Glass container forming machine

Information

  • Patent Grant
  • 6823696
  • Patent Number
    6,823,696
  • Date Filed
    Wednesday, December 5, 2001
    23 years ago
  • Date Issued
    Tuesday, November 30, 2004
    20 years ago
Abstract
Formed bottles are simultaneously cooled within the blow molds of an I.S. machine on their inner and outer surfaces and inner surface cooling continues from the time the takeout grips a bottle through a displacement course to a deadplate location, then to a conveyor location and finally to a deposit location where the bottle is deposited. A deadplate mechanism encloses a bottle at the deadplate location and moves to the conveyor location with the takeout and cools the outer surface of the bottle until the bottle is displaced from the conveyor location to the deadplate location.
Description




The present invention relates to I.S. (individual section) glass forming machines which form a parison at a blank station and then at a blow station, first blow the parison and then cool the blown parison to form a bottle and more particularly to the structure for blowing the parison and cooling the blown parison into a bottle and then cooling the bottle to a temperature below the annealing point so that the bottle can then be quickly cooled to room temperature.




BACKGROUND OF THE INVENTION




The blowing operation is effected by a blow head. Conventionally the blow head is brought into position on top of (engaging) a blow mold at the blow station and provides air (“final blow”) under pressure through a downwardly extending blow tube to the interior of the parison to blow the parison into contact with the interior of the blow mold. The parison could also be formed with vacuum or with a vacuum assist. The blown parison must then be formed into a bottle, i.e., cooled to the point where it is rigid enough to be gripped and removed from the blow station by a takeout mechanism. The outer surface of the blown parison is cooled by cooling the blow molds and the inner surface of the blown parison is cooled by the final blow air which continues to flow into the blown parison. U.S. Pat. No. 4,726,833 discloses a state of the art blow head. Conventionally the cooling air escapes from the interior of the bottle through a permanently open exhaust. The size of the exhaust will be defined as a balance between inlet and outlet.




Before a conventional takeout can be displaced from a remote location to a pick up location proximate the top of the formed bottle, the blow head, including the blow tube, must be displaced away from the blow mold. This displacement must be at least to a position where it will not interfere with an inwardly moving takeout. To speed up these steps, U.S. Pat. No. 5,807,419, proposes a combined blow head and takeout mechanism. This mechanism permits the operation of takeout jaws as soon as the blow head, which engages the top of the blow molds during final blow, is slightly elevated, with the blow tube remaining fully extended and operating, following the formation of the bottle. The takeout jaws immediately reseal the blow head. The internal cooling of the bottle will accordingly continue as if the blow head was in place on top of the blow mold while the bottle is removed from the blow mold and carried to a dead plate on which it will be deposited. The cooling of the outer surface of the formed bottle stops with the opening of the blow molds.




U.S. Pat. No. 4,508,557, discloses a dead plate arrangement for blowing cooling air around the bottle to provide additional outer surface cooling on the deadplate. U.S. Pat. No. 4,892,183 discloses a dual takeout mechanism which functions to alternately remove bottles from the blow station placing half on one output conveyor and the other half on a second output conveyor.




In all of these systems, the bottles once removed from the deadplate, will be conveyed into a Lehr which utilizes a series of burners to immediately reheat the bottles to a uniform higher temperature and then allows the bottles to cool slowly before being discharged from the Lehr.




Formed bottles have also been tempered in separate machinery by reheating the bottles and then simultaneously cooling the inner and outer glass surfaces (see for example, U.S. Pat. No. 2,309,290).




OBJECT OF THE INVENTION




It is an object of this invention to provide an I.S. machine which more effectively removes heat from the blown parison/formed bottle.




Other objects and advantages of the present invention will become apparent from the following portion of this specification and from the accompanying drawings which illustrate in accordance with the mandate of the patent statutes a presently preferred embodiment incorporating the principles of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a perspective view of a blow head mechanism made in accordance with the teachings of the present invention;





FIG. 2

shows a diagrammatic cross sectional view of the blow head of the blow head mechanism shown in

FIG. 1

;





FIG. 3

shows a time versus pressure curve for the operating blow head;





FIG. 4

shows a logic diagram for the operation of the blow head mechanism shown in

FIG. 1

;





FIG. 5

is an enlarged elevational view in section of the blow head at the exhaust position;





FIG. 6

shows an elevational view in cross section of the blow head mechanism made in accordance with the teachings of the present invention;





FIG. 7

shows a view of the cooling tube shown in

FIG. 6

taken at


7





7


thereof;





FIG. 8

is an elevational sectional view of the bottom of the cooling tube;





FIG. 9

is a view taken at


9





9


of

FIG. 8

,





FIG. 10

is a first displacement profile illustrating the vertical displacement of the cooling tube during the blowing and cooling of the parison to form a bottle;





FIG. 11

is a second displacement profile illustrating the vertical displacement of the cooling tube during the blowing of the parison and the cooling of the parison to form a bottle; and





FIG. 12

is a logic diagram illustrating the application of the displacement profile illustrated in

FIGS. 10 and 11

.





FIG. 13

shows a perspective view of a takeout mechanism made in accordance with the teachings of the present invention;





FIG. 14

shows an elevational view in section of the takeout mechanism shown in

FIG. 13

;





FIG. 15

is a view taken at


15





15


of

FIG. 14

;





FIGS. 16-21

illustrate one of the pair of synchronized takeout/deadplate mechanisms of the present invention moving through a single cycle;





FIG. 22

is a view taken at


22





22


of

FIG. 21

; and





FIGS. 23-28

illustrate the synchronizm of a pair of takeout assemblies with their associated deadplate mechanisms;





FIG. 29

is an oblique view of a the deadplate mechanism shown in

FIGS. 16-21

;





FIG. 30

is an oblique view of the mechanism for opening and closing the can doors;





FIG. 31

is a logic diagram illustrating the operation of the temperature sensor; and





FIG. 32

is a temperature vs. position curve for the formed bottle.











BRIEF DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

shows a blow head mechanism


10


of the blow station of an I.S. machine. A triple gob machine is illustrated, and three blow molds


12


arranged side by side are shown. A blow head arm


16


supports three blow heads


18


. The blow head arm


16


is mounted on a vertical post


20


coupled to an electronic (servo) motor


22


which causes the blow head arm to move up and down. The post also rotates via a scroll cam (not shown) defined in a housing


24


. Such up and down and rotary movement of the post


20


causes the blow heads


18


to be displaced between a retracted “off” position and an advanced “on” position, as shown in

FIG. 1

, at which the blow heads


18


engage the top of the blow molds


12


. The operation of the servomotor is controlled by a control C (


26


). Air under pressure is supplied from a suitable source


27


to a pressure regulator P (


29


) which will set the desired pressure for final blow as defined by the control C/


26


.




A blow head


18


is shown diagrammatically, in section, in FIG.


2


. The blow head


18


has an air inlet


34


leading to a blow tube


36


which extends downwardly into the parison


38


. The blow head surrounds the finish


40


of the parison. Final blow air blows the parison and then cools the interior surface of the blown parison. Air exhausts upwardly between the blow tube


36


and the parison into a chamber


41


and out through an adjustable exhaust


42


. A pressure sensor


44


is arranged to monitor the air pressure in the chamber


41


(closely related to the pressure of the air within the parison).





FIG. 3

shows changes that have been discovered in the pressure P in the chamber


41


vs. time T plot. At about T1 seconds (0.05 seconds, for example) after the time T0 when blowing pressure is applied through the air inlet


34


, the pressure in the chamber begins to rise. The pressure increases to an initial high P1 and drops to P2 (it is believed that this occurs as the parison rapidly expands). At T2 (0.15 seconds, for example) the parison is blown against the blow mold and the pressure once again increases until it reaches a steady state pressure P3 which continues until the blow head is removed more than one second following the application of final blow. The pressure sensor


44


supplies data to the control C (


26


). While the curve has been discussed relative the blowing of the parison with pressure, it would be the same with vacuum assist or with the blowing of the parison with negative pressure (i.e., vacuum).




The control first functions to Displace The Blow Head To The “On” Position And Set Blow Head Air Pressure To “Final Blow” Pressure


50


. “Final blow” pressure can be selectively set and is a pressure that will result in the parison being properly blown. Conventionally, “final blow” air is supplied from 20-30 PSI. Higher pressure will result in a defective bottle. Pressure is applied for a time T2 which is the time required to blow the parison (until the query “Has Time T2 Passed”


52


is answered in the affirmative). The operator may empirically define and Input T2


54


. Alternatively the control can “Determine T2”


56


by determining the location of the negative peak (a local minimum) at P2 (This negative peak may be slightly delayed from the instant when the bottle is fully blown and a correction could then be applied). In practice T2 could be periodically determined with the control receiving updated T2 input. The operator may also reduce T2 if he finds that the blowing of the parison will not be effected. With the parison blown, the control will “Raise The Blow Head “X” And Set Blow Head Air Pressure To “Internal Cooling” Pressure”


58


(X and “internal Cooling” Pressure can be selectively set). This second “on” position is the escape position. The cooling flow is no longer limited by the size of the blow head exhaust. The volume of cooling flow for the remaining second or more before the blow head is turned “off” will be very substantially increased. “Internal cooling” air, can be supplied at a pressure which is substantially higher than final blow air. For example internal cooling air can be supplied at 45 PSI since this is a commonly available air supply. Internal cooling air will be supplied at a pressure sufficient to maintain at least a minimum desired pressure within the bottle. This cooling flow could continue until time T3 (until the query “Has Time T3 Passed?”


60


) is answered in the affirmative whereupon the control will “Displace The Blow Head To The “Off” Position”


62


.




When the blow head is lifted the vertical distance “X” to the escape position (FIG.


5


), exhaust air will be directed by the selectively concavely contoured annular recess surface


63


of the interior opening of the lower portion of the blow head to direct cooling air at the outer vertical surface of the finish.




Each blow head (

FIG. 6

) has a central axial hole


70


configured to matingly receive the blow tube


34


. The blow tube is displaceable vertically but is restrained from rotating by a pair of guide keys


72


which engage opposed flats


74


(

FIG. 7

) on the outer diameter of the blow tube. The top end portion


76


of the blow tube is cylindrical and threaded having an outer diameter larger then the spacing between opposed flats and the keys accordingly function as a down stop for the blow tube. A blow tube support and drive assembly


78


is mounted on the top surface


79


of the blow head arm with a number of screws


80


. The assembly has an air manifold


82


including a link


84


communicating with a final blow air duct


85


in the arm, an overhead distribution manifold


86


and three air distribution legs


88


which depend vertically from the overhead distribution manifold.




Located within each distribution leg is the top portion


90


of a drive member


92


having a threaded internal diameter


94


extending downwardly through the top portion, through a driven gear portion


96


and then through a lower portion


98


which extends downwardly through the blow head mounting assembly


100


. The O.D. of the drive member


92


is rotatably supported by three bearings


102


. The internal thread of the drive member I.D. threadedly receives the threaded top end portion


76


of the blow tube and vertical displacement of the blow tube will accordingly result whenever the driven gear portion


96


is rotated. Rotation will be controlled by an electronic motor


104


coupled to a drive gear


106


. The drive gear engages adjacent driven gear portions of the left two driven gear portions to drive the left two drive members


92


and an idler gear


108


between the right hand pair of driven gear portions


96


drives the right hand drive member.




The bottom of the blow tube


34


(

FIG. 8

) has an annular relief


110


defined in the I.D. The annular upper collar


111


(which is supported by an “X” frame


112


) of an air deflector assembly


114


, is press fit into the annular relief. Integral with and suspended from the frame


112


is a deflector


116


having an annular concave surface


118


that will divert a portion of the downwardly directed air stream radially outwardly towards the outer wall of the blown parison with the remainder flowing downwardly.

FIG. 6

shows the blown parison which when cooled becomes a bottle


10


and shows the blow mold


12


which includes a bottom plate


11


and a pair of mold halves


12




a


,


12




b.







FIG. 10

illustrates an illustrative displacement profile for the blow tube which will blow and cool the parison. The blow head is displaced to the “on” position with the blow tube at the “up” position (T1). The blow tube is then rapidly accelerated to a maximum velocity (V1) and held at that velocity until T2. The blow tube is then decelerated to a lower velocity V2 at T3 and held at that velocity until T4 when it is decelerated to a stop at its “down” position (T5). The blow tube will then remain at the “down” position until T6. The blow tube will then follow the same profile returning the blow tube to a stop at the “up” position. The blow head can then be removed and the molds opened. The displacement profile will be selected to achieve the desired cooling of the inner surface of the blown parison, i.e., the motion profile is configured to co-ordinate with the cooling requirements of the container. This co-ordination can be a co-ordination based on the heat times the mass of the bottle. As shown in

FIG. 6

, the bottle has a long neck which has less glass to cool then the body of the bottle. And if the bottle was formed in a blow and blow process, the body of the bottle will be hotter relative to the long neck. As a result the velocity of the blow tube as it proceeds along the neck portion is co-ordinated with the heat pattern of the bottle (the amount of heat energy desired to be removed along the bottle) and is much faster traversing the long neck than is the velocity traversing the body. Accordingly more cooling will be directed to the body where it is needed. Where the bottom of the formed parison is thicker, even more cooling will be required and the dwell (T6-T5) at the bottom will result in a lot of cooling air being directed at the bottom. Cooling air will continue to rise up along the body and neck to achieve additional cooling when the blow tube is at the bottom (this will also happen at any vertical position).

FIG. 11

illustrates a variant displacement profile where the blow tube makes three cycles while the parison is blown and cooled. This co-ordination could also be a function of the shape of the bottle. For example the bottle might have a bulge which would not be effectively cooled by cooling air flowing upwardly from a nozzle located below the bulge. In this situation like the above cooling of a thicker base the displacement of the cooling nozzle might be either stopped at this bulge to allow more cooling air to be directed into the bulge or slowed down as it displaced upwardly across the bulge to the same effect. The forming process will also be relevant to this co-ordination. Thickness of the glass as a function of height may vary. In a blow and blow process the upper portion of a container will tend to be colder than the bottom portion and vice versa for a bottle formed in a press and blow process.





FIG. 12

illustrates a logic diagram for controlling the displacement with different cycles during the time when a parison is blown and cooled. Here the operator inputs the number “N” of cycles desired. The control will Define Time Blow Head “Off”-Time Blow Head “On”


120


, proceeds to Divide By “N” To Define Cycle Time


122


and then proceeds to Scale Blow Tube Displacement Profile For Cycle Time


124


.




While the blown parison/formed bottle is in the blow mold external cooling will be effected by blowing cooling air through a series of circumferentially located cooling holes


19


defined in the blow molds which are supplied by an air plenum


21


to which the mold bottom plate


11


is secured.




A takeout mechanism is schematically illustrated in FIG.


13


. Three bottles


10


which were formed in blow molds at the blow station are shown standing on the bottom plate


11


of an associated blow mold pair


12




a


,


12




b


shown in the open position. The illustrated machine is a triple gob machine and accordingly three bottles


10


were formed. Once the molds are opened, a takeout assembly


140


of a takeout mechanism


150


grips the bottles. The takeout mechanism also includes a three axis support


160


for the takeout assembly that is suspended from a beam


170


that traverses the machine, i.e., spans the 6, 8, 10, 12, 16, etc., individual sections of the machine. The three axis support, which includes an X axis drive


180


, a Y axis drive


190


and Z axis drive


200


, can take a great variety of forms including the form shown in U.S. Pat. No. 4,892,183, which is incorporated by reference herein.




The takeout assembly has, at each bottle location, a blow tube


34


(FIG.


14


). The blow tube support and drive assembly is the same as for the blow head mechanism except that the drive members


92


end at the driven gear portion and the guide keys


132


extend downwardly from the top wall


133


of the gripper housing


134


proximate the blow tube holes


135


.




The takeout assembly also has a manifold housing


141


including an overhead distribution manifold


142


and three air distribution legs


143


which depend vertically from the overhead distribution manifold. Final blow (this includes air for final blow and/or internal cooling) depending on how the parison is being formed) air F.B./


144


is supplied to the distribution manifold via a selectively controlled valve


145


.




The base


164


of the manifold housing


141


is bolted onto the top wall


33


of the gripper housing


134


with a number of screws


165


with the driven gear portions


96


, the drive gear


106


and the idler


108


located in a chamber located between the base of the manifold housing and the top wall of the gripper housing. The manifold housing has a pair of guide tubes


166


extending vertically upwardly from the top of the manifold housing which receive vertical guide rods


168


which are part of the Z axis drive


20


.




As can be seen from

FIG. 14

, the gripper housing may start as a solid block. A through slot


171


having opposed horizontal keyways


172


is defined at each bottle location extending from the front of the gripper housing to the rear thereof. These slots receive front and back gripper brackets


174


(

FIG. 15

) each of which has integral vertical front


175


and horizontal bottom


176


panels extending completely across the gripper housing and vertical transverse (front to back) panels


178


which include horizontal keys


179


which are received by the keyways


172


. The vertical front panels


175


are open


177


between the vertical transverse panels to allow easy flow of the air from the interior of the bottle to atmosphere. Secured within each of a pair of through holes


173


which extend through the gripper housing from the front to the back of the housing is a double acting cylinder


181


including opposed piston and rod assemblies


182


. A pair of screws


183


connect each gripper bar to the piston rods


184


on the side of the gripper bar and compression springs


186


, located between the piston and the cylinder housing will normally maintain the gripper bars at the closed position. A locating plate


187


is secured to the front panel of the gripper bracket with a rod receiving hole


188


to locate the axis of the rod. Air under pressure is supplied via a valve


191


from a source of gripper air G.A./


192


to the center of each cylinder to open the gripper bars. The gripper bars may have selectively sized semicircular inserts (not shown) so that the closed gripper bars will grip the formed bottles on the finish of the bottles.





FIGS. 16-22

schematically illustrate how three bottles that have just been formed in the blow station of a triple gob I.S. machine standing ready for pick-up (with the blow molds withdrawn) are sequentially processed by a takeout assembly. The takeout assembly will remove bottles from the blow station and deposit them on a conveyor


15


and the bottles will then be conveyed into a cooling tunnel


17


(the tunnel will isolate the hot air from an operator who may have to enter the space between the conveyors to service either the conveyor or the machine). The takeout assembly


140


is shown in

FIG. 16

at the first deadplate position. Bottles have been formed in the blow molds


12


. The molds open and the takeout assembly moves longitudinally to the pickup location shown in

FIG. 17

where the formed bottles will be gripped. The gripped bottles will be removed from the pickup position and carried back to the first deadplate position (FIG.


18


). In the event that the bottles are to be rejected, the gripper jaws can be opened at the first deadplate position to drop the rejected bottles into a cullet removal chute


13


. The gripped bottles, supported at the blow station, are supported next to doorways or openings in associated cooling cans


220


which are supported on a deadplate mechanism


240


which is at its park position. The deadplate mechanism now moves horizontally, transversely towards the gripped bottles to the first deadplate position (until the gripped bottles are supported centrally within their associated cooling can) and the doors of the cooling cans are then closed (this is shown with the circle of the cooling can being a closed circle) FIG.


19


. The takeout assembly and the deadplate mechanism then conjointly horizontally transversely move to a conveyor location adjacent a first, right side conveyor


15


(FIG.


20


), the cooling can doors open and the takeout assembly then moves transversely away from the deadplate mechanism (

FIG. 21

) and then vertically downwardly from the up position to the down, deposit position (

FIG. 22

) to place the gripped bottles on the conveyor whereupon they will be released. The takeout is then returned to the up position and the deadplate mechanism and the takeout assembly will then be conjointly transversely displaced back to their initial positions shown in FIG.


16


. Again the takeout can be displaced with sequential or simultaneous x and y movements. When molds are to be changed, both deadplate mechanisms can be displaced to the conveyor location to open up space for the operator.




With the bottles (Bottles No. 1) removed from the blow station (FIG.


18


), an invert mechanism (not shown) will deliver formed parisons to the blow station and the blow molds will close. The parison will be blown and cooled to form a bottle (

FIG. 19

) and the molds will open so that the sequentially formed bottles (Bottles No. 2) can be removed (

FIG. 20

) by a second takeout assembly. This forming process will be repeated with the next formed bottles (Bottles No. 3) being removed by the first takeout assembly. The synchronous movements of the first takeout assembly and its associated deadplate mechanism and the second takeout assembly and its associated deadplate mechanism are illustrated in

FIGS. 23-28

.




During the time when the first takeout assembly is at the first deadplate position (FIG.


23


), is displaced to the pickup position (

FIG. 24

) to grip a bottle, returns with the gripped bottles to the first deadplate position (FIG.


25


), and waits for the first deadplate mechanism to move to the first deadplate position to capture the bottles and close the cooling can doors (FIG.


26


), the second takeout assembly and second deadplate mechanism are located at the conveyor location adjacent a second, left side conveyor with bottles formed in the previous cycle located within the cans with the can doors closed. Before the first takeout assembly and first deadplate mechanism are displaced conjointly to the conveyor location adjacent the first conveyor (FIG.


27


), the doors to the cans of the second deadplate mechanism open and the second takeout assembly is transversely displaced to displace the gripped bottles to a deposit location over the second conveyor whereupon the second takeout assembly is lowered from the up deposit location to a down deposit location to locate the gripped bottles proximate the second conveyor. The gripped bottles are released and the second takeout assembly is raised to the up deposit location. As the first takeout assembly and first deadplate mechanism are displaced from the first deadplate position to the conveyor position proximate the first conveyor, the second takeout assembly and second deadplate mechanism are conjointly displaced to their start locations (

FIG. 28

) to start their cycle again removing the next bottles (Bottles No. 2) formed in the blow station.




The basic cycle now repeats with the roles reversed for the first takeout assembly/deadplate mechanisms and the second takeout assembly/deadplate mechanism with the first takeout assembly/deadplate assembly returning to their start locations to receive the next formed bottles (Bottles No. 3). While the displacement of the takeout arm from the conveyor location to the pick up location is shown with sequential X and Y movements it should be understood that such movements could occur simultaneously.





FIGS. 29 and 30

illustrate a deadplate mechanism which has a plenum chamber


194


which is supplied cooling air C.A./


195


controlled by a selectively actuated valve V/196. Cooling air is available throughout the entire period during which a bottle is located within a can and for longer periods to cool the can either before or after a bottle is located within the can. Cooling air enters the cans


220


through holes


198


in the top surface


199


of the plenum chamber blowing up against the bottom of a bottle supported above the top surface by a takeout assembly and up the space between the suspended bottle and the inside wall


101


of the can, leaving the can through the can opening


103


at the top of the can. The plenum chamber is supported for Y-axis displacement by suitable rods


105


and is displaced by a Y-axis drive


107


.

FIG. 21

schematically illustrates the door displacement mechanism for the deadplate mechanism cans. The doors


109


are coaxially mounted on a gear (a worm gear for example)


206


which is supported for rotation about its axis. Operatively connected with each gear is a worm (for example)


208


which is displaced by a drive


209


having a motor


210


connected to the worm via a rotary to linear converter


212


(alternates such as rack and pinions may be used).




The interior surface of a can is configured so that cooling air admitted into the can through the bottom inlet holes


198


in the top surface of the plenum chamber will follow the surface of the bottle during its passage to the exit hole


103


. Air flow to a can will occur as desired to achieve the cooling of the bottle but in the preferred embodiment air flow is continuous from the time a bottle enters a can to the time a bottle leaves the can.




A temperature sensor


125


secured to one or more of the cans provides temperature data which should be stable over time (data would be compared at the same point in the cycle). The control C/


26


which receives this data determines whether “Sensed Temperature At Can T°+/−X°”


126


(T and X can be manually or automatically inputted) and where the answer is answered in the negative, the control will “Reject The Bottles”


127


. Where the cullet chute is located in the center, the deadplate mechanism can be displaced back to its ready position, the doors of the can can be opened, the takeout can be displaced to a position over the cullet chute and the bottles can be released.




The blow tube will be oscillated between the up and down positions with a displacement profile matched to the cooling requirements of the bottle from the moment the takeout assembly is lowered to its bottle gripping position until the gripped bottle is deposited onto the conveyor. As with the blowhead a convenient algorithm for defining this oscillation is shown in FIG.


12


and numerous cycles will occur while the bottle is gripped by a takeout assembly.




Referring to

FIG. 32

which tracks the thermal energy of the object along the glass forming process, it can be seen that the thermal energy continuously decreases from the time the parison is blown in the blow mold to the time the bottle is discharged from the cooling tunnel. Thermal energy is first removed by the internal cooling of the blown parison within the blow mold and the conjoint cooling of the blown parison by the blow molds. Cooling then continues from the time a bottle is gripped by a takeout assembly to the time it is deposited on a conveyor and then cooling occurs as the bottle proceeds along the conveyor.




As can be seen from

FIG. 31

, the thermal energy of the bottle has been reduced to the point where the bottle is fully tempered before it is deposited on the conveyor and accordingly further cooling can accordingly take place at a rapid rate without causing defects in the container. Referring to

FIG. 16

, conveyor cooling which may be within a tunnel or not. Cooling would continue for a distance that would be much shorter than the length of a conventional Lehr, perhaps as short as about 25 feet. If it is within a tunnel, the tunnel may be divided up into a number of cooling zones each of which has a fan


300


which supplies shop air to an inlet


302


within the tunnel directing the air upstream. Upstream of the inlet is an exhaust


304


which discharges the cooling air from the tunnel. If there is no tunnel the fans will simply blow cooling air at the bottles. When the bottles are sufficiently cooled they will be discharged from the conveyor for further processing which could include inspection and packing or filling.



Claims
  • 1. A glass container forming system comprisinga blow station including a blow mold for receiving a parison, a blowhead mechanism for transforming the parison into a blown parison in the blow mold, blow mold cooling means for simultaneously cooling the inner and outer surfaces of said blown parison to form a bottle in the blow mold, a conveyor for receiving formed bottles, takeout means including gripper means for gripping the formed bottle, first displacement means for delivering the gripped bottle sequentially to a deadplate location, then to a conveyor location proximate the conveyor, and then to a deposit location over the conveyor, and takeout cooling means for cooling the inner surface of a gripped bottle so that the gripped bottle can be internally cooled from the time the bottle is gripped until the bottle is deposited on the conveyor, and deadplate means including can means for enclosing a gripped bottle, second displacement means for displacing said deadplate means from a remote location to the deadplate location where the can means can enclose the gripped bottle, and then to the conveyor location, cooling means for supplying cooling air to said can means for cooling the outer surface of the enclosed bottle from the deadplate location until the gripped bottle is displaced from the conveyor location to the deposit location.
  • 2. A glass container forming system according to claim 1, wherein said can means comprisesa can including a door displaceable from an open position to allow entry of a gripped bottle to a closed position enclosing a gripped bottle, and third displacement means for displacing the door to a closed position at the deadplate location to enclose a gripped bottle and to the open position at the conveyor location so that the enclosed bottle can be removed from the can.
US Referenced Citations (41)
Number Name Date Kind
1854471 Hofman Apr 1932 A
1869920 Soubier Aug 1932 A
1921390 Ingle Aug 1933 A
2066283 Wadman Dec 1936 A
2123145 Peiler Jul 1938 A
2180737 Hess Nov 1939 A
2182167 Berthold Dec 1939 A
2269060 Mitford Jan 1942 A
2288012 Mongan Jun 1942 A
2302078 Wadman Nov 1942 A
2309290 Aksomitas Jan 1943 A
2309325 Merrill Jan 1943 A
2321555 Mongan Jun 1943 A
2338071 Mongan Dec 1943 A
2345808 Green Jan 1944 A
2365138 Mongan Dec 1944 A
2386455 Green Oct 1945 A
2390910 Aksomitas Nov 1945 A
2443674 Baker Jun 1948 A
2470228 Aksomitas May 1949 A
2492216 Green Dec 1949 A
2515372 Johnson et al. Jul 1950 A
2556469 Dahms Jun 1951 A
2613480 Mongan Oct 1952 A
2660831 Rowe Dec 1953 A
2677919 Worrest May 1954 A
3175301 Duff et al. Mar 1965 A
3235353 Rupli Feb 1966 A
3236620 Wiley Feb 1966 A
3510288 Rowe et al. May 1970 A
3583862 Stacey Jun 1971 A
3764284 Rowe Oct 1973 A
3787197 Snyder et al. Jan 1974 A
4022604 Dawson May 1977 A
4244725 Fenton Jan 1981 A
4263035 Dorey Apr 1981 A
4508557 Fenton Apr 1985 A
4608072 Fenton Aug 1986 A
4710218 Giberti-Fornaciari Dec 1987 A
4892183 Fenton Jan 1990 A
5807419 Rodriguez-Wong et al. Sep 1998 A