGGCCTATCGGAT



GTTCCTGAAATTTTTGCAAAGATGGAGAAGGGTGAAATTGT



TGGTAGATATGTTGTTGAGACTTCTAAATGA



(SEQ ID NO: 46)
















TABLE 1-24





ADH6/NP_014051.3/Saccharomyces cerevisiae S288C
















Amino
MSYPEKFEGIAIQSHEDWKNPKKTKYDPKPFYDHDIDIKIE


acid
ACGVCGSDIHCAAGHWGNMKMPLVVGHEIVGKVVKLGPKSN


sequence
SGLKVGQRVGVGAQVFSCLECDRCKNDNEPYCTKFVTTYSQ



PYEDGYVSQGGYANYVRVHEHFVVPIPENIPSHLAAPLLCG



GLTVYSPLVRNGCGPGKKVGIVGLGGIGSMGTLISKAMGAE



TYVISRSSRKREDAMKMGADHYIATLEEGDWGEKYFDTFDL



IVVCASSLTDIDFNIMPKAMKVGGRIVSISIPEQHEMLSLK



PYGLKAVSISYSALGSIKELNQLLKLVSEKDIKIWVETLPV



GEAGVHEAFERMEKGDVRYRFTLVGYDKEFSD



(SEQ ID NO: 47)





Base
ATGTCTTATCCTGAGAAATTTGAAGGTATCGCTATTCAATC


sequence
ACACGAAGATTGGAAAAACCCAAAGAAGACAAAGTATGACC



CAAAACCATTTTACGATCATGACATTGACATTAAGATCGAA



GCATGTGGTGTCTGCGGTAGTGATATTCATTGTGCAGCTGG



TCATTGGGGCAATATGAAGATGCCGCTAGTCGTTGGTCATG



AAATCGTTGGTAAAGTTGTCAAGCTAGGGCCCAAGTCAAAC



AGTGGGTTGAAAGTCGGTCAACGTGTTGGTGTAGGTGCTCA



AGTCTTTTCATGCTTGGAATGTGACCGTTGTAAGAATGATA



ATGAACCATACTGCACCAAGTTTGTTACCACATACAGTCAG



CCTTATGAAGACGGCTATGTGTCGCAGGGTGGCTATGCAAA



CTACGTCAGAGTTCATGAACATTTTGTGGTGCCTATCCCAG



AGAATATTCCATCACATTTGGCTGCTCCACTATTATGTGGT



GGTTTGACTGTGTACTCTCCATTGGTTCGTAACGGTTGCGG



TCCAGGTAAAAAAGTTGGTATAGTTGGTCTTGGTGGTATCG



GCAGTATGGGTACATTGATTTCCAAAGCCATGGGGGCAGAG



ACGTATGTTATTTCTCGTTCTTCGAGAAAAAGAGAAGATGC



AATGAAGATGGGCGCCGATCACTACATTGCTACATTAGAAG



AAGGTGATTGGGGTGAAAAGTACTTTGACACCTTCGACCTG



ATTGTAGTCTGTGCTTCCTCCCTTACCGACATTGACTTCAA



CATTATGCCAAAGGCTATGAAGGTTGGTGGTAGAATTGTCT



CAATCTCTATACCAGAACAACACGAAATGTTATCGCTAAAG



CCATATGGCTTAAAGGCTGTCTCCATTTCTTACAGTGCTTT



AGGTTCCATCAAAGAATTGAACCAACTCTTGAAATTAGTCT



CTGAAAAAGATATCAAAATTTGGGTGGAAACATTACCTGTT



GGTGAAGCCGGCGTCCATGAAGCCTTCGAAAGGATGGAAAA



GGGTGACGTTAGATATAGATTTACCTTAGTCGGCTACGACA



AAGAATTTTCAGACTAG



(SEQ ID NO: 48)
















TABLE 1-25





ADH7/NP_010030.1/Saccharomyces cerevisiae S288C
















Amino
MLYPEKFQGIGISNAKDWKHPKLVSFDPKPFGDHDVDVEIE


acid
ACGICGSDFHIAVGNWGPVPENQILGHEIIGRVVKVGSKCH


sequence
TGVKIGDRVGVGAQALACFECERCKSDNEQYCTNDHVLTMW



TPYKDGYISQGGFASHVRLHEHFAIQIPENIPSPLAAPLLC



GGITVFSPLLRNGCGPGKRVGIVGIGGIGHMGILLAKAMGA



EVYAFSRGHSKREDSMKLGADHYIAMLEDKGWTEQYSNALD



LLVVCSSSLSKVNFDSIVKIMKIGGSIVSIAAPEVNEKLVL



KPLGLMGVSISSSAIGSRKEIEQLLKLVSEKNVKIWVEKLP



ISEEGVSHAFTRMESGDVKYRFTLVDYDKKFHK



(SEQ ID NO: 49)





Base
ATGCTTTACCCAGAAAAATTTCAGGGCATCGGTATTTCCAA


sequence
CGCAAAGGATTGGAAGCATCCTAAATTAGTGAGTTTTGACC



CAAAACCCTTTGGCGATCATGACGTTGATGTTGAAATTGAA



GCCTGTGGTATCTGCGGATCTGATTTTCATATAGCCGTTGG



TAATTGGGGTCCAGTCCCAGAAAATCAAATCCTTGGACATG



AAATAATTGGCCGCGTGGTGAAGGTTGGATCCAAGTGCCAC



ACTGGGGTAAAAATCGGTGACCGTGTTGGTGTTGGTGCCCA



AGCCTTGGCGTGTTTTGAGTGTGAACGTTGCAAAAGTGACA



ACGAGCAATACTGTACCAATGACCACGTTTTGACTATGTGG



ACTCCTTACAAGGACGGCTACATTTCACAAGGAGGCTTTGC



CTCCCACGTGAGGCTTCATGAACACTTTGCTATTCAAATAC



CAGAAAATATTCCAAGTCCGCTAGCCGCTCCATTATTGTGT



GGTGGTATTACAGTTTTCTCTCCACTACTAAGAAATGGCTG



TGGTCCAGGTAAGAGGGTAGGTATTGTTGGCATCGGTGGTA



TTGGGCATATGGGGATTCTGTTGGCTAAAGCTATGGGAGCC



GAGGTTTATGCGTTTTCGCGAGGCCACTCCAAGCGGGAGGA



TTCTATGAAACTCGGTGCTGATCACTATATTGCTATGTTGG



AGGATAAAGGCTGGACAGAACAATACTCTAACGCTTTGGAC



CTTCTTGTCGTTTGCTCATCATCTTTGTCGAAAGTTAATTT



TGACAGTATCGTTAAGATTATGAAGATTGGAGGCTCCATCG



TTTCAATTGCTGCTCCTGAAGTTAATGAAAAGCTTGTTTTA



AAACCGTTGGGCCTAATGGGAGTATCAATCTCAAGCAGTGC



TATCGGATCTAGGAAGGAAATCGAACAACTATTGAAATTAG



TTTCCGAAAAGAATGTCAAAATATGGGTGGAAAAACTTCCG



ATCAGCGAAGAAGGCGTCAGCCATGCCTTTACAAGGATGGA



AAGCGGAGACGTCAAATACAGATTTACTTTGGTCGATTATG



ATAAGAAATTCCATAAATAG



(SEQ ID NO: 50)
















TABLE 1-26





SFA1/NP_010113.1/Saccharomyces cerevisiae S288C
















Amino acid
MSAATVGKPIKCIAAVAYDAKKPLSVEEITVDAPKAHEVRIKIEYTAVCHTDAYTLSGS


sequence
DPEGLFPCVLGHEGAGIVESVGDDVITVKPGDHVIALYTAECGKCKFCTSGKTNLCG



AVRATQGKGVMPDGTTRFHNAKGEDIYHFMGCSTFSEYTVVADVSVVAIDPKAPLDA



ACLLGCGVTTGFGAALKTANVQKGDTVAVFGCGTVGLSVIQGAKLRGASKIIAIDINN



KKKQYCSQFGATDFVNPKEDLAKDQTIVEKLIEMTDGGLDFTFDCTGNTKIMRDALE



ACHKGWGQSIIIGVAAAGEEISTRPFQLVTGRVWKGSAFGGIKGRSEMGGLIKDYQK



GALKVEEFITHRRPFKEINQAFEDLHNGDCLRTVLKSDEIK (SEQ ID NO: 51)





Base
ATGTCCGCCGCTACTGTTGGTAAACCTATTAAGTGCATTGCTGCTGTTGCGTATGAT


sequence
GCGAAGAAACCATTAAGTGTTGAAGAAATCACGGTAGACGCCCCAAAAGCGCAC



GAAGTACGTATCAAAATTGAATATACTGCTGTATGCCACACTGATGCGTACACTTTA



TCAGGCTCTGATCCAGAAGGACTTTTCCCTTGCGTTCTGGGCCACGAAGGAGCCG



GTATCGTAGAATCTGTAGGCGATGATGTCATAACAGTTAAGCCTGGTGATCATGTTA



TTGCTTTGTACACTGCTGAGTGTGGCAAATGTAAGTTCTGTACTTCCGGTAAAACC



AACTTATGTGGTGCTGTTAGAGCTACTCAAGGGAAAGGTGTAATGCCTGATGGGAC



CACAAGATTTCATAATGCGAAAGGTGAAGATATATACCATTTCATGGGTTGCTCTAC



tttttccgaatatactgtggtggcagatgtctctgtggttgccatcgatccaaaagc



TCCCTTGGATGCTGCCTGTTTACTGGGTTGTGGTGTTACTACTGGTTTTGGGGCGG



CTCTTAAGACAGCTAATGTGCAAAAAGGCGATACCGTTGCAGTATTTGGCTGCGGG



ACTGTAGGACTCTCCGTTATCCAAGGTGCAAAGTTAAGGGGCGCTTCCAAGATCAT



TGCCATTGACATTAACAATAAGAAAAAACAATATTGTTCTCAATTTGGTGCCACGG



ATTTTGTTAATCCCAAGGAAGATTTGGCCAAAGATCAAACTATCGTTGAAAAGTTA



ATTGAAATGACTGATGGGGGTCTGGATTTTACTTTTGACTGTACTGGTAATACCAAA



ATTATGAGAGATGCTTTGGAAGCCTGTCATAAAGGTTGGGGTCAATCTATTATCATT



GGTGTGGCTGCCGCTGGTGAAGAAATTTCTACAAGGCCGTTCCAGCTGGTCACTG



GTAGAGTGTGGAAAGGCTCTGCTTTTGGTGGCATCAAAGGTAGATCTGAAATGGG



CGGTTTAATTAAAGACTATCAAAAAGGTGCCTTAAAAGTCGAAGAATTTATCACTC



ACAGGAGACCATTCAAAGAAATCAATCAAGCCTTTGAAGATTTGCATAACGGTGA



TTGCTTAAGAACCGTCTTGAAGTCTGATGAAATAAAATAG (SEQ ID NO: 52)
















TABLE 1-27





AAD3/NP_010032.1/Saccharomyces cerevisiae S288C
















Amino acid
MIGSASDSSSKLGRLRFLSETAAIKVSPLILGEVSYDGARSDFLKSMNKNRAFELLDTF


sequence
YEAGGNFIDAANNCQNEQSEEWIGEWIQSRRLRDQIVIATKFIKSDKKYKAGESNTAN



YCGNHKRSLHVSVRDSLRKLQTDWIDILYVHWWDYMSSIEEFMDSLHILVQQGKVL



YLGVSDTPAWVVSAANYYATSYGKTPFSIYQGKWNVLNRDFERDIIPMARHFGMAL



APWDVMGGGRFQSKKAMEERRKNGEGIRSFVGASEQTDAEIKISEALAKIAEEHGTE



SVTAIAIAYVRSKAKNFFPSVEGGKIEDLKENIKALSIDLTPDNIKYLESIVPFDIGFPNN



FIVLNSLTQKYGTNNV (SEQ ID NO: 53)





Base
ATGATTGGGTCCGCGTCCGACTCATCTAGCAAGTTAGGACGCCTCCGATTTCTTTCT


sequence
GAAACTGCCGCTATTAAAGTATCCCCGTTAATCCTAGGAGAAGTCTCATACGATGG



AGCACGTTCGGATTTTCTCAAATCAATGAACAAGAATCGAGCTTTTGAATTGCTTG



ATACTTTTTACGAGGCAGGTGGAAATTTCATTGATGCCGCAAACAACTGCCAAAAC



GAGCAATCAGAAGAATGGATTGGTGAATGGATACAGTCCAGAAGGTTACGTGATC



AAATTGTCATTGCAACCAAGTTTATAAAAAGCGATAAAAAGTATAAAGCAGGTGA



AAGTAACACTGCCAACTACTGTGGTAATCACAAGCGTAGTTTACATGTGAGTGTGA



GGGATTCTCTCCGCAAATTGCAAACTGATTGGATTGATATACTTTACGTTCACTGGT



GGGATTATATGAGTTCAATCGAAGAATTTATGGATAGTTTGCATATTCTGGTCCAGC



AGGGCAAGGTCCTCTATTTGGGTGTATCTGATACACCTGCTTGGGTTGTTTCTGCG



GCAAACTACTACGCTACATCTTATGGTAAAACTCCCTTTAGTATCTACCAAGGTAAA



TGGAACGTGTTGAACAGAGATTTTGAGCGTGATATTATTCCAATGGCTAGGCATTT



CGGTATGGCCCTCGCCCCATGGGATGTCATGGGAGGTGGAAGATTTCAGAGTAAA



AAAGCAATGGAGGAACGGAGGAAGAATGGAGAGGGTATTCGTTCTTTCGTTGGCG



CCTCCGAACAAACAGATGCAGAAATCAAGATTAGTGAAGCATTGGCCAAGATTGC



TGAGGAACATGGCACTGAGTCTGTTACTGCTATTGCTATTGCCTATGTTCGCTCTAA



GGCGAAAAATTTTTTTCCGTCGGTTGAAGGAGGAAAAATTGAGGATCTCAAAGAG



AACATTAAGGCTCTCAGTATCGATCTAACGCCAGACAATATAAAATACTTAGAAAG



TATAGTTCCTTTTGACATCGGATTTCCTAATAATTTTATCGTGTTAAATTCCTTGACT



CAAAAATATGGTACGAATAATGTTTAG (SEQ ID NO: 54)
















TABLE 1-28





AAD4/NP_010038.1/Saccharomyces cerevisiae S288C
















Amino acid
MGSMNKEQAFELLDAFYEAGGNCIDTANSYQNEESEIWIGEWMKSRKLRDQIVIATK


sequence
FTGDYKKYEVGGGKSANYCGNHKHSLHVSVRDSLRKLQTDWIDILYVHWWDYMSS



IEEVMDSLHILVQQGKVLYLGVSDTPAWVVSAANYYATSHGKTPFSIYQGKWNVLNR



DFERDIIPMARHFGMALAPWDVMGGGRFQSKKAMEERKKNGEGLRTVSGTSKQTD



KEVKISEALAKVAEEHGTESVTAIAIAYVRSKAKNVFPLVGGRKIEHLKQNIEALSIKL



TPEQIEYLESIIPFDVGFPTNFIGDDPAVTKKASLLTAMSAQISFD (SEQ ID NO: 55)





Base
ATGGGCTCTATGAATAAGGAACAGGCTTTTGAACTTCTTGATGCTTTTTATGAAGC


sequence
AGGAGGTAATTGCATTGATACTGCAAACAGTTACCAAAATGAAGAGTCAGAGATT



TGGATAGGTGAATGGATGAAATCAAGAAAGTTGCGTGACCAAATTGTAATTGCCAC



CAAGTTTACCGGAGATTATAAGAAGTATGAAGTAGGTGGCGGTAAAAGTGCCAAC



TATTGTGGTAATCACAAGCATAGTTTACATGTGAGTGTGAGGGATTCTCTCCGCAA



ATTGCAAACTGATTGGATTGATATACTTTACGTTCACTGGTGGGATTATATGAGTTC



AATCGAAGAAGTTATGGATAGTTTGCATATTTTAGTTCAGCAGGGCAAAGTCCTCT



ATTTGGGTGTGTCTGATACACCTGCTTGGGTTGTTTCTGCGGCAAACTACTACGCC



ACATCTCATGGGAAAACTCCTTTTAGTATCTATCAAGGTAAATGGAATGTGTTGAA



CAGGGACTTTGAGCGCGATATCATTCCAATGGCCAGACATTTTGGTATGGCTCTAG



CCCCATGGGATGTTATGGGAGGTGGAAGATTTCAGAGTAAAAAAGCAATGGAGGA



ACGGAAGAAGAATGGAGAGGGTCTGCGTACTGTTTCGGGTACTTCTAAACAGACG



GATAAAGAGGTTAAGATCAGTGAAGCATTGGCCAAGGTTGCTGAGGAACATGGCA



CTGAGTCTGTTACTGCTATTGCTATTGCCTATGTTCGCTCTAAGGCGAAAAATGTTT



TCCCATTGGTTGGTGGAAGGAAAATTGAACACCTCAAACAGAACATTGAGGCTTT



AAGTATCAAACTGACACCAGAACAGATAGAATACTTAGAAAGTATTATTCCTTTTG



ATGTTGGTTTTCCTACTAATTTTATCGGTGATGATCCGGCTGTTACCAAGAAGGCTT



CACTTCTCACGGCAATGTCTGCGCAGATTTCCTTCGATTAA (SEQ ID NO: 56)
















TABLE 1-29





AAD10/NP_012689.1/Saccharomyces cerevisiae S288C
















Amino acid
MASRKLRDQIVIATKFTTDYKGYDVGKGKSANFCGNHKRSLHVSVRDSLRKLQTDW


sequence
IDILYVHWWDYMSSIEEVMDSLHILVQQGKVLYLGVSDTPAWVVSAANYYATSHGKT



PFSIYQGKWNVLNRDFERDIIPMARHFGMALAPWDVMGGGRFQSKKAVEERKKKGE



GLRTFFGTSEQTDMEVKISEALLKVAEEHGTESVTAIAIAYVRSKAKHVFPLVGGRKIE



HLKQNIEALSIKLTPEQIKYLESIVPFDVGFPTNFIGDDPAVTKKPSFLTEMSAKISFED



(SEQ ID NO: 57)





Base
ATGGCATCAAGAAAACTGCGTGACCAGATTGTAATTGCCACTAAATTTACCACGGA


sequence
TTATAAGGGGTATGATGTAGGCAAGGGGAAGAGTGCCAATTTCTGTGGGAATCACA



AGCGCAGTTTGCATGTAAGTGTGAGAGATTCCCTTCGTAAGTTGCAAACTGATTGG



ATTGATATTCTTTACGTTCACTGGTGGGATTATATGAGCTCCATTGAGGAAGTTATG



GATAGTTTGCACATTCTTGTGCAGCAGGGCAAAGTACTCTATCTAGGTGTGTCTGA



TACTCCTGCCTGGGTTGTTTCTGCAGCAAATTACTACGCCACATCTCATGGTAAAA



CTCCCTTTAGTATCTATCAAGGTAAATGGAATGTATTGAACAGGGACTTTGAACGT



GATATCATTCCAATGGCTAGGCATTTTGGTATGGCTCTTGCTCCATGGGATGTTATG



GGAGGCGGGAGATTTCAGAGTAAAAAGGCAGTGGAAGAGCGGAAGAAGAAAGG



AGAAGGCTTGCGTACCTTTTTTGGTACTTCGGAACAGACGGATATGGAGGTTAAAA



TCAGCGAAGCATTGTTAAAAGTTGCGGAAGAACATGGCACTGAGTCTGTCACTGC



TATTGCCATAGCTTATGTTCGGTCTAAAGCGAAACATGTTTTCCCATTAGTGGGAGG



AAGAAAGATCGAACATCTCAAACAGAACATTGAGGCTTTGAGCATTAAATTAACA



CCAGAACAAATAAAGTACTTAGAAAGTATTGTTCCTTTTGATGTCGGATTTCCCAC



TAATTTTATTGGAGATGACCCAGCTGTTACCAAGAAACCTTCATTTCTCACCGAAAT



GTCTGCCAAGATTAGCTTCGAAGATTAG (SEQ ID NO: 58)
















TABLE 1-30





AAD14/NP_014068.1/Saccharomyces cerevisiae S288C
















Amino acid
MTDLFKPLPEPPTELGRLRVLSKTAGIRVSPLILGGASIGDAWSGFMGSMNKEQAFEL


sequence
LDAFYEAGGNCIDTANSYQNEESEIWIGEWMASRKLRDQIVIATKFTGDYKKYEVGG



GKSANYCGNHKRSLHVSVRDSLRKLQTDWIDILYIHWWDYMSSIEEVMDSLHILVQQ



GKVLYLGVSDTPAWVVSAANYYATSHGKTPFSVYQGKWNVLNRDFERDIIPMARHF



GMALAPWDVMGGGRFQSKKAMEERKKNGEGLRTFVGGPEQTELEVKISEALTKIAE



EHGTESVTAIAIAYVRSKAKNVFPLIGGRKIEHLKQNIEALSIKLTPEQIEYLESIVPFDV



GFPKSLIGDDPAVTKKLSPLTSMSARIAFDN (SEQ ID NO: 59)





Base
ATGACTGACTTGTTTAAACCTCTACCTGAACCACCTACCGAATTGGGACGTCTCAG


sequence
GGTTCTTTCTAAAACTGCCGGCATAAGGGTTTCACCGCTAATTCTGGGAGGAGCTT



CAATCGGCGACGCATGGTCAGGCTTTATGGGCTCTATGAATAAGGAACAGGCCTTT



GAACTTCTTGATGCTTTTTATGAAGCTGGAGGTAATTGTATTGATACTGCAAACAGT



TACCAAAATGAAGAGTCAGAGATTTGGATAGGTGAATGGATGGCATCAAGAAAAC



TGCGTGACCAGATTGTAATTGCCACCAAGTTTACCGGAGATTATAAGAAGTATGAA



GTAGGTGGTGGTAAAAGTGCCAACTACTGTGGTAATCACAAGCGTAGTTTACATGT



GAGTGTGAGGGATTCTCTCCGCAAATTGCAAACTGATTGGATTGATATACTTTACAT



TCACTGGTGGGATTATATGAGTTCAATCGAAGAAGTTATGGATAGTTTGCATATTTT



AGTTCAGCAGGGCAAGGTCCTATATTTAGGAGTATCTGATACACCTGCTTGGGTTG



TTTCTGCGGCAAATTACTACGCTACATCTCATGGTAAAACTCCTTTTAGCGTCTATC



AAGGTAAATGGAATGTATTGAACAGGGACTTTGAGCGTGATATTATTCCAATGGCT



AGGCATTTTGGTATGGCTCTAGCCCCATGGGATGTCATGGGAGGTGGAAGATTTCA



GAGTAAAAAAGCAATGGAAGAACGGAAGAAGAATGGAGAGGGTCTGCGTACTTT



TGTGGGTGGCCCCGAACAAACAGAATTGGAGGTTAAAATCAGCGAAGCATTGACT



AAAATTGCTGAGGAACATGGAACAGAGTCTGTTACTGCTATCGCTATTGCCTATGT



TCGCTCTAAAGCGAAAAATGTTTTCCCATTGATTGGAGGAAGGAAAATTGAACATC



TCAAGCAGAACATTGAGGCTTTGAGTATTAAATTAACACCGGAACAAATAGAATAC



CTGGAAAGTATTGTTCCTTTTGATGTTGGCTTTCCCAAAAGTTTAATAGGAGATGA



CCCAGCGGTAACCAAGAAGCTTTCACCCCTCACATCGATGTCTGCCAGGATAGCTT



TTGACAATTAG (SEQ ID NO: 60)
















TABLE 1-31





AAD15/NP_014477.1/Saccharomyces cerevisiae S288C
















Amino acid
MARHFGMALAPWDVMGGGRFQSKKAMEERRKNGECIRSFVGASEQTDAEIKISEAL


sequence
AKVAEEHGTESVTAIAIAYVRSKAKNVFPSVEGGKIEDLKENIKALSIDLTPDNIKYLE



NVVPFDIGFPNTFIVLNSLTQKYGTNNV (SEQ ID NO: 61)





Base
ATGGCTAGGCATTTCGGTATGGCCCTCGCCCCATGGGATGTCATGGGAGGTGGAAG


sequence
ATTTCAGAGTAAAAAAGCAATGGAGGAACGGAGGAAGAATGGAGAGTGTATTCGT



TCTTTCGTTGGCGCCTCCGAACAAACAGATGCAGAAATCAAGATTAGTGAAGCAT



TAGCCAAGGTTGCTGAGGAACATGGCACTGAGTCTGTTACTGCTATTGCTATTGCC



TATGTTCGCTCTAAGGCGAAAAATGTTTTTCCGTCGGTTGAAGGAGGAAAAATTGA



GGATCTCAAAGAGAACATTAAGGCTCTCAGTATCGATCTAACGCCGGACAATATAA



AATACTTGGAAAATGTAGTTCCTTTTGACATCGGATTTCCTAACACTTTTATCGTGT



TAAATTCCTTGACTCAAAAATATGGTACGAATAATGTTTAG (SEQ ID NO: 62)
















TABLE 1-32





YPR1/NP_010656.1/Saccharomyces cerevisiae S288C
















Amino acid
MPATLKNSSATLKLNTGASIPVLGFGTWRSVDNNGYHSVIAALKAGYRHIDAAAIYL


sequence
NEEEVGRAIKDSGVPREEIFITTKLWGTEQRDPEAALNKSLKRLGLDYVDLYLMHWP



VPLKTDRVTDGNVLCIPTLEDGTVDIDTKEWNFIKTWELMQELPKTGKTKAVGVSNF



SINNIKELLESPNNKVVPATNQIEIHPLLPQDELIAFCKEKGIVVEAYSPFGSANAPLLK



EQAIIDMAKKHGVEPAQLIISWSIQRGYVVLAKSVNPERIVSNFKIFTLPEDDFKTISNL



SKVHGTKRVVDMKWGSFPIFQ (SEQ ID NO: 63)





Base
ATGCCTGCTACGTTAAAGAATTCTTCTGCTACATTAAAACTAAATACTGGTGCCTCC


sequence
ATTCCAGTGTTGGGTTTCGGCACTTGGCGTTCCGTTGACAATAACGGTTACCATTC



TGTAATTGCAGCTTTGAAAGCTGGATACAGACACATTGATGCTGCGGCTATCTATTT



GAATGAAGAAGAAGTTGGCAGGGCTATTAAAGATTCCGGAGTCCCTCGTGAGGAA



ATTTTTATTACTACTAAGCTTTGGGGTACGGAACAACGTGATCCGGAAGCTGCTCT



AAACAAGTCTTTGAAAAGACTAGGCTTGGATTATGTTGACCTATATCTGATGCATTG



GCCAGTGCCTTTGAAAACCGACAGAGTTACTGATGGTAACGTTCTGTGCATTCCAA



CATTAGAAGATGGCACTGTTGACATCGATACTAAGGAATGGAATTTTATCAAGACG



TGGGAGTTGATGCAAGAGTTGCCAAAGACGGGCAAAACTAAAGCCGTTGGTGTC



TCTAATTTTTCTATTAACAACATTAAAGAATTATTAGAATCTCCAAATAACAAGGTG



GTACCAGCTACTAATCAAATTGAAATTCATCCATTGCTACCACAAGACGAATTGATT



GCCTTTTGTAAGGAAAAGGGTATTGTTGTTGAAGCCTACTCACCATTTGGGAGTGC



TAATGCTCCTTTACTAAAAGAGCAAGCAATTATTGATATGGCTAAAAAGCACGGCG



TTGAGCCAGCACAGCTTATTATCAGTTGGAGTATTCAAAGAGGCTACGTTGTTCTG



GCCAAATCGGTTAATCCTGAAAGAATTGTATCCAATTTTAAGATTTTCACTCTGCCT



GAGGATGATTTCAAGACTATTAGTAACCTATCCAAAGTGCATGGTACAAAGAGAGT



CGTTGATATGAAGTGGGGATCCTTCCCAATTTTCCAATGA (SEQ ID NO: 64)
















TABLE 1-33





NCgl0324/NP_599582.1/Corynebacterium glutamicum ATCC 13032
















Amino acid
MSISVKALQKSGPEAPFEVKIIERRDPRADDVVIDIKAAGICHSDIHTIRNEWGEAHFP


sequence
LTVGHEIAGVVSAVGSDVTKWKVGDRVGVGCLVNSCGECEQCVAGFENNCLRGNV



GTYNSNDVDGTITQGGYAEKVVVNERFLCSIPEELNFDVAAPLLCAGITTYSPIARWN



VKEGDKVAVMGLGGLGHMGVQIAAAKGAEVTVLSRSLRKAELAKELGAARTLATS



DEDFFTEHAGEFDFILNTISASIPVDKYLSLLKPHGVMAVVGLPPEKQPLSFGALIGGG



KVLTGSNIGGIPETQEMLDFCAKHGLGAMIETVGVNDVDAAYDRVVAGDVQFRVVID



TASFAEVEAV (SEQ ID NO: 65)





Base
GTGAGTATCTCAGTAAAAGCACTACAAAAGTCCGGCCCAGAAGCACCTTTCGAGG


sequence
TCAAGATCATTGAACGCCGTGACCCACGCGCAGATGATGTGGTTATTGATATCAAA



GCTGCGGGCATCTGCCACAGCGATATCCACACCATCCGCAACGAATGGGGCGAGG



CGCACTTCCCGCTCACCGTCGGCCACGAAATCGCAGGCGTTGTCTCTGCGGTTGG



ATCCGATGTAACCAAATGGAAAGTCGGCGACCGCGTGGGCGTCGGCTGCCTCGTT



AACTCCTGCGGCGAATGCGAACAGTGCGTCGCAGGATTTGAAAACAACTGCCTTC



GCGGAAACGTCGGAACCTACAACTCTAACGACGTCGACGGCACCATCACCCAAG



GCGGCTACGCTGAAAAGGTAGTGGTCAACGAACGTTTCCTGTGCAGCATCCCAGA



GGAACTTAACTTCGATGTCGCAGCACCACTGCTGTGCGCAGGCATCACCACCTACT



CCCCAATCGCTCGCTGGAACGTTAAAGAAGGCGACAAAGTAGCAGTCATGGGCCT



CGGCGGACTCGGACACATGGGTGTCCAGATCGCTGCAGCCAAGGGTGCTGAGGTT



ACCGTTCTGTCCCGTTCCCTGCGCAAGGCAGAACTTGCCAAGGAACTCGGCGCAG



CTCGCACGCTTGCGACTTCTGATGAGGATTTCTTCACCGAACACGCCGGTGAATTC



GACTTCATCCTCAACACCATTAGCGCATCCATCCCAGTCGACAAGTACCTGAGCCT



TCTCAAGCCACACGGTGTCATGGCTGTTGTCGGTCTGCCACCAGAGAAGCAGCCA



CTGAGCTTCGGTGCGCTCATCGGCGGCGGAAAAGTCCTCACCGGATCCAACATTG



GCGGCATCCCTGAAACCCAGGAAATGCTCGACTTCTGTGCAAAACACGGCCTCGG



TGCGATGATCGAAACTGTCGGCGTCAACGATGTTGATGCAGCCTACGACCGTGTTG



TTGCCGGCGACGTTCAGTTCCGCGTTGTCATTGATACTGCTTCGTTTGCTGAGGTT



GAGGCGGTTTAG (SEQ ID NO: 66)
















TABLE 1-34





NCgl0313/NP_599571.1/Corynebacterium glutamicum ATCC 13032
















Amino acid
MSTVVPGIVALSKGAPVEKVNVVVPDPGANDVIVKIQACGVCHTDLAYRDGDISDEF


sequence
PYLLGHEAAGIVEEVGESVTHVEVGDFVILNWRAVCGECRACKKGEPKYCFNTHNA



SKKMTLEDGTELSPALGIGAFLEKTLVHEGQCTKVNPEEDPAAAGLLGCGIMAGLGA



AVNTGDIKRGESVAVFGLGGVGMAAIAGAKIAGASKIIAVDIDEKKLEWAKEFGATHT



INSSGLGGEGDASEVVAKVRELTDGFGTDVSIDAVGIMPTWQQAFYSRDHAGRMVM



VGVPNLTSRVDVPAIDFYGRGGSVRPAWYGDCLPERDFPTYVDLHLQGRFPLDKFVS



ERIGLDDVEEAFNTMKAGDVLRSVVEI (SEQ ID NO: 67)





Base
ATGAGCACTGTAGTGCCTGGAATTGTCGCACTGTCCAAGGGTGCACCGGTAGAAA


sequence
AAGTAAACGTTGTTGTCCCTGATCCAGGTGCTAACGATGTCATCGTCAAGATTCAG



GCCTGCGGTGTGTGCCACACCGACTTGGCCTACCGCGATGGCGATATTTCAGATGA



GTTCCCTTACCTCCTCGGCCACGAGGCAGCAGGCATTGTTGAGGAGGTAGGCGAG



TCCGTCACCCACGTTGAGGTCGGCGATTTCGTCATCTTGAACTGGCGTGCAGTGTG



CGGCGAGTGCCGTGCATGTAAGAAGGGCGAGCCAAAGTACTGCTTTAACACCCAC



AACGCCTCTAAGAAGATGACCCTGGAAGACGGCACCGAGCTGTCCCCAGCACTG



GGTATTGGCGCGTTCTTGGAAAAGACCCTGGTCCACGAAGGCCAGTGCACCAAGG



TTAACCCTGAGGAAGATCCAGCAGCAGCTGGCCTTCTGGGTTGTGGCATCATGGC



AGGCCTTGGCGCTGCGGTGAACACCGGTGATATTAAGCGTGGCGAGTCCGTAGCA



GTCTTCGGCCTTGGTGGCGTGGGCATGGCAGCTATTGCTGGCGCCAAGATTGCTGG



CGCTTCCAAGATCATTGCTGTTGATATCGATGAGAAGAAGCTGGAGTGGGCGAAG



GAATTCGGCGCAACCCACACCATTAATTCCTCTGGTCTTGGTGGCGAAGGTGATGC



CTCTGAGGTCGTGGCAAAGGTTCGTGAGCTCACCGATGGTTTCGGCACCGATGTC



TCCATCGATGCGGTAGGCATCATGCCGACCTGGCAGCAGGCGTTTTACTCCCGTGA



CCATGCAGGCCGCATGGTGATGGTGGGCGTTCCAAACCTGACGTCTCGCGTAGAT



GTTCCTGCGATTGATTTTTACGGTCGCGGTGGATCCGTGCGCCCTGCATGGTACGG



CGACTGCCTGCCTGAGCGTGATTTCCCAACTTATGTGGATCTGCACCTGCAGGGTC



GTTTCCCACTGGATAAGTTTGTTTCTGAGCGTATTGGTCTTGATGATGTTGAAGAG



GCTTTCAACACCATGAAGGCTGGCGACGTGCTGCGTTCTGTGGTGGAGATCTAA



(SEQ ID NO: 68)
















TABLE 1-35





NCgl0219/NP_599475.1/Corynebacterium glutamicum ATCC 13032
















Amino acid
MPKYIAMQVSESGAPLAANLVQPAPLKSREVRVEIAASGVCHADIGTAAASGKHTVF


sequence
PVTPGHEIAGTIAEIGENVSRWTVGDRVAIGWFGGNCGDCAFCRAGDPVHCRERKIP



GVSYAGGWAQNIVVPAEALAAIPDGMDFYEAAPMGCAGVTTFNALRNLKLDPGAAV



AVFGIGGLVRLAIQFAAKMGYRTITIARGLEREELARQLGANHYIDSNDLHPGQALFE



LGGADLILSTASTTEPLSELSTGLSIGGQLTIIGVDGGDITVSAAQLMMNRQIITGHLTG



SANDTEQTMKFAHLHGVKPLIERMPLDQANEAIARISAGKPRFRIVLEPNS (SEQ ID



NO: 69)





Base
ATGCCCAAATACATTGCCATGCAGGTATCCGAATCCGGTGCACCGTTAGCCGCGAA


sequence
TCTCGTGCAACCTGCTCCGTTGAAATCGAGGGAAGTCCGCGTGGAAATCGCTGCT



AGTGGTGTGTGCCATGCAGATATTGGCACGGCAGCAGCATCGGGGAAGCACACTG



TTTTTCCTGTTACCCCTGGTCATGAGATTGCAGGAACCATCGCGGAAATTGGTGAA



AACGTATCTCGGTGGACGGTTGGTGATCGCGTTGCAATCGGTTGGTTTGGTGGCAA



TTGCGGTGACTGCGCTTTTTGTCGTGCAGGTGATCCTGTGCATTGCAGAGAGCGG



AAGATTCCTGGCGTTTCTTATGCGGGTGGTTGGGCACAGAATATTGTTGTTCCAGC



GGAGGCTCTTGCTGCGATTCCAGATGGCATGGACTTTTACGAGGCCGCCCCGATGG



GCTGCGCAGGTGTGACAACATTCAATGCGTTGCGAAACCTGAAGCTGGATCCCGG



TGCGGCTGTCGCGGTCTTTGGAATCGGCGGTTTAGTGCGCCTAGCTATTCAGTTTG



CTGCGAAAATGGGTTATCGAACCATCACCATCGCCCGCGGTTTAGAGCGTGAGGA



GCTAGCTAGGCAACTTGGCGCCAACCACTACATCGATAGCAATGATCTGCACCCTG



GCCAGGCGTTATTTGAACTTGGCGGGGCTGACTTGATCTTGTCTACTGCGTCCACC



ACGGAGCCTCTTTCGGAGTTGTCTACCGGTCTTTCTATTGGCGGGCAGCTAACCAT



TATCGGAGTTGATGGGGGAGATATCACCGTTTCGGCAGCCCAATTGATGATGAACC



GTCAGATCATCACAGGTCACCTCACTGGAAGTGCGAATGACACGGAACAGACTAT



GAAATTTGCTCATCTCCATGGCGTGAAACCGCTTATTGAACGGATGCCTCTCGATC



AAGCCAACGAGGCTATTGCACGTATTTCAGCTGGTAAACCACGTTTCCGTATTGTC



TTGGAGCCGAATTCATAA (SEQ ID NO: 70)
















TABLE 1-36





NCgl2709/NP_601999.1/Corynebacterium glutamicum ATCC 13032
















Amino acid
MTTAAPQEFTAAVVEKFGHDVTVKDIDLPKPGPHQALVKVLTSGICHTDLHALEGDW


sequence
PVKPEPPFVPGHEGVGEVVELGPGEHDVKVGDIVGNAWLWSACGTCEYCITGRETQ



CNEAEYGGYTQNGSFGQYMLVDTRYAARIPDGVDYLEAAPILCAGVTVYKALKVSE



TRPGQFMVISGVGGLGHIAVQYAAAMGMRVIAVDIADDKLELARKHGAEFTVNARN



EDSGEAVQKYTNGGAHGVLVTAVHEAAFGQALDMARRAGTIVFNGLPPGEFPASVF



NIVFKGLTIRGSLVGTRQDLAEALDFFARGLIKPTVSECSLDEVNGVLDRMRNGKIDG



RVAIRF (SEQ ID NO: 71)





Base
ATGACCACTGCTGCACCCCAAGAATTTACCGCTGCTGTTGTTGAAAAATTCGGTCA


sequence
TGACGTGACCGTGAAGGATATTGACCTTCCAAAGCCAGGGCCACACCAGGCATTG



GTGAAGGTACTCACCTCCGGCATCTGCCACACCGACCTCCACGCCTTGGAGGGCG



ATTGGCCAGTAAAGCCGGAACCACCATTCGTACCAGGACACGAAGGTGTAGGTGA



AGTTGTTGAGCTCGGACCAGGTGAACACGATGTGAAGGTCGGCGATATTGTCGGC



AATGCGTGGCTCTGGTCAGCGTGTGGCACCTGCGAATACTGCATCACCGGCAGGG



AAACTCAGTGCAACGAAGCTGAGTATGGTGGCTACACCCAAAATGGATCCTTCGG



CCAGTACATGCTGGTGGATACCCGTTACGCCGCTCGCATCCCAGACGGCGTGGACT



ACCTCGAAGCAGCACCAATTCTGTGTGCAGGCGTGACTGTCTACAAGGCACTCAA



AGTCTCTGAAACCCGCCCGGGCCAATTCATGGTGATCTCCGGTGTCGGCGGACTT



GGCCACATCGCAGTCCAATACGCAGCGGCGATGGGCATGCGTGTCATTGCGGTAG



ATATTGCCGATGACAAGCTGGAACTTGCCCGTAAGCACGGTGCGGAATTTACCGTG



AATGCGCGTAATGAAGATTCAGGCGAAGCTGTACAGAAGTACACCAACGGTGGCG



CACACGGCGTGCTTGTGACTGCAGTTCACGAGGCAGCATTCGGCCAGGCACTGGA



TATGGCTCGACGTGCAGGAACAATTGTGTTCAACGGTCTGCCACCGGGAGAGTTC



CCAGCATCCGTGTTCAACATCGTATTCAAGGGCCTGACCATCCGTGGATCCCTCGT



GGGAACCCGCCAAGACTTGGCCGAAGCGCTCGATTTCTTTGCACGCGGACTAATC



AAGCCAACCGTGAGTGAGTGCTCCCTCGATGAGGTCAATGGTGTGCTTGACCGCA



TGCGAAACGGCAAGATCGATGGTCGTGTGGCGATTCGTTTCTAA (SEQ ID NO: 72)
















TABLE 1-37





NCgl1112/NP_600385.1/Corynebacterium glutamicum ATCC 13032
















Amino acid
MSLQFDHETLGQRVLFGSGEAAQNLAAEISRLDAKNVMVVAGDFELPMARQVAADI


sequence
DVKVWHSNVVMHVPIETAEEARSVAKENDIDVVVCVGGGSTTGLAKAIAMTTALPII



AVPTTYAGSEATNVWGLTEAARKTTGVDNKVLPVTVIYDSALTMSLPVEMSVASGLN



GLAHCIDSLWGPKADPINAAMAAEGIRALSAGLPKIVADAQDVDGRDEALYGAYLA



AVSFASAGSGLHHKICHVLGGTFNLPHAQTHATVLPYVLAFNAPYAPQAEQRAAAAF



GSATALEGLQQLRAQVGAPQRLSDYGFTAAGIPEAVEIILEKVPANNPRTVTEENLTAL



LTTALNGDDPATLN (SEQ ID NO: 73)





Base
ATGTCTTTACAGTTCGATCATGAAACCCTCGGTCAACGAGTTCTGTTCGGTTCAGG


sequence
TGAGGCGGCGCAAAATCTCGCCGCTGAAATTAGCCGACTCGATGCCAAAAACGTC



ATGGTGGTTGCCGGTGATTTCGAGCTTCCCATGGCACGGCAAGTAGCAGCAGATAT



TGATGTCAAGGTGTGGCATTCAAATGTCGTGATGCATGTGCCCATCGAAACAGCAG



AAGAAGCACGCAGTGTTGCGAAAGAAAACGACATTGATGTTGTGGTGTGTGTGG



GCGGTGGATCCACAACAGGTCTAGCTAAAGCGATTGCCATGACCACCGCATTGCC



GATCATTGCGGTACCCACTACTTATGCAGGTTCTGAAGCAACAAATGTGTGGGGAT



TGACCGAAGCCGCGCGCAAAACAACTGGTGTTGATAACAAAGTGCTGCCAGTGA



CAGTTATCTACGATTCAGCGTTAACCATGTCTTTGCCGGTAGAAATGTCGGTTGCTT



CTGGTCTCAATGGTTTGGCTCACTGCATTGATTCTTTGTGGGGACCGAAGGCGGAT



CCCATCAATGCGGCTATGGCTGCTGAGGGAATTCGAGCACTTTCTGCTGGCCTTCC



CAAGATTGTGGCAGATGCTCAGGACGTAGATGGTCGCGATGAAGCGCTCTACGGT



GCCTACCTGGCTGCGGTGTCTTTTGCCTCTGCTGGCTCTGGTCTCCACCACAAGAT



CTGCCACGTGTTGGGTGGAACTTTTAACCTTCCACACGCGCAAACCCATGCAACA



GTACTGCCTTATGTTCTTGCCTTCAACGCGCCATATGCGCCACAGGCAGAACAACG



CGCAGCGGCAGCTTTCGGTTCTGCGACAGCACTTGAAGGATTGCAACAGCTGCGT



GCCCAAGTGGGAGCACCACAGCGACTATCCGATTACGGATTCACCGCAGCAGGAA



TCCCAGAGGCAGTGGAAATCATCTTGGAGAAAGTACCGGCGAATAATCCACGGAC



GGTCACAGAAGAAAACCTCACTGCGCTGCTTACCACAGCGCTCAACGGCGACGAT



CCAGCAACTTTGAATTAA (SEQ ID NO: 74)
















TABLE 1-38





NCgl2382/NP_601669.1/Corynebacterium glutamicum ATCC 13032
















Amino acid
MQTLAAIVRATKQPFEITTIDLDAPRPDEVQIRVIAAGVRHTDAIVRDQIYPTFLPAVFG


sequence
HEGAGVVVAVGSAVTSVKPDDKVVLGFNSCGQCLKCLGGKPAYCEKFYDRNFACTR



DAGHTTLFTRATKEQAEAIIDTLDDVFYDADAGFLAYPATPPEASGVSVLVVAAGTSD



LPQAKEALHTASYLGRSTSLIVDFGVAGIHRLLSYEEELRAAGVLIVAAGMDGALPGV



VAGLVSAPVVALPTSVGYGAGAGGIAPLLTMLNACAPGVGVVNIDNGYGAGHLAAQ



IAAR (SEQ ID NO: 75)





Base
ATGCAAACCCTTGCTGCTATTGTTCGTGCCACGAAGCAACCTTTTGAGATCACCAC


sequence
CATTGATCTGGATGCACCACGACCAGATGAAGTTCAAATCCGTGTTATTGCTGCCG



GAGTGCGCCACACTGACGCAATTGTTCGTGATCAGATTTACCCAACTTTTCTTCCC



GCAGTTTTCGGCCACGAAGGCGCCGGAGTAGTTGTCGCCGTGGGTTCTGCAGTCA



CCTCGGTGAAACCAGATGACAAGGTAGTGCTGGGATTCAACTCTTGTGGCCAGTG



CTTGAAGTGTTTGGGCGGTAAGCCTGCGTACTGTGAGAAATTCTATGACCGCAACT



TCGCATGCACCCGCGATGCCGGGCACACTACTTTGTTTACCCGTGCAACAAAAGA



GCAGGCAGAGGCCATCATCGACACCCTTGATGATGTTTTCTACGATGCGGATGCGG



GTTTCCTGGCATACCCAGCAACTCCCCCAGAGGCTTCGGGAGTAAGCGTGTTGGT



TGTCGCGGCTGGTACCTCTGATCTCCCCCAAGCAAAGGAAGCACTACACACTGCC



TCCTACTTGGGGCGCTCCACCTCACTGATTGTTGATTTTGGAGTGGCTGGCATCCA



CCGCCTGCTTTCATACGAAGAAGAACTCCGCGCTGCGGGCGTGCTCATCGTTGCC



GCTGGAATGGATGGTGCGCTACCCGGAGTTGTCGCAGGCTTAGTGTCCGCACCTG



TCGTCGCACTGCCAACCTCCGTGGGATACGGCGCAGGTGCTGGAGGAATCGCACC



ACTTCTGACCATGCTTAACGCCTGCGCGCCGGGAGTTGGAGTGGTCAACATTGATA



ACGGCTATGGAGCAGGACACCTGGCTGCGCAGATTGCGGCGAGGTAA (SEQ ID



NO: 76)
















TABLE 1-39





NCgl0186/NP_599442.1/Corynebacterium glutamicum


ATCC 13032
















Amino 
MLNAVGKAQNILLLGGTSEIGISIVSRFLKQGPSHVTLAA


acid
RKDSPRVDAAVAEIKAAGAASVAVVDFDALDTESHPAAID


sequence
AAFENGDVDVAIVAFGILGDNEAQWRDQALAVEATTVNYT



AGVSVGVLLGQKFEQQGHGTIVALSSVAGQRVRRSNFVYG



SAKAGFDGFYTQLGEALRGSGANVLVVRPGQVRTKMSADG



GEAPLTVNREDVADAVYDAVVNKKDIIFVHPLFQYVSFAF



QFIPRAIFRKLPF (SEQ ID NO: 77)





Base
ATGCTTAACGCAGTGGGCAAAGCCCAAAACATTCTCCTTC


sequence
TTGGTGGAACCTCTGAGATCGGTATTTCCATTGTCTCCCG



CTTCCTCAAGCAGGGTCCATCCCATGTGACCTTGGCAGCG



CGTAAAGATTCCCCACGCGTGGACGCAGCAGTCGCAGAGA



TCAAAGCAGCTGGCGCTGCTTCCGTTGCTGTTGTTGATTT



CGATGCGCTCGACACCGAATCCCACCCTGCAGCCATCGAC



GCAGCCTTTGAAAACGGCGACGTTGACGTAGCAATCGTGG



CTTTCGGCATCCTCGGCGACAACGAAGCACAGTGGCGCGA



CCAAGCACTAGCAGTGGAAGCAACCACCGTGAACTACACC



GCCGGCGTTTCCGTAGGTGTACTGCTGGGCCAGAAATTTG



AGCAGCAGGGCCACGGCACCATCGTGGCATTGTCCTCTGT



GGCAGGCCAGCGAGTCCGCCGCTCCAACTTTGTCTACGGC



TCCGCCAAGGCAGGTTTCGACGGTTTCTACACCCAGCTCG



GCGAAGCCCTGCGTGGATCCGGTGCCAACGTATTGGTGGT



TCGCCCAGGCCAGGTACGCACCAAGATGTCCGCAGATGGT



GGCGAAGCCCCACTGACCGTCAACCGCGAAGACGTGGCAG



ATGCTGTTTATGATGCAGTGGTGAACAAGAAGGACATCAT



CTTTGTCCACCCACTGTTCCAGTACGTCTCTTTTGCGTTC



CAATTCATTCCGCGAGCAATCTTCCGCAAGCTGCCGTTC



TAA (SEQ ID NO: 78)
















TABLE 1-40





NCgl0099/NP_599352.1/Corynebacterium glutamicum


ATCC 13032
















Amino 
MEHGVTVIKGTEFDVFPLNLGGNTFGWTSNREQTFAVLDA


acid
FVAAGGNFVDTADSYSAWVEGNEGGESERELGAWIKERGA


sequence
DKLIIATKSGALEPVAGRSREATFKAVEGSLERLGVESID



IFYYHYDDEAVSIDEQVAIANDLIAQGKIKHLALSNYSAE



RLAEFFEKSVGTPAQPVALQPHYNLVSRKDYEENVQPLAE



KHGVAVFPYFALAAGLLTGKYTSKEDISGKARAGQLDRYA



SDEAFAVVTELRAVADELGVAPTTVALAWLVAHGVTAPIA



SVSKVEQLKDLMAVKDVELSAEQLARLDKVSEPFA



(SEQ ID NO: 79)





Base
ATGGAGCACGGCGTGACCGTTATTAAAGGCACTGAATTTG


sequence
ATGTTTTCCCACTAAACCTCGGTGGAAATACCTTTGGCTG



GACCTCGAATAGGGAACAGACCTTCGCGGTTTTGGATGCA



TTCGTGGCAGCGGGAGGAAACTTTGTTGACACCGCCGATT



CTTATTCTGCATGGGTTGAAGGCAATGAGGGTGGCGAGTC



GGAGCGGGAGCTCGGCGCGTGGATTAAGGAACGTGGCGCA



GACAAGCTGATCATTGCTACCAAGTCTGGTGCGTTGGAGC



CTGTTGCTGGTCGTTCCCGTGAGGCAACTTTCAAGGCTGT



CGAGGGTTCCCTGGAGCGTTTGGGCGTGGAATCGATCGAT



ATTTTTTACTACCACTACGACGATGAGGCAGTCAGCATTG



ATGAGCAGGTTGCTATCGCTAATGATCTGATTGCACAGGG



CAAGATTAAGCACCTCGCATTGTCTAACTACAGCGCGGAG



CGTTTAGCTGAGTTCTTTGAGAAGTCTGTAGGCACTCCAG



CGCAGCCGGTTGCTCTGCAACCGCACTACAACCTGGTGTC



GAGGAAGGATTATGAGGAGAACGTGCAGCCACTCGCCGAG



AAGCATGGCGTTGCAGTCTTCCCTTATTTCGCGCTTGCCG



CGGGTCTTTTGACCGGAAAGTACACCTCCAAGGAGGATAT



TTCGGGTAAAGCGCGTGCGGGGCAGTTGGATCGTTACGCC



AGCGATGAGGCGTTTGCCGTGGTGACAGAGTTGCGTGCTG



TTGCCGATGAGTTGGGTGTTGCGCCAACGACTGTGGCGCT



TGCGTGGTTGGTTGCGCATGGTGTGACCGCACCGATTGCG



TCCGTGTCCAAGGTAGAGCAGTTGAAGGATTTGATGGCTG



TGAAGGATGTGGAGCTGAGCGCTGAGCAGCTTGCACGTTT



GGATAAGGTTTCGGAGCCTTTCGCTTAA 



(SEQ ID NO: 80)
















TABLE 1-41





NCgl2952/NP_602249.1/Corynebacterium glutamicum


ATCC 13032
















Amino 
MNNSLAFNHDTLPQKVMFGYGKSSAFLKQEVERRGSAKVM


acid
VIAGEREMSIAHKVASEIEVAIWHDEVVMHVPIEVAERAR


sequence
AVATDNEIDLLVCVGGGSTIGLAKAIAMTTALPIVAIPTT



YAGSEATNVWGLTEAARKTTGVDLKVLPETVIYDSELTMS



LPVEMSVASGLNGLAHCIDSLWGPNADPINAVLAAEGIRA



LNQGLPKIVANPHSIEGRDEALYGAYLAAVSFASAGSGLH



HKICHTLGGTFNLPHAQTHATVLPYVLAFNAGDAPEAERR



AAAAFGTDTALEGLQRLRLSVNAPKRLSDYGFEASGIAEA



VDVTLEKVPANNPRPVTRENLSRLLEAALNGEDPAVLSAV



LSN (SEQ ID NO: 81)





Base
GTGAACAACTCACTCGCATTCAACCACGACACCCTCCCAC


sequence
AGAAAGTCATGTTTGGATATGGCAAGTCCAGTGCATTCTT



AAAGCAGGAAGTTGAACGCCGCGGCTCAGCCAAGGTCATG



GTCATTGCGGGTGAACGAGAAATGTCGATCGCCCATAAGG



TGGCCTCAGAAATTGAGGTGGCGATCTGGCACGACGAAGT



TGTCATGCACGTGCCCATCGAAGTAGCCGAACGTGCGCGT



GCAGTGGCAACCGACAATGAGATTGATCTGCTGGTGTGTG



TTGGCGGCGGATCCACCATAGGTTTGGCCAAAGCAATTGC



CATGACCACTGCCCTGCCCATCGTCGCGATCCCCACCACC



TACGCAGGATCGGAAGCAACCAACGTGTGGGGTCTGACGG



AAGCAGCGCGCAAAACAACCGGTGTTGATCTGAAGGTGCT



CCCCGAAACAGTCATTTACGATTCCGAACTCACCATGTCG



CTTCCAGTGGAGATGTCCGTGGCATCCGGACTCAACGGCC



TGGCGCACTGCATTGATTCTTTGTGGGGACCCAACGCCGA



TCCCATCAACGCAGTGCTTGCAGCCGAAGGAATCCGCGCA



CTCAACCAGGGACTGCCGAAAATTGTTGCGAACCCGCACA



GCATCGAAGGACGCGACGAAGCCCTCTACGGCGCCTACCT



CGCAGCAGTATCCTTCGCCTCCGCAGGCTCCGGACTACAC



CACAAAATCTGCCACACCTTGGGAGGCACCTTCAACCTCC



CCCACGCCCAAACCCACGCAACCGTGCTGCCGTATGTTTT



GGCATTCAACGCAGGCGACGCACCAGAAGCTGAACGCCGC



GCAGCCGCAGCCTTTGGAACTGACACCGCACTAGAAGGCC



TGCAACGCCTCCGCTTGTCAGTCAACGCACCGAAACGACT



TTCCGACTACGGCTTCGAGGCTTCAGGAATTGCTGAGGCA



GTGGACGTCACGTTGGAGAAAGTTCCCGCCAACAATCCTC



GCCCAGTGACCCGGGAAAACCTCAGCAGATTGCTCGAAGC



AGCACTCAACGGTGAGGATCCGGCAGTTCTTAGCGCAGTA



CTCAGTAACTAA (SEQ ID NO: 82)
















TABLE 1-42





NCgl1459/NP_600732.2/Corynebacterium glutamicum


ATCC 13032
















Amino 
MKQRMVGSSGLRVSRLGLGTSTWGSGTELAEAGDIFKAFI


acid
NSGGTLIDVSPNYTTGVAEEMLGTMLDAEVSRSAVVISSS


sequence
AGVNPALPLGRRVDCSRRNLIAQLDVTLRALNTDYLDLWS



VGYWDEGTPPHEVADTLDYAVRTGRVRYAGVRGYSGWQLA



VTHAASNHAAASARPVVVAQNEYSLLERRAEQELLPATQH



LGVGFFAGAPLGQGVLTAKYRSEIPHDSRAASTGRDAEVQ



SYLDNRGRIIVDALDTAAKGLGISPAVTATTWVRDRPGVT



AVIVGARTHEQLSHLLKAESVTLPTPITQALDDVSL



(SEQ ID NO: 83)





Base
GTGAAACAGCGAATGGTCGGTTCAAGTGGTTTGCGGGTAT


sequence
CCAGGCTCGGTTTGGGCACCTCAACATGGGGCTCGGGCAC



CGAGCTGGCTGAGGCAGGCGATATCTTTAAGGCGTTCATC



AATTCTGGTGGCACGCTTATCGACGTCTCCCCCAACTACA



CCACCGGCGTCGCGGAAGAAATGCTCGGCACGATGTTGGA



TGCGGAAGTCTCTCGTTCGGCTGTCGTCATTTCCTCCAGC



GCAGGTGTCAACCCCGCTCTGCCGCTCGGCCGACGTGTGG



ATTGCTCCCGCCGCAATTTGATTGCCCAATTAGATGTCAC



CCTGCGGGCATTAAACACTGACTATTTGGATTTGTGGTCT



GTGGGCTATTGGGATGAGGGCACCCCACCGCATGAGGTGG



CCGATACTTTGGATTACGCCGTGCGCACCGGCCGAGTCCG



ATATGCCGGTGTCCGAGGATATTCCGGTTGGCAGTTAGCG



GTCACCCACGCTGCATCCAATCATGCAGCGGCCTCCGCCC



GCCCCGTGGTCGTTGCACAAAATGAATACAGCCTGCTGGA



ACGCCGCGCAGAACAAGAACTCCTCCCTGCCACCCAACAC



CTAGGTGTCGGATTCTTTGCTGGCGCTCCGCTGGGGCAAG



GCGTGCTGACTGCTAAATACCGCTCCGAAATTCCCCATGA



TTCCAGAGCTGCATCCACAGGACGCGACGCAGAAGTCCAA



AGCTACCTAGATAATCGAGGCCGCATCATTGTCGATGCTC



TTGATACTGCAGCCAAAGGATTAGGCATTAGCCCCGCTGT



CACAGCCACCACCTGGGTGCGTGATCGTCCCGGAGTGACA



GCTGTCATCGTGGGCGCTCGCACACATGAACAGCTGTCAC



ATCTTCTCAAGGCGGAATCGGTGACTTTGCCAACACCAAT



CACACAAGCCCTTGATGATGTCTCCCTGTGA



(SEQ ID NO: 84)
















TABLE 1-43





yogA/NP_389725.1/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MKAVIHNGKAGLLGLSVQDVPSTKPGYGEVKVKLKSAGLN


acid
HRDLFLMKNKSEQDPHMILGSDGAGIIEEIGEGVKNVTVQ


sequence
TEVVIFPTLNWDLTENVPPVPEILGGPSDGTLAEYVIIPS



QNAIKKPAYLSWEEAGVLPLSALTAYRALFTKGQLKKGEH



LLIPGIGSGVATYALFMAKAIGATVSVTSRSEEKRKKALK



LGADYAFDSYSNWDEQLQGKKIDVVLDSIGPALFSEYFRH



VKPNGRIVSFGASSGDNLSFPVRSLFFPQVNVLGTSMGSG



EEFQAMLAFIDKHKLRPVIDRIYPLEKACEAYKRMQEGRQ



FGNIGIVME (SEQ ID NO: 85)





Base
ATGAAAGCTGTAATTCACAACGGAAAAGCCGGTCTTCTGG


sequence
GGTTATCAGTTCAGGACGTTCCATCAACAAAGCCTGGATA



CGGAGAGGTAAAGGTTAAATTAAAATCTGCAGGCCTGAAT



CATCGTGACTTGTTTCTTATGAAAAACAAATCTGAACAAG



ATCCTCACATGATACTGGGTTCTGACGGCGCGGGTATCAT



CGAAGAGATTGGTGAAGGCGTGAAAAATGTTACTGTTCAG



ACAGAAGTAGTCATTTTCCCGACATTGAACTGGGATTTGA



CAGAAAATGTTCCACCTGTACCTGAGATTCTGGGAGGTCC



TTCGGACGGAACACTTGCTGAATATGTGATCATTCCTTCA



CAAAATGCAATCAAAAAACCTGCTTATTTATCTTGGGAAG



AAGCGGGCGTTTTACCTTTATCCGCTTTAACTGCATATCG



GGCTCTGTTTACAAAGGGGCAATTAAAAAAAGGCGAGCAT



CTATTGATACCCGGCATCGGCAGCGGTGTAGCAACCTACG



CTTTATTTATGGCTAAGGCGATTGGGGCAACAGTAAGCGT



GACCTCCCGCAGTGAGGAGAAAAGAAAAAAGGCGCTGAAA



TTAGGTGCTGATTACGCATTTGACAGCTACAGCAATTGGG



ATGAGCAGTTGCAGGGAAAAAAGATAGATGTTGTTCTTGA



CAGCATAGGACCTGCCCTCTTTTCGGAATACTTCCGCCAT



GTAAAACCAAATGGCCGTATTGTCAGCTTTGGGGCAAGCT



CAGGGGATAATCTCAGTTTTCCGGTGCGTTCTTTATTCTT



TCCTCAGGTCAATGTTTTGGGAACCTCGATGGGAAGCGGT



GAGGAATTTCAAGCTATGCTCGCTTTCATTGACAAACATA



AGCTGCGGCCTGTAATTGACCGGATATATCCTTTAGAAAA



AGCATGTGAAGCATATAAAAGAATGCAGGAAGGCAGACAG



TTTGGAAACATCGGGATCGTAATGGAATAA



(SEQ ID NO: 86)
















TABLE 1-44





bdhK/NP_391014.1/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MENFTYYNPTKLIFGKGQLEQLRKEFKRYGKNVLLVYGGG


acid
SIKRNGLYDQVTGILKEEGAVVHELSGVEPNPRLATVEKG


sequence
IGLCREHDIDFLLAVGGGSVIDCTKAIAAGVKYDGDAWDI



FSKKVTAEDALPFGTVLTLAATGSEMNPDSVITNWETNEK



FVWGSNVTHPRFSILDPENTFTVPENQTVYGMVDMMSHVF



EQYFHNVENTPLQDRMCFAVLQTVIETAPKLLEDLENYEL



RETILYAGTIALNGTLQMGYFGDWASHTMEHAVSAVYDIP



HAGGLAILFPNWMRYTLDTNVGRFKNLMLNMFDIDTEGKT



DKEIALEGIDKLSAFWTSLGAPSRLADYNIGEEKLELIAD



IAAKEMEHGGFGNFQKLNKDDVLAILRASL 



(SEQ ID NO: 87)





Base
ATGGAAAATTTCACTTATTATAATCCGACAAAGCTGATTT


sequence
TTGGAAAAGGTCAGCTTGAACAATTAAGAAAAGAATTCAA



ACGATACGGCAAGAATGTACTGCTTGTTTACGGGGGCGGC



AGCATTAAACGCAACGGCCTTTATGATCAAGTCACAGGCA



TTTTAAAAGAAGAGGGCGCTGTTGTTCATGAGCTGTCAGG



TGTAGAGCCAAACCCGCGTCTTGCGACAGTGGAAAAAGGC



ATAGGACTTTGCAGAGAGCATGACATTGATTTTCTGCTTG



CTGTCGGCGGAGGCAGTGTGATTGACTGTACAAAGGCAAT



CGCAGCTGGCGTCAAATATGACGGTGACGCTTGGGATATT



TTCAGCAAAAAAGTAACAGCGGAGGATGCGCTGCCGTTTG



GCACTGTTTTAACTCTTGCTGCAACAGGGTCTGAAATGAA



CCCTGATTCCGTGATTACAAACTGGGAAACAAACGAGAAA



TTTGTATGGGGCAGCAATGTCACTCATCCGCGTTTCTCTA



TTTTAGACCCTGAAAATACGTTCACCGTTCCAGAAAATCA



AACAGTATACGGCATGGTTGACATGATGAGCCACGTATTC



GAACAATACTTCCATAATGTTGAAAACACGCCGCTTCAGG



ATAGAATGTGCTTTGCTGTTTTGCAGACGGTCATCGAAAC



AGCTCCTAAGCTTCTTGAAGATCTGGAAAACTACGAACTT



CGTGAAACGATTTTGTATGCTGGTACTATTGCTTTAAACG



GCACGCTCCAAATGGGATACTTCGGTGACTGGGCTTCTCA



TACAATGGAACACGCTGTTTCAGCTGTATATGATATTCCG



CACGCGGGCGGTTTGGCAATACTGTTCCCAAATTGGATGA



GATACACGCTTGATACAAATGTAGGCCGTTTTAAAAACCT



TATGCTCAACATGTTTGACATTGATACTGAAGGCAAAACA



GATAAAGAAATTGCGCTTGAAGGAATCGATAAACTGTCTG



CGTTCTGGACAAGCCTCGGTGCACCTTCTCGTCTTGCTGA



TTACAATATTGGAGAAGAAAAGCTTGAGCTGATTGCTGAT



ATCGCAGCCAAGGAAATGGAACACGGCGGCTTCGGCAACT



TCCAAAAACTGAACAAAGATGACGTGCTTGCCATCCTTCG



CGCGTCTCTATAA (SEQ ID NO: 88)
















TABLE 1-45





bdhJ/NP_391015.1/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MQNFTYWNPTKLIFGRGEVERLPEELKPYGKNVLLVYGGG


acid
SIKRSGLYDQVIEQLNKAGATVHELAGVEPNPRVSTVNKG


sequence
VAICKEQNIDFLLAVGGGSVIDCTKAIAAGAKYDGDAWDI



VTKKHQPKDALPFGTVLTLAATGSEMNSGSVITNWETKEK



YGWGSPLVFPKFSILDPVNTFTVPKNHTIYGMVDMMSHVF



EQYFHHVSNTPYQDRMCESLLRTVIETAPKLINDLENYEL



RETILYTGTIALNGMLSMGARGDWATHNIEHAVSAVYDIP



HAGGLAILFPNWMRHTLSENPARMKQLAVRVFDVEEAGKT



DEEIALEGIDKLSAFWTSLGAPNRLADYDINDEQLDTIAD



KAMANGTFGQFKSLNKEDVLSILKASL 



(SEQ ID NO: 89)





Base
ATGCAAAACTTTACATACTGGAATCCGACCAAATTAATTT


sequence
TCGGGCGCGGCGAAGTGGAAAGACTTCCGGAGGAACTCAA



ACCTTACGGAAAAAACGTATTGCTTGTGTACGGAGGCGGC



AGCATTAAACGCAGCGGCCTGTATGATCAAGTGATTGAAC



AGCTGAATAAAGCCGGAGCGACCGTGCATGAATTAGCAGG



TGTGGAACCGAATCCTCGTGTGTCGACTGTTAATAAAGGT



GTTGCCATCTGTAAAGAACAAAACATTGATTTCTTGCTGG



CTGTCGGAGGCGGAAGCGTAATCGACTGTACAAAAGCGAT



TGCCGCAGGAGCGAAGTATGATGGTGATGCGTGGGATATC



GTTACGAAAAAGCATCAGCCAAAAGATGCTTTGCCATTCG



GAACGGTATTGACTCTCGCTGCAACTGGTTCAGAAATGAA



CTCAGGATCTGTTATTACAAACTGGGAAACAAAAGAAAAA



TACGGCTGGGGCAGCCCGCTCGTATTCCCTAAATTCTCGA



TTCTTGATCCGGTGAATACATTCACCGTACCTAAAAACCA



CACGATCTACGGGATGGTTGACATGATGAGCCACGTATTC



GAACAATACTTCCATCATGTATCAAACACGCCGTATCAGG



ACCGCATGTGTGAATCACTTTTGCGTACAGTCATTGAAAC



AGCGCCTAAGCTGATCAATGATCTCGAAAATTACGAATTG



CGTGAGACGATCCTGTACACAGGAACAATCGCATTAAACG



GCATGCTTTCTATGGGGGCAAGAGGGGATTGGGCTACTCA



TAATATTGAACATGCAGTATCAGCCGTTTATGATATTCCG



CATGCCGGCGGACTGGCGATTCTGTTCCCGAATTGGATGA



GACACACATTGTCTGAAAACCCTGCCCGCATGAAACAGCT



TGCAGTTCGCGTGTTTGATGTTGAAGAAGCAGGTAAAACG



GATGAAGAAATTGCCCTTGAAGGTATCGATAAGCTGTCCG



CATTCTGGACAAGTCTTGGCGCTCCGAACCGTCTTGCTGA



TTATGATATTAATGATGAGCAGCTTGACACAATCGCTGAC



AAGGCAATGGCTAACGGTACATTCGGCCAATTTAAATCAC



TCAACAAAGAAGATGTGCTGTCAATTTTGAAAGCATCACT 



ATAA (SEQ IDNO: 90)
















TABLE 1-46





akrN/NP_388834.1/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MEYTSIADTGIEASRIGLGTWAIGGTMWGGTDEKTSIETI


acid
RAALDQGITLIDTAPAYGFGQSEEIVGKAIKEYGKRDQVI


sequence
LATKTALDWKNNQLFRHANRARIVEEVENSLKRLQTDYID



LYQVHWPDPLVPIEETAEVMKELYDAGKIRAIGVSNFSIE



QMDTFRAVAPLHTIQPPYNLFEREMEESVLPYAKDNKITT



LLYGSLCRGLLTGKMTEEYTFEGDDLRNHDPKFQKPRFKE



YLSAVNQLDKLAKTRYGKSVIHLAVRWILDQPGADIALWG



ARKPGQLEALSEITGWTLNSEDQKDINTILENTISDPVGP



EFMAPPTREEI (SEQ ID NO: 91)





Base
ATGGAATATACCAGTATAGCAGATACAGGAATAGAAGCCT


sequence
CCAGAATCGGCCTCGGCACATGGGCCATTGGCGGAACGAT



GTGGGGAGGCACTGACGAAAAAACATCGATTGAAACAATC



CGCGCCGCTCTTGATCAGGGGATTACACTGATTGACACCG



CACCGGCTTACGGCTTCGGGCAGTCCGAGGAAATTGTCGG



AAAGGCAATCAAAGAGTACGGCAAAAGAGACCAGGTGATT



CTCGCAACGAAAACGGCTCTGGACTGGAAGAACAACCAGC



TGTTCCGCCATGCGAACAGAGCGAGAATTGTAGAGGAAGT



TGAGAATTCTTTGAAGCGGCTTCAAACAGACTATATTGAT



CTTTATCAGGTGCATTGGCCCGATCCGCTTGTGCCAATTG



AAGAAACGGCTGAAGTCATGAAGGAATTATATGATGCGGG



AAAAATCCGGGCGATTGGCGTCAGCAATTTTTCAATTGAG



CAAATGGATACATTTCGCGCCGTCGCACCTCTCCATACGA



TTCAGCCTCCATATAATCTGTTTGAAAGAGAGATGGAAGA



GAGTGTCCTTCCTTATGCGAAAGATAACAAGATAACAACA



TTATTATACGGCAGTTTATGCAGAGGGCTGTTAACAGGCA



AAATGACTGAAGAATATACATTTGAGGGCGATGATCTGCG



TAATCACGATCCAAAATTCCAGAAGCCCCGCTTTAAAGAG



TATCTTTCTGCTGTGAATCAATTGGATAAGCTGGCGAAGA



CACGTTATGGAAAATCAGTGATTCACTTGGCTGTCAGATG



GATCTTAGATCAGCCGGGAGCGGATATCGCTCTTTGGGGA



GCAAGAAAGCCTGGGCAGCTTGAGGCCCTATCTGAGATTA



CAGGCTGGACGCTGAACAGTGAAGATCAGAAAGATATCAA



TACTATATTGGAAAATACGATATCAGACCCTGTCGGACCG



GAGTTTATGGCCCCGCCGACCAGAGAGGAAATATAA 



(SEQ ID NO: 92)
















TABLE 1-47





yqkF/NP_390243.1/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MRKRKLGTSDLDISEVGLGCMSLGTEKNKALSILDEAIEL


acid
GINYLDTADLYDRGRNEEIVGDAIQNRRHDIILATKAGNR


sequence
WDDGSEGWYWDPSKAYIKEAVKKSLTRLKTDYIDLYQLHG



GTIEDNIDETIEAFEELKQEGVIRYYGISSIRPNVIKEYV



KKSNIVSIMMQFSLFDRRPEEWLPLLEEHQISVVARGPVA



KGLLTEKPLDQASESMKQNGYLSYSFEELTNARKAMEEVA



PDLSMTEKSLQYLLAQPAVASVITGASKIEQLRENIQAAN



ARRLTEEEIKALQSHTKQDIYKAHRS 



(SEQ ID NO: 93)





Base
ATGAGAAAGCGCAAATTGGGTACATCTGATTTAGACATTA


sequence
GCGAAGTCGGACTCGGCTGTATGTCTCTTGGAACTGAAAA



AAACAAAGCATTGTCCATTCTGGATGAAGCGATCGAGCTT



GGCATCAACTATTTGGACACAGCGGATTTGTATGACCGGG



GACGCAATGAAGAAATTGTCGGTGATGCGATCCAAAACAG



ACGCCATGATATTATTCTGGCAACAAAAGCGGGAAACCGT



TGGGATGACGGAAGCGAGGGCTGGTATTGGGACCCTTCAA



AAGCTTACATAAAAGAGGCGGTAAAAAAGAGCCTTACACG



TCTGAAAACAGATTATATCGACCTTTATCAGCTCCACGGC



GGCACGATAGAGGACAACATTGATGAAACGATTGAAGCGT



TTGAGGAATTAAAACAAGAAGGTGTCATCCGCTACTACGG



CATTTCTTCCATCCGCCCGAATGTGATTAAAGAATATGTA



AAAAAATCAAACATCGTCAGCATTATGATGCAATTCAGCC



TGTTTGACAGACGCCCTGAGGAATGGCTCCCGCTTTTAGA



GGAACATCAAATCAGCGTAGTCGCCAGAGGTCCTGTTGCC



AAAGGGCTCTTAACTGAAAAACCGCTTGATCAAGCTTCAG



AAAGTATGAAACAAAACGGGTACTTGTCCTATTCATTCGA



GGAACTGACAAATGCCCGTAAGGCAATGGAGGAAGTGGCT



CCCGATCTTTCCATGACAGAAAAGTCGCTGCAGTATCTGC



TAGCACAGCCGGCTGTCGCTTCAGTGATTACAGGCGCCAG



TAAGATTGAGCAGTTACGGGAAAATATTCAGGCAGCAAAT



GCACGGCGTTTAACCGAAGAGGAAATCAAAGCGCTCCAAT



CTCATACGAAACAAGACATTTACAAAGCTCATCGCTCATA



G (SEQ ID NO: 94)
















TABLE 1-48





yccK/NP_388159.1/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MDQTRTLGKTKLKVKRIGFGANAVGGHNLFPNLNDETGKD


acid
LVRTALDGGVNFIDTAFIYGLGRSEELIGEVVQERGVRNE


sequence
LIIATKGAHKEVDGSIELDNSREFLRSEVEKSLKRLKTDY



IDLYYVHFPDGKTPLAEVAGTLKELKDEGKIKAIGASNLD



YQQLQDFNADGYLEVFQAEYSLIQRDAEKELLPYCEKQGI



SFIPYFPLASGLLTGKFTQDTVFDDFRKDKPQFQGETFIH



NLKKVDKLKAVAEEKQADTAHVALAWLLTRPAIDAIIPGA



KRPEQLQDNLKTLNIELTEDEVNFISDIFK 



(SEQ ID NO: 95)





Base
ATGGATCAAACACGTACACTCGGCAAAACGAAGCTGAAGG


sequence
TGAAGCGGATCGGATTCGGCGCGAATGCGGTCGGCGGGCA



TAATCTATTTCCAAATCTAAATGATGAAACAGGGAAGGAT



TTAGTGCGCACGGCATTGGATGGCGGCGTCAATTTTATCG



ATACCGCCTTTATATATGGATTGGGGCGATCTGAAGAATT



AATCGGCGAAGTCGTACAGGAACGCGGCGTGCGGAATGAG



CTCATCATCGCCACCAAAGGAGCTCATAAAGAAGTGGACG



GCAGCATTGAATTAGACAATAGCCGGGAGTTTCTTCGCAG



CGAGGTGGAGAAGAGCCTGAAGCGGCTGAAAACAGATTAC



ATTGATTTGTATTATGTTCACTTTCCGGATGGAAAAACAC



CTCTCGCTGAAGTGGCGGGCACTTTGAAAGAGCTGAAGGA



TGAGGGGAAAATCAAAGCGATCGGCGCTTCGAACCTCGAT



TATCAGCAATTGCAGGATTTTAATGCTGACGGCTATTTGG



AGGTCTTCCAGGCCGAATATTCTCTCATACAGCGTGATGC



CGAGAAAGAGCTTCTTCCATACTGTGAAAAACAAGGCATC



TCCTTTATTCCTTACTTTCCGCTTGCGTCCGGACTGCTGA



CAGGAAAATTCACGCAAGACACAGTCTTTGATGATTTCAG



AAAGGATAAACCTCAATTTCAGGGTGAAACGTTTATCCAC



AATCTCAAAAAAGTAGATAAGCTGAAAGCAGTAGCGGAGG



AAAAACAAGCGGATACGGCACATGTCGCCTTGGCGTGGCT



GTTAACGAGACCGGCGATTGATGCCATTATTCCAGGAGCT



AAACGACCGGAGCAATTACAGGATAACCTGAAAACCTTGA



ACATTGAACTGACCGAAGATGAAGTGAATTTCATCAGCGA



CATTTTCAAATAA (SEQ ID NO: 96)
















TABLE 1-49





iolS/NP_391857.1/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MKKAKLGKSDLQVFPIGLGTNAVGGHNLYPNLNEETGKEL


acid
VREAIRNGVTMLDTAYIYGIGRSEELIGEVLREFNREDVV


sequence
IATKAAHRKQGNDFVFDNSPDFLKKSVDESLKRLNTDYID



LFYIHFPDEHTPKDEAVNALNEMKKAGKIRSIGVSNFSLE



QLKEANKDGLVDVLQGEYNLLNREAEKTFFPYTKEHNISF



IPYFPLVSGLLAGKYTEDTTFPEGDLRNEQEHFKGERFKE



NIRKVNKLAPIAEKHNVDIPHIVLAWYLARPEIDILIPGA



KRADQLIDNIKTADVTLSQEDISFIDKLFA



(SEQ ID NO: 97)





Base
ATGAAAAAAGCGAAGCTCGGAAAATCAGACTTGCAGGTAT


sequence
TCCCTATCGGATTAGGAACAAATGCTGTCGGAGGACATAA



CCTCTACCCGAACCTAAATGAAGAAACCGGAAAAGAATTG



GTGCGCGAGGCGATCCGTAATGGCGTGACAATGTTAGACA



CCGCTTACATTTACGGGATCGGCCGTTCCGAAGAATTAAT



TGGTGAAGTGCTGCGTGAATTCAACCGTGAAGATGTTGTC



ATCGCGACAAAAGCCGCTCACAGAAAACAAGGCAATGACT



TTGTCTTTGATAATTCACCAGATTTTCTTAAAAAATCAGT



TGATGAAAGCCTGAAGCGCTTGAATACCGATTATATTGAT



TTGTTCTACATTCACTTCCCTGACGAACATACGCCTAAGG



ATGAAGCCGTTAACGCGCTGAATGAGATGAAGAAAGCCGG



AAAAATCCGTTCCATCGGTGTATCCAACTTCTCTTTAGAG



CAATTGAAAGAAGCAAACAAAGACGGTTTGGTAGATGTAT



TGCAAGGCGAATACAACCTGTTAAACCGTGAAGCGGAAAA



AACATTCTTCCCGTATACGAAGGAGCATAATATTTCATTT



ATCCCTTACTTCCCTCTCGTATCAGGTTTATTGGCAGGAA



AGTATACAGAAGATACAACGTTCCCAGAAGGCGACCTGCG



AAACGAACAGGAACACTTCAAGGGTGAGCGTTTCAAAGAA



AATATCAGAAAGGTCAACAAGCTTGCGCCGATTGCCGAAA



AACACAACGTGGATATCCCTCACATCGTATTGGCCTGGTA



TTTAGCAAGACCGGAAATTGATATTTTAATCCCAGGAGCA



AAACGTGCCGATCAGCTGATTGATAACATCAAAACAGCTG



ACGTGACGCTTTCTCAAGAGGATATTTCATTTATTGATAA



GCTGTTCGCATAA (SEQ ID NO: 98)
















TABLE 1-50





yrpG/NP_390562.2/Bacillus subtilis subsp. 



subtilis str. 168

















Amino 
MEYTYLGRTGLRVSRLCLGTMNFGVDTDEKTAFRIMDEAL


acid
DNGIQFFDTANIYGWGKNAGLTESIIGKWFAQGGQRREKV


sequence
VLATKVYEPISDPNDGPNDMRGLSLYKIRRHLEGSLKRLQ



TDHIELYQMHHIDRRTPWDEIWEAFETQVRSGKVDYIGSS



NFAGWHLVKAQAEAEKRRFMGLVTEQHKYSLLERTAEMEV



LPAARDLGLGVVAWSPLAGGLLGGKALKSNAGTRTAKRAD



LIEKHRLQLEKFSDLCKELGEKEANVALAWVLANPVLTAP



IIGPRTVEQLRDTIKAVEISLDKEILRMLNDIFPGPGGET



PEAYAW (SEQ ID NO: 99)





Base
GTGGAGTATACCTATTTAGGGAGAACAGGATTGCGGGTGA


sequence
GCCGTTTATGTTTAGGCACGATGAATTTTGGAGTTGATAC



AGACGAAAAGACTGCGTTCCGTATCATGGATGAAGCACTT



GATAACGGCATTCAATTTTTTGATACTGCCAATATTTACG



GCTGGGGCAAAAACGCAGGATTGACAGAGAGCATCATTGG



AAAATGGTTTGCACAAGGAGGACAGCGCCGCGAGAAAGTT



GTTCTGGCGACAAAAGTATATGAACCGATTTCTGATCCGA



ATGACGGACCAAATGATATGAGGGGCTTGTCTCTATACAA



AATCAGACGTCATCTGGAAGGATCACTGAAGCGGCTTCAG



ACAGATCATATCGAATTGTACCAAATGCATCATATCGATA



GGCGGACACCGTGGGATGAGATATGGGAAGCTTTTGAGAC



TCAGGTTCGCTCCGGCAAAGTAGACTATATTGGATCCAGT



AATTTTGCAGGCTGGCATTTAGTTAAAGCGCAAGCTGAAG



CTGAAAAACGGCGATTCATGGGACTCGTCACTGAACAGCA



TAAGTATAGTTTATTAGAACGAACAGCTGAAATGGAAGTG



CTGCCGGCTGCACGGGATCTTGGTTTAGGAGTAGTGGCGT



GGAGTCCCCTTGCAGGAGGGCTTCTTGGCGGGAAGGCATT



GAAAAGCAATGCCGGAACTCGTACAGCAAAAAGAGCAGAT



TTAATTGAAAAACATCGTTTGCAACTCGAGAAATTTTCAG



ATTTATGCAAAGAACTAGGAGAAAAAGAAGCAAATGTGGC



TTTGGCATGGGTGCTGGCAAATCCAGTTTTAACTGCGCCG



ATCATCGGACCACGAACGGTTGAGCAGCTGCGTGATACGA



TAAAAGCCGTTGAAATCAGTCTGGATAAGGAGATTCTCCG



CATGTTAAATGATATCTTTCCCGGACCTGGAGGAGAGACA



CCTGAGGCATACGCCTGGTGA (SEQ ID NO: 100)









In the present invention, an activity of one kind of ADH may be reduced, and activities of two or more kinds of ADH may be reduced. It is preferable that activities of two or more kinds of ADH are reduced from the viewpoint of further reducing production of an alcohol form as a by-product.


In the present invention, “ADH non-reduced strain” (alternatively, also simply referred to as a “non-reduced strain”) refers to a strain which is not modified such that the ADH activity is reduced. Examples of the ADH non-reduced strain include, but are not limited to, a wild-type strain or a reference strain of each microbial strain and a derivative strain including a strain obtained by breeding. Examples of E. coli strains include, but are not limited to, K-12 strain, B strain, C strain, W strain, and derivative strains thereof such as BL21 (DE3) strain, W3110 strain, MG1655 strain, JM109 strain, DH5α strain, and HB101 strain.


The genetically modified microorganism “modified to reduce an activity of an alcohol dehydrogenase” means that a modification is performed at least to suppress expression of a gene encoding an alcohol dehydrogenase. The “modification to reduce an activity of an alcohol dehydrogenase” includes a modification to suppress an activity of the enzyme, in addition to the modification to suppress expression of a gene encoding an alcohol dehydrogenase. That is, the modified microorganism of the present invention contains a modification to suppress expression of a gene encoding an alcohol dehydrogenase compared to a non-reduced strain (for example, a host microorganism) or a modification to suppress an activity of the enzyme. More specifically, the “modification to reduce an activity of an alcohol dehydrogenase” means that a modification is performed at least to suppress expression of a gene encoding an alcohol dehydrogenase, and a modification is preferably performed to suppress expression of a gene encoding an alcohol dehydrogenase and to suppress an activity of an alcohol dehydrogenase. Since a host microorganism may have plural genes each encoding an alcohol dehydrogenase and plural alcohol dehydrogenases exhibiting an activity against the same substrate may be present, even in the case where “the modification is performed to reduce an activity of an alcohol dehydrogenase”, the activity of the alcohol dehydrogenase may be maintained in a decomposition activity of alcohol species compared to a non-reduced strain. Therefore, as described above, the case where “the modification is performed to reduce an activity of an alcohol dehydrogenase” includes a case where an activity of an alcohol dehydrogenase is maintained compared to a non-reduced strain even though the modification aimed to reduce the activity is performed. In the present invention, with regard to the gene encoding an enzyme, “suppression of expression” also includes “reduction in expression”. In addition, with regard to the enzyme, “suppression of activity” is synonymous with “suppression of function”, “reduction in function”, and “reduction in activity”, and these are used interchangeably.


The genetically modified microorganism of the present invention preferably contains a modification to suppress expression of two or more genes encoding an alcohol dehydrogenase. In the production of the diamine compound, the production amount of the diamine compound can be significantly increased, and production of an alcohol form that is a by-product can also be suppressed, by modifying the microorganism to suppress expression of a plurality of kinds of genes.


The modification performed to reduce the activity of an ADH can be achieved by, for example, reducing expression of a gene encoding an ADH. More specifically, the reduction in the expression of the gene may mean that a transcription amount of a gene (mRNA amount) is reduced and/or that a translation amount of a gene (protein amount) is reduced. The reduction in the expression of the gene also includes a case where a gene is not expressed at all.


The reduction in the expression of the gene may be, for example, a reduction in transcription amount, a reduction in translation amount, or a combination thereof. The reduction in the transcription amount can be achieved by, for example, a method of modifying an expression regulatory region such as a promoter region or a ribosome binding site (RBS) of an ADH gene. The reduction in the transcription amount of the gene can be evaluated by a method known to those skilled in the art, and examples of the method include a quantitative RT-PCR method and a Northern blotting method. The transcription amount of the gene may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the ADH non-reduced strain.


An example of a method of reducing the translation amount includes a method of suppressing translation by inserting a riboswitch region into the upstream of a gene. The riboswitch refers to an RNA that selectively binds to a specific low-molecular compound, and the low-molecular compound refers to a ligand. A secondary structure is formed by RNA base pairs in the absence of a ligand to affect nucleic acids around the riboswitch. In particular, in a case where a ribosome binding site is included in the downstream of the riboswitch, the access of the ribosome to the ribosome binding site is blocked, which interferes with translation of mRNA of a gene located further downstream. On the other hand, the ribosome can access the ribosome binding site in the presence of a ligand through secondary-structure elimination according to ligand binding. Therefore, when a ligand is not added, mRNA of a gene is not translated, and expression of a target gene is suppressed. The reduction in the translation amount of the gene can be evaluated by a method known to those skilled in the art, and an example of the method includes a Western blotting method. The translation amount of the gene may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to the ADH non-reduced strain.


In addition, the modification to reduce the activity of the ADH is achieved by disrupting a gene encoding an ADH. The disruption of the ADH gene means that a gene is modified so that a protein having an ADH activity is not expressed, and includes a case where a protein is not produced at all and a case where a protein with reduced or eliminated ADH activity is produced. For example, the disruption can be achieved by deficiency of a part or all of a coding region of a gene on a chromosome. Furthermore, the entire gene containing sequences before and after a gene on a chromosome may be deleted. As long as the reduction of the ADH activity can be achieved, the deleted region may be any one of the N-terminus region, the internal region, and the C-terminus region.


In addition, the disruption of the ADH gene can be achieved by a method of introducing amino acid substitution (missense mutation) or introducing a stop codon (nonsense mutation) into a coding region of an ADH gene on a chromosome, or a method of introducing a frameshift mutation that adds or deletes one or two bases.


Furthermore, the disruption of the ADH gene can be achieved by inserting another sequence into a coding region of a gene on a chromosome. Examples of other sequences include an antibiotic-resistant gene or a transposon, but are not particularly limited as long as the ADH activity is reduced.


The disruption of the ADH gene can be performed by using a method of homologous recombination, and examples of the method include, but are not limited to, a method of using Red recombinase of A-phage (Datsenko, Kirill A., and Barry L. Wanner. “One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products.” Proceedings of the National Academy of Sciences 97.12 (2000): 6640-6645), a method of using a Suicide vector containing a temperature sensitive origin of replication (Blomfield et al., Molecular microbiology 5.6 (1991): 1447-1457), and a method of using a CRISPR-Cas9 system (Jiang, Yu, et al. “Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system.” Appl. Environ. Microbiol. 81.7 (2015): 2506-2514).


In addition, the disruption of the ADH gene can be performed by a mutation treatment. Examples of the mutation treatment include physical treatments such as an X-ray treatment, an ultraviolet ray treatment, and a γ-ray treatment, and chemical treatments with mutagens such as N-methyl-N′-nitro-N-nitrosoguanidine, ethyl methanesulfonate, and methyl methanesulfonate, but are not particularly limited as long as the ADH activity is reduced.


The ADH activity can be evaluated by a method known to those skilled in the art. For example, an example of the evaluation method includes a method of monitoring oxidation of NAD(P)H by incubating a substrate (an aldehyde or a ketone) and NAD(P)H and measuring an absorbance at 340 nm (Pick, et al., Applied microbiology and biotechnology 97.13 (2013): 5815-5824). The ADH activity may be reduced to, for example, 50% or less, 20% or less, 10% or less, 5% or less, or 0% compared to an ADH of an ADH non-reduced strain.


In the genetically modified microorganism according to the present invention, the enzyme involved in synthesis of a diamine compound may have an endogenous property, an exogenous property, or a combination thereof.


The genetically modified microorganism according to the present invention preferably expresses a carboxylic acid reductase as an enzyme gene involved in synthesis of a diamine compound. The carboxylic acid reductase (CAR) generally refers to an arbitrary protein having an activity of reducing a carboxylic acid to convert into an aldehyde. In the present invention, the carboxylic acid reductase has an activity of converting, for example, a carboxyl group of a carboxylic acid semialdehyde, a dicarboxylic acid, or an aminocarboxylic acid into an aldehyde. Examples of the carboxylic acid reductase include, but are not limited to, enzymes classified as EC 1.2.1.30, EC 1.2.1.31, EC 1.2.1.95, EC 1.2.99.6 or the like.


A source of a gene encoding the enzyme is not particularly limited as long as it has a carboxylic acid reducing activity, and examples thereof include, but are not limited to, Nocardia iowensis, Nocardia asteroides, Nocardia brasiliensis, Nocardia farcinica, Segniliparus rugosus, Segniliparus rotundus, Tsukamurella paurometabola, Mycobacterium marinum, Mycobacterium neoaurum, Mycobacterium abscessus, Mycobacterium avium, Mycobacterium chelonae, Mycobacterium immunogenum, Mycobacterium smegmatis, Serpula lacrymans, Heterobasidion annosum, Coprinopsis cinerea, Aspergillus flavus, Aspergillus terreus, Neurospora crassa, and Saccharomyces cerevisiae. In the present invention, for example, a gene encoding a protein consisting of an amino acid sequence set forth in any one of SEQ ID NOs: 101 to 104 is used. A gene encoding a carboxylic acid reductase MaCar derived from Mycobacterium abscessus is preferably used. A base sequence of a coding region of a MaCar gene is set forth in SEQ ID NO: 105, and an amino acid sequence of MaCar is set forth in SEQ ID NO: 103.










TABLE 2-1





Accession No./



origin (name



of protein)
Amino acid sequence







AAR91681/
MAVDSPDERLQRRIAQLFAEDEQVKAARPLEAVSAAVSAPGMRLAQIAATVMAGY



Nocardia

ADRPAAGQRAFELNTDDATGRTSLRLLPRFETITYRELWQRVGEVAAAWHHDPENP



iowensis

LRAGDFVALLGFTSIDYATLDLADIHLGAVTVPLQASAAVSQLIAILTETSPRLLASTP



EHLDAAVECLLAGTTPERLVVFDYHPEDDDQRAAFESARRRLADAGSSVIVETLDA



VRARGRDLPAAPLFVPDTDDDPLALLIYTSGSTGTPKGAMYTNRLAATMWQGNS



MLQGNSQRVGINLNYMPMSHIAGRISLFGVLARGGTAYFAAKSDMSTLFEDIGLVR



PTEIFFVPRVCDMVFQRYQSELDRRSVAGADLDTLDREVKADLRQNYLGGRFLVAV



VGSAPLAAEMKTFMESVLDLPLHDGYGSTEAGASVLLDNQIQRPPVLDYKLVDVP



ELGYFRTDRPHPRGELLLKAETTIPGYYKRPEVTAEIFDEDGFYKTGDIVAELEHDR



LVYVDRRNNVLKLSQGEFVTVAHLEAVFASSPLIRQIFIYGSSERSYLLAVIVPTDDA



LRGRDTATLKSALAESIQRIAKDANLQPYEIPRDFLIETEPFTIANGLLSGIAKLLRPN



LKERYGAQLEQMYTDLATGQADELLALRREAADLPVLETVSRAAKAMLGVASAD



MRPDAHFTDLGGDSLSALSFSNLLHEIFGVEVPVGVVVSPANELRDLANYIEAERN



SGAKRPTFTSVHGGGSEIRAADLTLDKFIDARTLAAADSIPHAPVPAQTVLLTGANG



YLGRFLCLEWLERLDKTGGTLICVVRGSDAAAARKRLDSAFDSGDPGLLEHYQQL



AARTLEVLAGDIGDPNLGLDDATWQRLAETVDLIVHPAALVNHVLPYTQLFGPNV



VGTAEIVRLAITARRKPVTYLSTVGVADQVDPAEYQEDSDVREMSAVRVVRESYAN



GYGNSKWAGEVLLREAHDLCGLPVAVFRSDMILAHSRYAGQLNVQDVFTRLILSLV



ATGIAPYSFYRTDADGNRQRAHYDGLPADFTAAAITALGIQATEGFRTYDVLNPYD



DGISLDEFVDWLVESGHPIQRITDYSDWFHRFETAIRALPEKQRQASVLPLLDAYRN



PCPAVRGAILPAKEFQAAVQTAKIGPEQDIPHLSAPLIDKYVSDLELLQLL 



(SEQ ID NO: 101)





ACC40567/
MSPITREERLERRIQDLYANDPQFAAAKPATAITAAIERPGLPLPQIIETVMTGYADRP



Mycobacterium

ALAQRSVEFVTDAGTGHTTLRLLPHFETISYGELWDRISALADVLSTEQTVKPGDR



marinum

VCLLGFNSVDYATIDMTLARLGAVAVPLQTSAAITQLQPIVAETQPTMIAASVDALA



DATELALSGQTATRVLVFDHHRQVDAHRAAVESARERLAGSAVVETLAEAIARGD



VPRGASAGSAPGTDVSDDSLALLIYTSGSTGAPKGAMYPRRNVATFWRKRTWFEG



GYEPSITLNFMPMSHVMGRQILYGTLCNGGTAYFVAKSDLSTLFEDLALVRPTELTF



VPRVWDMVFDEFQSEVDRRLVDGADRVALEAQVKAEIRNDVLGGRYTSALTGSAP



ISDEMKAWVEELLDMHLVEGYGSTEAGMILIDGAIRRPAVLDYKLVDVPDLGYFLT



DRPHPRGELLVKTDSLFPGYYQRAEVTADVFDADGFYRTGDIMAEVGPEQFVYLD



RRNNVLKLSQGEFVTVSKLEAVFGDSPLVRQIYIYGNSARAYLLAVIVPTQEALDAV



PVEELKARLGDSLQEVAKAAGLQSYEIPRDFIIETTPWTLENGLLTGIRKLARPQLK



KHYGELLEQIYTDLAHGQADELRSLRQSGADAPVLVTVCRAAAALLGGSASDVQP



DAHFTDLGGDSLSALSFTNLLHEIFDIEVPVGVIVSPANDLQALADYVEAARKPGSS



RPTFASVHGASNGQVTEVHAGDLSLDKFIDAATLAEAPRLPAANTQVRTVLLTGAT



GFLGRYLALEWLERMDLVDGKLICLVRAKSDTEARARLDKTFDSGDPELLAHYRA



LAGDHLEVLAGDKGEADLGLDRQTWQRLADTVDLIVDPAALVNHVLPYSQLFGP



NALGTAELLRLALTSKIKPYSYTSTIGVADQIPPSAFTEDADIRVISATRAVDDSYANG



YSNSKWAGEVLLREAHDLCGLPVAVFRCDMILADTTWAGQLNVPDMFTRMILSLA



ATGIAPGSFYELAADGARQRAHYDGLPVEFIAEAISTLGAQSQDGFHTYHVMNPY



DDGIGLDEFVDWLNESGCPIQRIADYGDWLQRFETALRALPDRQRHSSLLPLLHNY



RQPERPVRGSIAPTDRFRAAVQEAKIGPDKDIPHVGAPIIVKYVSDLRLLGLL 



(SEQ ID NO: 102)





CAM64782/
MTETISTAAVPTTDLEEQVKRRIEQVVSNDPQLAALLPEDSVTEAVNEPDLPLVEVI



Mycobacterium

RRLLEGYGDRPALGQRAFEFVTGDDGATVIALKPEYTTVSYRELWERAEAIAAAW



abcessus

HEQGIRDGDFVAQLGFTSTDFASLDVAGLRLGTVSVPLQTGASLQQRNAILEETRPA


(MaCar)
VFAASIEYLDAAVDSVLATPSVRLLSVFDYHAEVDSQREALEAVRARLESAGRTIVV



EALAEALARGRDLPAAPLPSADPDALRLLIYTSGSTGTPKGAMYPQWLVANLWQK



KWLTDDVIPSIGVNFMPMSHLAGRLTLMGTLSGGGTAYYIASSDLSTFFEDIALIRPS



EVLFVPRVVEMVFQRFQAELDRSLAPGESNSEIAERIKVRIREQDFGGRVLSAGSGS



APLSPEMTEFMESLLQVPLRDGYGSTEAGGVWRDGVLQRPPVTDYKLVDVPELGY



FTTDSPHPRGELRLKSETMFPGYYKRPETTADVFDDEGYYKTGDVVAELGPDHLK



YLDRVKNVLKLAQGEFVAVSKLEAAYTGSPLVRQIFVYGNSERSFLLAVVVPTPEV



LERYADSPDALKPLIQDSLQQVAKDAELQSYEIPRDFIVETVPFTVESGLLSDARKLL



RPKLKDHYGERLEALYAELAESQNERLRQLAREAATRPVLETVTDAAAALLGASSS



DLAPDVRFIDLGGDSLSALSYSELLRDIFEVDVPVGVINSVANDLAAIARHIEAQRT



GAATQPTFASVHGKDATVITAGELTLDKFLDESLLKAAKDVQPATADVKTVLVTGG



NGWLGRWLVLDWLERLAPNGGKVYALIRGADAEAARARLDAVYESGDPKLSAH



YRQLAQQSLEVIAGDFGDQDLGLSQEVWQKLAKDVDLIVHSGALVNHVLPYSQLF



GPNVAGTAEIIKLAISERLKPVTYLSTVGIADQIPVTEFEEDSDVRVMSAERQINDGY



ANGYGNSKWAGEVLLREAHDLAGLPVRVFRSDMILAHSDYHGQLNVTDVFTRSIQ



SLLLTGVAPASFYELDADGNRQRAHYDGVPGDFTAASITAIGGVNVVDGYRSFDVF



NPHHDGVSMDTFVDWLIDAGYKIARIDDYDQWLARFELALKGLPEQQRQQSVLP



LLKMYEKPQPAIDGSALPTAEFSRAVHEAKVGDSGEIPHVTKELILKYASDIQLLGL



V (SEQ ID NO: 103)





AFP42026/
MHQLTVTGMNICEVQRLFPRMTSDVHDATDGVTETALDDEQSTRRIAELYATDPEF



Mycobacterium

AAAAPLPAVVDAAHKPGLRLAEILQTLFTGYGDRPALGYRARELATDEGGRTVTRL



smegmatis

LPRFDTLTYAQVWSRVQAVAAALRHNFAQPIYPGDAVATIGFASPDYLTLDLVCAYL



GLVSVPLQHNAPVSRLAPILAEVEPRILTVSAEYLDLAVESVRDVNSVSQLVVFDHH



PEVDDHRDALARAREQLAGKGIAVTTLDAIADEGAGLPAEPIYTADHDQRLAMILY



TSGSTGAPKGAMYTEAMVARLWTMSFITGDPTPVINVNFMPLNHLGGRIPISTAVQ



NGGTSYFVPESDMSTLFEDLALVRPTELGLVPRVADMLYQHHLATVDRLVTQGADE



LTAEKQAGAELREQVLGGRVITGFVSTAPLAAEMRAFLDITLGAHIVDGYGLTETG



AVTRDGVIVRPPVIDYKLIDVPELGYFSTDKPYPRGELLVRSQTLTPGYYKRPEVTA



SVFDRDGYYHTGDVMAETAPDHLVYVDRRNNVLKLAQGEFVAVANLEAVFSGAA



LVRQIFVYGNSERSFLLAVVVPTPEALEQYDPAALKAALADSLQRTARDAELQSYE



VPADFIVETEPFSAANGLLSGVGKLLRPNLKDRYGQRLEQMYADIAATQANQLREL



RRAAATQPVIDTLTQAAATILGTGSEVASDAHFTDLGGDSLSALTLSNLLSDFFGFE



VPVGTIVNPATNLAQLAQHIEAQRTAGDRRPSFTTVHGADATEIRASELTLDKFIDA



ETLRAAPGLPKVTTEPRTVLLSGANGWLGRFLTLQWLERLAPVGGTLITIVRGRDD



AAARARLTQAYDTDPELSRRFAELADRHLRVVAGDIGDPNLGLTPEIWHRLAAEVD



LVVHPAALVNHVLPYRQLFGPNVVGTAEVIKLALTERIKPVTYLSTVSVAMGIPDFE



EDGDIRTVSPVRPLDGGYANGYGNSKWAGEVLLREAHDLCGLPVATFRSDMILAHP



RYRGQVNVPDMFTRLLLSLLITGVAPRSFYIGDGERPRAHYPGLTVDFVAEAVTTLG



AQQREGYVSYDVMNPHDDGISLDVFVDWLIRAGHPIDRVDDYDDWVRRFETALT



ALPEKRRAQTVLPLLHAFRAPQAPLRGAPEPTEVFHAAVRTAKVGPGDIPHLDEALI



DKYIRDLREFGLI (SEQ ID NO: 104)
















TABLE 2-2





Base sequence of a region encoding MaCar















ATGACTGAAACGATCTCCACAGCGGCTGTCCCCACTACGGATCTCGAAGA





GCAGGTGAAGCGACGCATCGAGCAGGTCGTGTCCAACGATCCGCAGCTGG





CGGCGCTTCTCCCGGAAGATTCGGTCACCGAGGCGGTCAACGAGCCCGAT





CTACCGCTGGTCGAGGTGATCAGGCGACTGCTGGAGGGCTACGGTGACCG





CCCGGCACTCGGCCAGCGCGCCTTCGAGTTCGTCACCGGGGACGACGGTG





CGACCGTGATCGCGCTGAAGCCCGAATACACCACCGTCTCCTACCGCGAG





TTGTGGGAACGTGCCGAGGCTATCGCTGCCGCGTGGCACGAGCAGGGCAT





CCGTGACGGCGACTTCGTCGCTCAGTTGGGTTTCACCAGCACGGACTTCG





CGTCGCTCGACGTCGCGGGATTGCGTCTGGGCACCGTCTCGGTGCCCCTG





CAGACGGGCGCGTCGCTGCAGCAGCGCAACGCGATTCTCGAAGAGACCCG





GCCCGCAGTCTTTGCCGCGAGTATCGAATACCTTGATGCCGCCGTCGATT





CGGTGCTTGCGACCCCCTCGGTGCGACTCCTCTCGGTTTTCGACTATCAC





GCGGAGGTCGACAGCCAGCGCGAAGCGCTGGAGGCTGTGCGGGCCCGGCT





TGAGAGTGCCGGCCGGACGATCGTCGTCGAGGCCCTGGCGGAGGCTCTCG





CGCGGGGGCGGGACCTGCCCGCCGCGCCGCTGCCCAGTGCAGATCCCGAT





GCCTTGCGTCTGCTCATCTACACCTCCGGCAGCACCGGTACCCCCAAGGG





CGCCATGTATCCGCAATGGCTGGTCGCCAACTTGTGGCAGAAGAAGTGGC





TCACCGACGATGTGATTCCGTCCATAGGCGTGAACTTCATGCCCATGAGC





CACCTGGCGGGTCGCCTCACTCTCATGGGCACCCTTTCCGGTGGCGGAAC





CGCCTACTACATCGCTTCGAGCGATCTTTCGACTTTCTTCGAGGACATCG





CGCTCATCCGCCCCTCCGAAGTGCTCTTCGTGCCGCGTGTGGTGGAGATG





GTGTTCCAGCGTTTTCAGGCAGAATTGGACCGGTCCCTTGCCCCGGGTGA





GAGCAACTCCGAGATCGCGGAGCGAATCAAGGTCCGCATCCGGGAACAGG





ACTTCGGCGGGCGTGTGCTCAGTGCTGGCTCCGGGTCGGCCCCGTTGTCT





CCTGAGATGACGGAGTTCATGGAGTCGCTGCTGCAGGTGCCGTTGCGCGA





CGGGTATGGGTCCACCGAGGCCGGTGGTGTGTGGCGTGACGGAGTCCTGC





AGCGTCCGCCCGTCACCGACTACAAGCTGGTTGACGTTCCGGAACTCGGA





TACTTCACCACAGATTCGCCGCATCCCCGTGGCGAGCTGCGGTTGAAGTC





GGAGACGATGTTCCCCGGCTACTACAAGCGCCCGGAGACCACTGCCGATG





TCTTCGATGACGAGGGGTACTACAAGACCGGTGACGTGGTCGCCGAGCTC





GGGCCGGATCACCTCAAGTACCTCGACCGCGTCAAGAACGTCCTCAAGCT





CGCGCAGGGAGAGTTTGTCGCGGTGTCAAAGCTGGAGGCCGCTTACACCG





GCAGCCCGCTGGTCCGGCAGATCTTTGTGTACGGGAACAGTGAACGCTCG





TTCCTGCTGGCTGTCGTGGTCCCGACACCCGAAGTCCTTGAGCGGTACGC





AGATTCGCCAGATGCGCTCAAGCCCTTGATCCAGGATTCGCTGCAGCAGG





TCGCCAAGGACGCGGAGCTGCAATCCTATGAGATACCGCGCGACTTCATC





GTTGAGACGGTGCCGTTCACCGTCGAGTCCGGATTGCTATCGGACGCGCG





AAAGCTGCTGCGCCCCAAGCTGAAGGATCACTACGGAGAGAGGCTGGAGG





CGCTGTACGCCGAACTGGCGGAAAGCCAGAATGAGCGGCTGCGCCAGTTG





GCCAGGGAGGCAGCCACGCGCCCGGTCCTGGAGACGGTGACCGATGCGGC





CGCCGCGCTGCTGGGCGCATCGTCCTCGGATCTGGCTCCTGATGTGCGAT





TCATCGACCTCGGTGGCGACTCACTGTCGGCGCTGTCGTACTCCGAGCTG





CTGCGCGACATCTTTGAGGTGGACGTTCCGGTGGGCGTCATCAACAGCGT





CGCCAACGACCTTGCCGCGATCGCCCGGCACATCGAGGCGCAGCGGACCG





GCGCCGCTACGCAGCCGACCTTTGCGTCGGTCCACGGCAAGGACGCGACG





GTCATCACCGCCGGTGAACTCACCCTCGACAAGTTCTTGGACGAGTCACT





GTTGAAAGCGGCCAAGGACGTTCAGCCGGCAACGGCCGATGTCAAGACCG





TTCTAGTGACCGGCGGCAACGGCTGGTTGGGTCGTTGGCTGGTGCTCGAT





TGGCTGGAGCGGTTGGCACCCAATGGTGGCAAGGTCTACGCCCTCATTCG





TGGCGCCGATGCCGAAGCAGCCCGGGCACGGTTGGACGCCGTGTACGAAT





CGGGTGATCCCAAGCTGTCCGCGCATTATCGTCAGCTGGCGCAACAGAGT





CTGGAAGTTATCGCCGGCGATTTCGGCGACCAGGATCTCGGTCTATCCCA





GGAAGTTTGGCAGAAGCTGGCCAAGGACGTGGACCTGATCGTGCACTCCG





GTGCCTTGGTGAACCACGTGCTGCCGTACAGCCAGTTGTTCGGTCCGAAT





GTGGCGGGTACCGCCGAGATCATCAAGCTGGCAATTTCGGAGCGGCTCAA





GCCGGTCACCTACCTGTCGACGGTGGGCATCGCCGACCAGATTCCGGTGA





CGGAGTTCGAGGAAGACTCCGATGTTCGTGTGATGTCGGCCGAGCGCCAG





ATCAATGACGGCTACGCGAACGGATACGGCAACTCAAAATGGGCCGGCGA





GGTGCTGTTGCGGGAGGCTCATGACCTAGCGGGGCTGCCGGTGCGTGTGT





TCCGCTCCGACATGATCCTGGCGCACAGTGACTACCACGGACAGCTCAAC





GTCACCGACGTGTTCACCCGGAGCATCCAGAGTCTGCTGCTCACCGGTGT





TGCACCGGCCAGCTTCTATGAATTGGATGCCGACGGCAATCGGCAGCGCG





CTCACTATGACGGTGTGCCCGGCGATTTCACCGCCGCATCGATCACCGCC





ATCGGCGGTGTGAACGTGGTAGACGGTTACCGCAGCTTCGACGTGTTCAA





CCCGCACCATGACGGTGTCTCGATGGATACCTTCGTCGACTGGCTGATCG





ACGCAGGCTACAAGATCGCGCGGATCGACGATTACGACCAGTGGCTCGCC





CGGTTCGAGCTGGCCCTCAAGGGATTGCCCGAGCAGCAGCGGCAACAGTC





GGTGTTGCCACTTCTCAAGATGTACGAGAAGCCGCAACCGGCGATCGACG





GAAGTGCACTTCCGACCGCAGAATTCAGTCGCGCCGTGCACGAGGCGAAG





GTCGGAGACAGCGGTGAGATACCGCACGTCACCAAGGAGCTGATCCTCAA





GTACGCCAGCGATATTCAGCTGTTGGGCCTGGTGTAG


(SEQ ID NO: 105)









The activity of the carboxylic acid reductase can be evaluated by a method known to those skilled in the art, and examples of the evaluation method include a method of monitoring oxidation of NADPH by incubating a substrate (a carboxylic acid) and an enzyme in the presence of ATP and NADPH and measuring an absorbance at 340 nm, and a method of quantifying a consumption amount of a substrate and/or a production amount of a product (an aldehyde) (Venkitasubramanian et al., Journal of Biological Chemistry, Vol. 282, No. 1, 478-485 (2007)).


In addition, the carboxylic acid reductase can be converted into an active holoenzyme by being phosphopantetinylated (Venkitasubramanian et al., Journal of Biological Chemistry, Vol. 282, No. 1, 478-485 (2007)). The phosphopantetinylation is catalyzed by a phosphopantetheinyl transferase (PT) (for example, an example thereof includes an enzyme classified as EC 2.7.8.7). Therefore, the microorganism of the present invention may be further modified such that an activity of the phosphopantetheinyl transferase is increased. Examples of a method of increasing the activity of the phosphopantetheinyl transferase include, but are not limited to, a method of introducing an exogenous phosphopantetheinyl transferase and a method of enhancing expression of an endogenous phosphopantetheinyl transferase. An example of a donor of the phosphopantetheinyl group includes a coenzyme A (CoA).


A source of a PT gene is not particularly limited as long as it has a phosphopantetheinyl group transfer activity, and examples of a gene encoding a typical phosphopantetheinyl transferase include Sfp of Bacillus subtilis, Npt of Nocardia iowensis (Venkitasubramanian et al., Journal of Biological Chemistry, Vol. 282, No. 1,478-485 (2007)), and Lys5 of Saccharomyces cerevisiae (Ehmann et al., Biochemistry 38.19 (1999): 6171-6177). In the present invention, for example, a gene encoding a protein consisting of an amino acid sequence set forth in any one of SEQ ID NOs: 106 to 108 is used. An Npt gene of Nocardia iowensis derived from Nocardia iowensis is preferably used. A base sequence of a coding region of the Npt gene is set forth in SEQ ID NO: 109, and an amino acid sequence of Npt is set forth in SEQ ID NO: 107.










TABLE 3-1





Accession



No./



origin



(name of



protein)
Amino acid sequence







CAA44858/
MKIYGIYMDRPLSQEENERFMTFISPEKREKCRRF


derived
YHKEDAHRTLLGDVLVRSVISRQYQLDKSDIRFST


from 
QEYGKPCIPDLPDAHFNISHSGRWVIGAFDSQPIG



Bacillus

IDIEKTKPISLEIAKRFFSKTEYSDLLAKDKDEQT



subtilis/

DYFYHLWSMKESFIKQEGKGLSLPLDSFSVRLHQD


(Sfp)
GQVSIELPDSHSPCYIKTYEVDPGYKMAVCAAHPD



FPEDITMVSYEELL (SEQ ID NO: 106)





ABI83656/
MIETILPAGVESAELLEYPEDLKAHPAEEHLIAKS


derived 
VEKRRRDFIGARHCARLALAELGEPPVAIGKGERG


from
APIWPRGVVGSLTHCDGYRAAAVAHKMRFRSIGID



Nocardia

AEPHATLPEGVLDSVSLPPEREWLKTTDSALHLDR



iowensis 

LLFCAKEATYKAWWPLTARWLGFEEAHITFEIEDG


(Npt)
SADSGNGTFHSELLVPGQTNDGGTPLLSFDGRWLI



ADGFILTAIAYA (SEQ ID NO: 107)





CAA96866/
MVKTTEVVSEVSKVAGVRPWAGIFVVEIQEDILAD


derived 
EFTFEALMRTLPLASQARILNKKSFHDRCSNLCSQ


from
LLQLFGCSIVTGLNFQELKFDKGSFGKPFLDNNRF



Sacharomyces

LPFSMTIGEQYVAMFLVKCVSTDEYQDVGIDIASP



cerevisiae

CNYGGREELELFKEVFSEREFNGLLKASDPCTIFT


(Lys5)
YLWSLKESYTKFTGTGLNTDLSLIDFGAISFFPAE



GASMCITLDEVPLIFHSQWFNNEIVTICMPKSISD



KINTNRPKLYNISLSTLIDYFIENDGL 



(SEQ ID NO: 108)
















TABLE 3-2





Base sequence of a region encoding Npt















ATGATCGAGACAATTTTGCCTGCTGGTGTCGAGTCGGCTGAGCTGCTGGA





GTATCCGGAGGACCTGAAGGCGCATCCGGCGGAGGAGCATCTCATCGCGA





AGTCGGTGGAGAAGCGGCGCCGGGACTTCATCGGGGCCAGGCATTGTGCC





CGGCTGGCGCTGGCTGAGCTCGGCGAGCCGCCGGTGGCGATCGGCAAAGG





GGAGCGGGGTGCGCCGATCTGGCCGCGCGGCGTCGTCGGCAGCCTCACCC





ATTGCGACGGATATCGGGCCGCGGCGGTGGCGCACAAGATGCGCTTCCGT





TCGATCGGCATCGATGCCGAGCCGCACGCGACGCTGCCCGAAGGCGTGCT





GGATTCGGTCAGCCTGCCGCCGGAGCGGGAGTGGTTGAAGACCACCGATT





CCGCACTGCACCTGGACCGTTTACTGTTCTGCGCCAAGGAAGCCACCTAC





AAGGCGTGGTGGCCGCTGACCGCGCGCTGGCTCGGCTTCGAGGAAGCGCA





CATCACCTTCGAGATCGAAGACGGCTCCGCCGATTCCGGCAACGGCACCT





TTCACAGCGAGCTGCTGGTGCCGGGACAGACGAATGACGGTGGGACGCCG





CTGCTTTCGTTCGACGGCCGGTGGCTGATCGCCGACGGGTTCATC





CTCACCGCGATCGCGTACGCCTGA (SEQ ID NO: 109)









As another aspect of producing an aldehyde, the genetically modified microorganism of the present invention may express acyl-(acyl carrier protein (ACP)) reductase (AAR). AAR is an enzyme that converts acyl-ACP into an aldehyde. A gene encoding AAR is not particularly limited, and an example of a typical AAR gene includes AAR of Synechococcus elongatus (Schirmer, Andreas, et al., Science 329.5991 (2010): 559-562).


In addition, as another aspect, an enzyme that produces an aldehyde from acyl-CoA may be expressed. Examples of a gene encoding an enzyme that catalyzes this reaction include, but are not limited to, acr1 of Acinetobacter baylyi encoding fatty acid acyl-CoA dehydrogenase (ZHENG, Yan-Ming, et al., Microbial cell factories, 2012, 11.1:65) and an sucD gene of Clostridium kluyveri encoding succinic acid semialdehyde dehydrogenase (Sohling, B., and Gerhard Gottschalk, Journal of bacteriology 178.3 (1996): 871-880).


Furthermore, an enzyme that produces an aldehyde from acyl phosphate may be expressed, and for example, aspartic acid semialdehyde dehydrogenase (ASD; EC 1.2.1.11) that catalyzes a reaction of aspartic acid semialdehyde from NADPH-dependent 4-aspartyl phosphate can catalyze the same reaction, and an asd gene of E. coli or the like can be used.


The genetically modified microorganism according to the present invention expresses an aminotransferase as an enzyme gene involved in synthesis of a diamine compound.


The aminotransferase refers to an arbitrary enzyme that catalyzes an amino group transfer reaction in the presence of an amino group donor and a receptor. An example of the aminotransferase includes an enzyme classified as EC 2.6.1.p (wherein, p is an integer of 1 or more). Examples of the amino group donor include, but are not limited to, L-glutamic acid, L-alanine, and glycine.


A gene encoding the aminotransferase is not particularly limited as long as it has an amino group transfer activity, and putrescine aminotransferase or other diamine transferases can be preferably used. Examples thereof include a ygjG gene encoding putrescine aminotransferase of E. coli, which is reported to perform amino group transfer on cadaverine and spermidine (Samsonova, et al., BMC microbiology 3.1 (2003): 2), an SpuC gene encoding putrescine aminotransferase of the genus Pseudomonas (Lu et al., Journal of bacteriology 184.14 (2002): 3765-3773, Galman et al., Green Chemistry 19.2 (2017): 361-366), and a gabT gene and a puuE gene encoding GABA aminotransferase of E. coli. Furthermore, it is reported that an ω-transaminase derived from Ruegeria pomeroyi, Chromobacterium violaceum, Arthrobacter citreus, Sphaerobacter thermophilus, Aspergillus fischeri, Vibrio fluvialis, Agrobacterium tumefaciens, Mesorhizobium loti, or the like also has an amino group transfer activity to a diamine compound such as 1,8-diaminooctane and 1,10-diaminodecane, and can be preferably used (Sung et al., Green Chemistry 20.20 (2018): 4591-4595, Sattler et al., Angewandte Chemie 124.36 (2012): 9290-9293).


In the present invention, as the gene encoding an aminotransferase, for example, a gene encoding a protein consisting of an amino acid sequence set forth in any one of SEQ ID NOs: 110 to 114 is used. A putrescine aminotransferase ygjG gene derived from E. coli is preferably used. A base sequence of a coding region of the ygjG gene is set forth in SEQ ID NO: 115, and an amino acid sequence of ygjG is set forth in SEQ ID NO: 110.










TABLE 4-1





Accession 



No./



origin 



(name of



protein)
Amino acid sequence







BAE77123/
MIREPPEHILNRLPSSASALACSAHALNLIEKRTLD


derived 
HEEMKALNREVIEYFKEHVNPGFLEYRKSVTAGGDY


from
GAVEWQAGSLNTLVDTQGQEFIDCLGGFGIFNVGHR



Escherichia 

NPVVVSAVQNQLAKQPLHSQELLDPLRAMLAKTLAA



coli

LTPGKLKYSFFCNSGTESVEAALKLAKAYQSPRGKF


K-12
TFIATSGAFHGKSLGALSATAKSTFRKPFMPLLPGF


(ygiG)
RHVPFGNIEAMRTALNECKKTGDDVAAVILEPIQGE



GGVILPPPGYLTAVRKLCDEFGALMILDEVQTGMGR



TGKMFACEHENVQPDILCLAKALGGGVMPIGATIAT



EEVFSVLFDNPFLHTTTFGGNPLACAAALATINVLL



EQNLPAQAEQKGDMLLDGFRQLAREYPDLVQEARGK



GMLMAIEFVDNEIGYNFASEMFRQRVLVAGTLNNAK



TIRIEPPLTLTIEQCELVIKAARKALAAMRVSVEEA 



(SEQ ID NO: 110)





AAG03688/
MNSQITNAKTREWQALSRDHHLPPFTDYKQLNEKGA


derived 
RIITKAEGVYIWDSEGNKILDAMAGLWCVNVGYGRE


from
ELVQAATRQMRELPFYNLFFQTAHPPVVELAKAIAD



Pseudomonas

VAPEGMNHVFFTGSGSEANDTVLRMVRHYWATKGQP



aeruginosa

QKKVVIGRWNGYHGSTVAGVSLGGMKALHEQGDFPI


PAO1
PGIVHIAQPYWYGEGGDMSPDEFGVWAAEQLEKKIL



EVGEENVAAFIAEPIQGAGGVIVPPDTYWPKIREIL



AKYDILFIADEVICGFGRTGEWFGSQYYGNAPDLMP



IAKGLTSGYIPMGGVVVRDEIVEVLNQGGEFYHGFT



YSGHPVAAAVALENIRILREEKIIEKVKAETAPYLQ



KRWQELADHPLVGEARGVGMVAALELVKNKKTRERF



TDKGVGMLCREHCFRNGLIMRAVGDTMIISPPLVID



PSQIDELITLARKCLDQTAAAVLA 



(SEQ ID NO: 111)





BAA16525/
MNSNKELMQRRSQAIPRGVGQIHPIFADRAENCRVW


derived 
DVEGREYLDFAGGIAVLNTGHLHPKVVAAVEAQLKK


from 
LSHTCFQVLAYEPYLELCEIMNQKVPGDFAKKTLLV



Escherichia

TTGSEAVENAVKIARAATKRSGTIAFSGAYHGRTHY



coli

TLALTGKVNPYSAGMGLMPGHVYRALYPCPLHGISE


K-12
DDAIASIHRIFKNDAAPEDIAAIVIEPVQGEGGFYA


(gabT)
SSPAFMQRLRALCDEHGIMLIADEVQSGAGRTGTLF



AMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDA



VAPGGLGGTYAGNPIACVAALEVLKVFEQENLLQKA



NDLGQKLKDGLLAIAEKHPEIGDVRGLGAMIAIELF



EDGDHNKPDAKLTAEIVARARDKGLILLSCGPYYNV



LRILVPLTIEDAQIRQGLEIISQCFDEAKQ 



(SEQ ID NO: 112)





BAA14871/
MSNNEFHQRRLSATPRGVGVMCNFFAQSAENATLKD


derived 
VEGNEYIDFAAGIAVLNTGHRHPDLVAAVEQQLQQF


from
THTAYQIVPYESYVTLAEKINALAPVSGQAKTAFFT



Escherichia

TGAEAVENAVKIARAHTGRPGVIAFSGGFHGRTYMT



coli

MALTGKVAPYKIGFGPFPGSVYHVPYPSDLHGISTQ


K-12
DSLDAIERLFKSDIEAKQVAAIIFEPVQGEGGFNVA


(puuE)
PKELVAAIRRLCDEHGIVMIADEVQSGFARTGKLFA



MDHYADKPDLMTMAKSLAGGMPLSGVVGNANIMDAP



APGGLGGTYAGNPLAVAAAHAVLNIIDKESLCERAN



QLGQRLKNTLIDAKESVPAIAAVRGLGSMIAVEFND



PQTGEPSAAIAQKIQQRALAQGLLLLTCGAYGNVIR



FLYPLTIPDAQFDAAMKILQDALSD 



(SEQ ID NO: 113)





WP_
MATITNHMPTAELQALDAAHHLHPFSANNALGEEGT


011049154/
RVITRARGVWLNDSEGEEILDAMAGLWCVNIGYGRD


derived  
ELAEVAARQMRELPYYNTFFKTTHVPAIALAQKLAE


from
LAPGDLNHVFFAGGGSEANDTNIRMVRTYWQNKGQP



Ruegeria

EKTVIISRKNAYHGSTVASSALGGMAGMHAQSGLIP



pomeroyi

DVHHINQPNWWAEGGDMDPEEFGLARARELEEAILE



LGENRVAAFIAEPVQGAGGVIVAPDSYWPEIQRICD



KYDILLIADEVICGFGRTGNWFGTQTMGIRPHIMTI



AKGLSSGYAPIGGSIVCDEVAHVIGKDEFNHGYTYS



GHPVAAAVALENLRILEEENILDHVRNVAAPYLKEK



WEALTDHPLVGEAKIVGMMASIALTPNKASRAKFAS



EPGTIGYICRERCFANNLIMRHVGDRMIISPPLVIT



PAEIDEMFVRIRKSLDEAQAEIEKQGLMKSAA 



(SEQ ID NO: 114)
















TABLE 4-2





Base sequence of a region encoding ygjG















ATGATACGCGAGCCTCCGGAGCATATTTTGAACAGGTTACCTTCGAGCGC





ATCGGCTTTAGCGTGCAGCGCCCACGCCCTGAATCTCATTGAGAAGCGAA





CGCTGGATCATGAGGAGATGAAAGCACTTAACCGAGAGGTGATTGAATAC





TTCAAAGAGCATGTCAATCCGGGGTTTTTAGAGTATCGCAAATCTGTTAC





CGCCGGCGGGGATTACGGAGCCGTAGAGTGGCAAGCGGGAAGTTTAAATA





CGCTTGTCGACACCCAGGGCCAGGAGTTTATCGACTGCCTGGGAGGTTTT





GGAATTTTCAACGTGGGGCACCGTAATCCAGTTGTGGTTTCCGCCGTACA





GAATCAACTTGCGAAACAACCGCTGCACAGCCAGGAGCTGCTCGATCCGT





TACGGGCGATGTTGGCGAAAACCCTTGCTGCGCTAACGCCCGGTAAACTG





AAATACAGCTTCTTCTGTAATAGCGGCACCGAGTCCGTTGAAGCAGCGCT





GAAGCTGGCGAAAGCTTACCAGTCACCGCGCGGCAAGTTTACTTTTATTG





CCACCAGCGGCGCGTTCCACGGTAAATCACTTGGCGCGCTGTCGGCCACG





GCGAAATCGACCTTCCGCAAACCGTTTATGCCGTTACTGCCGGGCTTCCG





TCATGTGCCGTTTGGCAATATCGAAGCCATGCGCACGGCTCTTAACGAGT





GCAAAAAAACCGGTGATGATGTGGCTGCGGTGATCCTCGAACCGATTCAG





GGTGAAGGTGGCGTAATTCTGCCGCCGCCGGGCTATCTCACCGCCGTACG





TAAGCTATGCGATGAGTTCGGCGCACTGATGATCCTCGATGAAGTACAAA





CGGGCATGGGGCGCACGGGCAAGATGTTCGCCTGCGAGCATGAGAACGTA





CAGCCGGATATCCTCTGCCTTGCCAAAGCGCTCGGCGGCGGCGTGATGCC





GATTGGCGCGACCATCGCCACTGAAGAGGTGTTTTCAGTTCTGTTCGACA





ACCCATTCCTGCATACCACCACCTTTGGCGGCAACCCGCTGGCCTGTGCG





GCGGCGCTGGCGACCATCAATGTGTTGCTGGAGCAGAACTTACCGGCTCA





GGCTGAGCAAAAAGGCGATATGTTGCTGGACGGTTTCCGTCAACTGGCGC





GGGAATATCCCGATCTGGTACAGGAAGCGCGTGGTAAAGGGATGTTGATG





GCGATTGAGTTTGTTGATAACGAAATCGGCTATAACTTTGCCAGCGAGAT





GTTCCGCCAGCGCGTACTGGTGGCCGGAACGCTCAATAACGCCAAAACGA





TCCGCATTGAACCGCCACTGACACTGACCATTGAACAGTGTGAACTGGTG





ATCAAAGCGGCGCGTAAGGCGCTGGCGGCCATGCGAGTAAGTGTCGAAGA





AGCGTAA (SEQ ID NO: 115)









The gene encoding the enzyme that can be used in the present invention may be derived from an organism other than the exemplified organism or artificially synthesized, and may be any gene that can express a substantial enzyme activity in a host microorganism cell.


In addition, the enzyme gene that can be used for the present invention may have all naturally occurring mutations or artificially introduced mutations and modifications as long as it can express a substantial enzyme activity in the host microorganism cell. For example, it is known that extra codons are present in various codons encoding a specific amino acid. Therefore, in the present invention, alternative codons that are to be finally translated into the same amino acid may also be used. That is, since a genetic code degenerates, a plurality of codons can be used to encode a particular amino acid, so that the amino acid sequence can be encoded by an arbitrary set of similar DNA oligonucleotides. Only the member of the set is identical to the gene sequence of the natural enzyme; however, even mismatched DNA oligonucleotides can hybridize to natural sequences under an appropriate stringent condition (for example, hybridize at 3×SSC and 68° C. and wash at 2×SSC and 0.1% SDS and 68° C.), DNA encoding a natural sequence can by identified and isolated, and such a gene can also be used in the present invention. In particular, since most organisms are known to preferentially use a subset of a specific codon (optimal codon) (Gene, Vol. 105, pp. 61-72, 1991, and the like), performing of “codon optimization” depending on a host microorganism can also be useful in the present invention.


Therefore, the genetically modified microorganism according to the present invention can contain a base sequence having, for example, 80%, 85%, 90%, 95%, 97%, 98%, or 99% or more of sequence identity with the base sequence of the enzyme gene under a condition in which a substantial enzyme activity can be expressed. Alternatively, the genetically modified microorganism according to the present invention can contain a base sequence having, for example, 80%, 85%, 90%, 95%, 97%, 98%, or 99% or more of sequence identity with the base sequence encoding the amino acid sequence of the enzyme.


In the present invention, when the diamine compound synthetase gene group is introduced in a host microorganism cell as an “expression cassette”, a more stable and high level of enzyme activity can be obtained. In the present specification, the “expression cassette” refers to a nucleotide containing a nucleic acid sequence that is functionally linked to a nucleic acid to be expressed or a gene to be expressed and regulates transcription and translation. Typically, the expression cassette of the present invention contains a promoter sequence on the 5′ upstream from the coding sequence, a terminator sequence on the 3′ upstream, and an optionally additional normal regulatory element in a functionally linked state, and in such a case, a nucleic acid to be expressed or a gene to be expressed is introduced into a host microorganism.


The promoter is defined as a DNA sequence that allows RNA polymerase to bind to DNA to initiate RNA synthesis, regardless of whether the promoter is a constitutive expression promoter or an inductive expression promoter. A strong promoter is a promoter that initiates mRNA synthesis at a high frequency, and is also preferably used in the present invention. In E. coli, a major operator and promoter region of a lac system, a trp system, a tac or trc system, or A-phage, a control region for fd coat protein, a promoter for a glycolytic enzyme (for example, 3-phosphoglycerate kinase or glyceraldehyde-3-phosphate dehydrogenase), glutamate decarboxylase A, or serine hydroxymethyltransferase, a promoter region of RNA polymerase derived from T7 phage, and the like can be used. In Corynebacterium glutamicum, a high-level constitutive expression (HCE) promoter, a cspB promoter, a sodA promoter, an elongation factor Tu (EF-Tu) promoter, and the like can be used. As the terminator, a T7 terminator, an rrnBT1T2 terminator, a lac terminator, and the like can be used. In addition to the promoter and terminator sequences, other examples of regulatory elements may include a selection marker, an amplification signal, and a replication point. A preferred regulatory sequence is described in, for example, “Gene Expression Technology: Methods in Enzymology 185” Academic Press (1990)”.


The expression cassette described above is incorporated into a vector consisting of, for example, a plasmid, a phage, a transposon, an IS element, a fosmid, a cosmid, or a linear or cyclic DNA and is inserted into a host microorganism. A plasmid and a phage are preferred. The vector may be self-replicated in a host microorganism or may be replicated by a chromosome. Examples of a preferred plasmid include pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pKK223-3, pDHE19.2, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11, or pBdCI of E. coli; pUB110, pC194, or pBD214 of a Bacillus; and pSA77 or pAJ667 of the genus Corynebacterium. Other plasmids that can also be used are described in “Cloning Vectors”, Elsevier, 1985. The expression cassette can be introduced into the vector by a conventional method of including cutting with an appropriate restriction enzyme, cloning, and ligation. Each expression cassette may be located on one vector or on two or more vectors.


After the vector having the expression cassette of the present invention is constructed as described above, a conventional method can be used as a method that can be applied when the vector is introduced into a host microorganism. Examples of the method include, but are not limited to, a calcium chloride method, an electroporation method, a conjugation transfer method, and a protoplast fusion method, and a method suitable for a host microorganism can be selected.


The modified microorganism obtained as described above is cultured and maintained under conditions suitable for growth and/or maintenance of the modified microorganism for production of the diamine compound of the present invention. A medium composition, culture conditions, and culture time suitable for the modified microorganisms derived from various host microorganisms can be easily set by those skilled in the art.


Another embodiment of the present invention relates to a method of producing a diamine compound using the modified microorganism described above. The method of producing a diamine includes, for example, the following steps.


(a) Culture Step


The method of producing a diamine compound includes a culture step of culturing the modified microorganism according to the embodiment described above. For example, the modified microorganism is cultured in a medium containing a carbon source and a nitrogen source to obtain a culture medium containing bacterial cells.


The present production method may include bringing the genetically modified microorganism into contact with a precursor of a diamine compound. Examples of a method of supplying the precursor of the diamine compound to the modified microorganism include a method of producing a precursor of a diamine compound in a modified microorganism and a method of supplying a precursor of a diamine compound from the outside of a cell without relying on a modified microorganism.


In the culture step, in a case where the modified microorganism is brought into contact with a precursor of a diamine compound, the medium may further contain a precursor, or a precursor may be added to the medium during the culture step.


The medium may be a natural, semi-synthetic, or synthetic medium containing one or more carbon sources, nitrogen sources, inorganic salts, vitamins, and optionally a trace component such as a trace element or vitamin. However, the medium to be used is required to appropriately satisfy nutritional requirements of microorganisms to be cultured.


Examples of the carbon source include D-glucose, sucrose, lactose, fructose, maltose, oligosaccharides, polysaccharides, starch, cellulose, rice bran, waste molasses, fats and oils (for example, soybean oil, sunflower oil, peanut oil, palm oil, and the like), fatty acids (for example, palmitic acid, linoleic acid, oleic acid, linolenic acid, and the like), alcohols (for example, glycerol, ethanol, and the like), and organic acids (for example, acetic acid, lactic acid, succinic acid, and the like). Furthermore, the carbon source may be biomass containing D-glucose. Examples of preferred biomass include a corn decomposition liquid and a cellulose decomposition liquid. These carbon sources can be used alone or as a mixture.


The diamine compound produced using a raw material derived from biomass can be clearly distinguished from a synthetic raw material derived from, for example, petroleum, natural gas, or coal, by measurement of a biomass carbon content based on Carbon-14 (radiocarbon) analysis defined in ISO 16620-2 or ASTM D6866.


Examples of the nitrogen source include nitrogen-containing organic compounds (for example, peptone, casamino acid, tryptone, a yeast extract, a meat extract, a malt extract, a corn steep liquor, soy flour, an amino acid, urea, and the like) and inorganic compounds (for example, an aqueous ammonia solution, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, sodium nitrate, ammonium nitrate, and the like). These nitrogen sources can be used alone or as a mixture.


In addition, the medium may contain a corresponding antibiotic in a case where a modified microorganism expresses a useful additional trait, for example, in a case where a modified microorganism contains a marker resistant to an antibiotic. Therefore, a risk of contamination by various bacteria during culture is reduced. Examples of the antibiotic include, but are not limited to, a β-lactam antibiotic such as ampicillin, an aminoglycoside antibiotic such as kanamycin, a macrolide antibiotic such as erythromycin, a tetracycline antibiotic, and chloramphenicol.


The “precursor” of the diamine compound refers to a compound that can induce a diamine compound by the enzyme involved in synthesis of a diamine compound of the present invention. Examples of the precursor include, but are not limited to, a dicarboxylic acid, a carboxylic acid semialdehyde, a dialdehyde, an aminocarboxylic acid, an aminoaldehyde, acyl-ACP, acyl-CoA, and acyl phosphate.


As a specific precursor that can induce hexamethylenediamine, for example, adipic acid, adipic acid semialdehyde, adipaldehyde, 6-aminohexanoic acid, 6-aminohexanal, adipyl-CoA, adipyl phosphate, or the like can be used.


For example, in a case where a diamine compound is hexamethylenediamine, the modified microorganism is brought into contact with adipic acid that is a precursor, such that the adipic acid is converted into hexamethylenediamine by a carboxylic acid reductase and an aminotransferase produced by the modified microorganism.


In addition, for example, in a case where a diamine compound is 1,10-decanediamine, the modified microorganism is brought into contact with sebacic acid that is a precursor, such that the sebacic acid is converted into 1,10-decanediamine by a carboxylic acid reductase and an aminotransferase produced by the modified microorganism.


As the precursor, one precursor may be used, or two or more precursors may be combined. In addition, in a case where the compound is a compound that can adopt a salt form, the precursor may be used as a salt, a free form, or a mixture thereof.


The method of producing a precursor is not particularly limited, and a precursor can be produced by, for example, a chemical synthesis method, an enzyme method, a bioconversion method, a fermentation method, or a combination thereof.


In the culture step, the genetically modified microorganism of the present invention can be brought into contact with a precursor of a diamine compound to generate and accumulate a diamine compound in a medium, thereby producing a diamine compound. In addition, as described below, in a reaction step, the genetically modified microorganism of the present invention may be allowed to act in an aqueous solution containing a precursor of a diamine compound to produce and accumulate a diamine compound in the reaction solution.


(b) Reaction Step


The present step is a step of bringing a precursor of a diamine compound into contact with the modified microorganism to produce a target diamine compound from the precursor of the diamine compound. The contact of the precursor of the diamine compound may be performed, for example, in the culture step described above, or may be performed after the culture step. In a case where the present reaction step is performed after the culture step, the culture medium and/or bacterial cells obtained in the culture step can be brought into contact with an aqueous solution containing a precursor of a diamine compound to obtain a reaction solution containing a diamine compound. The diamine compound is produced and accumulated in the reaction solution by being brought into contact with such a precursor.


In one aspect, in the present step, the culture medium containing the bacterial cells obtained in the culture step and/or the bacterial cells from which a supernatant is removed by centrifugation or the like from the culture medium obtained in the culture step are brought into contact with an aqueous solution containing a precursor to obtain a reaction solution.


In addition, in another aspect, bacteria that produce a precursor by fermentation and the modified microorganism according to the present invention may be co-cultured. By co-culturing the bacteria and the modified microorganism, the precursor produced by the bacteria can be efficiently converted into a target diamine compound by the enzyme produced by the modified composition according to the present invention.


In still another aspect, the genetically modified microorganism according to the present invention is allowed to have an ability of producing a precursor of a diamine compound so that a diamine compound may be produced and accumulated from components in the medium.


As an example of a precursor production pathway by the genetically modified microorganism, a method of producing 6-aminohexanoic acid using glucose as a starting material (Turk et al., ACS synthetic biology 5.1 (2015): 65-73) and a method of producing adipic acid using glucose or glycerol as a starting material (Zhao et al., Metabolic engineering 47 (2018): 254-262) are disclosed, and the method is not limited as long as a precursor can be produced.


For example, the modified microorganism has an ability of producing a dicarboxylic acid, a carboxylic acid semialdehyde, or an aminocarboxylic acid, and further expresses an aminotransferase and a carboxylic acid reductase so that a diamine compound can be produced.


In addition, for example, the modified microorganism has an ability of producing adipic acid, adipic acid semialdehyde, or 6-aminohexanoic acid, and further expresses an aminotransferase and a carboxylic acid reductase so that hexamethylenediamine can be produced.


According to the genetically modified microorganism and the method of producing a diamine compound using the microorganism of the present invention, production of a by-product can be suppressed, and a diamine compound can be more efficiently produced. Specifically, for example, the microorganism that expresses an enzyme required to produce a diamine compound is modified to reduce an activity of an alcohol dehydrogenase compared to a non-reduced strain, thereby suppressing production of an alcohol form that is a by-product and efficiently producing a diamine compound.


Hereinafter, examples are given for the purpose of further description, and the present invention is not limited to the examples. In the present specification, unless otherwise specified, nucleotide sequences are described from 5′ directions to 3′ direction.


EXAMPLES

Hereinafter, the present invention will be explained based on examples, but the present invention is not limited to these examples.


1: Construction of ADH Gene-Disrupted Strain
1-a Construction of Plasmid for Disrupting Gene

Disruption of an ADH gene was performed by a homologous recombination method using pHAK1 (deposited with biotechnology division of National Institute of Technology and Evaluation (NITE), Patent Microorganisms Depositary (NPMD) (address: #122, 2-5-8, Kazusakamatari, Kisarazu-shi, Chiba, Japan) on Mar. 18, 2019, under the accession number NITE P-02919). pHAK1 contains a temperature-sensitive variant repA gene, a kanamycin resistant gene, and a levansucrase gene SacB derived from Bacillus subtilis. The levansucrase gene lethally acts on a host microorganism under the presence of sucrose. The PCR fragment was amplified using PrimeSTAR Max DNA Polymerase (trade name, manufactured by TAKARA BIO INC.), and the plasmid was prepared using an E. coli HST08 strain. Using the genomic DNA of the E. coli BL21 (DE3) strain as a template, a PCR product containing an upstream region, a coding region, and a downstream region of a disruption target gene was obtained. The combinations of the target gene and the primer sequence are shown in the following table.











TABLE 5





Target
Forward primer 
Reverse primer 


gene
(SEQ ID NO)
(SEQ ID NO)







yqhD
TTGTTGAATAAATCGT
TATCGCATGCAGATCT



CTGTTTGCCGAGAATA
GCGCTAATGGGCTCCA



CGCG
GGA



(SEQ ID NO: 116)
(SEQ ID NO: 117)





fucO
TTGTTGAATAAATCGC
TATCGCATGCAGATCC



GCGCCAGCGCTGGCTG
CGCCAATGCCGGAAGA



TTT 
GTT



(SEQ ID NO: 118)
(SEQ ID NO: 119)





adhP
TTGTTGAATAAATCGC
TATCGCATGCAGATCG



GATCGTGATGCCGCTG
ACAACGTAGGCTTTGT



TCT 
TCA



(SEQ ID NO: 120)
(SEQ ID NO: 121)





eutG
TTGTTGAATAAATCGC
TATCGCATGCAGATCG



GCCATCTCGACACTCT 
CGAACATCGATGGGTT



TGA
AGC



(SEQ ID NO: 122)
(SEQ ID NO: 123)





ybbO
TTGTTGAATAAATCGT
TATCGCATGCAGATCG



GGCATTTGCCCTTCCT
TCCTGATCCTGCAACG



GTT
GAA



(SEQ ID NO: 124)
(SEQ ID NO: 125)





ahr
TTGTTGAATAAATCGC
TATCGCATGCAGATCT



TCATAACGGTACTGCA 
CGCAGCAGGTAAGATG



AAC
ATT



(SEQ ID NO: 126)
(SEQ ID NO: 127)





yahK
TTGTTGAATAAATCGA
TATCGCATGCAGATCT



TATTCGTCCTAACGAA
TTTTGATTTTCAAGTA



CAG
TGT



(SEQ ID NO: 128)
(SEQ ID NO: 129)









Next, the present PCR product was inserted into the pHAK1 plasmid fragment amplified using primers of SEQ ID NOs: 130 and 131 using an In-Fusion HD cloning kit (trade name, manufactured by Clontech Laboratories, Inc.) to circularize it.











TABLE 6









GATCTGCATGCGATATCTCTAGAACGCGTAAGCTT 



(SEQ ID NO: 130)







TCTCGAGCCGATTTATTCAACAAAGCCGC 



(SEQ ID NO: 131)










PCR was performed using the pHAK1 plasmid into which the DNA fragment containing the upstream region, the coding region, and the downstream region of the obtained disruption target gene as a template and using primers shown in the following table, thereby obtaining a plasmid fragment in which the coding region of the disruption target gene was partially or entirely removed.











TABLE 7





Target 
Forward primer 
Reverse primer 


gene
(SEQ ID NO)
(SEQ ID NO)







yqhD
ACTTTCGTTTTCGGGC 
CCAATATGAGGGCAG 



ATTTCGTCC
AGAACGATC



(SEQ ID NO: 132)
SEQ ID NO: 133)





fucO
ATGCGCTGATGTGATA
CCTTCTCCTTGTTGC 



ATGC
TTTA



(SEQ ID NO: 134)
(SEQ ID NO: 135)





adhP
GAGGCCTTTGCTGCGA 
AGTTCCTCCTTTTCGG 



CTGC
ATGAT



(SEQ ID NO: 136)
(SEQ ID NO: 137)





eutG
ATGCCGGATGCGACGC 
TCATTTTGCATATAGC



TT
CCCT 



(SEQ ID NO: 138)
(SEQ ID NO: 139)





ybbO
TGACCTGGGCAGTAAT 
CAGGATCTCCGTTGCT 



GGTG
TTATGAGTC



(SEQ ID NO: 140)
(SEQ ID NO: 141)





ahr
CGTGGTGTTGAAAGCC 
CATAAACTTCCAGTTC 



GATTATTG
TCCGCCC



(SEQ ID NO: 142)
(SEQ ID NO: 143)





yahK
TCGCACACTAACAGAC 
TGTGTTTACTCCTGAT 



TGAA
TAGC



(SEQ ID NO: 144)
(SEQ ID NO: 145)









The obtained plasmid fragment was subjected to terminal phosphorylation and circularization by self-ligation to obtain a plasmid for disrupting a gene.


1-b Construction of ADH Gene-Disrupted E. coli Strain

A plasmid for disrupting a desired gene was transformed into the E. coli BL21 (DE3) strain by a calcium chloride method (refer to Genetic Engineering Laboratory Notebook, by Takaaki Tamura, Yodosha), and then applied to an LB agar medium (10 g/L of tryptone, 5 g/L of yeast extract, 5 g/L of sodium chloride, and 15 g/L of agar powder) containing 100 mg/L of kanamycin sulfate, and culture was performed at 30° C. overnight to obtain a single colony, thereby obtaining a transformant. The present transformant was inoculated into 1 mL of an LB liquid medium (10 g/L of tryptone, 5 g/L of yeast extract, and 5 g/L of sodium chloride) containing 100 mg/L of kanamycin sulfate with a platinum loop, and shaking culture was performed at 30° C. The obtained culture medium was applied to an LB agar medium containing 100 mg/L of kanamycin sulfate, and culture was performed at 42° C. overnight. In the obtained colony, a plasmid was inserted into the genome by single crossover. The colony was inoculated into 1 mL of an LB liquid medium with a platinum loop, and shaking culture was performed at 30° C. The obtained culture medium was applied to an LB agar medium containing 10% sucrose, and culture was performed overnight. Disruption of a desired gene in the obtained colony was observed by colony direct PCR using the primer set shown in Table 8. The constructed ADH gene-disrupted E. coli strain is shown in Table 9. In the table, A indicates that the enzyme gene is deficient.











TABLE 8





Target
Forward primer 
Reverse primer 


gene
(SEQ ID NO)
(SEQ ID NO)







yqhD
TATTCTCAATCCGTTT 
TTCGGGATCACCACCA 



CAGCACGCG
GGCCG



(SEQ ID NO: 146)
(SEQ ID NO: 147)





fucO
CGGAAATGGACGAACA 
CGTCATCAGCGTTTAC 



GTGG
CAGATT



(SEQ ID NO: 148)
(SEQ ID NO: 149)





adhP
GCATAAACACTGTCCG 
GAAATCGAGAAGGCAG 



CGTC
AAGCGAAA



(SEQ ID NO: 150)
(SEQ ID NO: 151)





eutG
GGTGCGGTCACCATTG 
CATATCGCACGCCAGC



TTCG
AGTG 



(SEQ ID NO: 152)
(SEQ ID NO: 153)





ybbO
GGTGAGGATGGAGAGT 
CAGTTCGATTTGCGCC



TCATG
ACCAG 



(SEQ ID NO: 154)
(SEQ ID NO: 155)





ahr
TCCGCTAGTGTGATTT 
GAAATTATTATGCCGC



CAGG
CAGGCGT 



(SEQ ID NO: 156)
(SEQ ID NO: 157)





yahK
TTATGGTCTGGGCGAC 
GCATCATCCTGGTCAT 



ATGC
ATACCC



(SEQ ID NO: 158)
(SEQ ID NO: 159)


















TABLE 9









BL21(DE3) ΔyqhD



BL21(DE3) ΔfucO



BL21(DE3) ΔadhP



BL21(DE3) ΔeutG



BL21(DE3) ΔybbO



BL21(DE3) Δahr



BL21(DE3) ΔyahK



BL21(DE3) ΔyqhD ΔfucO



BL21(DE3) ΔyqhD ΔadhP



BL21(DE3) ΔyqhD ΔeutG



BL21(DE3) ΔyqhD ΔybbO



BL21(DE3) ΔyqhD Δahr



BL21(DE3) ΔyqhD ΔyahK



BL21(DE3) ΔyqhD ΔfucO ΔadhP



BL21(DE3) ΔyqhD ΔfucO ΔadhP ΔeutG



BL21(DE3) ΔyqhD ΔfucO ΔadhP ΔeutG ΔybbO



BL21(DE3) ΔyqhD ΔfucO ΔadhP ΔeutG ΔybbO Δahr



BL21(DE3) ΔyqhD ΔfucO ΔadhP ΔeutG ΔybbO Δahr ΔyahK










1-c Test for Reducing Decomposition Activity of 1,6-Hexanediol

The reduction in decomposition activity of 1,6-hexanediol of the constructed ADH gene-disrupted E. coli strain was confirmed by the progress of the oxidation reaction of 1,6-hexanediol. 1,6-Hexanediol is one of alcohol forms that are by-products of the production reaction of hexamethylenediamine. In this test, based on the fact that the reaction between the aldehyde and the alcohol catalyzed by ADH illustrated in FIG. 1 is a reversible reaction, a conversion reaction from the alcohol (here, 1,6-hexanediol) to the aldehyde was focused on, and the consumption of 1,6-hexanediol was used as an index of the decomposition activity of 1,6-hexanediol by ADH. In this test, the bacterial cells of each of the ADH gene-disrupted E. coli strains were inoculated into 2 mL of an LB liquid medium with a platinum loop, and shaking culture was performed at 37° C. overnight as pre-culture. The obtained pre-culture medium was inoculated into 2 mL of an LB liquid medium containing 10 mM 1,6-hexanediol in an amount corresponding to 1%, and shaking culture was performed at 37° C. for 48 hours as a main culture. The culture medium was separated into the bacterial cells and the supernatant by centrifugation, and a concentration of 1,6-hexanediol in the supernatant was analyzed.


The analysis of the concentration of 1,6-hexanediol was performed using gas chromatograph.


The conditions are as follows.


GC system: GC-2010 (manufactured by Shimadzu Corporation)


Detector: Hydrogen flame ionization detector


Column: DB-WAX (manufactured by Agilent Technologies, column length: 30 m, inner diameter: 0.25 mm, film thickness: 0.25 mm)


Carrier gas: He


Gas pressure: 100 kPa


Column temperature: 50° C.—(25° C./min)—230° C.—(holding for 20 min)


Detector temperature: 250° C.


Inlet temperature: 250° C.


Injection amount: 1 μL


Injection method: Split injection method (split ratio: 36.3)


The concentration of 1,6-hexanediol in the culture supernatant 48 hours after the main culture is shown in FIG. 2. In the wild-type strain (BL21(DE3) strain, WT is an abbreviation of Wild type and indicates wild type) in which the ADH gene was not disrupted, 1,6-hexanediol was consumed by the action of the ADH, whereas in the ADH gene-disrupted strain, particularly regarding two genes: the ahr gene and the yahK gene, consumption of 1,6-hexanediol was suppressed by single gene disruption. It was confirmed from the present results that the decomposition activity of 1,6-hexanediol was reduced in the ADH gene-disrupted strain.


2: Production of Diamine Compound in ADH Gene-Disrupted Strain
2-a Construction of MaCar Gene, Npt Gene, and ygjG Gene Expression Plasmids

The PCR fragment was amplified using PrimeSTAR Max DNA Polymerase (trade name, manufactured by TAKARA BIO INC.), and the plasmid was prepared using an E. coli JM109 strain. PCR was performed using the genome DNA of the Escherichia coli W3110 strain (NBRC12713) as a template, and using oligonucleotides of SEQ ID NOs: 160 and 161 as primers, thereby obtaining a PCR product containing a coding region of a ygjG gene. Next, the present PCR product was inserted between restriction enzymes NcoI and HindIII cleavage sites of plasmid pACYCDuet (trademark)-1 (trade name, manufactured by Merck & Co., Inc.) using an In-Fusion HD cloning kit (trade name, manufactured by Clontech Laboratories, Inc.), and the PCR product was named “pDA50”.











TABLE 10









ATAAGGAGATATACCATGATACGCGAGCCTCCGGA



(SEQ ID NO: 160)







ATGCGGCCGCAAGCTTTACGCTTCTTCGACACTTA



(SEQ ID NO: 161)










PCR was performed using the genome DNA of the Mycobacterium abscessus JCM13569 strain (provided by RIKEN BRC through Ministry of Education, Culture, Sports, Science and Technology/the National BioResource Project of Japan Agency for Medical Research and Development) as a template and using oligonucleotides of SEQ ID NOs: 162 and 163 as primers, thereby obtaining a PCR product containing a coding region of an MaCar gene. Next, the PCR product was inserted between restriction enzymes NdeI and AvrII cleavage sites of pDA50 using an In-Fusion HD cloning kit (trade name, manufactured by Clontech Laboratories, Inc.), and the PCR product was named “pDA52”.











TABLE 11









TAAGAAGGAGATATACATATGACTGAAACGATCTC 



(SEQ ID NO: 162)







GTGGCAGCAGCCTAGCTACACCAGGCCCAACAGCT 



(SEQ ID NO: 163)










PCR was performed using the genome DNA of the Nocardia iowensis JCM18299 strain (provided by RIKEN BRC through Ministry of Education, Culture, Sports, Science and Technology/the National BioResource Project of Japan Agency for Medical Research and Development) as a template and using oligonucleotides of SEQ ID NOs: 164 and 165 as primers, thereby obtaining a PCR product containing a coding region of an Npt gene. Next, PCR was performed using pDA52 as a template and using oligonucleotides of SEQ ID NOs: 166 and 167 as primers, thereby obtaining a pDA52 fragment. The PCR products were connected to each other using an In-Fusion HD cloning kit (trade name, manufactured by Clontech Laboratories, Inc.). The plasmid was extracted from the obtained transformant, and the product into which the Npt gene was inserted was named “pDA56”. The plasmid map of pDA56 is illustrated in FIG. 3.











TABLE 12









TTTAAGGAGTTCGATATGATCGAGACAATTTTGCC 



(SEQ ID NO: 164)







GGTGGCAGCAGCCTAGTCAGGCGTACGCGATCGCG 



(SEQ ID NO: 165)







CTAGGCTGCTGCCACCGCTG 



(SEQ ID NO: 166)







ATCGAACTCCTTAAATTTATCTACACCAGGCCCAACAGCT 



(SEQ ID NO: 167)










2-b Preparation of Transformant

pDA56 was introduced into an ADH gene non-disrupted E. coli strain or an ADH gene-disrupted strain by a calcium chloride method (refer to Genetic Engineering Laboratory Notebook, by Takaaki Tamura, Yodosha), and culture was performed in an LB agar medium containing 34 mg/L of chloramphenicol overnight, thereby obtaining a transformant. The obtained transformants were named transformants A to S as shown in the following table. As shown in the table, the transformant A is an ADH gene non-disrupted strain, the transformants B to H are strains in which any one of genes encoding an ADH are disrupted, and the transformants I to S are strains in which at least two of genes encoding ADH are disrupted (multiply disrupted).











TABLE 13





Name of




transformant
Microorganism strain
Plasmid







A
BL21 (DE3)
pDA56


B
BL21 (DE3) ΔyqhD


C
BL21 (DE3) ΔfucO


D
BL21 (DE3) ΔadhP


E
BL21 (DE3) ΔeutG


F
BL21 (DE3) ΔybbO


G
BL21 (DE3) Δahr


H
BL21 (DE3) ΔyahK


I
BL21 (DE3) ΔyqhDΔfucO


J
BL21 (DE3) ΔyqhDΔadhP


K
BL21 (DE3) ΔyqhDΔeutG


L
BL21 (DE3) ΔyqhDΔybbO


M
BL21 (DE3) ΔyqhDΔahr


N
BL21 (DE3) ΔyqhDΔyahK


O
BL21 (DE3) ΔyqhDΔfucOΔadhP


P
BL21 (DE3) ΔyqhDΔfucOΔadhPΔeutG


Q
BL21 (DE3) ΔyqhDΔfucOΔadhPΔeutGΔybbO


R
BL21 (DE3) ΔyqhDΔfucOΔadhPΔeutGΔybbOΔahr


S
BL21 (DE3) ΔyqhDΔfucOΔadhPΔeutGΔybbOΔahrΔyahK









2-c Production of Hexamethylenediamine from Adipic Acid (Comparative Example 1 and Examples 1 to 18)

The bacterial cells of the transformants A to S were inoculated in 2 mL of an LB liquid medium containing 34 mg/L of chloramphenicol with a platinum loop, and shaking culture was performed at 37° C. overnight as pre-culture. The obtained pre-culture medium was inoculated in 1 mL of an SOB liquid medium (20 g/L of tryptone, 5 g/L of yeast extract, 0.5 g/L of sodium chloride, 2.5 mM calcium chloride, 10 mM magnesium sulfate, and 10 mM magnesium chloride) containing 50 mM diammonium adipate, 34 mg/L of chloramphenicol, and 2% glucose in an amount corresponding to 1%, and shaking culture was performed at 37° C. After 2 hours of culture, isopropyl β-thiogalactopyranoside (IPTG) was added so that the final concentration was 0.2 mM, and shaking culture was performed at 30° C. for 48 hours. The culture medium was separated into the bacterial cells and the supernatant by centrifugation, and a concentration of hexamethylenediamine and a concentration of 1,6-hexanediol in the supernatant were analyzed.


The analysis of the concentration of hexamethylenediamine was performed using ion chromatograph. The conditions are as follows.


Apparatus: ICS-3000 (manufactured by Dionex Corporation)


Detector: Electrical conductivity detector


Column: IonPac CG19 (2×50 mm)/CS19(2×250 mm) (manufactured by Thermo Fisher Scientific)


Oven temperature: 30° C.


Mobile phase: 8 mM aqueous methanesulfonic acid solution (A), 70 mM aqueous methanesulfonic acid solution (B)


Gradient condition: (A: 100%, B: 0%)—(10 min)-(A: 0%, B: 100%)—(holding for 1 min)


Flow rate: 0.35 mL/min


Injection amount: 20 μL


The concentration of 1,6-hexanediol was performed using gas chromatograph under the same conditions as in (1-c).


The concentration of hexamethylenediamine and the concentration of 1,6-hexanediol in each of the culture media are shown in Table 14. First, as for the concentration of hexamethylenediamine, an increase in production amount of hexamethylenediamine was observed in the ADH gene-disrupted strains of Examples 1, 3, and 8 to 18 compared to the ADH gene non-disrupted strain (Comparative example 1). In addition, in the ADH gene-disrupted strains of Examples 1, 2, and 4 to 18, the production amount of 1,6-hexanediol was reduced. In addition, the production amount of hexamethylenediamine was further increased by multiple disruption of the ADH gene (Examples 8 to 18). Regarding the concentration of 1,6-hexanediol, it was observed that the production was suppressed compared to the ADH gene non-disrupted strain (Comparative example 1).













TABLE 14








Concentration of
Concentration of




hexamethylenediamine
1,6-hexanediol



Transformant
(μM)
(mM)



















Comparative
A
2
1.70


example 1


Example 1
B
10
0.22


Example 2
C
2
1.41


Example 3
D
4
2.01


Example 4
E
2
1.57


Example 5
F
1
1.18


Example 6
G
2
1.30


Example 7
H
2
1.28


Example 8
I
38
0.27


Example 9
J
81
0.38


Example 10
K
48
0.29


Example 11
L
18
0.18


Example 12
M
69
0.08


Example 13
N
63
0.26


Example 14
O
68
0.31


Example 15
P
54
0.28


Example 16
Q
42
0.24


Example 17
R
38
0.09


Example 18
S
47
0.05









2-d Production of 1,10-Decanediamine from Sebacic Acid (Comparative Example 2 and Examples 19 and 20)

The bacterial cells of the transformants A to S were inoculated in 2 mL of an LB liquid medium containing 34 mg/L of chloramphenicol with a platinum loop, and shaking culture was performed at 37° C. overnight as pre-culture. The obtained pre-culture medium was inoculated in 1 mL of an SOB liquid medium containing 50 mM sodium sebacate, 34 mg/L of chloramphenicol, and 2% glucose in an amount corresponding to 1%, and shaking culture was performed at 37° C. After 2 hours of culture, IPTG was added so that the final concentration was 0.2 mM, and shaking culture was performed at 30° C. for 48 hours. The culture medium was separated into the bacterial cells and the supernatant by centrifugation, and a concentration of 1,10-decanediamine and a concentration of 1,10-decanediol in the supernatant were analyzed.


The analysis of the concentration of 1,10-decanediamine was performed by ion chromatography under the same conditions as in (2-c). The concentration of 1,10-decanediamine in each of the culture media is shown in Table 15. It was observed that the production amount of 1,10-diaminodecane in the ADH gene-disrupted strain of each of Examples 19 and 20 was increased compared to the ADH gene non-disrupted strain (Comparative Example 2).


The concentration of 1,10-decanediol was performed using gas chromatograph under the same conditions as in (1-c). The concentration of 1,10-decanediamine in each of the culture media is shown in Table 15. It was observed that the production amount of 1,10-decanediol was suppressed in the ADH gene-disrupted strains of Examples 19 and 20 compared to the ADH gene non-disrupted strain (Comparative example 2).













TABLE 15








Concentration of
Concentration of




1,10-decanediamine
1,10-decanediol



Transformant
(μM)
(mM)



















Comparative
A
107
1.03


example 2


Example 19
B
199
0.55


Example 20
S
228
0.57









Deposit of Biological Material


The plasmid pHAK1 was deposited with biotechnology division of National Institute of Technology and Evaluation (MITE), Patent Microorganisms Depositary (NPMD) (address: #122, 2-5-8, Kazusakamatari, Kisarazu-shi, Chiba, Japan) on Jul. 21, 2020, under “NITE ABP-02919 (accession number)” (the demand for conversion from NITE P-02919 to the deposit under Budapest Treaty was filed).


INDUSTRIAL APPLICABILITY

The genetically modified microorganism of the present invention can be suitably used in production of a diamine compound.


20200722111720202007161145140240 P1AP101_19_73.app

Claims
  • 1. A genetically modified microorganism that expresses an enzyme involved in synthesis of a diamine compound, wherein the diamine compound is represented by Formula: H2N—R—NH2 (wherein, R is a chain or cyclic organic group comprised of one or more atoms selected from the group consisting of C, H, O, N, and S), andthe genetically modified microorganism is modified to reduce an activity of an alcohol dehydrogenase compared to a non-reduced strain.
  • 2. The genetically modified microorganism according to claim 1, wherein the modification performed to reduce the activity of the alcohol dehydrogenase compared to the non-reduced strain is a modification to suppress expression of a gene encoding an alcohol dehydrogenase ora modification to suppress expression of a gene encoding an alcohol dehydrogenase and to suppress an activity of an alcohol dehydrogenase.
  • 3. The modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein encoded by DNA consisting of a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100,DNA consisting of a base sequence having 85% or more of sequence identity with a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100 and encoding a protein having an alcohol dehydrogenase activity,DNA consisting of a base sequence encoding a protein consisting of an amino acid sequence obtained by deleting, substituting, inserting, and/or adding 1 to 10 amino acids with respect to an amino acid sequence of a protein encoded by a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100 and encoding a protein having an alcohol dehydrogenase activity, orDNA consisting of a degenerate isomer of a base sequence selected from SEQ ID NOs: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, and 100.
  • 4. The modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein containing an amino acid sequence having 80% or more of sequence identity with an amino acid sequence selected from SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, and 99 and having an alcohol dehydrogenase activity.
  • 5. The genetically modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD, fucO, adhP, ybbO, eutG, ahr, yahK, adhE, ybdR, dkgA, yiaY, frmA, dkgB, yghA, ydjG, gldA, yohF, yeaE, ADH1, ADH2, ADH3, ADH4, ADH5, ADH6, ADH7, SFA1, AAD3, AAD4, AAD10, AAD14, AAD15, YPR1, NCg10324, NCg10313, NCg10219, NCg12709, NCg11112, NCg12382, NCg10186, NCg10099, NCg12952, NCg11459, yogA, bdhK, bdhJ, akrN, yqkF, yccK, iolS, and yrpG.
  • 6. The genetically modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK.
  • 7. The genetically modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD and adhP.
  • 8. The genetically modified microorganism according to claim 7, wherein the alcohol dehydrogenase is a protein encoded by an adhP gene.
  • 9. The genetically modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of yqhD, fucO, eutG, ybbO, ahr, and yahK.
  • 10. The genetically modified microorganism according to claim 9, wherein the alcohol dehydrogenase is a protein encoded by at least one gene selected from the group consisting of eutG, ybbO, ahr, and yahK.
  • 11. The genetically modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein encoded by two or more genes selected from the group consisting of yqhD, fucO, adhP, eutG, ybbO, ahr, and yahK.
  • 12. The genetically modified microorganism according to claim 1, wherein the alcohol dehydrogenase is a protein encoded by a gene of one combination selected from the group consisting of: yqhD and fucO,yqhD and adhP,yqhD and eutG,yqhD and ybbO,yqhD and ahr,yqhD and yahK,yqhD, fucO, and adhP,yqhD, fucO, adhP, and eutG,yqhD, fucO, adhP, eutG, and ybbO,yqhD, fucO, adhP, eutG, ybbO, and ahr, andyqhD, fucO, adhP, eutG, ybbO, ahr, and yahK.
  • 13. The modified microorganism according to claim 1, wherein the modification performed to reduce the activity of the alcohol dehydrogenase compared to the non-reduced strain is performed by one or more selected from the group consisting of a reduction in transcription amount and/or translation amount of a gene encoding the alcohol dehydrogenase in the microorganism anda disruption of a gene encoding the alcohol dehydrogenase in the microorganism.
  • 14. The genetically modified microorganism according to claim 1, wherein the genetically modified microorganism belongs to a genus selected from the group consisting of the genus Escherichia, the genus Corynebacterium, the genus Bacillus, the genus Acinetobacter, the genus Burkholderia, the genus Pseudomonas, the genus Clostridium, the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, the genus Candida, the genus Pichia, and the genus Aspergillus.
  • 15. The genetically modified microorganism according to claim 1, wherein the genetically modified microorganism is Escherichia coli.
  • 16. The genetically modified microorganism according to claim 1, wherein the genetically modified microorganism expresses an aminotransferase as the enzyme involved in the synthesis of the diamine compound.
  • 17. The genetically modified microorganism according to claim 1, wherein the genetically modified microorganism expresses a carboxylic acid reductase as the enzyme involved in the synthesis of the diamine compound.
  • 18. The genetically modified microorganism according to claim 17, wherein the carboxylic acid reductase has an activity of converting a carboxyl group of a carboxylic acid semialdehyde, a dicarboxylic acid, or an aminocarboxylic acid into an aldehyde.
  • 19. The genetically modified microorganism according to claim 1, wherein the genetically modified microorganism has an ability of producing a dicarboxylic acid, a carboxylic acid semialdehyde, or an aminocarboxylic acid, andfurther expresses an aminotransferase and a carboxylic acid reductase.
  • 20. The genetically modified microorganism according to claim 1, wherein the genetically modified microorganism has an ability of producing adipic acid, adipic acid semialdehyde, or 6-aminohexanoic acid, andfurther expresses an aminotransferase and a carboxylic acid reductase.
  • 21. The genetically modified microorganism according to claim 17, wherein the genetically modified microorganism is further modified to increase an activity of a phosphopantetheinyl transferase.
  • 22. The genetically modified microorganism according to claim 16, wherein a gene encoding the aminotransferase is ygjG.
  • 23. The genetically modified microorganism according to claim 17, wherein a gene encoding the carboxylic acid reductase is MaCar.
  • 24. The genetically modified microorganism according to claim 21, wherein a gene encoding the phosphopantetheinyl transferase is Npt.
  • 25. The modified microorganism according to claim 1, wherein the modified microorganism contains a base sequence having 85% or more of sequence identity with a base sequence set forth in SEQ ID NO: 115 and encoding a protein having an aminotransferase activity ora base sequence having 85% or more of sequence identity with a base sequence encoding an amino acid sequence set forth in any one of SEQ ID NOs: 110 to 114 and encoding a protein having an aminotransferase activity.
  • 26. The modified microorganism according to claim 1, wherein the modified microorganism contains a base sequence having 85% or more of sequence identity with a base sequence set forth in SEQ ID NO: 105 and encoding a protein having a carboxylic acid reductase activity ora base sequence having 85% or more of sequence identity with a base sequence encoding an amino acid sequence set forth in any one of SEQ ID NOs: 101 to 104 and encoding a protein having a carboxylic acid reductase activity.
  • 27. The modified microorganism according to claim 21, wherein the modified microorganism contains a base sequence having 85% or more of sequence identity with a base sequence set forth in SEQ ID NO: 109 and encoding a protein having a phosphopantetheinyl transferase activity ora base sequence having 80% or more of sequence identity with a base sequence encoding an amino acid sequence set forth in any one of SEQ ID NOs: 106 to 108 and encoding a protein having a phosphopantetheinyl transferase activity.
  • 28. The genetically modified microorganism according to claim 1, wherein the genetically modified microorganism expresses one or more enzymes selected from the group consisting of acyl-(acyl carrier protein (ACP)) reductase (AAR),an enzyme that produces an aldehyde from acyl-CoA, andan enzyme that produces an aldehyde from acyl phosphate.
  • 29. A method of producing a diamine compound using the genetically modified microorganism according to claim 1.
  • 30. The method of producing a diamine compound according to claim 29, wherein the method comprising a culture step of culturing the genetically modified microorganism in a medium containing a carbon source and a nitrogen source to obtain a culture medium containing bacterial cells.
  • 31. The method of producing a diamine compound according to claim 30, wherein the medium further contains a precursor of a diamine compound, orin the culture step, the precursor is added to the medium.
  • 32. The method of producing a diamine compound according to claim 30, further comprising a reaction step of bringing the culture medium and/or the bacterial cells into contact with an aqueous solution containing a precursor of a diamine compound to obtain a reaction solution containing a diamine compound.
  • 33. The method of producing a diamine compound according to claim 31, wherein the precursor is selected from the group consisting of a dicarboxylic acid, a carboxylic acid semialdehyde, an aminocarboxylic acid, an aminoaldehyde, a dialdehyde, acyl-ACP, acyl-CoA, and acyl phosphate.
  • 34. The method of producing a diamine compound according to claim 32, wherein the precursor is selected from the group consisting of a dicarboxylic acid, a carboxylic acid semialdehyde, an aminocarboxylic acid, an aminoaldehyde, a dialdehyde, acyl-ACP, acyl-CoA, and acyl phosphate.
Priority Claims (1)
Number Date Country Kind
2019-134306 Jul 2019 JP national
PCT Information
Filing Document Filing Date Country Kind
PCT/JP2020/028456 7/22/2020 WO