This application makes reference to, incorporates the same herein, and claims all benefits accruing under 35 U.S.C. §119 from an application earlier filed in the Korean Intellectual Property Office on 8 Dec. 2009 and there duly assigned Serial No. 10-2009-0121360.
1. Field of the Invention
This disclosure relates to a getter composition and an organic light emitting diode device including the getter composition.
2. Description of the Related Art
An organic light emitting diode device includes two electrodes and an emission layer interposed therebetween. Electrons are injected from one of the electrodes and are combined in the emission layer with holes injected from the other of the electrodes to generate excitons which release energy by emitting light.
One aspect of this disclosure provides a getter composition improving life-span of an organic light emitting diode device by preventing display defects from forming.
Another aspect of this disclosure provides an organic light emitting diode device that includes the getter composition
According to one aspect of the present invention, there is provided a getter composition that includes a moisture absorbing material and a binder, wherein the binder has a volatility that results in an impurity concentration in the organic emission layer of about 400 ppm or less (i.e., volatility of 400 ppm or less) when heated to a temperature in the range of 60° C. to 120° C. for 2 hours. The binder may include one of a silicone resin, an epoxy resin or a combination thereof. The binder may include a silicone resin, and the binder may have a weight loss rate of 0.6 wt % or less when cured at a temperature in the range of 80° C. to 120° C. The binder may include silicone resin, and the binder may have a weight loss rate of 0.6 wt % or less when cured at a temperature in the range of 80° C. to 120° C. The getter composition may be absent of a solvent. The moisture absorbing material may have a particle size in the range of 10 nm to 500 nm. The moisture absorbing material may have an average particle size in the range of 150 nm to 250 nm. The moisture absorbing material may include at least one of aluminum (Al), magnesium (Mg), manganese (Mn), iron (Fe), calcium (Ca), barium (Ba), strontium (Sr) and oxides thereof. The moisture absorbing material and the binder can include in an amount of 20 wt % to 80 wt % respectively based on the entire amount of the getter composition. The getter composition may be a liquid.
According to another aspect of the present invention, there is provided an organic light emitting diode device that includes a first substrate and a second substrate, an organic emission layer arranged between the first substrate and the second substrate and a getter arranged between the first substrate and the second substrate, wherein the getter comprises a moisture absorbing material and a binder having a volatility that results in an impurity concentration in the organic emission layer of about 400 ppm or less when heated to a temperature in the range of 60° C. to 120° C. for 2 hours.
The binder may include silicone resin, epoxy resin or a combination thereof. The binder may include a silicone resin and have a weight loss of 0.6 wt % or less at a temperature in the range of 80° C. to 120° C. The binder can include an epoxy resin and have a weight loss of 1 wt % or less at a temperature in the range of 80° C. to 120° C. The binder may be absent of a solvent. The moisture absorbing material may have a particle size in the range of 10 nm to 500 nm. The moisture absorbing material may have an average particle size in the range of 150 nm to 250 nm. The moisture absorbing material may include at least one of aluminum (Al), magnesium (Mg), manganese (Mn), iron (Fe), calcium (Ca), barium (Ba), strontium (Sr) and oxides thereof.
The organic light emitting diode device may further include a sealing member arranged between the first substrate and the second substrate to attach and fix the first substrate to the second substrate, the getter may be arranged between the organic emission layer and the sealing member. The getter may be further arranged at a location that overlaps the organic emission layer. The getter may be surrounded by the sealing member.
A more complete appreciation of the invention and many of the attendant advantages thereof, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:
This disclosure will be more fully described hereinafter with reference to the accompanying drawings, in which exemplary embodiments of this disclosure are shown. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of this disclosure.
In the drawings, the thickness of layers, films, panels, regions, etc., are exaggerated for clarity. Like reference numerals designate like elements throughout the specification. It will be understood that when an element such as a layer, film, region, or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
Referring to
The organic light emitting element 300 may include a pair of electrodes and an organic emission layer arranged between the pair of electrodes. One of the electrodes may be an anode while the other may be a cathode. The anode is an electrode that injects holes into the organic emission layer and may be made out of a transparent conductive material having a high work function, such as ITO (indium tin oxide) or IZO (indium zinc oxide). The cathode is an electrode that injects electrons into the organic emission layer and may be made out of a conducting material having no influence on an organic material and may have a low work function, such as aluminum (Al), calcium (Ca), or barium (Ba).
The organic emission layer may include an organic light emitting material that is capable of emitting color when a voltage is applied to the pair of electrodes. The organic light emitting material may include an organic material, an inorganic material, or combination thereof that inherently emits light such as three primary colors of red, green, and blue. For example, it may include aluminum tris(8-hydroxyquinoline) [Alq3], anthracene, a distryl compound or a combination thereof. The organic light emitting diode device displays a desirable image by spatial-summing primary color light emitted from the emission layer.
An auxiliary layer (not shown) may be interposed between one electrode and an organic emission layer and between the other electrode and the organic emission layer. The auxiliary layer may include a hole transport layer (HTL), a hole injection layer (HIL), an electron injection layer (EIL), and an electron transport layer (ETL) for balancing electrons and holes.
The base substrate 100 is arranged under and supports the organic light emitting element 300. The base substrate 100 may be a silicon wafer or may be made out of glass, polymer or the like.
The encapsulation substrate 200 covers the organic light emitting element 300 and may prevent the inflow of moisture and oxygen from the outside. The encapsulation substrate 200 may be made out of glass, polymer, metal, or the like.
The filler 400 may be an inorganic filler, organic filler or a combination thereof.
The sealing member 150 may have a band shape and be arranged along the edge of the base substrate 100 and the encapsulation substrate 200, but the present invention is not limited thereto. The sealing member 150 attaches the base substrate 100 to the encapsulation substrate 200 and fixes them together.
The getter 180 may be a getter composition in liquid form. The getter composition may include a moisture absorbing material and a binder. The moisture absorbing material may absorb moisture and may include at least one of aluminum (Al), magnesium (Mg), manganese (Mn), iron (Fe), calcium (Ca), barium (Ba), strontium (Sr), and oxides thereof.
The moisture absorbing material may have a particle size ranging from about 10 nm to about 500 nm. When the moisture absorbing material has a particle size within this range, the moisture absorbing material may have a larger specific surface area and effectively absorb moisture.
In addition, the moisture absorbing material may have an average particle size ranging from about 150 nm to about 250 nm. When the moisture absorbing material has an average particle size within this range, it may have more uniform sizes, improving distribution property and securing uniformity of life-span of devices throughout a device area.
The binder may include a silicone resin, an epoxy resin, or a combination thereof. Since the silicone resin and the epoxy resin are liquid, the getter composition does not include a solvent. In the present invention, the binder has a low volatility so that the impurity concentration in the organic emission layer caused by the binder can be limited. If the volatility of the binder were to be high, the vapor pressure of the binder would also be high, resulting in a high impurity concentration in the organic emission layer. Such a high impurity concentration in the organic emission layer can produce stains or dark spots in the organic emission layer. In the present invention, by limiting the volatility of the binder, the impurity concentration in the organic emission layer can be limited, resulting in no staining or damage to the organic emission layer.
The term “volatility” is defined as the tendency of a solid or liquid material to pass into a vapor state at a given temperature. Strictly speaking, “volatility” is a vapor pressure of a component divided by its mole fraction in the liquid or solid. Since the mole fraction is often close to unity, the volatility is essentially directly related to the vapor pressure of the substance. Vapor pressure for a given substance varies with temperature. The higher the temperature, the higher the volatility. In the present invention, the volatility of the binder is minimized so that the vapor pressure of the binder, upon application of heat, is also limited. This results in a limited impurity concentration being formed in the organic emission layer due to the volatility of the binder.
In the present invention, the binder may have a sufficiently low volatility so that the impurity concentration in the organic emission layer caused by the binder is limited to 400 ppm or less when heated to a temperature ranging from about 60° C. to about 120° C. for about 2 hours. The binder may have a volatility that produces an impurity concentration in the organic emission layer ranging from about 10 ppm to about 400 ppm. When the binder has a low volatility, it may produce only a small amount of out-gassing during the heating process and/or heating operation, resulting in a smaller amount of binder material that can permeate into the organic emission layer. Accordingly, after the heating process and/or long-term heating operation, the low volatility of the binder may prevent the binder from producing a display defect such as a stain or a dark spot in a display area.
When the binder includes a silicone resin that has volatility, it may have a weight loss of about 0.6 wt % or less at a temperature ranging from about 80° C. to about 120° C. Otherwise, when the binder includes an epoxy resin and that has volatility, it may have a weight loss of about 1 wt % or less when cured at a temperature ranging from about 80° C. to about 120° C.
The moisture absorbing material and the binder may be respectively included in an amount of about 20 wt % to about 80 wt % based on the entire amount of the getter composition. When they are included within the range, the moisture absorbing material and the binder may be included in an amount ranging from about 30 wt % to about 50 wt % and about 50 wt % to about 70 wt % respectively based on the entire amount of the getter composition.
Hereinafter, an organic light emitting diode device according to a second embodiment is illustrated referring to
However, the organic light emitting diode device according to the second embodiment may include a getter 180 surrounded on both sides by sealing member 150. The getter 180 absorbs moisture permeated through the sealing member 150 and thus may protect the organic light emitting element 300 from external moisture.
Another organic light emitting diode device according to a third another embodiment is illustrated referring to
However, unlike the first and second embodiments, the organic light emitting diode device according to the third embodiment may further include a getter 180b formed in a display area and overlapping the organic light emitting element 300 as well as a getter 180a arranged between the sealing member 150 and the filler 400. The getter 180 may be arranged on the encapsulation substrate 200 and then the base substrate 100 and the encapsulation substrate 200 may be assembled.
The following examples illustrate this disclosure in more detail. These examples, however, are not in any sense to be interpreted as limiting the scope of this disclosure.
A getter composition was prepared by mixing 30 wt % of calcium oxide having an average particle size of 100 nm with 70 wt % of silicone resin.
A getter composition was prepared by mixing 30 wt % of calcium oxide having an average particle size of 100 nm with 70 wt % of epoxy resin.
A getter composition was prepared by mixing 30 wt % of calcium oxide having an average particle size of 500 nm with 70 wt % of silicone resin.
A getter composition was prepared by including an epoxy resin, without calcium oxide.
A getter composition was prepared by using 30 wt % of calcium oxide having an average particle size of 100 nm, 60 wt % of epoxy resin and 10 wt % of ethanol.
Measurement of Moisture Absorption Degrees
The getter compositions according to Example 1 and Comparative Example 1 were measured regarding moisture absorption degrees.
First of all, the getter composition according to Example 1 and Comparative Example 1 were coated on each glass substrate and then, assembled with glass substrates, respectively. Next, the resulting product was thermally cured at a temperature of 80° C.
Using a characteristic that a getter composition becomes transparent when the getter composition absorbs moisture, they were measured regarding transmittance under a condition of a high temperature and high humidity.
ITO was sputtered on a glass substrate and then patterned. Next, Alq3 was deposited thereon to form an electron transport layer. Then, Alq3 (tris 8-hydroxyquinoline aluminum) doped 1 wt % of cumarin 6 was arranged thereon by co-depositing as an emission layer. Next, NPB (N,N-dinaphthalene-1-yl-N,N-diphenyl-benzidine) was arranged thereon as a hole injection layer (HIL) and a hole transport layer. Then, Al was sequentially deposited thereon. Next, a sealing member was applied along the edge of a glass substrate using a dispenser. Then, the getter composition of Example 1 was applied between the organic light emitting element and the sealing member. The sealing member was cured using a solid laser after another glass substrate with the same size as the glass substrate was attached together on the above product.
An organic light emitting diode device was fabricated according to the same method as Application Example 1 except for using the getter composition according to Example 2.
An organic light emitting diode device was fabricated according to the same method as Application Example 1 except for including no getter composition.
An organic light emitting diode device was fabricated according to the same method as Application Example 1 except for using the getter composition according to Comparative Example 2.
Display Characteristic Evaluation-1
The organic light emitting diode devices according to Application Example 1 and Application Comparative Example 1 were allowed to stand at 85° C. of temperature and 85% of humidity and checked whether the display developed stains as time proceeded. Referring to
Referring to
The stains develop as an organic emission layer deteriorates due to moisture when a getter is not arranged within the device. Accordingly, since the organic light emitting diode device according to Application Example 1 includes getter and thus absorbs moisture, the organic light emitting diode device may be prevented from degrading and have improved display lifespan.
Display Characteristic Evaluation-2
The organic light emitting diode devices according to Application Example 2 and Application Comparative Example 2 were allowed to stand under 85° C. of temperature and 85% of humidity for 100 hours and checked to see whether display stains had developed or not.
Referring to
An explanation for these results is that a volatile component in a binder included in a getter composition according to the present invention infiltrates into an organic emission layer and forms impurities. Accordingly, when used as a getter composition according to an exemplary embodiment, it may decrease the amount of stains by controlling the volatility of the binder. Therefore, the organic light emitting diode device may have less display degradation and increased life-span.
While this disclosure has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0121360 | Dec 2009 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5591379 | Shores | Jan 1997 | A |
6226890 | Boroson et al. | May 2001 | B1 |
6888307 | Silvernail et al. | May 2005 | B2 |
20030038590 | Silvernail et al. | Feb 2003 | A1 |
20030143423 | McCormick et al. | Jul 2003 | A1 |
20050104032 | Cho et al. | May 2005 | A1 |
20060088663 | Cho et al. | Apr 2006 | A1 |
20070013305 | Wang et al. | Jan 2007 | A1 |
20080272333 | Blanco-Garcia et al. | Nov 2008 | A1 |
20090065049 | Son et al. | Mar 2009 | A1 |
20100225231 | Cok | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2000277254 | Oct 2000 | JP |
2002075170 | Mar 2002 | JP |
2002158088 | May 2002 | JP |
2004265776 | Sep 2004 | JP |
2005327735 | Nov 2005 | JP |
2007035322 | Feb 2007 | JP |
2007141474 | Jun 2007 | JP |
2009142719 | Jul 2009 | JP |
2009238481 | Oct 2009 | JP |
2009259656 | Nov 2009 | JP |
1020050098331 | Oct 2005 | KR |
1020060070166 | Jun 2006 | KR |
100069751 | Jan 2007 | KR |
100670328 | Jan 2007 | KR |
100722464 | May 2007 | KR |
1020070072400 | Jul 2007 | KR |
1020090026928 | Mar 2009 | KR |
Number | Date | Country | |
---|---|---|---|
20110133213 A1 | Jun 2011 | US |