The present specification generally relates to glass articles and, more particularly, to methods for mitigating mechanical failure and improving the reliability of glass articles due to the presence of flaws.
Glass articles are increasingly employed in a wide variety of consumer and commercial products including smart phones, tablets, lap-top computers, automated teller machines, food and beverage packages, and the like. While various techniques are available to improve the strength of glass articles, there is an ever present risk that the glass articles may fail due to the presence of flaws in the material. As such, there is an emphasis on reducing the likelihood of failure of these glass articles.
The strength of a glass article is determined by the damage history from melt surface to use and the applied stress experienced during use, including the magnitude, location, and duration of the stress. This leads to a strength distribution for any given population of manufactured glass articles as no two glass articles have the same damage history. As a result, the probabilistic strength of a glass article can be difficult to predict, particularly considering this strength distribution variability.
One method of decreasing strength distribution variability includes tempering the as-manufactured glass article to ensure all surface flaws are within residual compressive stress zone imparted to the glass article. Means of tempering include thermal quenching of the surface or chemically exchanging network modifier ions (i.e., ion exchange strengthening). These processes are limited in effectively reducing strength distribution variability by the depth of the residual compressive stress that they are able to impart to the glass article. In particular, the depth of the residual compressive stress depends on the thickness of glass used in the article as well as the composition of the glass. If the depth of the compressive stress does not exceed the deepest flaw in the glass article, there is little to no benefit of the residual compressive stress in load bearing situations. Therefore, neither of these tempering approaches can be used to effectively reduce strength distribution variability for glass articles with flaws that extend beyond the depth of residual compressive stress.
Coatings, both organic and inorganic, have been shown to decrease the severity of damage introduction in glass articles throughout their lifetime, thereby reducing the strength distribution variability during the lifetime of the glass article. But, the effective use of coatings first requires that the glass articles be produced according to a manufacturing process which yields glass articles with an adequate strength distribution for their intended use. The addition of the coating only maintains that strength distribution throughout the lifetime of the product—it does not reduce the strength distribution variability. That is, if the manufacturing process does not produce an adequate strength distribution, then the coating is not going to decrease the strength distribution variability.
Accordingly a need exists for alternative methods for decreasing the strength distribution variability in glass articles, thereby mitigating mechanical failure of the glass article and improving reliability.
According to one embodiment, a glass article may include a glass body having a first surface and a second surface opposite the first surface. The first surface and the second surface each have a radius of curvature. The first surface of the glass body comprises a flaw population extending from the first surface into a thickness of the glass body with a maximum initial flaw depth Ai. The first surface of the glass body may be etched to a depth less than or equal to about 25% of the maximum initial flaw depth Ai of the flaw population present in the first surface. When the glass article is under uniaxial compressive loading, at least a portion of the first surface is in tension and a uniaxial compressive strength of the glass article is greater than or equal to 90% of a uniaxial compressive strength of a flaw-free glass article.
According to another embodiment, a method for improving the reliability of glass articles may include providing a glass article having a first surface, a second surface opposite the first surface, an initial thickness Ti extending from the first surface to the second surface, and a flaw population with a maximum initial flaw depth Ai extending from the first surface into the initial thickness Ti. Glass material is selectively removed from the first surface of the glass article and adjacent to each flaw in the flaw population at a uniform rate by chemically processing at least the first surface of the glass article at a temperature and for a time such that, after chemically processing: flaws having the maximum initial flaw depth Ai remain in the glass article and have a post-processing stress concentration factor Ktpp at a tip of the flaw which is less than an initial stress concentration factor Kti at the tip of the flaw prior to chemical processing; the flaw population has a maximum post-processing flaw depth App which is substantially equal to Ai; a post-processing thickness Tpp of the glass article is less than the initial thickness Ti; and |Tpp−Ti| is substantially equal to |App−Ai|.
Additional features and advantages of the methods for mitigating mechanical failure in glass articles and improving reliability described herein will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.
Reference will now be made in detail to embodiments of glass articles and methods for mitigating the mechanical failure of glass articles, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts. According to one embodiment, a glass article may include a glass body having a first surface and a second surface opposite the first surface. The first surface and the second surface each have a radius of curvature. The first surface of the glass body comprises a flaw population extending from the first surface into a thickness of the glass body with a maximum initial flaw depth Ai. The first surface of the glass body may be etched to a depth less than or equal to about 25% of the maximum initial flaw depth Ai of the flaw population present in the first surface. When the glass article is under uniaxial compressive loading, at least a portion of the first surface is in tension and a uniaxial compressive strength of the glass article is greater than or equal to 90% of a uniaxial compressive strength of a flaw-free glass article. Various embodiments of glass articles and methods for mitigating mechanical failure of glass articles and improving the reliability of glass articles will be described herein with specific reference to the appended drawings.
Conventionally, the predominant method for reducing the strength distribution variability of a population of glass articles has been to over engineer the glass articles to account for the “worst case” flaw scenario. Specifically, the maximum size of a flaw population introduced in a glass article during manufacturing or subsequent processing may be statistically determined by studying a statistically significant population of glass articles which have undergone the same manufacturing and/or processing conditions.
Once the maximum size of a flaw in the glass article has been determined, a remediation treatment, such as an etching treatment or the like, may be developed to remove glass material from the surface of the glass article to a depth greater than the maximum size of a flaw in the glass article, effectively removing the entire flaw population from the glass article. In many cases, the design of the glass article will be revised to account for this loss of material by adding additional thickness to the glass such that the finished product is within design specifications in terms of thickness following any treatment to remove the flaw population.
While such a technique is effective for reducing the strength distribution variability in a population of glass articles, it ultimately adds significantly to the cost of the glass article by requiring the addition of glass material in the design to account for material lost during any remediation treatments.
The methods described herein reduce the strength distribution variability in a population of glass articles without the removal of glass material from the surface of the glass article to a depth greater than or equal to the maximum size of a flaw in the glass article. That is, the methods described herein do not completely remove the flaw population from the surface of the glass article.
Referring now to
In embodiments where the glass article 100 is a glass container as depicted in
While
In some embodiments, the glass articles described herein are formed from aluminosilicate glass compositions, such as the glass compositions described in U.S. Pat. Nos. 8,980,777, 8,551,898, or U.S. Pat. No. 8,753,994. Alternatively, the glass articles may be formed from borosilicate glass compositions, such as conventional Type 1, Class A or Class B borosilicate glasses according to ASTM E438-92(2011) or even Type II glass compositions according to ASTM E438-92(2011). However, it should be understood that the specific type of glass composition from which the glass articles are formed is not particularly limited and that other suitable glass compositions are contemplated.
Referring now to
In embodiments, the maximum initial flaw depth Ai for a given population of glass articles exposed to identical manufacturing, processing, and handling conditions (and therefore subject to the same mechanical insults potentially resulting in the introduction of flaws) can be determined by examining a statistically significant subset of the population of glass articles to determine a flaw depth distribution for the entire population. The maximum initial flaw depth Ai can be determined directly from the flaw depth distribution.
Each flaw 102 has an initial stress intensity factor Kti. The initial stress intensity factor Kti is a dimensionless factor which relates to the magnitude of stress in the material surrounding the tip 110 of the flaw and, as such, directly relates to the propensity of the flaw 102 to propagate through the material, ultimately resulting in the failure of the glass article 100. Specifically, larger values of the initial stress intensity factor Kti indicate greater tensile stress in the material and a greater propensity for crack propagation, particular when the internal residual tensile stresses are combined with externally applied stresses acting on the glass article. The initial stress intensity factor Kti is inversely proportional to the initial radius of curvature ri at the tip 110 of the flaw 102. That is, the initial stress intensity factor Kti is greater for a flaw 102 with a small initial radius of curvature ri at the tip 110 of the flaw 102 and lower for a flaw 102 with a relatively larger initial radius of curvature ri at the tip 110 of the flaw 102.
Referring again to
In the embodiments described herein, the strength distribution variability in the glass article 100 due to the presence of the flaw population is reduced or mitigated and the reliability of the glass article 100 is improved by selectively removing material along the depth of each flaw in the population and, specifically, selectively removing material along the maximum initial flaw depth Ai (i.e., selectively removing glass material from the crack affected zone) while minimizing the removal of material from the first surface 106 of the glass article 100. As a result, the tip 110 of the flaw 102 is widened or “blunted” by enlarging the radius of curvature at the tip 110, thereby reducing the initial stress intensity factor Kti and the propensity of the flaw 102 to propagate through the thickness of the glass material. However, after, the selective removal of material along the maximum initial flaw depth Ai, at least a portion of the flaw population remains in the glass article. More specifically, at least those flaws which have the maximum initial flaw depth Ai are still present in the glass article following removal of the glass material.
In embodiments where the glass article comprises curved surfaces, as described herein, the selective removal of material from along the depth of the flaws in the flaw population increases the uniaxial compressive strength of the glass article relative to a flaw-free glass article. That is, selective removal of material from along the depth of the flaws in the flaw population increases the uniaxial compressive strength such that the uniaxial compressive strength approaches the uniaxial compressive strength of a flaw-free glass article. For example, in embodiments, the selective removal of material from along the depth of the flaws in the flaw population increases the uniaxial compressive strength of the glass article to greater than or equal to 90% of the uniaxial compressive strength of a flaw-free glass article. In some embodiments, the selective removal of material from along the depth of the flaws in the flaw population increases the uniaxial compressive strength of the glass article to greater than or equal to 92% of the uniaxial compressive strength of a flaw-free glass article or even greater than or equal to 95% of the uniaxial compressive strength of a flaw-free glass article. In some other embodiments, the selective removal of material from along the depth of the flaws in the flaw population increases the uniaxial compressive strength of the glass article to greater than or equal to 98% of the uniaxial compressive strength of a flaw-free glass article.
In some embodiments, glass material is selectively removed along the maximum initial flaw depth Ai of the flaw 102 by chemical processing. In embodiments, chemical processing may include contacting the glass article 100 with an etching solution. In embodiments, the glass article may be chemically processed by bringing an etching solution into contact with both the first surface 106 and the second surface 108 of the glass article 100, such as when the glass article is completely immersed in a bath of the etching solution. In some other embodiments, the etching solution is brought into contact with only the first surface 106 of the glass article 100. For example, in embodiments where the glass article 100 is a glass container in which the first surface 106 is an external surface of the glass container and one of the ends of the glass container is closed, such as when the glass container is a glass vial, the glass article may be immersed in a bath of the etching solution such that the etching solution only contacts the external surface of the glass container and not the interior surface (i.e., the second surface 108) of the glass container.
In some embodiments, each flaw 102 in the flaw population may be closed prior to chemical processing. That is, the flaws in the glass container may be the result of elastically derived frictive damage which, following the introduction of the damage, causes the flaws to close such that the fracture faces on either side of the flaw are in contact with one another along the depth of each flaw. In this scenario, when the chemical processing treatment involves contacting the first surface of the glass article with an etching solution, the etching solution may not be able to enter the flaw itself; instead, the selective removal of material from within the crack affected zone 104 due to contact with the etching solution proceeds from the first surface 106 of the glass article to the tip 110 of the flaw 102 (i.e., from the surface of the glass article to the interior of the glass article) without a corresponding removal of glass material to the same depth from the first surface 106 of the glass article in areas outside of the crack affected zone 104. This behavior, which has been observed experimentally, supports the hypothesis that the glass material in the crack affected zone 104 is more susceptible to dissolution than the glass material in the bulk of the glass article outside of the crack affected zone 104.
In embodiments, chemical processing is carried out by contacting at least the first surface of the glass article with an etching solution at a concentration and for a time and at a temperature sufficient to selectively remove the material along the maximum initial flaw depth Ai in the crack affected zone 104 while removing less than or equal to the same amount of material (at least in terms of depth) from the first surface 106 and/or the second surface 108 of the glass article. That is, the etching solution applied to at least the first surface 106, and the conditions under which the etching solution is applied, does not result in the removal of glass material from the first surface 106 of the glass article down to a depth corresponding to the maximum initial flaw depth Ai such that the entire flaw population is removed from the first surface 106 of the glass article; instead, the etching solution applied to at least the first surface 106, and the conditions under which the etching solution is applied, are sufficient to remove the material within the crack affected zone 104 surrounding the flaw with minimal removal of material from either the first surface 106 and the second surface 108 of the glass article. This has the effect of leaving behind at least a portion of the flaw population in the first surface 106 of the glass article 100, albeit with a different morphology, following chemical processing.
In embodiments, at least the first surface of the glass article is etched to a depth less than or equal to about 25% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the of the glass article. For example, in some embodiments, the first surface of the glass article may be etched to a depth less than or equal to about 20% or even less than or equal to about 15% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the glass article. In some embodiments, the glass article is etched to a depth less than or equal to about 25% and greater than or equal to about 5% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the of the glass article. In some other embodiments, the glass article may be etched to a depth less than or equal to about 20% and greater than or equal to about 5% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the of the glass article. In still other embodiments, the glass article is etched to a depth less than or equal to about 15% and greater than or equal to about 5% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the of the glass article. In some other embodiments, the glass article is etched to a depth less than or equal to about 25% and greater than or equal to about 10% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the of the glass article. In some other embodiments, the glass article may be etched to a depth less than or equal to about 20% and greater than or equal to about 10% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the of the glass article. In still other embodiments, the glass article is etched to a depth less than or equal to about 15% and greater than or equal to about 10% of the maximum initial flaw depth Ai of the flaw population present in the first surface of the of the glass article.
In embodiments, the etching solution comprises a mixture of hydrofluoric acid having a first molarity and at least one mineral acid with a second, different molarity. The molarity of the hydrofluoric acid and the molarity of the mineral acid(s) are selected to satisfy a predetermined relationship to facilitate uniform etching of the glass article. Specifically, the hydrofluoric acid is included in the etching solution to facilitate the dissolution of SiO2 from the glass network. The mineral acid(s) are included in the mixture and specifically selected to facilitate the dissolution of other constituent components of the glass network. For example, for glasses with high concentrations of MgO and/or CaO, hydrochloric acid may be used to dissolve these components of the glass network. However, it has also been found that differences in the dissolution rate of the hydrofluoric and the mineral acid(s) may result in non-uniform removal of material from the glass article.
Specifically, it has been found that when the molarity of the at least one mineral acid is less than 3 times the molarity of the hydrofluoric acid, the mineral acid and the glass constituent components dissolved in the mineral acid form a gel layer (i.e., gelation) which coats the surface of the glass article and slows and/or inhibits further dissolution of material from the glass article, resulting in non-uniform material removal from the surface of the glass article. In situations where the glass article is etched to mitigate failure from flaws, as described herein, the gel layer may hinder modification of the crack tip morphology which, in turn, may result in a higher stress intensity factor at the crack tip and a greater propensity for failure from the flaw. For example, when a glass article is etched to remove flaws from a surface of the glass article, the gel layer resulting from a low-molarity mineral acid in the etching solution (that is, low molarity relative to the molarity of the hydrofluoric acid) may accumulate proximate the tip of the flaw, effectively closing off the tip and preventing further modification of the crack tip morphology.
However, it has been determined that when the molarity of the mineral acid(s) of the etching solution is greater than or equal to about 3 times the molarity of the hydrofluoric acid in the etching solution and less than or equal to about 6 times the molarity of the hydrofluoric acid in the etching solution, the etching solution does not form a gel layer on the surface (or within the flaws) of the glass article and, as such, glass material is removed from the surface of the glass article (and from within the flaws) at a substantially uniform rate. Accordingly, in the embodiments described herein, the molarity of the mineral acid(s) is greater than or equal to 3 times and less than or equal to 6 times the molarity of the hydrofluoric acid. That is, the second molarity is greater than or equal to 3 times and less than or equal to 6 times the first molarity.
In the embodiments described herein, the molarity of the hydrofluoric acid (i.e., the first molarity) is greater than or equal to 0.5 M and less than or equal to about 3.0 M and the molarity of the mineral acid (i.e., the second molarity) is from about 3 to about 6 times the first molarity to achieve a uniform dissolution and removal of material from the first surface of the glass article and adjacent to the flaws in the glass article.
In the embodiments described herein, the mineral acid includes at least one mineral acid other than hydrofluoric acid. For example, the mineral acid may include at least one of hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid, hydrobromic acid, and perchloric acid. In embodiments, the mineral acid may include more than one mineral acid. For example, a combination of mineral acids may be used to affect the uniform dissolution and removal of a range of glass constituent components depending on the chemistry of the glass being etched.
In the embodiments described herein, the etching solution is suitable to uniformly dissolve and remove material from the first surface of the glass article at a rate of less than 10% of the mass of the glass article over a treatment time greater than or equal to about 90 minutes and less than or equal to about 360 minutes. This relatively low rate of material removal enhances the uniformity of material removal while minimizing the overall amount of material removed and reducing the stress intensity factor at the tip of each flaw in the flaw population present in the glass article.
In one embodiment, the etching solution used in the chemical processing may comprise a mixture of 1 molar (1 M) hydrofluoric acid with 4 molar (4 M) hydrochloric acid in water. For example, in one embodiment, the etching solution may comprise a solution of 3.4% 1M HF by volume, 33.3% 4M HCl by volume, with the balance being water (e.g., a solution of 136 mL of 1M HF, 1332 mL of 4M HCl and 2532 mL H2O).
In embodiments, the etching solution and the glass article are at ambient temperature (e.g., at a temperature of 25° C.) when brought into contact with one another. However, the temperature of the etching solution may be varied (i.e., increased or decreased) to control the rate at which glass material is removed from the glass article.
In embodiments, the glass article may be contacted with the etching solution for a treatment time less than or equal to 360 minutes. In some embodiments, the glass article may be contacted with the etching solution for a treatment time less than or equal to 270 minutes, or even less than or equal to 180 minutes. In some other embodiments the glass article may be contacted with the etching solution for a treatment time less than or equal to 90 minutes or even less than or equal to 60 minutes. In some embodiments, the glass article may be contacted with the etching solution for a treatment time greater than or equal to 60 minutes or even 90 minutes and less than or equal to 360 minutes. In some other embodiments, the glass article may be contacted with the etching solution for a treatment time greater than or equal to 60 minutes or even 90 minutes and less than or equal to 270 minutes. In some other embodiments, the glass article may be contacted with the etching solution for a treatment time greater than or equal to 60 minutes or even 90 minutes and less than or equal to 180 minutes. In still other embodiments, the glass article may be contacted with the etching solution for a treatment time greater than or equal to 60 minutes and less than or equal to 90 minutes.
In one particular embodiment where the etching solution is a mixture of 3.4% 1M HF by volume and 33.3% 4M HCl by volume in water at a temperature of 25° C., the glass article is contacted with the etching solution for a treatment time which is greater than or equal to 90 minutes in order to facilitate removal of material in the crack affected zone 104. In this embodiment, the treatment time may be less than or equal to 360 minutes. That is, the treatment time may be from about 90 minutes to about 360 minutes. However, it should be understood that the treatment time may be varied according to the specific etching solution, the temperature of the etching solution, and the glass composition of the glass article. It should also be understood that the treatment time may be varied depending on the maximum initial flaw depth Ai of the flaw population within the glass article. That is, flaw populations which have a greater maximum initial flaw depth Ai may require longer etching time to complete the selective removal of material from the surface to the crack tip.
Referring now to
As noted above, the material in the crack affected zone 104 may be more susceptible to dissolution upon exposure to an etching solution than the glass material in the bulk of the glass article 100, including the glass material at the first surface 106 of the glass article. After the etching treatment, each flaw 102 in the flaw population has a depth which is less than or equal to the maximum post-processing flaw depth App measured from the processed first surface 106pp of the glass article to the tip 110 of the flaw 102. In some embodiments described herein, the maximum post-processing flaw depth App is greater than or substantially equal to the maximum initial flaw depth Ai. That is, in some embodiments, the maximum initial flaw depth Ai may actually increase as a result of the chemical processing treatment. While not wishing to be bound by theory, it is believed that this increase may be due to the difference in the solubility of the glass material in crack affected zone 104 (
The chemical processing treatment also increases the width of the flaw 102 as well as the radius of curvature of the flaw 102 at the tip 110. That is, after the chemical processing treatment, each flaw 102 remaining in the flaw population has a post-etching width 2dpp which is greater than the initial width 2di. Similarly, the post-processing radius rpp of the tip 110 of each flaw 102 remaining in the flaw population after chemical processing is greater than the initial radius ri of the flaw 102. That is dpp2/App is greater than di2/Ai.
As noted above, the stress intensity factor Kt of a flaw is inversely proportional to the radius of the flaw at its tip. Thus, increasing the radius of the flaw 102 at the tip 110 through chemical processing decreases the stress concentration factor Kt. Specifically, the post-processing stress concentration factor Ktpp of the flaw 102 after chemical processing, such as after exposure to an etching treatment, is less than the initial stress concentration factor Kti of the flaw 102 prior to chemical processing (i.e., Ktpp<Kti). This means that, after chemical processing, any flaws remaining in the flaw population have a lower propensity for propagating through the thickness of the glass article 100 and, as a result, mechanical failure of the glass article 100 is mitigated and the reliability of the glass article 100 is improved.
Said differently, prior to chemical processing (e.g., prior to exposure to an etching treatment), the glass article 100 has an initial failure probability Pi. After chemical processing (e.g., after exposure to the etching treatment), the glass article has a post-processing failure probability Ppp which is less than the initial failure probability Pi despite the fact that at least a portion of the flaws in the flaw population remain in the glass article 100 after exposure to the etching treatment, such as those flaws which initially had the maximum initial flaw depth Ai, and the maximum initial flaw depth Ai has been increased to App. This reduction in the failure probability after chemical processing is due, at least in part, to the change in the morphology of the flaw 102 along its depth and at the tip 110 of the flaw 102.
In embodiments, after the glass article has been chemically processed by exposure to the etching solution such that the glass article is etched to a depth less than or equal to 25% of the maximum initial flaw depth Ai, the uniaxial compressive strength of the chemically processed glass article is substantially the same as the uniaxial compressive strength of a glass article etched to the maximum initial flaw depth of Ai under the same uniaxial compression loading condition.
As noted above, the width 2dpp of the flaw 102 increases as a result of chemical processing, exposing the fracture faces of the flaw, which faces are now roughly parallel to one another. While not wishing to be bound by theory, it is believed that the increased width of the flaw 102 allows for other processing fluids to penetrate into the depth of the flaw 102 to the tip 110. For example, the glass article 100 may be ion-exchange processed in a molten salt bath after chemical treatment in order to introduce a layer of compressive stress in at least the first surface 106pp of the glass article 100. While not wishing to be bound by theory, it is believed that the increased width of the flaw after chemical processing may allow the molten salt of the salt bath to penetrate to the tip 110 of the flaw 102 such that at least the tip 110 of the flaw 102 is in compression, further improving the strength of the glass article 100 with the existing flaw population. This may also provide remediation of flaws that would normally extend beyond the depth of the compressive layer achieved by ion-exchange processing as the tips of such flaws are placed in compression.
The methods described herein can be utilized to reduce the Weibull strength distribution variability in a population of glass articles, mitigating the probability of mechanical failure of the glass articles under similar loading conditions, and improving the reliability of the glass articles over their lifetime. That is, a reduction in the Weibull strength distribution variability of a population of glass articles utilizing the methods described herein can increase the ultimate reliability of the glass articles as the glass articles are subjected to randomly applied loading events during their intended lifetime.
Specifically, the methods described herein increase the low end of the Weibull strength distribution to more closely match the high end of the Weibull strength distribution by reducing the stress concentration factor at the tip of flaws in the flaw population without removing all the flaws in the flaw population. As such, the variability in the Weibull strength distribution is reduced across the population of glass containers which, in turn, enables an increased allowable applied loading event magnitude during the lifetime of the glass containers. Said differently, by reducing the propensity for failure from low strength outliers (e.g., those flaws having the maximum initial flaw depth Ai), the reliability of the population of glass articles is increased by preventing breakage of the glass articles from known applied loading events. This approach to damage mitigation can be tailored to ensure ultra-high reliability glass articles by eliminating known failure mode root causes.
In terms of Weibull statistics, this increase in the reliability of a population of glass articles by decreasing the variability in the Weibull strength distribution (i.e., decreasing the width of the strength distribution) and increasing the magnitude of the distribution means an increase in Weibull modulus as well as an increase in characteristic strength of the population of glass articles for a known flaw source, each of which may be achieved by the methods described herein which effectively reduce the stress concentration factor at the tip of a flaw and increase the strength of the glass article. Using the methods described herein, those flaws which have the maximum initial flaw depth Ai are modified to have a reduced stress concentration factor without removing the flaws from the glass article. The reduction in the stress concentration factor effectively reduces the stress magnitudes required to propagate any given flaw remaining in the glass article after treatment, thereby reducing the variability in observed strength.
The reduction in the failure probability after chemical processing can be equated to the failure probability of a flaw-free glass body or article. Specifically, the Weibull strength distribution of the glass body or article after chemical processing can be related to the theoretical Weibull strength distribution of a flaw-free glass body or article. The theoretical Weibull strength distribution of the flaw-free glass article may be calculated for a given loading condition (such as uniaxial compressive loading as described herein) using fracture mechanics. In the embodiments described herein, the actual Weibull strength distribution of the glass article following chemical processing and under uniaxial compressive loading is within 10% of the theoretical Weibull strength distribution of a flaw-free glass article under the same loading conditions. That is, if the flaw-free glass article has a theoretical Weibull strength distribution of X for the applied uniaxial compressive loading condition, the chemically processed glass article will have an actual Weibull strength distribution that is greater than or equal to 90% of the theoretical Weibull strength distribution of the flaw-free glass article under the same loading conditions. In some embodiments described herein, the actual Weibull strength distribution of the glass article following chemical processing and under uniaxial compressive loading is within 5% of the theoretical Weibull strength distribution of a flaw-free glass article under the same loading conditions. In some other embodiments, the actual Weibull strength distribution of the glass article following chemical processing and under uniaxial compressive loading is within 2% of the theoretical Weibull strength distribution of a flaw-free glass article under the same loading conditions.
The embodiments described herein will be further clarified by the following example.
In order to demonstrate the increased reliability of glass articles processed according to the methods described herein, a laboratory scale experiment was set up to compare the load-to-failure distribution of a population of untreated glass articles with the load-to-failure distributions of populations of glass articles treated according to the methods described herein.
Six populations of glass articles were initially subjected to elastically derived frictive contact damage under identical conditions in order to effectively eliminate the existing damage history of each population. The glass articles consisted of 3 ml round-form glass vials. The elastically derived frictive contact damage essentially is a damage introduction event where the localized stress magnitude exceeds that of the surface strength of the glass article and a deep (>100 micron) flaw is introduced. In particular, each population of glass articles was subjected to glass-on-glass frictive contact using the vial-on-vial testing jig described at paragraphs [00140]-[00142] and shown in FIG. 1 of pending U.S. patent application Ser. No. 13/780,740, filed Feb. 28, 2013 and entitled “Glass Articles With Low-Friction Coatings” in order to induce damage in the surface of the glass article. The frictive damage imparted to each population was done so under an applied load of 6 N.
Following the introduction of elastically derived frictive damage, a first population of glass articles was segregated from the remaining populations and was not subjected to any further processing (i.e., the “No Processing” population). The remaining populations were subjected to chemical processing in which each population was placed in a circulating bath consisting of a mixture of 3.4% 1M HF by volume and 33.3% 4M HCl by volume in water. The temperature of the bath was 25° C. The second population of glass articles was placed in the bath for 22.4 minutes; the third population of glass articles was placed in the bath for 45 minutes; the fourth population was placed in the bath for 90 minutes; the fifth population of glass articles was placed in the bath for 180 minutes; and the sixth population of glass articles was placed in the bath for 360 minutes. Each glass article was weighed before exposure to the etching solution. Upon removal from the bath, each population was rinsed and dried and each glass article in each population was again weighed so that the mass loss due to exposure to the etching solution could be determined based on the pre- and post-etching mass. Table 1 below shows the target etch time, actual etch time, average mass loss, and calculated removal depth for each of the populations.
Thereafter, each of the first through sixth populations were tested in uniaxial compression until failure using a horizontal compression test apparatus as described at paragraph [00149] of pending U.S. patent application Ser. No. 13/780,740, filed Feb. 28, 2013 and entitled “Glass Articles With Low-Friction Coatings.”
The load at failure for each glass article in each population is plotted in
As shown in
It is also noted that only minimal improvement in load bearing capability was observed for those glass articles subjected to the etching treatment for greater than 90 minutes. For example,
It should now be understood that the methods described herein are effective for mitigating mechanical failure in glass articles and improving the reliability of the glass articles without removing the entire flaw population from the glass articles.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
The present application is a divisional application of U.S. patent application Ser. No. 15/508,815 filed Mar. 3, 2017 and entitled “Glass Articles and Methods for Improving the Reliability of Glass Articles”, which is a 371 National Stage Entry of PCT/US2015/048592 filed Sep. 4, 2015 and entitled “Glass Articles and Methods for Improving the Reliability of Glass Articles”, which claims priority to U.S. Provisional Application No. 62/046,208 filed Sep. 5, 2014 and entitled “Methods For Improving The Reliability Of Glass Articles,” each of which is incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2106744 | Hood et al. | Feb 1938 | A |
2691548 | Feucht et al. | Oct 1954 | A |
2753304 | Orozco | Jul 1956 | A |
3023139 | Tetterode | Feb 1962 | A |
3031095 | Loughran | Apr 1962 | A |
3058177 | Taylor et al. | Oct 1962 | A |
3287311 | Edwards | Nov 1966 | A |
3323889 | Carl et al. | Jun 1967 | A |
3441432 | Levene | Apr 1969 | A |
3577256 | Benford, Jr. et al. | May 1971 | A |
3607186 | Bognar | Sep 1971 | A |
3674690 | Clow et al. | Jul 1972 | A |
3753840 | Plumat | Aug 1973 | A |
3772061 | McCoy et al. | Nov 1973 | A |
3772135 | Hara et al. | Nov 1973 | A |
3779732 | Spanoudis | Dec 1973 | A |
3801361 | Kitaj | Apr 1974 | A |
3811921 | Crawford et al. | May 1974 | A |
3844754 | Grubb et al. | Oct 1974 | A |
3876410 | Scholes | Apr 1975 | A |
3878960 | Jonsson | Apr 1975 | A |
3900329 | Grubb et al. | Aug 1975 | A |
3967995 | Fabianic | Jul 1976 | A |
3989864 | Hey et al. | Nov 1976 | A |
4021218 | Watanabe | May 1977 | A |
4030904 | Battye et al. | Jun 1977 | A |
4056208 | Prejean | Nov 1977 | A |
4056651 | Scola | Nov 1977 | A |
4065317 | Baak et al. | Dec 1977 | A |
4065589 | Lenard et al. | Dec 1977 | A |
4086373 | Tobias et al. | Apr 1978 | A |
4093759 | Otsuki et al. | Jun 1978 | A |
4130677 | Huntsberger | Dec 1978 | A |
4161556 | Lenard et al. | Jul 1979 | A |
4164402 | Watanabe | Aug 1979 | A |
4214886 | Shay et al. | Jul 1980 | A |
4215165 | Gras et al. | Jul 1980 | A |
4238041 | Jönsson et al. | Dec 1980 | A |
4264658 | Tobias et al. | Apr 1981 | A |
4280944 | Saito et al. | Jul 1981 | A |
4315573 | Bradley et al. | Feb 1982 | A |
4395527 | Berger | Jul 1983 | A |
4431692 | Hofmann et al. | Feb 1984 | A |
4558110 | Lee | Dec 1985 | A |
4595548 | St. Clair et al. | Jun 1986 | A |
4603061 | St. Clair et al. | Jul 1986 | A |
4620985 | Goodburn et al. | Nov 1986 | A |
4636411 | Dubois et al. | Jan 1987 | A |
4654235 | Effenberger et al. | Mar 1987 | A |
4680373 | Gallagher et al. | Jul 1987 | A |
4689085 | Plueddemann | Aug 1987 | A |
4696994 | Nakajima et al. | Sep 1987 | A |
4748228 | Shoji et al. | May 1988 | A |
4749614 | Andrews et al. | Jun 1988 | A |
4767414 | Williams et al. | Aug 1988 | A |
4778727 | Tesoro et al. | Oct 1988 | A |
4842889 | Hu et al. | Jun 1989 | A |
4860906 | Pellegrini et al. | Aug 1989 | A |
4870034 | Kiefer | Sep 1989 | A |
4880895 | Higashi et al. | Nov 1989 | A |
4882210 | Romberg et al. | Nov 1989 | A |
4902106 | Dijon et al. | Feb 1990 | A |
4931539 | Hayes | Jun 1990 | A |
4961996 | Carre et al. | Oct 1990 | A |
4983255 | Gruenwald et al. | Jan 1991 | A |
4988288 | Melgaard | Jan 1991 | A |
5002359 | Sayegh | Mar 1991 | A |
5036145 | Echterling et al. | Jul 1991 | A |
5037701 | Carre et al. | Aug 1991 | A |
5049421 | Kosh | Sep 1991 | A |
5112658 | Skutnik et al. | May 1992 | A |
5114757 | Linde et al. | May 1992 | A |
5120341 | Nozawa et al. | Jun 1992 | A |
5124618 | Ohtaka et al. | Jun 1992 | A |
5137751 | Burgess et al. | Aug 1992 | A |
5230429 | Etheredge, III | Jul 1993 | A |
5246782 | Kennedy et al. | Sep 1993 | A |
5251071 | Kusukawa et al. | Oct 1993 | A |
5252703 | Nakajima et al. | Oct 1993 | A |
5258487 | Okinoshima et al. | Nov 1993 | A |
5281690 | Flaim et al. | Jan 1994 | A |
5286527 | Blum et al. | Feb 1994 | A |
5306537 | Gustafson et al. | Apr 1994 | A |
5310862 | Nomura et al. | May 1994 | A |
5326601 | Kawano et al. | Jul 1994 | A |
5403700 | Heller et al. | Apr 1995 | A |
5476692 | Ellis et al. | Dec 1995 | A |
5482768 | Kawasato et al. | Jan 1996 | A |
5488092 | Kausch et al. | Jan 1996 | A |
5498758 | Scholes et al. | Mar 1996 | A |
5504830 | Ngo et al. | Apr 1996 | A |
5594231 | Pellicori et al. | Jan 1997 | A |
5601905 | Watanabe et al. | Feb 1997 | A |
5633079 | Shoshi et al. | May 1997 | A |
5736476 | Watzke et al. | Apr 1998 | A |
5756144 | Wolff et al. | May 1998 | A |
5792327 | Belscher | Aug 1998 | A |
5804317 | Charrue | Sep 1998 | A |
5849369 | Ogawa | Dec 1998 | A |
5851200 | Higashikawa et al. | Dec 1998 | A |
5851366 | Belscher | Dec 1998 | A |
5908542 | Lee et al. | Jun 1999 | A |
5916632 | Mishina et al. | Jun 1999 | A |
5938919 | Najafabadi | Aug 1999 | A |
6013333 | Carson et al. | Jan 2000 | A |
6046758 | Brown et al. | Apr 2000 | A |
6048911 | Shustack et al. | Apr 2000 | A |
6084034 | Miyama et al. | Jul 2000 | A |
6096432 | Sakaguchi et al. | Aug 2000 | A |
6156399 | Spallek et al. | Dec 2000 | A |
6156435 | Gleason et al. | Dec 2000 | A |
6200658 | Walther et al. | Mar 2001 | B1 |
6204212 | Kunert et al. | Mar 2001 | B1 |
6214429 | Zou et al. | Apr 2001 | B1 |
6232428 | Deets et al. | May 2001 | B1 |
6277950 | Yang et al. | Aug 2001 | B1 |
6346315 | Sawatsky | Feb 2002 | B1 |
6358519 | Waterman | Mar 2002 | B1 |
6444783 | Dodd et al. | Sep 2002 | B1 |
6472068 | Glass et al. | Oct 2002 | B1 |
6482509 | Buch-Rasmussen et al. | Nov 2002 | B2 |
6537626 | Spallek et al. | Mar 2003 | B1 |
6561275 | Glass et al. | May 2003 | B2 |
6586039 | Heinz et al. | Jul 2003 | B2 |
6599594 | Walther et al. | Jul 2003 | B1 |
6627377 | Itatani et al. | Sep 2003 | B1 |
6737105 | Richard | May 2004 | B2 |
6797396 | Liu et al. | Sep 2004 | B1 |
6815720 | Kobayashi et al. | Nov 2004 | B2 |
6818576 | Ikenishi et al. | Nov 2004 | B2 |
6852393 | Gandon | Feb 2005 | B2 |
6866158 | Sommer et al. | Mar 2005 | B1 |
6921788 | Izawa et al. | Jul 2005 | B1 |
6939819 | Usui et al. | Sep 2005 | B2 |
6989181 | Brandt | Jan 2006 | B2 |
7087307 | Nagashima et al. | Aug 2006 | B2 |
7215473 | Fleming | May 2007 | B2 |
7236296 | Liu et al. | Jun 2007 | B2 |
7315125 | Kass | Jan 2008 | B2 |
7470999 | Saito et al. | Dec 2008 | B2 |
7569653 | Landon | Aug 2009 | B2 |
7619042 | Poe et al. | Nov 2009 | B2 |
7845346 | Langford et al. | Dec 2010 | B2 |
7871554 | Oishi et al. | Jan 2011 | B2 |
7985188 | Felts et al. | Jul 2011 | B2 |
8048938 | Poe et al. | Nov 2011 | B2 |
8053492 | Poe et al. | Nov 2011 | B2 |
8110652 | Bito et al. | Feb 2012 | B2 |
8273801 | Baikerikar et al. | Sep 2012 | B2 |
8277945 | Anderson et al. | Oct 2012 | B2 |
8302428 | Borrelli et al. | Nov 2012 | B2 |
20020016438 | Sugo et al. | Feb 2002 | A1 |
20020037943 | Madsen | Mar 2002 | A1 |
20020069616 | Odell et al. | Jun 2002 | A1 |
20020081401 | Hessok et al. | Jun 2002 | A1 |
20020155216 | Reitz et al. | Oct 2002 | A1 |
20020182410 | Szum et al. | Dec 2002 | A1 |
20030072932 | Gandon | Apr 2003 | A1 |
20040048997 | Sugo | Mar 2004 | A1 |
20040096588 | Brandt | May 2004 | A1 |
20040199138 | McBay et al. | Oct 2004 | A1 |
20050048297 | Fukuda et al. | Mar 2005 | A1 |
20050061033 | Petrany et al. | Mar 2005 | A1 |
20050170722 | Keese | Aug 2005 | A1 |
20050199571 | Geisler et al. | Sep 2005 | A1 |
20060068982 | Fechner et al. | Mar 2006 | A1 |
20060099360 | Farha | May 2006 | A1 |
20060233675 | Stein | Oct 2006 | A1 |
20060267250 | Gerretz et al. | Nov 2006 | A1 |
20070082135 | Lee | Apr 2007 | A1 |
20070116907 | Landon et al. | May 2007 | A1 |
20070157919 | Marandon | Jul 2007 | A1 |
20070178256 | Landon | Aug 2007 | A1 |
20070187280 | Haines et al. | Aug 2007 | A1 |
20070224427 | Kunita et al. | Sep 2007 | A1 |
20070225823 | Hawkins et al. | Sep 2007 | A1 |
20070289492 | Wynne et al. | Dec 2007 | A1 |
20070293388 | Zuyev et al. | Dec 2007 | A1 |
20080008838 | Arpac et al. | Jan 2008 | A1 |
20080069970 | Wu | Mar 2008 | A1 |
20080071228 | Wu et al. | Mar 2008 | A1 |
20080114096 | Qu et al. | May 2008 | A1 |
20080121621 | Stockum et al. | May 2008 | A1 |
20080199618 | Wen et al. | Aug 2008 | A1 |
20080214777 | Poe | Sep 2008 | A1 |
20080281260 | William et al. | Nov 2008 | A1 |
20080292496 | Madsen | Nov 2008 | A1 |
20090048537 | Lydon et al. | Feb 2009 | A1 |
20090092759 | Chen et al. | Apr 2009 | A1 |
20090104387 | Postupack et al. | Apr 2009 | A1 |
20090155506 | Martin et al. | Jun 2009 | A1 |
20090155570 | Bonnet et al. | Jun 2009 | A1 |
20090162530 | Nesbitt | Jun 2009 | A1 |
20090162664 | Ou | Jun 2009 | A1 |
20090176108 | Toyama et al. | Jul 2009 | A1 |
20090197088 | Murata | Aug 2009 | A1 |
20090197390 | Rothwell et al. | Aug 2009 | A1 |
20090203929 | Hergenrother et al. | Aug 2009 | A1 |
20090208175 | Hongo et al. | Aug 2009 | A1 |
20090208657 | Siebenlist et al. | Aug 2009 | A1 |
20090239759 | Balch | Sep 2009 | A1 |
20090247699 | Buehler et al. | Oct 2009 | A1 |
20090269597 | Bito et al. | Oct 2009 | A1 |
20090275462 | Murata | Nov 2009 | A1 |
20090286058 | Shibata et al. | Nov 2009 | A1 |
20090297857 | Pascal et al. | Dec 2009 | A1 |
20090325776 | Murata | Dec 2009 | A1 |
20100009154 | Allan et al. | Jan 2010 | A1 |
20100044268 | Haines et al. | Feb 2010 | A1 |
20100047521 | Amin et al. | Feb 2010 | A1 |
20100056666 | Poe et al. | Mar 2010 | A1 |
20100062188 | Miyamoto et al. | Mar 2010 | A1 |
20100063244 | Poe et al. | Mar 2010 | A1 |
20100087307 | Murata et al. | Apr 2010 | A1 |
20100101628 | Poe et al. | Apr 2010 | A1 |
20100246016 | Carlson et al. | Sep 2010 | A1 |
20100264645 | Jones et al. | Oct 2010 | A1 |
20100273019 | Kitaike et al. | Oct 2010 | A1 |
20100297393 | Wu | Nov 2010 | A1 |
20100317506 | Fechner et al. | Dec 2010 | A1 |
20110014475 | Murata | Jan 2011 | A1 |
20110045219 | Stewart et al. | Feb 2011 | A1 |
20110062619 | Laine et al. | Mar 2011 | A1 |
20110065576 | Campbell et al. | Mar 2011 | A1 |
20110091732 | Lu et al. | Apr 2011 | A1 |
20110098172 | Brix | Apr 2011 | A1 |
20110159318 | Endo et al. | Jun 2011 | A1 |
20110165393 | Bayne | Jul 2011 | A1 |
20110177252 | Kanagasabapathy et al. | Jul 2011 | A1 |
20110177987 | Lenting et al. | Jul 2011 | A1 |
20110186464 | Carta et al. | Aug 2011 | A1 |
20110189486 | Wendell, Jr. | Aug 2011 | A1 |
20110200804 | Tomamoto et al. | Aug 2011 | A1 |
20110226658 | Tata-Venkata et al. | Sep 2011 | A1 |
20110272322 | Yamagata et al. | Nov 2011 | A1 |
20110274916 | Murata | Nov 2011 | A1 |
20110313363 | D'Souza et al. | Dec 2011 | A1 |
20120016076 | Kim et al. | Jan 2012 | A1 |
20120052293 | Poe et al. | Mar 2012 | A1 |
20120052302 | Matusick | Mar 2012 | A1 |
20120097159 | Iyer et al. | Apr 2012 | A1 |
20120107174 | Zambaux | May 2012 | A1 |
20120142829 | Ichinose | Jun 2012 | A1 |
20120148770 | Rong et al. | Jun 2012 | A1 |
20120172519 | Dörr et al. | Jul 2012 | A1 |
20120199203 | Nishizawa et al. | Aug 2012 | A1 |
20120282449 | Gross | Nov 2012 | A1 |
20130011650 | Akiba et al. | Jan 2013 | A1 |
20130071078 | Bennett et al. | Mar 2013 | A1 |
20130095261 | Ahn et al. | Apr 2013 | A1 |
20130101596 | DeMartino | Apr 2013 | A1 |
20130102454 | Danielson | Apr 2013 | A1 |
20130109116 | Cavuoti | May 2013 | A1 |
20130122306 | Bookbinder et al. | May 2013 | A1 |
20130127202 | Hart | May 2013 | A1 |
20130133366 | Glaesemann et al. | May 2013 | A1 |
20130171456 | Fadeev et al. | Jul 2013 | A1 |
20130216742 | DeMartino et al. | Aug 2013 | A1 |
20130224407 | Fadeev | Aug 2013 | A1 |
20130287755 | Greene et al. | Oct 2013 | A1 |
20130299380 | Zambaux et al. | Nov 2013 | A1 |
20130327740 | Adib et al. | Dec 2013 | A1 |
20140031499 | Cho et al. | Jan 2014 | A1 |
20140034544 | Chang et al. | Feb 2014 | A1 |
20140151370 | Chang et al. | Jun 2014 | A1 |
20150274583 | An et al. | Oct 2015 | A1 |
Number | Date | Country |
---|---|---|
853121 | Oct 1970 | CA |
1060861 | May 1992 | CN |
2483332 | Mar 2002 | CN |
1402066 | Mar 2003 | CN |
1648009 | Aug 2005 | CN |
1963650 | May 2007 | CN |
101479355 | Jul 2009 | CN |
201390409 | Jan 2010 | CN |
201404453 | Feb 2010 | CN |
101717189 | Jun 2010 | CN |
201694531 | Jan 2011 | CN |
102066462 | May 2011 | CN |
202006114 | Oct 2011 | CN |
104508008 | Apr 2015 | CN |
4128634 | Mar 1993 | DE |
4130414 | Apr 1993 | DE |
29702816 | Apr 1997 | DE |
19806390 | Aug 1999 | DE |
102011085267 | May 2013 | DE |
0176062 | Apr 1986 | EP |
0330456 | Aug 1989 | EP |
0515801 | Dec 1992 | EP |
1464631 | Jun 2004 | EP |
2031124 | Mar 2009 | EP |
0524802 | Oct 2009 | EP |
2540682 | Jan 2013 | EP |
2762461 | Aug 2014 | EP |
93015 | Jan 1969 | FR |
2033431 | Dec 1970 | FR |
2515633 | May 1983 | FR |
702292 | Jan 1954 | GB |
720778 | Dec 1954 | GB |
966731 | Aug 1964 | GB |
1267855 | Mar 1972 | GB |
1529386 | Oct 1978 | GB |
231117 | Mar 2009 | IN |
S54054124 | Apr 1979 | JP |
S5532722 | Mar 1980 | JP |
S5590439 | Jul 1980 | JP |
56155044 | Dec 1981 | JP |
S57123223 | Jul 1982 | JP |
60254022 | Dec 1985 | JP |
62047623 | Mar 1987 | JP |
S6373333 | May 1988 | JP |
1279058 | Nov 1989 | JP |
7223845 | Aug 1995 | JP |
H0826754 | Jan 1996 | JP |
H09241033 | Sep 1997 | JP |
11171593 | Jun 1999 | JP |
H11229629 | Aug 1999 | JP |
11314931 | Nov 1999 | JP |
2004315285 | Nov 2004 | JP |
2005343742 | Dec 2005 | JP |
2006104052 | Apr 2006 | JP |
2007204728 | Aug 2007 | JP |
2009175600 | Aug 2009 | JP |
2009204780 | Sep 2009 | JP |
2010071042 | Apr 2010 | JP |
4483331 | Jun 2010 | JP |
2010185185 | Aug 2010 | JP |
2011057547 | Mar 2011 | JP |
2011236100 | Nov 2011 | JP |
2013003310 | Jan 2013 | JP |
2013516387 | May 2013 | JP |
2014101659 | Nov 2016 | JP |
2127711 | Mar 1999 | RU |
2008134315 | Nov 2008 | WO |
2008134315 | Dec 2008 | WO |
2011001501 | Jan 2011 | WO |
2011121811 | Oct 2011 | WO |
2012151459 | Nov 2012 | WO |
2013130721 | Sep 2013 | WO |
Entry |
---|
Final Office Action dated Mar. 12, 2021, for U.S. Appl. No. 15/337,695, filed Oct. 28, 2016. pp. 1-23. |
Non-Final Office Action dated Mar. 4, 2021, for U.S. Appl. No. 16/996,758, filed Aug. 18, 2020. pp. 1-12. |
Iacocca, et al., “Corrosive attack of glass by a pharmaceutical compound,” Journal of Materials Science, 42:801-811, Springer Science+Business Media, LLC (2007), DOI: 10.1007/s10853-006-0156-y. |
Iacocca, et al., “Factors Affecting the Chemical Durability of Glass Used in the Pharmaceutical Industry”, AAPS PharmSciTech, vol. 11, No. 3, pp. 1340-1349, Sep. 2010. |
Schwarzenbach, et al., “Topological Structure and Chemical Composition of Inner Surfaces of Borosilicate Vials,” PDA Journal of Pharmaceutical Science and Technology, May / Jun. 2004, vol. 58, No. 3, 169-175. |
International Search Report and Written Opinion dated Nov. 20, 2015 for PCT/US2015/048592 filed Sep. 4, 2015. pp. 1-11. |
Chao-Ching Chang et al., Synthesis and Optical Properties of Soluble Polyimide/Titania Hybrid Thin Films, Macromol. Mater. Eng., (2006), Issue 12, vol. 291, pp. 1521-1528. |
Yang-Yen Yu, et al., High transparent polyimide/titania multi-layer anti-reflective hybrid films, Thin Solid Films 519 (2011) 4731-4736. |
Qiu, et al., “Morphology and size control of inorganic particles in polyimide hybrids by using SiO2—TiO2 mixed oxide”, Polymer 44 (2003) 5821-5826. |
Extended European Search Report dated Jan. 8, 2016 for EP Patent Application No. 15290254.0. pp. 1-6. |
Extended European Search Report dated Sep. 8, 2021, for EP Patent Application No. 21187669.3. pp. 1-11. |
Shallenberger J. R. et al: Adsorption of polyamides and polyamide-silane mixtures at glass surfaces, Surface and Interface Analysis, vol. 35, No. 8, Aug. 1, 2003 (Aug. 1, 2003), pp. 667-672, XP055081787, ISSN: 0142-2421, DOI: 10.1002/sia.1589. |
Wohl C. J. et al: Modification of the surface properties of polyimide films using polyhedral oligomeric silsesquioxane deposition and oxygen plasma exposure, Applied Surface Science, Elsevier, Amsterdam, NL, vol. 255, No. 18, Jun. 30, 2009 (Jun. 30, 2009), pp. 8135-8144, XP026221236, ISSN: 0169-4332, DOI: 10.1016/J.APSUSC.2009.05.030. |
Singapore Written Opinion and Search Report dated Jan. 20, 2021, for SG Patent Application No. 10201704148S. pp. 1-10. |
Singapore Written Opinion and Search Report dated Jan. 25, 2021, for SG Patent Application No. 10201705439Y. pp. 1-10. |
English Translation of Chinese 1st Office Action & Search Report dated Jan. 12, 2021, for CN Patent Application No. 201811406323.5. pp. 1-11. |
International Search Report & Written Opinion dated Oct. 28, 2013, relating to PCT/US2013/028187 filed Feb. 28, 2013. pp. 1-13. |
International Search Report & Written Opinion dated Oct. 28, 2013 relating to PCT/US2013/048589 filed Jun. 28, 2013. pp. 1-15. |
International Search Report & Written Opinion dated Jan. 16, 2014 relating to PCT/US2013/066370 filed Oct. 23, 2013. pp. 1-12. |
Huang, et al., “Cubic silsesquioxane-polyimide nanocomposites with improved thermomechanical and dielectric properties”, Acta Materialia, Elsevier, vol. 53, No. 8, pp. 2395-2404, May 1, 2005; ISSN: 1359-6454. |
Final Office Action dated Jan. 28, 2014 relating to U.S. Appl. No. 13/780,740, filed Feb. 28, 2013. pp. 1-37. |
Non-Final Office Action dated Mar. 10, 2014 relating to U.S. Appl. No. 14/052,048, filed Oct. 11, 2013. pp. 1-11. |
ASTM, “Standard Specification for Glasses in Laboratory Apparatus,” Designation E438-92 (Reapproved 2006). Retrieved from the Internet: <URL: http://enterprise2.astm.org/DOWNLOAD/E438-92R06.1656713-1.pdf>. p. 1. |
International Search Report & Written Opinion dated Feb. 26, 2014 for International Patent Application No. PCT/US2013/071437 filed Nov. 22, 2013. pp. 1-12. |
International Search Report and Written Opinion dated Oct. 2, 2013, relating to International Patent Application No. PCT/US2013/044686 filed Jun. 7, 2013. pp. 1-17. |
Pantano, Carlo G.,“The Role of Coatings and Other Surface Treatments in the Strength of Glass”, [online], Department of Materials Science and Engineering Materials Research Institute, The Pennsylvania State University, University Park, PA. 2009. Retrieved from the Internet: <URL: http://www.gmic.org/Strength%20In%20Glass/Pantano%20Pac%20Rim.pdf>. pp. 1-55. |
U.S. Department of Health & Human Services, “Advisory to Drug Manufactures: Formation of Glass Lamellae in Certain Injectable Drugs” [online] U.S. Food & Drug Administration, Mar. 25, 2011, retrieved from the internet: <URL: http://www.fda.gov/Drugs/DrugSafety/ucm248490.htm>. |
Non-Final Office Action dated Jul. 30, 2013 relating to U.S. Appl. No. 13/780,740, filed Feb. 28, 2013. pp. 1-34. |
De Rosa, et al., “Scratch Resistant Polyimide Coatings for Aluminosilicate Glass Surfaces”, The Journal of Adhesion, 78: 113-127, Taylor & Francis (2002), ISSN: 0021-8464. |
Wahab, et al., “Silica- and Silsesquioxane-Containing Polymer Nanohybrids”, Macromolecules Containing Metal and Metal-Like Elements, vol. 4: Group IVA Polymers, Chapter 6, 2005 John Wiley & Sons, Inc. |
Walther, et al., “Pharmaceutical Vials with Extremely High Chemical Inertness” [online], PDA Journal of Pharmaceutical Science and Technology, May / Jun. 2002, vol. 56, No. 3, 124-129 (abstract); retrieved from the Internet: <URL: http://journal.pda.org/content/56/3/124.abstract>. |
Wagner, C., “PDA/FDA Glass Quality Conference: an alternative glass packing solution to reduce delamination risks,” [PowerPoint Presentation] PDA/FDA Glass Quality Conference, Washington, D.C., Jun. 4-5, 2012. |
Non-Final Office Action dated Dec. 12, 2019, for U.S. Appl. No. 15/508,815, filed Mar. 3, 2017. pp. 1-9. |
DuPont Teflon PFA TE-7224 Aqueous Fluoropolymers made with Echelon Dispersion Technology [online]. Dupont, 2006. Retrieved from the Internet: <URL: http://www2.dupont.com/Teflon_Industrial/en_US/assets/downloads/k15758.pdf>. |
“Spectroscopic Ellipsometry Methods for Thin Absorbing Coatings”, by Hilfiker et al. from Society of Vacuum Coaters 505/856-7188, pp. 511-516, 51st Annual Technical Conference Proceedings, Chicago, IL, April 19-24, 2008. |
“Thermal Stability of the Silica-Aminopropylsilane-Polyimide Interface”, Linde, et al. Journal of Polymer Science, Polymer Chemistry Edition, vol. 22, 3043-3062, John Wiley & Sons, Inc. (1984). |
Anderson, et al., “Polyimide-Substrate Bonding Studies Using γ-APS Coupling Agent”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. CHMT-9, No. 4, p. 364-369, Dec. 1986. |
Benitez, et al., “SiOx—SiNx functional coatings by PECVD of organosilicon monomers other than silane”, Annual Technical Conference Proceedings—Society of Vacuum Coaters (2002), 45th, 280-285; ISSN: 0731-1699. |
Cho, et al. “Adhesion behavior of PDMS-containing polyimide to glass”, Journal of Adhesion Science and Technology 12:3, pp. 253-269, Taylor & Francis (1998), DOI: 10.1163/156856198X00867. |
Dow Corning, “A Guide to Silane Solutions: Fiberglass and Composites”, Silicones Simplified [online]. Dow Corning Corporation, 2009. Retrieved from the Internet: <URL: https://www.xiameter.com/en/ExploreSilicones/Documents/95-728-01%20Fiberglass%20and%20Composites.pdf>. |
Dow Corning, Resins and Intermediates Selection Guide; Paints & Inks Solutions, p. 1-8, 2010. |
Ennis, et al., “Glass Vials for Small Volume Parenterals: Influence of drug and manufacturing process on glass delamination,” Pharmaceutical Development and Technology, 6(3): p. 393-405, (2001). |
Francen, et al., “Fluorochemical glass treatments”, The Glass Industry (1965), 46(10), 594-7; 628-9; ISSN: 0017-1026. |
G. L. Witucki, “A Silane Primer: Chemistry and Applications of Alkoxy Silanes”, Journal of Coatings Technology, (vol. 65) pp. 57-60, Federation of Societies for Coatings Technology, Blue Bell, Pennsylvania (Jul. 1993). |
Gelest, Inc., MSDS, Material Safety Data Sheet, Aminopropylsilsesquioxane Oligomer, 22-25%—WSA-9911 [online]. Gelest, Inc. Morrisville, PA, 2008. Retrieved from the Internet: <URL: http://shop.gelest.com/Product.aspx?catnum=WSA-9911&Index=0&TotalCount=1>. |
Guadagnino, et al., “Delamination Propensity of Pharmaceutical Glass Containers by Accelerated Testing with Different Extraction Media,” PDA Journal of Pharmaceutical Science and Technology, Mar. / Apr. 2012, vol. 66, No. 2,116-125. DOI: 10.5731/pdajpst.2012.00853. |
Jiang, et al., “Novel Mechanism of Glass Delamination in Type 1A Borosilicate Vials Containing Frozen Protein Formulations”, PDA Journal of Pharmaceutical Science and Technology, Jul. / Aug. 2013, vol. 67, No. 4, 323-335. |
Jin, et al., “Preparation and characterization of poly(phthalazinone ether ketone)/SiO2 hybrid composite thin films with low friction coefficient”, Journal of Sol-Gel Science and Technology, Springer Science+Business Media, LLC (2008), 46(2), 208-216; ISSN: 0928-0707. |
Jin, et al., “Preparation and investigation of the tribological behavior of poly(phthalazinone ether ketone)/silica thin films”, Chinese Journal of Materials Research. vol. 22, No. 1, pp. 26-30. Feb. 25, 2008. ISSN: 1005-3093. Published by: Chinese Academy of Sciences, No. 1, Beijing, China. |
Metwalli et al., Journal of Colloid and Interface Science 298 (2006) 825-831. |
Poe, et al., “Zero CTE polyimides for athermal optical membranes”, Proceedings of SPIE, vol. 7061, Issue: Novel Optical Systems Design and Optimization XI, pp. 706114/1-706114/9, Journal, 2008, Publisher: Society of Photo-Optical Instrumentation Engineers, ISSN: 0277-786X. |
Rupertus, V., “PDA Europe Thanks Universe of Pre-Filled Syringes: Two ways to minimize the delamination risk of glass containers,” P&M—EU; PDA Letter, p. 42-23, Jan. 2012. |
Schmid, et al., “Recommendations on Delamination Risk Mitigation & Prediction for Type I Pharmaceutical Containers Made of Tubing Glass”, Nuova Ompi: Glass Division, p. 40-42, Frederick Furness Publishing (2012). |
Schmid, et al., “Glass Delamination: Facts—Prevention—Recommendations”, Stevanato Group Market Update, News Issue 5, May 2011, p. 1-4. |
Schott North America, Inc., “Schott Type 1 plus: SiO2 coating resists delamination” [online], Schott North America, Inc., retrieved from the internet: <URL: http://www.us.schott.com/pharmaceutical_packaging/english/download/flyer_type_i_plus_us.pdf>. |
Sloey, et al., “Determining the Delamination Propensity of Pharmaceutical Glass Vials Using a Direct Stress Method,” PDA Journal of Pharmaceutical Science and Technology, Jan. / Feb. 2013, vol. 67, No. 1, 35-42. DOI: 10.5731/pdajpst.2013.00900. |
Smay, G. L., “The characteristics of high-temperature resistant organic polymers and the feasibility of their use as glass coating materials”, Journal of Materials Science, 20 (4), pp. 1494-1500, Chapman & Hall Ind. (1985), ISSN: 0022-2461. |
Japanese Office Action dated Jun. 15, 2022, pertaining to JP Patent Application No. 2017-512381, 9 pgs. |
Mexican Office Action dated May 26, 2022, pertaining to MX Patent Application No. MX/a/2017/002898, 8 pgs. |
Taiwan Office Action dated Apr. 18, 2022, pertaining to TW Patent Application No. 110124379, 5 pgs. |
European Extended Search Report dated May 10, 2022, pertaining to EP Patent Application No. 22153571.9, 6 pgs. |
Canadian Exam Report received Jan. 18, 2022, pertaining to Canadian Appl. No. 3061514, 3 pgs. |
Final Office Action, pertaining to U.S. Appl. No. 15/857,557, filed Dec. 28, 2017, 16 pgs. |
Final Office Action, pertaining to U.S. Appl. No. 17/213,859, filed Mar. 26, 2021, 32 pgs. |
Extended European Search Report, pertaining to European Appl. No. 21191737.2, 12 pgs. |
Japanese Office Action dated Mar. 7, 2022, pertaining to JP Patent Application No. 2021-039178. |
English Translation of Japanese 2nd Office Action dated Apr. 30, 2020 for JP 2017-512381. pp. 1-5. |
English Translation of Russian Decision to Grant & Search Report dated Apr. 5, 2019, for RU Patent Application No. 2017110800. pp. 1-20. |
English Translation of Chinese 1st Office Action & Search Report dated Apr. 23, 2019, for CN Patent Application No. 201580058550.1. pp. 1-18. |
Japanese 1st Office Action dated Jun. 30, 2021, for JP Patent Application No. 2020-82562. pp. 1-12. |
Japanese 1st Office Action dated Jul. 28, 2021, for JP Patent Application No. 2020-110294. pp. 1-6. |
Non-Final Office Action dated Jun. 8, 2021, for U.S. Appl. No. 15/280,101, filed Sep. 29, 2016. pp. 1-22. |
Non-Final Office Action dated Jul. 15, 2021, for U.S. Appl. No. 16/355,797, filed Mar. 17, 2019. pp. 1-13. |
Japanese Office Action dated Mar. 30, 2023, pertaining to JP Patent Application No. 2019-121650, 4 pgs. |
Number | Date | Country | |
---|---|---|---|
20210087103 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62046208 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15508815 | US | |
Child | 17115123 | US |