Embodiments of the present disclosure are generally related to glass cutting systems and methods, and are specifically related to glass cutting systems and methods which utilize multiple non-diffracting sub-beams.
Focused short-pulsed laser beams are used for cutting and modifying transparent substrates, such as glass, through the process of nonlinear absorption via multi-photon ionization and subsequent ablation. Such laser systems must thus deliver a very small spot size and have high repetition rates in order to process materials at significant speeds. Typically laser processing has used Gaussian laser beams. The tight focus of a laser beam with a Gaussian intensity profile has a Rayleigh range ZR given by:
The Rayleigh range represents the distance over which the spot size wo of the beam will increase by √{square root over (2)} in a material of refractive index no at wavelength λ0. This limitation is imposed by diffraction. As shown in Eqn. 1 above, the Rayleigh range is related directly to the spot size, thus a tight focus (i.e. small spot size) cannot have a long Rayleigh range. Thus, the small spot size is maintained for an unsuitably short distance. If such a beam is used to drill through a material by changing the depth of the focal region, the rapid expansion of the spot on either side of the focus will require a large region free of optical distortion that might limit the focus properties of the beam. Such a short Rayleigh range also requires multiple pulses to cut through a thick sample.
Another approach to maintaining a tightly focused beam in a material is to use nonlinear filamentation via the Kerr effect, which yields a self-focusing phenomenon. In this process, the nonlinear Kerr effect causes the index at the center of the beam to increase, thereby creating a waveguide that counteracts the diffraction effect described above. The beam size can be maintained over a much longer length than that given in Eq. 1 above and is no longer susceptible to surface phase distortions because the focus is defined at the surface. To produce a sufficient Kerr effect, the power of the incident laser beam must exceed a critical value given by equation 2 below:
where n2 is the second-order nonlinear refractive index.
Despite the benefit of this extended focal range, generating beams in accordance with the Kerr effect undesirably requires much more power than the above described Gaussian beam approach.
Accordingly, there is a continual need for a beam generation method in a laser cutting system which achieves a beam(s) having a controlled spot size, longer focal length, while minimizing power requirements and increasing process speed.
Embodiments of the present disclosure are directed to glass cutting systems and methods for cutting glass articles optical non-diffracting beams (NDB), specifically “complex” NDB beams having multiple-NDB sub-beams. This approach maintains the high intensities required to sustain the multi-photon absorption, and achieves beam propagation for a considerable distance before diffraction effects inevitably limit the beam focus. Additionally, the central lobe of the beam can be quite small in radius, and thus produce a high intensity beam with a controlled spot size. The approach of using NDBs combines the benefits of the lower power associated with a Gaussian beam approach and the long focal range achieved by the filamentation process (Kerr effect).
Moreover, the present NDB embodiments may advantageously increase process speeds and lower operating costs, because it minimizes the number of pulses to cut through a substrate. The present optical system produces multiple simultaneous sub-beams from a single input beam pulse and thereby creates multiple damage spots or holes in a glass article from each pulse. A significant improvement in the cutting speed may be achieved when compared to a single beam method which delivers only one damage spot per pulse. (See
According to one embodiment, a system for laser cutting at least one glass article is provided. The system comprises a pulsed laser assembly and a glass support assembly configured to support the glass article during laser cutting within the pulsed laser assembly. The pulsed laser assembly comprises at least one quasi-NDB beam forming optical element configured to convert an input beam into a quasi-NDB beam, and at least one beam transforming element configured to convert the quasi-NDB beam into multiple quasi-NDB sub-beams spaced apart a distance of about 1 μm to about 500 μm. The pulsed laser assembly is oriented to deliver one or more pulses of multiple quasi-NDB sub-beams onto a surface of the glass article, wherein each pulse of multiple quasi-NDB sub-beams is operable to cut a plurality of perforations in the glass article.
According to another embodiment, a method of laser cutting a glass article is provided. The method comprises feeding at least one glass article to a pulsed laser system that produces multiple quasi-non-diffracting beams (NDB) spaced apart a distance of about 1 μm to about 500 μm for every pulse, laser cutting the at least one glass article using the multiple quasi-NDB beams to achieve a plurality of perforations in the glass article, and separating the glass article along the perforations to yield a laser cut glass article.
According to yet another embodiment, another system for laser cutting at least one glass article is provided. The system comprises a pulsed laser assembly and a glass support assembly configured to support the glass article during laser cutting within the pulsed laser assembly. The pulsed laser assembly comprises at least one axicon configured to convert an input beam (e.g., a Gaussian beam) into a Bessel beam, first and second collimating lenses disposed downstream of the axicon, and at least one beam transforming element oriented between the first and second collimating lenses. The at least one beam transforming element is configured to convert the Bessel beam into multiple sub-Bessel beams which are parallel and spaced apart a distance of about 1 μm to about 500 μm. The pulsed laser assembly is oriented to deliver one or more pulses of multiple sub-Bessel beams onto a surface of the glass article, wherein each pulse of multiple sub-Bessel beams is operable to cut a plurality of perforations in the glass article. In one or more embodiments, the beam transforming element may be disposed proximate a Fourier-transform plane generated by the first collimating lens or oriented within a focal length of the second collimating lens.
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the drawings enclosed herewith.
The embodiments set forth in the drawings are illustrative in nature and not intended to be limiting of the invention defined by the claims. Moreover, individual features of the drawings will be more fully apparent and understood in view of the detailed description.
Referring to the embodiments of the
Referring to
As used herein, “quasi-NDB beam” means a created non-diffracting beam, typically a nondiffracting beam created from the conversion of an input beam (e.g., a Gaussian beam) to a non-diffracting beam. The quasi-NDB beam could encompass many beam types. As used herein, “input beam” may include any beam having a substantially uniform optical phase. In one embodiment, the input beam is a Gaussian beam. For example, the quasi-NDB may include a Bessel beam, an Airy beam, a Weber beam, or a Mathieu beam. In the embodiments described below, the quasi-NDB beam is a Bessel beam. The conversion of a Gaussian beam 7 by an axicon NDB forming optical element 20 to a Bessel quasi-NDB beam 12 is shown in
Further as used herein, “multiple quasi-NDB sub-beams” does not mean separate NDB laser beams. “Multiple quasi-NDB sub-beams” means a complex beam having a plurality of spots. Referring to
Referring to
The beam transforming element 40 may comprise various components. For example and not by way of limitation, the beam transforming elements may comprise is a phase grating or phase plate, an amplitude grating, or combinations thereof. In specific embodiment, it may be beneficial to include a beam transforming element 40 which is a combination of a phase element and an amplitude element. These gratings may be square wave or sinusoidal; however, other complex shapes are contemplated herein. A further discussion of beam transforming elements 40 is provided below.
An amplitude-only grating may be defined by the following equation:
Physically, this would be a much easier grating to make, because no phase shift is required; however, such a grating may produces many order beams, for example, a zeroth-order beam and two first-order beams. Thus, in some embodiments, a phase shift may be utilized to substantially limit the beams to a single order.
Phase-only gratings may be formed from a thickness or index grating in glass or using a programmable spatial light modulator. A square phase-only grating can more efficiently couple light into the sub-beams. For two beams, the most efficient phase-only grating may be defined by:
is a square-wave function of u oscillating between −1 and +1 with a period of T. With the square grating, additional diffraction orders may be present, but with the correct choice of phase amplitude they can be minimized. With the sinusoidal amplitude grating, there are only the two first-order beams.
To generate a third beam, it is possible to use
rad to give:
which results in three beams.
In one or more embodiments, static phase elements can be made to various scales. However, it may be desirable to use programmable phase elements such as acousto-optic modulators (AOM), electro-optic modulators (EOM), spatial light modulators (SLM) and digital micro-mirror arrays (DMA).
Without being bound by theory, sub-beam spacings that preserve the characteristics of the input beam 7 are beneficial. As an example, a discussion regarding combining two zeroth-order Bessel beams is provided below. This approach can be used for finding the optimal spacings for other quasi-NBD sub-beams.
As shown in
The equation for optimal Δxopt that optimizes the peak intensity of the sub-beams may be defined as:
For λ0=1.06 μm in air with numerical aperture (NA)=0.2 (or β=11.5°), we find kr=1.1855 μm−1 and the resulting optimal spacing is given in the 4th column of Table 1 while column 5 gives the spacing for NA=0.1 (narrow cone angle of β=5.7°). When the beams are added with no phase shift between them, we use the odd roots j=3, 5, etc.
An alternative approach for generating two beams would be to add the two coherent beams with a phase shift between them. If we add a π shift to the relative optical phase, this is equivalent to multiplying one of the beams by a minus sign. Thus the positive peaks of one beam will add coherently to the negative peaks of the second beam. This allows for efficient beam separations at the spacings labeled “N” in the third column of Table 1, corresponding to the even roots j=2, 4, etc.
For illustration,
For non-optimal spacing, the peak intensity is not maximized, but such spacings may still produce acceptable cutting behavior as long as sufficient laser power is available to achieve nonlinear material damage.
Referring to the embodiments of
Further as shown in
Referring again to the embodiment of
As shown in the embodiment of
The purpose of the second lens 32 is to take the inverse Fourier transform of the optical field A(u,v) in Fourier-transform plane 41 and form an image b(x,y) of the input beam in image plane 17. It can be shown that:
If f1≠f2, the image will have a magnification M≠1 and the quasi NDB sub-beams may not be parallel. If f1=f2, the image will have a magnification M=1 and the quasi NDB sub-beams will be parallel.
Introducing the beam transforming element 40 in the Fourier-transform plane 41 has the effect of multiplying the Fourier-transform of the input field by the transfer function of this element:
It is known that certain optical elements can shift an input beam in an arbitrary direction, can impart a tilt to the focal region, and can scale the amplitude of the output beam. Other elements and apertures can be used to filter unwanted spatial frequencies from the beam in order to mitigate or create impairments to the optical beam. In this disclosure, we will focus on the lateral shifting of quasi-NDB sub-beams to generate multiple quasi NDB sub-beams.
The phase transformation to accomplish a lateral shift (Δx,Δy) is:
From above it can be seen that:
Thus, the output field b′(x′,y′) in image plane 17 is a scaled and shifted version of the input field a(x,y).
It is also known that multiple quasi-NDB sub beams can be produced by summing different phase shifts:
For the special case of two equal beams, N=2 spaced by xo:
where
In this instance, Ptot(u,v) is simply a cosinusoidal amplitude diffraction grating of period T. When a phase shift is introduced between the two beams we find:
So that a phase shift of φ=π between the sub-beams adds a phase of φ/2 to the cosine which makes it a sine function. Practically, this corresponds to a lateral shift of the grating by a quarter of a period or T/4.
In addition to the arrangement of
Alternatively, the embodiments above describe the positioning of the beam transforming element 40 after lens 31; however, various other positions are also contemplated. For example, and not by way of limitation, the beam transforming element 40 may be positioned before collimating lens 31 or after collimating lens 32.
Various additional optical assemblies are also contemplated herein. In the embodiment of
In an additional embodiment depicted in
Without being bound by theory, having two collimating regions 30 and 35 as shown in
Referring to
As stated above, it is also anticipated that the optical assemblies may have apertures to block unwanted light from reaching the image plane 17. This may be the case with phase only gratings that have higher-order diffraction patterns. The magnification of the final image is dependent on the choice of focal lengths. Without being bound by theory, the target beam spacing is specified in the image plane and can thus be tuned by both the grating and the optical magnification.
Turning now to glass cutting applications, the present embodiments may yield improved formation of single lines of damage (i.e., perforations) and improved formation of multiple lines to form arrays of damage sites.
In the case of the single damage line, the multiple sub-beams are aligned with the scan direction of the laser. For example, if a 100 kHz laser system is used to create damage sites spaced at 3 microns, a single beam optical system could be scanned 3 microns every 10 microseconds for a cutting speed of 0.5 m/s. However, with 3 sub-beams, the same system could run at 1.5 m/s by moving the compound beam spot by 9 microns in the same 10-microsecond time interval.
In the case of the multiple damage lines for array applications as depicted in
As would be familiar to one of skill in the art, various other components are contemplated for the laser cutting assembly. For example, the laser cutting assembly may include some mechanism for separating the glass article along the perforations to yield a laser cut glass article. This may include thermal shock devices, cracking beams, etc.
It is further noted that terms like “preferably,” “generally,” “commonly,” and “typically” are not utilized herein to limit the scope of the claimed invention or to imply that certain features are critical, essential, or even important to the structure or function of the claimed invention. Rather, these terms are merely intended to highlight alternative or additional features that may or may not be utilized in a particular embodiment of the present disclosure.
It will be apparent that modifications and variations are possible without departing from the scope of the disclosure defined in the appended claims. More specifically, although some aspects of the present disclosure are identified herein as preferred or particularly advantageous, it is contemplated that the present disclosure is not necessarily limited to these aspects.
This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 62/087,406 filed on Dec. 4, 2014 the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62087406 | Dec 2014 | US |