The current disclosure is directed to the field of ground fault circuit interrupters (GFCIs) and more particularly GFCIs to protect electrical devices where there are normally erratic current leakages to ground.
Many electrical wiring devices have a line side, which is connectable to an electrical power supply, and a load side, which is connectable to one or more loads and at least one conductive path between the line and load sides. Electrical connections to wires supplying electrical power or wires conducting electricity to the one or more loads are at line side and load side connections. The electrical wiring device industry has witnessed an increasing call for circuit breaking devices or systems which are designed to interrupt power to various loads, such as household appliances, consumer electrical products and branch circuits.
In particular, electrical codes require electrical circuits in home bathrooms and kitchens to be equipped with ground fault circuit interrupters (GFCI), for example. Presently available GFCI devices use an electrically activated trip mechanism to mechanically break an electrical connection between the line side and the load side. Such devices are resettable after they are tripped by, for example, the detection of a ground fault. A test button is used to test the trip mechanism and circuitry used to sense faults, and a reset button is used to reset the electrical connection between line and load sides. In these cases, the test button and the reset button are located on the GFCI receptacle itself, generally positioned between each socket receptacle.
In certain instances, it is required to have the GFCI's located in harsh environments with exposure to natural elements such as rain, snow and other extreme weather conditions. In these cases it is necessary to contain the GFCI receptacle in a completely watertight compartment or junction box. In addition to being housed in a watertight box it is also required to have the connection portion between the plug and each individual socket of the GFCI also to be water resistant. With current GFCI receptacle configurations, especially with the test and reset buttons located between the sockets, this can be difficult and certain individuals can appreciate the need for a structure that provides a cost effective solution to this problem.
According to the disclosure an embodiment of a GFCI receptacle is provided that includes a pair of electrical sockets, a power interrupter, a watertight compartment and a remotely placed user interface including a keypad and display panel.
The GFCI includes a compartment having a front face and a cover body operatively joined together and housing a pair of electrical sockets for connection to a typical three pronged plug. The front face includes a pair of openings having respective socket covers that are rotateably mounted and providing access to the sockets. A control board is disposed in the front face and electrically connected to the sockets and includes a sensing circuit for detecting a ground fault or arc fault with an integrated trip switch for interrupting the power supplied to the sockets in case of a fault.
The control board further includes a wire bundle removeably secured to the board and routed to the user interface which is mounted to the exterior of the front face and in the embodiment shown the user interface is secured to the top surface of the front face. The keypad and display panel are combined and include the test and reset buttons for operation of the GFCI and also includes a series of indicators that provide a key to the mode of failure or cause of the interruption if the GFCI has been tripped. A watertight gasket is positioned within the front face and includes glands that extend into socket openings for sealing the connection between respective plugs and sockets and a lip that seals the periphery between the front face and the body cover. The wire bundle is routed within the compartment and extends through a wall in the front face or cover body that connects the user interface to the control board. A watertight seal is also positioned between the user interface and the front face therefore providing a completely sealed and self-contained GFCI receptacle.
The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
The appended figures illustrate an embodiment of a ground fault circuit interrupter (GFCI) receptacle assembly 20 and it is to be understood that the embodiment described and illustrated is merely exemplary of the disclosure, which may be embodied in different forms. Therefore, specific details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure.
One or more embodiments of the disclosure utilize a modular construction and are typically used in the construction of residential and commercial building wiring. A typical residential or commercial wiring power distribution has a 120/240 volt system that includes three wire conductors, two line conductors, a neutral conductor and an earthing or reference path. The typical AC distribution system includes two line voltages that are 180 degrees out of phase so that when a voltage is measured across, a peak voltage of 240 volts is achieved and voltages across a single line conductor and a neutral is 120 volts. The embodiment described and illustrated herein is generally directed to a single-phase, polarized-receptacles and outlets.
As best shown in
The housing 22 includes a junction box 30, a cover 32, and a sealing member 34, which are all operatively associated to one another to provide a cavity 36 within the housing 22.
The junction box 30 includes a rear wall 40, a top wall 42, a bottom wall 44, a first side wall 46, and a second side wall 48. Each of the walls 42, 44, 46, 48 extend forward from the rear wall 40 in a generally perpendicular manner such that a front face 50 of the junction box 30 is defined by the free ends of the walls 42, 44, 46, 48 as best illustrated in
As depicted in
The sealing member 34 includes a rearward portion 80 and a forward portion 82. The rearward portion 80 includes a top wall 84, a bottom wall 86, a first side wall 88, and a second side wall 90. The walls 84, 86, 88, 90 define front and rear faces 92, 94 of the rearward portion 80 and an opening 96 which extends through the rearward portion 80. The forward portion 82 includes a front wall 98, a top wall 100, a bottom wall 102, a first side wall 104, and a second side wall 106. The walls 100, 102, 104, 106 extend rearward from the front wall 98 in a generally perpendicular manner to the front face 92 of the rearward portion 80. The walls 98, 100, 102, 104, 106 also define an open cavity 108 therebetween. The opening 96 and the open cavity 108 are in communication with one another and collectively define an open cavity 109 of the sealing member 34. The top wall 100 further includes an aperture 110 provided therethrough which is in communication with the open cavity 109. The front wall 98 further includes a pair of ports 112a, 112b extending forwardly therefrom and which are in communication with the open cavity 109. Port 112a is positioned above port 112b.
In order to form the housing 22, the sealing member 34 is positioned and secured inside the open cavity 72 of the cover 32. In this position, the front wall 98 of the sealing member 34 is positioned against a rear surface of the front wall 60 of the cover 32, and the ports 112a, 112b of the sealing member 34 are positioned within the ports 76a, 76b of the cover 32, respectively. Further, the top wall 100 of the sealing member 34 is positioned against a lower surface of the top wall 62 of the cover 32 such that the aperture 110 of the sealing member 34 is in communication with the aperture 74 of the cover 32. Still further, the bottom wall 102 of the sealing member 34 is positioned against a top surface of the bottom wall 64 of the cover 32, the first side wall 104 of the sealing member 34 is positioned against an inner surface of the first side wall 66 of the cover 32, and the second side wall 106 of the sealing member 34 is positioned against an inner surface of the second side wall 68 of the cover 32. Still further, the front face 92 of the sealing member 34 is positioned against the rear face 70 of the cover 32 and the outer surfaces of the walls 84, 86, 88, 90 of the sealing member 34 are generally flush with the outer surfaces of the walls 62, 64, 66, 68 of the cover 32, respectively. The front face 50 of the junction box 30 is positioned against the rear face 94 of the sealing member 34 and the outer surfaces of the walls 84, 86, 88, 90 of the sealing member 34 are generally flush with the outer surfaces of the walls 42, 44, 46, 48 of the junction box 30, respectively. The junction box 30, cover 32, and sealing member 34 can be secured together by any desired means, such as, for instance, by a plurality of screws. With the housing 22 thus formed, the open cavities 52, 109 of the junction box 30 and the sealing member 34, respectively, collectively form the cavity 36 of the housing 22.
As also illustrated in
The ground plate assembly 114 includes a ground plate 118 and a pair of connection inserts 120a, 120b. The connection inserts 120a, 120b are configured to be coupled to a standard three pronged polarized plug. The ground plate 118 has a front face 122, a rear face 124, and a pair of apertures 126a, 126b which extend therethrough from the front face 122 to the rear face 124. The aperture 126a is positioned above aperture 126b. The connection insert 120a is positioned within the aperture 126a and is secured to the ground plate 118. The connection insert 120b is positioned within the aperture 126b and is secured to the ground plate 118. The connection inserts 120a, 120b generally extend rearwardly from the rear face 124 of the ground plate 118, but may also slightly extend forwardly from the front face 122.
The electronic circuit assembly 116 includes a pair of circuit boards 128a, 128b, a wire bundle 130, and other electronic circuitry including, but not limited to, a sensing circuit (not shown), a trip switch (not shown), and first and second connection portions (not shown), all of which are electrically connected to one another. The circuit boards 128a, 128b are preferably arranged in a perpendicular orientation. The wire bundle 130 is releasably electrically connected at a first end (not shown) thereof to one or both of the circuit boards 128a, 128b. A second end (not shown) of the wire bundle 130 is electrically connected to the user interface assembly 28, as will be discussed in further detail hereinbelow. The first connection portion (not shown) is configured to be electrically coupled to the connection insert 120a and the second connection portion (not shown) is configured to be electrically coupled to the connection insert 120b.
The GFCI receptacle 24 is preferably positioned within the cavity 36 of the housing 22 when the front face 122 of the ground plate 118 is positioned against a rear surface of the front wall 98 of the sealing member 34, such that the apertures 126a, 126b of the ground plate 118 are in alignment with and in communication with, the ports 112a, 112b, respectively, of the sealing member 34. If portions of the connection inserts 120a, 120b extend forwardly from the front face 122 of the ground plate 118, these forward portions of the connection inserts 120a, 120b can be positioned within the ports 112a, 112b, respectively, of the sealing member 34. Thus, forward portions of the connection inserts 120a, 120b are configured as receiving portions, accessible through the ports 76a/112a, 76b/112b, respectively, of the cover 32 and the sealing member 34, which are adapted to receive a plug therein. The ports 112a, 112b of the sealing member 34 also provide a seal between the ports 76a, 76b and a mating plug upon connection.
As shown in
As best shown in
The user interface 168 includes a housing 172 and electronic circuitry 173 which is housed within the housing 172. The housing 172 includes a top wall 174, a bottom wall 176, a front wall 178, a rear wall 180, a first side wall 182, and a second side wall 184, which collectively define a cavity 186 of the housing 172. The electronic circuitry 173 is positioned within the cavity 186. The top wall 174 of the housing 172 includes one or more openings 188 therethrough which allow for one or more portions of the electronic circuitry 173 within the housing 172 to be viewed. The top wall 174 of the housing 172 further includes one or more indices 190 which provide information regarding the one or more portions of the electronic circuitry 173 which are visible. The bottom wall 176 of the housing 172 includes an extension 192 that extends downwardly therefrom. The extension 192 is hollow and thus provides communication to the cavity 186 of the housing 172.
The sealing member 170 is a generally flat member which has a top surface 194, a bottom surface 196, and an aperture 198 which extends therethrough from the top surface 194 to the bottom surface 196.
The user interface assembly 28 is preferably positioned on the top wall 62 of the cover 32 of the housing 22. The bottom surface 196 of the sealing member 170 is positioned against an outer surface of the top wall 62 of the cover 32 of the housing 22 such that the aperture 198 is in general alignment with and in communication with the aperture 74 of the housing 22. The bottom wall 176 of the housing 172 of the user interface 168 is positioned on the top surface 194 of the sealing member 170 and the extension 192 of the user interface 168 extends into the aperture 198 of the sealing member 170. The extension 192 of the user interface 168 may also extend into one or both of the apertures 74, 110 of the cover 32 and sealing member 34, respectively, of the housing 22.
The second end (not shown) of the wire bundle 130 is routed through the cavity 36 of the housing 22 as desired and extends into the cavity 186 of the housing 172 of the user interface 168 to be electrically connected to the electronic circuitry 173 housed therein. The wire bundle 130 thus extends through one or more of the hollow extension 192 of the housing 172 of the user interface 168, the aperture 198 of the sealing member 170, the aperture 74 of the cover 32, and the aperture 110 of the sealing member 34, depending on where the hollow extension 192 terminates.
As illustrated in
While the user interface assembly 28 is described and illustrated as being secured to the top wall 62 of the cover 32 of the housing 22, it is to be understood that, through minor modification, the user interface assembly 28 could alternatively be secured to other walls of the cover 32 or junction box 30 of the housing 22. In a further alternative, through minor modification, the user interface assembly 28 could alternatively not be secured to the housing 22, and instead be positioned remotely from the housing 22.
It is to be understood that the sealing members 34, 170 described herein are intended to be water resistant seals, thereby causing the GFCI receptacle assembly 20 to be water resistant, thereby inhibiting the entrance of moisture or debris into the GFCI receptacle assembly 20.
The electrical connection provided between the user interface assembly 28 and the GFCI receptacle 24 allows for the remote operation of the circuit interrupter. The user interface assembly 28 further includes a test control and a reset control used to operate the GFCI receptacle 24. The GFCI receptacle 24 is also configured to perform a series of tests to ensure that the GFCI receptacle 24 is connected properly. The openings 188 (in connection with the electronic circuitry 173 visible therethrough) and indices 190 of the top wall 174 of the user interface 168, provide visual feedback to the mode and type of failure which may have occurred in operation causing the GFCI receptacle 24 to fail or trip during a fault or any miswiring that occurred during assembly. These tests include, but are not limited to, reverse polarity, open-ground, open-neutral, open-hot, hot-and-ground-reversed, hot-on-neutral, hot-unwired, Ground Fault Circuit Interrupter (GFCI) functional and receptacle tension.
It should be noted that in general, sealed plug and receptacle connectors for residential and business structures are provided with some degree of resistance to moisture and debris infiltration, a self-contained totally sealed system with GFCI capability is not typically available. Generally weather proof receptacles are sealed on the exterior only and once a plug is inserted into a socket, this connection is not sealed. A cover generally seals the exterior of the socket prior to connection and provided with a rotatable cover. In particular, GFCI receptacles which have associated reset and testing circuitry buttons located on the receptacle surface a completely sealed system has not been provided. By removing the testing and reset circuitry away from the receptacle face, the embodiment shows a completely sealed system. Additionally, this also provides the advantage of a remote user interface that is easily accessible to the user. The remote user interface also allows the incorporation of a feedback circuit to indicate the connection status and miswiring detection of the receptacle, which in the past was accomplished by a separate plug-in type tester.
It will be understood that there are numerous modifications of the illustrated embodiments described above which will be readily apparent to one skilled in the art, such as many variations and modifications of the compression connector assembly and/or its components including combinations of features disclosed herein that are individually disclosed or claimed herein, explicitly including additional combinations of such features, or alternatively other types of contact array connectors. Also, there are many possible variations in the materials and configurations.
This application claims priority to U.S. Provisional Application No. 62/112983, filed on Feb. 6, 2015 which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62112983 | Feb 2015 | US |