Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Information

  • Patent Grant
  • 11697617
  • Patent Number
    11,697,617
  • Date Filed
    Friday, July 31, 2020
    4 years ago
  • Date Issued
    Tuesday, July 11, 2023
    a year ago
Abstract
A laminated glass article comprises a core layer comprising a core glass composition, and a cladding layer directly adjacent to the core layer and comprising a clad glass composition. A stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, transitions to a compressive stress as a step-change at an interface region between the core layer and the cladding layer, and increases with increasing distance from the interface region to a center of the core layer from the compressive stress to a tensile stress.
Description
BACKGROUND
Field

The present specification generally relates to glass articles and, more particularly, to laminated glass articles including a plurality of glass layers and methods for forming the same.


Technical Background

Glass articles can be used in a wide variety of products, including, for example, auto-glazing, architectural panels, appliances, and cover glass (e.g., for touch-screen devices such as smartphones, tablets, laptop computers, and monitors). Relatively large flaws can be introduced into the surfaces of the glass articles during use. For example, when a smartphone is dropped on a rough surface, such as asphalt, the local indention caused by contact with sharp features of the rough surface can cause flaws as deep as about 300 μm in the surface of the cover glass.


Accordingly, a need exists for glass articles with improved resistance to breakage caused by deep flaws, improved mechanical reliability, and improved drop performance.


SUMMARY

According to a first aspect disclosed herein, a laminated glass article comprises a core layer comprising a core glass composition, and a cladding layer directly adjacent to the core layer and comprising a clad glass composition. A stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, transitions to a compressive stress as a step-change at an interface region between the core layer and the cladding layer, and increases with increasing distance from the interface region to a center of the core layer from the compressive stress to a tensile stress.


According to a second aspect, a laminated glass article includes the laminated glass article according to the first aspect, wherein the core glass composition has an average core coefficient of thermal expansion (CTEcore) and the cladding layer has an average cladding coefficient of thermal expansion (CTEclad) that is greater than the CTEcore.


According to a third aspect, a laminated glass article includes the laminated glass article according to the first or second aspects, wherein the laminated glass article is ion-exchange strengthened.


According to a fourth aspect, a laminated glass article includes the laminated glass article according to any preceding aspect, wherein the core glass composition and the clad glass composition comprise one or more alkali oxides.


According to a fifth aspect, a laminated glass article includes the laminated glass article according to any preceding aspect, wherein a maximum tensile stress in the cladding layer is greater than or equal to a maximum tensile stress in the core layer.


According to a sixth aspect, a laminated glass article includes the laminated glass article according to any preceding aspect, wherein a maximum compressive stress of the core layer is greater than a maximum compressive stress of the cladding layer.


According to a seventh aspect, a laminated glass article includes the laminated glass article according to any preceding aspect, wherein a magnitude of the stress at the outer surface is greater than or equal to about 300 MPa.


According to an eighth aspect, a laminated glass article includes the laminated glass article according to any preceding aspect, wherein a maximum magnitude of the stress of the laminated glass article is less than or equal to about 400 MPa.


According to a ninth aspect, a laminated glass article comprises a core layer comprising a core glass composition, and a cladding layer directly adjacent to the core layer and comprising a cladding glass composition. A concentration of Li ions increases with increasing distance from an outer surface of the cladding layer to a centerline of the core layer; a concentration of K ions decreases with increasing distance from the outer surface of the cladding layer to an interface between the cladding layer and the core layer; and a concentration of Na ions increases with increasing distance from the outer surface of the cladding layer to a maximum concentration of Na ions in the cladding layer or at the interface between the cladding layer and the core layer and transitions to a lower concentration of Na ions relative to the maximum concentration of Na ions via a step change at the interface between the cladding layer and the core layer.


According to a tenth aspect, a laminated glass article includes the laminated glass article according to the ninth aspect, wherein the concentration of Na ions decreases with increasing distance from the interface between the cladding layer and the core layer to the centerline of the core layer.


According to an eleventh aspect, a laminated glass article includes the laminated glass article according to the ninth aspect, wherein the concentration of Na ions increases and then decreases with increasing distance from the interface between the cladding layer and the core layer to the centerline of the core layer.


According to a twelfth aspect, a laminated glass article includes the laminated glass article according to any of the ninth through eleventh aspects, wherein the concentration of Li ions increases according to a non-linear relationship.


According to a thirteenth aspect, the laminated glass article includes the laminated glass article according to any of the ninth through twelfth aspects, wherein a concentration of K ions in the core layer is zero.


According to a fourteenth aspect, the laminated glass article includes the laminated glass article according to the ninth aspect, wherein the concentration of Na ions increases from the outer surface of the cladding layer to the maximum concentration of Na ions according to a linear relationship.


According to a fifteenth aspect, the laminated glass article includes the laminated glass article according to the ninth aspect, wherein the concentration of Na ions increases from the outer surface of the cladding layer to the maximum concentration of Na ions according to a non-linear relationship.


According to a sixteenth aspect, a method of preparing a laminated glass article comprises laminating at least one core layer and at least one cladding layer to form a laminated glass article, the at least one core layer comprising an ion-exchangeable core glass composition and the at least one cladding layer comprising an ion-exchangeable clad glass composition; and contacting the laminated glass article with an ion exchange bath comprising at least one ion source for a time such that a maximum compressive stress in the at least one core layer is greater than a maximum compressive stress in the at least one cladding layer.


According to a seventeenth aspect, a method comprises the method according to the sixteenth aspect, wherein the at least one core layer has an average core coefficient of thermal expansion (CTEcore) and the at least one cladding layer has an average cladding coefficient of thermal expansion (CTEclad) that is greater than the CTEcore.


According to an eighteenth aspect, a method comprises the method according to the sixteenth or seventeenth aspect, wherein the ion exchange bath comprises at least a first ion source and a second ion source that is different from the first ion source.


According to a nineteenth aspect, a method comprises the method according to any one of the sixteenth through eighteenth aspects, wherein a maximum tensile stress in the at least one cladding layer is greater than or equal to a maximum tensile stress in the at least one core layer after the contacting with the ion exchange bath.


According to a twentieth aspect, a method comprises the method according to any one of the sixteenth through nineteenth aspects, wherein a magnitude of stress at an outer surface of the glass article is greater than or equal to about 300 MPa after the contacting with the ion exchange bath.


Additional features and advantages will be set forth in the detailed description, which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description, which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a cross-sectional view of a glass article in accordance with one or more embodiments shown and described herein;



FIG. 2 is a cross-sectional view of an overflow distributor that can be used for forming a glass article in accordance with one or more embodiments shown and described herein;



FIG. 3 is a plot of ion concentration of an example embodiment in which concentration is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 4 is a plot of the stress profile of the example embodiment corresponding to the plot of FIG. 3 in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 5 is a plot of ion concentration of another example embodiment in which concentration is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 6 is a plot of the stress profile of the example embodiment corresponding to the plot of FIG. 5 in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 7 is a plot of ion concentration of another example embodiment in which concentration is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 8 is a plot of the stress profile of the example embodiment corresponding to the plot of FIG. 7 in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 9 is a plot of stress profiles of example embodiments in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 10 is a plot of stress profiles of example embodiments in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 11 is a plot of stress profiles of example embodiments in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis



FIG. 12 is a representation of a non-frangible sample after a frangibility test;



FIG. 13 is a representation of a frangible sample after a frangibility test;



FIG. 14 is a plot of stress profiles of another example embodiment in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 15 is a plot of stress profiles of example embodiments in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis;



FIG. 16 is a plot of retained strength profiles of example embodiments in which retained strength is plotted on the y-axis and flaw size is plotted on the x-axis;



FIG. 17 is a plot of stress profiles of example embodiments in which stress is plotted on the y-axis and depth within the glass article is plotted on the x-axis; and



FIG. 18 is a plot of retained strength profiles of the example embodiments corresponding to the stress profiles of FIG. 17 in which retained strength is plotted on the y-axis and flaw size is plotted on the x-axis.





DETAILED DESCRIPTION

Reference will now be made in detail to various embodiments, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.


Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


Directional terms as used herein—for example up, down, right, left, front, back, top, bottom—are made only with reference to the figures as drawn and are not intended to imply absolute orientation.


Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order, nor that with any apparatus specific orientations be required. Accordingly, where a method claim does not actually recite an order to be followed by its steps, or that any apparatus claim does not actually recite an order or orientation to individual components, or it is not otherwise specifically stated in the claims or description that the steps are to be limited to a specific order, or that a specific order or orientation to components of an apparatus is not recited, it is in no way intended that an order or orientation be inferred, in any respect. This holds for any possible non-express basis for interpretation, including: matters of logic with respect to arrangement of steps, operational flow, order of components, or orientation of components; plain meaning derived from grammatical organization or punctuation, and; the number or type of embodiments described in the specification.


As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a” component includes aspects having two or more such components, unless the context clearly indicates otherwise. Also, the word “or” when used without a preceding “either” (or other similar language indicating that “or” is unequivocally meant to be exclusive—e.g., only one of x or y, etc.) shall be interpreted to be inclusive (e.g., “x or y” means one or both x or y).


All disclosed ranges are to be understood to encompass and provide support for claims that recite any and all subranges or any and all individual values subsumed by each range. For example, a stated range of 1 to 10 should be considered to include and provide support for claims that recite any and all subranges or individual values that are between and/or inclusive of the minimum value of 1 and the maximum value of 10; that is, all subranges beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less (e.g., 5.5 to 10, 2.34 to 3.56, and so forth) or any values from 1 to 10 (e.g., 3, 5.8, 9.9994, and so forth).


As used herein, the term “average coefficient of thermal expansion,” or “average CTE,” refers to the average coefficient of linear thermal expansion of a given material or layer between 0° C. and 300° C. As used herein, the term “coefficient of thermal expansion,” or “CTE,” refers to the average coefficient of thermal expansion unless otherwise indicated.


Compressive stress (including surface compressive stress) is measured by a refracted near-field (RNF) technique. Surface stress measurements rely upon the accurate measurement of the stress optical coefficient (SOC), which is related to the birefringence of the glass. SOC in turn is measured according to Procedure C (Glass Disc Method) described in ASTM standard C770-16, entitled “Standard Test Method for Measurement of Glass Stress-Optical Coefficient,” the contents of which are incorporated herein by reference in their entirety. Depth of compression (DOC) may be measured with the RNF technique or a scattered light polariscope (SCALP) technique known in the art. The maximum central tension (CT) values are measured using a scattered light polariscope (SCALP) technique known in the art.


Concentration profiles of various constituent components in the glass, such as alkali constituent components, were measured by electron probe microanalysis (EPMA). EPMA may be utilized, for example, to discern compressive stress in the glass due to the ion exchange of alkali ions into the glass from compressive stress due to lamination.


The phrase “depth of compression” and “DOC” refer to the position in the glass where compressive stress transitions to tensile stress.


The term “formed from” can mean one or more of comprises, consists essentially of, or consists of. For example, a component that is formed from a particular material can comprise the particular material, consist essentially of the particular material, or consist of the particular material.


In various embodiments, a glass article comprises at least a first layer and a second layer. For example, the first layer comprises a core layer, and the second layer comprises one or more cladding layers 104, 106 adjacent to the core layer. The first layer and/or the second layer are glass layers comprising a glass material, a ceramic material, a glass-ceramic material, or a combination thereof. In some embodiments, the first layer and/or the second layer are transparent glass layers.


The core layer has a core CTE, and the cladding layer has a cladding CTE. For example, the core layer is formed from a first glass composition with the core CTE and the cladding layer is formed from a second glass composition with the cladding CTE. In some embodiments described herein, the core CTE is less than the cladding CTE (i.e., the cladding CTE is greater than the core CTE) such that the core layer is in compression and the cladding layer is in tension, prior to any ion exchange treatment. In some embodiments, after the glass article is subjected to an ion exchange treatment, a stress profile of the glass article increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, transitions to a compressive stress as a step-change at an interface region between the core layer and the cladding layer, and increases with increasing distance from the interface region to a center of the core layer from the compressive stress to a tensile stress. Such “jumping” tension-compression profiles and otherwise non-conventional stress profiles in the glass article can enable deeper cracks to be arrested, as will be described in greater detail below.



FIG. 1 is a cross-sectional view of one embodiment of a glass article 100. The glass article 100 is a laminated sheet including a plurality of glass layers. In embodiments, the laminated sheet may be substantially planar, as shown in FIG. 1, or the laminated sheet may be non-planar. The glass article 100 comprises a core layer 102 disposed between a first cladding layer 104 and a second cladding layer 106. In some embodiments, the first cladding layer 104 and the second cladding layer 106 are exterior layers relative to the core layer 102, as shown in FIG. 1. For example, an outer surface 108 of the first cladding layer 104 serves as an outer surface of the glass article 100 and/or an outer surface 110 of the second cladding layer 106 serves as an outer surface of the glass article 100. In other embodiments, the first cladding layer 104 and/or the second cladding layer 106 are intermediate layers disposed between the core layer 102 and an exterior layer (not shown).


The core layer 102 comprises a first major surface and a second major surface opposite the first major surface. In some embodiments, the first cladding layer 104 is fused to the first major surface of the core layer 102. Additionally or alternatively, the second cladding layer 106 is fused to the second major surface of the core layer 102. In such embodiments, an interface 112 between the first cladding layer 104 and the core layer 102 and/or an interface 114 between the second cladding layer 106 and the core layer 102 are free of any bonding material such as, for example, an adhesive, a coating layer, or any non-glass material added or configured to adhere the respective cladding layers 104, 106 to the core layer 102. Thus, the first cladding layer 104 and/or the second cladding layer 106 are fused directly to the core layer 102 and/or are directly adjacent to the core layer 102. In some embodiments, the glass article 100 includes one or more intermediate layers disposed between the core layer 102 and the first cladding layer and/or between the core layer 102 and the second cladding layer. For example, the intermediate layers may comprise intermediate glass layers and/or diffusion layers formed at the interface of the core layer 102 and the cladding layer. The diffusion layer can comprise a blended region comprising components of each layer adjacent to the diffusion layer (e.g., a blended region between two directly adjacent glass layers). In some embodiments, the glass article 100 comprises a glass-glass laminate in which the interfaces between directly adjacent glass layers are glass-glass interfaces.


In some embodiments, the core layer 102 comprises a first glass composition (also referred to herein as a core glass composition) and first and/or second cladding layers 104, 106 comprise a second glass composition (also referred to herein as a clad glass composition) that is different from the first glass composition. The first glass composition and the second glass composition are different from each other prior to chemically strengthening the glass article 100 as described herein. For example, in the embodiment shown in FIG. 1, the core layer 102 comprises the first glass composition and each of the first cladding layer 104 and the second cladding layer 106 comprises the second glass composition. In other embodiments, the first cladding layer comprises the second glass composition and the second cladding layer comprises a third glass composition that is different from the first glass composition and/or the second glass composition.


In various embodiments, the core layer 102 is formed from an ion exchangeable core glass composition and the cladding layers 104, 106 are formed from an ion exchangeable clad glass composition. In embodiments, as described above and below, the core glass composition and the clad glass composition have different coefficients of thermal expansion.


The glass article can be formed using a suitable process such as, for example, a fusion draw, down draw, slot draw, up draw, or float process. In some embodiments, the glass article 100 is formed using a fusion draw process. FIG. 2 is a cross-sectional view of an example embodiment of overflow distributor 200 that can be used to form a glass article such as, for example, the glass article 100.


The overflow distributor 200 can be configured as described in U.S. Pat. No. 4,214,886, which is incorporated by reference in its entirety. For example, the fusion draw apparatus includes a lower overflow distributor 220 and an upper overflow distributor 240 positioned above the lower overflow distributor 220. The lower overflow distributor 220 includes a trough 222. A first glass composition 224 is melted and fed into the trough 222 in a viscous state. The first glass composition 224 forms the core layer 102 of the glass article 100 as further described below. The upper overflow distributor 240 includes a trough 242. A second glass composition 244 is melted and fed into the trough 242 in a viscous state. The second glass composition 244 forms first and second cladding layers 104, 106 of the glass article 100 as further described below.


The first glass composition 224 overflows trough 222 and flows down opposing outer forming surfaces 226 and 228 of the lower overflow distributor 220. The outer forming surfaces 226 and 228 converge at a draw line 230. The separate streams of the first glass composition 224 flowing down respective outer forming surfaces 226 and 228 of the lower overflow distributor 220 converge at the draw line 230 where they are fused together to form the core layer 102 of the glass article 100.


The second glass composition 244 overflows the trough 242 and flows down opposing outer forming surfaces 246 and 248 of the upper overflow distributor 240. The second glass composition 244 is deflected outward by the upper overflow distributor 240 such that the second glass composition 244 flows around the lower overflow distributor 220 and contacts the first glass composition 224 flowing over the outer forming surfaces 226 and 228 of the lower overflow distributor 220. The separate streams of the second glass composition 244 are fused to the respective separate streams of the first glass composition 224 flowing down the respective outer forming surfaces 226 and 288 of the lower overflow distributor 220. Upon convergence of the streams of the first glass composition 224 at the draw line 230, the second glass composition 244 forms first and second cladding layers 104, 106 of the glass article 100.


In some embodiments, the first glass composition 224 of the core layer 102 in the viscous state is contacted with the second glass composition 244 of the first and second cladding layers 104, 106 in the viscous state to form the laminated sheet. In some of such embodiments, the laminated sheet is part of a glass ribbon traveling away from the draw line 230 of the lower overflow distributor 220, as shown in FIG. 2. The glass ribbon can be drawn away from the lower overflow distributor 220 by a suitable means including, for example, gravity and/or pulling rollers. The glass ribbon cools as it travels away from the lower overflow distributor 220. The glass ribbon is severed to separate the laminated sheet therefrom. Thus, the laminated sheet is cut from the glass ribbon. The glass ribbon can be severed using a suitable technique such as, for example, scoring, bending, thermally shocking, and/or laser cutting. In some embodiments, the glass article 100 comprises the laminated sheet as shown in FIG. 1. In other embodiments, the laminated sheet can be processed further (e.g., by cutting or molding) to form the glass article.


Although the glass article 100 is shown in FIG. 1 as including three layers, other embodiments are contemplated. For example, the glass article may have two, four, or more layers. Glass articles including two layers can be formed using two overflow distributors positioned such that the two layers are joined while traveling away from the respective draw lines of the overflow distributors or by using a single overflow distributor with a divided trough such that two glass compositions flow over opposing outer forming surfaces of the overflow distributor and converge at the draw line of the overflow distributor. Glass articles including four layers can be formed using additional overflow distributors and/or using overflow distributors with divided troughs. Thus, a glass article having a predetermined number of layers can be formed by modifying the overflow distributor accordingly.


Although the glass article 100 is shown in FIG. 1 as comprising a laminated sheet, other forms are contemplated. For example, the glass article may be in the form of a laminated tube comprising multiple tubular layers (e.g., formed by one or more annular orifices), and a partial cross-section of the laminated tube may have a laminated structure similar to that shown in FIG. 1. In other embodiments, the glass article may be a shaped glass article, such as may be formed by shaping or molding a laminated sheet.


In some embodiments, the glass article 100 has a thickness of at least about 0.05 mm, at least about 0.1 mm, at least about 0.2 mm, or at least about 0.3 mm. Additionally or alternatively, the glass article 100 has a thickness of less than about 2 mm, less than about 1.5 mm, less than about 1 mm, less than about 0.7 mm, or less than about 0.5 mm. In some embodiments, a ratio of a thickness of the core layer 102 to a thickness of the glass article 100 is at least about 0.7, a least about 0.8, at least about 0.85, at least about 0.9, or at least about 0.95. Additionally or alternatively, the ratio of the thickness of the core layer 102 to the thickness of the glass article 100 is less than about 0.95, less than about 0.93, less than about 0.9, less than about 0.87, or less than about 0.85. In some embodiments, a thickness of the second layer (e.g., each of the first cladding layer 104 and the second cladding layer 106) is from about 0.01 mm to about 0.3 mm.


In some embodiments, the first glass composition and/or the second glass composition have a liquidus viscosity suitable for forming the glass article 100 using a fusion draw process as described herein. For example, the first glass composition of the core layer 102 may have a liquidus viscosity of at least about 100 kP, at least about 200 kP, or at least about 300 kP. Additionally or alternatively, the first glass composition comprises a liquidus viscosity of less than about 3000 kP, less than about 2500 kP, less than about 1000 kP, or less than about 800 kP. The second glass composition of the first and/or second cladding layers 104 and 106 may have a liquidus viscosity of at least about 50 kP, at least about 100 kP, or at least about 200 kP. Additionally or alternatively, the second glass composition comprises a liquidus viscosity of less than about 3000 kP, less than about 2500 kP, less than about 1000 kP, or less than about 800 kP. The first glass composition can aid in carrying the second glass composition over the overflow distributor to form the second layer. Accordingly, the second glass composition can have a liquidus viscosity that is lower than generally considered suitable for forming a single layer sheet using a fusion draw process.


In various embodiments described herein, the glass article 100 is strengthened by a combination of mechanical strengthening and chemical strengthening. For example, the glass article 100 may have a CTE mismatch as described herein, and may be chemically strengthened, such as by an ion exchange treatment, to further increase the compressive stress near the outer surface of the second layer and/or to form a compressive peak within the second layer.


In various embodiments, the glass article 100 is mechanically strengthened. For example, the second glass composition forming the first and/or second cladding layers 104, 106 may have a different CTE than the first glass composition forming the core layer 102. In particular, in some embodiments, the first and second cladding layers 104, 106 may be formed from a glass composition having a higher CTE than the glass composition of the core layer 102. The CTE mismatch (i.e., the difference between the CTE of the first and second cladding layers 104, 106 and the CTE of the core layer 102) results in the formation of compressive stress in the core layer 102 and tensile stress in the cladding layers 104, 106 upon cooling of the glass article 100. In various embodiments, each of the first and second cladding layers 104, 106, independently, can have a higher CTE, a lower CTE, or substantially the same CTE as the core layer 102. Surface compressive stresses tend to suppress existing surface flaws from developing into cracks.


In embodiments, the CTE of the core layer 102 and the CTE of the first and/or second cladding layers 104, 106 differ by at least about 5×10−7° C.−1, at least about 15×10−7° C.−1, at least about 25×10−7° C.−1, or at least about 30×10−7° C.−1. Additionally or alternatively, the CTE of the core layer 102 and the CTE of the first and/or second cladding layers 104, 106 differ by less than about 100×10−7° C.−1, less than about 75×10−7° C.−1, less than about 50×10−7° C.−1, less than about 40×10−7° C.−1, less than about 30×10−7° C.−1, less than about 20×10−7° C.−1, or less than about 10×10−7° C.−1. For example, in some embodiments, the CTE of the core layer 102 and the CTE of the first and/or second cladding layers 104, 106 differ by about 5×10−7° C.−1 to about 30×10−7° C.−1, or about 5×10−7° C.−1 to about 20×10−7° C.−1. In some embodiments, the second glass composition of the first and/or second cladding layer has a CTE of less than about 66×10−7° C.−1, less than about 55×10−7° C.−1, less than about 50×10−7° C.−1, less than about 40×10−7° C.−1, or less than about 35×10−7° C.−1. Additionally or alternatively, the second glass composition of the first and/or second cladding layer has a CTE of at least about 10×10−7° C.−1, at least about 15×10−7° C.−1, at least about 25×10−7° C.−1, or at least about 30×10−7° C.−1. The first glass composition of the core layer 102 may have a CTE of at least about 40×10−7° C.−1, at least about 50×10−7° C.−1, at least about 55×10−7° C.−1, at least about 65×10−7° C.−1, at least about 70×10−7° C.−1, at least about 80×10−7° C.−1, or at least about 90×10−7° C.−1. Additionally or alternatively, the first glass composition of the core layer may have a CTE of less than about 120×10−7° C.−1, less than about 110×10−7° C.−1, less than about 100×10−7° C.−1, less than about 90×10−7° C.−1, less than about 75×10−7° C.−1, or less than about 70×10−7° C.−1.


In various embodiments described herein, the glass article 100 is chemically strengthened. For example, the glass article 100 may be subjected to an ion exchange treatment to increase the compressive stress in a region of the glass article at an outer surface of the glass article (e.g., an outer portion of the cladding layer). In some embodiments, the ion exchange treatment comprises applying an ion exchange medium to one or more surfaces of the glass article 100. The ion exchange medium may be a solution, a paste, a gel, or another suitable medium comprising larger ions to be exchanged with smaller ions in the glass (e.g., the glass of the second layer). The terms “larger ions” and “smaller ions” are relative terms, meaning that the larger ions are relatively large compared to the smaller ions and the smaller ions are relatively small compared to the larger ions. Thus, the larger ions have a larger ionic radius than the smaller ions, and the smaller ions have a smaller ionic radius than the larger ions. In some embodiments, the cladding layer of the glass article 100 comprises an alkali aluminosilicate glass. Thus, the smaller ions in the cladding layer of the glass article and the larger ions in the ion exchange medium may be monovalent alkali metal cations (e.g., Li+, Na+, and/or K+). Alternatively, monovalent cations in the glass article 100 may be replaced with monovalent cations other than alkali metal cations (e.g., Ag+ or the like). In some embodiments, the cladding layer of the glass article 100 comprises an alkaline earth aluminosilicate glass. Thus, the smaller ions in the cladding layer of the glass article and the larger ions in the ion exchange medium may be divalent alkaline earth cations (e.g., Be2+, Mg2+, Ca2+, and/or Sr2+). In some embodiments, the ion exchange medium comprises a molten salt solution, and the ion exchange treatment comprises immersing the laminated glass article in a molten salt bath comprising larger ions (e.g., K+, Na+, Sr2+, and/or Ca2+) to be exchanged with smaller ions (e.g., Na+, Li+, Ca2+, and/or Mg2+) in the glass. In some embodiments, the molten salt bath comprises a salt (e.g., a nitrate, a sulfate, and/or a chloride) of the larger ions. For example, the molten salt bath may include molten KNO3, molten NaNO3, or a combination thereof. Additionally or alternatively, the temperature of the molten salt bath may be from about 380° C. to about 450° C., and an immersion time is from about 2 hours to about 16 hours.


By replacing smaller ions in the glass with larger ions at the surface of the glass article 100, the compressive stress of the cladding layer is increased at the outer surface of the glass article. For example, during the ion exchange treatment, the larger ions from the ion exchange medium diffuse into an outer portion of the cladding layer of the glass article 100 and the smaller ions from the glass diffuse out of the outer portion of the cladding layer of the glass article. Thus, the outer portion of the cladding layer comprises an exchanged region of the glass article. The increased concentration of the larger ions in the ion exchanged region causes crowding of the glass and increases the compressive stress of the glass article 100 in the ion exchanged region. In some embodiments, subjecting the glass article 100 to the ion exchange treatment increases a surface compressive stress at the outer surface of the glass article (e.g., from an initial surface compressive stress generated by the CTE mismatch) to a final compressive stress value. For example, the final compressive stress value is at least about 200 MPa, at least about 300 MPa, at least about 400 MPa, at least about 500 MPa, at least about 600 MPa, at least about 700 MPa, at least about 800 MPa, at least about 900 MPa, or at least about 1,000 MPa. Additionally or alternatively, the final compressive stress value is less than about 1300 MPa, less than about 1200 MPa, less than about 1000 MPa, less than about 900 MPa, less than about 800 MPa or less than about 600 MPa.


In various embodiments herein, the core layer 102 is ion exchange strengthened through the cladding layers 104, 106. The core layer 102 and the cladding layers 104, 106 have different compositional characteristics to achieve these properties. The compositional characteristics of each glass composition produces a unique alkali ion diffusion profile through the thickness of the laminated glass article after strengthening by ion exchange.


Prior to ion exchange strengthening, the concentration of various constituent components of the glass network (e.g., glass formers such as SiO2 and B2O3, intermediates such as Al2O3, and modifiers such as CaO, Na2O, etc.) of the cladding layers 104, 106 are generally uniformly distributed from the outer surfaces of the laminated glass article to the respective interface regions. For example, the cladding layers 104, 106 comprise at least one glass former and a concentration of the glass former is substantially constant from the outer surface of the glass article to the interface between the cladding layer and the core layer 102. In addition, the cladding layers 104, 106 comprise at least one modifier, such as Na2O and/or another alkali oxide, and a concentration of the modifier is substantially constant from the outer surface of the glass article to the interface between the cladding layer and the core layer 102.


Similarly, the concentration of various constituent components of the glass network (e.g., glass formers such as SiO2 and B2O3, intermediates such as Al2O3, and modifiers such as CaO, Na2O, etc.) of the core layer 102 are generally uniformly distributed from the respective interface to the centerline of the core layer 102. The term “centerline” as used herein, refers to the midpoint of the thickness of the core layer 102. For example, the core layer 102 comprises at least one glass former and a concentration of the glass former is substantially constant from a core side of the interface to the centerline of the core layer 102. In addition, the core layer 102 comprises at least one modifier, such as Na2O and/or another alkali oxide, and a concentration of the glass modifier is substantially constant from a core side of the interface to the centerline of the core layer 102.


However, after ion exchange, the concentration of the alkali oxides, such as K2O, varies in both the core layer 102 and the cladding layers 104, 106 as a function of depth from the surfaces 108, 110 of the glass article 100, as shown in FIG. 3. Specifically, a concentration of K2O 302 decreases from the surfaces 108, 110 of the glass article 100, through the cladding layers 104, 106, to a cladding side of the interfaces 112, 114. That is, the concentration of K2O 302 in the cladding layers 104, 106 as a function of distance from the surfaces 108, 110 has a negative slope. Similarly, the concentration of K2O 302 decreases from a core side of the interface in the direction of the centerline CL of the core layer 102.


Additionally, the concentration of Na2O 304 increases from the surfaces 108, 110 of the glass article 100, through the cladding layers 104, 106 to a cladding side of the interfaces 112, 114. That is, a concentration of Na2O 304 in the cladding layers 104, 106 as a function of distance from the surfaces 108, 110 has a positive slope. The Na2O concentration 304 then changes as a step change at the interface between the cladding layers 104, 106 and the core layer 102, and then continuously decreases within the core layer 102.


Moreover, in FIG. 3, the Li2O concentration 306 increases with increasing distance from the surface of the cladding layers 104, 106 to a centerline CL in the core layer 102 from a surface concentration of zero to a maximum Li2O concentration 306 at the centerline.


While the concentration of alkali oxides in the cladding layers 104, 106 changes as a result of ion exchange strengthening, it should be understood that the concentrations of the other constituents of the glass network (i.e., glass formers, intermediates, and non-mobile modifiers such as alkaline earth oxides (CaO, MgO, etc.)) remain substantially the same (i.e., substantially uniform through the thicknesses of the cladding layers 104, 106 and substantially uniform through the thickness of the core layer 102).


The ion exchange treatment also creates a unique stress profile, one example of which is graphically depicted in FIG. 4. As shown in FIG. 4, the glass cladding layer has a stress profile due to ion exchange. The stress in the region from the surface of the glass up to the core-clad interface at 100 μm includes compressive stresses and tensile stresses due to ion exchange strengthening. The core layer 102 (i.e., the portion of the laminate at depths greater than 100 μm) also includes regions that are compressively stressed and regions that are under tensile stress due to ion exchange strengthening the cladding layer through the core layer 102. In the example shown in FIG. 4, the stress profile 402 corresponds to a profile for glass chemically strengthened using a dual ion exchange treatment as described herein.


More particularly, in FIG. 4, the stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, and then transitions to a compressive stress as a step-change at an interface region between the core layer 102 and the cladding layer. The stress of the core layer 102 increases with an increasing distance from the interface region to a center of the core layer 102 from the compressive stress to a tensile stress.


The alkali concentration profile of FIG. 3 and the stress profile of FIG. 4 were obtained using lithium-containing cladding layers 104, 106 and a sodium-containing core layer 102. FIGS. 5-8 each show an alkali concentration profile (FIGS. 5 and 7) or a stress profile (FIGS. 6 and 8) of a glass laminate including a lithium-containing core layer 102 and sodium-containing cladding layers 104, 106. The profiles in FIGS. 5 and 6 were obtained using a cladding layer thickness of 70 μm, while the profiles in FIGS. 7 and 8 were obtained using a cladding layer thickness of 25 μm.


As with the previous example, following ion exchange, the concentration of the alkali oxides, such as K2O, varies in both the core layer 102 and the cladding layers 104, 106 as a function of depth from the surfaces 108, 110 of the glass article 100, as shown in FIGS. 5 and 7. Specifically, a concentration of K2O 502, 702 decreases from the surfaces 108, 110 of the glass article 100, through the cladding layers 104, 106, to a cladding side of the interfaces 112, 114. That is, the concentration of K2O 502, 702 in the cladding layers 104, 106 as a function of distance from the surfaces 108, 110 has a negative slope. Similarly, the concentration of K2O 502, 702 decreases from a core side of the interface in the direction of the centerline CL of the core layer 102.


Additionally, in FIGS. 5 and 7, the Li2O concentration 504, 704 increases with increasing distance from the surface of the cladding layers 104, 106 to a centerline in the core layer 102 from a surface concentration of 0 to a maximum Li2O concentration 504, 704 at the centerline CL.


However, in FIGS. 5 and 7, the concentration of Na2O 506, 706 increases from the surfaces 108, 110 of the glass article 100, through the cladding layers 104, 106 to a cladding side of the interfaces 112, 114. That is, a concentration of Na2O 506, 706 in the cladding layers 104, 106 as a function of distance from the surfaces 108, 110 has a positive slope. The Na2O concentration 506, 706 then changes as a step change at the interface between the cladding layers 104, 106 and the core layer 102, where it initially increases and then decreases within the core layer 102.


While the concentration of alkali oxides in the cladding layers 104, 106 changes as a result of ion exchange strengthening, it should be understood that the concentrations of the other constituents of the glass network (i.e., glass formers, intermediates, and non-mobile modifiers such as alkaline earth oxides (CaO, MgO, etc.)) remain substantially the same (i.e., substantially uniform through the thicknesses of the cladding layers 104, 106 and substantially uniform through the thickness of the core layer 102).


In the stress profiles depicted in FIGS. 6 and 8, the cladding layers 104, 106 have profiles due to ion exchange. In FIG. 6, the stress in the region from the surface of the glass up to the core-cladding interface at 70 μm includes compressive stresses and tensile stresses due to ion exchange strengthening. The core layer 102 (i.e., the portion of the laminate at depths greater than 70 μm) also includes regions that are compressively stressed and regions that are under tensile stress due to ion exchange strengthening the core layer 102 through the cladding layers 104, 106. In the example shown in FIG. 6, the stress profile 602 corresponds to a profile for glass chemically strengthened using a dual ion exchange treatment as described herein.


More particularly, in FIG. 6, the stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, and then transitions to a compressive stress as a step-change at an interface region between the core layer 102 and the cladding layer. The stress of the core layer 102 increases with an increasing distance from the interface region to a center of the core layer 102 from the compressive stress to a tensile stress.


However, in FIG. 8, the stress profile 802 indicates that the stress in the region from the surface of the glass up to the core-cladding interface at 25 μm includes only compressive stresses due to ion exchange strengthening. The core layer 102 (i.e., the portion of the laminate at depths greater than 25 μm) includes regions that are compressively stressed and regions that are under tensile stress due to ion exchange strengthening the core layer 102 through the cladding layers 104, 106.


More particularly, in FIG. 8, the stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from an initial compressive stress to a minimum compressive stress, and then transitions to a maximum compressive stress as a step-change at an interface region between the core layer 102 and the cladding layer. The stress of the core layer 102 increases with an increasing distance from the interface region to a center of the core layer 102 from the compressive stress to a tensile stress.


Notably, the reduction in the cladding layer thickness eliminates the tensile stress in the cladding layer, reduces the central tension in the glass article, and maintains a depth of compression (DOC) of about 100 μm, or about 21% of the total thickness of the glass laminate. In other words, high levels of compression can be generated without generating significant tension within the core layer 102.


The retained strength of a glass article can be determined based on the stress profile of the glass article. For example, the retained strength is determined by forming a flaw extending from a surface of the glass article to a specified depth and then determining the strength of the glass article after formation of the flaw. The strength is flexural strength of the glass article determined using, for example, a ring-on-ring test method (e.g., as described in ASTM C1499-09), a ball-on-ring test method, a three-point bend test method, a four-point bend test method, or another suitable method or technique. Such a retained strength determination can be conducted using a fracture mechanics simulation based on the stress profile of the glass article.


Moreover, the improved resistance to breakage resulting from large flaws can be achieved by the strength profile 802 while decreasing the maximum tensile stress of the tensile region as compared to the retained strength profile 602 and/or the retained strength profile 402. For example, maintaining the compressive stress at a relatively constant level relatively deep into the compressive region (e.g., over the intermediate portion) can help to maintain the area under the compressive portion of the stress profile curve, which is proportional to the maximum tensile stress in the tensile region, relatively low while also providing protection against breakage caused by relatively deep flaws. Thus, the maximum tensile stress can be maintained below the frangibility limit.


In various embodiments, the ion exchange parameters and glass compositions selected for each of the cladding layers 104, 106 and the core layer 102 can be selected to achieve a particular stress profile. Various example stress profiles are depicted in FIG. 9.


For example, stress profile 902 can be obtained where the stress gradient in the deeper portion of the cladding layer is not continuous. Rather, the stress in the cladding layer monotonically changes from the surface to the clad-core interface, whereupon it jumps to compression within the core layer 102. Alternatively, the stress may have a gradient across the clad-core interface, taking into account that an inter-diffusion layer exists between the cladding layer and the core layer 102, in which the composition gradually changes from the clad glass composition to the core glass composition. In one particular embodiment, the stress profile 902 can be achieved by using a core glass composition that has a much higher alkali content than the clad glass composition.


For example, in one particular embodiment, the clad glass composition includes 6 mol % Na2O and 1 mol % K2O as the alkali, and the core glass composition includes 18 mol % Na2O and 3 mol % K2O. After ion exchanging the sample as a first step in a bath having 50% NaNO3 and 50% KNO3 for a first exchange time of, for example and without limitation, from greater than or equal to 1 hour to less than or equal to 100 hours, there is substantial penetration of K ions into the core glass B. Then, in a second step, the sample is ion exchanged in a bath having 100% KNO3, for a second exchange time that is less than the first exchange time that is adequate for the K ions to produce a gradient profile within the cladding layer. The second exchange time may be, for example and without limitation, from about 10 minutes to less than or equal to 5 hours so long as the second exchange time is less than the first exchange time.


As another example, the stress profile 904 can be obtained after a first long ion exchange step (e.g., after an ion exchange time of, for example and without limitation, from greater than or equal to 1 hour to less than or equal to 100 hours), but the second step is an ion exchange step with non-permeable boundary conditions in which only ions already in the glass diffuse between the core layer and the cladding layer, but no additional ions are diffused into the glass article from an external source (e.g., a molten salt bath). The second ion exchange step may be performed, for example and without limitation, by heating the glass article to a temperature sufficient for ion exchange (e.g., from about 350° C. to about 550° C.). This increases the ion exchange between the core layer and the cladding layer(s) and results in increased compressive stress at the interface between the core layer and the cladding layer(s). However, due to force balancing, the compressive stress at or near the surface of the cladding layer decreases. As a result, the stress profile 904 in the cladding layer is substantially linear. In such embodiments, the second derivative of the stress profile can be neglected for purposes of distinguishing the mechanical performance.


In still another example, the stress profile 906 can be obtained by using a clad glass composition with a much higher alkali diffusivity than the core glass composition, so the stress gradient in the cladding layer(s) is substantially eliminated. In this embodiment, the stress gradient in the cladding layer(s) is sufficiently reduced that it is irrelevant for purposes of distinguishing the mechanical performance. The glass laminate is subjected to a first, long ion exchange (e.g., an ion exchange time of, for example and without limitation, from greater than or equal to 1 hour to less than or equal to 100 hours), so that the stress profile penetrates all the way to the core layer 102, followed by a heat treatment to produce the flat region near the surface of the cladding layer.


The stress profile 908 can be obtained by using a clad glass composition with a much higher diffusivity than the core glass composition (but a lower diffusivity than the clad glass composition used to obtain the stress profile 906) in conjunction with a long ion exchange as a first step, so the stress profile penetrates all the way to the core layer 102, followed by a heat treatment to produce the flat region of the stress profile near the surface of the cladding layer.


In various embodiments, enabling ion exchange along the clad-core interface can also result in various stress profiles. For example, as shown in FIG. 10, the amount of time that a sample is subjected to an ion exchange process can change the resultant stress profile. In FIG. 10, glass laminates having a sodium rich clad glass composition and a potassium rich core glass composition were ion exchanged for various amounts of time. In particular, stress profile 1002 was obtained following an ion exchange step of a first duration D1 (hours), stress profile 1004 was obtained following an ion exchange step of approximately 4×D1, stress profile 1006 was obtained following an ion exchange step of approximately 15×D1, and stress profile 1008 was obtained following an ion exchange step of 25×D1. Although the stresses from the CTE mismatch between the cladding layer and the core layer 102 are not included in the stress profiles depicted in FIG. 10, the CTE stresses would shift the stresses within the cladding layer in the −Y direction while the CTE stresses would shift the stresses within the core layer 102 in the +Y direction. Accordingly, with this particular combination of alkalis in the core and clad glass compositions, a thicker cladding layer can be employed without introducing tensile stress to the cladding layer.


Still other stress profiles can be obtained by reversing the alkali content of the cladding layer and core layer 102. For example, as shown in FIG. 11, glass laminates having a potassium rich clad glass composition and a sodium rich core glass composition were ion exchanged for various amounts of time. In particular, stress profile 1102 was obtained following an ion exchange step of a first duration D1 (hours), stress profile 1104 was obtained following an ion exchange step of approximately 4×D1, stress profile 1106 was obtained following an ion exchange step of approximately 15×D1, and stress profile 1108 was obtained following an ion exchange step of approximately 25×D1. Although the stresses from the CTE mismatch between the cladding layer and the core layer 102 are not included in the stress profiles depicted in FIG. 11, the CTE stresses would shift the stresses within the cladding layer in the +Y direction while the CTE stresses would shift the stresses within the core layer 102 in the −Y direction. Accordingly, with this particular combination of alkalis in the core and clad glass compositions, a thicker cladding layer can be employed to reduce the central tension within the glass laminate. Moreover, the combination of glass compositions along with the CTE mismatch can result in compressive stresses in the core layer 102.


Various embodiments described herein can also be used to reduce the frangibility of a glass laminate. In some embodiments, the glass articles disclosed herein are not frangible upon being ion-exchanged. Frangible behavior refers to specific fracture behavior when a glass article is subjected to an impact or insult. As utilized herein, a glass is considered non-frangible when it exhibits at least one of the following in a test area as the result of a frangibility test: (1) four or less fragments with a largest dimension of at least 1 mm, and/or (2) the number of bifurcations is less than or equal to the number of crack branches. The fragments, bifurcations, and crack branches are counted based on any 2 inch by 2 inch square centered on the impact point. Thus, a glass is considered non-frangible if it meets one or both of tests (1) and (2) for any 2 inch by 2 inch square centered on the impact point where the breakage is created according to the procedure described below. In a frangibility test, an impact probe is brought in to contact with the glass, with the depth to which the impact probe extends into the glass increasing in successive contact iterations. The step-wise increase in depth of the impact probe allows the flaw produced by the impact probe to reach the tension region while preventing the application of excessive external force that would prevent the accurate determination of the frangible behavior of the glass. In one embodiment, the depth of the impact probe in the glass may increase by about 5 μm in each iteration, with the impact probe being removed from contact with the glass between each iteration. The test area is any 2 inch by 2 inch square centered at the impact point. FIG. 12 depicts a non-frangible test result. As shown in FIG. 12, the test area is a square that is centered at the impact point 1230, where the length of a side of the square a is 2 inches. The non-frangible sample shown in FIG. 12 includes three fragments 1242, and two crack branches 1240 and a single bifurcation 1250. Thus, the non-frangible sample shown in FIG. 12 contains less than 4 fragments having a largest dimension of at least 1 mm and the number of bifurcations is less than or equal to the number of crack branches. As utilized herein, a crack branch originates at the impact point, and a fragment is considered to be within the test area if any part of the fragment extends into the test area. While coatings, adhesive layers, and the like may be used in conjunction with the strengthened glass articles described herein, such external restraints are not used in determining the frangibility or frangible behavior of the glass articles. In some embodiments, a film that does not affect the fracture behavior of the glass article may be applied to the glass article prior to the frangibility test to prevent the ejection of fragments from the glass article, increasing safety for the person performing the test.


A frangible sample is depicted in FIG. 13. The frangible sample includes 5 fragments 1242 having a largest dimension of at least 1 mm. The sample depicted in FIG. 13 includes 2 crack branches 1240 and 3 bifurcations 1250, producing more bifurcations than crack branches. Thus, the sample depicted in FIG. 13 does not exhibit either four or less fragments or the number of bifurcations being less than or equal to the number of crack branches.


In the frangibility test described herein, the impact is delivered to the surface of the glass article with a force that is just sufficient to release the internally stored energy present within the strengthened glass article. That is, the point impact force is sufficient to create at least one new crack at the surface of the strengthened glass sheet and extend the crack through the compressive stress CS region (i.e., depth of compression) into the region that is under central tension CT.


Accordingly, the chemically strengthened glasses described herein are “non-frangible”—i.e., they do not exhibit frangible behavior as described hereinabove when subjected to impact by a sharp object.


Frangibility of the chemically strengthened glasses described herein can be reduced by burying a compressive stress peak within the core layer 102. For example, a glass article having a thin core layer 102 that is low in potassium concentration and thick cladding layers 104, 106 that include potassium ions can have a stress profile 1402, as shown in FIG. 14. When the glass article is subjected to an ion exchange treatment, the potassium ions from the cladding layer exchange into the core layer 102, increasing the compression within the core layer 102. Without being bound by theory, it is believed that the thinner the core layer 102 and the stronger the CTE mismatch, the higher the compressive stress barrier can be built into the glass. This compression reduces frangibility by dividing the tensile region, and arrests cracks.


As described hereinabove, in various embodiments, the glass article is mechanically strengthened through a CTE mismatch between the core layer 102 and the cladding layers 104, 106. FIG. 15 depicts various stress profiles accounting for the dual ion exchange process described herein and the CTE difference.


In FIG. 15, stress profiles 1502 and 1506 correspond to glass articles that were subjected to a dual ion exchange process as described herein, but are not laminated. Stress profiles 1504 and 1508 correspond to laminated glass articles that were subjected to the same dual ion exchange processes that generated stress profiles 1502 and 1506, respectively. The glass article corresponding to stress profile 1508 has a lower laminate CTE difference, a lower peak compressive stress, and a deeper depth of compression for the ion exchange and the step profile as compared to the glass article corresponding to stress profile 1504. As shown in FIG. 15, the stress profiles 1504 and 1508 for the mechanically and chemically strengthened glass articles provide good protection against both short and deep flaws, and the addition of the laminate, and particularly the constant stress profile region, enables higher stress at the depth of compression instead of the error function decay that results in a region of low stress before the depth of compression. Additionally, the dual ion exchange enables the stress profile to have a non-constant stress as a function of depth.



FIG. 16 illustrates the calculated retained strength based on fracture mechanics as a function of flaw size for the glass articles corresponding to the stress profiles in FIG. 15. In particular, retained strength profile 1602 corresponds to stress profile 1502, retained strength profile 1604 corresponds to stress profile 1504, retained strength profile 1606 corresponds to stress profile 1506, and retained strength profile 1608 corresponds to stress profile 1508. In FIG. 16, it can be seen that the mechanically and chemically strengthened glass articles (corresponding to strength profiles 1604 and 1608) exhibit greater retained strength for flaw sizes of up to about 90 μm. Additionally, it can be seen that the glass article corresponding to strength profile 1608 has reduced strength for small flaws, but has more strength for deeper flaws when compared to the glass article corresponding to strength profile 1604. Accordingly, the dual ion exchange profile and laminate stresses can be combined to provide a desired retained strength for a given critical flaw size range.


Various additional stress profiles can be obtained in various embodiments described herein are shown in FIG. 17. In particular, the profiles in FIG. 17 illustrate that two general strategies for leveraging the step profile obtained from a glass article having a CTE mismatch, as described herein. First, stress profile 1704 illustrates that a high compressive stress, but low thickness, cladding layers 104, 106 can be used to compensate for low compressive strength in a parabolic stress profile, such as stress profile 1702, 1708, or 1710. This strategy could result in good scratch performance resulting from a high compressive stress and high free volume due to the high fictive temperature of the glass. In particular, high free volume (e.g., low density) may result in improved scratch and/or indentation fracture resistance performance. Second, as can be seen by comparing stress profiles 1704, 1706, and 1712 to stress profiles 1702, 1708, and 1710, a high depth of compression as well as a low slope as the compressive stress transitions to a tensile stress can result in improved drop performance. By mechanically strengthening the glass article, both features can be leveraged by increasing the depth of compression via addition of a low compressive stress step profile, which extends to or beyond the depth of compression of the combined profiles. The compressive stress can be effectively “hidden” in a region where its presence does not affect drop performance.



FIG. 18, which illustrates the retained strength of the glass articles corresponding to the stress profiles of FIG. 17, demonstrates that both strategies are effective in leveraging the step profile. In addition, as shown in FIG. 18, the thickness of the cladding layer can be adjusted to provide improved retained strength for any flaw range of interest. The residual strength profiles in FIG. 18 further illustrate that burying the central tension increases the retained strength while the high compressive stress increases the strength for short flaws.


Various embodiments described herein enable improved glass performance, such as scratch and crack resistance, through mechanical and chemical strengthening. Moreover, the selection of various glass compositions to attain particular CTE mismatches between the core layer and cladding layers as well as ion exchange of the core layer through the cladding layers can produce a glass article having a series of compression-tension zones through the thickness of the glass article, which can reduce frangibility and arrest cracks.


It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus, it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.

Claims
  • 1. A laminated glass article comprising: a core layer comprising a core glass composition; anda cladding layer directly adjacent to the core layer and comprising a clad glass composition;wherein a stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, transitions to a compressive stress as a step-change at an interface region between the core layer and the cladding layer, and increases with increasing distance from the interface region to a center of the core layer from the compressive stress to a tensile stress, andwherein a maximum tensile stress in the cladding layer is greater than or equal to a maximum tensile stress in the core layer.
  • 2. The laminated glass article according to claim 1, wherein the core glass composition has an average core coefficient of thermal expansion (CTEcore) and the cladding layer has an average cladding coefficient of thermal expansion (CTEclad) that is greater than the CTEcore.
  • 3. The laminated glass article according to claim 1, wherein the laminated glass article is ion-exchange strengthened.
  • 4. The laminated glass article according to claim 3, wherein the core glass composition and the clad glass composition comprise one or more alkali oxides.
  • 5. The laminated glass article according to claim 1, wherein a magnitude of the stress at the outer surface is greater than or equal to about 300 MPa.
  • 6. The laminated glass article according to claim 1, wherein a maximum magnitude of the stress of the laminated glass article is less than or equal to about 400 MPa.
  • 7. A laminated glass article, comprising: a core layer comprising a core glass composition; anda cladding layer directly adjacent to the core layer and comprising a clad glass composition;wherein a stress of the cladding layer increases with increasing distance from an outer surface of the cladding layer from a compressive stress to a tensile stress, transitions to a compressive stress as a step-change at an interface region between the core layer and the cladding layer, and increases with increasing distance from the interface region to a center of the core layer from the compressive stress to a tensile stress, andwherein a maximum compressive stress of the core layer is greater than a maximum compressive stress of the cladding layer.
  • 8. A method of preparing a laminated glass article comprising: laminating at least one core layer and at least one cladding layer to form a laminated glass article, the at least one core layer comprising an ion-exchangeable core glass composition and the at least one cladding layer comprising an ion-exchangeable clad glass composition; andcontacting the laminated glass article with an ion exchange bath comprising at least one ion source for a time such that a stress of the at least one cladding layer increases with increasing distance from an outer surface of the at least one cladding layer from a compressive stress to a tensile stress, transitions to a compressive stress as a step-change at an interface region between the at least one core layer and the at least one cladding layer, and increases with increasing distance from the interface region to a center of the at least one core layer from the compressive stress to a tensile stress,wherein, after the contacting with the ion exchange bath, one or more of (i) a maximum compressive stress in the at least one core layer is greater than a maximum compressive stress in the at least one cladding layer and (ii) a maximum tensile stress in the at least one cladding layer is greater than or equal to a maximum tensile stress in the at least one core layer.
  • 9. The method according to claim 8, wherein the at least one core layer has an average core coefficient of thermal expansion (CTEcore) and the at least one cladding layer has an average cladding coefficient of thermal expansion (CTEclad) that is greater than the CTEcore.
  • 10. The method according to claim 8, wherein the ion exchange bath comprises at least a first ion source and a second ion source that is different from the first ion source.
  • 11. The method according to claim 8, wherein the maximum tensile stress in the at least one cladding layer is greater than or equal to the maximum tensile stress in the at least one core layer after the contacting with the ion exchange bath.
  • 12. The method according to claim 8, wherein a magnitude of stress at an outer surface of the glass article is greater than or equal to about 300 MPa after the contacting with the ion exchange bath.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. § 371 of International Application No. PCT/US2020/044436, filed on Jul. 31, 2020, which claims the benefit of priority under 35 U.S.C § 119 of U.S. Provisional Application Ser. No. 62/883,401, filed on Aug. 6, 2019, the content of each of which is relied upon and incorporated herein by reference in its entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2020/044436 7/31/2020 WO
Publishing Document Publishing Date Country Kind
WO2021/025981 2/11/2021 WO A
US Referenced Citations (319)
Number Name Date Kind
1951950 Rising Mar 1934 A
2145119 Littleton Jan 1939 A
2177336 Shaver et al. Oct 1939 A
3107196 Acloque Oct 1963 A
3169900 Ermlich Feb 1965 A
3174839 Long Mar 1965 A
3223499 Cypher et al. Dec 1965 A
3223501 Fredley et al. Dec 1965 A
3223549 Fredley et al. Dec 1965 A
3225349 Thor Dec 1965 A
3279906 Baker Oct 1966 A
3287200 Hess et al. Nov 1966 A
3293015 Fredley et al. Dec 1966 A
3332759 McMaster et al. Jul 1967 A
3374078 Wright Mar 1968 A
3409422 Gulotta Nov 1968 A
3423198 Mcmaster et al. Jan 1969 A
3445316 Megles May 1969 A
3449102 Nedelec et al. Jun 1969 A
3497340 Dennison et al. Feb 1970 A
3556757 Kozlowski et al. Jan 1971 A
3558415 Rieser et al. Jan 1971 A
3607169 Coxe Sep 1971 A
3637453 Simmons Jan 1972 A
3673049 Giffen et al. Jun 1972 A
3679388 Giddings et al. Jul 1972 A
3744921 Weller et al. Jul 1973 A
3753674 Ohlberg et al. Aug 1973 A
3776712 Wilde Dec 1973 A
3793127 Wartenberg Feb 1974 A
3794476 Michalik et al. Feb 1974 A
3830540 Sperry Aug 1974 A
3844758 Wartenberg Oct 1974 A
3850679 Sopko et al. Nov 1974 A
3883339 Michalik et al. May 1975 A
3890128 Melling et al. Jun 1975 A
3902884 Harrison Sep 1975 A
3929442 Neely, Jr. Dec 1975 A
3931438 Beall et al. Jan 1976 A
3936291 Mcmaster Feb 1976 A
3973943 Seymour Aug 1976 A
3994711 Mcmaster Nov 1976 A
4081254 Matsumoto et al. Mar 1978 A
4091163 Clausen May 1978 A
4107460 Grunza et al. Aug 1978 A
4128690 Boardman et al. Dec 1978 A
4194898 Marsh et al. Mar 1980 A
4198226 Marsh et al. Apr 1980 A
4198463 Greenhalgh Apr 1980 A
4204845 Shields et al. May 1980 A
4214886 Shay et al. Jul 1980 A
4286052 Ernsberger Aug 1981 A
4300936 Quillevere et al. Nov 1981 A
4314836 Seymour Feb 1982 A
4319907 Pike Mar 1982 A
4332605 Wright et al. Jun 1982 A
4372774 Cross et al. Feb 1983 A
4400193 Cross et al. Aug 1983 A
4470838 Mcmaster et al. Sep 1984 A
4471024 Pargamin et al. Sep 1984 A
4494972 Marsh et al. Jan 1985 A
4516999 Kiefer et al. May 1985 A
4662926 Aratani et al. May 1987 A
4690871 Gordon Sep 1987 A
4744676 Lind May 1988 A
4773926 Letemps et al. Sep 1988 A
4826525 Chesworth et al. May 1989 A
4913720 Gardon et al. Apr 1990 A
4973163 Sakai et al. Nov 1990 A
4985275 Takemura et al. Jan 1991 A
5009694 Nishitani et al. Apr 1991 A
5057375 Gordon Oct 1991 A
5071796 Jones et al. Dec 1991 A
5121329 Crump Jun 1992 A
5213440 Yeh et al. May 1993 A
5236488 Vehmas Aug 1993 A
5285517 Wu Feb 1994 A
5340433 Crump Aug 1994 A
5500287 Henderson Mar 1996 A
5626911 Bertin et al. May 1997 A
5643649 Hagan et al. Jul 1997 A
5654057 Kitayama et al. Aug 1997 A
5676722 Seidel et al. Oct 1997 A
5735923 Hisaeda Apr 1998 A
5795659 Meelu et al. Aug 1998 A
5885316 Sato et al. Mar 1999 A
5931981 Mcmaster et al. Aug 1999 A
5938808 Mcmaster et al. Aug 1999 A
5938810 De Vries et al. Aug 1999 A
5939175 Sugiura Aug 1999 A
5972513 Yoshizawa Oct 1999 A
6053011 Lisec Apr 2000 A
6079227 Yoshizawa et al. Jun 2000 A
6094943 Okuda et al. Aug 2000 A
6117283 Chen et al. Sep 2000 A
6183565 Granneman et al. Feb 2001 B1
6200665 Seto Mar 2001 B1
6295842 Mcmaster Oct 2001 B1
6336775 Morita et al. Jan 2002 B1
6353283 Ghosh et al. Mar 2002 B1
6370917 Kato et al. Apr 2002 B1
6412309 Kajii et al. Jul 2002 B1
6442017 Ewing et al. Aug 2002 B1
6461439 Granneman et al. Oct 2002 B1
6472800 Goda et al. Oct 2002 B2
6598427 Douche et al. Jul 2003 B1
6613685 Granneman et al. Sep 2003 B1
6642017 Weiser Nov 2003 B2
6656597 Takahara Dec 2003 B2
6713180 Torr et al. Mar 2004 B1
6722160 Nemugaki et al. Apr 2004 B1
6770851 Granneman et al. Aug 2004 B2
6805749 Granneman et al. Oct 2004 B2
6826929 Boaz Dec 2004 B2
6877250 Granneman et al. Apr 2005 B2
6881485 Kato et al. Apr 2005 B2
6881931 Vehmas et al. Apr 2005 B2
6977710 Akiyama et al. Dec 2005 B2
7022627 Granneman et al. Apr 2006 B2
7048488 Kuznetsov et al. May 2006 B1
7153798 Bordeaux et al. Dec 2006 B2
7215262 Suzuki et al. May 2007 B2
7261939 Hallett et al. Aug 2007 B2
7306848 Tominaga et al. Dec 2007 B2
7312156 Granneman et al. Dec 2007 B2
7341968 Yoda et al. Mar 2008 B2
7367205 Boaz May 2008 B1
7410355 Granneman et al. Aug 2008 B2
7566673 Kawai Jul 2009 B2
7666511 Ellison et al. Feb 2010 B2
7694532 Boaz Apr 2010 B1
7867932 Beall Jan 2011 B2
7908885 Devitt Mar 2011 B2
8074473 Nitschke et al. Dec 2011 B2
8233433 Kalhan Jul 2012 B2
8234883 Krall et al. Aug 2012 B2
8289342 Matsumoto Oct 2012 B2
8415013 Barefoot et al. Apr 2013 B2
8524804 Kitano et al. Sep 2013 B2
8585463 Nakae Nov 2013 B2
8679599 Grzybowski et al. Mar 2014 B2
8713967 Danielson et al. May 2014 B2
8713972 Lakota et al. May 2014 B2
8728961 Lautenschlaeger et al. May 2014 B2
8759238 Chapman et al. Jun 2014 B2
8765262 Gross Jul 2014 B2
8769990 Saito et al. Jul 2014 B2
8776548 Dannoux et al. Jul 2014 B2
8802581 Dejneka et al. Aug 2014 B2
8821999 Grzybowski et al. Sep 2014 B2
8854623 Fontaine et al. Oct 2014 B2
8916013 Hong et al. Dec 2014 B2
8946103 Dejneka et al. Feb 2015 B2
8951927 Dejneka et al. Feb 2015 B2
8997521 Vehmas et al. Apr 2015 B2
9003835 Lock Apr 2015 B2
9039886 Gong et al. May 2015 B2
9073291 Bookbinder et al. Jul 2015 B2
9137892 Bando et al. Sep 2015 B2
9145329 Drake et al. Sep 2015 B2
9156724 Gross Oct 2015 B2
9296638 Lezzi et al. Mar 2016 B2
9478449 Vermont et al. Oct 2016 B2
9522836 Gulati et al. Dec 2016 B2
9552836 Ramakrishnan et al. Jan 2017 B2
9586861 Borrelli et al. Mar 2017 B2
9725359 Weber Aug 2017 B2
9761828 Dabich et al. Sep 2017 B2
9776905 Maschmeyer et al. Oct 2017 B2
9783448 Maschmeyer et al. Oct 2017 B2
9802853 Maschmeyer et al. Oct 2017 B2
9957190 Finkeldey et al. May 2018 B2
10150699 Baum et al. Dec 2018 B2
10173923 Kawamoto et al. Jan 2019 B2
10195778 Wolf et al. Feb 2019 B2
10253550 Kim et al. Apr 2019 B1
20010007723 Tokumoto Jul 2001 A1
20020011481 Melson et al. Jan 2002 A1
20030037569 Arbab et al. Feb 2003 A1
20030177790 Langsdorf et al. Sep 2003 A1
20040107733 Yashizawa Jun 2004 A1
20050099618 Difoggio et al. May 2005 A1
20050138892 Misonou Jun 2005 A1
20050266247 Yoshizawa Dec 2005 A1
20060054774 Yassour et al. Mar 2006 A1
20060121281 Tamai et al. Jun 2006 A1
20060179722 Spindler Aug 2006 A1
20060191292 Carlomagno Aug 2006 A1
20060219605 Devitt Oct 2006 A1
20060238100 Miyata et al. Oct 2006 A1
20070122580 Krall et al. May 2007 A1
20070271957 Nakamura et al. Nov 2007 A1
20080314403 Rebours Dec 2008 A1
20090069163 Beall Mar 2009 A1
20090092472 Luo et al. Apr 2009 A1
20090220761 Dejneka et al. Sep 2009 A1
20100035038 Barefoot et al. Feb 2010 A1
20100084016 Aitken et al. Apr 2010 A1
20100130251 Chu May 2010 A1
20100162761 Carney et al. Jul 2010 A1
20100183767 Noordam et al. Jul 2010 A1
20100279067 Sabia et al. Nov 2010 A1
20100279068 Cook et al. Nov 2010 A1
20100300535 Aitken et al. Dec 2010 A1
20100300536 Aitken et al. Dec 2010 A1
20110014475 Murata Jan 2011 A1
20110045961 Dejneka et al. Feb 2011 A1
20110123832 Matsumoto et al. May 2011 A1
20110123833 Endo et al. May 2011 A1
20110200804 Tomamoto et al. Aug 2011 A1
20110281093 Gulati et al. Nov 2011 A1
20110289971 Brown et al. Dec 2011 A1
20110289972 Brown et al. Dec 2011 A1
20120052271 Gomez et al. Mar 2012 A1
20120144867 Busch Jun 2012 A1
20120145991 Nam et al. Jun 2012 A1
20120194974 Weber et al. Aug 2012 A1
20120247063 Grzybowski et al. Oct 2012 A1
20120258250 Rodgers Oct 2012 A1
20120281279 Goto et al. Nov 2012 A1
20120291707 Granneman Nov 2012 A1
20120328843 Cleary et al. Dec 2012 A1
20130008500 Lin et al. Jan 2013 A1
20130019639 Saito et al. Jan 2013 A1
20130047673 Lee et al. Feb 2013 A1
20130052347 Kuznetsov et al. Feb 2013 A1
20130059120 Shi et al. Mar 2013 A1
20130065795 Allbritton et al. Mar 2013 A1
20130071666 Komori et al. Mar 2013 A1
20130122284 Gross May 2013 A1
20130122313 Gross May 2013 A1
20130199448 Granneman et al. Aug 2013 A1
20130255314 Allan et al. Oct 2013 A1
20130291598 Saito et al. Nov 2013 A1
20130323444 Ehemann et al. Dec 2013 A1
20140010992 Rendon Granados Jan 2014 A1
20140026622 Wang Jan 2014 A1
20140050912 Isono et al. Feb 2014 A1
20140053605 Mader Feb 2014 A1
20140065401 Donovan et al. Mar 2014 A1
20140106172 Dejneka et al. Apr 2014 A1
20140113854 Ni et al. Apr 2014 A1
20140120279 Demartino et al. May 2014 A1
20140141217 Gulati et al. May 2014 A1
20140162000 Son et al. Jun 2014 A1
20140178663 Varshneya et al. Jun 2014 A1
20140218867 Kim et al. Aug 2014 A1
20140230492 Murata Aug 2014 A1
20140242391 Ono et al. Aug 2014 A1
20140290310 Green Oct 2014 A1
20140331716 Ahmed et al. Nov 2014 A1
20140352355 Boudreau et al. Dec 2014 A1
20140356605 Adib et al. Dec 2014 A1
20140370302 Amin et al. Dec 2014 A1
20140370303 Jin et al. Dec 2014 A1
20150027169 Fredholm Jan 2015 A1
20150030827 Gomez et al. Jan 2015 A1
20150030834 Morey et al. Jan 2015 A1
20150031752 Keil et al. Jan 2015 A1
20150037552 Mauro Feb 2015 A1
20150051061 Kiczenski et al. Feb 2015 A1
20150052949 Bayne et al. Feb 2015 A1
20150082834 Vehmas et al. Mar 2015 A1
20150083200 Hickman et al. Mar 2015 A1
20150096331 Rantala et al. Apr 2015 A1
20150158276 Thompson et al. Jun 2015 A1
20150158757 Amma et al. Jun 2015 A1
20150166390 Cha et al. Jun 2015 A1
20150166401 Yamamoto Jun 2015 A1
20150175469 Tabe Jun 2015 A1
20150202845 Cherekdjian et al. Jul 2015 A1
20150218045 Balcom et al. Aug 2015 A1
20150240038 Macedo et al. Aug 2015 A1
20150246846 Choju et al. Sep 2015 A1
20150251353 Rodgers et al. Sep 2015 A1
20150251377 Cleary et al. Sep 2015 A1
20150274015 Wachinger et al. Oct 2015 A1
20150307385 Klein et al. Oct 2015 A1
20150314571 Cites et al. Nov 2015 A1
20150329406 Kawamoto et al. Nov 2015 A1
20150343704 Stahl et al. Dec 2015 A1
20150368153 Pesansky et al. Dec 2015 A1
20160002103 Wang et al. Jan 2016 A1
20160031739 Lezzi et al. Feb 2016 A1
20160031741 Maschmeyer et al. Feb 2016 A1
20160031742 Maschmeyer et al. Feb 2016 A1
20160031743 Maschmeyer et al. Feb 2016 A1
20160031744 Maschmeyer et al. Feb 2016 A1
20160031752 Maschmeyer et al. Feb 2016 A1
20160031753 Maschmeyer et al. Feb 2016 A1
20160082705 Fisher et al. Mar 2016 A1
20160168023 Baum et al. Jun 2016 A1
20160194233 Van Pelt Jul 2016 A1
20160194239 Seto Jul 2016 A1
20160207819 Cleary et al. Jul 2016 A1
20160250825 Cleary et al. Sep 2016 A1
20160250982 Fisher et al. Sep 2016 A1
20160281233 Granneman et al. Sep 2016 A1
20160304352 Ozyilmaz et al. Oct 2016 A1
20160326051 Kim Nov 2016 A1
20170008377 Fisher et al. Jan 2017 A1
20170022100 Masters et al. Jan 2017 A1
20170072613 Bracha et al. Mar 2017 A2
20170113440 Rickerl et al. Apr 2017 A1
20170158543 Metz et al. Jun 2017 A1
20170174564 Cleary et al. Jun 2017 A1
20170197870 Finkeldey et al. Jul 2017 A1
20170226007 Garner et al. Aug 2017 A1
20170233287 Li et al. Aug 2017 A1
20170361574 Kiczenski et al. Dec 2017 A1
20180210308 Lam et al. Jul 2018 A1
20180304588 Harris et al. Oct 2018 A1
20190022979 Luzzato Jan 2019 A1
20190030861 Bellman et al. Jan 2019 A1
20190160787 Bartlow May 2019 A1
20190161402 Harris et al. May 2019 A1
20190227357 Williams et al. Jul 2019 A1
20190270284 Couillard et al. Sep 2019 A1
20190391337 Sato Dec 2019 A1
Foreign Referenced Citations (261)
Number Date Country
4265772 Nov 1973 AU
0524573 Sep 1982 AU
0535129 Mar 1984 AU
1148742 Jun 1983 CA
1176468 Oct 1984 CA
2171323 Jan 1996 CA
1208266 Feb 1999 CN
1501892 Jun 2004 CN
1693247 Nov 2005 CN
1896020 Jan 2007 CN
101312919 Nov 2008 CN
101671112 Mar 2010 CN
101774751 Jul 2010 CN
101801869 Aug 2010 CN
102112407 Jun 2011 CN
102149649 Aug 2011 CN
102503103 Jun 2012 CN
102574726 Jul 2012 CN
102659305 Sep 2012 CN
102863146 Jan 2013 CN
103201230 Jul 2013 CN
103253857 Aug 2013 CN
103319082 Sep 2013 CN
103359934 Oct 2013 CN
103534216 Jan 2014 CN
103781733 May 2014 CN
103827051 May 2014 CN
104103385 Oct 2014 CN
104144877 Nov 2014 CN
104211288 Dec 2014 CN
104260569 Jan 2015 CN
104295448 Jan 2015 CN
104310773 Jan 2015 CN
104355530 Feb 2015 CN
104364213 Feb 2015 CN
104379532 Feb 2015 CN
104428262 Mar 2015 CN
104479282 Apr 2015 CN
104520249 Apr 2015 CN
104541233 Apr 2015 CN
104583141 Apr 2015 CN
104619622 May 2015 CN
104781201 Jul 2015 CN
205275454 Jun 2016 CN
105980147 Sep 2016 CN
106045283 Oct 2016 CN
206970472 Feb 2018 CN
2233057 Mar 1973 DE
0173418 Mar 1986 EP
0413254 Feb 1991 EP
0426363 May 1991 EP
0441804 Aug 1991 EP
0882681 Dec 1998 EP
1215039 Jun 2002 EP
1245545 Oct 2002 EP
1380550 Jan 2004 EP
1414762 May 2004 EP
1533282 May 2005 EP
1925952 May 2008 EP
2543644 Jan 2013 EP
2782753 Oct 2014 EP
2819965 Jan 2015 EP
2853517 Apr 2015 EP
2876092 May 2015 EP
2326386 Apr 1977 FR
2936794 Apr 2010 FR
0996423 Jun 1965 GB
1026770 Apr 1966 GB
1103192 Feb 1968 GB
1112781 May 1968 GB
1160284 Aug 1969 GB
1253681 Nov 1971 GB
1282720 Jul 1972 GB
1289488 Sep 1972 GB
2232978 Jan 1991 GB
202420 May 2005 IN
200803022 Aug 2008 IN
201404365 Feb 2015 IN
201407444 Apr 2015 IN
51-103920 Sep 1976 JP
55-104935 Aug 1980 JP
56-155030 Dec 1981 JP
56-155031 Dec 1981 JP
57-067035 Apr 1982 JP
57-067036 Apr 1982 JP
58-088132 May 1983 JP
58-091042 May 1983 JP
59-008626 Jan 1984 JP
59-008627 Jan 1984 JP
59-008628 Jan 1984 JP
59-008629 Jan 1984 JP
59-008630 Jan 1984 JP
59-008631 Jan 1984 JP
59-057923 Apr 1984 JP
60-171245 Sep 1985 JP
61-072637 Apr 1986 JP
61-141756 Jun 1986 JP
62-036030 Feb 1987 JP
63-270330 Nov 1988 JP
02-102436 Apr 1990 JP
02-175624 Jul 1990 JP
03-045526 Feb 1991 JP
03-271127 Dec 1991 JP
05-098626 Apr 1993 JP
05-098627 Apr 1993 JP
05-098628 Apr 1993 JP
05-098629 Apr 1993 JP
05-098630 Apr 1993 JP
05-098631 Apr 1993 JP
05-330835 Dec 1993 JP
06-236030 Aug 1994 JP
06-336533 Dec 1994 JP
07-089739 Apr 1995 JP
07-809739 Apr 1995 JP
07-157322 Jun 1995 JP
07-267664 Oct 1995 JP
09-278468 Oct 1997 JP
09-301732 Nov 1997 JP
11-199257 Jul 1999 JP
11-310430 Nov 1999 JP
2000-072463 Mar 2000 JP
2000-103632 Apr 2000 JP
2000-172202 Jun 2000 JP
2000-327355 Nov 2000 JP
2001-002434 Jan 2001 JP
2001-180967 Jul 2001 JP
2001-307662 Nov 2001 JP
2001-348245 Dec 2001 JP
2003-040635 Feb 2003 JP
2003-137603 May 2003 JP
2003-261344 Sep 2003 JP
2003-321255 Nov 2003 JP
2003-342030 Dec 2003 JP
2004-091311 Mar 2004 JP
2004-115358 Apr 2004 JP
3804115 Aug 2006 JP
2006-298691 Nov 2006 JP
2007-191319 Aug 2007 JP
2007-261850 Oct 2007 JP
4397196 Jan 2010 JP
4438126 Mar 2010 JP
4557606 Oct 2010 JP
4642107 Mar 2011 JP
4722371 Jul 2011 JP
4951838 Jun 2012 JP
2012-232882 Nov 2012 JP
2013-177253 Sep 2013 JP
5334005 Nov 2013 JP
2014-001121 Jan 2014 JP
2014-073952 Apr 2014 JP
2014-521586 Aug 2014 JP
2014-166938 Sep 2014 JP
2014-523389 Sep 2014 JP
5614607 Oct 2014 JP
5622069 Nov 2014 JP
2015-006650 Jan 2015 JP
2015-034123 Feb 2015 JP
2015-054790 Mar 2015 JP
2015-061808 Apr 2015 JP
2015-086080 May 2015 JP
5714701 May 2015 JP
2015-112929 Jun 2015 JP
2015-151329 Aug 2015 JP
2015-163574 Sep 2015 JP
10-0218143 Sep 1999 KR
10-2002-0061567 Jul 2002 KR
10-0690381 Mar 2007 KR
10-0909835 Jul 2009 KR
10-0918577 Sep 2009 KR
10-0937889 Jan 2010 KR
10-1000677 Dec 2010 KR
10-1032825 May 2011 KR
10-2011-0087774 Aug 2011 KR
10-2011-0106629 Sep 2011 KR
10-2011-0112503 Oct 2011 KR
10-1093947 Dec 2011 KR
10-1120262 Mar 2012 KR
10-2012-0051220 May 2012 KR
10-2012-0070450 Jun 2012 KR
10-2013-0024484 Mar 2013 KR
10-1248380 Mar 2013 KR
10-1286131 Jul 2013 KR
10-1413626 Aug 2014 KR
2014-0095564 Aug 2014 KR
10-2014-0110364 Sep 2014 KR
10-2014-0135846 Nov 2014 KR
2015-0002816 Jan 2015 KR
2015-0013166 Feb 2015 KR
10-2015-0051166 May 2015 KR
10-2015-0129302 Nov 2015 KR
10-2015-0129703 Nov 2015 KR
2015-0129703 Nov 2015 KR
2151750 Jun 2000 RU
2199496 Feb 2003 RU
2237621 Oct 2004 RU
2299184 May 2007 RU
2464243 Oct 2012 RU
254731 Mar 2013 RU
443845 Sep 1974 SU
537960 Dec 1976 SU
548188 Sep 1982 SU
1098916 Jun 1984 SU
1655920 Jun 1991 SU
201111317 Apr 2011 TW
201119967 Jun 2011 TW
I393686 Apr 2013 TW
201343590 Nov 2013 TW
201343591 Nov 2013 TW
201418174 May 2014 TW
201509858 Mar 2015 TW
201609589 Mar 2016 TW
201623168 Jul 2016 TW
9003337 Apr 1990 WO
9944952 Sep 1999 WO
0116040 Mar 2001 WO
0134531 May 2001 WO
0216277 Feb 2002 WO
0314035 Feb 2003 WO
2006083902 Aug 2006 WO
2006110145 Oct 2006 WO
2008020509 Feb 2008 WO
2008143999 Nov 2008 WO
2008147558 Dec 2008 WO
2010076903 Jul 2010 WO
2011122678 Oct 2011 WO
2012082709 Jun 2012 WO
2012125857 Sep 2012 WO
2012142629 Oct 2012 WO
2013001841 Jan 2013 WO
2013016157 Jan 2013 WO
2013078039 May 2013 WO
2013130665 Sep 2013 WO
2013130700 Sep 2013 WO
2014024583 Feb 2014 WO
2014030682 Feb 2014 WO
2014060108 Apr 2014 WO
2014139147 Sep 2014 WO
2014182641 Nov 2014 WO
2014182776 Nov 2014 WO
2014201315 Dec 2014 WO
2015031148 Mar 2015 WO
2015031594 Mar 2015 WO
2015033562 Mar 2015 WO
2015057552 Apr 2015 WO
2015088010 Jun 2015 WO
2015125584 Aug 2015 WO
2015156262 Oct 2015 WO
2016019171 Feb 2016 WO
2016037793 Mar 2016 WO
2016057590 Apr 2016 WO
2016094262 Jun 2016 WO
2016183059 Nov 2016 WO
2017019837 Feb 2017 WO
2017020041 Feb 2017 WO
2017066243 Apr 2017 WO
2017071911 May 2017 WO
WO-2017079540 May 2017 WO
2017139552 Aug 2017 WO
WO-2018136384 Jul 2018 WO
WO-2018136388 Jul 2018 WO
2021025981 Feb 2021 WO
Non-Patent Literature Citations (187)
Entry
Cox, Dr. Chris, “Lecture 4: Differential Equations,” IMI-NFG's Min Course on Relaxation Processes in Glass and Polymers Lecture 4, 2010, 24 slides.
Danishkin, G. K. et al., “Development of a Continuous Method of Bending and Toughening Glass,” Glass and Ceramics, vol. 34, Issue 8, Aug. 1977, pp. 495-498.
Daudeville, L. et al., “Numerical Simulation of Soda-Lime Silicate Glass Tempering,” Journal de Physique IV, France, vol. 6, No. C1, Jan. 1996, pp. C1-175-C1-185.
Daudeville, Laurent et al., “Thermal Tempering Simulation of Glass Plates: Inner and Edge Residual Stresses,” Journal of Thermal Stresses, vol. 21, 1998, pp. 667-689.
De Grauw, C. J. et al., “Axial resolution of confocal Raman microscopes: Gaussian beam theory and practice,” Journal of Microscopy, vol. 188, PI. 3, Dec. 1997, pp. 273-279.
Deschamps, T. et al., “Soda-lime silicate glass under hydrostatic pressure and indentation: a micro-Raman study,” Journal of Physics: Condensed Matter, vol. 23, 2011, 7 pages.
Donald, I. W., “Review: Methods for improving the mechanical properties of oxide glasses,” Journal of Materials Science, vol. 24, 1989, pp. 4177-4208.
Dr.Tallant, T.A. Michalske, and W.L. Smith, “The effects of tensile stress on the Raman spectrum of silica glass,” J. Non-Cryst. Solids, 106 380-383 (1988).
Electronic Cooling Editors, “The Thermal Conductivity of Gases”, Design, Materials, Adhesives, Substrates, No. 3, Technical Data, Test & Measurement, vol. 4, Gases, Thermal Conductivity, Sep. 1, 1998, 2 pages.
Ernsberger, F. M., “Chapter 1: Elastic Properties of Glasses,” In “Glass: Science and Technology,” vol. 5, Elasticity and Strength in Glasses, Academic Press, Inc., May 28, 1980, pp. 1-19.
Ernsberger, F. M., “Chapter 4: Techniques of Strengthening Glasses,” In “Glass: Science and Technology,” vol. 5, Elasticity and Strength in Glasses, Academic Press, Inc., May 28, 1980, pp. 133-144.
Europtec; “Themal Tempering”; Europtec GMBH, DIC, Jun. 11, 2014; www.europtec.de.
Everall, Neil et al., “Optimizing Depth Resolution in Confocal Raman Microscopy: A Comparison of Metallurgical, Dry Corrected, and Oil Immersion Objectives,” Applied Sprectroscopy, vol. 61, No. 3, 2007, pp. 251-259.
Everall, Neil J., “Confocal Raman Microscopy: Why the Depth Resolution and Spatial Accuracy Can Be Much Worse then You Think,” Applied Spectroscopy, vol. 54, No. 10, 2000, pp. 1515-1520.
Fajans, Kasimir et al., “Properties and Structures of Vitreous and Crystalline Boron Oxide,” Journal of the American Chemical Society, vol. 74, No. 11, Jun. 5, 1952, pp. 2761-2768.
Fotheringham, Dr. Ulrich, “Lecture 1: Internet teaching set-up,” IMI-NFG's MITT Course on Relaxation Processes in Glass and Polymers Lecture 1, 2010, 6 slides.
Fotheringham, Dr. Ulrich, “Lecture 2: Phenomenology of viscoelasticity & glass transition,” IMI-NFG's MITT Course on Relaxation Processes in Glass and Polymers Lecture 2, 2010, 17 slides.
Fotheringham, Dr. Ulrich, “Lecture 5: Viscoelasticity I—Shear,” IMI-NFG's MITI Course on Relaxation Processes in Glass and Polymers Lecture 5, 2010, 19 slides.
Fotheringham, Dr. Ulrich, “Lecture 6: Viscoelasticity II—Bulk Viscoelasticity,” IMI-NFG's MITI Course on Relaxation Processes in Glass and Polymers Lecture 6, 2010, 16 slides.
Fotheringham, Dr. Ulrich, “Lecture 7: Viscoelasticity III—Dynamic Testing,” IMI-NFG's MITT Course on Relaxation Processes in Glass and Polymers Lecture 7, 2010, 19 slides.
Fotheringham, Dr. Ulrich, “Lecture 8: Viscoelasticity IV—Important Application of Pre-Stressing,” IMI-NFG's MITT Course on Relaxation Processes in Glass and Polymers Lecture 8, 2010, 12 slides.
Freiman, S. W., “Chapter 2: Fracture Mechanics of Glass,” In “Glass: Science and Technology,” vol. 5, Elasticity and Strength in Glasses, Academic Press, Inc., May 28, 1980, pp. 21-78.
Frick, B. et al., “The Microscopic Basis of the Glass Transition in Polymers from Neutron Scattering Studies,” Science, vol. 267, Mar. 31, 1995, pp. 1939-1945.
Galeener, Frank L., “Raman and ESR Studies of the Thermal History of Amorphous SiO.sub.2,” Journal of Non-Crystalline Solids, vol. 71, 1985, pp. 373-386.
Gammelgaard et al., “Graphene transport properties upon exposure to PMMA processing and heat treatments”, 2D Materials, vol. 1, 2014, 035005, 12 pages.
Gang, Zhang Ming, “Manufacturing and Properties of Glass Used in Construction,” Guangdong Golden Glass Technologies Ltd, Dec. 27, 2002, 11 pages.
Garden, Robert, “Calculation of Temperature Distributions in Glass Plates Undergoing Heat-Treatment,” Journal of the American Ceramic Society, vol. 41, No. 6, Jun. 1958, pp. 200-209.
Garden, Robert, “Chapter 5: Thermal Tempering of Glass,” In “Glass: Science and Technology,” vol. 5, Elasticity and Strength in Glasses, Academic Press, Inc., May 28, 1980, pp. 145-216.
Garden, Robert, “Tempering Glass with Modulated Cooling Schedules,” Journal of the American Ceramic Society, vol. 71, No. 10, Oct. 1988, pp. 876-878.
Garden, Robert, “Variation of Densities and Refractive Indices in Tempered Glass,” Journal of the American Ceramic Society, vol. 61, No. 3-4, Mar.-Apr. 1978, pp. 143-146.
Gardon; “Thermal Tempering of Glass”; pp. 146-216 in Glass: Science and Technology, vol. 5, Elasticity and Strentth in Glasses, Ed. by D.R. Uhlmann and N.J. Kreidl, Academic Press, New York, 1980.
Glass Unlimited “AGC Technical Data Sheet Planibel”.; Nov. 2011 (Year: 2011).
Glass, Jill et al., “Processing and Properties of Ion Exchanged Glasses,” Glass and Optical Materials Division Fall Meeting, Nov. 6-12, 2004, Cape Canaveral, FL, 33 slides.
Glass, S. J. et al., “Stressed Glass Technology for Actuators and Removable Barrier Applications,” Sandia Report SAND2007-4106, Sandia National Laboratories, Jul. 2007, 18 pages.
Global Dossier Translation of JP 2018-504918 Office Action dated Jul. 15, 2020; 2 Pages Japanese Patent Office.
Gomez, Sinue et al., “69.2: Designing Strong Glass for Mobile Devices,” SID Symposium Digest of Technical Papers, vol. 40, No. 1, Jan. 2009, pp. 1045-1048.
Gross et al. “A glass with high crack initiation load: Role of fictive temperature-independent mechanical properties” Journal of Non-crystalline Solids 355 (2009) pp. 563-568 (Year: 2009).
Gross, T.M., “Deformation and cracking behavior of glasses indented with diamond tips of various sharpness,” Journal of Non-Crystalline Solids, vol. 358, Issue 24, Dec. 12, 2012, pp. 3445-3452.
Guillemet, C., “Annealing and Tempering of Glass,” Journal of Non-Crystalline Solids, vol. 123, 1990, pp. 415-426.
Gulati, Suresh T., “Frangibility of Tempered Soda-Lime Glass Sheet,” Glass Processing Days, 13-15, Sep. 1997, pp. 72-76.
Guo, Xiaoju et al. “Unified approach for determining the enthalpic fictive temperature of glasses with arbitrary thermal history” Journal of Non-Crystalline Solids, vol. 357, 2011, pp. 3230-3236.
Gupta, Prabhat K. et al., “The laboratory glass transition,” The Journal of Chemical Physics, vol. 126, 2007, 9 pages.
Gupta, Prabhat, “Landscape Approach to Glass Transition and Relaxation: Basic Concepts (contd.),” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 18, Mar. 25, 2010, 23 slides.
Gupta, Prabhat, “Landscape Approach to Glass Transition and Relaxation: Four lectures on 'The Landscape Approach,'” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 17, Mar. 23, 2010, 28 slides.
Gupta, Prabhat, “Landscape Approach to Glass Transition and Relaxation: Liquid to Glass Transition,” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 19, Mar. 30, 2010, 25 slides.
Gupta, Prabhat, “Landscape Approach to Glass Transition and Relaxation: Relaxation in the glassy state,” IMI-NFG's Min Course on Relaxation Processes in Glass Lecture 20, Apr. 1, 2010, 20 slides.
Gy, Rene, “Ion exchange for glass strengthening,” Materials Science and Engineering B, vol. 149, 2008, pp. 159-165.
Hara, Morihisa et al., “Vickers Hardness of Toughened Sheet Glass,” Reports of the Research Laboratory, Asahi Glass Co., Ltd., vol. 12, No. 2, 1962, pp. 99-104.
Hibino, Yoshinori et al., “Raman study on silica optical fibers subjected to high tensile stress,” Applied Physics Letters, vol. 47, No. 8, Oct. 15, 1985, pp. 812-814.
Hodge, Ian M., “Physical Aging in Polymer Glasses,” Science, vol. 267, , No. 5206, Mar. 31, 1995, pp. 1945-1947.
Ray, N. H. et al., “Increasing the strength of glass by treatment in molten salts,” Physics and Chemistry of Glasses, vol. 8, No. 1, Feb. 1967, pp. 30-34.
Rekhson, S. M., “Chapter 1: Viscoelasticity of Glass,” In “Glass: Science and Technology,” vol. 3, 1986, 117 pages.
Rekson, S. M., “Structural Relaxation and Shear Stresses in the Glass-Transition Region,” Soviet Journal of Glass Physics and Chemistry, 1975, pp. 417-421.
Sastry, Srikanth, “The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids,” Nature, vol. 409, Jan. 11, 2001, pp. 164-167.
Scherer, George W., “Use of the Adam-Gibbs Equation in the Analysis of Structural Relaxation,” Journal of the American Ceramic Society, vol. 67, No. 7, Jul. 1984, pp. 504-511.
Sciortino, Francesco, “Potential energy landscape description of supercooled liquids and glasses,” Journal of Statistical Mechanics: Theory and Experiment, May 31, 2005, 35 pages.
Sehgal, Jeetendra et al., “A New Low-Brittleness Glass in the Soda-Lime-Silica Glass Family,” Journal of the American Ceramic Society, vol. 81, No. 9, Sep. 1998, pp. 2485-2488.
Setsuro, Ito et al., “Processing Technical Books to the Glass High-Functions,” Chapter 3: Sections 2.5, 3, 3.1, 3.2 & 3.3, Science & Technology Co., Ltd., Sep. 27, 2012, pp. 58-65.
Sglavo, V., A. Prezzi, M. Alessandrini, “Processing of Glasses with Engineered Stress Profiles,” Journal of Non-Crystalline Solids, 344 (2004), 73-78.
Shelby “Introduction to Glass Science and Technology”; The Royal Chemical Society, 2nd Edition, 2005; p. 193.
Shimodaira, N. et al., “Raman spectra of fluorine-doped silica glasses with various fictive temperatures,” Journal of Applied Physics, vol. 91, No. 6, Mar. 15, 2002, pp. 3522-3525.
Shinkai, Norihiko et al., “Indentation Fracture of Tempered Glasses,” Reports of the Research Laboratory, Asahi Glass Co., Ltd., vol. 23, No. 2, 1973, pp. 83-99.
Shouyuan, Zhai et al., “Influence of Temperature and Time on Glass Strength During Chemical Tempering,” Journal of Shangdong Institute of Light Industry (Natural Science Edition), Feb. 1996, 3 pages.
Shutov, A. I. et al., “Prediction of the Character of Tempered Glass Fracture,” Glass and Ceramics, vol. 55, Nos. 1-2, 1998, pp. 8-10.
Soules, Thomas F. et al., “Finite-Element Calculation of Stresses in Glass Parts Undergoing Viscous Relaxation,” Journal of the American Ceramic Society, vol. 70, No. 2, Feb. 1987, pp. 90-95.
Southard, J. C., “The Thermal Properties of Crystalline and Glassy Boron Trioxide,” Journal of the American Chemical Society, vol. 63, No. 11, Nov. 1941, pp. 3147-3150.
Spaght, Monroe E. et al., “Studies on Glass. VIII. The Coefficient of Thermal Expansion of Boron Trioxide,” Journal of Physical Chemistry, vol. 38, No. 1, 1934, pp. 103-110.
Specialty Glass Products, “Soda Lime/AR/Flint Glass”; http://www.sgpinc.com/sodalime.htm accessed Aug. 11, 2016.
Stillinger, Frank H. et al., “Packing Structures and Transitions in Liquids and Solids,” Science, New Series, vol. 225, No. 4666, Sep. 7, 1984, pp. 983-989.
Stillinger, Frank H., “A Topographic View of Supercooled Liquids and Glass Formation,” Science, New Series, vol. 267, No. 5206, Mar. 31, 1995, pp. 1935-1939.
Tallant, D. R. et al., “The Effects of Tensile Stress on the Raman Spectrum of the Silica Glass,” Journal of Non-Crystalline Solids, vol. 106, 1988, pp. 380-383.
Tandon, Rajan et al., “Controlling the Fragmentation Behavior of Stressed Glass,” Fracture Mechanics of Ceramics, vol. 14, 2005, pp. 77.
Timoshenko et al; “Theory of Elasticity”; 2nd Ed; p. 146. Mcgraw-Hill Book Co., New York, 1951.
To, Q.D., et al., “Failure analysis of tempered glass structures with pin-loaded joints,” Engineering Failure Analysis, vol. 14, Issue 5, Jul. 2007, pp. 841-850.
Tomlinson, R., G. Calvert, and A. Conway, “A Photoelastic Investigation Into Spontaneous Glass Fracture”, Proceedings of the XIth International Congress and Exposition, (Jun. 2008) 8 pgs.
Varughese, Binoy et al., “Effect of fictive temperature on mechanical strength of soda-lime glasses,” Journal of Non-Crystalline Solids, vol. 241, 1998, pp. 134-139.
Walrafen, G. E. et al., “Raman investigation of optical fibers under high tensile stress,” Journal of Applied Physics, vol. 52, No. 4, Apr. 1981, pp. 2832-2836.
Wang et al; “Glass and Hot Extrusion by Me Module for 3D Additive Manufacturing”; IEEE, 2016; pp. 1167-1171.
Wang, Fei et al., “Pressure Raman effects and internal stress in network glasses,” Physical Review B, vol. 71, 2005, 32 pages.
Weissmann, Rand D. Durkop, “A Novel Method for Measuring Stresses in Flat Glass”, XV International Congress on Glass Leningrad 1898, Proceeding 3b, O. V. Mazurin, ed., pp. 217-220.
WO-2016037793-A1—Bib Dta (Year: 2016).
Yamane, Masayuki, “Chapter 3: Thermal Processing,” Glass Engineering Handbook, Asakura Publishing Co. Ltd., Jul. 1999, pp. 410-417.
Young Modulus of the elements; Wolfram Research Inc.; http://periodictable.eom/Properties/A/YoungModulus.v.html; printed Mar. 7, 2019 (Year: 2019).
Yue, Y.Z. et al., “Determination of the fictive temperature for a hyperquenched glass,” Chemical Physics Letters, vol. 357, Issues 1-2, May 3, 2002, pp. 20-24.
Zaccaria et al; “Thermal Healing of Realistic Flaws in Glass”; J. Mater. Civ. Eng 2016, 28(2); pp. 04015127-1-04015127-9.
Zaman, F. D. et al., “Cooling of a Plate with General Boundary Conditions,” International Journal of Mathematics and Mathematical Sciences, vol. 23, No. 7, 2000, pp. 477-485.
Zhi-hai, L., “Development status and trend of tempered glass,” Glass, Apr. 30, 2004, pp. 49-52 (Orignal Document Only).
“Effects of ion exchange on the Young's modulus of glass”; John D. Mackenzie, J Wakaki; Journal of Non-crystalline Solids; vols. 38-39, Part 1 May-Jun. 1980, pp. 385-390 (Year: 1980).
Aben, H. et al., “2.7 Stresses Due to Heterogeneities,” Photoelasticity of Glass, Springer-Verlag, New York, 1993, 260 pages.
Acloque, P., “Influence of Strain-Systems in Glass upon the Course of its Fracture,” Proceedings of the 4th International Glass Congress, vol. 6, 1965, pp. 279-291.
Acloque, Paul, “Comparison Between Heat-Transfer Conditions and Setting Up of Strain in Glass During Heat-Treatment,” Journal of the American Ceramic Society, vol. 44, No. 7, Jul. 1961, pp. 364-373.
Agarwal, Anand et al., “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” Journal of Non-Crystalline Solids, vol. 185, 1995, pp. 191-198.
Agarwal, Anand et al., “Determination of Fictive Temperature of Soda-Lime Silicate Glass,” Journal of the American Ceramic Society, vol. 78, No. 3, Mar. 1995, pp. 827-829.
Akeyoshi, K. et al., “Mechanical Properties of Tempered Glass,” Proceedings of the 7th International Glass Congress, vol. 14, 1965, pp. 80-85.
Alexiades, V. et al., “The New Way/Glaston Problem,” 28th Annual Workshop on Mathematical Problems in Industry, University of Delaware, Jun. 2012, 30 slides.
Argon, A. S., “Chapter 3: Inelastic Deformation and Fracture in Oxide, Metallic, and Polymeric Glasses,” In, “Glass Science and Technology,” vol. 5, Elasticity and Strength in Glass, Academic Press, May 28, 1980, pp. 79-132.
Aronen, Antti et al., “Tempering of Thin Glass,” Glasstec 2012: Engineered Transparency, Oct. 25-26, 2012, pp. 145-153.
ASTM C1499-09, “Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature”, 2013, 14 pages.
ASTM C158-02, “Standard Test Methods for Strength of Glass by Flexure” (Determination of Modulus of Rupture), 2012, 9 pages.
Author Unknown, “Application Note AN 527: Depth profiling of complex samples using confocal Raman microscopy,” Bruker Optics Inc., 2012, 3 pages.
Author Unknown, “Architectural ERH2 ,” Architectural Glass Systems, Glasstech, Inc., 2011, 2 pages.
Author Unknown, “Architectural FCH2(Trademark) ,” Architectural Glass Systems, Glasstech, Inc., 2011, 2 pages.
Author Unknown, “Coming(Registered) Gorilla(Trademark) Glass,” Corning Incorporated, 2009, 2 pages.
Author Unknown, “Glass Strengthening Methods,”Abrisa Technologies, Apr. 2015, 2 pages.
Author Unknown, “Heat Treated Glass for Architectural Glazing,” Glass Technical Document: TD-138, PPG Glass Technology, PPG Industries, Inc., Nov. 2011, 8 pages.
Author Unknown, “Introducing-Glasstech CRB-S.TM. 1900 for Solar Parabolic Shapes,” Solar Glass Systems, Glasstech, Inc., Date Unknown, 1 page, Retrieved Jul. 1, 2015.
Author Unknown, “New Way Air Bearings,” 28th Annual Workshop on Mathematical Problems in Industry, University of Delaware, Jun. 2012, 16 slides.
Author Unknown, “Products, Glazing Techniques and Maintenance Section 4: GGF Dalasheet for the Quality of Thermally Toughened Soda Lime Silicate Safety Glass for Building,” Glass and Glazing Federation, Aug. 2009, 12 pages.
Author Unknown, “SCHOTT Technical Glasses—Physical and technical properties,” Schott North America, Inc., Feb. 2010, 44 pages.
Author Unknown, “scratch and dig numbers,” Sizes, Inc., Last Revised: Jun. 24, 2010, 5 pages, http:/fwww.sizes.com/units/scratch_and_dig.him.
Author Unknown, “Solar FCH-S(Trademark),”Solar Glass Systems, Glasstech, Inc., 2011, 2 pages.
Author Unknown, “Standard Specification for Heat-Strengthened and Fully Tempered Flat Glass,” Designation: C 1048-12, ASTM International Standard, 2015, 7 pages.
Author Unknown, “Standard Specification for Heat-Treated Flat Glass-Kind HS, Kind FT Coated and Uncoated Glass,” Designation: C 1048-4, ASTM International Standard, 2009, 7 pages.
Author Unknown, “Subject Index,” Date Unknown, pp. 277-282.
Author Unknown, “Tempered Glass,” Tecnoglass, www.tecnoglass.com/tempered.pdf, Date Unknown, 5 pages, Retrieved Jul. 28, 2015.
Author Unknown, “Thermal Tempering,” EuropTec GmbH, Nov. 6, 2014, 2 pages.
Author Unknown, “Unsteady Heat Transfer—HT3: Experimental Studies of Thermal Diffusivities and Heat Transfer Coefficients,” Date Unknown, 27 slides.
Ayinder, C.C. et al., “Thermal-Tempering Analysis of Bulk Metallic Glass Plates Using an Instant-Freezing Model,” Metallurgical and Materials Transactions A, vol. 32A, Nov. 2001, pp. 2709-2715.
Baldwin, K. J. et al., “Confocal Raman Microspectroscopy through a Planar Interface,” Applied Spectroscopy, vol. 55, No. 5, 2001, pp. 517-524.
Bandyopadhyay et al; “Application of Fused Deposition in Controlled Microstructure Metal-Ceramic Composites”, Rapid Prototyping Journal, vol. 12 Issue 3, pp. 121 128 (2006).
Barr, Jonathan W., “The Tempering Process,” Cardinal Waxachachie Tempering Seminar, Mar. 26, 2008, 36 slides.
Barr, Jonathan, “The Glass Tempering Handbook—Understanding the Glass Tempering Process,” Self Published, 2015, 52 pages, http://www.lambertgtservices.co.uk/book/TheGlassTemperingHandbook.pdf.
Barsom, John M., “Fracture of Tempered Glass,” Journal of the American Ceramic Society, vol. 51, No. 2, Feb. 1968, pp. 75-78.
Bartholomew, Roger F. et al., “Chapter 6: Chemical Strengthening of Glass,” In “Glass: Science and Technology,” vol. 5, Elasticity and Strength in Glass, Academic Press, May 28, 1980, pp. 217-270.
Beauchamp, Edwin K. et al., “Dynamics of Window Glass Fracture in Explosions,” Sandia Report SAND98-0598 UC-700, Sandia National Laboratories, May 1998, 74 pages.
Bird, R. D., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena—Chapter 11: The Equations of Change for Nonisothermal Systems, Wiley, (1960) pp. 349-373.
Bird, R. D., W. E. Stewart, and E. N. Lightfoot, Transport Phenomena—Chapter 3: The Equations of Change for Isothermal Systems, Wiley, (1960) pp. 75-113.
Boaz, Prem, “Tempering Very Thin Glass—What Radio Waves Mean for the Glass Industry,” USGlass Magazine, vol. 45, Issue 3, Mar. 2010, 5 pages.
Boaz, Prem, “Thin glass processing with radio wave assist,” Glass on Web, Last Reviewed: Jan. 2013, 6 pages, http://www.glassonweb.com/articles/article/561/.
Boguslavskll, I. A., “Studying the Nature of the Super-Strength of Glasses Strengthened by the Thermophysical Method,” Glass and Ceramics, vol. 21, No. 10, Oct. 1964, pp. 562-567.
Brown, Angus M., “Nonlinear regression analysis of data using a spreadsheet,” Application Note, ISC, Oct. 2001, pp. 58-59.
Chen, et al., “Nanopatterned Graphene on a Polymer Substrate by a Direct Peel-off Technique”, ACS Appl. Mater. Interfaces, vol. 7, Issue 10, 2015, pp. 5938-5943.
Choi et al., “Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force Microscope” RSC Adv., vol. 7, 2017, pp. 6943-6949.
Conradt, Reinhard, “I. Fragility and its Relation to Other Glass Properties,” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 21, Apr. 6-8, 2010, 61 slides.
Conradt, Reinhard, “II. Networks,” IIMI-NFG's Min Course on Relaxation Processes in Glass Lecture 22, Apr. 6-8, 2010, 61 slides.
Conway, Jr., Joseph C. et al., “Use of Crack Branching Data for Measuring Near-Surface Residual Stresses in Tempered Glass,” Journal of the American Ceramic Society, vol. 72, No. 9, Sep. 1989, pp. 1584-1587.
Cox, Dr. Chris, “Lecture 3: Complex exponential function, Fourier and Laplace transforms,” IMI-NFG's MITT Course on Relaxation Processes in Glass and Polymers Lecture 3, 2010, 25 slides.
Hrma et al; “Thermal Healing of Cracks in Glass”; Journal of Non-Crystalline Solids; vol. 102, (1988); pp. 88-94.
Huang, Liping et al., “Polyamorphic transitions in vitreous B2O3 under pressure,” Journal of Physics: Condensed Matter, vol. 20, 2008, 8 pages.
Hubert, Mathieu, “Lecture 9: Annealing and tempering,” IMI-NFG Course on Processing in Glass—Lecture 9, Feb. 19, 2015, 72 slides.
Hutchins, J. and R. Harrington, “Glass”, Kirk-Othmer Encyclopedia of Chemical Technology, 2nd Edition, 10 pp. 533-604.
Ito, Setsuro, “Brittleness and Nano-Structure of Glass,” 4th International Workshop on Flow and Fracture of Advanced Glasses Presentation, Nov. 5-7, 2007, Shiga, Japan, 37 slides.
Jain, Himanshu, “Electrical Relaxation—Topic 1: Quasi-free ion transport,” IMI-NFG's MITI Course on Relaxation Processes in Glass Lecture 23, Advanced Vitreous State, The Properties of Glass: Dielectric Properties—Lecture 1, 2010, 28 slides.
Jain, Himanshu, “Electrical Relaxation—Topic 2: Universal dielectric response (UDR),” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 24, Advanced Vitreous State, The Properties of Glass: Dielectric Properties—Lecture 1, 2010, 22 slides.
John Klein et al: “Additive Manufacturing of optically Transparent Glass”, 3D Printing and Additive Manufactureing, vol. 2, No. 3, Aug. 19, 2015 (Aug. 19, 2015), pp. 92-105, XP055328426.
Karlsson, Stefan et al., “The technology of chemical glass strengthening—a review,” Glass Technology, European Journal of Glass Science Technology Part A, vol. 51, No. 2, Apr. 2010, pp. 41-54.
Kassir-Bodon, Assia et al., “Raman Mapping of the Indentation-Induced Densification of a Soda-Lime-Silicate Glass,” International Journal of Applied Glass Science, vol. 3, No. 1, 2012, pp. 29-35.
Kiefer, Werner et al., “Method for Thermal Prestressing of Glass,” Strength of Inorganic Glass, Plenum Press, New York, 1985, pp. 501-511.
Kishii, Toru, “Surface Stress Meters Utilising the Optical Waveguide Effect of Chemically Tempered Glasses,” Optics and Lasers in Engineering, vol. 4, 1983, pp. 25-38.
Kistler, S. S., “Stresses in Glass Produced by Nonuniform Exchange of Monovalent Ions,” Journal of the American Ceramic Society, vol. 45, No. 2, Feb. 1962, pp. 59-68.
Koike et al.—Sub-critical crack growth rate of soda-lime-silicate glass and less brittle glass as a function of fictive temperature; Journal of Non-Crystalline Solids vol. 353 Issue 27 pp. 2675-2680; Jun. 2007 (Year: 2007).
Koike, A. et al., “Fictive temperature dependence of subcritical crack growth rate of normal glass and anomalous glass,” Journal of Non-Crystalline Solids, vol. 352, 2006, pp. 5522-5530.
Kong et al; “Residual Stress Analysis With Improved Numerical Methods for Tempered Plate Glasses Based on Structural Relaxation Model”; Metals and Materials International, vol. 13, No. 1 (2007); pp. 67-75.
Lathabai, Srinivasarao et al., “Fracture mechanics model for subthreshold indentation flaws: Part 1—Equilibrium fracture,” Journal of Materials Science, vol. 26, 1991, pp. 2157-2168.
Lee, Hoikwan et al., “Glass Thickness and Fragmentation Behavior in Stressed Glasses,” New Journal of Glass and Ceramics, vol. 2, 2012, pp. 138-143.
Lezzi, P. J. et al., “Confirmation of thin surface residual compressive stress in silica glass fiber by FTIR reflection spectroscopy,” Journal of Non-Crystalline Solids, vol. 390, 2014, pp. 13-18.
Li, Hong et al., “Effect of Fictive Temperature on Dynamic Fatigue Behavior of Silica and Soda-Lime Glasses,” Journal of the American Ceramic Society, vol. 78, No. 5, 1995, pp. 1393-1396.
Lin et al., “Graphene annealing: how clean can it be?”, Nano Lett., vol. 12, Issue 1, 2012, pp. 414-419.
Loucks, “Lecture 13: The Fictive and Glass Transition Temperatures,” IMI-NFG's Min Course on Relaxation Processes in Glass Lecture 13, Mar. 2, 2010, 25 Slides.
Loucks, “Lecture 14: Relaxation and the Tool-Narayanaswamy-Moynihan Equation,” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 14, Mar. 4, 2010, 27 Slides.
Loucks, “Lecture 15: The Tool-Narayanaswamy-Moynihan Equation Part II and Dsc,” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 15, Mar. 9, 2010, 33 Slides.
Loucks, Dr. Roger, “Lecture 16: The Tool-Narayanaswamy-Moynihan Equation Part II and DSC,” IMI-NFG's MITT on Relaxation Processes in Glass Lecture 16, Mar. 11, 2010, 32 slides.
Luo et al., “Competing Indentation Deformation Mechanisms in Glass Using Different Strengthening Methods”, Frontiers in Materials, vol. 3, No. 52, 2016, 11 pages.
Luo et al; “Additive Manufacturing of Glass for Optical Applications”; Proc. of SPIE, vol. 9738, 2016; pp. 97380Y-1-97380Y-9.
Markovsky, Alex et al., “An Efficient and Stable Algorithm for Calculating Fictive Temperatures,” Communications of the American Ceramic Society, Apr. 1984, 2 pages.
Martin, Dr. Steve, “Lecture 10: Thermodynamic Functions,” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 10, 2010, 25 slides.
Martin, Dr. Steve, “Lecture 11: Thermodynamics in the Glass Transition Region,” IMI-NFG's MITT Course on Relaxation Processes in Glass Lecture 11, 2010, 22 slides.
Martin, Dr. Steve, “Lecture 12: The Glass Transition as a Kinetic Transition,” IMI-NFG's Min Course on Relaxation Processes in Glass Lecture 12, 2010, 21 slides.
Martin, Dr. Steve, “Lecture 9: Thermodynamic Concepts and the Law of Thermodynamics,” IMI-NFG's Min Course on Relaxation Processes in Glass Lecture 9, 2010, 32 slides.
Massen, Claire P. et al., “Power-law distributions for the areas of the basins of attraction on a potential energy landscape,” Physical Review E, The American Physical Society, vol. 75, 2007, 4 pages.
Mauricio-Iglesias, M. et al., “Raman depth-profiling characterization of a migrant diffusion in a polymer,” Journal of Membrane Science, vol. 375, 2011, pp. 165-171.
McGlinchy, Timothy B., “Energy Efficient Tripe IG Automation EEE (Triple-E),” DE-EE0000167, GED Integrated Solutions, Feb. 28, 2013, 45 pages.
McMaster, Ronald A. et al., “Annealed and Tempered Glass,” Engineered Materials Handbook, vol. 4, Ceramics and Glasses, 1991, 9 pages.
McMaster, Ronald A., “Flat Glass Tempering—How II Works,” Glass Industry, Jun. 1989, pp. 10-15.
McMaster, Ronald A., “Fundamentals of Tempered Glass,” Proceedings of the 49th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, vol. 10, Issue 3/4, 1989, pp. 193-206.
Merriam-Webster Online Dictionary, “Coextensive”, 2009, 1 page. Retrieved from: https://www.merriam-webster.com/dictionary/coextensive.
Mikowski, A. et al., “Statistical analysis of threshold load for radial crack nucleation by Vickers indentation in commercial soda-lime silica glass,” Journal of Non-Crystalline Solids, vol. 352, 2006, pp. 3544-3549.
Mognato, Ennio et al., “Thermally toughened safety glass,” Glass on Web, Last Reviewed: Jul. 2011, 9 pages, http://www.glassonweb.com/articles/article/727/.
Morey; “The Effect of Boric Oxide On the Devitrification of the Soda-Lime-Silica Glasses. The Quaternary System, Na20-CaO-B2O3-SiO2”; Journal of the Amercian Ceramic Society; vol. 15, Issue 9; pp. 457-475 (1932).
Moynihan, C. T. et al., “Structural Relaxation in Vitreous Materials,” Annals of the New York Academic of Sciences, vol. 279, Oct. 1976, pp. 15-35.
Narayanaswamy, 0. S. et al., “Calculation of Residual Stresses in Glass,” Journal of the American Ceramic Society, vol. 52, No. 10, Oct. 1969, pp. 554-558.
Narayanaswamy, O. S., “Stress and Structural Relaxation in Tempering Glass,” Journal of the American Ceramic Society, vol. 61, No. 3-4, Mar.-Apr. 1978, pp. 146-152.
Oakley, David R., “Crack branching in float glass subjected to biaxial loading,” Journal of Non-Crystalline Solids, vol. 196, 1996, pp. 139-143.
Ohlberg, S.M. et al., “Thermal Stress Calculations Based on a Linear Viscoelastic Deviatoric Response and a Fictive Temperature Component for the Volumetric Response,” Journal of Non-Crystalline Solids, vol. 14, 1974, pp. 280-286.
Paschel, Richard, “History of the Safety Glazing Certification Council,” Safety Glazing Certification Council, Date Unknown, 11 pages.
Properties of Soda-Lime Silica Float Glass Technical Bulletin; NSG; Group; Pilkington North America , Inc. Jan. 14, 2013 (Year: 2013).
“Energy Curable Resins”, https://www.allnex.com/en/technologies/energy-curable-resins; retrieved on Oct. 10, 2022.
Related Publications (1)
Number Date Country
20220274871 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
62883401 Aug 2019 US