The invention relates generally to mass spectrometry, and more particularly to designs for radio-frequency (RF) multipole ion guides for transporting and focusing ions in the vacuum regions of a mass spectrometer.
RF multipole ion guides are well-known devices used in mass spectrometers (as well as in other instruments) for delivering ions from a source through a set of vacuum regions to a mass analyzer. The multipole ion guides typically consist of a plurality of elongated electrodes (usually four, but sometimes six or eight) arranged in parallel around an axial centerline along which ions travel between an entrance and an exit of the ion guide. RF voltages are applied to the electrodes in a prescribed phase relationship to create an electrical field that focuses the ions toward the axial centerline. For example, in a quadrupole ion guide having four elongated electrodes, a first RF voltage is applied to one pair of electrodes (the pair comprising two electrodes opposed across the centerline), and a second RF voltage, of equal amplitude to the first but an opposite phase is applied to the other electrode pair, generating a substantially quadrupolar pseudopotential that radially confines and focuses the ions. This field may be superimposed with a direct current (DC) axial field, generated, for example, by application of DC voltages to auxiliary electrodes, to urge the ions along the axial direction of travel.
Various cross-sectional shapes have been used for the elongated electrodes (sometimes referred to as rod electrodes or RF electrodes). Most commonly, cylindrical electrodes having a continuous circular cross-section have been utilized, but elongated electrodes having square, rectangular and even elliptical cross-sections have been described in the prior art and/or implemented in commercial instruments. Recently, a number of RF ion guides have been developed that leverage printed circuit board technology, in particular for applications where the ion guide operates in relatively high pressure (e.g., 1-10 mTorr) regions of the mass spectrometer. One such design, used in mass spectrometers manufactured and sold by Thermo Fisher Scientific, employs two opposed circuit boards having flat-inlaid electrodes. This design is sometimes referred to colloquially as a “flatapole.” Advantages of this design include the relatively low cost of fabrication and assembly, as well as the ability to easily fabricate ion guides having a curved or otherwise non-linear axial centerline.
One drawback of the above-described flatapole ion guide is that the RF pseudo potential generated within the ion guide is significantly weaker relative to traditional (e.g., round-rod) designs. This may result in poorer transmission efficiencies and greater mass discrimination, particularly for curved ion guides. Against this background, there is a need in the art for an ion guide design that provides better transmission efficiency across the mass range of interest, while preferably still being compatible with circuit board technology.
Roughly described, an embodiment of the present invention provides an RF ion guide having four elongated electrodes arranged in parallel around the axial centerline. Each electrode is generally L-shaped in cross section, having first and second inner surfaces directed toward the interior of the ion guide. The first and second surfaces extend along axis that are transverse and preferably approximately perpendicular to one another. RF voltages of equal amplitude but opposite phases are applied to opposed pairs of electrodes, in the manner known in the art, to generate an RF field to radially confine ions and focus them to the centerline. Because the resultant RF field more closely approximates a quadrupolar field, relative to the field generated within a flatapole, better performance may be achieved in terms of improved transmission efficiencies and/or less mass discrimination.
In more specific implementations, the ion guide may be straight or curved. A set of longitudinally segmented DC electrodes may be arranged in parallel to the elongated electrodes and coupled to a DC voltage source for establishing a DC field gradient within the ion guide interior that urges ions along the direction of travel. One or more of the DC electrodes may be situated in or proximate to a gap between adjacent elongated electrodes.
In the accompanying drawings:
As depicted in
A not-depicted RF voltage source may be employed to apply RF voltages to electrodes 110a-d to generate the radially confining RF electric field. Typically the RF voltage source would be arranged to apply a first RF voltage to one opposed pair of electrodes (e.g., electrodes 120a and 120c), and to apply a second RF voltage of equal amplitude but 180° out of phase to the second electrode pair (electrodes 120b and 120d). The amplitude and frequency of the applied RF voltages may be set in view of various considerations, including the cost and capability of the RF power supply, the size and spacing of electrodes 110a-d, the operating conditions (e.g., gas pressure) within the vacuum chamber in which ion guide 100 is placed, the required field strength to efficiently transport ions, and the need to avoid excessive undesired fragmentation of analyte ions.
Modeling of the RF field generated within ion guide 100 show that the field more closely approximates the ideal quadrupolar field relative to the field within flatapoles. This strengthens the restoring force of the pseudo-potential, promoting better radial confinement of ions and reduced ion loss, thereby increasing transmission efficiencies. The RF field within ion guide 100 also exhibits favorable performance metrics, including a wide single mass stability ratio, which facilitates transmission of low m/z ions, as well as a low simultaneous mass ratio, which improves transmission of ions having a wide range of m/z's. Ion guide 100 may be beneficially employed in different regions of a mass spectrometer or similar instrument, but may be particularly advantageous in the relatively high-pressure chambers, where gas pressures are more than 1 mTorr, more than 10 mTorr, or more than 100 mTorr.
In certain embodiments, a DC gradient may be established along the axial centerline of ion guide 100 to urge ions moving from the entrance to the exit and prevent ion “stalling”, which may occur in regions of relatively high pressure. Various means are known in the prior art for establishing a DC gradient within an ion guide. In the present example depicted in
It is noted that implementations of the invention may utilize the circuit board-based design employed in the flatapole ion guide, with the elongated electrodes deposited on or affixed to an underlying circuit board substrate.
While elongated electrodes 110a-d are preferably fabricated as being longitudinally continuous from the entrance to the exit of ion guide 100, in certain embodiments they may be longitudinally segmented, with adjacent segments being electrically insulated from one another. This would allow for the establishment of a DC gradient by applying differential DC voltages to the segmented of the elongated electrodes (not that all segments of an elongated electrode would also receive an RF voltage), eliminating the need for separate DC electrodes.
Modeling of the
Number | Date | Country | |
---|---|---|---|
63373403 | Aug 2022 | US |