The described embodiments relate generally to a member for an electronic device enclosure. More particularly, the present embodiments relate to a glass cover member formed from two or more layers of glass and defining a protruding feature.
Enclosures for electronic devices traditionally include multiple components. For example, an electronic device may include a housing component and one or more cover members. Enclosure components formed from conventional plastic or metal materials may be shaped and textured using traditional molding and/or machining techniques. However, it may be more difficult to shape or texture enclosure components formed from more brittle materials such as glass.
The disclosure provides members for electronic devices which are formed from multiple layers, such as multiple layers of glass. Typically, the member is included in an enclosure for an electronic device. For example, the member may be a glass member included in a cover assembly. Enclosures and electronic devices including the members are also disclosed herein.
In some cases, a member defines a feature that protrudes beyond an adjacent region of its exterior surface. As an example, such a protruding feature may be provided over a camera assembly of the electronic device. One or more holes may extend through the protruding feature to facilitate positioning of an optical module such as a camera module.
In some examples, a portion of the member including the protruding feature is thicker than a surrounding portion of the member. The thicker portion of a glass member may be formed from a greater number of glass layers than the surrounding portion of the glass member. For example, the thicker portion of the glass member (including the protruding feature) may be formed from two or more glass layers while the surrounding portion may be formed from a single glass layer. The two or more glass layers may be bonded (e.g., fused) together. A composition of each of the glass layers may be substantially the same. The glass member is typically chemically strengthened as described in greater detail below.
In some cases, the member retains a layered structure and has a distinct bond region between the layers. For example, a glass member may include a first glass layer extending substantially across the width and the length of the glass member. The glass member may further include a second glass layer having smaller lateral dimensions and at least partially defining the protruding feature. The second glass layer may at least partially define a curved side surface (also referred to as a sidewall) of the protruding feature and the bond region may extend across the protruding feature. In some cases, the protruding feature may comprise a portion of the first glass layer as well as the second glass layer.
In some cases, a glass member is formed from two or more glass layers that fuse together so completely that the fusion zone between the glass layers is less distinct. However, one or more artifacts from the fusion process may still be detected upon close examination, as discussed in more detail below. An example of such a glass member may include a first glass component (alternately, a first glass piece or a first glass portion) extending substantially across the width and the length of the glass member and formed from a first glass layer. The glass member may also include a second glass component (alternately, a second glass piece or second glass portion) at least partially defining the protruding feature and formed from a second glass layer. The protruding feature may also comprise some of the first glass component in addition to the second glass component.
In some examples, the protruding feature may define a first textured region and the adjacent portion of the member may define a second textured region. In some cases, the first textured region may have different properties than the second textured region. For example, the first textured region may have a different gloss than the second textured region. The gloss may be measured for light incident at a particular angle (e.g., 60 degrees) with respect to the surface normal and the value of the gloss may be specified in terms of gloss units as described in greater detail with respect to
The disclosure provides an electronic device comprising a display and an enclosure including a front cover assembly including a front member positioned over the display and a rear cover assembly including a rear member. The rear member defines a feature that protrudes with respect to a base region of an exterior surface of the rear member. The rear member comprises a first glass component defining the base region of the exterior surface and a second glass component bonded to the first glass component and at least partially defining the feature. The electronic device further comprises a camera assembly coupled to an interior surface of the rear cover assembly, the camera assembly comprising a camera module positioned at least partially within a hole extending through the first glass component and the second glass component.
The disclosure also provides an electronic device comprising an enclosure including a housing member defining a side surface of the electronic device and a rear cover assembly coupled to the housing member and including a rear member. The rear member comprises a first glass component defining a base region of an exterior surface of the rear member and a first portion of a hole extending through the rear member. The rear member further comprises a second glass component bonded to the first glass component and defining a second portion of the hole extending through the rear member and a top surface of a protruding feature extending from the base region of the exterior surface, the top surface defining an opening of the hole. The electronic device further comprises a camera assembly coupled to the rear cover assembly and comprising a camera module positioned in the first and the second portions of the hole.
The disclosure further provides an electronic device comprising an enclosure and a sensor assembly. The enclosure comprises a rear glass member comprising a first glass piece and a second glass piece. The first glass piece defines a base region of an exterior surface of the rear glass member and a first portion of a protruding feature, the first portion extending from the base region. The second glass piece is fused to the first glass piece and defines a second portion of the protruding feature, the second portion defining a plateau region of the protruding feature. The sensor assembly is coupled to an interior surface of the rear glass member and comprises a sensor.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like elements.
The use of cross-hatching or shading in the accompanying figures is generally provided to clarify the boundaries between adjacent elements and also to facilitate legibility of the figures. Accordingly, neither the presence nor the absence of cross-hatching or shading conveys or indicates any preference or requirement for particular materials, material properties, element proportions, element dimensions, commonalities of similarly illustrated elements, or any other characteristic, attribute, or property for any element illustrated in the accompanying figures.
Additionally, it should be understood that the proportions and dimensions (either relative or absolute) of the various features and elements (and collections and groupings thereof) and the boundaries, separations, and positional relationships presented therebetween, are provided in the accompanying figures merely to facilitate an understanding of the various embodiments described herein and, accordingly, may not necessarily be presented or illustrated to scale, and are not intended to indicate any preference or requirement for an illustrated embodiment to the exclusion of embodiments described with reference thereto.
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred implementation. To the contrary, the described embodiments are intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the disclosure and as defined by the appended claims.
The following disclosure relates to members for electronic devices. In some cases, the member defines a protruding feature that is offset with respect to an adjacent portion of the member. As an example, the member may be part of a rear cover assembly and the protruding feature may be provided over a camera assembly and/or a sensor assembly. One or more openings may be provided in the protruding feature to facilitate positioning of an optical module such as a camera module in the opening(s). In some cases, the member is a glass member. In additional cases, the member includes a glass layer bonded to another layer such as a ceramic or glass ceramic layer.
In some cases, a portion of the member that includes the protruding feature is thicker than an adjacent portion of the member. As described herein, a thicker portion of a member may be produced by joining multiple sheets or layers together. Forming the thicker portion of a glass member by layering multiple pieces of glass, rather than by using a single piece of glass, can reduce the amount of machining needed to produce the desired shape and/or surface texture of the protruding feature.
In some examples, the thicker portion of the glass member is formed from two or more glass layers that are bonded (e.g., by fusion) together. As described herein, the process of fusion bonding the glass layers can produce a glass member that is resistant to damage due to impact and/or bending of the glass member in use. In addition, the glass members described herein can have a strength sufficient to withstand the machining operations used to produce the desired shape of the glass member.
In some cases, the glass member may comprise a layer structure and distinct bond region(s) joining the glass layers. For example, the thicker portion of the glass member (including the protruding feature) may comprise two or more glass layers while the surrounding portion may comprise a single glass layer. A first glass layer may extend substantially across the length and width of the glass member and define the surrounding portion. A second glass layer having smaller lateral dimensions may at least partially define the protruding feature. The two or more glass layers may be fused together or otherwise coupled to produce a strong bond between the glass layers.
In additional cases, the glass member is formed from two or more glass layers that fuse together so completely that a distinct fusion zone may be difficult to detect upon visual inspection (but may be detectable in other ways). For example, the glass member may include a first glass component (alternately, first glass portion) extending substantially across the glass member and formed from a first glass layer. The glass member may also include a second glass component (alternately, second glass portion) at least partially defining the protruding feature and formed from a second glass layer. The second glass component partially overlies the first glass component, which typically has larger lateral dimensions. In some examples, the protruding feature is defined by the first glass component in addition to the second glass component, as described herein with respect to
In some cases, a composition of each of the glass layers may be substantially the same. Including glass layers with similar compositions in the glass member can enhance fusion between adjacent glass layers. The glass member may be chemically strengthened to enhance its resistance to impact and/or bending. When the glass member is chemically strengthened, zones of the glass layers that have not been ion-exchanged may have substantially the same composition, as discussed in more detail with respect to
A member as described herein may have one or more textured regions configured to provide certain properties while minimizing other properties that are less desirable. For example, a textured region may be configured to have roughness parameters that provide particular levels of optical properties such as gloss and/or transmissive haze, while avoiding an overly rough or sharp “feel.” The texture may provide a balance of functionality. For example, increasing the value of a roughness parameter to reduce the gloss or increase the haziness of the surface may, in some cases, provide an overly rough “feel” and/or undesirably reduce the cleanability of the surface. In some cases, different regions of the member may have different textures in order to provide different properties to the different regions.
For example, the protruding feature may define a textured region and another portion of the member may define another textured region having different properties than that of the protruding feature. In some cases, a top surface of the protruding feature may have a texture which is different from a texture of the rest of the exterior surface (e.g., the remainder of the exterior surface of the member). The properties of a textured region of a member typically influence the properties of a corresponding region of a cover assembly including the member. For example, a low gloss region of the member can produce a corresponding low gloss region of the cover assembly. The description of texture parameters and properties provided with respect to
These and other embodiments are discussed below with reference to
As shown in
As shown in
The housing member 112 may at least partially define a side surface 106 of the electronic device 100 and may include one or more metal members (e.g., one or more metal segments) or one or more glass members. In this example, the housing member 112 defines all four sides or a continuous side surface of the electronic device 100. As shown in
The housing member 112 may define one or more openings or ports. As shown in
A cover assembly such as the cover assembly 122 typically includes a cover member 132, also referred to herein simply as a member. As shown in
Typical cover assemblies herein are thin, and typically include a cover member that is less than 5 mm in thickness, and more typically less than 3 mm in thickness. In some aspects, a member of a cover assembly, such as the members 132 and 134, can have a thickness from about 0.1 mm to 2 mm, from about 0.3 mm to 3 mm, from 0.5 mm to 2.5 mm, from 0.5 mm to 2 mm, or from 0.2 mm to 1 mm. In some cases, a member and a cover assembly including the member may have a non-uniform thickness, such as described in further detail below with respect to the member 134 and the rear cover assembly 124. A member such as the members 132 and 134 may extend laterally across the cover assembly, such as substantially across the width and the length of the cover assembly.
Although the cover assembly 122 is shown in
The cover assembly 124 includes a cover member 134 also referred to herein simply as a member. As shown in
As shown in
As shown in
The combined thickness of a portion of the cover assembly 124 including the protruding feature 126 may be greater than that of the portion 129 and may be at least 10%, 25%, or 50% and up to about 250% thicker than the thickness of the portion 129. In some cases, the thickness of the thicker portion of the cover assembly (including the protruding feature) is greater than about 1 mm and less than or equal to about 2 mm or about 2.5 mm. The thickness of the base portion 129 may be greater than about 0.3 mm and less than about 0.75 mm or greater than about 0.5 mm and less than about 1 mm. The amount of protrusion or offset between the raised region 127 and an exterior surface of the portion 129 may be from about 0.5 mm to about 1.5 mm or from about 0.75 mm to about 2 mm. The size of the protruding feature 126 may depend at least in part on the size of a camera assembly or other device component underlying the protruding feature. In some embodiments, a lateral dimension (e.g., a width) of the protruding feature may be from about 5 mm to about 30 mm, from about 10 mm to about 20 mm, or from about 15 mm to 30 mm.
The shape of the member 134 may generally correspond to the shape of the cover assembly 124. Typically, the member 134 also includes a feature that protrudes with respect to a base region of the exterior surface of the member as shown in more detail in the cross-section views of
The protruding feature 126 may define a textured region 156 of the electronic device 100. The textured region 156 may have a texture configured to provide a desired appearance to an exterior surface of the electronic device 100. In addition, the texture of the textured region 156 may be configured to provide a particular “feel” to the electronic device, configured to be amenable to cleaning, or both. In some cases, the textured region 156 may extend over both the raised region 127 and the side region 128. In other cases, the textured region 156 may extend over a raised region 127 but may not substantially extend over the side region 128.
In some cases, the textured region 156 has at least one roughness parameter greater than that of a polished surface, such as a conventionally polished surface. For example, the textured region 156 may have a texture that produces a matte appearance (e.g., a semi-gloss or a low gloss appearance). In addition, the textured region 156 may have a texture that produces an at least partially translucent or hazy appearance. In other cases, the textured region 156 has at least one roughness parameter similar to that of a polished surface. The description of textures provided with respect to
The texture of the textured region 156 may be similar to or different from that of another portion of the cover assembly. For example, the base portion 129 may define a textured region 159 and the texture of the textured region 156 may be different from a texture of the textured region 159. In addition, when the textured region 156 does not extend over the side region 128, a texture of the side region 128 may be similar to the texture of the textured region 159.
In some cases, the textured region 156 has at least one roughness parameter greater than that of a polished surface, such as a conventionally polished surface, and the textured region 159 has a texture similar to that of a polished surface. In such cases, the textured region 156 may have a lower gloss than the textured region 159. In other cases, the textured region 156 has a roughness parameter similar to that of a polished surface and the textured region 159 has a texture greater than that of a polished surface. Methods for forming textures on the member 134 of the cover assembly 124 are discussed with respect to
The electronic device 100 may include a camera assembly. The camera assembly may include one or more optical modules. The example of
The optical modules 177 may include, but are not limited to, a camera module, an illumination module, a sensor, and combinations thereof. In some cases, the optical modules 177 include multiple camera modules. When the optical modules include multiple camera modules, each of the camera modules may have a different field of view or other optical property. In some cases, a camera module includes an optical sensing array and/or an optical component such as a lens, filter, or window. In additional cases, a camera module includes an optical sensing array, an optical component, and a camera module housing surrounding the optical sensing array and the optical components. The camera module may also include a focusing assembly. For example, a focusing assembly may include an actuator for moving a lens of the camera module. In some cases, the optical sensing array may be a complementary metal-oxide semiconductor (CMOS) array or the like. In some cases, a sensor may include a depth measuring sensor (e.g., a time of flight sensor), an ambient light sensor, an infrared sensor, an ultraviolet light sensor, a health monitoring sensor, a biometric sensor (e.g., a fingerprint sensor), or the like.
An optical module 177 may be positioned at least partially within an opening 167 in the textured region 156, as shown in
In additional cases, a protruding feature 126 of the electronic device 100 can accommodate one or more sensor components in addition to or as an alternate to the optical modules of the camera assembly. For example, the electronic device may include an electronic device component such as a microphone or another type of sensor. These one or more sensor components may be part of a sensor assembly. The sensor assembly may in turn be part of a sensor array.
A variety of sensors may be positioned within and/or adjacent to a protruding feature. For example, a health monitoring sensor may be positioned at least partially within or adjacent to a protruding feature of a wearable device, such as a watch. As another example, a protruding feature may define a key region, a button region, or a trackpad region of a laptop or a phone. A biometric sensor, a touch sensor, a proximity sensor, or the like may be positioned within or adjacent to the protruding feature. The description of sensors provided with respect to
The electronic device 100 may also include components in addition to a display and a camera assembly. These additional components may comprise one or more of a processing unit, control circuitry, memory, an input/output device, a power source (e.g., battery), a charging assembly (e.g., a wireless charging assembly), a network communication interface, an accessory, and a sensor. Components of a sample electronic device are discussed in more detail below with respect to
The cover assembly 222 includes a member 232 and the cover assembly 224 includes a member 234. The member 234 may be a glass member and in some cases the member 232 may also be a glass member. The cover assembly 224 defines a feature 226 that protrudes with respect to a portion 229 of the cover assembly 224. A feature which protrudes with respect to another portion of the cover assembly, such as the feature 226, may also be referred to generally herein as a protruding feature. Typically, at least part of the portion 229 is substantially adjacent the protruding feature 226. The portion 229 may also be referred to herein as a base portion 229. As shown in
The member 234 may also include a protruding feature as shown in more detail in the cross-section views of
As shown in
The electronic device 200 further includes a display 274 and a touch sensor 272 provided below the front cover assembly 222. The display 274 and the touch sensor 272 may be coupled to the front cover assembly 222. The display 274 may be a liquid-crystal display (LCD), a light-emitting diode (LED) display, an LED-backlit LCD display, an organic light-emitting diode (OLED) display, an active layer organic light-emitting diode (AMOLED) display, and the like. The touch sensor 272 may be configured to detect or measure a location of a touch along the exterior surface of the front cover assembly 222.
The electronic device 200 further includes a camera assembly 275. The partial cross-section view of
The camera assembly 275 further includes a support structure 276 that is coupled to an interior surface 242 of the cover assembly 224. The support structure 276 may be configured to hold various elements of the camera assembly 275 in place. For example, each of the optical modules 277 and 278 and a circuit assembly 279 may be mounted to the support structure 276. In some cases, the support structure 276 may include a plate, a bracket, or a combination thereof. The shape of the support structure 276 is not limited to the example of
The support structure 276 and the coupling between the camera assembly 275 and the interior surface of the cover assembly 224 may be configured to limit bending of the member 234 in the vicinity of the protruding portion 226. For example, the support structure 276 may be configured to limit bending that would tend to increase outwards curvature of the region 247 of the protruding portion 226 (and increase its convexity). Limiting bending of the protruding region can limit bending-induced tensile stress along the textured region 256. Further, the coupling between the camera assembly 275 and the interior surface 242 of the cover assembly 224 may be sufficiently rigid so that the position of a neutral axis of the combination of the cover assembly 224 and the camera assembly 275 is shifted as compared to the corresponding neutral axis of the cover assembly 224 alone. For example, the neutral axis of the combination of the cover assembly 224 and the camera assembly 275 may be shifted inward, away from the exterior surface 244, as compared to the corresponding neutral axis of the cover assembly 224 alone. In some cases, the shifting of the neutral axis may be most pronounced in the protruding feature 226 of the cover assembly 224.
As previously described with respect to
The first optical module 277 and the second optical module 278 are respectively aligned with the through-holes 237 and 238. As shown in
As previously described with respect to
The cover assembly 224 further includes a cosmetic or decorative coating 260 disposed along an interior surface 233 of the member 234. In some cases, the cosmetic coating 260 may define an interior surface 242 of the cover assembly. When the cover assembly and member over the cosmetic coating are textured, the appearance of the electronic device may be due to the combined effect of the textured region and the cosmetic coating. As shown in
In some cases, the cosmetic coating 260 comprises a polymer. The cosmetic coating 260 may comprise at least 40%, 50%, 60%, or 70% of the polymer and may therefore be referred to as a polymer-based coating or a polymeric coating. When the cosmetic coating 260 further comprises a colorant, the polymer may act as a binder for the colorant. The colorant (e.g., a pigment) may be substantially dispersed in a matrix of the polymer. As examples, the polymer may be polyester-based, epoxy-based, urethane-based, or based on another suitable type of polymer or copolymer. The cosmetic coating 260 may further comprise optional additives such as one or more extenders, diluents, polymerization initiators, and/or stabilizers. In some embodiments, the polymer has a cross-linked structure.
In some cases, the cosmetic coating may include a color layer (e.g., an ink, dye, paint, etc.) and/or a metal layer. As previously described, the cosmetic coating 260 may include at least one color layer. The color layer may comprise a polymer and a colorant dispersed in the polymer and may be transparent, translucent, or opaque. More generally, any pigment, paint, ink, dye, sheet, film, or other layer may be used as the cosmetic coating 260 or a portion thereof. In some embodiments, the cosmetic coating 260 is a multilayer coating that includes a first color layer and a second color layer. Each of the color layers may be transparent, translucent, or opaque. Each of the color layers may include the same colorant or different color layers may include different colorants. The thickness of each of the color layers in the cosmetic coating 260 may be from about 2 microns to about 10 microns.
The color layer(s) and the cosmetic coating 260 may have a chromatic color or an achromatic color. The color of the cosmetic coating 260 may be characterized using a color model. For example, in the hue-saturation-value (HSV) color model, the hue relates to the wavelength(s) of visible light observed when the color feature is viewed (e.g., blue or magenta) and the value relates to the lightness or darkness of a color. The saturation relates to the perceived colorfulness as judged in proportion to its brightness. As another example, coordinates in CIEL*a*b* (CIELAB) color space may be used to characterize the color, wherein L* represents brightness, a* the position between red/magenta and green, and b* the position between yellow and blue.
In some cases, the cosmetic coating 260 may include multiple layers. As examples, the cosmetic coating 260 may include one or more color layers, a metal layer, an optically clear layer, an optically dense layer, and combinations thereof. In additional cases, the cosmetic coating need not include a color layer, but may include one or more of an optically dense layer and a metal layer.
For example, the cosmetic coating 260 may include an optically dense layer. The optically dense layer may substantially reduce or prevent transmission of visible light, thereby “blocking” the view through the cover assembly 224 of components positioned behind the optically dense layer. In addition, the optical properties of the optically dense layer may be configured to adjust the lightness and/or the chroma of the cosmetic coating 260.
For example, the optical density of the optically dense layer may be described by OD=log10 (initial intensity/transmitted intensity) and may be greater than or equal to 1, greater than or equal to 2, or greater than or equal to 3. Generally, the optically dense layer comprises a polymer. The optically dense layer may further comprise one or more pigments, dyes, or a combination thereof. As an example, the optically dense layer has a substantially wavelength independent (neutral) reflectance and/or absorption spectrum over the visible range. In addition, the optically dense layer may have an achromatic characteristic color. The thickness of the optically dense layer may be from about 2 microns to about 10 microns.
In further embodiments, the cosmetic coating 260 may comprise a metal layer in addition to one or more color layers. Such a metal layer may give a metallic effect to the cosmetic coating as seen through the cover assembly 224. When used to form a metallic marking, the metal layer may be a partial layer (e.g., having a smaller lateral dimension than a color layer). For example, the metal of the layer may be selected from aluminum, copper, nickel, silver, gold, platinum, and alloys thereof. In some cases, the metal layer may be configured to at least partially transmit visible light. For example, the metal layer may have a thickness greater than about 0.5 nm and less than 10 nm, less than 5 nm, less than 3 nm, less than 2 nm, or less than 1 nm. Thicker metal layers may be used for forming an indicium or another marking under the member. The marking may be in the form of an image, a pattern, text, a glyph, a symbol, indicia, a geometric shape, or a combination thereof.
The metal layer may be disposed along an interior surface of the member 234. In some cases, the metal layer may be used in combination with an optically clear layer. The optically clear layer may have one or more mechanical properties (e.g., modulus, hardness and/or toughness) that limit or prevent propagation of cracks from the metal layer into the member 234. The optically clear layer may be a polymeric layer and may have a thickness from about 1 micron to about 5 microns. The optically clear layer may be disposed along the interior surface 233 of the member 234, the metal layer may be positioned between the optically clear layer and the optically dense layer, a first color layer may be positioned between the metal layer and the optically dense layer, and a second color layer may be positioned between the first color layer and the optically dense layer.
In addition, the cosmetic coating may comprise additional polymeric layers behind and disposed along the optically dense layer. If components of the electronic device are glued to the cosmetic coating, these additional layers may include a protective layer that protects the color layers of the multilayer coating from damage due to the glue. The additional layers may further include a layer inward of the protective layer that facilitates adhesion of the cosmetic coating to the glue.
The cover assembly 322 includes a member 332 and the cover assembly 324 includes a member 334. The member 334 may be a glass member and in some cases the member 332 may also be a glass member. The cover assembly 324 defines a protruding feature 326 that protrudes with respect to a base portion 329. Typically, the member 334 also includes a protruding feature as shown in more detail in the cross-section views of
In a similar fashion as described for
In a similar fashion as previously described with respect to
The electronic device 300 further includes a display 374 and a touch sensor 372 provided below the front cover assembly 322. The display 374 and the touch sensor 372 may be as previously described for
The electronic device 300 further includes a camera assembly 375. The partial cross-section view of
As previously described with respect to
The cover assembly 324 further includes a cosmetic or decorative coating 360 disposed along an interior surface 333 of the member 334. As shown in
The cover assembly 422 includes a member 432 and the cover assembly 424 includes a member 434. The member 434 may be a glass member and in some cases the member 432 may also be a glass member. The cover assembly 424 defines a protruding feature 426 that protrudes with respect to a base portion 429. Typically, the member 434 also includes a protruding feature as shown in more detail in the cross-section views of
In some cases, the member 434 is a glass member and the thicker portion of the glass member is formed from a greater number of glass layers than the adjacent portion of the glass member, as described in further detail with respect to
The cover assembly 424 may define holes 437 and 438 extending partially through the protruding feature 426. The holes 437 and 438 do not define openings at the external surface of the protruding feature 426. Therefore, the surface region 447 of the protruding feature may at least partially define windows (467, 469) for the optical module 477 and 478. A glass, glass ceramic or ceramic material defining the window 469 may be transparent to visible light, infrared radiation, ultraviolet radiation, or combinations thereof.
In a similar fashion as described for
The electronic device 400 further includes a display 474 and a touch sensor 472 provided below the front cover assembly 422. The display 474 and the touch sensor 472 may be as previously described for
The electronic device 400 further includes a camera assembly 475. The partial cross-section view of
The optical module 477 is aligned with the hole 437 and the optical module 478 is aligned with the hole 438. As shown in
The cover assembly 424 further includes a cosmetic or decorative coating 460 disposed along an interior surface 433 of the member 434. As shown in
In a similar fashion as previously described with respect to
The electronic device 500 also includes a sensor assembly 577. The sensor assembly 577 includes at least one sensor or sensor module. A variety of sensors may be positioned within and/or adjacent to a protruding feature. For example, a health monitoring sensor may be positioned at least partially within or adjacent to a protruding feature of a wearable device, such as a watch. As another example, a protruding feature may define a key region, a button region, or a trackpad region of a laptop computer, desktop computer, phone, tablet, or any other suitable electronic device. A biometric sensor (e.g., a face or fingerprint recognition sensor or a health monitoring sensor), a touch sensor, a force sensor, a proximity sensor or the like may be positioned within or adjacent to the protruding feature (e.g., within the device and proximate to the protruding feature). In some cases, the sensor assembly may further include other components such as support structure and/or a circuit assembly. In the example of
The example of
In some examples, the electronic device 500 may be a wearable electronic device and the protruding feature of the member may define a user-facing surface of the electronic device. The sensor assembly 577 for such an electronic device may include one or more health monitoring sensors such as an electrocardiogram (ecg) sensor, a heart rate sensor, a photoplethysmogram (ppg) sensor, or a pulse oximeter. Further, the sensor assembly may include a sensor to determine whether or not the device is being worn and/or one or more additional sensors (e.g., one or more of the sensors described with respect to
As shown in
The member 634 may be a glass member, the first component 699 may be a first glass component, and the second component 696 may be a second glass component. In additional cases, the member 634 is a composite member. As one example, the first component 699 is a first glass component and the second component 696 is a glass ceramic or ceramic component (or vice versa). The description of glass ceramic and ceramic components provided with respect to
The first component 699 includes or defines the portion 639 of the member 634, also referred to herein as a base portion 639. The base portion 639 defines a base region 649 of the exterior surface 644. The first component 699 also includes the portion 635 underlying the protruding feature 636. The protruding feature 636 protrudes from or is at least partially offset with respect to the base portion 639. A protruding feature of a member, such as the protruding feature 636, may also be referred to generally herein as a feature.
The second component 696 of the member may at least partially define the protruding feature 636 of the member 634. In the example of
The dashed line 695 schematically indicates the boundary region between the first component 699 and the second component 696. The first component 699 may be bonded to the second component 696 and a boundary region may join the two components. In some cases, the first component 699 may be fused to the second component 696, such as when the first component 699 is a first glass component and the second component 696 is a second glass component. In such cases, the first component 699 and the second component 696 may be referred to as being fusion bonded. When the first component 699 is fused to the second component 696 the boundary region may also be referred to herein as a fusion zone. In some embodiments, the fusion between the first component 699 and the second component 696 is substantially complete. For example, the boundary or fusion zone between the first component 699 and the second component 696 may include few, if any, voids, and any voids present may be small relative to the thickness of the first and the second components. In other cases, the first component 699 may be bonded to the second component 696 using an intermediate material, such an inorganic or organic material (e.g., an adhesive). The intermediate material may be thin relative to the first and the second components.
The first component 699 of the member 636 may be formed from a first layer of glass and the second component 696 of the member may be formed from a second layer of glass. The dashed line 695 may correspond to the boundary between the first layer of glass and the second layer of glass. In some cases, a distinct boundary region may be observed between the first component 699 and the second component 696. In other cases, a distinct boundary region between the first component 699 and the second component 696 may not be detected by the unaided eye.
For example, a distinct fusion zone may not be detected by the unaided eye when the first layer of glass has a composition that is substantially similar to that of the second layer of glass and fusion between the first glass component and the second glass component is substantially complete. In some cases, one or more fusion artifacts may be detected in the fusion zone such as an area of incomplete fusion, a void, a graphite or other impurity particle arising from the thermoforming process, and the like. The size of any fusion artifacts may be sufficiently small that the glass member has the desired strength. For example, a fusion artifact may be less than 50 microns, less than 25 microns, less than 10 microns, or less than 5 microns in size. In some cases, the boundary region and/or a fusion artifact may be observed by sectioning the member 634 and/or using non-destructive techniques. Suitable techniques for observing the boundary region and/or a fusion artifact include, but are not limited to, microscopy, elemental analysis, optical interference detection, ultrasonic detection, and the like.
As shown in
The through-hole 662 may allow input to, output from, or placement of a device component such as an optical module as previously described with respect to
As shown in
In some cases, the base region 649 and the raised region 647 may both define respective textured regions of the exterior surface 644 (also referred to herein as textured surface regions). For example, the raised region 647 may define a first texture and the base region 649 may define a second texture different than the first texture. In some cases, the side region 648 (which may also be referred to as a peripheral region) may define a third texture. As examples, the third texture may be the same as the first texture or the second texture or may be formed by an overlap of the first texture and the second texture. As used herein, a texture may include a relatively smooth texture, such as a texture produced by a polishing process.
As schematically illustrated in
In other cases, the texture of the textured region 656 may be smoother than the texture of the base region 649.
In the example of
As shown in
In the example of
In some cases, the first component 799 may be a first glass component formed from a first layer of glass and the second component 796 may be a second glass component formed from a second layer of glass. The dashed line 795 may correspond to the boundary between the first layer of glass and the second layer of glass. In additional cases, the member 734 is a composite member. As one example, the first component 799 is a first glass component and the second component 796 is a glass ceramic or ceramic component (or vice versa). The description of glass ceramic and ceramic components provided with respect to
In some cases, shaping (e.g., machining) of the layers after the first layer is coupled to the second layer causes the boundary between the layers to be offset from the height of the base region 749 of the exterior surface 744 as described in more detail with respect to
As shown in
As shown in
The member 834 includes a first component 899 and a second component 896. In some cases, the first component 899 may be a first glass component formed from a first layer of glass and the second component 896 of the member may be a second glass component formed from a second layer of glass. In additional cases, the member 834 is a composite member. As one example, the first component 899 is a first glass component and the second component 896 is a glass ceramic or ceramic component (or vice versa). The description of glass ceramic and ceramic components provided with respect to
The first component 899 includes the base portion 839, the portion 835 underlying the protruding feature 836, and a portion (alternately, part) 837 that defines a lower or first part of the protruding feature 836. The second component 896 defines an upper or second part of the protruding feature 836 and a raised region 847 of the exterior surface. The region 837 of the first component 899 may define a lower or first part of the side surface 848 and the second component 896 may define an upper or second part of the side surface 848. In a similar fashion as described for
In the example of
In some cases, the first component 899 of the member 834 may be formed from a first layer of glass and the second component 896 of the member may be formed from a second layer of glass. The solid line 895 may correspond to the boundary region between the first layer of glass and the second layer of glass, which may be detected by the unaided eye across the protruding feature. As previously described with respect to
As shown in
The through-hole 862 may allow input to, output from, or placement of a device component such as an optical module as previously described with respect to
As shown in
As shown in
The first component 999 includes the base portion 939, the portion 935 underlying the protruding feature 936, and a portion (alternately, part) 937 that defines a lower or first part of the protruding feature 936. The second component 996 defines an intermediate or second part of the protruding feature. The third component 997 defines an upper or third part of the protruding feature and a raised region 947 of the exterior surface. The portion 937 of the first component 999 may define a lower or first part of the side surface 948, the second component 996 may define an intermediate or second part of the side surface 948, and the third component 997 may define an upper or third part of the side surface 948. In a similar fashion as described for
The dashed lines 995a and 995b schematically indicate the boundaries between the first component 999, the second component 996, and the third component 997. In the example of
The first component 999 of the member 934 may be formed from a first layer of glass, the second component 996 of the member may be formed from a second layer of glass, and the third component 997 of the member may be formed from a third layer of glass. In some cases, one or more holes are formed in the second layer of glass prior to fusing of the layers of glass in order to facilitate formation of the hole 962. The dashed lines 995a and 995b may correspond to the boundary regions between the layers of glass. In some examples a distinct boundary region between the first component 999 and the second component 996 and/or the second component 996 and the third component 997 may not be detected by the unaided eye while in other examples at least a portion of one or more boundary regions or a fusion artifact may be detected by the unaided eye or using other techniques as previously discussed with respect to
As shown in
As shown in
The textured region 1056 comprises a plurality of surface features 1080. The example of the surface features 1080 provided in
As shown in
In some embodiments, the surface features 1080 define a set of hills and valleys. The hills and valleys may be defined using areal texture analysis techniques as described below. The surface feature 1086 may generally correspond to a hill feature and the surface feature 1084 may generally correspond to a valley feature. In some embodiments, a set of hills and valleys has a substantially uniform spacing between hill features, valley features, or a combination thereof. In additional embodiments, a set of valleys may have a non-uniform or an irregular spacing between hill features and/or valley features.
The heights of the surface features 1080 may be measured with respect to a reference surface 1082. For example, the heights of the hills may be determined from the maximum points (e.g., point 1087) and the heights of the valleys may be determined from the minimum points (e.g., point 1085). The member 1034 may be an example of the member 134 or any other members described herein. Details of these members are applicable to the member 1034 and, for brevity, will not be repeated here.
The surface features 1080 may be configured to provide particular optical properties to one or more surface regions of the member 1034, as well as to a cover assembly and electronic device including the member 1034. However, the surface features 1080 defining the texture of the surface region may not be individually visually perceptible. In some cases, the texture of the surface region may cause the member 1034 to appear translucent, rather than transparent. In some cases, the texture may be configured to provide particular levels of such optical properties such as transmissive haze, clarity, gloss, graininess, and combinations thereof.
A textured surface region of the member, such as the textured region 1056, may be configured to provide a specified gloss level to the surface. In some embodiments, the textured region 1056 may have a gloss value of less than about 50 gloss units, less than about 40 gloss units, from 2 gloss units to 20 gloss units, from 2 gloss units to 10 gloss units, from 5 gloss units to 50 gloss units, from 5 gloss units to 20 gloss units, from 10 gloss units to 50 gloss units, from 10 gloss units to 45 gloss units, or from 15 gloss units to 45 gloss units as measured at 60 degrees. The gloss level may be measured in the absence of a cosmetic coating. In additional embodiments the textured region 1056 may have a higher gloss. For example, a textured region 1056 having a relatively high gloss may have a gloss value greater than about 70 gloss units and less than or equal to about 150 gloss units. In some cases, the difference between the gloss of the textured region and another region of the exterior surface may be at least 10% and may be more than 100%. In some cases, the gloss of the textured region may be measured using commercially available equipment and according to ASTM or ISO standard test methods. The angle measurement may refer to the angle between the incident light and the perpendicular to the textured region of the surface.
A textured surface region of the member 1034, such as the textured region 1056, may be configured to provide a specified level of transmissive haze to the corresponding portion of the member. In some cases, the transmissive haze of the textured region may be measured using commercially available equipment and according to ASTM or ISO standard test methods. The transmissive haze may relate to the amount of light subject to wide angle scattering (e.g., greater than 2.5 degrees). In some cases, the transmissive haze may be greater than or equal to about 50%, greater than or equal to about 60%, or greater than or equal to about 70%. For example, the transmissive haze may be from about 60% to about 90% or from about 70% to about 80%. As non-limiting examples, the transmissive haze may be measured using a haze-gard i device available from BYK or a GC 5000L variable photometer available from Nippon Denshoku. The transmissive haze scattering may be measured for the cover assembly or member as removed from the electronic device. The transmissive haze of another region of the exterior surface of the member, such as the base region, may be similar to or different from that of textured region 1056.
A textured surface region of the member 1034, such as the textured region 1056, may be configured to provide a specified level of clarity to the corresponding portion of the member. The clarity or the transmissive narrow angle scattering of the textured region may be measured using commercially available equipment and according to ASTM or ISO standard test methods. In some cases, the clarity may be less than about 50%, less than about 40%, less than about 30%, less than about 20%, less than about 15%, or less than about 10%. For example, the clarity may be from about 5% to about 30%, from about 5% to about 20%, from about 5% to about 15%, or from about 5% to about 15%. The transmissive narrow angle scattering may be measured using a haze-gard i device available from BYK or a GC 5000L variable photometer available from Nippon Denshoku. A clarity value may be determined from measurements of the intensity in a central region (Icentral) and an intensity in a ring around the central region (Iring). For example, the clarity value may be equal to 100%*(Icentral−Iring)/(Icentral+Iring). The clarity or the transmissive narrow angle scattering may be measured for the cover assembly or member as removed from the electronic device.
In some cases, a textured region of the member may be configured to provide a specified level of visual uniformity to the corresponding portion of the member. The level of visual uniformity of another region of the exterior surface of the member, such as the base region, may be similar to or different from that of textured region 1056. The graininess of a textured region may be measured under diffused illumination using commercially available equipment. The graininess may be measured similarly for a textured region of a cover assembly. In some cases, an image of the textured surface of the member 1034 may be obtained using a digital camera and the lightness of each pixel of the image may be determined, thereby allowing determination of the lightness variation across the textured surface. For example, the BYK-mac device available from BYK may produce a graininess value determined from a histogram of the lightness levels. The graininess of the textured surface may be less than about 1.5 or less than about 1.0. In addition, the graininess may be from about 0.1 to about 1.5, from about 0.1 to about 1.0, from about 0.25 to about 1.5, from about 0.25 to about 1.0, from about 0.5 to about 1.5, or from about 0.5 to about 1.0. These graininess values may be measured prior to application of any cosmetic coating to the member.
A textured surface region of the member 1034, such as the textured region 1056, may be configured to provide a specified level of cleanability. For example, the texture of the textured region 1056 may be configured so that a root mean square (RMS) height of the features is not overly large. The texture may also be configured so that a size of any recessed surface features is sufficiently large to facilitate cleaning. In addition, the texture may be configured so that the root mean square (RMS) slope and/or the mean peak curvature of the surface features is small enough to provide the desired tactile properties in addition to the desired level of cleanability.
Surface texture parameters include areal surface texture parameters such as amplitude parameters, spatial parameters, and hybrid parameters. Surface filtering may be used to exclude surface noise and/or surface waviness before determining the surface texture parameters. In addition, a segmentation technique may be used to determine feature parameters such as the maximum diameter, the minimum diameter, the area, and the perimeter. These parameters may be calculated on the basis of the feature shape as projected onto the reference surface (e.g., a reference plane). Mean values may be determined for a given class of surface features (e.g., hills or valleys). Surface texture parameters and methods for determining these parameters (including filtering and segmentation) are described in more detail in International Organization for Standardization (ISO) standard 25178 (Geometric Product Specifications (GPS)—Surface texture: Areal).
These surface texture parameters may be measured using commercially available equipment, including equipment using optical measurement techniques. An example optical measurement technique is interferometry and an example of commercial equipment using this technique is a coherence scanning interferometry profiler (white light), such as a Zygo coherence scanning interferometry optical profiler. Another example optical measurement technique is confocal microscopy and an example of commercial equipment using this technique is a laser scanning confocal microscope, such as a Keyence laser scanning confocal microscope. Images may be tiled to measure a larger area.
For example, the surface features 1080 of one or more surface regions of the member 1034 may be characterized, in part, by the heights of the surface features. The height may be measured with respect to a reference surface, such as the arithmetical mean of the surface (schematically shown by line 1082 in
The RMS height of another region of the exterior surface of the member 1034, such as the base region, may be similar to or different from that of textured region 1056. For example, the RMS height of the raised region may be greater than that of the base region. For example, the RMS height of the raised region may be at least 10% and less than 150%, at least 10% and less than 100%, or at least 10% and less than 50% greater than that of the base region. In some cases, the RMS height of the base region may be less than 0.5 microns, less than 250 nm, or from 1 nm to about 250 nm. In some cases, the RMS height of the base region may be similar to that of a polished surface, such as from about 1 nm to about 150 nm, from about 1 nm to about 125 nm, from about 1 nm to about 100 nm, from about 1 nm to about 75 nm, from about 1 nm to about 50 nm, from about 1 nm to about 25 nm, or from 1 nm to about 10 nm.
In addition, the surface features 1080 of one or more surface regions may be characterized by lateral parameters, such as the distance between peaks. The spacing between peaks may not be uniform, so that there is a distribution of spacings between peaks. The average (mean) distance or spacing between peaks may be referred to as the average pitch or mean pitch. The average pitch may be from about 1 micron to about 20 microns, from about 1 micron to about 15 microns, from about 1 micron to about 10 microns, from about 2.5 microns to about 20 microns, from about 2.5 microns to about 15 microns, from about 2.5 microns to about 10 microns, from about 5 microns to about 40 microns, from about 5 microns to about 20 microns, from about 5 microns to about 15 microns, or from about 5 microns to about 10 microns.
In some embodiments, the surface features 1080 of one or more surface regions may be configured so to have a particular ratio of the average height of the peaks to the average spacing of the peaks. For example, the ratio of the RMS height to the mean pitch may be from about 0.01 to about 0.6, from about 0.01 to about 0.3, from about 0.02 to about 0.6, from about 0.02 to about 0.3, from about 0.03 to about 0.6, from about 0.03 to about 0.3, from about 0.04 to about 0.6, or from about 0.04 to about 0.3.
The surface features 1080 of one or more surface regions may also be characterized by a lateral size. For example, the surface features 1080 may be characterized by a maximum lateral (or linear) size and a minimum lateral (or linear size). The surface features 1080 may have a maximum lateral size small enough that they are not visually perceptible as individual features. In addition, the lateral size and spacing of the surface features 1080 may be configured so that the member has a sufficiently low level of graininess.
The surface features 1080 of one or more surface regions may be characterized by the root mean square slope (Sdq), also referred to as the root mean square gradient. In some embodiments, the root mean square slope may be greater than zero and less than about 1.25, greater than zero and less than about 1, from 0.1 to less than about 1.25, from about 0.1 to less than about 1, from about 0.25 to less than about 1, from about 0.25 to about 0.75, or from about 0.1 to about 0.5. In some cases, the root mean square slope of the raised region is greater than that of the base region. For example, the root mean square slope of the raised region may be at least 10% and less than 60% greater than that of the base region.
The surface features 1080 of one or more surface regions may also be characterized by the curvature of the peaks (also referred to as summits), such as by the arithmetic mean summit curvature Ssc, also referred to herein as the mean peak curvature. In some embodiments, the arithmetic mean summit curvature is greater than zero and less than about 2.0 microns, greater than zero and less than or equal to about 1.5 microns−1, from about 0.1 microns−1 to about 2.0 microns−1, from about 0.1 microns−1 to about 1.5 microns−1, from about 0.25 microns−1 to about 2.0 microns−1, from about 0.25 microns−1 to about 1.5 microns−1, from about 0.5 microns−1 to about 2.0 microns−1, from about 0.5 microns−1 to about 1.5 microns−1, from about 0.75 microns−1 to about 2.0 microns−1, or from about 0.75 microns−1 to about 1.5 microns−1. In some cases, the mean peak curvature of the raised region is greater than that of the base region. For example, the mean peak curvature of the raised region may be at least 10% and less than 50% greater than that of the base region.
The surface features 1080 of one or more surface regions may also be characterized by an autocorrelation length. In some embodiments, the autocorrelation length is from about 1 micron to about 50 microns, from about 2 microns to about 30 microns, or from about 3 microns to about 25 microns.
The glass layers used to form the glass member may be shaped prior to operation 1110 of assembling the glass layers. The glass layers may be shaped to a desired shape and size by machining. In addition, the surfaces of the glass layers may be finished so that adjacent layers can closely contact each other. In some cases, the surfaces of adjacent glass layers are substantially flat and smooth as schematically illustrated in
After the shaping operation, a glass layer forming a first or lower portion of the glass member typically has larger lateral dimensions than the glass layer(s) forming the upper portion(s) of the glass member. In some cases, the thickness of the first glass layer forming the first or lower portion of the glass member is from 0.5 mm to 1.0 mm, or from 0.75 mm to 1.5 mm, and the thickness of the glass layer(s) forming the upper portion(s) of the glass is from 0.75 to 1.5 mm or from 1.0 mm to 2 mm. In some cases, the desired shape of the glass layers includes rounded or chamfered corners. Following the shaping operation, the glass layers may be cleaned, such as by washing. The glass layers may also be etched or plasma treated following the shaping operation.
The process 1100 of
As shown in
The fusing operation may include heating the assembly of glass layers to a temperature between the glass transition temperature and a softening point of each of the glass layers, to a temperature between an annealing point and a softening point of each of the glass layers, or to a temperature between a strain point and a softening point of each of the glass layers. For example, the strain point (viscosity of about 1014.5 Poise) is the temperature at which internal stress in the glass is relieved in hours. The annealing point (viscosity of about 1013.2 to 1013.4 Poise) is the temperature at which internal stress in the glass is relieved in minutes. The dilatometric softening point is defined by a viscosity of about 109 to 1011 Poise while the Littleton softening point is defined by a viscosity of about 107.6 Poise; a “softening point” as referred to herein may refer to either of these temperatures. The working point is defined by a viscosity of about 104 Poise. The glass transition temperature (viscosity of about 1012 to 1013 Poise) is the temperature at which glass transitions from super-cooled liquid to a glassy state. The heating may be performed in several stages. In some cases, the assembly may be heated while the tool-piece rests on the upper layer of the assembly and the assembly as a whole rests on the support surface.
The fusing operation may also include applying pressure to at least the upper layers of the assembly. In some cases, the tool-piece contacts the upper layer of the assembly, but not the remainder of the assembly, while pressure is applied to the assembly through the tool-piece. In some cases, the pressure may be greater than that due to the weight of the tool-pieces. In some cases, fusion between the lower layer and the upper layer(s) of the assembly may begin in a central region of the upper layers(s) and then may move outwards towards the sides of the upper layers.
The operation of fusing the assembly of glass layers creates an integral fused assembly. The portion of the fused assembly formed from multiple layers of glass typically has a greater thickness than a portion of the fused assembly formed from a single layer of glass. In addition, this thicker portion of the fused assembly protrudes from an adjacent portion of the thinner portion of the fused assembly. The protruding feature of the glass member will be located within this thicker portion, while the base portion will be located within the adjacent thinner portion. Each of the thicker portion and the thinner portion defines an external surface and an internal surface. The operation of fusing the assembly of the glass layers need not achieve complete fusion between the layers. For example, when material is to be removed from the side surfaces of the upper layer(s) of the fused assembly in operation 1130, some of the material of the upper layer(s) to be removed in operation 1130 need not be completely fused to the lower layer of the fused assembly.
In some cases, at least a portion of a boundary region between the glass layers may be detected by the unaided eye or using other techniques after the operation of fusing the glass layers. At least a portion of a boundary region may be detected, for example, as an area of incomplete fusion, as a particle of graphite or another material originating from the thermoforming apparatus, or both. In some cases, the boundary region may be observed by sectioning the glass member and/or using non-destructive techniques. Suitable techniques for observing the boundary region include, but are not limited to, microscopy, elemental analysis, optical interference detection, ultrasonic detection, and the like. As referred to herein, a “glass member,” a “glass layer,” a “glass component,” and/or a “glass piece” may include some relatively small amount of impurities or crystalline material, such as 1% or less, 2% or less, or 5% or less by weight of the member.
In other cases, the fusion may be sufficiently complete that a distinct boundary region may not be detected with the unaided eye between the portions of the fused assembly corresponding to the layers of the assembly. For example, a distinct boundary region may not be detected with the unaided eye when the two adjacent layers of glass have a similar composition and fusion between these glass layers is substantially complete.
The process 1100 may also include an operation of cooling the fused assembly. The cooling of the fused assembly may be sufficiently gradual that thermally induced residual stresses are minimized. In some cases, the cooling may be performed in several stages. By the way of example, a cooling operation may control the cooling of the fused assembly until the temperature of the fused assembly is less than or equal to the strain point of the glass(es). In some embodiments, a density of the external surface of the thicker portion of the fused assembly is greater than a density of the external surface of the thinner portion of the fused assembly (e.g., adjacent the thicker portion).
In some cases, a property of the glass varies across the cooled fused assembly. For example, the density of the glass may vary across the cooled fused assembly even though the lower glass layer and the upper glass layer(s) may have substantially the same density prior to the process 1100. For example, the density of the glass on the raised region (e.g., the plateau region) of the protruding feature may be greater than the density of the glass on the base region of the external surface.
As shown in
Typically, material is removed from the external surfaces of both the thicker and the thinner portions of the fused assembly. Material may also be removed from the internal surfaces of the thicker and the thinner portions of the fused assembly. For example, the material removal steps may be used to produce exterior and interior surfaces that are sufficiently level. The amount of material removed from the external surface may be from about 2% to about 30% of the thicker portion and from about 5% to about 40% of the thinner portion. In some cases, the amount of material removed is from about 0.05 mm to about 0.5 mm. This material removal may produce a fusion zone which is elevated with respect to the exterior surface of the base region (e.g., from about 0.05 mm to about 0.5 mm).
In some cases, a material removal step may also remove material from the side of the thicker portion of the fused assembly. This material removal step may create the desired side profile of the protruding feature and/or may remove parts of the upper glass layer(s) that have not fused to the lower glass layer as illustrated in
Typically, operation 1130 also includes texturing the fused assembly to produce one or more surface textures (e.g., a polished texture or a rougher texture). Texturing techniques that may be used in the operation 1130 include, but are not limited to, chemical etching, mechanical removal of material such as abrasive treatment, laser ablation, lithography in combination with etching, and combinations thereof. In some cases, a laser ablation technique may involve multiple operations of directing a sequence of laser pulses onto a surface of the fused assembly. In some cases, the member may have multiple textured regions. Each of the various textured regions of the member may have similar textures to each other or may have different textures from each other. Different textures may result from using different process conditions in a single type of texturing process or may result from using different types of texturing processes. In some embodiments, a textured region of the member may have a texture formed by overlap of two different textures. Such a texture may result from using two different texturing processes to create the textured region.
The process 1100 also includes an operation 1140 of chemically strengthening the glass member. The operation of chemically strengthening a member may include an ion exchange operation. During the ion exchange operation, ions present in the member can be exchanged for larger ions in an ion-exchanged zone extending from a surface of the member. A compressive stress layer extending from a surface of the member may be formed in the ion-exchanged zone.
For example, an ion-exchangeable glass material of the member may include monovalent or divalent ions such as alkali metal ions (e.g., Li+, Na+, or K+) or alkaline earth ions (e.g., Ca2+ or Mg2+) that may be exchanged for other alkali metal or alkaline earth ions. If a glass member comprises sodium ions, the sodium ions may be exchanged for potassium ions. Similarly, if the glass member comprises lithium ions, the lithium ions may be exchanged for sodium ions and/or potassium ions.
In an example, the chemical strengthening process involves exposing the member to a medium containing the larger ion, such as by immersing the member in a bath containing the larger ion or by spraying or coating the member with a source of the ions. For example, a salt bath comprising one or more ions of interest (e.g., a bath containing potassium ions or a mixture of potassium ions and sodium ions) may be used for ion exchange. Suitable temperatures for ion exchange are above room temperature and are selected depending on process requirements. The ion exchange process may be conducted at a temperature below the strain point of the glass. The member may be cooled following the ion exchange operation. Depending on the factors already discussed above, a compressive stress layer as deep as about 10-250 microns can be formed in a glass member. The surface compressive stress (CS) may be from about 300 MPa to about 1100 MPa. A mask can be used to shield portions of the glass member from ion exchange as desired. Optionally, the member is washed after the ion exchange operation 1140.
When a property of the glass varies across the cooled fused assembly the surface compressive stress and/or the depth of the compressive stress layer may vary across the glass member. For example, a surface compressive stress at the raised region (e.g., the plateau region) of the protruding feature may be greater than a surface compressive stress at the base region of the external surface.
Processes for forming members as disclosed herein are not limited to the example of
A tool-piece 1225 is used to apply pressure to the upper surface 1217 of the upper layer 1276 during the fusing operation. As shown in
Comparison of
In addition, material has been removed from the side surface 1228 of the second component 1286 to form the side surface 1248. In some cases, the side surface 1228 meets the surface 1229 to define an undercut between the first component 1289 and the second component 1286. In these cases, sufficient material may be removed from the side surface 1228 that the side surface 1248 defines a smoothly curved profile instead of an undercut. The operation(s) of removing material from the fused assembly 1224 may be any of the material removal steps described with respect to operation 1130 of process 1100 and, for brevity, that description is not repeated here. As shown in
One effect of removing material from the fused assembly 1224 may be that the protruding feature 1236 is at least partly formed from the first component 1299 as well as the second component 1296. Since the dashed line 1295 that divides the first component 1296 from the second component 1299 is elevated with respect to the exterior surface 1249, a lower or base part of the protruding feature 1236 is formed from the first component 1299 in
In the example of
In the example of
A tool-piece 1325 is used to apply pressure P to the upper surface 1317 of the upper layer 1376 during the fusing operation and a support 1310 may support the assembly 1314 in a similar manner as previously described with respect to
The member 1334 shown in
Similarly to the member 1234 of
In the example of
During the operation of fusing the assembly 1414, fusion may start at the interface 1415. After fusion begins at the interface 1415, a fusion front can then move outwards towards the side surfaces 1418 of the upper layer.
The member 1434 shown in
Similarly to the member 1234 of
In the example of
In the example of
During the operation of fusing the assembly 1514, fusion may start at the interface 1515. After fusion begins at the interface 1515 a fusion front can then move outwards towards the side surfaces 1518 of the upper layer.
The member 1534 shown in
Similarly to the member 1234 of
As shown in
In some cases, the member 1734 is formed by fusing two glass layers and the dashed line 1795 schematically illustrates a fusion zone. The member 1734 includes a protruding feature 1736, a portion 1735 underlying the protruding feature 1736, and a base portion 1739. The member also defines a hole 1761 extending through the protruding feature 1736 and the underlying portion 1735. The member 1734 also includes a textured region 1756 and a side region 1748. The member 1734 shown in
In the example of
As shown in
The member 1734 also includes a compressive stress layer 1771 extending from a wall surface 1741 defining a through-hole 1761. A tensile stress layer 1789 is positioned between the compressive stress layers 1779 and 1773. A tensile stress layer 1787 is positioned between the compressive stress layers 1777 and 1775.
Each of the compressive stress layers 1771, 1773, 1775, 1777, and 1779 are located in ion-exchanged zones of the member 1734. The composition of the member in the ion-exchanged zone is modified by the chemical strengthening operation from its composition prior to ion exchange (also referred to as a baseline composition). However, the member 1734 typically includes one or more zones that are substantially free of ion exchange and the composition of the member in these zones may be substantially the same as the composition(s) of the glass layers used to form the fused assembly. As previously discussed, in some cases the glass layers used to form the fused assembly have substantially the same composition.
The baseline composition(s) of different portions of the member can thus be compared by comparing the compositions within zones within the different portions that are substantially free of ion-exchange. For example, an ion-exchanged zone extends from the base region 1749 and the compressive stress layer 1779 is located within this ion-exchanged zone. An ion-exchanged zone extends from the region 1743 and the compressive stress layer 1773 is located within this ion-exchanged zone. The composition of a central zone between (also, inward of) these two ion-exchanged zones can therefore establish a baseline composition of the base portion 1739. Similarly, a baseline composition of the protruding feature 1736 can be established by measuring the composition of a central zone inward of the ion exchanged layers extending from the surfaces 1741, 1745, and 1747.
In some cases, a baseline composition of the protruding feature 1736 can be measured adjacent the fusion zone between a first component and a second component (e.g., first and second glass components) and a baseline composition of the base portion can also be measured adjacent this fusion zone. For example, a composition may be measured 50 microns, 100 microns, 200 microns, 300 microns, or 400 microns away from the fusion zone so long as the composition is not measured within an ion-exchanged zone. When the composition of the glass layers used to form the fused assembly is substantially the same, a baseline composition of the base portion of the member 1734 may be substantially the same as a baseline composition of an upper part of the protruding feature (above the fusion zone 1795). For example, a glass member may comprise a first glass component having a first composition adjacent a fusion zone between the first glass component, a second glass component having a second composition adjacent the fusion zone, and the first composition may be substantially equal to the second composition.
In embodiments, an electronic device 1800 may include sensors 1820 to provide information regarding configuration and/or orientation of the electronic device in order to control the output of the display. For example, a portion of the display 1808 may be turned off, disabled, or put in a low energy state when all or part of the viewable area of the display 1808 is blocked or substantially obscured. As another example, the display 1808 may be adapted to rotate the display of graphical output based on changes in orientation of the device 1800 (e.g., 90 degrees or 180 degrees) in response to the device 1800 being rotated.
The electronic device 1800 also includes a processor 1806 operably connected with a computer-readable memory 1802. The processor 1806 may be operatively connected to the memory 1802 component via an electronic bus or bridge. The processor 1806 may be implemented as one or more computer processors or microcontrollers configured to perform operations in response to computer-readable instructions. The processor 1806 may include a central processing unit (CPU) of the device 1800. Additionally, and/or alternatively, the processor 1806 may include other electronic circuitry within the device 1800 including application specific integrated chips (ASIC) and other microcontroller devices. The processor 1806 may be configured to perform functionality described in the examples above.
The memory 1802 may include a variety of types of non-transitory computer-readable storage media, including, for example, read access memory (RAM), read-only memory (ROM), erasable programmable memory (e.g., EPROM and EEPROM), or flash memory. The memory 1802 is configured to store computer-readable instructions, sensor values, and other persistent software elements.
The electronic device 1800 may include control circuitry 1810. The control circuitry 1810 may be implemented in a single control unit and not necessarily as distinct electrical circuit elements. As used herein, “control unit” will be used synonymously with “control circuitry.” The control circuitry 1810 may receive signals from the processor 1806 or from other elements of the electronic device 1800.
As shown in
In some embodiments, the electronic device 1800 includes one or more input devices 1818. The input device 1818 is a device that is configured to receive input from a user or the environment. The input device 1818 may include, for example, a push button, a touch-activated button, a capacitive touch sensor, a touch screen (e.g., a touch-sensitive display or a force-sensitive display), a capacitive touch button, a dial, a crown, or the like. In some embodiments, the input device 1818 may provide a dedicated or primary function, including, for example, a power button, volume buttons, home buttons, scroll wheels, and camera buttons.
The device 1800 may also include one or more sensors 1820, such as a force sensor, a capacitive sensor, an accelerometer, a barometer, a gyroscope, a proximity sensor, a light sensor, or the like. The sensors 1820 may be operably coupled to processing circuitry. In some embodiments, the sensors 1820 may detect deformation and/or changes in configuration of the electronic device and be operably coupled to processing circuitry that controls the display based on the sensor signals. In some implementations, output from the sensors 1820 is used to reconfigure the display output to correspond to an orientation or folded/unfolded configuration or state of the device. Example sensors 1820 for this purpose include accelerometers, gyroscopes, magnetometers, and other similar types of position/orientation sensing devices. In addition, the sensors 1820 may include a microphone, an acoustic sensor, a light sensor (including ambient light, infrared (IR) light, ultraviolet (UV) light, optical facial recognition sensor, a depth measuring sensor (e.g., a time of flight sensor), a health monitoring sensor (e.g., an electrocardiogram (ecg) sensor, a heart rate sensor, a photoplethysmogram (ppg) sensor, a pulse oximeter, a biometric sensor (e.g., a fingerprint sensor), or other types of sensing device.
In some embodiments, the electronic device 1800 includes one or more output devices 1804 configured to provide output to a user. The output device 1804 may include display 1808 that renders visual information generated by the processor 1806. The output device 1804 may also include one or more speakers to provide audio output. The output device 1804 may also include one or more haptic devices that are configured to produce a haptic or tactile output along an exterior surface of the device 1800.
The display 1808 may include a liquid-crystal display (LCD), a light-emitting diode (LED) display, an LED-backlit LCD display, an organic light-emitting diode (OLED) display, an active layer organic light-emitting diode (AMOLED) display, an organic electroluminescent (EL) display, an electrophoretic ink display, or the like. If the display 1808 is a liquid-crystal display or an electrophoretic ink display, the display 1808 may also include a backlight component that can be controlled to provide variable levels of display brightness. If the display 1808 is an organic light-emitting diode or an organic electroluminescent-type display, the brightness of the display 1808 may be controlled by modifying the electrical signals that are provided to display elements. In addition, information regarding configuration and/or orientation of the electronic device may be used to control the output of the display as described with respect to input devices 1818. In some cases, the display is integrated with a touch and/or force sensor in order to detect touches and/or forces applied along an exterior surface of the device 1800.
The electronic device 1800 may also include a communication port 1812 that is configured to transmit and/or receive signals or electrical communication from an external or separate device. The communication port 1812 may be configured to couple to an external device via a cable, adaptor, or other type of electrical connector. In some embodiments, the communication port 1812 may be used to couple the electronic device 1800 to a host computer.
The electronic device 1800 may also include at least one accessory 1816, such as a camera, a flash for the camera, or other such device. The camera may be part of a camera assembly that may be connected to other parts of the electronic device 1800 such as the control circuitry 1810.
As used herein, the terms “about,” “approximately,” “substantially,” “similar,” and the like are used to account for relatively small variations, such as a variation of +/−10%, +/−5%, +/−2%, or +/−1%. In addition, use of the term “about” in reference to the endpoint of a range may signify a variation of +/−10%, +/−5%, +/−2%, or +/−1% of the endpoint value. In addition, disclosure of a range in which at least one endpoint is described as being “about” a specified value includes disclosure of the range in which the endpoint is equal to the specified value.
The following discussion applies to the electronic devices described herein to the extent that these devices may be used to obtain personally identifiable information data. It is well understood that the use of personally identifiable information should follow privacy policies and practices that are generally recognized as meeting or exceeding industry or governmental requirements for maintaining the privacy of users. In particular, personally identifiable information data should be managed and handled so as to minimize risks of unintentional or unauthorized access or use, and the nature of authorized use should be clearly indicated to users.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
This application is a continuation patent application of U.S. patent application Ser. No. 17/185,723, filed Feb. 25, 2021 and titled “Glass Cover Member for an Electronic Device Enclosure,” which is a nonprovisional application of and claims the benefit of U.S. Provisional Patent Application No. 63/001,294, filed Mar. 28, 2020 and titled “Glass Cover Member for an Electronic Device Enclosure,” the disclosures of which are hereby incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2795084 | Littleton | Jun 1957 | A |
3410673 | Marusak | Nov 1968 | A |
3433611 | Kubican | Mar 1969 | A |
3464880 | Rinehart | Sep 1969 | A |
3737294 | Dumbaugh, Jr. et al. | Jun 1973 | A |
3746526 | Giffon | Jul 1973 | A |
3899315 | Siegmund | Aug 1975 | A |
4054895 | Ham | Oct 1977 | A |
4070211 | Harari | Jan 1978 | A |
4209229 | Rittler | Jun 1980 | A |
4339300 | Noble | Jul 1982 | A |
4735917 | Flatley et al. | Apr 1988 | A |
4849299 | Loth et al. | Jul 1989 | A |
5122177 | Yoshizama et al. | Jun 1992 | A |
5173453 | Beall et al. | Dec 1992 | A |
5273553 | Hoshi et al. | Dec 1993 | A |
6055053 | Lesniak | Apr 2000 | A |
6067005 | DeVolpi | May 2000 | A |
6169256 | Hanahara | Jan 2001 | B1 |
6406769 | Delabre | Jun 2002 | B1 |
6809278 | Tsubaki | Oct 2004 | B2 |
6928224 | Beall et al. | Aug 2005 | B2 |
7115827 | Tseng | Oct 2006 | B2 |
7166909 | Morinaga | Jan 2007 | B2 |
7240519 | Schwartz et al. | Jul 2007 | B2 |
7459199 | Skeen | Dec 2008 | B2 |
7497093 | Rosenflanz | Mar 2009 | B2 |
7507918 | Kazama | Mar 2009 | B2 |
7799158 | Yokoyama et al. | Sep 2010 | B2 |
7902474 | Mittleman | Mar 2011 | B2 |
7915556 | Ou | Mar 2011 | B2 |
7943953 | Sakamoto | May 2011 | B2 |
7966785 | Zadesky | Jun 2011 | B2 |
8003189 | Jones | Aug 2011 | B2 |
8003217 | Rosenflanz | Aug 2011 | B2 |
8050019 | Wennemer | Nov 2011 | B2 |
8092737 | Chang et al. | Jan 2012 | B2 |
8212455 | Yura et al. | Jul 2012 | B2 |
8277704 | Matsushima et al. | Oct 2012 | B2 |
8379159 | Hsu | Feb 2013 | B2 |
8431849 | Chen | Apr 2013 | B2 |
8446264 | Tanase | May 2013 | B2 |
8665160 | Uttermann et al. | Mar 2014 | B2 |
8717513 | Park et al. | May 2014 | B2 |
8783065 | Schillert et al. | Jul 2014 | B2 |
8840997 | Koyama et al. | Sep 2014 | B2 |
8898824 | Neidich et al. | Dec 2014 | B2 |
9001503 | Hibino | Apr 2015 | B1 |
9030440 | Pope | May 2015 | B2 |
9069198 | Kim et al. | Jun 2015 | B2 |
9110230 | Koch, III et al. | Aug 2015 | B2 |
9125298 | Russell-Clarke | Sep 2015 | B2 |
9134547 | McCabe et al. | Sep 2015 | B2 |
9140522 | Miller et al. | Sep 2015 | B1 |
9154678 | Kwong | Oct 2015 | B2 |
9193625 | Bookbinder et al. | Nov 2015 | B2 |
9232672 | Kwong | Jan 2016 | B2 |
9242889 | Yamakaji et al. | Jan 2016 | B2 |
9249045 | Gabel et al. | Feb 2016 | B2 |
9263209 | Chen | Feb 2016 | B2 |
9302937 | Gulati et al. | Apr 2016 | B2 |
9321677 | Chang | Apr 2016 | B2 |
9359251 | Bookbinder et al. | Jun 2016 | B2 |
9375900 | Tsuchiya et al. | Jun 2016 | B2 |
9390930 | Rogers et al. | Jul 2016 | B2 |
9392706 | Yoo et al. | Jul 2016 | B2 |
9429997 | Myers et al. | Aug 2016 | B2 |
9474174 | Motohashi | Oct 2016 | B2 |
9516149 | Wright et al. | Dec 2016 | B2 |
9522836 | Gulati et al. | Dec 2016 | B2 |
9524413 | Kim | Dec 2016 | B2 |
9632537 | Memering et al. | Apr 2017 | B2 |
9674322 | Motohashi et al. | Jun 2017 | B2 |
9678540 | Memering et al. | Jun 2017 | B2 |
9697409 | Myers | Jul 2017 | B2 |
9718727 | Bookbinder et al. | Aug 2017 | B2 |
9728349 | Huang | Aug 2017 | B2 |
9840435 | Ohara et al. | Dec 2017 | B2 |
9846473 | Kalscheur et al. | Dec 2017 | B1 |
9870880 | Zercoe | Jan 2018 | B2 |
9890074 | Liu | Feb 2018 | B2 |
9897574 | Roussev et al. | Feb 2018 | B2 |
9902138 | Edwards | Feb 2018 | B2 |
9902641 | Hall et al. | Feb 2018 | B2 |
9941074 | Tu | Apr 2018 | B2 |
9946302 | Franklin et al. | Apr 2018 | B2 |
9963374 | Jouanno et al. | May 2018 | B2 |
10133156 | Pilliod et al. | Nov 2018 | B2 |
10141133 | Bae | Nov 2018 | B2 |
10146982 | Hsu | Dec 2018 | B2 |
10189228 | Couillard et al. | Jan 2019 | B2 |
10206298 | Memering et al. | Feb 2019 | B2 |
10286631 | Alder et al. | May 2019 | B2 |
10318783 | Kang | Jun 2019 | B2 |
10324496 | Kwong | Jun 2019 | B2 |
10357945 | Beall et al. | Jul 2019 | B2 |
10425994 | Weiss et al. | Sep 2019 | B2 |
10494860 | Jones et al. | Dec 2019 | B1 |
10513455 | Cook et al. | Dec 2019 | B2 |
10611666 | Jones et al. | Apr 2020 | B2 |
10694010 | Jones et al. | Jun 2020 | B2 |
10702211 | Clavelle et al. | Jul 2020 | B2 |
10800141 | Bartlow et al. | Oct 2020 | B2 |
10827635 | Limarga | Nov 2020 | B1 |
10875277 | Aoki et al. | Dec 2020 | B2 |
10899660 | Luzzato et al. | Jan 2021 | B2 |
10917505 | Jones | Feb 2021 | B2 |
10919270 | Oh et al. | Feb 2021 | B2 |
10986744 | Yeum | Apr 2021 | B2 |
11066322 | Jones et al. | Jul 2021 | B2 |
11109500 | Shannon | Aug 2021 | B2 |
11192823 | Li | Dec 2021 | B2 |
11199929 | Poole et al. | Dec 2021 | B2 |
11372137 | Gu | Jun 2022 | B2 |
11419231 | Lancaster-Larocque et al. | Aug 2022 | B1 |
11420900 | Marshall et al. | Aug 2022 | B2 |
11460892 | Poole | Oct 2022 | B2 |
20030040346 | Fukuda et al. | Feb 2003 | A1 |
20030062490 | Fujieda | Apr 2003 | A1 |
20040003627 | Hashima | Jan 2004 | A1 |
20040041504 | Ozolins | Mar 2004 | A1 |
20040105026 | Campbell | Jun 2004 | A1 |
20050135724 | Helvajian | Jun 2005 | A1 |
20050176506 | Goto | Aug 2005 | A1 |
20080049980 | Castaneda | Feb 2008 | A1 |
20080316687 | Richardson et al. | Dec 2008 | A1 |
20090040737 | Shimura | Feb 2009 | A1 |
20090104409 | Derriey | Apr 2009 | A1 |
20100013786 | Nishikawa et al. | Jan 2010 | A1 |
20100108486 | Yoshida | May 2010 | A1 |
20100127420 | Dannoux | May 2010 | A1 |
20100148996 | Wang | Jun 2010 | A1 |
20100263708 | Reichart et al. | Oct 2010 | A1 |
20100279068 | Cook et al. | Nov 2010 | A1 |
20100285310 | Izutani et al. | Nov 2010 | A1 |
20100330814 | Yokota | Dec 2010 | A1 |
20110019123 | Prest | Jan 2011 | A1 |
20110019354 | Prest | Jan 2011 | A1 |
20110038115 | Halkosaari | Feb 2011 | A1 |
20110041987 | Hori et al. | Feb 2011 | A1 |
20110177300 | Hankey | Jul 2011 | A1 |
20110253520 | Lim | Oct 2011 | A1 |
20120052271 | Gomez et al. | Mar 2012 | A1 |
20120176760 | Cohen et al. | Jul 2012 | A1 |
20120206669 | Kim | Aug 2012 | A1 |
20120212890 | Hoshino | Aug 2012 | A1 |
20120229424 | Behles | Sep 2012 | A1 |
20120236526 | Weber | Sep 2012 | A1 |
20120250273 | Kuo | Oct 2012 | A1 |
20120327325 | Park et al. | Dec 2012 | A1 |
20130128434 | Yamamoto et al. | May 2013 | A1 |
20130236699 | Prest et al. | Sep 2013 | A1 |
20140116090 | Lee et al. | May 2014 | A1 |
20140151320 | Chang et al. | Jun 2014 | A1 |
20140272298 | Memering et al. | Sep 2014 | A1 |
20140285956 | Russell-Clarke et al. | Sep 2014 | A1 |
20140311882 | Terashita | Oct 2014 | A1 |
20150002993 | Lee | Jan 2015 | A1 |
20150030834 | Morey et al. | Jan 2015 | A1 |
20150030859 | Rogers et al. | Jan 2015 | A1 |
20150044445 | Garner et al. | Feb 2015 | A1 |
20150077830 | Lin et al. | Mar 2015 | A1 |
20150093581 | Murata et al. | Apr 2015 | A1 |
20150104618 | Hayashi et al. | Apr 2015 | A1 |
20150122406 | Fisher et al. | May 2015 | A1 |
20150163382 | Kwong et al. | Jun 2015 | A1 |
20150165548 | Marjanovic et al. | Jun 2015 | A1 |
20150202854 | Tsuchiya et al. | Jul 2015 | A1 |
20150210588 | Chang | Jul 2015 | A1 |
20150212247 | Borrelli et al. | Jul 2015 | A1 |
20150232366 | Fredholm et al. | Aug 2015 | A1 |
20150241732 | Kim et al. | Aug 2015 | A1 |
20150245514 | Choung | Aug 2015 | A1 |
20150274572 | Wada et al. | Oct 2015 | A1 |
20150299036 | Ukrainczyk et al. | Oct 2015 | A1 |
20160028931 | Kwong et al. | Jan 2016 | A1 |
20160137550 | Murata et al. | May 2016 | A1 |
20160224142 | Yang et al. | Aug 2016 | A1 |
20160270247 | Jones et al. | Sep 2016 | A1 |
20160357294 | Czeki et al. | Dec 2016 | A1 |
20160377768 | Wilson et al. | Dec 2016 | A1 |
20170027068 | Dane et al. | Jan 2017 | A1 |
20170059749 | Wakatsuki et al. | Mar 2017 | A1 |
20170066223 | Notsu et al. | Mar 2017 | A1 |
20170282503 | Peng et al. | Oct 2017 | A1 |
20170300114 | Matsuyuki et al. | Oct 2017 | A1 |
20170305788 | Nikulin | Oct 2017 | A1 |
20170334770 | Luzzato et al. | Nov 2017 | A1 |
20170340518 | Logunov et al. | Nov 2017 | A1 |
20170364172 | Kim et al. | Dec 2017 | A1 |
20170372112 | Baker et al. | Dec 2017 | A1 |
20180009697 | He et al. | Jan 2018 | A1 |
20180024274 | Rogers et al. | Jan 2018 | A1 |
20180067212 | Wilson et al. | Mar 2018 | A1 |
20180086026 | Nguyen et al. | Mar 2018 | A1 |
20180086663 | Luzzato et al. | Mar 2018 | A1 |
20180088399 | Fukushi et al. | Mar 2018 | A1 |
20180125756 | Gerrish et al. | May 2018 | A1 |
20180126704 | Zhang et al. | May 2018 | A1 |
20180134606 | Wagner et al. | May 2018 | A1 |
20180154615 | Dohn et al. | Jun 2018 | A1 |
20180237325 | Li et al. | Aug 2018 | A1 |
20180282207 | Fujii et al. | Oct 2018 | A1 |
20180304588 | Harris et al. | Oct 2018 | A1 |
20180304825 | Mattelet et al. | Oct 2018 | A1 |
20180326704 | Harris et al. | Nov 2018 | A1 |
20180370843 | Gross et al. | Dec 2018 | A1 |
20190022979 | Luzzato et al. | Jan 2019 | A1 |
20190030861 | Bellman et al. | Jan 2019 | A1 |
20190033144 | Andrews et al. | Jan 2019 | A1 |
20190037690 | Wilson et al. | Jan 2019 | A1 |
20190134944 | Dawson-Elli | May 2019 | A1 |
20190161402 | Harris et al. | May 2019 | A1 |
20190177215 | Jin et al. | Jun 2019 | A1 |
20190219463 | Orihara et al. | Jul 2019 | A1 |
20190263708 | Bookbinder et al. | Aug 2019 | A1 |
20190293838 | Haba et al. | Sep 2019 | A1 |
20200014780 | Jones | Jan 2020 | A1 |
20200017406 | Wilson et al. | Jan 2020 | A1 |
20200039186 | Yuan et al. | Feb 2020 | A1 |
20200055281 | Yoon et al. | Feb 2020 | A1 |
20200301527 | Poole et al. | Sep 2020 | A1 |
20200323440 | Vule et al. | Oct 2020 | A1 |
20200339472 | Yoon et al. | Oct 2020 | A1 |
20200346525 | Mannheim Astete et al. | Nov 2020 | A1 |
20200369560 | Takeda et al. | Nov 2020 | A1 |
20200389991 | Shannon | Dec 2020 | A1 |
20200407266 | Suzuki et al. | Dec 2020 | A1 |
20210009469 | Marshall et al. | Jan 2021 | A1 |
20210014992 | Limarga et al. | Jan 2021 | A1 |
20210016547 | Bartlow et al. | Jan 2021 | A1 |
20210033757 | Wilson et al. | Feb 2021 | A1 |
20210072789 | Rogers et al. | Mar 2021 | A1 |
20210212229 | Yeum | Jul 2021 | A1 |
20210303031 | Poole et al. | Sep 2021 | A1 |
20210361233 | Wilson et al. | Nov 2021 | A1 |
20220009823 | Dejneka et al. | Jan 2022 | A1 |
20220117094 | Prest et al. | Apr 2022 | A1 |
20220193825 | Van Dyke et al. | Jun 2022 | A1 |
20220194840 | Meschke et al. | Jun 2022 | A1 |
20220194841 | Meschke et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
101475300 | Jul 2009 | CN |
103986803 | Aug 2013 | CN |
104837781 | Aug 2015 | CN |
105765722 | Jul 2016 | CN |
106007345 | Oct 2016 | CN |
106341962 | Jan 2017 | CN |
106485275 | Mar 2017 | CN |
108017263 | May 2018 | CN |
108285263 | Jul 2018 | CN |
108545917 | Sep 2018 | CN |
108600419 | Sep 2018 | CN |
108632510 | Oct 2018 | CN |
110857865 | Mar 2020 | CN |
111655478 | Sep 2020 | CN |
215010334 | Dec 2021 | CN |
102016107630 | Oct 2017 | DE |
S6042176 | Sep 1985 | JP |
S6271215 | May 1987 | JP |
H03122036 | May 1991 | JP |
201912602 | Apr 2019 | TW |
WO2010077845 | Jul 2010 | WO |
WO2012027660 | Mar 2012 | WO |
WO2012074983 | Jun 2012 | WO |
WO2014022356 | Feb 2014 | WO |
WO2014022681 | Feb 2014 | WO |
WO2015031420 | Mar 2015 | WO |
WO2015095089 | Jun 2015 | WO |
WO2016065118 | Apr 2016 | WO |
WO2017196800 | Nov 2017 | WO |
WO2019199791 | Oct 2019 | WO |
WO2019213364 | Nov 2019 | WO |
Entry |
---|
Aben et al., “A New Method for Tempering Stress Measurement in Glass Panels,” Estonian Journal of Engineering, vol. 19, No. 4, pp. 292-297, 2013. |
Bourhis, “Production Control of Residual Stresses,” Glass Mechanics and Technology, Second Edition, pp. 236-243, 2014. |
Decourcelle, et al., “Controlling Anisotropy,” Conference Proceedings, All Eyes on Glass, Glass Performance Days, Tampere, Finland, Jun. 28-30, 2017. |
Dudutis et al., Bessel beam asymmetry control for glass dicing applications, Procedia CIRP 74, pp. 333-338, 2018. |
Gottmann et al., “Microcutting and Hollow 3D Microstructures in Glasses by in—Volume Selective Laser-induced Etching,” Journal of Laser Micro / Nanoengineering, vol. 8, No. 1, pp. 15-18, Jan. 2013. |
Jenne et al., “High-quality Tailored-edge Cleaving Using Aberration-corrected Bessel-like Beams,” arXiv:2010.10226v1 [physics.optics], May 8, 2018. |
Mao et al., “Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding,” www.rsc.org/loc, 8 pages, Jun. 30, 2005. |
Moriceau et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 1, No. 043004, 11 pages, 2010. |
Ungaro et al., “Using phase-corrected Bessel beams to cut glass substrates with a chamfered edge,” Applied Optics, vol. 60, No. 3, p. 714, Dec. 10, 2020. |
Author Unknown, “Handbook for Interior Designers,” 3 pages, 1998. |
Number | Date | Country | |
---|---|---|---|
20230014168 A1 | Jan 2023 | US |
Number | Date | Country | |
---|---|---|---|
63001294 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17185723 | Feb 2021 | US |
Child | 17951393 | US |