1. Field of Invention
The present invention relates to planar solid oxide fuel cells and, more particularly, to glass-ceramic sealant for planar solid oxide fuel cells.
2. Related Prior Art
Solid oxide fuel cells are high-temperature fuel cells of high generation efficiencies. Among the solid fuel cells, planar solid oxide fuel cells include the simplest structures, provide the highest generation efficiencies and involve the lowest working temperatures. Therefore, the planar solid oxide fuel cells are the focus of the research and development of solid oxide fuel cells.
A planar solid oxide fuel cell includes a PEN and an anode, a cathode, a solid electrolyte and a bi-polar inter-connector stacked on one another. The anode, the cathode and the solid electrolyte together are called the “PEN.” The anode, the cathode and the solid electrolyte are made of ceramics. The bi-polar inter-connector is made of stainless steel. These components of the planar solid oxide fuel cell are joined together by sealant. The thermal expansion coefficients of the sealant are very different from the thermal expansion coefficients of the components. The temperature differs from point to point in the sealant and the components. Hence, there is considerable thermal stress in the planar solid oxide fuel cell. Such thermal stress might cause the sealant to crack and the components to peel from one another. The components might be exposed and/or damaged. The generation efficiency of the planar solid oxide fuel cell might be reduced. In the worst scenario, the planar solid oxide fuel cell might be out of order.
The present invention is therefore intended to obviate or at least alleviate the problems encountered in prior art.
The primary objective of the present invention is to provide glass-ceramic sealant for planar solid oxide fuel cells.
To achieve the foregoing objective the Glass-ceramic sealant is disclosed for planar solid oxide fuel cells. The glass-ceramic sealant includes 0 to 40 mol % of silicon oxide, 0 to 15 mol % boron oxide, 0 to 10 mol % of aluminum oxide, 0 to 40 mol % of barium oxide, 0 to 15 mol % of calcium oxide, 0 to 15 mol % of lanthanum oxide and 0 to 5 mol % of zirconium dioxide. At 0° C. to 600° C., the thermal expansion coefficient of the sealant is 8 to 10 ppm/° C.
Other objectives, advantages and features of the present invention will become apparent from the following description referring to the attached drawings.
The present invention will be described via the detailed illustration of the preferred embodiment referring to the drawings.
Referring to
At 11, a mixture is provided with 34 mol % of silicon oxide, 9.5 mol % of boron oxide, 4.5 mol % of aluminum oxide, 34 mol % of barium oxide, 12 mol % of calcium oxide, 5 mol % of lanthanum oxide and 1 mol % of zirconium dioxide.
At 12, the mixture is disposed in a crucible and heated in a furnace. The temperature is raised to 500° C. at a temperature gradient of 5° C./min.
The temperature is retained at 500° C. for 1 hour. Then, the temperature is raised to 1550° C. at the same temperature gradient. The temperature is retained at 1550° C. for at least 10 hours so that liquid of molten glass is provided. The molten glass is quenched to the zoom temperature and turned into sealant for planar solid oxide fuel cells.
Alternatively, the liquid of molten glass may be quenched to the annealing point for at least 10 hours. Finally, the liquid of molten glass is slowly cooled to the zoom temperature, thus removing residual stress that would otherwise exist therein.
Referring to
As discussed, the thermal expansion coefficient of the sealant is close to those of the high-chromium stainless steel bi-polar inter-connector and the PEN. When the sealant is used to seal the high-chromium stainless steel bi-polar inter-connector and the PEN to provide a planar solid oxide fuel cell, there will be only a small amount of thermal stress in the planar solid oxide fuel cell in operation. Hence, the sealant provides excellent air-tightness and isolation.
According to the present invention, the sealant includes 0 to 40 mol % of silicon oxide, 0 to 15 mol % boron oxide, 0 to 10 mol % of aluminum oxide, 0 to 40 mol % of barium oxide, 0 to 15 mol % of calcium oxide, 0 to 15 mol % of lanthanum oxide and 0 to 5 mol % of zirconium dioxide. At 0° C. to 600° C., the thermal expansion coefficient of the sealant is 8 to 10 ppm/° C. The softening point of the sealant is 680° C. to 750° C. The sealant can be provided between two metal layers or two ceramic layers or between a metal layer and a ceramic layer. The sealant can be used for planar solid oxide fuel cells for air-tightness and sealing.
The present invention has been described via the detailed illustration of the preferred embodiment. Those skilled in the art can derive variations from the preferred embodiment without departing from the scope of the present invention. Therefore, the preferred embodiment shall not limit the scope of the present invention defined in the claims.
Number | Name | Date | Kind |
---|---|---|---|
4965229 | Nishino et al. | Oct 1990 | A |
5057378 | Nishino et al. | Oct 1991 | A |
5648302 | Brow et al. | Jul 1997 | A |
6430966 | Meinhardt et al. | Aug 2002 | B1 |
6532769 | Meinhardt et al. | Mar 2003 | B1 |
6534346 | Kosokabe | Mar 2003 | B2 |
7189668 | Budd | Mar 2007 | B2 |
7399720 | Brow et al. | Jul 2008 | B1 |
7470640 | Badding et al. | Dec 2008 | B2 |
20050130823 | Budd | Jun 2005 | A1 |
20050181927 | Hasegawa et al. | Aug 2005 | A1 |
20060172875 | Cortright et al. | Aug 2006 | A1 |
20090061282 | Wu et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
77000966 | Jan 1977 | JP |
63218525 | Sep 1988 | JP |
03080126 | Apr 1991 | JP |
693938 | Mar 2007 | KR |
Number | Date | Country | |
---|---|---|---|
20100184580 A1 | Jul 2010 | US |