The present disclosure relates to 3D geographical mapping using geospatial data.
The disclosure relates to 3D geospatial mapping of an area of interest from 2D satellite imagery. An embodiment includes a method for 3D geospatial mapping. The method includes analyzing 2D satellite imagery of an area of interest to generate a digital surface model (DSM) and a digital elevation model (DEM). The DSM is a surface profile of the area of interest and the DEM is a bare surface profile of the area of interest without protrusions. The satellite imagery is preprocessed to generate a point cloud of the area of interest. Preprocessing to generate the point cloud includes removing atmospheric clouds, removing shadows, and generating a 3D model of a building in the area of interest. A 3D geographical information system (GIS) map with multiple levels of details (LOD) is generated. A road network is layered onto the bare surface profile of the DEM. Layering includes identifying the road network from the point cloud, identifying people and cars from the point cloud, removing the people and cars from the point cloud, and layering the road network without people and cars onto the bare surface profile. A geometry of the building is computed from the point cloud. The GIS map is textured. The layering of the road network, computing the geometry of the building and texturing are repeated for each LOD.
These and other advantages and features of the embodiments herein disclosed, will become apparent through reference to the following description and the accompanying drawings. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations.
Embodiments described herein generally relate to a 3D geospatial mapping using satellite data. For example, 3D geospatial mapping involves analyzing satellite imagery from low orbiting satellites.
In
As shown, in
Referring back to
In one embodiment, the first satellite captures a first image of the designated area, the second satellite captures a second image of the designated area and the third satellite captures a third image of the designated area. The first image may be referred to as the forward image, the second image may be referred to as the nadir image, and the third image may be referred to as the backward image. The nadir image is an image which is captured directly over the designated area while the forward and backward images are captured at an angle to the designated area. For example, the images have different perspectives of the designated area. Triangulation can be used to determine the exact location of the designated area. For example, exact longitudinal and latitudinal coordinates can be mapped for each pixel of the images. Numerous sets of images may be employed to map a large geographical region. The mapped region can be any sized region, for example, a block, a neighborhood, a city, region of a state or state. Other sized regions, including smaller or larger sized regions may also be mapped.
Referring back to
Referring back to
At 150, a road network is layered onto the bare surface of the area of interest. The layering of the road network includes removing vehicles and people. Vehicles and people can be removed by identifying them in the point cloud. The road network without the vehicles and people is layered onto the GIS map.
At 160, building geometry is computed. For example, the height, shape, and volume of the buildings are computed. The layered GIS map is textured at 170. For example, buildings are textured. Texturing, for example, is based on image or texture optimization from preprocessing at 130. Road network 150, building geometry computation 160, and texturing 170 are repeated for each LOD. After each LOD is computed, geospatial mapping is completed.
In
As shown, in
The results show that DSMs can be generated from stereo pairs, but the quality of the DSM (buildings model outline) was not good in the urban areas. For example, high buildings produce large shadow areas due to the sunlight incidence angle. Stereo matching is difficult in these areas, which was revealed by large height differences (more than 1 meter) between the satellite DSM and the LiDAR-DSM. Due to the large convergence angles of the satellite images that compose the stereo pair, occlusions occur. Stereo matching is also not possible in these areas, resulting in a lower quality DSM. Although some of the differences found between the satellite DSM and the reference DSM may be explained by the time difference of the two data sets (new constructions, growth of trees and moving objects such as cars), it was concluded that GeoEye-1 and WorldView-2 stereo pair image combinations are not well adapted for high accuracy DSM extractions in urban areas. Postprocessing is subsequently performed, such as texturing, super-scaling, point editing and filtering, to optimize the extracted DSM.
Table 1 below provides details of the various stages of the process of
Although described in the geospatial mapping of an area of interest, it is understood that geospatial mapping of a region with numerous areas of interest may be involved. The geospatial mapping of a region of interest is similar to an area of interest except that it is repeated for each area of interest within the region of interest. Satellite imagery may be analyzed for the areas of interest. Overlapping images, for example, from adjacent areas of interest, may augment the analysis for mapping the region of interest.
The inventive concept of the present disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments, therefore, are to be considered in all respects illustrative rather than limiting the invention described herein.
The present disclosure is a continuation of the U.S. patent application Ser. No. ______ filed on Jan. 17, 2022 with application Ser. No. 17/577,369, titled “GEOSPATIAL MAPPING” [Attorney Docket Number: VTPLP2021NAT01US0], which is a continuation-in-part of the U.S. patent application Ser. No. ______ filed on Nov. 9, 2021, with application Ser. No. 17/521,874, titled “HIGHLY PARALLEL PROCESSING SYSTEM” [Attorney Docket Number: VTPLP2020NAT39US0], which also claims the benefit of US Provisional applications with Application No. 63/137,743, titled “GEOSPATIAL MAPPING” [Attorney Docket Number: VTPLP2021PRO01US0], Application Number 63137745, titled “LAYERING FOR GEOSPATIAL MAPPING” [Attorney Docket Number: VTPLP2021PRO02US0], Application Number 63137746, titled “SURFACE ANALYSIS FOR 3D GEOSPATIAL MAPPING” [Attorney Docket Number: VTPLP2021PR003US0], Application Number 63137748, titled “IMAGE OPTIMATION OF SATELLITE IMAGERY FOR GEOSPATIAL MAPPING” [Attorney Docket Number: VTPLP2021PRO04US0], Application Number 63137749, titled “GEOSPATIAL MAPPING FROM DRONE IMAGERY” [Attorney Docket Number: VTPLP2021PRO05US0], Application Number 63137751, titled “OPTIMATION OF DRONE IMAGERY FOR GEOSPATIAL MAPPING” [Attorney Docket Number: VTPLP2021PRO06US0], and Application Number 63137752, titled “LAYERING FOR GEOSPATIAL MAPPING USING DRONE IMAGERY” [Attorney Docket Number: VTPLP2021PRO07US0], which were all filed on Jan. 15, 2021. All disclosures are herein incorporated by reference in their entireties for all purposes.
Number | Date | Country | |
---|---|---|---|
63137743 | Jan 2021 | US | |
63137745 | Jan 2021 | US | |
63137746 | Jan 2021 | US | |
63137748 | Jan 2021 | US | |
63137749 | Jan 2021 | US | |
63137751 | Jan 2021 | US | |
63137752 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17577369 | Jan 2022 | US |
Child | 18416871 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17521874 | Nov 2021 | US |
Child | 17577369 | US |