The present invention relates to biological imaging agents and, more specifically, to imaging agents that can bind to and image ghrelin O-acyltransferase (GOAT) without binding to the ghrelin receptor (GHS-R1a).
Ghrelin is a 28 amino acid peptide hormone which plays a central role in regulating energy balance within the body. Ghrelin signaling exerts this regulation through its involvement in multiple physiological processes including hunger, adipogenesis, glucose metabolism, and insulin secretion and sensitivity. Ghrelin's involvement in appetite control and energy regulation in multiple diseases has led to proposed connections to diseases such as diabetes, obesity, anorexia nervosa, and hyperphagia in patients with Prader-Willi syndrome. Beyond energy homeostasis, ghrelin has been linked to neurological processes including learning and memory and may also impact addictive behaviors.
Like other peptide hormones, ghrelin requires multiple processing steps in the process of maturation prior to secretion. In addition to several proteolytic cleavages to liberate the 28-amino acid ghrelin from the 117-amino acid precursor preproghrelin, ghrelin also undergoes a unique posttranslational modification wherein a seine residue near the N-terminus is esterified with an octanoyl group. This rare modification is essential for ghrelin to bind and activate the GHS-R1a receptor following secretion into circulation. In addition to its cognate receptor, ghrelin interacts with other biomolecules within the bloodstream such as autoantibodies, lipoproteins, and esterases. These interactions play roles in trafficking ghrelin and regulating ghrelin signaling through conversion of ghrelin to desacyl ghrelin by octanoyl ester hydrolysis. Recent reports supporting desacyl ghrelin re-acylation by bone marrow adipocytes and hypothalamic neurons suggest that the ghrelin/desacyl ghrelin signaling system may be more complex and dynamic than originally proposed.
Ghrelin octanoylation is catalyzed by the enzyme ghrelin O-acyl-transferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme superfamily. While the majority of MBOAT family members modify small molecule substrates, GOAT is one of three MBOAT, along with Porcupine (PORCN) and Hedgehog acyltransferase (Hhat), which acylate protein substrates. There is substantial interest in inhibitor development targeting these enzymes, but the challenges of studying these topologically complex integral membrane enzymes have limited our understanding. For example, there are extremely limited options for specifically detecting the presence of GOAT in biological samples, complicated by potential cross-reactivity with the ghrelin receptor (GHS-R1a). Accordingly, there is a need for imaging agents that can bind to and image GOAT without binding to GHS-R1a.
The present invention comprises a series of peptide-based molecules, derived from a new class of GOAT inhibitors, which specifically bind to GOAT and thus serve as agents for imaging and detecting GOAT without binding to GHS-R1a. This present invention also allows for simultaneous imaging of GOAT and GHS-R1a.
The present invention will be more fully understood and appreciated by reading the following Detailed Description in conjunction with the accompanying drawings, in which:
Referring to the figures, wherein like numeral refer to like parts throughout, there is seen in
The present invention stems from comparison between the structure-activity relationships governing ghrelin binding to GOAT and to the GHS-R1a receptor. Proceeding from the N-terminus of ghrelin, binding to both GOAT and GHS-R1a is severely diminished by acetylation of the N-terminal amino group of ghrelin. A sarcosine substitution at the G1 position leads to a >25-fold loss in binding affinity for the ghrelin receptor as reflected by IC50 values in a competition binding assay, while the same substitution strengthens binding to GOAT by 60 percent, as seen below in Table 1:
The marked differences in ligand binding requirements between GOAT and GHS-R1a, particularly at the G1 and S3 positions of ghrelin-derived peptides, support the potential for designing molecules that specifically target either of these ghrelin-interacting proteins for use in studying and modulating the ghrelin signaling pathway.
There is seen in
Referring to
The present application claims priority to U.S. Provisional App. No. 62/730,653, filed on Sep, 13, 2018.
Number | Date | Country | |
---|---|---|---|
62730653 | Sep 2018 | US |