The present invention concerns a method of registering images using reference points. In particular, this method is directed to improving registration of images that are partially occluded, such as satellite images of predominately oceanic regions.
In the case of images with large geometric distortions, an orthorectification method may be necessary to reduce the distortion due to the relief or the viewing angle of the images. For a first order polynomial image registration model, a minimum of three reference points are required to calculate the model. For satellite imagery these reference point are known as ground control points (GCPs). In practice, it is usually better to use more than three reference points. However, it may not always be practical to obtain more than three reference points, for example, registration of satellite images of coastal and oceanic regions.
Present geometric registration methods use an affine transformation that requires more than three reference points. To determine the correct geometric registration of high spatial resolution images measured by multi-satellite sensors over the ocean, it is often desirable to use only images that include coastal regions. Still, even these methods may not be applicable for situations where there are few GCPs available, such as in oceanographic studies using satellite multi-sensor measurements, which often include significant cloud contamination. The difficulty of registering images is increased by the cloud contamination, as the presence of cloud cover that may occlude some of the GCPs in one or both of the images. Accordingly, it is desirable for improved registration methods aimed at studying images of oceanic regions, as well as land regions.
The present invention addresses this need among others.
An exemplary embodiment of the present invention is a method for registering a first image to a second image using a similarity transformation. The each image includes a plurality of pixels. The first image pixels are mapped to a set of first image coordinates and the second image pixels are mapped to a set of second image coordinates. The first image coordinates of two reference points in the first image are determined. The second image coordinates of these reference points in the second image are determined. A Cartesian translation of the set of second image coordinates is performed such that the second image coordinates of the first reference point match its first image coordinates. A similarity transformation of the translated set of second image coordinates is performed. This transformation scales and rotates the second image coordinates about the first reference point such that the second image coordinates of the second reference point match its first image coordinates.
Another exemplary embodiment of the present invention is a method for registering a first image to a second image using a similarity transformation. The each image includes a plurality of pixels. The first image pixels are mapped to a set of first image coordinates and the second image pixels are mapped to a set of second image coordinates. A first plurality of potential reference points are determined in the first image and a second plurality of potential reference points are determined in the second image. A set of reference points common to the two pluralities of potential reference points is identified. The first image coordinates and the second image coordinates of each reference point in the set of identified common reference points is determined. A Cartesian translation of the set of second image coordinates is performed such that the second image coordinates of the first reference point match its first image coordinates. If the set of reference points includes exactly two reference points, a similarity transformation of the translated set of second image coordinates is performed to scale the second image coordinates and rotate the second image coordinates about the first reference point such that the second image coordinates of a second reference point of the set of reference points match its first image coordinates. If the set of reference points includes more than two reference points, an affine transformation of the translated set of second image coordinates is performed to register the second image coordinates of the set of reference points to the first image coordinates of the set of reference points.
A further exemplary embodiment of the present invention is a computer readable medium adapted to instruct a general purpose computer to register a first image to a second image using a similarity transformation. The each image includes a plurality of pixels. The first image pixels are mapped to a set of first image coordinates and the second image pixels are mapped to a set of second image coordinates. The first image coordinates of two reference points in the first image are determined. The second image coordinates of these reference points in the second image are determined. A Cartesian translation of the set of second image coordinates is performed such that the second image coordinates of the first reference point match its first image coordinates. A similarity transformation of the translated set of second image coordinates is performed. This transformation scales and rotates the second image coordinates about the first reference point such that the second image coordinates of the second reference point match its first image coordinates.
The invention is best understood from the following detailed description when read in connection with the accompanying drawings. Included in the drawing are the following figures:
Exemplary embodiments of the present invention include methods of registering images with only two common reference points using similarity transformations. These exemplary registration methods may also include the use of more accurate registration algorithms when the images have more than two common reference points. These exemplary methods may enhance present geometric registration processes and may also assist in a wide range of applications in image analysis. The images used may include satellite or other high altitude images of a planetary surface.
Exemplary embodiments of the present invention may be used to obtain a geometric registration using only two reference points. These exemplary methods include processes of translating, scaling and rotating at least one of the images to match a particular size and position. Present technology for the geometric registration, which is also known as georeferencing, georegistration, georectification, and/or geocorrection in the geographic and planetary sciences, requires more than three reference points and is typically accomplished using an affine transformation. One advantage of exemplary embodiments of the present invention over these methods is that exemplary embodiments of the present invention may be applicable to wide ranges of imagery, e.g. satellite images of offshore regions, which have few potential reference points, making it difficult to use affine transformation techniques. However, exemplary embodiments of the present invention may be applicable to these kinds of areas as they require only two common references.
The images may illustrate different, overlapping portions of a scene. In this situation, registration of the images may allow a mosaic of the scene to be formed. Alternatively, the images may represent data from different sensors, for example visible and infrared sensors, that illustrate approximately the same scene. Proper registration of such images may allow comparison of information about objects in the scene detected by the different sensors.
One skilled in the art will understand that exemplary methods of the present invention may be used sequentially to register many images. It is also contemplated that a combination of overlapping images by the same of similar sensors and images of approximately the same portion of the scene taking with different sensor types may all be registered using exemplary embodiments of the present invention.
First image coordinates for two reference points, a first reference point and a second reference point, are determined in the first image, step 100. Second image coordinates of the first and second reference points in the second image are also determined, step 102. It is noted that each reference point may correspond to one or more pixels in the images. The origin of the set of first image coordinates may be set to one of the corners of the first image, the center of the first image, or another predetermined location in the first image. Alternatively, the origin of the first image coordinates may be set to the location of the first reference point in the first image. In this case, initial first image coordinates of the first reference point in the first image are determined. Then a Cartesian translation of the set of first image coordinates is performed such that the first image coordinates of the first reference point are the origin, i.e. (0, 0). The first image coordinates of the second reference point in the firstimage are then determined using the translated set of first image coordinates.
One example of imagery that may be used with exemplary methods of the present invention high altitude images of a planet surface.
The reference points in the two images may be determined by identifying two easily recognizable features that are visible in both the first image and the second image.
Once the two reference point are selected and the coordinates in the set of first image coordinates and the set of second image coordinates are determined, a Cartesian translation of the set of second image coordinates is performed such that the second image coordinates of the first reference point match the first image coordinates of the first reference point, step 104 (
A similarity transformation of the translated set of second image coordinates is performed to scale the second image coordinates and rotate the second image coordinates about the first reference point, step 106 (
The first image coordinates of the first reference point and the second reference point may be written (x1,y1) and (x2,y2), respectively. The second image coordinates of the first reference point and the second reference point may be written (x1′,y1′) and (x2′,y2′), respectively. A similarity transformation may be used to determined scale, A, and rotational angle, θ, with respect to the first image coordinates to transform the second image coordinates to match the coordinates of the reference points, i.e.
(x1,y1)→(x1′,y1′) and (x2,y2)→(x2′,y2′) (1)
Using a rotation matrix representation with a scale, A, and a rotational angle, θ, the relation ship of these two reference points may be written:
x1′=A cos θx1+A sin θy1 and y1′=−A sin θx1+A cos θy1
x2′=A cos θx2+A sin θy2 and y2′=−A sin θx2+A cos θy2 (2)
These equations give the relation between the coordinates (x2,y2) of a point relative to the (x2,y2) axes and the coordinates (x2′,y2′) of the same point relative to rotated axes (x2′,y2′).
Given that the first image coordinates and the translated second image coordinates of both reference points have been determined in steps 100 and 104, the scale, A, and the rotational angle, θ, may be computed from Equation (2). First, to simplify these equations, set α=A cos θ and β=A sin θ, or:
A=(α2+β2)1/2 and θ=tan−1(β/α) (3)
Using this substitution, Equation (2) may be rewritten in a linear form, i.e.:
x1′=αx1+βy1 and y1′=−βx1+αy1
x2′=αx2+βy2 and y2′=−βx2+αy2 (4)
It is noted that there are two unknown parameters, α and β, but four equations. Thus, α and β are over constrained. However a least square method (LSM) may be used to solve the system of linear equations. The error, E, may be written by:
E=(αx1+βy1−x1′)2+(−βx1+αy1−y1′)2+(αx2+βy2−x2′)2+(−βx2+αy2−y2′)2 (5)
To determine minimum error to obtain α and β, i.e. the best fit, two partial differential equations are satisfied, i.e.,
∂E/∂α=0 and ∂E/∂β=0 (6)
and α and β are determined to be:
α=(x1x1′+y1y1′+x2x2′+y2y2′)/(x12+y12+x22+y22)
β=(−x1y1′+y1x1′−x2y2′+y2x2′)/(x12+y12+x22+y22) (7)
These values of α and β may be plugged into Equation (3) to obtain A and θ.
Combined image 404 of
It is noted that, in the example use demonstrated in
Once the pluralities of potential reference points in each image are determined, a set of reference points common to both pluralities of potential reference points is identified, step 502. This set of reference points may desirably include exactly two, three, or four elements. If more than four common reference points exist, it may be desirable to only select four to avoid having to perform additional calculations; however, in some cases it may be desirable to select additional reference points due to potential distortions that may reduce the accuracy of the image registration.
The first image coordinates and the second image coordinates of each reference point in the set of reference points identified in step 502 are determined, step 504. One of the reference points is selected to be a first reference point and a Cartesian translation of the set of second image coordinates is performed such that the second image coordinates of this first reference point match its first image coordinates, step 506.
It is then determined how many common reference points are in the set of reference points, step 508. If there are exactly two reference points in the set of reference points, a similarity transformation of the translated set of second image coordinates is performed, step 510, to register the second image coordinates of the set of reference points to the first image coordinates of the set of reference points, as described above with reference to the exemplary method of
The various exemplary embodiment of the present invention may be carried out through the use of a general-purpose computer system programmed to perform the steps of the exemplary methods described above with reference to
Additionally, it is contemplated that the methods previously described may be carried out within a general purpose computer system instructed to perform these functions by means of a computer-readable medium. Such computer-readable media include; integrated circuits, magnetic and optical storage media, as well as audio-frequency, radio frequency, and optical carrier waves.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
The U.S. Government has a paid-up license in the present invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as provided for by contract as awarded by National Aeronautics and Space Administration under funding numbers NASA Space Grant (NNG05G092H) and NASA (NAG5-11773), and by the office of Naval Research, under funding number ONR (N00014-03-1-0337).
Number | Name | Date | Kind |
---|---|---|---|
4752828 | Chapuis et al. | Jun 1988 | A |
5970173 | Lee et al. | Oct 1999 | A |
6571024 | Sawhney et al. | May 2003 | B1 |
6714679 | Scola et al. | Mar 2004 | B1 |
7496242 | Hunt | Feb 2009 | B2 |
7715654 | Chefd'hotel et al. | May 2010 | B2 |
20020141626 | Caspi | Oct 2002 | A1 |
20030098872 | Georgiev | May 2003 | A1 |
20050031197 | Knopp | Feb 2005 | A1 |
20060041384 | Kermani et al. | Feb 2006 | A1 |
20060104484 | Bolle et al. | May 2006 | A1 |
20080052638 | Frank et al. | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080144972 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60858254 | Nov 2006 | US |