Natural user-input (NUI) technologies aim to provide intuitive modes of interaction between computer systems and human beings. Such modes may include posture, gesture, gaze, and/or speech recognition, as examples. Increasingly, a suitably configured vision and/or listening system may replace or augment traditional user-interface hardware, such as a keyboard, mouse, touch screen, gamepad, or joystick controller.
In video gaming, for example, a vision system may be configured to observe and recognize the postures and/or gestures of a player, and thereby control the in-game actions of that player. It is typically not the case, however, for a common set of gestures to be recognized across different applications, including the operating-system shell of the computer system. As a consequence, a user may be burdened with having to learn and perform numerous, application-specific variants of common gestures and to use them in the appropriate context. Failure to do so may result in a frustrating user experience, as variation in a recognized gesture from one application to the next may yield unexpected results during program execution.
One embodiment of this disclosure provides a method to decode natural user input from a human subject. The method includes detection of a gesture and concurrent grip state of the subject. If the grip state is closed during the gesture, then a user-interface (UI) canvas of the computer system is transformed based on the gesture. If the grip state is open during the gesture, then a UI object arranged on the UI canvas is activated based on the gesture.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.
Aspects of this disclosure will now be described by example and with reference to the illustrated embodiments listed above. Components, process steps, and other elements that may be substantially the same in one or more embodiments are identified coordinately and described with minimal repetition. It will be noted, however, that elements identified coordinately may also differ to some degree. It will be further noted that the drawing figures included in this disclosure are schematic and generally not drawn to scale. Rather, the various drawing scales, aspect ratios, and numbers of components shown in the figures may be purposely distorted to make certain features or relationships easier to see.
The environment of
In some embodiments, computer system 18 may be a video-game system. In some embodiments, computer system 18 may be a multimedia system configured to play music and/or video. In some embodiments, computer system 18 may be a general-purpose computer system used for internet browsing and productivity applications—word processing and spreadsheet applications, for example. In general, computer system 18 may be configured for any or all of the above purposes, among others, without departing from the scope of this disclosure.
Computer system 18 is configured to accept various forms of user input from one or more users 20. As such, traditional user-input devices such as a keyboard, mouse, touch-screen, gamepad, or joystick controller (not shown in the drawings) may be operatively coupled to the computer system. Regardless of whether traditional user-input modalities are supported, computer system 18 is also configured to accept so-called natural user input (NUI) from at least one user. In the scenario represented in
To mediate NUI from the one or more users, NUI system 22 is part of computer system 18. The NUI system is configured to capture various aspects of the NUI and provide corresponding actionable input to the computer system. To this end, the NUI system receives low-level input from peripheral sensory components, which include vision system 24 and listening system 26. In the illustrated embodiment, the vision system and listening system share a common enclosure; in other embodiments, they may be separate components. In still other embodiments, the vision, listening and NUI systems may be integrated within the computer system. The computer system and the vision system may be coupled via a wired communications link, as shown in the drawing, or in any other suitable manner. Although
Listening system 26 may include one or more microphones to pick up vocalization and other audible input from one or more users and other sources in environment 10; vision system 24 detects visual input from the users. In the illustrated embodiment, the vision system includes one or more depth cameras 32, one or more color cameras 34, and a gaze tracker 36. In other embodiments, the vision system may include more or fewer components. NUI system 22 processes low-level input (i.e., signal) from these sensory components to provide actionable, high-level input to computer system 18. For example, the NUI system may perform sound- or voice-recognition on an audio signal from listening system 26. Such recognition may generate corresponding text-based or other high-level commands, which are received in the computer system.
Continuing in
In general, the nature of depth cameras 32 may differ in the various embodiments of this disclosure. For example, a depth camera can be stationary, moving, or movable. Any non-stationary depth camera may have the ability to image an environment from a range of perspectives. In one embodiment, brightness or color data from two, stereoscopically oriented imaging arrays in a depth camera may be co-registered and used to construct a depth map. In other embodiments, a depth camera may be configured to project onto the subject a structured infrared (IR) illumination pattern comprising numerous discrete features—e.g., lines or dots. An imaging array in the depth camera may be configured to image the structured illumination reflected back from the subject. Based on the spacings between adjacent features in the various regions of the imaged subject, a depth map of the subject may be constructed. In still other embodiments, the depth camera may project a pulsed infrared illumination towards the subject. A pair of imaging arrays in the depth camera may be configured to detect the pulsed illumination reflected back from the subject. Both arrays may include an electronic shutter synchronized to the pulsed illumination, but the integration times for the arrays may differ, such that a pixel-resolved time-of-flight of the pulsed illumination, from the illumination source to the subject and then to the arrays, is discernible based on the relative amounts of light received in corresponding elements of the two arrays. Depth cameras 32, as described above, are naturally applicable to observing people. This is due in part to their ability to resolve a contour of a human subject even if that subject is moving, and even if the motion of the subject (or any part of the subject) is parallel to the optical axis of the camera. This ability is supported, amplified, and extended through the dedicated logic architecture of NUI system 22.
When included, each color camera 34 may image visible light from the observed scene in a plurality of channels—e.g., red, green, blue, etc.—mapping the imaged light to an array of pixels. Alternatively, a monochromatic camera may be included, which images the light in grayscale. Color or brightness values for all of the pixels exposed in the camera constitute collectively a digital color image. In one embodiment, the depth and color cameras used in environment 10 may have the same resolutions. Even when the resolutions differ, the pixels of the color camera may be registered to those of the depth camera. In this way, both color and depth information may be assessed for each portion of an observed scene.
It will be noted that the sensory data acquired through NUI system 22 may take the form of any suitable data structure, including one or more matrices that include X, Y, Z coordinates for every pixel imaged by the depth camera, and red, green, and blue channel values for every pixel imaged by color camera, in addition to time resolved digital audio data from listening system 26.
As shown in
Continuing in
In the various embodiments contemplated herein, some or all of the recognized input gestures may include gestures of the hands. In some embodiments, the hand gestures may be performed in concert or in series with an associated body gesture. One embodiment provides a root library of recognized hand gestures and associated actionable input. Such actionable input may include any or all of the following: (a) input to signal engagement of a human subject as a user of the computer system; (b) input to signal disengagement of a human subject as a user of the computer system; (c) input to signal user manipulation of a UI canvas of the computer system; (d) input to return to an OS shell of the computer system from a currently running application or game; (e) input to open or expand a UI element—such as a notification—presented on the display; and (f) input to signal user activation of a UI element arranged on the UI canvas. The root library may include other input as well, and may in some embodiments be part of an extensible library system.
As used herein, the term ‘UI canvas’ refers to a portion of a display screen on which two or more UI elements—icons, tiles, check boxes, radio buttons, notifications, etc.—are arranged. Aspects of an example UI canvas 44 are shown in
In one embodiment, the input (a) to signal engagement of a human subject as a user of the computer system is provided upon detection of a raised hand and open palm of the subject, presented facing display 14 or vision system 24.
In this and other embodiments, the input (b) to signal disengagement of the subject as a user of the computer system may be provided upon detection of the active hand of the subject dropping below another pre-defined threshold level 52 (referring still to
In this and other embodiments, the input (c) to signal user manipulation of the UI canvas may be provided upon detection in the vision system of a closed-hand gesture, in general. As noted above, several different kinds of UI canvas manipulations are envisaged herein, which may be signaled each by an associated closed-hand gesture. For example, vertical scrolling of the canvas may be signaled by a pulling-down or pushing-up motion of one or both closed hands, as shown in
In these and other embodiments, the input (d) to return to a shell of the OS from a currently running application may be provided upon detection of a two-handed compression (or zoom-out) gesture by the subject, which may be the same or similar to the gesture shown in
Continuing, the input (f) to signal user activation of a UI element may be provided upon detection in the vision system of a one-handed push gesture by the subject, as shown in
One example of the mapping noted above is represented visually in
In this and other embodiments, NUI system 22 may be configured to provide alternative mappings between a user's hand gestures and the computed mouse-pointer coordinates. For instance, the NUI system may simply estimate the locus on display 14 that the user is pointing to. Such an estimate may be made based on hand position and/or position of the fingers. In still other embodiments, the user's focal point or gaze direction may be used as a parameter from which to compute the mouse-pointer coordinates. In
No aspect of the above description or drawings should be interpreted in a limiting sense, for numerous other embodiments lie fully within the spirit and scope of this disclosure. For example, display of a mouse-pointer graphic is only one possible mode of providing visual feedback based on selection locus. Other possible modes include highlighting the UI element nearest the selection locus, or presenting a context-sensitive menu adjacent the UI element nearest the selection locus. In some embodiments, such visual feedback may be used in conjunction with audible feedback, so that the user is adequately informed which UI element is liable to be activated. In these and other embodiments, the visual and/or audible feedback may be coordinated with multiple stages of an activation or system gesture to ensure that the user can ‘back out’ of a gesture that he or she has begun but does not wish to complete. As one non-limiting example, a push gesture used for activation may be broken up into stages, such as a hover stage and a thrust stage. A certain level of feedback may be provided when the user's hand position causes the mouse pointer to hover over an activation-enabled UI element. This feedback alerts the user that activation of that UI element is imminent and will be completed upon detection of a thrust with the same hand. A user not wanting to complete the activation can simply move that hand without thrusting it forward.
The configurations described above enable various methods to decode NUI from a user of a computer system. Some such methods are now described, by way of example, with continued reference to the above configurations. It will be understood, however, that the methods here described, and others within the scope of this disclosure, may be enabled by different configurations as well. The methods herein, which involve the observation of people in their daily lives, may and should be enacted with utmost respect for personal privacy. Accordingly, the methods presented herein are fully compatible with opt-in participation of the persons being observed. In embodiments where personal data is collected on a local system and transmitted to a remote system for processing, that data can be anonymized. In other embodiments, personal data may be confined to a local system, and only non-personal, summary data transmitted to a remote system.
At 60 of method 58 a gesture from a human subject is detected. In some embodiments, this gesture may be defined at least partly in terms of a position of a hand of the subject with respect to the subject's body. Such gestures may include one- or two-handed hand gestures, for example, in some cases coupled with an associated body movement.
Gesture detection is a complex process that admits of numerous variants. For ease of explanation, one example variant will now be described. Gesture detection may begin when depth data is received in NUI system 22 from vision system 26. In some embodiments, such data may take the form of a raw data stream—e.g., a video or depth-video stream. In other embodiments, the data already may have been processed to some degree within the vision system. Through subsequent actions, the data received in the NUI system is further processed to detect various states or conditions that constitute user input to computer system 18, as further described below.
Continuing, at least a portion of one or more human subjects may be identified in the depth data by NUI system 22. Through appropriate depth-image processing, a given locus of a depth map may be recognized as belonging to a human subject. In a more particular embodiment, pixels that belong to a human subject are identified by sectioning off a portion of the depth data that exhibits above-threshold motion over a suitable time scale, and attempting to fit that section to a generalized geometric model of a human being. If a suitable fit can be achieved, then the pixels in that section are recognized as those of a human subject. In other embodiments, human subjects may be identified by contour alone, irrespective of motion.
In one, non-limiting example, each pixel of a depth map may be assigned a person index that identifies the pixel as belonging to a particular human subject or non-human element. As an example, pixels corresponding to a first human subject can be assigned a person index equal to one, pixels corresponding to a second human subject can be assigned a person index equal to two, and pixels that do not correspond to a human subject can be assigned a person index equal to zero. Person indices may be determined, assigned, and saved in any suitable manner.
After all the candidate human subjects are identified in the fields of view (FOVs) of each of the connected depth cameras, NUI system 22 may make the determination as to which human subject (or subjects) will provide user input to computer system 18—i.e., which will be identified as a user. In one embodiment, a human subject may be selected as a user based on proximity to display 14 or depth camera 32, and/or position in a field of view of a depth camera. More specifically, the user selected may be the human subject closest to the depth camera or nearest the center of the FOV of the depth camera. In some embodiments, the NUI system may also take into account the degree of translational motion of a human subject—e.g., motion of the centroid of the subject—in determining whether that subject will be selected as a user. For example, a subject that is moving across the FOV of the depth camera (moving at all, moving above a threshold speed, etc.) may be excluded from providing user input.
After one or more users are identified, NUI system 22 may begin to process posture information from such users. The posture information may be derived computationally from depth video acquired with depth camera 32. At this stage of execution, additional sensory input—e.g., image data from a color camera 34 or audio data from listening system 26—may be processed along with the posture information. Presently, an example mode of obtaining the posture information for a user will be described.
In one embodiment, NUI system 22 may be configured to analyze the pixels of a depth map that correspond to a user, in order to determine what part of the user's body each pixel represents. A variety of different body-part assignment techniques can be used to this end. In one example, each pixel of the depth map with an appropriate person index (vide supra) may be assigned a body-part index. The body-part index may include a discrete identifier, confidence value, and/or body-part probability distribution indicating the body part or parts to which that pixel is likely to correspond. Body-part indices may be determined, assigned, and saved in any suitable manner.
In one example, machine-learning may be used to assign each pixel a body-part index and/or body-part probability distribution. The machine-learning approach analyzes a user with reference to information learned from a previously trained collection of known poses. During a supervised training phase, for example, a variety of human subjects may be observed in a variety of poses; trainers provide ground truth annotations labeling various machine-learning classifiers in the observed data. The observed data and annotations are then used to generate one or more machine-learned algorithms that map inputs (e.g., observation data from a depth camera) to desired outputs (e.g., body-part indices for relevant pixels).
Thereafter, a virtual skeleton is fit to at least one human subject identified. In some embodiments, a virtual skeleton is fit to the pixels of depth data that correspond to a user.
In one embodiment, each joint may be assigned various parameters—e.g., Cartesian coordinates specifying joint position, angles specifying joint rotation, and additional parameters specifying a conformation of the corresponding body part (hand open, hand closed, etc.). The virtual skeleton may take the form of a data structure including any, some, or all of these parameters for each joint. In this manner, the metrical data defining the virtual skeleton—its size, shape, and position and orientation relative to the depth camera may be assigned to the joints.
Via any suitable minimization approach, the lengths of the skeletal segments and the positions and rotational angles of the joints may be adjusted for agreement with the various contours of the depth map. This process may define the location and posture of the imaged human subject. Some skeletal-fitting algorithms may use the depth data in combination with other information, such as color-image data and/or kinetic data indicating how one locus of pixels moves with respect to another.
As noted above, body-part indices may be assigned in advance of the minimization. The body-part indices may be used to seed, inform, or bias the fitting procedure to increase its rate of convergence. For example, if a given locus of pixels is designated as the head of the user, then the fitting procedure may seek to fit to that locus a skeletal segment pivotally coupled to a single joint—viz., the neck. If the locus is designated as a forearm, then the fitting procedure may seek to fit a skeletal segment coupled to two joints—one at each end of the segment. Furthermore, if it is determined that a given locus is unlikely to correspond to any body part of the user, then that locus may be masked or otherwise eliminated from subsequent skeletal fitting. In some embodiments, a virtual skeleton may be fit to each of a sequence of frames of depth video. By analyzing positional change in the various skeletal joints and/or segments, the corresponding movements—e.g., gestures, actions, or behavior patterns—of the imaged user may be determined. In this manner, the posture or gesture of the one or more human subjects may be detected in NUI system 22 based on one or more virtual skeletons.
The foregoing description should not be construed to limit the range of approaches usable to construct a virtual skeleton, for a virtual skeleton may be derived from a depth map in any suitable manner without departing from the scope of this disclosure. Moreover, despite the advantages of using a virtual skeleton to model a human subject, this aspect is by no means necessary. In lieu of a virtual skeleton, raw point-cloud data may be used directly to provide suitable posture information.
In subsequent acts of method 58, various higher-level processing may be enacted to extend and apply the gesture detection undertaken at 60. In some examples, gesture detection may proceed until an engagement gesture or spoken engagement phrase from a potential user is detected. After a user has engaged, processing of the data may continue, with gestures of the engaged user decoded to provide input to computer system 18. Such gestures may include input to launch a process, change a setting of the OS, shift input focus from one process to another, or provide virtually any control function in computer system 18.
Returning now to
At 74 it is assessed whether the subject's grip was closed during the gesture. If the subject's grip was not closed—i.e., was open—during the gesture, then the method advances to 76. For purposes of advancing to 76 on detection of an open grip state, it will be noted that different embodiments may provide somewhat different control logic. In one embodiment, the subject's grip is determined to be open (i.e., not closed) if even one hand is open. In another scenario, both hands must be open to advance to 76.
In some embodiments, grip state may be assessed by way of the skeletal tracking methodology described hereinabove—viz., with reference to action 60 of the illustrated method. In particular, a virtual skeleton 62 of user 20 may be analyzed to locate the pixels that correspond to the hand. Such pixels, along with corresponding loci of one or more color, infrared, and/or depth images (if available) are examined. In a particular embodiment, classifiers relevant to grip state (based, for example, on prior machine learning) are evaluated to assess whether they are more consistent with an open or closed hand.
Continuing in
After a user's engagement has been established, the system may then begin to look for UI interactions, such as UI selection and activation, and canvas transformations. Thus, if it is determined at 76 that the subject's hand is not raised over the threshold, etc., then the method advances to 78, where it is determined whether the subject has enacted a push gesture as described hereinabove. If the subject has enacted a push gesture, then the method advances to 80, where a UI object arranged on a UI canvas of the display is activated based on the gesture. The activated object may be a previously selected tile, icon, or control, for example. ‘Activation’ of a UI object can mean a number of things depending on the embodiment or use scenario. If the UI object is a control such as a checkbox or radio button, activation of that object may equate to toggling the state of the control—e.g., checked/unchecked, on/off, etc. If the UI object represents a movie or music track, for instance, activation of that object may equate to the act of playing the movie or music track. On the other hand, if the UI object represents a text document, activation of that object may equate to one of several options: edit, print, delete, etc. In embodiments such as this, UI presented on the display subsequent to activation of the object may offer an appropriate menu of action items to the user, so that a selection can be made. In other embodiments, a vocalized action command from the user may be received by listening system 26 and recognized via speech-recognition engine 38. In these and other embodiments, one or more UI elements may be activated in various ways without transformation of the UI canvas on which the elements are arranged.
Continuing in
One type of system gesture involves reducing the active process to an icon or tile, and concurrently viewing a larger portion of the OS shell, via a two-handed compression gesture with closed hands, as in
Referring again to 82 of method 58, various factors may serve to disambiguate a closed-handed gesture intended to access the OS shell from a similar or even identical gesture intended to transform the UI canvas. The above method describes a way of decoding NUI from a user of a computer system under first and second operating conditions of the system. During the first operating condition, a first action (e.g., panning a UI canvas) is taken in response to detection by the vision system of a hand gesture of the subject—in one example, a closed hand moving to the left. During the second operating condition, a second action, different from the first (e.g., zooming out to an OS shell) is taken in response to detection of the same hand gesture of the same subject. Accordingly, the second action includes redirection of the NUI to a process not having current input focus—the OS shell in this example. As noted above, various detectable states may distinguish the first operating condition from the second. In one example, the first operating condition may be a condition in which only one hand is closed, and wherein the second operating condition may be a condition in which both hands have been closed for a predetermined interval or longer. As shown by this example, detecting the grip state at 72 may include resolving a change in the grip state, wherein a closing grip-state change triggers transition to a mode of transforming the UI canvas based on the gesture, and wherein an opening grip-state change triggers transition to a mode of activating a UI object based on the gesture.
In some embodiments, the reverse system gesture—viz., pulling the hands apart—may also be an overloaded gesture. During a first operating condition, this gesture may cause a notification to be opened. During a second operating condition, it may trigger a return to the previously active application or content item. Since notifications have short time windows for activation, opening a notification may take precedence and serve as the default effect for this gesture. On the other hand, resuming the previous application may require the user to be ‘on the home screen’ or have other navigation constraints. Accordingly, so when the reverse system gesture is detected, the system may first determine whether a notification is active. If so, then the notification will be opened; if not, then the previous application may be opened, provided the user is on the home screen. If neither condition is true, then nothing is done with the gesture.
More generally, the above examples demonstrate the act of selecting, from a set of gestural inputs detectable by the vision system, a context-appropriate subset. This subset is based on an operating condition of the computer system. Then, from a set of actions executable in the computer system, a context-appropriate subset is selected based on the operating condition. Once the range of gestural inputs and the range of associated actions have been reduced in this manner, the gestural input that the user intends to make is more easily detected and mapped to an appropriate action. This approach increases the reliability of NUI detection by filtering both the detected gesture and the resulting action based on context.
As evident from the foregoing description, the methods and processes described herein may be tied to a computing system of one or more computing machines. Such methods and processes may be implemented as a computer-application program or service, an application-programming interface (API), a library, and/or other computer-program product.
Shown in
Logic machine 90 includes one or more physical devices configured to execute instructions. For example, the logic machine may be configured to execute instructions that are part of one or more applications, services, programs, routines, libraries, objects, components, data structures, or other logical constructs. Such instructions may be implemented to perform a task, implement a data type, transform the state of one or more components, achieve a technical effect, or otherwise arrive at a desired result.
Logic machine 90 may include one or more processors configured to execute software instructions. Additionally or alternatively, the logic machine may include one or more hardware or firmware logic machines configured to execute hardware or firmware instructions. Processors of the logic machine may be single-core or multi-core, and the instructions executed thereon may be configured for sequential, parallel, and/or distributed processing. Individual components of the logic machine optionally may be distributed among two or more separate devices, which may be remotely located and/or configured for coordinated processing. Aspects of the logic machine may be virtualized and executed by remotely accessible, networked computing devices configured in a cloud-computing configuration.
Instruction-storage machine 92 includes one or more physical devices configured to hold instructions executable by logic machine 90 to implement the methods and processes described herein. When such methods and processes are implemented, the state of the instruction-storage machine may be transformed—e.g., to hold different data. The instruction-storage machine may include removable and/or built-in devices; it may include optical memory (e.g., CD, DVD, HD-DVD, Blu-Ray Disc, etc.), semiconductor memory (e.g., RAM, EPROM, EEPROM, etc.), and/or magnetic memory (e.g., hard-disk drive, floppy-disk drive, tape drive, MRAM, etc.), among others. The instruction-storage machine may include volatile, nonvolatile, dynamic, static, read/write, read-only, random-access, sequential-access, location-addressable, file-addressable, and/or content-addressable devices.
It will be appreciated that instruction-storage machine 92 includes one or more physical devices. However, aspects of the instructions described herein alternatively may be propagated by a communication medium (e.g., an electromagnetic signal, an optical signal, etc.) that is not held by a physical device for a finite duration.
Aspects of logic machine 90 and instruction-storage machine 92 may be integrated together into one or more hardware-logic components. Such hardware-logic components may include field-programmable gate arrays (FPGAs), program- and application-specific integrated circuits (PASIC/ASICs), program- and application-specific standard products (PSSP/ASSPs), system-on-a-chip (SOC), and complex programmable logic devices (CPLDs), for example.
The terms ‘module,’ ‘program,’ and ‘engine’ may be used to describe an aspect of a computing system implemented to perform a particular function. In some cases, a module, program, or engine may be instantiated via logic machine 90 executing instructions held by instruction-storage machine 92. It will be understood that different modules, programs, and/or engines may be instantiated from the same application, service, code block, object, library, routine, API, function, etc. Likewise, the same module, program, and/or engine may be instantiated by different applications, services, code blocks, objects, routines, APIs, functions, etc. The terms ‘module,’ ‘program,’ and ‘engine’ may encompass individual or groups of executable files, data files, libraries, drivers, scripts, database records, etc.
It will be appreciated that a ‘service’, as used herein, is an application program executable across multiple user sessions. A service may be available to one or more system components, programs, and/or other services. In some implementations, a service may run on one or more server-computing devices.
When included, communication system 94 may be configured to communicatively couple NUI system 22 or computer system 18 with one or more other computing devices. The communication system may include wired and/or wireless communication devices compatible with one or more different communication protocols. As non-limiting examples, the communication system may be configured for communication via a wireless telephone network, or a wired or wireless local- or wide-area network. In some embodiments, the communication system may allow a computing system to send and/or receive messages to and/or from other devices via a network such as the Internet.
It will be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The specific routines or methods described herein may represent one or more of any number of processing strategies. As such, various acts illustrated and/or described may be performed in the sequence illustrated and/or described, in other sequences, in parallel, or omitted. Likewise, the order of the above-described processes may be changed.
The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
4627620 | Yang | Dec 1986 | A |
4630910 | Ross et al. | Dec 1986 | A |
4645458 | Williams | Feb 1987 | A |
4695953 | Blair et al. | Sep 1987 | A |
4702475 | Elstein et al. | Oct 1987 | A |
4711543 | Blair et al. | Dec 1987 | A |
4751642 | Silva et al. | Jun 1988 | A |
4796997 | Svetkoff et al. | Jan 1989 | A |
4809065 | Harris et al. | Feb 1989 | A |
4817950 | Goo | Apr 1989 | A |
4843568 | Krueger et al. | Jun 1989 | A |
4893183 | Nayar | Jan 1990 | A |
4901362 | Terzian | Feb 1990 | A |
4925189 | Braeunig | May 1990 | A |
5101444 | Wilson et al. | Mar 1992 | A |
5148154 | MacKay et al. | Sep 1992 | A |
5184295 | Mann | Feb 1993 | A |
5229754 | Aoki et al. | Jul 1993 | A |
5229756 | Kosugi et al. | Jul 1993 | A |
5239463 | Blair et al. | Aug 1993 | A |
5239464 | Blair et al. | Aug 1993 | A |
5288078 | Capper et al. | Feb 1994 | A |
5295491 | Gevins | Mar 1994 | A |
5320538 | Baum | Jun 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5385519 | Hsu et al. | Jan 1995 | A |
5405152 | Katanics et al. | Apr 1995 | A |
5417210 | Funda et al. | May 1995 | A |
5423554 | Davis | Jun 1995 | A |
5454043 | Freeman | Sep 1995 | A |
5469740 | French et al. | Nov 1995 | A |
5495576 | Ritchey | Feb 1996 | A |
5516105 | Eisenbrey et al. | May 1996 | A |
5524637 | Erickson | Jun 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5563988 | Maes et al. | Oct 1996 | A |
5577981 | Jarvik | Nov 1996 | A |
5580249 | Jacobsen et al. | Dec 1996 | A |
5594469 | Freeman et al. | Jan 1997 | A |
5597309 | Riess | Jan 1997 | A |
5616078 | Oh | Apr 1997 | A |
5617312 | Iura et al. | Apr 1997 | A |
5638300 | Johnson | Jun 1997 | A |
5641288 | Zaenglein, Jr. | Jun 1997 | A |
5682196 | Freeman | Oct 1997 | A |
5682229 | Wangler | Oct 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5703367 | Hashimoto et al. | Dec 1997 | A |
5704837 | Iwasaki et al. | Jan 1998 | A |
5715834 | Bergamasco et al. | Feb 1998 | A |
5875108 | Hoffberg et al. | Feb 1999 | A |
5877803 | Wee et al. | Mar 1999 | A |
5913727 | Ahdoot | Jun 1999 | A |
5933125 | Fernie et al. | Aug 1999 | A |
5980256 | Carmein | Nov 1999 | A |
5989157 | Walton | Nov 1999 | A |
5995649 | Marugame | Nov 1999 | A |
6005548 | Latypov et al. | Dec 1999 | A |
6009210 | Kang | Dec 1999 | A |
6054991 | Crane et al. | Apr 2000 | A |
6066075 | Poulton | May 2000 | A |
6072494 | Nguyen | Jun 2000 | A |
6073489 | French et al. | Jun 2000 | A |
6077201 | Cheng | Jun 2000 | A |
6098458 | French et al. | Aug 2000 | A |
6100896 | Strohecker et al. | Aug 2000 | A |
6101289 | Kellner | Aug 2000 | A |
6128003 | Smith et al. | Oct 2000 | A |
6130677 | Kunz | Oct 2000 | A |
6141463 | Covell et al. | Oct 2000 | A |
6147678 | Kumar et al. | Nov 2000 | A |
6152856 | Studor et al. | Nov 2000 | A |
6159100 | Smith | Dec 2000 | A |
6173066 | Peurach et al. | Jan 2001 | B1 |
6181343 | Lyons | Jan 2001 | B1 |
6188777 | Darrell et al. | Feb 2001 | B1 |
6215890 | Matsuo et al. | Apr 2001 | B1 |
6215898 | Woodfill et al. | Apr 2001 | B1 |
6222465 | Kumar | Apr 2001 | B1 |
6226396 | Marugame | May 2001 | B1 |
6229913 | Nayar et al. | May 2001 | B1 |
6256033 | Nguyen | Jul 2001 | B1 |
6256400 | Takata et al. | Jul 2001 | B1 |
6283860 | Lyons et al. | Sep 2001 | B1 |
6289112 | Jain et al. | Sep 2001 | B1 |
6299308 | Voronka et al. | Oct 2001 | B1 |
6308565 | French et al. | Oct 2001 | B1 |
6316934 | Amorai-Moriya et al. | Nov 2001 | B1 |
6363160 | Bradski et al. | Mar 2002 | B1 |
6384819 | Hunter | May 2002 | B1 |
6411744 | Edwards | Jun 2002 | B1 |
6430997 | French et al. | Aug 2002 | B1 |
6476834 | Doval et al. | Nov 2002 | B1 |
6496598 | Harman | Dec 2002 | B1 |
6503195 | Keller et al. | Jan 2003 | B1 |
6539931 | Trajkovic et al. | Apr 2003 | B2 |
6570555 | Prevost et al. | May 2003 | B1 |
6633294 | Rosenthal et al. | Oct 2003 | B1 |
6640202 | Dietz et al. | Oct 2003 | B1 |
6661918 | Gordon et al. | Dec 2003 | B1 |
6681031 | Cohen et al. | Jan 2004 | B2 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6731799 | Sun et al. | May 2004 | B1 |
6738066 | Nguyen | May 2004 | B1 |
6765726 | French et al. | Jul 2004 | B2 |
6788809 | Grzeszczuk et al. | Sep 2004 | B1 |
6801637 | Voronka et al. | Oct 2004 | B2 |
6873723 | Aucsmith et al. | Mar 2005 | B1 |
6876496 | French et al. | Apr 2005 | B2 |
6937742 | Roberts et al. | Aug 2005 | B2 |
6950534 | Cohen et al. | Sep 2005 | B2 |
7003134 | Covell et al. | Feb 2006 | B1 |
7036094 | Cohen et al. | Apr 2006 | B1 |
7038855 | French et al. | May 2006 | B2 |
7039676 | Day et al. | May 2006 | B1 |
7042440 | Pryor et al. | May 2006 | B2 |
7050606 | Paul et al. | May 2006 | B2 |
7058204 | Hildreth et al. | Jun 2006 | B2 |
7060957 | Lange et al. | Jun 2006 | B2 |
7113918 | Ahmad et al. | Sep 2006 | B1 |
7121946 | Paul et al. | Oct 2006 | B2 |
7170492 | Bell | Jan 2007 | B2 |
7184048 | Hunter | Feb 2007 | B2 |
7202898 | Braun et al. | Apr 2007 | B1 |
7222078 | Abelow | May 2007 | B2 |
7227526 | Hildreth et al. | Jun 2007 | B2 |
7259747 | Bell | Aug 2007 | B2 |
7308112 | Fujimura et al. | Dec 2007 | B2 |
7317836 | Fujimura et al. | Jan 2008 | B2 |
7348963 | Bell | Mar 2008 | B2 |
7359121 | French et al. | Apr 2008 | B2 |
7367887 | Watabe et al. | May 2008 | B2 |
7379563 | Shamaie | May 2008 | B2 |
7379566 | Hildreth | May 2008 | B2 |
7389591 | Jaiswal et al. | Jun 2008 | B2 |
7412077 | Li et al. | Aug 2008 | B2 |
7421093 | Hildreth et al. | Sep 2008 | B2 |
7430312 | Gu | Sep 2008 | B2 |
7436496 | Kawahito | Oct 2008 | B2 |
7450736 | Yang et al. | Nov 2008 | B2 |
7452275 | Kuraishi | Nov 2008 | B2 |
7460690 | Cohen et al. | Dec 2008 | B2 |
7489812 | Fox et al. | Feb 2009 | B2 |
7536032 | Bell | May 2009 | B2 |
7555142 | Hildreth et al. | Jun 2009 | B2 |
7560701 | Oggier et al. | Jul 2009 | B2 |
7570805 | Gu | Aug 2009 | B2 |
7574020 | Shamaie | Aug 2009 | B2 |
7576727 | Bell | Aug 2009 | B2 |
7590262 | Fujimura et al. | Sep 2009 | B2 |
7593552 | Higaki et al. | Sep 2009 | B2 |
7598942 | Underkoffler et al. | Oct 2009 | B2 |
7607509 | Schmiz et al. | Oct 2009 | B2 |
7620202 | Fujimura et al. | Nov 2009 | B2 |
7646394 | Neely, III et al. | Jan 2010 | B1 |
7668340 | Cohen et al. | Feb 2010 | B2 |
7680298 | Roberts et al. | Mar 2010 | B2 |
7683954 | Ichikawa et al. | Mar 2010 | B2 |
7684592 | Paul et al. | Mar 2010 | B2 |
7701439 | Hillis et al. | Apr 2010 | B2 |
7702130 | Im et al. | Apr 2010 | B2 |
7704135 | Harrison, Jr. | Apr 2010 | B2 |
7710391 | Bell et al. | May 2010 | B2 |
7729530 | Antonov et al. | Jun 2010 | B2 |
7746345 | Hunter | Jun 2010 | B2 |
7760182 | Ahmad et al. | Jul 2010 | B2 |
7809167 | Bell | Oct 2010 | B2 |
7834846 | Bell | Nov 2010 | B1 |
7852262 | Namineni et al. | Dec 2010 | B2 |
RE42256 | Edwards | Mar 2011 | E |
7898522 | Hildreth et al. | Mar 2011 | B2 |
8035612 | Bell et al. | Oct 2011 | B2 |
8035614 | Bell et al. | Oct 2011 | B2 |
8035624 | Bell et al. | Oct 2011 | B2 |
8072470 | Marks | Dec 2011 | B2 |
8457353 | Reville et al. | Jun 2013 | B2 |
20070110298 | Graepel et al. | May 2007 | A1 |
20070259717 | Mattice et al. | Nov 2007 | A1 |
20080013826 | Hillis et al. | Jan 2008 | A1 |
20080026838 | Dunstan et al. | Jan 2008 | A1 |
20080040692 | Sunday et al. | Feb 2008 | A1 |
20090103780 | Nishihara et al. | Apr 2009 | A1 |
20090228841 | Hildreth | Sep 2009 | A1 |
20100295781 | Alameh et al. | Nov 2010 | A1 |
20120013529 | McGibney et al. | Jan 2012 | A1 |
20120030569 | Migos et al. | Feb 2012 | A1 |
20120069168 | Huang | Mar 2012 | A1 |
20130038601 | Han et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
101254344 | Sep 2008 | CN |
0583061 | Feb 1994 | EP |
H08044490 | Feb 1996 | JP |
20100121420 | Nov 2010 | KR |
543323 | Jul 2003 | TW |
9310708 | Jun 1993 | WO |
9717598 | May 1997 | WO |
9944698 | Sep 1999 | WO |
Entry |
---|
“Kinect for Windows—Human Interface Guidelines v1.7”, Microsoft, http://download.microsoft.com/download/B/0/7/B070724E-52B4-4B1A-BD1B-05CC28D07899/Human_Interface_Guidelines_v1.7.0.pdf, Available as early as Jul. 23, 2013, 135 pages. |
Song, Peng et al., “A Handle Bar Metaphor for Virtual Object Manipulation with Mid-Air Interaction”, Proceedings of the ACM Annual Conference on Human Factors in Computing Systems, May 5, 2012, 10 pages. |
Vbandi, “Kinect Interactions with WPF—Part I: Getting Started”, Dotneteers.net, http://dotneteers.net/blogs/vbandi/archive/2013/03/25/kinect-interactions-with-wpf-part-i-getting-started.aspx, Published Mar. 25, 2013, Accessed Apr. 7, 2014, 19 pages. |
Fisher, S. et al., “Virtual Environment Display System,” ACM 1986 Workshop on Interactive 3D Graphics, Oct. 23, 1986, 12 pages. |
Azarbayejani, A. et al., “Visually Controlled Graphics,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, No. 6, Jun. 1993, 4 pages. |
Sheridan, T. et al., “Virtual Reality Check,” Technology Review, vol. 96, No. 7, Oct. 1993, 9 pages. |
“Simulation and Training,” Division Incorporated, Available as Early as Jan. 1, 1994, 6 pages. |
Granieri, J. et al., “Simulating Humans in VR,” Conference of the British Computer Society, Oct. 12, 1994, 15 pages. |
Freeman, W. et al., “Television Control by Hand Gestures,” Technical Report TR94-24, Mitsubishi Electric Research Laboratories, Dec. 1994, 7 pages. |
Breen, D. et al., “Interactive Occlusion and Collision of Real and Virtual Objects in Augmented Reality,” Technical Report ECRC-95-02, European Computer-Industry Research Center GmbH, Available as Early as Jan. 1, 1995, 22 pages. |
Stevens, J., “Flights Into Virtual Reality Treating Real World Disorders,” The Washington Post, Science Psychology, Mar. 27, 1995, 2 pages. |
“Virtual High Anxiety,” Popular Mechanics, vol. 172, No. 8, Aug. 1995, 1 page. |
Kanade, T. et al., “A Stereo Machine for Video-rate Dense Depth Mapping and Its New Applications,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 1996, 7 pages. |
Kohler, M., “Vision Based Remote Control in Intelligent Home Environments,” Proceedings of 3D Image Analysis and Synthesis 1996, Nov. 1996, 8 pages. |
Bowman, D., “An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments,” Proceedings of the 1997 symposium on Interactive 3D graphics (I3D '97), Apr. 27, 1997, Providence, Rhode Island, 4 pages. |
Aggarwal, J. et al., “Human Motion Analysis: A Review,” Proceedings of IEEE Nonrigid and Articulated Motion Workshop 1997, Jun. 1997, 13 pages. |
Kohler, M., “Techical Details and Ergonomical Aspects of Gesture Recognition applied in Intelligent Home Environments,” Technical University of Dortmund, Germany, Jun. 1997, 35 pages. |
Pavlovic, V. et al., “Visual Interpretation of Hand Gesture for Human-Computer Interaction: A Review,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, Jul. 1997, 19 pages. |
Wren, C. et al., “Pfinder: Real-Time Tracking of the Human Body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, No. 7, Jul. 1997, 6 pages. |
Kohler, M., “Special Topics of Gesture Recognition Applied in Intelligent Home Environments,” Proceedings of International Gesture Workshop, Sep. 1997, 12 pages. |
Miyagawa, R. et al., “CCD-Based Range-Finding Sensor,” IEEE Transactions on Electron Devices, vol. 44, No. 10, Oct. 1997, 5 pages. |
Shao, J. et al., “An Open System Architecture for a Multimedia and Multimodal User Interface,” Improving the Quality of Life for the European Citizen, TIDE 98, Jan. 1998, 8 pages. |
Isard, M. et al., “Condensation—Conditional Density Propagation for Visual Tracking,” International Journal of Computer Vision, vol. 29, No. 1, Aug. 1998, 24 pages. |
Brogan, D. et al., “Dynamically Simulated Characters in Virtual Environments,” IEEE Computer Graphics and Applications, vol. 18, No. 5, Sep. 1998, 12 pages. |
Livingston, M., “Vision-based Tracking with Dynamic Structured Light for Video See-through Augmented Reality,” Doctoral Dissertation, University of North Carolina at Chapel Hill, Dec. 1998, 145 pages. |
Hongo, H. et al., “Focus of Attention for Face and Hand Gesture Recognition Using Multiple Cameras,” Proceedings of the 4th Annual IEEE Conference on Automatic Face and Gesture Recognition, Mar. 2000, 6 pages. |
Zhao, L., “Dressed Human Modeling, Detection, and Parts Localization,” Doctoral Dissertation, The Robotics Institute, Carnegie Mellon University, Jul. 26, 2001, 121 pages. |
Leikas, J. et al., “Virtual Space Computer Games with a Floor Sensor Control: Human Centered Approach in the Design Process,” Proceedings of the First International Workshop on Haptic Human-Computer Interaction, Aug. 31, 2000, Glasgow, United Kingdom, 4 pages. |
Qian, G. et al., “A Gesture-Driven Multimodal Interactive Dance System,” 2004 IEEE International Conference on Multimedia and Expo, ICME 04, Jul. 2004, 4 pages. |
He, L., “Generation of Human Body Models,” Master's Thesis, University of Auckland, Apr. 2005, 111 pages. |
Rosenhahn, B. et al., “Automatic Human Model Generation,” Proceedings of the 11th International Conference of CAIP, Sep. 2005, 8 pages. |
Hasegawa, S. et al., “Human-Scale Haptic Interaction with a Reactive Virtual Human in a Real-Time Physics Simulator,” ACM Computers in Entertainment, vol. 4, No. 3, Article 6C, Jul. 2006, 12 pages. |
Valli, A., “Natural Interaction White Paper,” Natural Interaction Website, Available Online at https://web.archive.org/web/20091007115641/http://www.naturalinteraction.org/images/whitepaper.pdf, as last updated Sep. 2007, 21 pages. |
Takase, H. et al. “Gestural Interface and the Intuitive Interaction with Virtual Objects,” Proceedings of the 2009 ICROS-SICE International Joint Conference (ICCAS-SICE 2009), Aug. 18, 2009, Fukuoka, Japan, 4 pages. |
State Intellectual Property Office of the People's Republic of China, First Office Action Issued in Application No. 201110430789.0, dated Feb. 24, 2014, 6 pages. |
State Intellectual Property Office of the People's Republic of China, Second Office Action Issued in Application No. 201110430789.0, dated Jul. 21, 2014, 17 pages. |
State Intellectual Property Office of the People's Republic of China, Third Office Action Issued in Application No. 201110430789.0, dated Jan. 30, 2015, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150193107 A1 | Jul 2015 | US |