GLASS LAMINATE STRUCTURES FOR HEAD-UP DISPLAY SYSTEM

Information

  • Patent Application
  • 20150251377
  • Publication Number
    20150251377
  • Date Filed
    March 04, 2015
    9 years ago
  • Date Published
    September 10, 2015
    9 years ago
Abstract
A glass laminate structure comprising a non-strengthened external glass sheet, a strengthened internal glass sheet, and at least one polymer interlayer intermediate the external and internal glass sheets. The internal glass sheet can have a thickness ranging from about 0.3 mm to about 1.5 mm, the external glass sheet can have a thickness ranging from about 1.5 mm to about 3.0 mm, and the polymer interlayer can have a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness. Other embodiments include external and internal strengthened glass sheets as well as an external strengthened glass sheet and an internal non-strengthened glass sheet.
Description
BACKGROUND

Glass laminate structures can be used as windows and glazings in architectural and transportation applications, including automobiles, rolling stock and airplanes. As used herein, a glazing can be a transparent or semi-transparent part of a wall or other structure. Common types of glazings that are used in architectural and automotive applications include clear and tinted glass, including laminated glass. Laminated glazings comprising opposing glass sheets separated by a plasticized poly(vinyl butyral) (PVB) sheet, for example, can be used as windows, windshields, or sunroofs. In certain applications, glass laminate structures having high mechanical strength and sound-attenuating properties are desirable in order to provide a safe barrier while reducing sound transmission from external sources.


In many vehicular applications, fuel economy is a function of vehicle weight. It is desirable, therefore, to reduce the weight of glazings for such applications without compromising strength and sound-attenuating properties. In this regard, it can be advantageous for a glass laminate structure to be mechanically robust with respect to external impact events such as attempted forced entry or contact with stones or hail, yet suitably dissipate energy (and fracture) as a result of internal impact events such as contact with an occupant, for example, during a collision. Further, governmental regulations are demanding higher fuel mileage and lower carbon dioxide emissions for road vehicles. Thus, there has been an increased effort to reduce the weight of these vehicles while maintaining current governmental and industry safety standards. Non-glass window materials, such as polycarbonate, have been developed, which reduce vehicle weight but do not offer appropriate resistance to environmental, debris, and other concerns.


Additionally, there has been an effort in the industry to use automotive glazings with a Head-up or Heads-up Display (HUD). Conventionally, automotive windshields are manufactured using the float process; however, this process provides less than adequate clarity and draw lines that are created by friction between the molten glass and the molten tin during the manufacturing process. In an HUD application, e.g., where light is projected onto the glass windshield, these lines are visible. Further, conventional HUD systems can provide dual images or a ghost image due to thicknesses and lack of clarity of the glass sheets in a respective laminate structure.


Embodiments of the present disclosure, however, provide substantial weight reduction, safety compliance, effective durability and reduced laceration potential in the event of a vehicular crash. Embodiments can also provide automotive glazings with superior characteristics when using HUD systems. In view of the foregoing, thin, light weight, high-clarity glazings that possess the durability and sound-damping properties associated with thicker, heavier glazings are desirable.


SUMMARY

The present disclosure relates generally to glass laminate structures, and more particularly to hybrid glass laminate structures comprising a strengthened outer glass pane and a non-strengthened inner glass pane, a strengthened inner glass pane and a non-strengthened outer glass pane, and strengthened inner and outer glass panes. Such hybrid laminate structures may be characterized by low weight, good sound-damping performance, and high impact resistance. In particular, the disclosed hybrid laminate structures can satisfy commercially-applicable impact test criteria for non-windscreen applications and can provide a clear screen to project a heads-up image to a driver. As used herein, the term “strengthened” may include chemically strengthened, thermally strengthened (e.g., by thermal tempering, or annealing), other techniques for strengthening glass or combinations thereof.


In some embodiments, a glass laminate structure is provided comprising a non strengthened external glass sheet, a strengthened internal glass sheet, and at least one polymer interlayer intermediate the external and internal glass sheets, where the internal glass sheet has a thickness ranging from about 0.3 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, the external glass sheet has a thickness ranging from about 1.5 mm to about 3.0 mm, and the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness.


In additional embodiments, a glass laminate structure is provided comprising a non-strengthened internal glass sheet, a strengthened external glass sheet, and at least one polymer interlayer intermediate the external and internal glass sheets, where the external glass sheet has a thickness ranging from about 0.3 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, where the internal glass sheet has a thickness ranging from about 1.5 mm to about 3.0 mm, and where the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness.


In further embodiments, a glass laminate structure is provided comprising a strengthened internal glass sheet, a strengthened external glass sheet, and at least one polymer interlayer intermediate the external and internal glass sheets, where the external and internal glass sheets each have a thickness ranging from about 0.3 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, and where the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness.


Additional features and advantages of the claimed subject matter will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the claimed subject matter as described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments of the present disclosure, and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the present disclosure, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments and together with the description serve to explain the principles and operations of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

For the purposes of illustration, there are forms shown in the drawings that are presently preferred, it being understood, however, that the embodiments disclosed and discussed herein are not limited to the precise arrangements and instrumentalities shown.



FIG. 1 is a schematic of an exemplary planar hybrid glass laminate according to some embodiments of the present disclosure.



FIG. 2 is a schematic of an exemplary bent hybrid glass laminate according to other embodiments of the present disclosure.



FIG. 3 is a schematic of an exemplary bent hybrid glass laminate according to further embodiments of the present disclosure.



FIG. 4 is a schematic of an exemplary bent hybrid glass laminate according to additional embodiments of the present disclosure.



FIG. 5A is a photograph of a 1.6 mm thick soda lime glass sheet taken at a 450 angle of incidence.



FIG. 5B is a photograph of a 2.1 mm thick soda lime glass sheet taken at a 450 angle of incidence.



FIG. 5C is a photograph of a 0.7 mm thick sheet of Gorilla® Glass taken at a 450 angle of incidence.



FIGS. 6A and 6B are contour and surface profile measurements of a 1.6 mm thick soda lime glass sheet.



FIGS. 7A and 7B are contour and surface profile measurements of a 0.7 mm thick sheet of Gorilla® Glass.



FIGS. 8A and 8B are Zygo intensity maps for a 1.6 mm thick soda lime glass sheet.



FIGS. 9A and 9B are Zygo intensity maps for a 0.7 mm thick Gorilla® Glass sheet.



FIG. 10 is a pictorial depiction of a standard windshield using a HUD system.



FIGS. 11A, 11B and 11C are pictorial depictions of some embodiments using a HUD system.



FIG. 12 is a plot of wedge angle versus laminate structure thickness for some embodiments.



FIG. 13 is a plot of double image angle Δθr dependence on the windshield thickness variation using nominal HUD system parameters.



FIG. 14 is a plot of double image angle Δθr dependence on wedge angle variation a for nominal HUD system parameters.





DETAILED DESCRIPTION

In the following description, like reference characters designate like or corresponding parts throughout the several views shown in the figures. It is also understood that, unless otherwise specified, terms such as “top,” “bottom,” “outward,” “inward,” and the like are words of convenience and are not to be construed as limiting terms. In addition, whenever a group is described as comprising at least one of a group of elements and combinations thereof, it is understood that the group may comprise, consist essentially of, or consist of any number of those elements recited, either individually or in combination with each other.


Similarly, whenever a group is described as consisting of at least one of a group of elements or combinations thereof, it is understood that the group may consist of any number of those elements recited, either individually or in combination with each other. Unless otherwise specified, a range of values, when recited, includes both the upper and lower limits of the range. As used herein, the indefinite articles “a,” and “an,” and the corresponding definite article “the” mean “at least one” or “one or more,” unless otherwise specified.


The following description of the present disclosure is provided as an enabling teaching thereof and its best, currently-known embodiment. Those skilled in the art will recognize that many changes can be made to the embodiment described herein while still obtaining the beneficial results of the present disclosure. It will also be apparent that some of the desired benefits of the present disclosure can be obtained by selecting some of the features of the present disclosure without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations of the present disclosure are possible and may even be desirable in certain circumstances and are part of the present disclosure. Thus, the following description is provided as illustrative of the principles of the present disclosure and not in limitation thereof.


Those skilled in the art will appreciate that many modifications to the exemplary embodiments described herein are possible without departing from the spirit and scope of the present disclosure. Thus, the description is not intended and should not be construed to be limited to the examples given but should be granted the full breadth of protection afforded by the appended claims and equivalents thereto. In addition, it is possible to use some of the features of the present disclosure without the corresponding use of other features. Accordingly, the following description of exemplary or illustrative embodiments is provided for the purpose of illustrating the principles of the present disclosure and not in limitation thereof and may include modification thereto and permutations thereof.


The glass laminate structures disclosed herein can be configured to include an external strengthened glass sheet and an internal non-strengthened glass sheet, an external non-strengthened glass sheet and an internal strengthened glass sheet, or external and internal strengthened glass sheets. As defined herein, when the glass laminate structures are put into use, an external glass sheet will be proximate to or in contact the environment, while an internal glass sheet will be proximate to or in contact with the interior (e.g., cabin) of the structure or vehicle (e.g., automobile) incorporating the glass laminate structure.


An exemplary glass laminate structure is illustrated in FIG. 1. The glass laminate structure 100 comprises an external glass sheet 110, an internal glass sheet 120, and a polymer interlayer 130. The polymer interlayer can be in direct physical contact (e.g., laminated to) each of the respective external and internal glass sheets. In the depicted non-limiting embodiment, the polymer interlayer 130 is a non-wedge type interlayer. The external glass sheet 110 has an exterior surface 112 and an interior surface 114. In a similar vein, the internal glass sheet 120 has an exterior surface 122 and an interior surface 124. As shown in the illustrated embodiment, the interior surface 114 of external glass sheet 110 and the interior surface 124 of internal glass sheet 120 are each in contact with polymer interlayer 130.


During use, it is desirable that the glass laminate structure resists fracture in response to external impact events. In response to internal impact events, however, such as the glass laminates being struck by a vehicle's occupant, it is desirable that the glass laminate retain the occupant in the vehicle yet dissipate energy upon impact in order to minimize injury. The ECE R43 headform test, which simulates impact events occurring from inside a vehicle, is a regulatory test that requires that laminated glazings fracture in response to specified internal impact.


Without wishing to be bound by theory, when one pane of a glass sheet/polymer interlayer/glass sheet laminate is impacted, the opposite surface of the impacted sheet, as well as the exterior surface of the opposing sheet are placed into tension. Calculated stress distributions for a glass sheet/polymer interlayer/glass sheet laminate under biaxial loading reveal that the magnitude of tensile stress in the opposite surface of the impacted sheet may be comparable to (or even slightly greater than) the magnitude of the tensile stress experienced at the exterior surface of the opposing sheet for low loading rates. However, for high loading rates, which are characteristic of impacts typically experienced in automobiles, the magnitude of the tensile stress at the exterior surface of the opposing sheet may be much greater than the tensile stress at the opposite surface of the impacted sheet. As disclosed herein, by configuring the hybrid glass laminate structures to have a strengthened external glass sheet and a non-strengthened internal glass sheet, the impact resistance for both external and internal impact events can be optimized.


Suitable internal or external glass sheets can be non-strengthened glass sheets or can also be strengthened glass sheets. The glass sheets (whether strengthened or non-strengthened) may include soda-lime glass, aluminosilicate, boroaluminosilicate or alkali aluminosilicate glass. Optionally, the internal glass sheets may be thermally strengthened. In embodiments where soda-lime glass is used as the non-strengthened glass sheet, conventional decorating materials and methods (e.g., glass frit enamels and screen printing) can be used, which can simplify the glass laminate structure manufacturing process. Tinted soda-lime glass sheets can be incorporated into a hybrid glass laminate structure to achieve desired transmission and/or attenuation across the electromagnetic spectrum.


Suitable external or internal glass sheets may be chemically strengthened by an ion exchange process. In this process, typically by immersion of the glass sheet into a molten salt bath for a predetermined period of time, ions at or near the surface of the glass sheet are exchanged for larger metal ions from the salt bath. In one embodiment, the temperature of the molten salt bath is about 430° C. and the predetermined time period is about eight hours. The incorporation of the larger ions into the glass strengthens the sheet by creating a compressive stress in a near surface region. A corresponding tensile stress is induced within a central region of the glass to balance the compressive stress.


Exemplary ion-exchangeable glasses that are suitable for forming hybrid glass laminate structures are soda lime glasses, alkali aluminosilicate glasses or alkali aluminoborosilicate glasses, though other glass compositions are contemplated. As used herein, “ion exchangeable” means that a glass is capable of exchanging cations located at or near the surface of the glass with cations of the same valence that are either larger or smaller in size. One exemplary glass composition comprises SiO2, B2O3 and Na2O, where (SiO2+B2O3)≧66 mol.%, and Na2O≧9 mol.%. In an embodiment, the glass sheets include at least 6 wt. % aluminum oxide. In a further embodiment, a glass sheet includes one or more alkaline earth oxides, such that a content of alkaline earth oxides is at least 5 wt. %. Suitable glass compositions, in some embodiments, further comprise at least one of K2O, MgO, and CaO. In a particular embodiment, the glass can comprise 61-75 mol.% SiO2; 7-15 mol.% Al2O3; 0-12 mol.% B2O3; 9-21 mol.% Na2O; 0-4 mol.% K2O; 0-7 mol.% MgO; and 0-3 mol.% CaO.


A further exemplary glass composition suitable for forming hybrid glass laminate structures comprises: 60-70 mol.% SiO2; 6-14 mol.% Al2O3; 0-15 mol.% B2O3; 0-15 mol.% Li2O; 0-20 mol.% Na2O; 0-10 mol.% K2O; 0-8 mol.% MgO; 0-10 mol.% CaO; 0-5 mol.% ZrO2; 0-1 mol.% SnO2; 0-1 mol.% CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 12 mol.%≦(Li2O+Na2O+K2O)≦20 mol.% and 0 mol.%≦(MgO+CaO)≦10 mol.%.


A still further exemplary glass composition comprises: 63.5-66.5 mol.% SiO2; 8-12 mol.% Al2O3; 0-3 mol.% B2O3; 0-5 mol.% Li2O; 8-18 mol.% Na2O; 0-5 mol.% K2O; 1-7 mol.% MgO; 0-2.5 mol.% CaO; 0-3 mol.% ZrO2; 0.05-0.25 mol.% SnO2; 0.05-0.5 mol.% CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; where 14 mol.%≦(Li2O+Na2O+K2O)≦18 mol.% and 2 mol.%≦(MgO+CaO)≦7 mol.%.


In a particular embodiment, an alkali aluminosilicate glass comprises alumina, at least one alkali metal and, in some embodiments, greater than 50 mol.% SiO2, in other embodiments at least 58 mol.% SiO2, and in still other embodiments at least 60 mol.% SiO2, wherein the ratio











Al
2



O
3


+


B
2



O
3





modifiers


>
1

,




where in the ratio the components are expressed in mol.% and the modifiers are alkali metal oxides. This glass, in particular embodiments, comprises, consists essentially of, or consists of: 58-72 mol.% SiO2; 9-17 mol.% Al2O3; 2-12 mol.% B2O3; 8-16 mol.% Na2O; and 0-4 mol.% K2O, wherein the ratio










Al
2



O
3


+


B
2



O
3





modifiers


>
1.




In another embodiment, an alkali aluminosilicate glass comprises, consists essentially of, or consists of: 61-75 mol.% SiO2; 7-15 mol.% Al2O3; 0-12 mol.% B2O3; 9-21 mol.% Na2O; 0-4 mol.% K2O; 0-7 mol.% MgO; and 0-3 mol.% CaO.


In yet another embodiment, an alkali aluminosilicate glass substrate comprises, consists essentially of, or consists of: 60-70 mol.% SiO2; 6-14 mol.% Al2O3; 0-15 mol.% B2O3; 0-15 mol.% Li2O; 0-20 mol.% Na2O; 0-10 mol.% K2O; 0-8 mol.% MgO; 0-10 mol.% CaO; 0-5 mol.% ZrO2; 0-1 mol.% SnO2; 0-1 mol.% CeO2; less than 50 ppm As2O3; and less than 50 ppm Sb2O3; wherein 12 mol.%≦Li2O+Na2O+K2O≦20 mol.% and 0 mol.%≦MgO+CaO≦10 mol.%.


In still another embodiment, an alkali aluminosilicate glass comprises, consists essentially of, or consists of: 64-68 mol.% SiO2; 12-16 mol.% Na2O; 8-12 mol.% Al2O3; 0-3 mol.% B2O3; 2-5 mol.% K2O; 4-6 mol.% MgO; and 0-5 mol.% CaO, wherein: 66 mol.%≦SiO2+B2O3+CaO≦69 mol.%; Na2O+K2O+B2O3+MgO+CaO+SrO>10 mol.%; 5 mol.%≦MgO+CaO+SrO≦8 mol.%; (Na2O+B2O3)—Al2O3≦2 mol.%; 2 mol.%≦Na2O—Al2O3≦6 mol.%; and 4 mol.%≦(Na2O+K2O)—Al2O3≦10 mol.%.


The chemically-strengthened as well as the non-chemically-strengthened glass, in some embodiments, can be batched with 0-2 mol.% of at least one fining agent selected from a group that includes Na2SO4, NaCl, NaF, NaBr, K2SO4, KCl, KF, KBr, and SnO2.


In one exemplary embodiment, sodium ions in the chemically-strengthened glass can be replaced by potassium ions from the molten bath, though other alkali metal ions having a larger atomic radii, such as rubidium or cesium, can replace smaller alkali metal ions in the glass. According to particular embodiments, smaller alkali metal ions in the glass can be replaced by Ag+ ions. Similarly, other alkali metal salts such as, but not limited to, sulfates, halides, and the like may be used in the ion exchange process.


The replacement of smaller ions by larger ions at a temperature below that at which the glass network can relax produces a distribution of ions across the surface of the glass that results in a stress profile. The larger volume of the incoming ion produces a compressive stress (CS) on the surface and tension (central tension, or CT) in the center of the glass. The compressive stress is related to the central tension by the following relationship:







C





S

=

C






T


(


t
-

2





D





O





L



D





O





L


)







where t is the total thickness of the glass sheet and DOL is the depth of exchange, also referred to as depth of layer.


According to various embodiments, hybrid glass laminate structures comprising ion-exchanged glass can possess an array of desired properties, including low weight, high impact resistance, and improved sound attenuation. In one embodiment, a chemically-strengthened glass sheet can have a surface compressive stress of at least 300 MPa, e.g., at least 400, 450, 500, 550, 600, 650, 700, 750 or 800 MPa, a depth of layer at least about 20 μm (e.g., at least about 20, 25, 30, 35, 40, 45, or 50 μm) and/or a central tension greater than 40 MPa (e.g., greater than 40, 45, or 50 MPa) but less than 100 MPa (e.g., less than 100, 95, 90, 85, 80, 75, 70, 65, 60, or 55 MPa).


A modulus of elasticity of a chemically-strengthened glass sheet can range from about 60 GPa to 85 GPa (e.g., 60, 65, 70, 75, 80 or 85 GPa). The modulus of elasticity of the glass sheet(s) and the polymer interlayer can affect both the mechanical properties (e.g., deflection and strength) and the acoustic performance (e.g., transmission loss) of the resulting glass laminate structure.


Suitable external or internal glass sheets may be thermally strengthened by a thermal tempering process or an annealing process. The thickness of the thermally-strengthened glass sheets may be less than about 2 mm or less than about 1 mm.


Exemplary glass sheet forming methods include fusion draw and slot draw processes, which are each examples of a down-draw process, as well as float processes. These methods can be used to form both strengthened and non-strengthened glass sheets. The fusion draw process uses a drawing tank that has a channel for accepting molten glass raw material. The channel has weirs that are open at the top along the length of the channel on both sides of the channel. When the channel fills with molten material, the molten glass overflows the weirs. Due to gravity, the molten glass flows down the outside surfaces of the drawing tank. These outside surfaces extend down and inwardly so that they join at an edge below the drawing tank. The two flowing glass surfaces join at this edge to fuse and form a single flowing sheet. The fusion draw method offers the advantage that, because the two glass films flowing over the channel fuse together, neither outside surface of the resulting glass sheet comes in contact with any part of the apparatus. Thus, the surface properties of the fusion drawn glass sheet are not affected by such contact.


The slot draw method is distinct from the fusion draw method. Here the molten raw material glass is provided to a drawing tank. The bottom of the drawing tank has an open slot with a nozzle that extends the length of the slot. The molten glass flows through the slot/nozzle and is drawn downward as a continuous sheet and into an annealing region. The slot draw process can provide a thinner sheet than the fusion draw process because only a single sheet is drawn through the slot, rather than two sheets being fused together.


Down-draw processes produce glass sheets having a uniform thickness that possess surfaces that are relatively pristine. Because the strength of the glass surface is controlled by the amount and size of surface flaws, a pristine surface that has had minimal contact has a higher initial strength. When this high strength glass is then chemically strengthened, the resultant strength can be higher than that of a surface that has been a lapped and polished. Down-drawn glass may be drawn to a thickness of less than about 2 mm. In addition, down drawn glass has a very flat, smooth surface that can be used in its final application without costly grinding and polishing.


In the float glass method, a sheet of glass that may be characterized by smooth surfaces and uniform thickness is made by floating molten glass on a bed of molten metal, typically tin. In an exemplary process, molten glass that is fed onto the surface of the molten tin bed forms a floating ribbon. As the glass ribbon flows along the tin bath, the temperature is gradually decreased until a solid glass sheet can be lifted from the tin onto rollers. Once off the bath, the glass sheet can be cooled further and annealed to reduce internal stress.


Glass sheets can be used to form glass laminate structures. As defined herein, a hybrid glass laminate structure in one embodiment can comprise an externally-facing strengthened glass sheet, an internally-facing non-strengthened glass sheet, and a polymer interlayer formed between the glass sheets. Another hybrid glass laminate structure can comprise an externally-facing non-strengthened glass sheet, an internally-facing strengthened glass sheet, and a polymer interlayer formed between the glass sheets. The polymer interlayer can comprise a monolithic polymer sheet, a wedge polymer sheet, a multilayer polymer sheet, or a composite polymer sheet. The polymer interlayer can be, for example, a plasticized poly(vinyl butyral) sheet.


Glass laminate structures can be formed using a variety of processes. The assembly, in an exemplary embodiment, involves laying down a first sheet of glass, overlaying a polymer interlayer such as a PVB sheet, laying down a second sheet of glass, and then trimming the excess PVB to the edges of the glass sheets. A tacking step can include expelling most of the air from the interfaces and partially bonding the PVB to the glass sheets. The finishing step, typically carried out at elevated temperature and pressure, completes the mating of each of the glass sheets to the polymer interlayer. In the foregoing embodiment, the first sheet can be a chemically-strengthened glass sheet and the second sheet can be a non-chemically-strengthened glass sheet or vice versa. While interlayers have been described heretofore as single layer and or substantially planar, the claims appended herewith should not be so limited. For example, the interlayer can be wedge shaped and/or can be a multilayer material including a tinted layer on all or portions thereof, an IR or heat insulating layer(s), a sound insulating layer, etc. In one embodiment, an exemplary wedge shaped interlayer can have a thickness of about 0.8 mm at a first edge of a laminate structure. At a second edge opposing the first edge of the laminate structure, the interlayer can have a thickness of about 1.0 mm. Of course, these thicknesses are exemplary only and should not limit the scope of the claims appended herewith.


A thermoplastic material such as PVB can be applied as a preformed polymer interlayer. The thermoplastic layer can, in certain embodiments, have a thickness of at least 0.125 mm (e.g., 0.125, 0.25, 0.38, 0.5, 0.7, 0.76, 0.81, 1, 1.14, 1.19 or 1.2 mm). The thermoplastic layer can have a thickness of less than or equal to 1.6 mm (e.g., from 0.4 to 1.2 mm, such as about 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 or 1.2 mm). The thermoplastic layer can cover most or, preferably, substantially all of the two opposed major faces of the glass. It may also cover the edge faces of the glass. The glass sheets in contact with the thermoplastic layer may be heated above the softening point of the thermoplastic, such as, for example, at least 5° C. or 10° C. above the softening point, to promote bonding of the thermoplastic material to the respective glass sheets. The heating can be performed with the glass in contact with the thermoplastic layers under pressure.


Select commercially available polymer interlayer materials are summarized in Table 1, which provides also the glass transition temperature and modulus for each product sample. Glass transition temperature and modulus data were determined from technical data sheets available from the vendor or using a DSC 200 Differential Scanning Calorimeter (Seiko Instruments Corp., Japan) or by ASTM D638 method for the glass transition and modulus data, respectively. A further description of the acrylic/silicone resin materials used in the ISD resin is disclosed in U.S. Pat. No. 5,624,763, and a description of the acoustic modified PVB resin is disclosed in Japanese Patent No. 05138840, the entire contents of each are hereby incorporated by reference in their entirety.









TABLE 1







Exemplary Polymer Interlayer Materials










Tg
Modulus, psi


Interlayer Material
(° C.)
(MPa)












EVA (STR Corp., Enfield, CT)
−20
750-900 (5.2-6.2)


EMA (Exxon Chemical Co., Baytown, TX)
−55
<4,500 (27.6)


EMAC (Chevron Corp., Orange, TX)
−57
<5,000 (34.5)


PVC plasticized
−45
 <1500 (10.3)


(Geon Company, Avon Lake, OH)


PVB plasticized (Solutia, St. Louis, MO)
0
 <5000 (34.5)


Polyethylene, Metallocene-catalyzed
−60
<11,000 (75.9) 


(Exxon Chemical Co., Baytown, TX)


Polyurethane Hard (97 Shore A)
31
400


Polyurethane Semi-rigid (78 Shore A)
−49
 54


ISD resin (3M Corp., Minneapolis, MN)
−20


Acoustic modified PVB

140


(Sekisui KKK, Osaka, Japan)


Uvekol A (liquid curable resins)


(Cytec, Woodland Park, NJ)









One or more polymer interlayers can be incorporated into a hybrid glass laminate structure. A plurality of interlayers may provide complimentary or distinct functionality, including adhesion promotion, acoustic control, UV transmission control, tinting, coloration and/or IR transmission control.


A modulus of elasticity of the polymer interlayer can range from about 1 MPa to 75 MPa (e.g., about 1, 2, 5, 10, 15, 20, 25, 50 or 75 MPa). At a loading rate of 1 Hz, a modulus of elasticity of a standard PVB interlayer can be about 15 MPa, and a modulus of elasticity of an acoustic grade PVB interlayer can be about 2 MPa.


During the lamination process, the interlayer is typically heated to a temperature effective to soften the interlayer, which promotes a conformal mating of the interlayer to respective surfaces of the glass sheets. For PVB, a lamination temperature can be about 140° C. Mobile polymer chains within the interlayer material develop bonds with the glass surfaces, which promote adhesion. Elevated temperatures also accelerate the diffusion of residual air and/or moisture from the glass-polymer interface.


The application of pressure both promotes flow of the interlayer material, and suppresses bubble formation that otherwise could be induced by the combined vapor pressure of water and air trapped at the interfaces. To suppress bubble formation, heat and pressure are simultaneously applied to the assembly in an autoclave.


Hybrid glass laminate structures can provide beneficial effects, including the attenuation of acoustic noise, reduction of UV and/or IR light transmission, and/or enhancement of the aesthetic appeal of a window opening. The individual glass sheets comprising the disclosed glass laminate structures, as well as the formed laminates, can be characterized by one or more attributes, including composition, density, thickness, surface metrology, as well as various properties including optical, sound-attenuation, and mechanical properties such as impact resistance. Various aspects of the disclosed hybrid glass laminate structures are described herein.


Exemplary hybrid glass laminate structures can be adapted for use, for example, as windows or glazings, and configured to any suitable size and dimension. In some embodiments, the glass laminate structures can have a length and width that independently vary from 10 cm to 1 m or more (e.g., 0.1, 0.2, 0.5, 1, 2, or 5 m). Independently, the glass laminates can have an area of greater than 0.1 m2, e.g., greater than 0.1, 0.2, 0.5, 1, 2, 5, 10, or 25 m2.


Exemplary hybrid glass laminate structures can be substantially flat or shaped for certain applications. For instance, the glass laminate structures can be formed as bent or shaped parts for use as windshields or cover plates. The structure of a shaped glass laminate may be simple or complex. In certain embodiments, a shaped glass laminate structure may have a complex curvature where the glass sheets have a distinct radius of curvature in two independent directions. Such shaped glass sheets may thus be characterized as having “cross curvature,” where the glass is curved along an axis that is parallel to a given dimension and also curved along an axis that is perpendicular to the same dimension. An automobile sunroof, for example, typically measures about 0.5 m by 1.0 m and has a radius of curvature of 2 to 2.5 m along the minor axis, and a radius of curvature of 4 to 5 m along the major axis.


Shaped glass laminate structures according to certain embodiments can be defined by a bend factor, where the bend factor for a given part is equal to the radius of curvature along a given axis divided by the length of that axis. Thus, for the exemplary automotive sunroof having radii of curvature of 2 m and 4 m along respective axes of 0.5 m and 1.0 m, the bend factor along each axis is 4. Shaped glass laminate structures can have a bend factor ranging from 2 to 8 (e.g., 2, 3, 4, 5, 6, 7, or 8).


An exemplary shaped glass laminate structure 200 is illustrated in FIG. 2. The shaped glass laminate structure 200 comprises an external (strengthened) glass sheet 110 formed at a convex surface of the laminate while an internal (non-strengthened) glass sheet 120 is formed on a concave surface of the laminate. It will be appreciated, however, that the convex surface of a non-illustrated embodiment can comprise a non-strengthened glass sheet while an opposing concave surface can comprise a strengthened glass sheet. It can also be appreciated that both the convex and concave surface of a non-illustrated embodiment can comprise chemically-strengthened glass sheets.



FIG. 3 is a cross sectional illustration of further embodiments of the present disclosure. FIG. 4 is a perspective view of additional embodiments of the present disclosure. With reference to FIGS. 3 and 4 and as discussed in previous paragraphs, an exemplary laminate structure 10 can include an inner layer 16 of chemically strengthened glass, e.g., Gorilla® Glass. This inner layer 16 may have been heat treated, ion exchanged and/or annealed. The outer layer 12 may be a non-chemically strengthened glass sheet such as conventional soda lime glass, annealed glass, or the like. The laminate structure 10 can also include a polymeric interlayer 14 intermediate the outer and inner glass layers. The inner layer of glass 16 can have a thickness of less than or equal to 1.0 mm and having a residual surface CS level of between about 250 MPa to about 350 MPa with a DOL of greater than 60 microns. In another embodiment the CS level of the inner layer 16 is preferably about 300 MPa. In one embodiment, an interlayer 14 can have a thickness of approximately 0.8 mm. Exemplary interlayers 14 can include, but are not limited to, poly-vinyl-butyral or other suitable polymeric materials as described herein. Further interlayers 14 can include wedge shaped interlayers (e.g., single layer, multilayer structure including a tinted layer on all or portions thereof, an IR or heat insulating layer(s), a sound insulating layer, etc.). In additional embodiments, any of the surfaces of the outer and/or inner layers 12, 16 can be acid etched to improve durability to external impact events. For example, in one embodiment, a first surface 13 of the outer layer 12 can be acid etched and/or another surface 17 of the inner layer can be acid etched. In another embodiment, a first surface 15 of the outer layer can be acid etched and/or another surface 19 of the inner layer can be acid etched. Such embodiments can thus provide a laminate construction substantially lighter than conventional laminate structures and which conforms to regulatory impact requirements. Exemplary thicknesses of the outer and/or inner layers 12, 16 can range in thicknesses from about 0.3 mm to about 1.5 mm, from 0.5 mm to 1.5 mm to 2.0 mm or more.


In a preferred embodiment, the thin chemically strengthened inner layer 16 may have a surface stress between about 250 MPa and 900 MPa and can range in thickness from about 0.3 mm to about 1.0 mm. In this embodiment, the external layer 12 can be annealed (non-chemically strengthened) glass with a thickness from about 1.5 mm to about 3.0 mm or more. Of course, the thicknesses of the outer and inner layers 12, 16 can be different in a respective laminate structure 10. Another preferred embodiment of an exemplary laminate structure may include an inner layer of 0.7 mm chemically strengthened glass, a poly-vinyl butyral layer of about 0.76 mm in thickness and a 2.1 mm exterior layer of annealed glass.


In some embodiments, exemplary hybrid glass laminate structures can be employed in vehicles (automobile, aircraft, and the like) having a Head-up or Heads-up Display (HUD) system. The clarity of fusion formed according to some embodiments can be superior to glass formed by a float process to thereby provide a better driving experience as well as improve safety since information can be easier to read and less of a distraction. A non-limiting HUD system can include a projector unit, a combiner, and a video generation computer. The projection unit in an exemplary HUD can be, but is not limited to, an optical collimator having a convex lens or concave mirror with a display (e.g., optical waveguide, scanning lasers, LED, CRT, video imagery, or the like) at its focus. The projection unit can be employed to produce a desired image. In some embodiments, the HUD system can also include a combiner or beam splitter to redirect the projected image from the projection unit to vary or alter the field of view and the projected image. Some combiners can include special coatings to reflect monochromatic light projected thereon while allowing other wavelengths of light to pass through. In additional embodiments, the combiner can also be curved to refocus an image from the projection unit. Any exemplary HUD system can also include a processing system to provide an interface between the projection unit and applicable vehicle systems from which data can be received, manipulated, monitored and/or displayed. Some processing systems can also be utilized to generate the imagery and symbology to be displayed by the projection unit.


Using such an exemplary HUD system, a display of information (e.g., numbers, images, directions, wording, or otherwise) can be created by projecting an image from the HUD system onto an interior facing surface 19 of an exemplary glass laminate structure 10. The glass laminate structure 10 can then redirect the image so that it is in the field of view of a driver. In some embodiments, the interlayer 14 can include additional films which reflect a particular wavelength of light (beamsplitter) of the projector. Additional interlayers (e.g., a polarizing film or the like) can be employed in some embodiments and may be dependent upon the design of the respective HUD system and its light source.


Exemplary glass laminate structures according to some embodiments can thus provide a thin, pristine surface 19 for the inner sheet 16 of glass. In some embodiments, fusion drawn Gorilla Glass can be used as the inner sheet. Such glass does not contain any float lines typical of conventional glass manufactured with the float process (e.g., soda lime glass). FIG. 5A is a photograph of a 1.6 mm thick soda lime glass sheet taken at a 450 angle of incidence. FIG. 5B is a photograph of a 2.1 mm thick soda lime glass sheet taken at a 450 angle of incidence. FIG. 5C is a photograph of a 0.7 mm thick sheet of Gorilla Glass taken at a 450 angle of incidence. As evidenced by FIGS. 5A, 5B and 5C, the Gorilla Glass sheet does not suffer from the draw line appearance that can cause ghost images as with the soda-lime glass sheets in FIGS. 5A and 5B.


Surface measurements conducted by Applicant indicate that there exists an order of magnitude increase in peak to valley surface roughness between Gorilla Glass and soda lime glass sheets as measured by a Zygo NewView interferometer. FIGS. 6A and 6B are contour and surface profile measurements of a 1.6 mm thick soda lime glass sheet along a line 50. FIGS. 7A and 7B are contour and surface profile measurements along a line 52 of a 0.7 mm thick sheet of Gorilla Glass. As shown in these figures, the surface perturbations of soda lime glass formed by the float process varied greatly (e.g., as much as about +0.089762 μm to −0.0.0505 μm) and were discovered by Applicant to contribute to ghost images seen in HUD displays. In comparison, a Gorilla Glass sheet was found to have minimal perturbations as shown in FIGS. 7A and 7B.


1.6 mm thick soda lime glass and 0.7 mm thick Gorilla Glass samples were measured using a Zygo GPI interferometer to determine impact of draw lines on a transmitted wavefront on the glass sheet. With no bulk non-uniformities (e.g., no draw lines), an exiting or reflected wavefront remained substantially unchanged; however, when bulk non-uniformities existed (soda lime glass), the exiting or reflected wavefront became distorted. FIGS. 8A and 8B are Zygo intensity maps for a 1.6 mm thick soda lime glass sheet and FIGS. 9A and 9B are Zygo intensity maps for a 0.7 mm thick Gorilla Glass sheet. With reference to FIGS. 8A and 8B, a much higher and dramatic periodic variation in the fringe pattern of the soda lime glass sheet was observed which illustrated a greater wavefront distortion (and hence ghost image effect) in comparison to wavefronts propagating through the Gorilla Glass sheet (FIGS. 9A and 9B).


HUDs according to embodiments of the present disclosure can be employed in automotive vehicles, aircraft, synthetic vision systems, and/or mask displays (e.g., head mounted displays such as goggles, masks, helmets, and the like) utilizing exemplary glass laminate structures described herein. Such HUD systems can project critical information (speed, fuel, temperature, turn signal, warning messages, etc.) in front of the driver through the glass laminate structure. In other embodiments, a HUD system can be employed with glass laminate structures having planar or wedge-shaped polymer interlayers. It should be noted, however, that in addition to the composition and type of glass sheet as described above, the geometry of the glass laminate structure can also have an effect upon the quality of images provided to a user or driver. FIGS. 10 and 11A-1C are pictorial depictions of a standard windshield (FIG. 10A) using a HUD system and some embodiments (FIGS. 11A-11C) using a HUD system. With reference to FIG. 10, a standard windshield 101 is illustrated having a planar shaped polymer interlayer 106 intermediate first and second soda lime glass sheets 102, 104. An image (speed, fuel, temperature, turn signal, warning messages, etc.) 105 can be projected from a HUD system or projector onto the standard windshield 101 resulting in the generation of a first image 103 from an interior surface 107 of the first soda lime glass sheet 102 and a second image 108 from the transmission of the image 105 through the windshield and reflecting from the exterior surface 109 of the second soda lime glass sheet 104. The large travel distance of this second image 108 through the windshield results in a larger gap 111 between the first and second images 106, 108. This gap 111 is typically called a ghost image or results in a blurred compound image provided to a viewer.


With reference to FIG. 11A, some exemplary glass laminate structures 121 according to embodiments of the present disclosure can include a wedge shaped polymer interlayer 126 intermediate first and second chemically strengthened glass sheets 122, 124 (e.g., Gorilla Glass). An image (speed, fuel, temperature, turn signal, warning messages, etc.) 105 can be projected from a HUD system or projector onto the structure 121 resulting in the generation of a first image 123 from an interior surface 127 of the first chemically-strengthened glass sheet 122 and a second image 128 from the transmission of the image 105 through the structure and reflecting from the exterior surface 129 of the second chemically-strengthened glass sheet 124. The short travel distance of this second image 128 through the structure 121 results in a small (if any) gap 131 between the first and second images 126, 128 and resulting in a high quality compound image provided to a viewer. Similarly and with reference to FIG. 11B, other exemplary glass laminate structures 140 can include a wedge shaped polymer interlayer 126 intermediate an internal non-chemically-strengthened glass sheet 142 and an external chemically strengthened glass sheet 144. An image (speed, fuel, temperature, turn signal, warning messages, etc.) 105 can be projected from a HUD system or projector onto the structure 140 resulting in the generation of a first image 143 from an interior surface 147 of the internal non-chemically-strengthened glass sheet 142 and a second image 148 from the transmission of the image 105 through the structure and reflecting from the exterior surface 149 of the external chemically-strengthened glass sheet 144. The short travel distance of this second image 148 through the structure 140 results in a small (if any) gap 150 between the first and second images 146, 148 and resulting in a high quality compound image provided to a viewer. With reference to FIG. 11C, additional exemplary glass laminate structures 160 can include a wedge shaped polymer interlayer 126 intermediate an internal chemically strengthened glass sheet 162 and an external non-chemically-strengthened glass sheet 164. An image (speed, fuel, temperature, turn signal, warning messages, etc.) 105 can be projected from a HUD system or projector onto the structure 160 resulting in the generation of a first image 163 from an interior surface 167 of the internal chemically-strengthened glass sheet 162 and a second image 168 from the transmission of the image 105 through the structure and reflecting from the exterior surface 169 of the external non-chemically-strengthened glass sheet 164. The short travel distance of this second image 168 through the structure 160 results in a small (if any) gap 170 between the first and second images 166, 168 and resulting in a high quality compound image provided to a viewer.


It should be noted that HUD systems are sensitive to the angle of the reflecting medium (e.g., windshield position). Thus, the gap exhibited by a standard windshield with a more acute angle to the horizontal will be significantly noticeable in comparison to gaps (if any) of exemplary structures according to embodiments of the present disclosure. Embodiments described herein can thus improve yield by more relaxed specification in windshield manufacturing and can allow a wider viewable angle.


While wedge shaped interlayers have been described as a single layer, the claims appended herewith should not be so limited. For example, the wedge shaped interlayer can be a multilayer material including a tinted layer on all or portions thereof, an IR or heat insulating layer(s), a sound insulating layer, etc. In one embodiment, an exemplary wedge shaped interlayer can have a thickness of about 0.8 mm at a first edge of a laminate structure. At a second edge opposing the first edge of the laminate structure, the interlayer can have a thickness of about 1.0 mm. Of course, these thicknesses are exemplary only and should not limit the scope of the claims appended herewith.



FIG. 12 is a plot of wedge angle versus laminate structure thickness for some embodiments. With reference to FIG. 12, it was discovered that wedge angle α possesses a linear dependence on the glass laminate structure, e.g., windshield, etc., thickness using nominal HUD system parameters (e.g., radius of curvature Rc=8301 mm, distance to source: Ri=1000 mm, refractive index n=1.52, and angle of incidence θ=62.08°). As shown in FIG. 12, it was found that the wedge angle α required to eliminate the double image decreases linearly with the windshield thickness. That is, for nominal windshield parameters the wedge angle is reduced from approximately 0.475 mrad to approximately 0.4 mrad, when the thickness is reduced by 0.7 mm.



FIG. 13 is a plot of double image angle Δθr dependence on the windshield thickness variation using nominal HUD system parameters. With reference to FIG. 13, it was discovered that the double image angle Δθr decreases with thickness. Further, it was found that Δθr dependence on the thickness variations (the gradient) is not thickness dependent. Thus, if thickness variations due to manufacturing process scales as a percentage of nominal thickness, then it follows that thinner windshields will have smaller double image angle variation, as exhibited by the variations 70, 72.



FIG. 14 is a plot of double image angle Δθr dependence on wedge angle variation a for nominal HUD system parameters. With reference to FIG. 14, it was discovered that the double image angle Δθr dependence on the wedge angle variation is not thickness sensitive. For example, for a 0.1 mrad variation in the wedge angle α, the double image angle Δθr is approximately 0.02 degrees for both standard thickness (4.96 mm) and reduced thickness (4.26 mm) windshields. It thus follows that if the wedge angle variation due to processing conditions can be reduced proportionally to the value of a, then for a thinner windshield the double image angle variation will be also reduced, proportionally.


In some embodiments, a glass laminate structure is provided comprising a non-chemically strengthened external glass sheet, a chemically strengthened internal glass sheet, and at least one polymer interlayer intermediate the external and internal glass sheets, where the internal glass sheet has a thickness ranging from about 0.3 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, the external glass sheet has a thickness ranging from about 1.5 mm to about 3.0 mm, and the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness. In another embodiment, the internal glass sheet includes one or more alkaline earth oxides, such that a content of alkaline earth oxides is at least about 5 wt. %. In a further embodiment, the internal glass sheet has a thickness of between about 0.3 mm to about 0.7 mm. In another embodiment, the internal glass sheet can have a surface compressive stress between about 250 MPa and about 900 MPa. Exemplary polymer interlayers can be a single polymer sheet, a multilayer polymer sheet, or a composite polymer sheet. Interlayers can also comprises a material such as, but not limited to, poly vinyl butyral (PVB), polycarbonate, acoustic PVB, ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), ionomer, a thermoplastic material, and combinations thereof. In some embodiments, the polymer interlayer has a thickness of between about 0.4 to about 1.2 mm at the first edge. In other embodiments, the external glass sheet comprises a material selected from the group consisting of soda-lime glass and annealed glass. Exemplary glass laminates can find utility as, among other applications, an automotive windshield, sunroof or cover plate.


In additional embodiments, a glass laminate structure is provided comprising a non-chemically strengthened internal glass sheet, a chemically strengthened external glass sheet, and at least one polymer interlayer intermediate the external and internal glass sheets, where the external glass sheet has a thickness ranging from about 0.3 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, where the internal glass sheet has a thickness ranging from about 1.5 mm to about 3.0 mm, and where the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness. In another embodiment, the external glass sheet includes one or more alkaline earth oxides, such that a content of alkaline earth oxides is at least about 5 wt. %. In a further embodiment, the external glass sheet has a thickness of between about 0.3 mm to about 0.7 mm. In another embodiment, the external glass sheet can have a surface compressive stress between about 250 MPa and about 900 MPa. Exemplary polymer interlayers can be a single polymer sheet, a multilayer polymer sheet, or a composite polymer sheet. Interlayers can also comprises a material such as, but not limited to, poly vinyl butyral (PVB), polycarbonate, acoustic PVB, ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), ionomer, a thermoplastic material, and combinations thereof. In some embodiments, the polymer interlayer has a thickness of between about 0.4 to about 1.2 mm at the first edge. In other embodiments, the internal glass sheet comprises a material selected from the group consisting of soda-lime glass and annealed glass. Exemplary glass laminates can find utility as, among other applications, an automotive windshield, sunroof or cover plate.


In further embodiments, a glass laminate structure is provided comprising a chemically strengthened internal glass sheet, a chemically strengthened external glass sheet, and at least one polymer interlayer intermediate the external and internal glass sheets, where the external and internal glass sheets each have a thickness ranging from about 0.3 mm to about 1.5 mm, from about 0.5 mm to about 1.5 mm, and where the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness. In another embodiment, the external and internal glass sheets can include one or more alkaline earth oxides, such that a content of alkaline earth oxides is at least about 5 wt. %. In a further embodiment, the internal and external glass sheets can have a thickness of between about 0.3 mm to about 0.7 mm. In another embodiment, the external and internal glass sheets can have a surface compressive stress between about 250 MPa and about 900 MPa. In some of these embodiments, the internal glass sheet or portions thereof can have a surface compressive stress less than the surface compressive stress of the external glass sheet. Exemplary polymer interlayers can be a single polymer sheet, a multilayer polymer sheet, or a composite polymer sheet. Interlayers can also comprises a material such as, but not limited to, poly vinyl butyral (PVB), polycarbonate, acoustic PVB, ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), ionomer, a thermoplastic material, and combinations thereof. In some embodiments, the polymer interlayer has a thickness of between about 0.4 to about 1.2 mm at the first edge. Exemplary glass laminates can find utility as, among other applications, an automotive windshield, sunroof or cover plate.


Embodiments of the present disclosure may thus offer a means to reduce the weight of automotive glazing by using thinner glass materials while maintaining optical and safety requirements. Conventional laminated windshields may account for 62% of a vehicle's total glazing weight; however, by employing a 0.7-mm thick chemically strengthened inner layer with a 2.1-mm thick non-chemically strengthened outer layer, for example, windshield weight can be reduced by 33%. Furthermore, it has been discovered that use of a 1.6-mm thick non-chemically strengthened outer layer with the 0.7-mm thick chemically strengthened inner layer results in an overall 45% weight savings. Thus, use of exemplary laminate structures according to embodiments of the present disclosure may allow a laminated windshield to pass all regulatory safety requirements including resistance to penetration from internal and external objects and appropriate flexure resulting in acceptable Head Impact Criteria (HIC) values. In addition, an exemplary external layer comprised of annealed glass may offer acceptable break patterns caused by external object impacts and allow for continued operational visibility through the windshield when a chip or crack occurs as a result of the impact. Research has also demonstrated that employing chemically strengthened glass as an interior surface of an asymmetrical windshield provides an added benefit of reduced laceration potential compared to that caused by occupant impact with conventional annealed windshields.


Methods for bending and/or shaping glass laminate structures can include gravity bending, press bending and methods that are hybrids thereof. In a traditional method of gravity bending thin, flat sheets of glass into curved shapes such as automobile windshields, cold, pre-cut single or multiple glass sheets are placed onto the rigid, pre-shaped, peripheral support surface of a bending fixture. The bending fixture may be made using a metal or a refractory material. In an exemplary method, an articulating bending fixture may be used. Prior to bending, the glass typically is supported only at a few contact points. The glass is heated, usually by exposure to elevated temperatures in a lehr, which softens the glass allowing gravity to sag or slump the glass into conformance with the peripheral support surface. Substantially the entire support surface generally will then be in contact with the periphery of the glass.


A related technique is press bending where a single flat glass sheet is heated to a temperature corresponding substantially to the softening point of the glass. The heated sheet is then pressed or shaped to a desired curvature between male and female mold members having complementary shaping surfaces. The mold member shaping surfaces may include vacuum or air jets for engaging with the glass sheets. In embodiments, the shaping surfaces may be configured to contact substantially the entire corresponding glass surface. Alternatively, one or both of the opposing shaping surfaces may contact the respective glass surface over a discrete area or at discrete contact points. For example, a female mold surface may be ring-shaped surface. In embodiments, a combination of gravity bending and press bending techniques can be used.


A total thickness of the glass laminate structure can range from about 2 mm to 5 mm, with the external and/or internal chemically-strengthened glass sheets having a thickness of 1 mm or less (e.g., from 0.3 to 1 mm such as, for example, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9 or 1 mm). Further, the internal and/or external non-chemically-strengthened glass sheets can have a thickness of 2.5 mm or less (e.g., from 1 to 2 mm such as, for example, 1, 1.5, 2 or 2.5 mm) or may have a thickness of 2.5 mm or more. In embodiments, the total thickness of the glass sheets in the glass laminate is less than 3.5 mm (e.g., less than 3.5, 3, 2.5 or 2.3 mm).


Applicants have shown that the glass laminate structures disclosed herein have excellent durability, impact resistance, toughness, and scratch resistance. As is well known among skilled artisans, the strength and mechanical impact performance of a glass sheet or laminate is limited by defects in the glass, including both surface and internal defects. When a glass laminate structure is impacted, the impact point is put into compression, while a ring or “hoop” around the impact point, as well as the opposite face of the impacted sheet, are put into tension. Typically, the origin of failure will be at a flaw, usually on the glass surface, at or near the point of highest tension. This may occur on the opposite face, but can occur within the ring. If a flaw in the glass is put into tension during an impact event, the flaw will likely propagate, and the glass will typically break. Thus, a high magnitude and depth of compressive stress (depth of layer) is preferable.


Due to strengthening, one or both of the surfaces of the strengthened glass sheets used in the disclosed hybrid glass laminates are under compression. The incorporation of a compressive stress in a near surface region of the glass can inhibit crack propagation and failure of the glass sheet. In order for flaws to propagate and failure to occur, the tensile stress from an impact must exceed the surface compressive stress at the tip of the flaw. In embodiments, the high compressive stress and high depth of layer of strengthened glass sheets enable the use of thinner glass than in the case of non-chemically-strengthened glass.


In the case of hybrid glass laminate structures, the laminate structure can deflect without breaking in response to the mechanical impact much further than thicker monolithic, non-chemically-strengthened glass or thicker, non-strengthened glass laminates. This added deflection enables more energy transfer to the laminate interlayer, which can reduce the energy that reaches the opposite side of the glass. Consequently, the hybrid glass laminates disclosed herein can withstand higher impact energies than monolithic, non-strengthened glass or non-chemically-strengthened glass laminates of similar thickness.


In addition to their mechanical properties, as will be appreciated by a skilled artisan, laminated structures can be used to dampen acoustic waves. The hybrid glass laminates disclosed herein can dramatically reduce acoustic transmission while using thinner (and lighter) structures that also possess the requisite mechanical properties for many glazing applications.


The acoustic performance of laminates and glazings is commonly impacted by the flexural vibrations of the glazing structure. Without wishing to be bound by theory, human acoustic response peaks typically between 500 Hz and 5000 Hz, corresponding to wavelengths of about 0.1-1 m in air and 1-10 m in glass. For a glazing structure less than 0.01 m (<10 mm) thick, transmission occurs mainly through coupling of vibrations and acoustic waves to the flexural vibration of the glazing. Laminated glazing structures can be designed to convert energy from the glazing flexural modes into shear strains within the polymer interlayer. In glass laminates employing thinner glass sheets, the greater compliance of the thinner glass permits a greater vibrational amplitude, which in turn can impart greater shear strain on the interlayer. The low shear resistance of most viscoelastic polymer interlayer materials means that the interlayer will promote damping via the high shear strain that will be converted into heat under the influence of molecular chain sliding and relaxation.


In addition to the glass laminate thickness, the nature of the glass sheets that comprise the laminates may also influence the sound attenuating properties. For instance, as between strengthened and non-strengthened glass sheets, there may be small but significant difference at the glass-polymer interlayer interface that contributes to higher shear strain in the polymer layer. Also, in addition to their obvious compositional differences, aluminosilicate glasses and soda lime glasses have different physical and mechanical properties, including modulus, Poisson's ratio, density, etc., which may result in a different acoustic response.


While this description may include many specifics, these should not be construed as limitations on the scope thereof, but rather as descriptions of features that may be specific to particular embodiments. Certain features that have been heretofore described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and may even be initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.


Similarly, while operations are depicted in the drawings or figures in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous


Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, examples include from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


It is also noted that recitations herein refer to a component of the present disclosure being “configured” or “adapted to” function in a particular way. In this respect, such a component is “configured” or “adapted to” embody a particular property, or function in a particular manner, where such recitations are structural recitations as opposed to recitations of intended use. More specifically, the references herein to the manner in which a component is “configured” or “adapted to” denotes an existing physical condition of the component and, as such, is to be taken as a definite recitation of the structural characteristics of the component.


As shown by the various configurations and embodiments illustrated in the figures, various glass laminate structures for head-up displays have been described.


While preferred embodiments of the present disclosure have been described, it is to be understood that the embodiments described are illustrative only and that the scope of the invention is to be defined solely by the appended claims when accorded a full range of equivalence, many variations and modifications naturally occurring to those of skill in the art from a perusal hereof

Claims
  • 1. A glass laminate structure comprising: a non-strengthened external glass sheet;a strengthened internal glass sheet; andat least one polymer interlayer intermediate the external and internal glass sheets,wherein the internal glass sheet has a thickness ranging from about 0.3 mm to about 1.5 mm,wherein the external glass sheet has a thickness ranging from about 1.5 mm to about 3.0 mm, andwherein the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness.
  • 2. The glass laminate structure of claim 1, wherein the internal glass sheet includes one or more alkaline earth oxides, such that a content of alkaline earth oxides is at least about 5 wt. %.
  • 3. The glass laminate structure of claim 1, wherein the internal glass sheet has a thickness of between about 0.3 mm to about 0.7 mm.
  • 4. The glass laminate structure of claim 1, wherein the polymer interlayer comprises a single polymer sheet, a multilayer polymer sheet, or a composite polymer sheet.
  • 5. The glass laminate structure of claim 1, wherein the polymer interlayer comprises a material selected from the group consisting of poly vinyl butyral (PVB), polycarbonate, acoustic PVB, ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), ionomer, a thermoplastic material, and combinations thereof.
  • 6. The glass laminate structure of claim 1, wherein the polymer interlayer has a thickness of between about 0.4 to about 1.2 mm at the first edge.
  • 7. The glass laminate structure of claim 1, wherein the external glass sheet comprises a material selected from the group consisting of soda-lime glass and annealed glass.
  • 8. The glass laminate structure of claim 1, wherein the glass laminate is an automotive windshield, sunroof or cover plate.
  • 9. The glass laminate structure of claim 1, wherein the internal glass sheet has a surface compressive stress between about 250 MPa and about 900 MPa.
  • 10. A glass laminate structure comprising: a non-strengthened internal glass sheet;a strengthened external glass sheet having a surface compressive stress between about 250 MPa and about 900 MPa; andat least one polymer interlayer intermediate the external and internal glass sheets,wherein the external glass sheet has a thickness ranging from about 0.3 mm to about 1.5 mm,wherein the internal glass sheet has a thickness ranging from about 1.5 mm to about 3.0 mm, andwherein the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness.
  • 11. The glass laminate structure of claim 10, wherein the external glass sheet includes one or more alkaline earth oxides, such that a content of alkaline earth oxides is at least about 5 wt. %.
  • 12. The glass laminate structure of claim 10, wherein the external glass sheet has a thickness of between about 0.3 mm to about 0.7 mm.
  • 13. The glass laminate structure of claim 10, wherein the polymer interlayer comprises a single polymer sheet, a multilayer polymer sheet, or a composite polymer sheet.
  • 14. The glass laminate structure of claim 10, wherein the polymer interlayer has a thickness of between about 0.4 to about 1.2 mm at the first edge.
  • 15. The glass laminate structure of claim 10, wherein the internal glass sheet comprises a material selected from the group consisting of soda-lime glass and annealed glass.
  • 16. The glass laminate structure of claim 10, wherein the glass laminate is an automotive windshield, sunroof or cover plate.
  • 17. A glass laminate structure comprising: a strengthened internal glass sheet;a strengthened external glass sheet; andat least one polymer interlayer intermediate the external and internal glass sheets,wherein the external and internal glass sheets each have a thickness ranging from about 0.3 mm to about 1.5 mm, andwherein the polymer interlayer has a first edge with a first thickness and a second edge opposite the first edge with a second thickness greater than the first thickness.
  • 18. The glass laminate structure of claim 17, wherein the polymer interlayer has a thickness of between about 0.4 to about 1.2 mm at the first edge.
  • 19. The glass laminate structure of claim 17, wherein the glass laminate is an automotive windshield, sunroof or cover plate.
  • 20. The glass laminate structure of claim 17, wherein the internal glass sheet or portions thereof has a surface compressive stress less than the surface compressive stress of the external glass sheet.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/949,359 filed on Mar. 7, 2014 the content of which is relied upon and incorporated herein by reference in its entirety.

Provisional Applications (1)
Number Date Country
61949359 Mar 2014 US