Today, many operating systems utilize a windows based configuration of user interface elements, such as application programs. Application windows are a user interface facility of graphical user interface (GUI) systems. While application windows may vary in appearance across systems, they share many common user interface (UI) visuals attributes, such as a frame area with a title bar control containing window management controls, the ability to be resized and repositioned, and to exist among other application windows associated with different applications. Together, multiple application windows can appear simultaneously on the screen, even layered on top of each other, typically represented by the order each application window was last accessed by a user. When an application window is the window that a user is working with currently, its frame appears in an active visual state. This is in contrast to an inactive visual state when the application window is not the window the user is currently working with. These two states typically have different appearances and primarily serve to communicate to the user which application window she is currently working with.
Windows® XP by Microsoft® Corporation of Redmond, Wash. supports the ability to change user interface “themes” which essentially swaps out all UI visuals with alternate renderings in an operating environment. The themes of Windows® XP are different bitmaps. As a user chose a different theme for her desktop environment, UI elements of the environment would employ the designated bitmaps for the different UI elements. Windows® XP provides the ability to change the appearance of all common window frames and controls and other UI elements, allowing for personalization of the operating environment. However, a user is limited to the themes provided.
Other operating systems employ a UI environment which is drawn programmatically. Users are provided greater flexibility in personalization as color choice is not limited to supplied bitmaps. Users can effectively dial in any color choice they wished and have that applied to common window frame and controls and other UI elements. However, the color choice is a single format applied to a single non-glass appearance window frame representation. A user is not supplied with a number of different visual appearances for the UI elements other than the overall color choice.
Increasing a user experience in an operating environment and additional manners for identification of application windows, property sheets, and dialogs for the user are always under development. Creating real world environments during a user experience facilitates an easier understanding of use of an application window and other user interface elements displayed as part of an operating system. Aspects of the invention include a system for rendering colorization to a glass appearance window frame. Aspects are directed to methods for displaying and/or changing a glass appearance window frame's visual appearance in the event of an action and/or based upon user-defined or system defined values.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. The Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
The foregoing summary of the invention, as well as the following detailed description of illustrative embodiments, is better understood when read in conjunction with the accompanying drawings, which are included by way of example, and not by way of limitation with regard to the claimed invention.
In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made without departing from the scope of the present invention.
The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
With reference to
Computer 110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, random access memory (RAM), read only memory (ROM), electronically erasable programmable read only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by computer 110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as ROM 131 and RAM 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation,
The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110, although only a memory storage device 181 has been illustrated in
When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers can be used. The existence of any of various well-known protocols such as TCP/IP, Ethernet, FTP, HTTP and the like is presumed, and the system can be operated in a client-server configuration to permit a user to retrieve web pages from a web-based server. Any of various conventional web browsers can be used to display and manipulate data on web pages.
A programming interface (or more simply, interface) may be viewed as any mechanism, process, protocol for enabling one or more segment(s) of code to communicate with or access the functionality provided by one or more other segment(s) of code. Alternatively, a programming interface may be viewed as one or more mechanism(s), method(s), function call(s), module(s), object(s), etc. of a component of a system capable of communicative coupling to one or more mechanism(s), method(s), function call(s), module(s), etc. of other component(s). The term “segment of code” in the preceding sentence is intended to include one or more instructions or lines of code, and includes, e.g., code modules, objects, subroutines, functions, and so on, regardless of the terminology applied or whether the code segments are separately compiled, or whether the code segments are provided as source, intermediate, or object code, whether the code segments are utilized in a runtime system or process, or whether they are located on the same or different machines or distributed across multiple machines, or whether the functionality represented by the segments of code are implemented wholly in software, wholly in hardware, or a combination of hardware and software.
Notionally, a programming interface may be viewed generically, as shown in
Aspects of such a programming interface may include the method whereby the first code segment transmits information (where “information” is used in its broadest sense and includes data, commands, requests, etc.) to the second code segment; the method whereby the second code segment receives the information; and the structure, sequence, syntax, organization, schema, timing and content of the information. In this regard, the underlying transport medium itself may be unimportant to the operation of the interface, whether the medium be wired or wireless, or a combination of both, as long as the information is transported in the manner defined by the interface. In certain situations, information may not be passed in one or both directions in the conventional sense, as the information transfer may be either via another mechanism (e.g. information placed in a buffer, file, etc. separate from information flow between the code segments) or non-existent, as when one code segment simply accesses functionality performed by a second code segment. Any or all of these aspects may be important in a given situation, e.g., depending on whether the code segments are part of a system in a loosely coupled or tightly coupled configuration, and so this list should be considered illustrative and non-limiting.
This notion of a programming interface is known to those skilled in the art and is clear from the foregoing detailed description of the invention. There are, however, other ways to implement a programming interface, and, unless expressly excluded, these too are intended to be encompassed by the claims set forth at the end of this specification. Such other ways may appear to be more sophisticated or complex than the simplistic view of
A communication from one code segment to another may be accomplished indirectly by breaking the communication into multiple discrete communications. This is depicted schematically in
In some cases, it may be possible to ignore, add or redefine certain aspects (e.g., parameters) of a programming interface while still accomplishing the intended result. This is illustrated in
It may also be feasible to merge some or all of the functionality of two separate code modules such that the “interface” between them changes form. For example, the functionality of
A communication from one code segment to another may be accomplished indirectly by breaking the communication into multiple discrete communications. This is depicted schematically in
Yet another possible variant is to dynamically rewrite the code to replace the interface functionality with something else but which achieves the same overall result. For example, there may be a system in which a code segment presented in an intermediate language (e.g. Microsoft IL, Java ByteCode, etc.) is provided to a Just-in-Time (JIT) compiler or interpreter in an execution environment (such as that provided by the Net framework, the Java runtime environment, or other similar runtime type environments). The JIT compiler may be written so as to dynamically convert the communications from the 1st Code Segment to the 2nd Code Segment, i.e., to conform them to a different interface as may be required by the 2nd Code Segment (either the original or a different 2nd Code Segment). This is depicted in
It is also noted that the above-described scenarios for achieving the same or similar result as an interface via alternative embodiments may also be combined in various ways, serially and/or in parallel, or with other intervening code. Thus, the alternative embodiments presented above are not mutually exclusive and may be mixed, matched and combined to produce the same or equivalent scenarios to the generic scenarios presented in
The composition of a glass appearance window frame is achieved in part through a supplied bitmap image plus the programmatically generated blur region behind the glass appearance window frame. As shown in the operating environment 200 of
As shown in
As shown in
Application window 203A is represented by taskbar button 213A, and application window 203B is represented by taskbar button 213B. A hidden application window is represented by taskbar button 213C. As shown in this example, application windows 203A and 203B are shown in the desktop space 201. The file name of the content 205A of application window 203A is shown along the title bar area of application window 203A. The file name of the content 205B of application window 203B is shown along the title bar area of application window 203B. Each file name may be generated by the application program operating the application window and/or may be customizable by a user. The same file name for each application window 203A and 203B is shown in the corresponding taskbar buttons 213A and 213B. Application windows 203A and 203B and taskbar buttons 213A and 213B include an application icon identifier to allow a user to identify the type of application program running the respective application window.
Application windows 203A and 203B are used by application programs to display content 205A and 205B, respectively, to a user. The application program associated with application window 203A may be a different application program or the same application program corresponding to application window 203B. Each of application windows 203A and 203B is independent of and external to the other application windows 203A and 203B. As used herein, a first application window is external to a second application window when the first application window is not contained within the second application window and the second application window is not contained within the first application window. It should be understood that a first window is not contained in a second application window if the two application windows merely overlap.
Application windows 203A and 203B are shown to include a glass appearance window frame 249A and 249B, respectively. The glass appearance window frames 249A and 249B of application windows 203A and 203B may be configured to only be shown around the top of the application windows 203A and 203B and/or one or more other sides of the application windows 203A and 203B. As used herein, a glass appearance window frame representation includes a window frame of an application window itself, an application window tile in a predefined control region, a taskbar, a sidebar, and a start menu. It should be understood by those skilled in the art that although the illustrative examples described herein refer to application windows and application window tiles, the present invention is not so limited to those examples. One or more aspects of the present invention may be used with respect to a start menu, a sidebar, a taskbar, a property sheets, and dialog boxes. The taskbar 210 in
The glass appearance window frames 249A and 249B of application windows 203A and 203B and the taskbar 210 are shown being represented by a defined color value and level of opacity value. In a user experience and the rendering of the glass appearance window frame, a visual and behavioral element that effectively mimics colorization, e.g., color tinting, of a glass window is introduced. The configuration of the colorization of the glass appearance window frame may be dynamic, changing whether over time or in response to some event. In order to provide greater personalization over the color employed in the operating environment 200, aspects of the invention describes the ability to programmatically introduce a user-defined and/or system-defined color value and level of opacity value into the composition of a glass appearance window frame. Specifically, the color value and the level of opacity value are introduced into the programmatically-described blur region behind the glass appearance window frame. The resulting appearance is that a color tinting has been applied to the glass appearance window frame. Together, the transparency, underlying blur, reflective highlight, and colorization suggest the properties associated with real-world glass.
The colorization of the application windows 203A and 203B may be part of the composition of common glass appearance window frames and may be a combination of a pre-defined bitmap image and a programmatically-described blur region behind the glass appearance window frame as described below. In accordance with at least one aspect of the present invention, the colorization of the glass appearance window frames change dynamically.
As described above, application window 203A is partially obscured by application window 203B that is positioned in front since application 203B is higher in the Z-order than application window 203A. As shown in
In accordance with at least one aspect of the invention, color values may be described using red, green and blue (RGB) component values, ranging from 0-255, and the level of opacity, e.g., alpha, may be described as a percentage value, ranging from 0%-100%. A percentage value of 0% may correspond to no color into a glass appearance window frame whereas a percentage value of 100% may correspond to a fully opaque color. Together, these values may be provided as an aRGB value for application to a blur region behind a glass appearance window frame to create a visual appearance of colorization of the glass appearance window frame. It should be understood by those skilled in the art that any other type of color management system may be employed, such as sRGB, CMYK, and CIElab, and that the present invention is not so limited to any one type of color management system. Further, any of a number of other manners for representing variations in color and/or opacity levels may be employed. Still further, other techniques for gradient colorization may be employed where one portion of a glass appearance window frame is one color and/or level of opacity while a different portion is a second color and/or level of opacity.
In
As shown in
At step 405, the defined color value to introduce to the glass appearance window frame is received. Moving to step 407, the defined level of opacity values to introduce to the glass appearance window frame is received. At step 409, the defined color value and level of opacity value are applied to the blur region behind the glass appearance window frame. Finally, at step 411, the application window is displayed with a glass appearance window frame in accordance with the blur region and the applied defined color and level of opacity values. For example, application window 203A and/or 203B in
It should be understood by those skilled in the art that the process described in
Example 500A in
As shown, the glass appearance window frame 549B_1 of application window 503B and the regions 511 and 512 and taskbar buttons 513B-513C in the taskbar 210 are shown with a different visual appearance than the glass appearance window frame 549A_1 of application window 503A and taskbar button 513A. Because application window 503A is in an active state colorization, its glass appearance window frame 549A_1 and corresponding taskbar button 513A are shown in a different colorization. As previously stated, the difference in colorization may be a difference in opaqueness and/or color of the glass appearance window frame.
Upon an occurrence of when application window 503B becomes the active window, application window 503A automatically becomes inactive. Example 500B in
As application window 503B is now the active application window, application window 503B is at the top of the Z-order of the application windows within the desktop space 201. As such, the content 505B of application window 503B is not transparent with respect to underlying content such as shown in portion 551B. The content 505A of application window 503A is only exposed in areas not covered by application window 503B and is partially exposed in areas covered by the glass appearance window frame 549B_2 of application window 503B based upon the level of opacity of the glass appearance window frame 549B_2.
As shown in
Proceeding to step 613, a defined inactive color and level of opacity is applied to the glass appearance window frame of the first application window, and, at step 615, the first application window is displayed in accordance with the applied defined inactive color and level of opacity for the glass appearance window frame of the first application window. At step 617, a determination is made as to whether a command has been received to change the first application window to an active state status. If not, the process ends. If a command has been received in step 617, the process moves to step 619.
At step 619, a defined active color and level of opacity is applied to the glass appearance window frame of the first application window. Moving to step 621, the first application window is displayed in accordance with the applied defined active color and level of opacity for the glass appearance window frame of the first application window. At step 623, a defined inactive color and level of opacity is applied to the glass appearance window frame of the second application window, and, at step 625, the second application window is displayed in accordance with the applied defined inactive color and level of opacity for the glass appearance window frame of the second application window before the process ends. Although not shown within these Figures, it should be understood by those skilled in the art that more than two application windows may be configured within a desktop space and that the present invention is not so limited to one or two application windows.
Proceeding to step 709, a determination is made as to whether the defined color value and level of opacity value for the glass appearance window frame of the second application window is different from the defined color value and level of opacity value of the glass appearance window frame of the first application window. For example, an operating system may have a default instruction to apply the same color value and level of opacity value to any window that is opened and displayed within a desktop space. Alternatively, an operating system may have a default instruction to apply a different color and level of opacity to new windows that are opened and displayed within a desktop space. For example, the choice of color values and/or level of opacity values may be user specific and/or implemented according to the application utilizing the glass appearance window frame. In such a case, all glass appearance window frames for an email application may be displayed in accordance with a first color value and/or level of opacity value while all glass appearance window frames for a web browser application or a word processing application may be displayed in accordance with a second color value and/or level of opacity value.
Returning to
Starting at step 801, an application window with a glass appearance window frame is generated. Proceeding to step 803, a default color value and level of opacity value is applied to the blur region behind the glass appearance window frame. At step 805, the application window is displayed in accordance with the blur region and applied default color value and level of opacity value. At step 807, a determination is made as to whether a command has been received to introduce a new color value and/or level of opacity value, e.g., to change the default configuration. If not, the process returns to step 805. If a command is received in step 807, the process moves to step 809
At step 809, a new color value and/or level of opacity value to introduce to the glass appearance window frame is received. For example, a user may decide to change default configuration for the level of opacity of application windows. Proceeding to step 811, the new color value and/or level of opacity value is applied to the blur region behind the glass appearance window frame. Finally at step 813, the application window is displayed in accordance with the blur region and applied new color value and/or level of opacity value.
It should be understood by those skilled in the art that other variables such as stacked windows, obscured windows, and/or overlapping windows may also be taken into account when rendering colorization of a glass appearance window frame for an application window. Those skilled in the art would appreciate these variables and all the possible configurations that may exist.
With respect to an application programming interface (API), various aspects of the present invention may be performed by an API. For example, public APIs may interface with an operating system to allow the operating system to provide the various features of the present invention. In one embodiment, a software architecture stored on one or more computer-readable media for processing data representative of a change in the colorization of a glass appearance window frame of an application window may include a component configured to change a color value and/or level of opacity value associated with a glass appearance window frame of an application window and an application program interface to access the component. An API may receive a request to change the color value and/or level of opacity value associated with a glass appearance window frame of an application window, access the necessary function(s) to perform the operation, and then send the results back to an operating system. The operating system may use the data provided from the API to perform the various features of the present invention.
While illustrative systems and methods as described herein embodying various aspects of the present invention are shown, it will be understood by those skilled in the art, that the invention is not limited to these embodiments. Modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. For example, each of the elements of the aforementioned embodiments may be utilized alone or in combination or subcombination with elements of the other embodiments. It will also be appreciated and understood that modifications may be made without departing from the true spirit and scope of the present invention. The description is thus to be regarded as illustrative instead of restrictive on the present invention.
Number | Name | Date | Kind |
---|---|---|---|
5452406 | Butler et al. | Sep 1995 | A |
5742749 | Foran et al. | Apr 1998 | A |
5917487 | Ulrich | Jun 1999 | A |
5920313 | Diedrichsen et al. | Jul 1999 | A |
6104391 | Johnston, Jr. et al. | Aug 2000 | A |
6356284 | Manduley et al. | Mar 2002 | B1 |
6445400 | Maddalozzo et al. | Sep 2002 | B1 |
6466228 | Ulrich et al. | Oct 2002 | B1 |
6633310 | Andrew et al. | Oct 2003 | B1 |
6918093 | Broussard | Jul 2005 | B2 |
20020149629 | Craycroft et al. | Oct 2002 | A1 |
20030058278 | Allen et al. | Mar 2003 | A1 |
20030231204 | Hanggie et al. | Dec 2003 | A1 |
20040162675 | Moon et al. | Aug 2004 | A1 |
20040207658 | Awada et al. | Oct 2004 | A1 |
20040230888 | Kramer et al. | Nov 2004 | A1 |
20050044504 | Fernandez et al. | Feb 2005 | A1 |
20050060658 | Tsukiori | Mar 2005 | A1 |
20050073529 | Gu | Apr 2005 | A1 |
20050088447 | Hanggie et al. | Apr 2005 | A1 |
20050091608 | Gusmorino et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
1143334 | Oct 2001 | EP |
1156416 | Nov 2001 | EP |
Number | Date | Country | |
---|---|---|---|
20070124692 A1 | May 2007 | US |