The present disclosure generally relates to gimbal technology and, more particularly, to a gimbal, a gimbal control method, and an unmanned aerial vehicle (UAV).
Gimbals currently on the market have a software angle limit in a roll direction of a mounted load thereon. Generally, the software angle limit is about ±30°. If the software limit is not provided and the load rotates more than 30° in the roll direction and reaches 45° or more, the gimbal will swing wildly, such that a camera carried by the gimbal cannot continue shooting. However, the user would like to perform a large angle shooting in the roll direction in some shooting scenes and also would desire to shoot some special effect scenes that require the load to be rotated at a large angle in the roll direction, for example, a spinning around image.
In accordance with the disclosure, there is provided a gimbal including a first shaft assembly, a second shaft assembly, and a third shaft assembly. The first shaft assembly includes a first shaft arm and a first motor arranged at a first end of the first shaft arm. The second shaft assembly includes a second shaft arm and a second motor arranged at a first end of the second shaft arm and fixedly connected to a second end of the first shaft arm that is distal from the first motor. The third shaft assembly includes a third shaft arm configured to carry a load and a third motor arranged at an end of the third shaft arm and fixedly connected to a second end of the second shaft arm that is distal from the second motor.
Also in accordance with the disclosure, there is provided an unmanned aerial vehicle (UAV) including a fuselage, a gimbal coupled to the fuselage, and a load carried by the gimbal. The gimbal includes a first shaft assembly, a second shaft assembly, and a third shaft assembly. The first shaft assembly includes a first shaft arm and a first motor arranged at a first end of the first shaft arm. The second shaft assembly includes a second shaft arm and a second motor arranged at a first end of the second shaft arm and fixedly connected to a second end of the first shaft arm that is distal from the first motor. The third shaft assembly includes a third shaft arm carrying the load and a third motor arranged at an end of the third shaft arm and fixedly connected to a second end of the second shaft arm that is distal from the second motor.
Also in accordance with the disclosure, there is provided a method for controlling a gimbal including a first shaft assembly, a second shaft assembly, a third shaft assembly, and a handheld rod. The first shaft assembly includes a first shaft arm and a first motor arranged at a first end of the first shaft arm. The second shaft assembly includes a second shaft arm and a second motor arranged at a first end of the second shaft arm and fixedly connected to a second end of the first shaft arm that is distal from the first motor. The third shaft assembly includes a third shaft arm carrying a load and a third motor arranged at an end of the third shaft arm and fixedly connected to a second end of the second shaft arm that is distal from the second motor. The method includes receiving a mode-switching command instructing the gimbal to switch from a first mode to a second mode or to instruct the gimbal to switch from the second mode to the first mode. If the mode-switching command instructs the gimbal to switch from the first mode to the second mode, the load is controlled to remain relatively stationary and the handheld rod is controlled to rotate 90° about a Y-axis until an extending direction of the handheld rod is parallel to an X-axis, such that the first motor acts as a roll-axis motor and the second motor acts as a yaw-axis motor. If the mode-switching command instructs the gimbal to switch from the second mode to the first mode, the load is controlled to remain relatively stationary and the handheld rod is controlled to rotate 90° about the Y-axis until the extending direction of the handheld rod is parallel to a Z-axis, such that the first motor acts as the yaw-axis motor and the second motor acts as the roll-axis motor.
In order to provide an illustration of technical schemes of disclosed embodiments, the drawings used in the description of the disclosed embodiments are briefly described below. It is apparent that the following drawings are merely some embodiments of the present disclosure. Other drawings may be obtained based on the disclosed drawings by those skilled in the art without creative efforts.
Technical schemes of the disclosed embodiments will be described below with reference to the drawings. It will be appreciated that the described embodiments are some rather than all of the embodiments of the present disclosure. Other embodiments conceived by those having ordinary skills in the art on the basis of the disclosed embodiments without inventive efforts should fall within the scope of the present disclosure.
Hereinafter, a gimbal, a gimbal control method, and an unmanned aerial vehicle (UAV) consistent with the disclosure will be described in detail with reference to the drawings. In the situation of no conflict, the embodiments and/or features of the embodiments can be combined.
As shown in
As shown in
The first motor 12 can be a roll-axis motor, the second motor 22 can be one of a yaw-axis motor and a pitch-axis motor, and the third motor 32 can be another one of the yaw-axis motor and the pitch-axis motor. For example, in some embodiments, the first motor 12 can be the roll-axis motor, the second motor 22 can be the yaw-axis motor, and the third motor 32 can be the pitch-axis motor. In some other embodiments, the first motor 12 can be the roll-axis motor, the second motor 22 can be the pitch-axis motor, and the third motor 32 can be the yaw-axis motor. In some embodiments, the roll-axis motor can rotate to drive the load 300 to rotate about the X-axis and also drive the yaw-axis motor and the pitch-axis motor to rotate synchronously around the axis of the roll-axis motor.
Consistent with the disclosure, when the roll-axis motor is rotating, the pitch-axis motor and the yaw-axis motor can rotate synchronously around the axis of the roll-axis motor. With the gimbal 200 being in such an architecture, the roll-axis motor can realize a large-angle rotation. The situation in the conventional gimbals that when the rotation angle of the roll-axis motor is greater than a certain angle, the gimbal can be over-constrained due to a change from three degrees of freedom to two degrees of freedom, thereby causing the gimbal to rotate wildly or twitch, will not happen.
It is not intended to limit the types of the first motor 12, the second motor 22, and the third motor 32 herein. The first motor 12, the second motor 22, and the third motor 32 can be stepping motors or other types of motors.
When the first motor 12 is used as the roll-axis motor, the rotation angle of the roll-axis motor can be greater than 45° to meet the shooting needs of a user. In some embodiments, the rotation angle of the roll-axis motor can be greater than 70°. In some embodiments, the roll-axis motor can rotate without constraint, i.e., the roll-axis motor can rotate 360° or more than 360°, such that the load 300 carried by the gimbal 200 can shoot some creative scene that spins around. For example, when shooting a racing chase, the roll-axis motor can be rotated 360° or more than 360° to shoot images from more angles. In some embodiments, in order to realize the 360° or more than 360° rotation of the roll-axis motor, the first motor 12 can be provided with a slip ring, such that the roll-axis motor can rotate without constraint.
In some embodiments, the third motor 32 can be the pitch-axis motor. The gimbal 200 can switch between a first mode and a second mode. When the gimbal 200 is in the first mode, the gimbal 200 can be used like a conventional gimbal (such as usage states shown in
For example, when the gimbal 200 is switched to the first mode, as shown in
When the gimbal 200 is switched to the second mode (also referred to as a flashlight mode), as shown in
In some other embodiments, the third motor 32 can be the yaw-axis motor. In the first mode, the first motor 12 can be the pitch-axis motor and the second motor 22 can be the roll-axis motor. In the second mode, the first motor 12 can be the roll-axis motor and the second motor 22 can be the pitch-axis motor. A switching process of the two modes here is similar to the switching process of the two modes described above. Reference can be made to the two modes in the foregoing embodiments, and details are omitted here.
Hereinafter, descriptions are made with the third motor 32 being the pitch-axis motor as an example. In the first mode, the first motor 12 is the yaw-axis motor, and the second motor 22 is the roll-axis motor. In the second mode, the first motor 12 is the roll-axis motor and the second motor 22 is the yaw-axis motor.
The gimbal 200 can be a handheld gimbal or a mountable gimbal. For example, in some embodiments, the gimbal 200 is a handheld gimbal as shown in
In some other embodiments, the gimbal 200 is a mountable gimbal as shown in
No matter whether the gimbal 200 is the handheld gimbal 200 or the mountable gimbal 200, the process of the gimbal 200 switching between the first mode and the second mode is similar. Taking the handheld gimbal 200 as an example, the process of the gimbal 200 switching between the first mode and the second mode will be further described.
The gimbal 200 can be switched from the first mode to the second mode manually or automatically. For example, in some embodiments, the gimbal 200 can be switched from the first mode to the second mode or from the second mode to the first mode by manually rotating the handheld rod 40 for 90° about the Y-axis, and the extending direction of the handheld rod 40 can be identified by the controller. For example, when the gimbal 200 is switched from the first mode to the second mode, the load 300 can be maintained relatively stationary. The handheld rod 40 can be manually rotated 90° about the Y-axis until the extending direction of the handheld rod 40 is parallel to the X-axis. When the gimbal 200 is switched from the second mode to the first mode, the load 300 can be maintained relatively stationary. The handheld rod 40 can be manually rotated 90° about the Y-axis until the extending direction of the handheld rod 40 is parallel to the Z-axis. The direction that the handheld rod 40 is manually rotated 90° about the Y-axis, when the gimbal 200 is switched from the first mode to the second mode, is opposite to the direction that the handheld rod 40 is manually rotated 90° about the Y-axis, when the gimbal 200 is switched from the second mode to the first mode.
In some other embodiments, the gimbal 200 can be switched from the first mode to the second mode in an automatic manner. In some embodiments, when the gimbal 200 is switched from the first mode to the second mode, the controller can control the load 300 to remain relatively stationary and can control the handheld rod 40 to rotate 90° about the Y-axis until the extending direction of the handheld rod 40 is parallel to the X-axis. When the gimbal 200 is switched from the second mode to the first mode, the controller can control the load 300 to remain relatively stationary and can control the handheld rod 40 to rotate 90° about the Y-axis until the extending direction of the handheld rod 40 is parallel to the Z-axis. For example, as shown in
In some embodiments, the extending direction of the handheld rod 40 refers to a direction of a line connecting a front end of the handheld rod 40 and a rear end of the handheld rod 40. When the gimbal 200 is the mountable gimbal 200 and the gimbal 200 is switched from the first mode to the second mode, the controller can control the load 300 to remain relatively stationary and can control the handheld rod 40 to rotate 90° about the Y-axis, such that the extending direction of the base (i.e., a direction of line connecting an end of the base connected to the first motor 12 and another end of the base distal from the first motor 12) can be parallel to the X-axis.
Furthermore, after receiving a mode-switching command, the controller can control the handheld rod 40 to rotate 90° about the Y-axis, such that the role of the first shaft assembly 10 and the role of the second shaft assembly 20 can be exchanged. The switching command can be configured to instruct the gimbal 200 to switch from the first mode to the second mode, or instruct the gimbal 200 to switch from the second mode to the first mode.
In some embodiments, the handheld rod 40 can be provided with a mode-switching switch, and the mode-switching switch can be electrically connected with the controller. In some embodiments, the mode-switching command can be generated when the mode-switching switch is operated. In the second mode, the first motor 12 can be controlled to rotate about the X-axis by operating the mode-switching switch, such that the load 300 can rotate at a large angle in the roll direction. In some embodiments, when the mode-switching switch is switched from off to on, the mode-switching switch can generate the mode-switching command for instructing the gimbal 200 to switch from the first mode to the second mode. When the mode-switching switch is switched from on to off, the mode-switching switch can generate the mode-switching command for instructing the gimbal 200 to switch from the second mode to the first mode. In some embodiments, the mode-switching switch can be a lever.
In some other embodiments, the mode-switching command can be sent to the controller by an external device to implement a remote control of the gimbal 200. In the second mode, the external device can control the first motor 12 to rotate about the X-axis, such that the load 300 can rotate at a large angle in the roll direction. In some embodiments, the external device may be a mobile terminal, a panning wheel, a motion-detection device, or a remote controller, and may also be another device for controlling the gimbal 200.
In some embodiments, the controller can be configured to not only control the rotation of the third motor 32, but also control the rotation of the first motor 12 and the second motor 22. In some embodiments, the controller may be a central processing unit (CPU). The controller may further include a hardware chip. The hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof. The PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
In some embodiments, the first motor 12 of the gimbal 200 is fixedly provided on the fuselage 100. In some embodiments, the first motor 12 can be fixedly provided on the bottom of the fuselage 100 through the base.
The UAV may be a multi-motor UAV or a non-motor UAV.
As shown in
At S601, a mode-switching command is received. The mode-switching command can be configured to instruct the gimbal 200 to switch from the first mode to the second mode or instruct the gimbal 200 to switch from the second mode to the first mode.
The mode-switching command may be generated by a mode switching switch on the gimbal 200 or may be sent by an external device. For example, in some embodiments, the gimbal 200 can also include the mode-switching switch. The mode-switching command can be generated when the mode-switching switch is operated. In the second mode, the first motor 12 can be controlled to rotate about the X-axis by operating the mode-switching switch, such that the load 300 can rotate at a large angle in the roll direction. In some embodiments, when the mode-switching switch is switched from off to on, the mode-switching switch can generate the mode-switching command for instructing the gimbal 200 to switch from the first mode to the second mode. When the mode-switching switch is switched from on to off, the mode-switching switch can generate the mode-switching command for instructing the gimbal 200 to switch from the second mode to the first mode. In some embodiments, the mode-switching switch can be a lever.
In some other embodiments, the mode-switching command can be sent by the external device to implement a remote control of the gimbal 200. In the second mode, the first motor 12 can be controlled to rotate about the X-axis by the external device, such that the load 300 can rotate at a large angle in the roll direction. In some embodiments, the external device may be a mobile terminal, a panning wheel, a motion-detection device, or a remote controller, and may also be another device for controlling the gimbal 200.
At S602, when the mode-switching command is configured to instruct the gimbal 200 to switch from the first mode to the second mode, the load 300 is controlled to remain relatively stationary, and the handheld rod 40 is controlled to rotate 90° about the Y-axis until the extending direction of the handheld rod 40 is parallel to the X-axis, such that the first motor 12 acts as a roll-axis motor and the second motor 22 acts as a yaw-axis motor.
At S603, when the mode-switching command is configured to instruct the gimbal 200 to switch from the second mode to the first mode, the load 300 is controlled to remain relatively stationary, and the handheld rod 40 is controlled to rotate 90° about the Y-axis until the extending direction of the handheld rod 40 is parallel to the Z-axis, such that the first motor 12 acts as the yaw-axis motor and the second motor 22 acts as the roll-axis motor.
In the processes at S602 and S603, as shown in
In the present disclosure, the extending direction of the handheld rod 40 refers to the direction of the line connecting the front end of the handheld rod 40 and the rear end of the handheld rod 40.
In some embodiments, if the gimbal 200 is in the second mode, when the roll-axis motor rotates, the yaw-axis motor and the pitch-axis motor will synchronously rotate around the axis of the roll-axis motor. With the gimbal 200 being in such an architecture, the roll-axis motor can realize a large-angle rotation. The situation in the conventional gimbals that when the rotation angle of the roll-axis motor is greater than a certain angle, the gimbal can be over-constrained due to a change from three degrees of freedom to two degrees of freedom, thereby causing the gimbal to rotate wildly or twitch, will not happen. When the gimbal 200 is in the first mode, the gimbal 200 can be used like a conventional gimbal (as the use states shown in
For a further description of the gimbal control method, reference can be made to the description above of the gimbal 200 shown in
In the specification, the relationship terms, such as “first,” “second,” or the like, are merely used for distinguishing an entity or an operation from another entity or another operation, and do not require or imply that any such actual relationship or sequence exists between the entities or operations. The term “including,” “comprising,” or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, a method, an article, or an apparatus that comprises a plurality of elements includes not only those elements but also other elements that are not explicitly listed, or also includes elements that are inherent to the process, the method, the article, or the apparatus. In the absence of further limitation, an element defined by a sentence “includes a . . . ” does not exclude that another same element exists in the process, the method, the article, or the device including the element.
The gimbal, the gimbal control method, and the UAV provided by the embodiments of the present disclosure are described in detail above. Specific examples are used herein to illustrate the principles and embodiments of the present disclosure. The above embodiments are merely used to help to understand the method and core ideas of the present disclosure. Those skilled in the art can modify the specific implementation manner and the application scope on the basis of the idea of the present disclosure. Thus, the content of the specification is not intended to limit the present disclosure.
This application is a continuation of International Application No. PCT/CN2018/076237, filed on Feb. 11, 2018, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2018/076237 | Feb 2018 | US |
Child | 16879512 | US |