Geo-temporal indexing and searching

Information

  • Patent Grant
  • 10691662
  • Patent Number
    10,691,662
  • Date Filed
    Monday, November 21, 2016
    8 years ago
  • Date Issued
    Tuesday, June 23, 2020
    4 years ago
  • CPC
    • G06F16/2255
    • G06F16/2477
    • G06F16/29
  • Field of Search
    • CPC
    • G06F16/2255
    • G06F16/2477
    • G06F16/29
  • International Classifications
    • G06F16/22
    • G06F16/29
    • G06F16/2458
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      727
Abstract
A method and apparatus for a data analysis system for analyzing data object collections that include geo-temporal data is provided. One or more temporal granularities are specified for the purpose of generating a geo-temporal data index. The time granularities correspond to temporal ranges expected to correspond to temporal ranges specified in user queries against the data. One or more temporal index bucket groups are generated based on to the specified time granularities. Geo-temporal input data is indexed based on the generated temporal index bucket groups. The system allows a data analyst to specify geo-temporal queries that include both geospatial component and a temporal component. The system transforms geo-temporal queries into one or more second queries that retrieve data items based on the temporal index bucket groups.
Description
TECHNICAL FIELD

The present disclosure generally relates to computer-based analysis of geospatial data that includes a temporal component.


BACKGROUND

Data analysts and other computer users often interact with and request data from computer-based databases containing large collections of data objects. The data object collections may be generated and collected by various corporations, businesses, governmental agencies, and other organizations and often represent huge amounts of data. For example, the data may include DNS traffic logs, transaction logs of banks, call data records, or any other potentially high-volume data.


One particular type of data that such organizations may often collect and analyze is geospatial data. Geospatial data generally represents any data that includes a geographical component and that associates the data with particular geographic locations or areas. For example, a crime enforcement agency may track data that corresponds to crime reports received within a particular city. One item of information stored in association with each crime report may include a geographical component indicating a location of the incident specified by the crime report. An example data object representing each crime report may include values representing a longitude and latitude corresponding to the geographical location of the incident. A data analyst with access to such data may then specify geospatial search requests such as, for example, a search request for crime reports associated with incidents within a specified geographical radius or within a four block perimeter.


Organizations also frequently collect data that includes a temporal component. A temporal component generally refers to one or more data values that indicate a particular point in time, such as a date and/or time of day, or a range of time. For example, in reference to the example crime report information, a crime enforcement agency may store in association with each crime report a time value indicating an approximate time the incident in the crime report occurred. In the example, by storing the temporal information, data analysts may specify requests for data objects associated with a particular time range of interest, for example, all crime reports associated with an incident that occurred within the past three months.


Databases have provided mechanisms for efficiently indexing and searching geospatial data for a number of years. These mechanisms include geospatial indices that transform the geospatial data into values that are well-suited for database indexing while preserving a notion of geographical locality in the indexed data. However, indexing and searching for geo-temporal data presents a number of challenges that are not resolved by today's geospatial indexing techniques. For example, because the notion of geographical locality does not accurately translate to the added dimensionality of time, the use of geospatial indexing mechanisms on geo-temporal data often results in highly inefficient processing of geo-temporal queries. Further, user requests for geo-temporal data are often focused on highly varied granularities of time for reasons practical to desired lines of inquiries on the data, but that complicate efforts to efficiently index the data.


The present disclosure attempts to address these problems and others, facilitating low latency searches of large and dynamic data sets that include geo-temporal data.


The approaches described in this section are approaches that could be pursued, but not necessarily approaches that have been previously conceived or pursued. Therefore, unless otherwise indicated, it should not be assumed that any of the approaches described in this section qualify as prior art merely by virtue of their inclusion in this section.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 illustrates an example computer system comprising a set of interconnected functional modules for indexing and searching geo-temporal data.



FIG. 2 is an example graphical user interface for a computer display for specifying a geo-temporal query.



FIG. 3 illustrates a flowchart illustrating a process of indexing geo-temporal data



FIG. 4 illustrates a flowchart illustrating processing a geo-temporal query.



FIG. 5 illustrates a computer system upon which an embodiment may be implemented.





DETAILED DESCRIPTION

In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid unnecessarily obscuring the present invention. Embodiments are described herein according to the following outline:

    • 1.0 General Overview
    • 2.0 Structural and Functional Overview
      • 2.1 Data Sources
      • 2.2 Data Repository
      • 2.3 Geo-temporal Data Importation
        • 2.3.1 Indexing Geospatial Data
        • 2.3.2 Indexing Geo-temporal Data
      • 3.0 Example Geo-temporal Search Operation
      • 4.0 Implementation Mechanisms—Hardware Overview


1.0 General Overview


The present disclosure is directed to computer systems and methods for indexing and searching geo-temporal data stored in a data repository. Geo-temporal data generally refers to data that includes both a geospatial component and a temporal component. The geospatial component may comprise one or more stored data values indicating a geographic location and the temporal component may comprise one or more values indicating a point in time or range of time. In general terms, in order to more efficiently process requests for geo-temporal data stored in a key-value data repository, a geo-temporal indexing structure is generated and managed in computer memory; for example, indexes may be stored on disk and cached in memory on demand. In an embodiment, the geo-temporal indexing structure is based in part on user input specifying one or more time sets or granularities that are likely to correspond to time ranges specified in user requests for the stored and indexed geo-temporal data.


The geo-temporal data may be obtained from potentially multiple disparate data sources and examples of geo-temporal data include, but are not limited to, network traffic logs, bank transaction records, phone call records, crime data, or any other data that includes both a geospatial and temporal component. In an embodiment, the geo-temporal data is received and indexed in a data repository based on a geospatial component of the data. In an embodiment, the indexing of the geo-temporal data based on the geospatial component may be based on Z-order curves, Hilbert curves, or any other geospatial indexing technique.


In an embodiment, in addition to geospatially indexing the geo-temporal data, the data is further indexed in the data repository based on a temporal component of the data and based on received user input specifying one or more time granularities that a user may, for example, anticipate to be time granularities that are likely to correspond to user requests against the indexed data. Examples of various time granularities that may be used in embodiments, or together in one embodiment, include years, months, days, and any other useful measure of time. In an embodiment, a “temporal index bucket” group comprising one or more temporal index buckets is created in the data repository for each of the user-specified time granularities. In an embodiment, each temporal index bucket of a temporal index bucket group corresponds to a particular range of time equal to the corresponding time granularity for that bucket group. Each particular temporal index bucket includes one or more references to geospatially indexed data objects that are associated with a temporal value that falls within the particular range of time associated with the particular temporal index bucket.


For example, if a user involved in the importation of geo-temporal data is aware that user requests are likely to be received for geo-temporal data within particular month ranges, the user may specify a time granularity of months for the indexing of the imported geo-temporal data. In the example, in response to receiving the user input, a temporal index bucket group is created for the specified time granularity of months. The temporal index bucket group includes one or more temporal index buckets that each correspond to a particular month time range and each particular index bucket indexes a portion of the geo-temporal data that is associated with a temporal component that falls within the particular month time range for that particular bucket. If a user additionally specifies a time granularity of days for the same data, a separate temporal index bucket group is created for day time ranges and indexes the geo-temporal data into temporal index buckets of individual day time ranges.


In an embodiment, requests for geo-temporal data indexed in a data repository are processed using one or more of the generated index bucket groups. For example, a geo-temporal request may be a query specifying one or more geospatial search parameters and one or more temporal search parameters. In an embodiment, a geo-temporal request for geo-temporal data indexed according to the methods described herein is transformed into one or more second requests against one or more temporal index buckets based on the temporal component specified in the request. For example, assume particular geo-temporal data includes data with temporal components associated with time values falling within each of the years 2000-2010 and is indexed according to a time granularity of years. The temporal index bucket group may then include a temporal index bucket for each of the years 2000, 2001, 2002, and so forth. If a geo-temporal query is received specifying a particular geospatial and a temporal range spanning the years 2008 and 2009, the geo-temporal query may be transformed into separate queries against the 2008 and 2009 temporal index buckets.


2.0 Structural and Functional Overview



FIG. 1 illustrates an example computer system for indexing and searching geo-temporal data. In an embodiment, an organization or entity may manage one or more data sources 101 that generate data, perhaps continuously or on an ongoing or periodic basis. Any sizeable organization will typically manage multiple data sources 101 that generate a large amount of data. Example data sources 101 include databases, log files, transaction logs, call data records, access logs, netflows, authentication logs, authorization logs, e-mail message spools, and any other container for data.


2.1 Data Sources


Data generated by data sources 101 includes, but is not limited to, any data that reflects an activity of an individual person or organization. The activity may be an online activity, such as, for example, accessing a website, sending or receiving an e-mail, or making an online payment with a credit card or an offline activity such as, for example, using a key card to gain access to a building. Data generated by data sources 101 also includes, but is not limited to, geo-temporal data. Geo-temporal data is data that may reflect activities such as those identified above and other activities that include both a geospatial component and a temporal component. For example, geo-temporal data may reflect cell phone call records that are each associated with data values reflecting a particular geographic location of the cell phone and a particular time that the call was made or received.


Typically, but not always, data generated by data sources 101 adheres to some sort of data structure or data format. For example, data stored in a database may adhere to a relational database structure or related schema. As another example, data in a log file, including geo-temporal data, may be formatted in eXtensible Markup Language (XML), Keyhole Markup Language (KML), or in plain-text (e.g., ASCII) with whitespace characters (e.g., tab, space, and newline characters) providing structure, or generally any other machine-parseable character based format.


Data sources 101 of an organization may generate and collect large amounts of data that includes geo-temporal data. Organizations would appreciate a way to efficiently analyze these collections of data including geo-temporal data to quickly identify information of interest or information pertinent to a line of inquiry. Information included in geo-temporal data may be requested in geo-temporal queries that specify one or more geospatial search parameters corresponding to geographical areas of interest and one or more temporal search parameters corresponding to points in time or time ranges of interest. The geo-temporal information reflecting activities of interest may be as varied along the geospatial and temporal dimensions as, for example, a request for all activities within a single city block within the past five years to all activities within an entire city within the past five hours.


One approach for processing a geo-temporal query is to first perform a geographically-focused search for all data objects reflecting activities in the specified geographical area and subsequently filtering the returned geographical results based on the specified temporal range. However, processing queries in this manner often may result in filtering of the majority of the geographically-focused search results because the vast majority of the results may fall outside of the temporal range specified in a query. For example, if a large volume of crime report data is recorded for a particular geographic area over a period of many years and a user subsequently submits a query for crime reports in the particular geographic area for the past day, the majority of data returned by a geographically-focused search will be filtered out in order to refine the results to the specified temporal range.


Referring again to FIG. 1, in an embodiment a data processing system comprises a data repository 111, one or more adaptors 103, and a search mechanism 113 with an interface 114. The data repository 111, the adaptors(s) 103, the search mechanism 113, and the interface 114 may be interconnected to one another using any suitable data communication mechanism such as, for example, one or more data networks. The one or more data networks may include one or more local area networks (LANs), one or more wide area networks (WANs), or internetworks such as the public Internet. The components of the system may be distributed across one or more computer systems such as the computer system 500 of FIG. 5, which is further described herein. When distributed across multiple computer systems, components may additionally be distributed geographically, for example, across one or more data centers.


2.2 Data Repository


The data repository 111 may operate on one or more computing nodes of a cluster of computing nodes. The computing nodes may be interconnected via a communication bus such as one or more local area data networks, one or more wide area data networks, the Internet, or other suitable data network or communication mechanism. In an embodiment, data stored in data repository 111 may be stored as key-value pairs. In an embodiment, in order to handle large data sets, the stored key-value pairs may be distributed across the computing nodes of the cluster.


In some embodiments, the data repository 111 is implemented using the Apache Cassandra distributed database management system. Apache Cassandra is an open source software project maintained by the Apache Software Foundation and currently available online at the Internet domain cassandra.apache.org. In other embodiments, the data repository 111 is implemented using the Apache HBase distributed database management system. Apache HBase is open source software maintained by the Apache Software Foundation and currently available online at the Internet domain hbase.apache.org. However, other distributed key-value data store systems may be used for the data repository 111 and the present embodiments are not limited to only the Apache Cassandra or the Apache HBase system.


2.3 Geo-Temporal Data Importation


The adaptor(s) 103 are configured to consume input data 102 and store the data in the data repository 111. There may be an adaptor 103 for each type of data source 101. For example, there may be an adaptor for ingesting input data 102 produced by a database system data source 101 and another adaptor 103 for a web access log data source 101. In an embodiment, at least one adaptor 103 is configured to ingest geo-temporal data from a data source 101.


In this context, the term “input data” refers to data that is presented as input to the system. That is, data that is obtained by an adaptor 103 from a data source 101 for processing and possible input into the data repository 111. The term “geo-temporal data” refers to any input data that includes one or more values representing a geospatial component and one or more values representing a temporal component. For example, values representing a geospatial component may include one or more numerical values specifying a longitude and latitude or any other representation of a geographical location. A temporal component includes one or more values specifying one or more points in time and may be specified, for example, by a character string or numerical value representing a midnight Coordinated Universal Time (UTC) value or any other representation of time values.


An adaptor 103 may obtain input data 102 through any number of means including receiving input data 102 from a data source 101 or retrieving input data 102 from a data source 101. If receiving, the adaptor 103 may, for example, receive the input data 102 in one or more network messages or event notifications. In this case, the adaptor 103 may have a network listener to which the data source 101 can connect and provide the network message or event notification. If retrieving, the adaptor 103 may, for example, periodically access or connect to a data source 101 to obtain input data 102 as a network client of the data source 101. Other techniques for obtaining input data 102 may be used according to the requirements of the implementation at hand in various embodiments and no particular technique is required.


In some embodiments, a parser 104 produces a stream of data blocks and a stream of index keys and values and an importer 109 produces a stream of key-value pairs 110 from the stream of data blocks and index keys and values produced by parser 104.


The stream of input data 102 processed by an adaptor 103 may be obtained continuously or essentially continuously by the adaptor 103 as data sources 101 generate new data. For example, an adaptor 103 for a web access log file may obtain input data 102 as a web server process is writing to the log file. In this case, where the stream of input data 102 is continuous or essentially continuous, the data repository 111 is also continuously or essentially continuously updated with new data blocks and new key-value pairs 110. Old or stale data can be purged from the data repository 111 to effectively provide a rolling window of an organization's data. Alternatively, an adaptor 103 may be configured to obtain a fixed amount of data to create a snapshot of the organization's data in the repository 111. A combination of continuous or essentially continuous data streams and a fixed amount of data may be used as well. For example, some adaptors 103 may be configured to obtain input data 102 from data sources 101 continuously or essentially continuously while other adaptors 103 may be configured to obtain a set amount of input data 102 from other data sources 101.


As mentioned, in one embodiment, the data processing pipeline of an adaptor 103 includes a parser 104 and an importer 109. It will be understood that these and other associated building blocks and components of an adaptor 103, may be configured as stand-alone logic elements, or may be combined together in one or more assemblies, as needed or appropriate for the particular implementation at hand. A logic element may be implemented in software, hardware, or combination of hardware and software.


2.3.1 Indexing Geospatial Data


In an embodiment, input data 102 that includes a geospatial component may be specified as geospatially searchable. For example, a user may configure parser 104 and/or importer 109 to identify particular data items of input data 102 as geospatially searchable data. In other embodiments, data items of input data 102 may be specified as geospatially searchable by default and without user input. In general, geospatially searchable data may be searched using queries that specify one or more geographical search parameters such as, for example, latitude and longitude values that define a geographical area. In an embodiment, input data 102 that includes a geospatial component and that is specified to be geospatially searchable is geospatially indexed in the data repository 111, as further described below.


In an embodiment, input data 102 that is specified as geospatially searchable is geospatially indexed in the data repository 111 by a parser 104 and an importer 109 of an adaptor 103. One responsibility of a parser 104 is to divide the stream of input data 102 into discrete data blocks. The data blocks are stored in the data repository 111 and indexed by key-value pairs stored in the data repository by the importer 109. Each data block may be optionally compressed by the parser 104 using any suitable lossless data compression algorithm, or the parser 104 may send the data blocks to the data repository 111 uncompressed where they are compressed by the data repository 111. Any number of methods may be used to divide the input data 102 stream into data blocks including division of the input data 102 by logical data entity boundaries or into uniformly sized data blocks. In an embodiment, one responsibility of the importer 109 is to store the index keys and values in the data repository 111 in a manner that indexes the data blocks generated by the parser 104.


In an embodiment, input data 102 that is geospatially indexed may be stored in one or more data blocks, as described above, and indexed based on an index key that is derived from the geospatial component of the data. For example, in an embodiment, the index key for geospatially indexed data may be a Z-order curve value that is generated based on the geospatial data component of the data. In general, a Z-order curve value is a one-dimensional representation of a multidimensional data representation. The one-dimensional representation may be a single numeric value and the multidimensional data representation may be numeric values representing a longitude and latitude corresponding to a geographic location. A Z-order curve value may be generated, for example, by interleaving the binary values of each of the values of the two-dimensional representation. In an embodiment, a generated Z-order curve value is used to index a data block containing the data item associated with the geospatial value represented by the generated Z-order curve value. The geospatial indexing technique described above is provided only as an example and the present embodiments are not limited to the Z-order curve geospatial indexing technique.


2.3.2 Indexing Geo-Temporal Data


Similar to the specification of particular input data 102 as geospatially searchable, in an embodiment, input data 102 may include geo-temporal data that is specified as geo-temporally searchable. FIG. 3 is a flow diagram of a process for indexing geo-temporal data in accordance with one or more embodiments described herein. Initially, geo-temporal input data is received that is associated with a geospatial component and a temporal component (block 300). The geo-temporal input data is indexed in a geospatial index based on the geospatial component (block 302). For example, the geo-temporal data may be indexed in data repository 111 according to a geospatial indexing technique such as the techniques described above.


In an embodiment, temporal index configuration data is received specifying one or more time granularities (e.g., years, months, days, hours, etc.) (block 304). In an embodiment, the temporal index configuration data may be specified by a user involved in the importation of input data 102 by using, for example, interface 114. In other embodiments, the particular time granularities may be specified as part of a data import configuration file or other user input mechanisms. In an embodiment, the particular time granularities may be specified before, during, or after the input data 102 is imported into data repository 111. For example, geo-temporal data that has previously been geospatially indexed may be re-indexed based on a temporal component, or geo-temporal data of input data 102 may be contemporaneously geospatially and temporally indexed at the time of data importation.


In an embodiment, based on the received temporal index configuration data, an index bucket group is generated for each time granularity specified in the temporal index configuration data (block 306). In an embodiment, the generation of a temporal index bucket group includes storing a copy of the geospatial index data in one or more temporal index buckets. Each particular temporal index bucket in a temporal index bucket group represents a particular range of time spanning an amount of time equal to the time granularity of the temporal index bucket group. In an embodiment, each temporal index bucket group stores a copy of the geospatial index data, with each index entry of the geospatial index stored in a particular temporal index bucket. The particular temporal index bucket storing each geospatial index entry is the temporal index bucket that is associated with a time range that includes the value specified by the temporal component of the data object referenced by the geospatial index entry. For example, if a temporal index bucket group is generated for a time granularity of years, and a particular data object of input data 102 includes a temporal component specifying a time value that falls within the year 2010, the geospatial index entry for that data object may be stored in a temporal index bucket representing the year 2010 in the year granularity temporal index bucket group. In an embodiment, each temporal index bucket is stored in data repository 111 and represented by a row key in the distributed key-value data repository.


In general, the user-specified time granularities correspond to time granularities that are expected by the user or others to be specified in geo-temporal queries against the data as stored in data repository 111. For example, an analyst involved in the importation of geo-temporal data may be aware that users often desire to search for data objects associated with particular geographic regions and that are associated with temporal components within particular year time spans and/or particular hour time spans. In the example, an analyst involved in the importation of data may specify temporal index configuration data indicating two time granularities for the geo-temporal input data: a year time granularity and an hour time granularity. For example, temporal index bucket group 112A in FIG. 1 may correspond to the index bucket group for the year time granularity and temporal index bucket group 112B may correspond to the index bucket group for the hour granularity. In the example, generated temporal index buckets of temporal index bucket group 112A may represent particular year timespans (e.g., 1978, 2002, 2009, 2012) and generated temporal index buckets of temporal index bucket group 112B may represent particular day timespans (e.g., Mar. 15, 1978; Jan. 10, 2009).


In an embodiment, based on the temporal component of the input data, an indexed reference to the input data is stored in a particular temporal index bucket of each generated temporal index bucket group (block 308). In an embodiment, if a temporal index bucket in a particular temporal index bucket group does not yet exist for the temporal value specified by the input data, a new temporal index bucket is generated for the temporal index bucket group. In reference to the example temporal index bucket groups 112A and 11B, if input data is received specifying a temporal component value corresponding to the date Jan. 10, 2009 and no temporal bucket exists in day granularity temporal index bucket group 112B corresponding to January 10, a new temporal index bucket is generated.


3.0 Example Search Operation


For the purposes of clearly illustrating how the functions described herein operate upon geo-temporal queries, the following sections describe an example graphical user interface display for specifying a geo-temporal query. However, the graphical user interface display described herein represents only a selected example of a visualization for the geo-temporal query operations that are described herein. Thus, the disclosure broadly encompasses any method of creating and processing geo-temporal queries that are described herein. In the following description, it will be assumed for the sake of illustration that the geo-temporal search functionality is provided by a combination of a search mechanism 113 and the data repository 111. However, this is just one possible implementation. Other implementations where the search functionality is provided entirely be the data repository 111 or a combination of the data repository 111, a search mechanism 113, and one or more other system component(s) are also possible.


Further, no particular graphical user interface is required and the disclosure is intended to encompass the geo-temporal query processing approaches that are described independent of any graphical user interface, and it is not intended to be limited to any particular graphical user interface or other form of display. For example, the example graphical user interface merely represents one way to receive input from a user to specify a geo-temporal query; in other embodiments, programmatic methods may be used to obtain the same query specification information and other forms of data output may be used such as logging, reporting, storing in database tables, storing in spreadsheets, etc.


In general, a search mechanism 113 receives as input a set of geo-temporal search parameters and provides as output a set of search results. FIG. 2 illustrates an example graphical user interface 200 that enables a user to specify a set of search parameters for a geo-temporal query. Graphical user interface 200 includes interface components that enable a user to specify both a geospatial bounding area and a time value or range of time values as geospatial and temporal search parameters, respectively.


Interface component 204 illustrates a representation of a geographical map that may be used to specify one or more desired geospatial bounding areas. For example, bounding area 206 represents an example bounding area that a user may specify on the map using an input mechanism such as, for example, a mouse pointer to draw the bounding area on the map. In an embodiment, a specified bounding area such as bounding area 206 defines a geographical area of interest to the user that will be specified as a geospatial search parameter in a resulting geo-temporal query. For example, if a user was interested in stored data objects pertaining to a particular geographical area around the user's home, the user may specify a bounding area that includes both the geographical location of the user's home and any surrounding area of interest using interface component 204. In an embodiment, a bounding area may be defined using a number of shapes including, but not limited to, a radial or polygonal bounding area.


In an embodiment, a user may additionally specify a temporal range of interest using graphical user interface 200. In an embodiment, a specified temporal range for a geo-temporal query may include one or more of a start date and/or time value and an end date and/or time value. Graphical interface component 202 illustrates an example interface component enabling a user to specify a temporal range as a search parameter. An interface component such as interface component 202 may include, among other input elements, one or more input elements for entering date and time values. For example, a user may enter one or more dates using text boxes, a calendar, or any other interface component for entering dates and/or time values. In addition to specifying a temporal range, interface component 202 may include one or more additional input parameters enabling the specification of one or more other search parameters, for example, a search string, a sort order, etc.


In an embodiment, a geo-temporal query may be generated based on the input received at graphical user interface 200. For example, search mechanism may transform the user input received at graphical user interface 200 into a textual representation of a geo-temporal query that includes search parameters corresponding to the user input received at graphical user interface 200. After the geo-temporal query is generated, the geo-temporal query may be processed by search mechanism 113.



FIG. 4 illustrates a flow diagram of a process for carrying out a geo-temporal query in accordance with one or more of embodiments described herein. In an embodiment, a search query is received (block 400) that includes both a geospatial component and a temporal component. In response to receiving a query, one or more second queries are generated (block 402), with each of the second queries corresponding to a particular temporal index bucket of a temporal index bucket group. In an embodiment, the temporal index buckets are selected to correspond to the temporal component of the query. For example, assume that particular geo-temporal data has been indexed into a first temporal index bucket group based on a time granularity of years and a second temporal index bucket group based on a time granularity of days. If a geo-temporal query is received that specifies a temporal range of Jan. 1, 2011 to Jan. 2, 2012, the system may transform the geo-temporal query into a second query against the bucket corresponding to the data year 2011 and two additional second queries corresponding to the days of Jan. 1, 2012 and Jan. 2, 2012.


In response to each of the second queries, zero or more results are returned from each of the particular temporal index buckets (block 404). The results returned from each of the temporal index buckets are those results that satisfy the geospatial component of the query. Thus, in an embodiment, processing each of the second queries includes processing the geospatial component of the geo-temporal query on the data stored in each of the buckets. For example, if the data in data repository 111 is geospatially indexed using Z-order curve values, the geospatial component of the query may be transformed into one or more Z-order values and the values may be used to return corresponding results from each of the temporal index buckets. In an embodiment, the zero or more results returned from each of the one or more temporal index buckets are aggregated to form an initial result set.


In an embodiment, processing a geo-temporal query may include one more steps of post-filtering. As a result of the particular partitioning of the temporal index buckets, the result set returned by the one or more second queries may include one or more data items that are not within the exact temporal range specified by the geo-temporal query. In an embodiment, the search mechanism 113 may filter (block 406) the one or more results that are not within the specified temporal range. For example, assume that a geo-temporal index is created using a specified time granularity of an hour, resulting in a temporal index bucket group with one or more temporal index buckets of hour time ranges (e.g., 1:00 pm-2:00 pm, 2:00 pm-3:00 pm, 3:00 pm-4:00 pm, etc.). An example geo-temporal query may then include a temporal search parameter specifying a time range on a particular day between 2:15 pm and 3:15 pm. In response to receiving the example geo-temporal query, the search mechanism 113 may transform the query into two queries that query the temporal index buckets that index data objects associated with a temporal value between the time ranges of 2:00 pm-3:00 pm and 3:00 pm-4:00 pm, respectively. After retrieving any data objects from either or both of the two index buckets that satisfy any geospatial component of the query, search mechanism 113 may post-filter the data object results in order to filter any data objects that are associated with a temporal value outside of the range specified in the query, i.e., those data objects in the temporal ranges of 2:00 pm-2:14 pm and 3:16 pm-4:00 pm.


4.0 Implementation Mechanisms—Hardware Overview


According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, portable computer systems, handheld devices, networking devices or any other device that incorporates hard-wired and/or program logic to implement the techniques.


For example, FIG. 5 is a block diagram that illustrates a computer system 500 upon which an embodiment may be implemented. Computer system 500 includes a bus 502 or other communication mechanism for communicating information, and a hardware processor 504 coupled with bus 502 for processing information. Hardware processor 504 may be, for example, a general purpose microprocessor.


Computer system 500 also includes a main memory 506, such as a random access memory (RAM) or other dynamic storage device, coupled to bus 502 for storing information and instructions to be executed by processor 504. Main memory 506 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 504. Such instructions, when stored in non-transitory storage media accessible to processor 504, render computer system 500 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Computer system 500 further includes a read only memory (ROM) 508 or other static storage device coupled to bus 502 for storing static information and instructions for processor 504. A storage device 510, such as a magnetic disk, optical disk, or solid-state drive is provided and coupled to bus 502 for storing information and instructions.


Computer system 500 may be coupled via bus 502 to a display 512, such as a cathode ray tube (CRT), for displaying information to a computer user. An input device 514, including alphanumeric and other keys, is coupled to bus 502 for communicating information and command selections to processor 504. Another type of user input device is cursor control 516, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 504 and for controlling cursor movement on display 512. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane.


Computer system 500 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 500 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 500 in response to processor 504 executing one or more sequences of one or more instructions contained in main memory 506. Such instructions may be read into main memory 506 from another storage medium, such as storage device 510. Execution of the sequences of instructions contained in main memory 506 causes processor 504 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.


The term “storage media” as used herein refers to any non-transitory media that store data and/or instructions that cause a machine to operate in a specific fashion. Such storage media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical disks, magnetic disks, or solid-state drives, such as storage device 510. Volatile media includes dynamic memory, such as main memory 506. Common forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid-state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.


Storage media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between storage media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 502. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 504 for execution. For example, the instructions may initially be carried on a magnetic disk or solid-state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 500 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 502. Bus 502 carries the data to main memory 506, from which processor 504 retrieves and executes the instructions. The instructions received by main memory 506 may optionally be stored on storage device 510 either before or after execution by processor 504.


Computer system 500 also includes a communication interface 518 coupled to bus 502. Communication interface 518 provides a two-way data communication coupling to a network link 520 that is connected to a local network 522. For example, communication interface 518 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 518 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN. Wireless links may also be implemented. In any such implementation, communication interface 518 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


Network link 520 typically provides data communication through one or more networks to other data devices. For example, network link 520 may provide a connection through local network 522 to a host computer 524 or to data equipment operated by an Internet Service Provider (ISP) 526. ISP 526 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 528. Local network 522 and Internet 528 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 520 and through communication interface 518, which carry the digital data to and from computer system 500, are example forms of transmission media.


Computer system 500 can send messages and receive data, including program code, through the network(s), network link 520 and communication interface 518. In the Internet example, a server 530 might transmit a requested code for an application program through Internet 528, ISP 526, local network 522 and communication interface 518.


The received code may be executed by processor 504 as it is received, and/or stored in storage device 510, or other non-volatile storage for later execution.


In the foregoing specification, embodiments have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the embodiments, and what is intended by the applicants to be the scope of the embodiments, is the literal and equivalent scope of the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction.

Claims
  • 1. A computer-implemented method for indexing data items that are associated with a geospatial component and a time component, the computer-implemented method comprising: receiving a data item that is associated with at least a geospatial component and a time component;storing a reference to the data item in a geospatial index based on the geospatial component;receiving time index configuration data indicating a first time granularity, a second time granularity, and a third time granularity;generating a first plurality of database index buckets for the first time granularity, a second plurality of database index buckets for the second time granularity, and a third plurality of database index buckets for the third time granularity;storing, based on the time component, a second reference to the data item in a database index bucket of the first plurality, the second plurality, and the third plurality;receiving a search request comprising at least a second time component;generating at least two search queries using the second time component retrieving one or more data items using the at least two search queries;wherein the method is performed by one or more computing devices.
  • 2. The method of claim 1, wherein the second time component comprises a time range.
  • 3. The method of claim 2, further comprising filtering one or more of the one or more data items retrieved by the two search queries that are not in the time range specified by the search request.
  • 4. The method of claim 1, wherein the geospatial component comprises a Z-order geographic value.
  • 5. The method of claim 1, wherein the time component comprises a value representing a date and time.
  • 6. The method of claim 1, wherein the first time granularity, the second time granularity, and the third time granularity are specified by a user or based on requirements of a user-specified query.
  • 7. The method of claim 1, wherein the first time granularity, the second time granularity, and the third time granularity are one of seconds, minutes, hours, days, months, years, decades, centuries.
  • 8. The method of claim 1, wherein each of the first plurality of database index buckets is identified by a hash value.
  • 9. A non-transitory computer-readable medium storing one or more sequences of instructions, which when executed by one or more processors, cause the one or more processors to carry out the steps of: receiving a data item that is associated with at least a geospatial component and a time component;storing a reference to the data item in a geospatial index based on the geospatial component;receiving time index configuration data indicating a first time granularity, a second time granularity, and a third time granularity;generating a first plurality of database index buckets for the first time granularity, a second plurality of database index buckets for the second time granularity, and a third plurality of database index buckets for the third time granularity;storing, based on the time component, a second reference to the data item in a database index bucket of the first plurality, the second plurality, and the third plurality;receiving a search request comprising at least a second time component;generating at least two search queries using the second time component;retrieving one or more data items using the at least two search queries.
  • 10. The non-transitory computer readable medium of claim 9, wherein said second time component comprises a time range.
  • 11. The non-transitory computer readable medium of claim 10, further comprising filtering one or more of the one or more data items retrieved by the two search queries that are not in the time range specified by the search request.
  • 12. The non-transitory computer readable medium of claim 9, wherein the geospatial component comprises a Z-order geographic value.
  • 13. The non-transitory computer readable medium of claim 9, wherein said time component comprises a value representing a date and time.
  • 14. The non-transitory computer readable medium of claim 9, wherein the first time granularity, the second time granularity, and the third time granularity are specified by a user or based on requirements of a user-specified query.
  • 15. The non-transitory computer readable medium of claim 9, wherein the first time granularity, the second time granularity, and the third time granularity are one of seconds, minutes, hours, years, decades, centuries.
  • 16. The non-transitory computer readable medium of claim 9, wherein each of the first plurality of database index buckets is identified by a hash value.
BENEFIT CLAIM

This application claims the benefit under 35 U.S.C. § 120 as a continuation of application Ser. No. 13/728,879, filed Dec. 27, 2012, the entire contents of which is hereby incorporated herein by reference for all purposes as if fully set forth herein. The applicant(s) hereby rescind any disclaimer of claim scope in the parent application(s) or the prosecution history thereof and advise the USPTO that the claims in this application may be broader than any claim in the parent applications.

US Referenced Citations (355)
Number Name Date Kind
4899161 Morin et al. Feb 1990 A
4958305 Piazza Sep 1990 A
5329108 Lamoure Jul 1994 A
5754182 Kobayashi May 1998 A
5781195 Marvin Jul 1998 A
5781704 Rossmo Jul 1998 A
6091956 Hollenberg Jul 2000 A
6157747 Szeliski et al. Dec 2000 A
6169552 Endo et al. Jan 2001 B1
6173067 Payton et al. Jan 2001 B1
6178432 Cook et al. Jan 2001 B1
6247019 Davies Jun 2001 B1
6389289 Voce et al. May 2002 B1
6414683 Gueziec Jul 2002 B1
6430305 Decker Aug 2002 B1
6483509 Rabenhorst Nov 2002 B1
6529900 Patterson et al. Mar 2003 B1
6631496 Li et al. Oct 2003 B1
6662103 Skolnick et al. Dec 2003 B1
6757445 Knopp Jun 2004 B1
6828920 Owen et al. Dec 2004 B2
6978419 Kantrowitz Dec 2005 B1
6983203 Wako Jan 2006 B1
6985950 Hanson et al. Jan 2006 B1
7036085 Barros Apr 2006 B2
7158878 Rasmussen et al. Jan 2007 B2
7168039 Bertram Jan 2007 B2
7375732 Arcas May 2008 B2
7379811 Rasmussen et al. May 2008 B2
7457706 Malero et al. Nov 2008 B2
7502786 Liu et al. Mar 2009 B2
7519470 Brasche et al. Apr 2009 B2
7529195 Gorman May 2009 B2
7539666 Ashworth et al. May 2009 B2
7558677 Jones Jul 2009 B2
7574428 Leiserowitz et al. Aug 2009 B2
7579965 Bucholz Aug 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7617314 Bansod et al. Nov 2009 B1
7620628 Kapur et al. Nov 2009 B2
7663621 Allen et al. Feb 2010 B1
7791616 Ioup et al. Sep 2010 B2
7805457 Viola et al. Sep 2010 B1
7809703 Balabhadrapatruni et al. Oct 2010 B2
7872647 Mayer et al. Jan 2011 B2
7894984 Rasmussen et al. Feb 2011 B2
7899611 Downs et al. Mar 2011 B2
7917376 Bellin et al. Mar 2011 B2
7920963 Jouline et al. Apr 2011 B2
7941321 Greenstein et al. May 2011 B2
7945852 Pilskains May 2011 B1
7962281 Rasmussen et al. Jun 2011 B2
7970240 Chao et al. Jun 2011 B1
8010545 Stefik et al. Aug 2011 B2
8036632 Cona et al. Oct 2011 B1
8036971 Aymeloglu et al. Oct 2011 B2
8046283 Burns Oct 2011 B2
8054756 Chand et al. Nov 2011 B2
8065080 Koch Nov 2011 B2
8085268 Carrino et al. Dec 2011 B2
8134457 Velipasalar et al. Mar 2012 B2
8145703 Frishert et al. Mar 2012 B2
8200676 Frank Jun 2012 B2
8214361 Sandler et al. Jul 2012 B1
8214764 Gemmell et al. Jul 2012 B2
8229902 Vishniac et al. Jul 2012 B2
8229947 Fujinaga Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8290838 Thakur et al. Oct 2012 B1
8290942 Jones et al. Oct 2012 B2
8290943 Carbone et al. Oct 2012 B2
8301464 Cave et al. Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8325178 Doyle, Jr. Dec 2012 B1
8368695 Howell et al. Feb 2013 B2
8397171 Klassen et al. Mar 2013 B2
8400448 Doyle, Jr. Mar 2013 B1
8407180 Ramesh et al. Mar 2013 B1
8412234 Gatmir-Motahari et al. Apr 2013 B1
8412707 Mianji Apr 2013 B1
8422825 Neophytou et al. Apr 2013 B1
8452790 Mianji May 2013 B1
8463036 Ramesh et al. Jun 2013 B1
8473454 Evanitsky et al. Jun 2013 B2
8484115 Aymeloglu et al. Jul 2013 B2
8489331 Kopf et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8498984 Hwang et al. Jul 2013 B1
8508533 Cervelli et al. Aug 2013 B2
8514229 Cervelli et al. Aug 2013 B2
8515207 Chau Aug 2013 B2
8564596 Carrino et al. Oct 2013 B2
8589273 Creeden et al. Nov 2013 B2
8688573 Ruknoic et al. Apr 2014 B1
8742934 Sarpy et al. Jun 2014 B1
8781169 Jackson et al. Jul 2014 B2
8799799 Cervelli et al. Aug 2014 B1
8812960 Sun et al. Aug 2014 B1
8830322 Nerayoff et al. Sep 2014 B2
8868535 Paiz Oct 2014 B1
8924388 Elliot et al. Dec 2014 B2
8924389 Elliot et al. Dec 2014 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
8953887 Chen Feb 2015 B2
8983494 Onnen et al. Mar 2015 B1
9009177 Zheng et al. Apr 2015 B2
9021384 Beard et al. Apr 2015 B1
9104293 Kornfeld et al. Aug 2015 B1
9104695 Cervelli et al. Aug 2015 B1
9111380 Piemonte et al. Aug 2015 B2
9129219 Robertson et al. Sep 2015 B1
9146125 Vulcano et al. Sep 2015 B2
9280618 Bruce et al. Mar 2016 B1
20020003539 Abe Jan 2002 A1
20020033848 Sciammarella et al. Mar 2002 A1
20020065708 Senay et al. May 2002 A1
20020095360 Joao Jul 2002 A1
20020095658 Shulman Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020116120 Ruiz et al. Aug 2002 A1
20020130867 Yang et al. Sep 2002 A1
20020130906 Miyaki Sep 2002 A1
20020147805 Leshem et al. Oct 2002 A1
20030009493 Parker et al. Jan 2003 A1
20030052896 Higgins et al. Mar 2003 A1
20030103049 Kindratenko et al. Jun 2003 A1
20030126102 Borthwick Jul 2003 A1
20030144868 MacIntyre et al. Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030200192 Bell et al. Oct 2003 A1
20030225755 Iwayama et al. Dec 2003 A1
20040030492 Fox et al. Feb 2004 A1
20040034570 Davis Feb 2004 A1
20040039498 Ollis et al. Feb 2004 A1
20040098236 Mayer et al. May 2004 A1
20040143602 Ruiz et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040236688 Bozeman Nov 2004 A1
20050010472 Quatse et al. Jan 2005 A1
20050031197 Knopp Feb 2005 A1
20050034062 Bufkin et al. Feb 2005 A1
20050080769 Gemmell Apr 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050143602 Yada et al. Jun 2005 A1
20050162523 Darrell et al. Jul 2005 A1
20050182502 Iyengar Aug 2005 A1
20050182793 Keenan et al. Aug 2005 A1
20050223044 Ashworth et al. Oct 2005 A1
20050267652 Allstadt et al. Dec 2005 A1
20060026120 Carolan et al. Feb 2006 A1
20060090141 Loui et al. Apr 2006 A1
20060139375 Rasmussen et al. Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060143079 Basak et al. Jun 2006 A1
20060146050 Yamauchi Jul 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060200384 Arutunian et al. Sep 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060251307 Florin et al. Nov 2006 A1
20060259527 Devarakonda et al. Nov 2006 A1
20060271277 Hu et al. Nov 2006 A1
20060279630 Aggarwal et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070011150 Frank Jan 2007 A1
20070011304 Error Jan 2007 A1
20070016363 Huang et al. Jan 2007 A1
20070024620 Muller-Fischer et al. Feb 2007 A1
20070057966 Ohno et al. Mar 2007 A1
20070078832 Ott et al. Apr 2007 A1
20070115373 Gallagher et al. May 2007 A1
20070188516 Loup et al. Aug 2007 A1
20070208497 Downs et al. Sep 2007 A1
20070208498 Barker et al. Sep 2007 A1
20070258642 Thota Nov 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070294643 Kyle Dec 2007 A1
20080010605 Frank Jan 2008 A1
20080040678 Crump Feb 2008 A1
20080040684 Crump Feb 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080082578 Hogue et al. Apr 2008 A1
20080098085 Krane et al. Apr 2008 A1
20080104019 Nath May 2008 A1
20080132251 Altman et al. Jun 2008 A1
20080133579 Lim Jun 2008 A1
20080163073 Becker et al. Jul 2008 A1
20080192053 Howell et al. Aug 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080208820 Usey Aug 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080223834 Griffiths et al. Sep 2008 A1
20080229056 Agarwal et al. Sep 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267107 Rosenberg Oct 2008 A1
20080270468 Mao Oct 2008 A1
20080278311 Grange et al. Nov 2008 A1
20080288306 MacIntyre et al. Nov 2008 A1
20080294678 Gorman et al. Nov 2008 A1
20080301643 Appleton et al. Dec 2008 A1
20080313132 Hao et al. Dec 2008 A1
20090002492 Velipasalar et al. Jan 2009 A1
20090026170 Tanaka et al. Jan 2009 A1
20090027418 Maru et al. Jan 2009 A1
20090088964 Schaaf et al. Apr 2009 A1
20090100018 Roberts Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090115786 Shmiasaki et al. May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132921 Hwangbo et al. May 2009 A1
20090132953 Reed et al. May 2009 A1
20090144262 White et al. Jun 2009 A1
20090158185 Lacevic et al. Jun 2009 A1
20090171939 Athsani et al. Jul 2009 A1
20090172511 Decherd et al. Jul 2009 A1
20090179892 Tsuda et al. Jul 2009 A1
20090187447 Cheng et al. Jul 2009 A1
20090187464 Bai et al. Jul 2009 A1
20090187546 Whyte et al. Jul 2009 A1
20090187548 Ji et al. Jul 2009 A1
20090222400 Kupershmidt et al. Sep 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090292626 Oxford Nov 2009 A1
20090300528 Stambaugh Dec 2009 A1
20090307049 Elliott et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090319418 Herz Dec 2009 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057716 Stefik et al. Mar 2010 A1
20100063961 Guiheneuf et al. Mar 2010 A1
20100070523 Delgo et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100076968 Boyns et al. Mar 2010 A1
20100098318 Anderson Apr 2010 A1
20100106420 Mattikalli et al. Apr 2010 A1
20100161735 Sharma Jun 2010 A1
20100162176 Dunton Jun 2010 A1
20100185692 Zhang et al. Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100198684 Eraker et al. Aug 2010 A1
20100199225 Coleman et al. Aug 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100277611 Holt et al. Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100321399 Ellren et al. Dec 2010 A1
20110022312 McDonough et al. Jan 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110090254 Carrino et al. Apr 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110109435 Bickel May 2011 A1
20110117878 Barash et al. May 2011 A1
20110137766 Rasmussen et al. Jun 2011 A1
20110153368 Pierre et al. Jun 2011 A1
20110153384 Home et al. Jun 2011 A1
20110161096 Buehler et al. Jun 2011 A1
20110170799 Carrino et al. Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110218934 Elser Sep 2011 A1
20110225198 Edwards et al. Sep 2011 A1
20110238690 Arrasvuori et al. Sep 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110270705 Parker Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20120011238 Rathod Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120054284 Rakshit Mar 2012 A1
20120059853 Jagota Mar 2012 A1
20120066166 Curbera et al. Mar 2012 A1
20120066296 Appleton et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120084118 Bai et al. Apr 2012 A1
20120106801 Jackson May 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120148158 DeSpain Jun 2012 A1
20120158527 Cannelongo et al. Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120159363 DeBacker et al. Jun 2012 A1
20120173381 Smith Jul 2012 A1
20120173985 Peppel Jul 2012 A1
20120206469 Hulubei et al. Aug 2012 A1
20120208636 Feige Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20110323888 Osann, Jr. Dec 2012
20120323888 Osann, Jr. Dec 2012 A1
20130006725 Simanek et al. Jan 2013 A1
20130021445 Cossette-Pacheco et al. Jan 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130060786 Serrano et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130073550 Obayashi Mar 2013 A1
20130076732 Cervelli et al. Mar 2013 A1
20130096988 Grossman et al. Apr 2013 A1
20130100134 Cervelli et al. Apr 2013 A1
20130101159 Chao et al. Apr 2013 A1
20130132398 Pfiefle May 2013 A1
20130150004 Rosen Jun 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130176321 Mitchell et al. Jul 2013 A1
20130179420 Park et al. Jul 2013 A1
20130185307 El-Yaniv et al. Jul 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130246537 Gaddala Sep 2013 A1
20130254900 Sathish et al. Sep 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130268520 Fisher et al. Oct 2013 A1
20130279757 Kephart Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130282723 Petersen et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130297619 Chandarsekaran et al. Nov 2013 A1
20130339891 Blumenberg et al. Dec 2013 A1
20140012796 Petersen et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140095509 Patton Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140123279 Bishop et al. May 2014 A1
20140136285 Carvalho May 2014 A1
20140143009 Brice et al. May 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140176606 Narayan et al. Jun 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140218400 O'Toole et al. Aug 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140333651 Cervelli et al. Nov 2014 A1
20140337772 Cervelli et al. Nov 2014 A1
20140358829 Hurwitz Dec 2014 A1
20140361899 Layson Dec 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20150029176 Baxter et al. Jan 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150100907 Erenrich et al. Apr 2015 A1
20150106170 Bonica Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150187100 Berry et al. Jul 2015 A1
20150188872 White Jul 2015 A1
20150312323 Peterson Oct 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150379413 Robertson et al. Dec 2015 A1
Foreign Referenced Citations (28)
Number Date Country
2012216622 May 2015 AU
102546446 Jul 2012 CN
103167093 Jun 2013 CN
102054015 May 2014 CN
102014204827 Sep 2014 DE
102014204830 Sep 2014 DE
102014204834 Sep 2014 DE
102013222023 Jan 2015 DE
0 763 201 Mar 1997 EP
2 575 107 Apr 2013 EP
2858014 Apr 2015 EP
2858018 Apr 2015 EP
2869211 May 2015 EP
2889814 Jul 2015 EP
2892197 Jul 2015 EP
2963595 Jan 2016 EP
2516155 Jan 2015 GB
2012778 Nov 2014 NL
624557 Dec 2014 NZ
WO 95032424 Nov 1995 WO
WO 2000009529 Feb 2000 WO
WO 2001098925 Dec 2001 WO
WO 2004057268 Jul 2004 WO
WO 2005013200 Feb 2005 WO
WO 2008064207 May 2008 WO
WO 2009061501 May 2009 WO
WO 2009123975 Oct 2009 WO
WO 2011058507 May 2011 WO
Non-Patent Literature Citations (151)
Entry
U.S. Appl. No. 14/225,160, filed Mar. 25, 2014, First Office Action Interview, dated Oct. 22, 2014.
U.S. Appl. No. 14/225,160, filed Mar. 25, 2014, Advisory Action, dated May 20, 2015.
U.S. Appl. No. 14/294,098, filed Jun. 2, 2014, First Office Action Interview, dated Aug. 15, 2014.
U.S. Appl. No. 13/948,859, filed Jul. 23, 2013, Notice of Allowance, dated Dec. 10, 2014.
U.S. Appl. No. 14/451,221, filed Aug. 4, 2014, Office Action, dated Oct. 21, 2014.
U.S. Appl. No. 14/225,006, filed Mar. 25, 2014, First Office Action Interview, dated Feb. 27, 2015.
U.S. Appl. No. 14/225,160, filed Mar. 25, 2014, Final Office Action, dated Feb. 11, 2015.
U.S. Appl. No. 14/225,160, filed Mar. 25, 2014, First Office Action Interview, dated Jul. 29, 2014.
U.S. Appl. No. 14/225,084, filed Mar. 25, 2014, First Office Action Interview, dated Feb. 20, 2015.
U.S. Appl. No. 14/289,596, filed May 28, 2014, Advisory Action, dated Apr. 30, 2015.
U.S. Appl. No. 14/289,596, filed May 28, 2014, Final Office Action, dated Jan. 26, 2015.
U.S. Appl. No. 13/728,879, filed Dec. 27, 2012, First Office Action Interview, dated Jan. 27, 2015.
U.S. Appl. No. 14/225,006, filed Mar. 25, 2014, First Office Action Interview, dated Sep. 10, 2014.
U.S. Appl. No. 14/463,615, filed Aug. 19, 2014, Final Office Action, dated May 21, 2015.
U.S. Appl. No. 14/483,527, filed Sep. 11, 2014, First Office Action Interview, dated Jan. 28, 2015.
U.S. Appl. No. 14/225,084, filed Mar. 25, 2014, First Office Action Interview, dated Sep. 2, 2014.
U.S. Appl. No. 14/289,599, filed May 28, 2014, Final Office Action, dated May 29, 2015.
U.S. Appl. No. 12/840,673, filed Jul. 21, 2010, Notice of Allowance, dated Apr. 6, 2015.
U.S. Appl. No. 14/294,098, filed Jun. 2, 2014, Notice of Allowance, dated Dec. 29, 2014.
U.S. Appl. No. 14/479,863, filed Sep. 8, 2014, First Office Action Interview, dated Dec. 26, 2014.
U.S. Appl. No. 14/294,098, filed Jun. 2, 2014, Final Office Action, dated Nov. 6, 2014.
U.S. Appl. No. 14/255,084, filed Mar. 25, 2014, Notice of Allowance, dated May 4, 2015.
U.S. Appl. No. 14/289,599, filed May 28, 2014, First Office Action Interview, dated Jul. 22, 2014.
U.S. Appl. No. 14/463,615, filed Aug. 19, 2014, First Office Action Interview, dated Nov. 13, 2014.
U.S. Appl. No. 13/827,491, filed Mar. 14, 2013, Office Action, dated Dec. 1, 2014.
U.S. Appl. No. 12/840,673, filed Jul. 21, 2010, Final Office Action, dated Jan. 2, 2015.
U.S. Appl. No. 14/483,527, filed Sep. 11, 2014, Final Office Action, dated Jun. 22, 2015.
U.S. Appl. No. 14/289,596, filed May 28, 2014, First Office Action Interview, dated Jul. 18, 2014.
U.S. Appl. No. 14/479,863, filed Sep. 8, 2014, Notice of Allowance, dated Mar. 31, 2015.
U.S. Appl. No. 14/319,161, filed Jun. 30, 2014, Notice of Allowance, dated May 4, 2015.
U.S. Appl. No. 13/728,879, filed Dec. 27, 2012, Interview Summary, dated Mar. 17, 2015.
U.S. Appl. No. 14/571,098, filed Dec. 15, 2014, First Office Action Interview, dated Mar. 11, 2015.
U.S. Appl. No. 14/571,098, filed Dec. 15, 2014, First Office Action Interview, dated Aug. 5, 2015.
U.S. Appl. No. 13/728,879, filed Dec. 27, 2012, Notice of Allowance, dated Jun. 21, 2016.
U.S. Appl. No. 14/225,084, filed Mar. 25, 2014, Notice of Allowance, dated May 4, 2015.
U.S. Appl. No. 14/552,336, filed Nov. 24, 2014, First Office Action Interview, dated Jul. 20, 2015.
U.S. Appl. No. 14/463,615, filed Aug. 19, 2014, First Office Action Interview, dated Jan. 28, 2015.
U.S. Appl. No. 12/840,673, dated Jul. 21, 2010, Office Action, dated Sep. 17, 2014.
U.S. Appl. No. 13/827,491, filed Mar. 14, 2013, Final Office Action, dated Jun. 22, 2015.
U.S. Appl. No. 14/319,161, filed Jun. 30, 2014, Final Office Action, dated Jan. 23, 2015.
U.S. Appl. No. 14/929,584, filed Nov. 2, 2015, Final Office Action, dated May 25, 2016.
U.S. Appl. No. 14/934,004, filed Nov. 5, 2015, First Office Action Interview, dated Feb. 16, 2016.
U.S. Appl. No. 14/289,596, filed May 28, 2014, Office Action, dated May 9, 2016.
U.S. Appl. No. 14/929,584, filed Nov. 2, 2015, Office Action, dated Feb. 4, 2016.
U.S. Appl. No. 14/289,599, filed May 28, 2014, Advisory Action, dated Sep. 4, 2015.
U.S. Appl. No. 14/490,612, filed Sep. 18, 2014, Final Office Action, dated Aug. 18, 2015.
U.S. Appl. No. 14/730,123, filed Jun. 3, 2015, First Office Action Interview, dated Sep. 21, 2015.
U.S. Appl. No. 14/730,123, filed Jun. 3, 2015, Notice of Allowance, dated Apr. 12, 2016.
U.S. Appl. No. 13/728,879, filed Dec. 27, 2012, Final Office Action, dated Aug. 12, 2015.
U.S. Appl. No. 13/728,879, filed Dec. 27, 2012, Office Action, dated Nov. 20, 2015.
POI Editor, “How to: Create Your Own Points of Interest,” <http://www.poieditor.com/articles/how_to_create_your_own_points_of_interest/> printed Jul. 22, 2012 in 4 pages.
Wikipedia, “Ramer_Douglas_Peucker Algorithm,” <http://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm> printed Jul. 2011, pp. 3.
Vivid Solutions, “JTS Topology Suite: Technical Specifications,” <http://www.vividsolutions.com/jts/bin/JTS%20Technical%20Specs.pdf> Version 1.4, 2003, pp. 36.
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010.
Notice of Acceptance for Australian Patent Application No. 2012216622 dated Jan. 6, 2015.
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts].
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in18 pages.
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014.
Murray, C., Oracle Spatial Developer's Guide—6 Coordinate Systems (Spatial Reference Systems), <http://docs.oracle.com/cd/B28359_01/appdev.111/b28400.pdf>, Jun. 2009.
Haralick et al., “Image Analysis Using Mathematical Morphology,” Pattern Analysis and Machine Intelligence, IEEE Transactions, Jul. 1987, vol. PAMI-9, No. 4, pp. 532-550.
Huang et al., “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols, 4.1, 2008, 44-57.
Map Builder, “Rapid Mashup Development Tool for Google and Yahoo Maps!” <http://web.archive.org/web/20090626224734/http://www.mapbuilder.net/> printed Jul. 20, 2012 in 2 pages.
Definition “Identify”, downloaded Jan. 22, 2015, 1 page.
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, May 6, 2002, 37 pages.
APSALAR, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015.
Localytics—Mobile App Marketing & Analytics, <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages.
Snyder, “Map Projections—A Working Manual,” U.S. Geological Survey Professional paper 1395, United States Government Printing Office, Washington: 1987, pp. 11-21 and 60-70.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015.
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, pp. 277-288, 2006.
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411.
Qiu, Fang, “3d Analysis and Surface Modeling”, <http://web.archive.org/web/20091202221925/http://www.utsa.edu/Irsg/Teaching/EES6513/08-3D.pdf> printed Sep. 16, 2013 in 26 pages.
Ipbucker, C., “Inverse Transformation for Several Pseudo-cylindrical Map Projections Using Jacobian Matrix,” ICCSA 2009, Part 1 LNCS 5592, pp. 553-564.
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages.
Official Communication for Netherlands Patent Application No. 2012778 dated Sep. 22, 2015.
Tangelder et al., “Freeform Shape Matching Using Minkowski Operations,” The Netherlands, Jun. 1996, pp. 12.
Wongsuphasawat et al., “Visual Analytics for Transportation Incident Data Sets,” Transportation Research Record 2138, 2009, pp. 135-145.
Reibel et al., “Areal Interpolation of Population Counts Using Pre-classi_ed Land Cover Data,” Population Research and Policy Review, 2007, vol. 26, pp. 619-633.
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages.
Rizzardi et al., “Interfacing U.S. Census Map Files with Statistical Graphics Software: Application and Use in Epidemiology,” Statistics in Medicine, Oct. 1993, vol. 12, No. 19-20, pp. 1953-1964.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages.
Official Communication for European Patent Application No. 14187739.9 dated Jul. 6, 2015.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014.
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20.
Reibel, M., “Geographic Information Systems and Spatial Data Processing in Demography: a Review,” Population Research and Policy Review, 2007, vol. 26, pp. 601-618.
Official Communication for Australian Patent Application No. 2014213553 dated May 7, 2015.
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015.
Cohn, et al., “Semi-supervised clustering with user feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1 (2003): 17-32.
Official Communication in New Zealand Application No. 628840 dated Aug. 28, 2014.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
VB Forums, “Buffer a Polygon,” Internet Citation, <http://www.vbforums.com/showthread.php?198436-Buffer-a-Polygon>, Specifically Thread #1, #5 & #11 retrieved on May 2, 2013, pp. 8.
Official Communication for Australian Patent Application No. 2014202442 dated Mar. 19, 2015.
Mandagere, Nagapramod, “Buffer Operations in GIS,” <http://www-users.cs.umn.edu/˜npramod/enc_pdf.pdf> retrieved Jan. 28, 2010, pp. 7.
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Official Communication for Netherlands Patent Application No. 2011632 dated Feb. 8, 2016.
Open Street Map, “Amm's Diary:Unconnected ways and other data quality issues,” http://www.openstreetmap.org/user/amm/diary printed Jul. 23, 2012 in 3 pages.
trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages.
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10.
Reddy et al., “Under the hood of GeoVRML 1.0,” SRI International, Proceedings of the fifth symposium on Vurtual Reality Modeling Language (Web3D-VRML), New York, NY, Feb. 2000, pp. 23-28. <http://pdf.aminer.org/000/648/038/under_the_hood_of_geovrml.pdf>.
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32.
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages.
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages.
Woodbridge, Stephen, “[geos-devel] Polygon simplification,” <http://lists.osgeo.org/pipermail/geos-devel/2011-May/005210.html> dated May 8, 2011, pp. 3.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33.
“Andy Turner's GISRUK 2012 Notes” <https://docs.google.com/document/d/1cTmxg7mVx5gd89IqbICYvCEnHA4QAivH4I4WpyPsqE4/edit?pli=1> printed Sep. 16, 2013 in 15 pages.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-c553-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
TestFlight—Beta Testing on the Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages.
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages.
DISTIMO—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages.
Pozzi et al., “Vegetation and Population Density in Urban and Suburban Areas in the U.S.A.” Third International Symposium of Remote Sensing of Urban Areas Istanbul, Turkey, Jun. 2002, pp. 8.
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Sep. 29, 2014.
Keylines.com, “KeyLines Datasheet,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages.
Carver et al., “Real-Time Visibility Analysis and Rapid Viewshed Calculation Using a Voxel-Based Modelling Approach,” GISRUK 2012 Conference, Apr. 11-13, Lancaster UK, Apr. 13, 2012, pp. 6.
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages.
Ghosh, P., “A Solution of Polygon Containment, Spatial Planning, and Other Related Problems Using Minkowski Operations,” Computer Vision, Graphics, and Image Processing, 1990, vol. 49, pp. 1-35.
Barnes et al., “Viewshed Analysis”, GIS-ARC/INFO 2001, <www.evsc.virginia.edu/˜jhp7e/evsc466/student_pres/Rounds.pdf>.
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014.
Wikipedia, “Douglas_Peucker-Algorithms,” <http://de.wikipedia.org/w/index.php?title=Douglas-Peucker-Algorithmus&oldid=91846042> printed Jul. 2011, pp. 2.
Levine, N., “Crime Mapping and the Crimestat Program,” Geographical Analysis, 2006, vol. 38, pp. 41-56.
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015.
Thompson, Mick, “Getting Started with GEO,” Getting Started with GEO, Jul. 26, 2011.
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
Official Communication for New Zealand Patent Application No. 628585 dated Aug. 26, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014.
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014.
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages.
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Oct. 6, 2014.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014.
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages.
SONRIS, “Using the Area of Interest Tools,” <http://web.archive.org/web/20061001053327/http://sonris-www.dnr.state.la.us/gis/instruct_files/tutslide12> printed Jan. 3, 2013 in 1 page.
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages.
Official Communication for Great Britain Patent Application No. 1408025.3 dated Nov. 6, 2014.
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30.
AMNET, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html.
APPACTS, “Smart Thinking for Super Apps,” <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages.
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for UNINCORPORATED LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html.
Continuations (1)
Number Date Country
Parent 13728879 Dec 2012 US
Child 15358002 US