The present disclosure relates to light guide plates, particularly to a mold, a method of manufacturing a glass light guide plate, and the light guide plate manufactured by the mold.
Traditional light guide plate is made of polymethylmethacrylate (PMMA) and other materials. Yellowing and color bias will appear in the light absorption process of PMMA, which affects the energy-saving and durability of the light guide plate.
Implementations of the present technology will now be described, by way of example only, with reference to the attached figures, wherein:
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein can be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
One definition that applies throughout this disclosure will now be presented.
The term “comprising,” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series and the like.
The substrate 10 is made of porous heat-resistant material. The porous heat-resistant material is selected from one or several combinations of Hexagonal Boron Nitride (HBN), silica (SiO2) and alumina (Al2O3), and hexagonal carbon (C). The porous heat-resistant material should have high mechanical strength. The density (D) of the porous heat-resistant material range is from about 2.4 grams per cubic centimeter (g/cm3) to about 6.4 grams per cubic centimeter (g/cm3). The porous heat-resistant material should withstand temperatures of between about 500° C. and about 1500° C. The porous heat-resistant material should maintain its shape at these temperatures for a long time. Holes 16 are formed in the porous heat-resistant material, the holes 16 are distributed evenly and are interconnected. The size of aperture (d) of the holes 16 is from about 0.1 nanometers (nm) to about 2.1 microns (μm). Thus, the whole substrate 10 is permeable to air.
In detail, the substrate 10 is processed. Light guide spots 22 are formed in the first surface 12.
Each light guide spot 22 has a same shape and size. In the illustrated embodiment, the plurality of light guide spots 22 is spread on the first surface 12 according to the desired optical design. The light guide spots 22 are substantially hemispherical recesses. Each of the plurality of light guide spots 22 have a diameter ranging from 30 microns to 400 microns in a direction parallel to first surface 12. The plurality of light guide spots 22 have a depth ranging from 30 microns to 400 microns in a direction perpendicular to the first surface 12.
Due to a roughness requirement of the light guide plate surface, the mold 20 is polished to obtain a smooth first surface 12 (molding surface) after the formation of light guide spots 22.
The glass substrate 30 is manufactured into a light guide plate 100 by the following steps. The mold 20 is heated to the glass transition temperature Tg of the glass substrate 30 (temperature of transforming polymer from high elastic state into glass state). The glass transition temperature Tg of the glass substrate 30 is less than about 1500° C. The mold 20 is kept at this temperature, and the lower surface 34 of the glass substrate 30 is placed on the first surface 12. During the molding operation, air is exhausted from the mold 20 to generate suction (negative pressure) and the glass substrate 30 is absorbed onto the first surface 12. The glass substrate 30 is softened by heat conduction, the softened glass filling the plurality of light guide spots 22 on the first surface 12. Heating is removed from the mold 20, the temperature of the mold 20 is reduced below the glass transition temperature Tg and gradually cooled to room temperature. The mold 20 is removed, and the glass light guide plate 100 is thereby obtained.
The mold 20 is made of a porous heat-resistant material, the porosity contributing to the generation of suction during molding of the plate 100 (air is removed through the pores), thereby the softened glass material molding is absorbed on the forming surface after heating to the glass transition temperature.
The glass light guide plate 100 can be polished to form a smooth surface depending on the circumstances after molding.
The plurality of light guides 22 can be selected from different desired optical designs based on different refractive indexes of the glass substrate 30.
The glass substrate 30 can be post-processed by physical vapor deposition for example, or chemical vapor deposition, or surface treatment.
The manufacturing method of the glass light guide plate of the present disclosure provides a glass molding technology, microstructures of light guide plate being directly formed on the glass surface. The glass light guide plate 100 has a better light guide plate penetration than traditional PMMA, and is more durable and energy-efficient. Yellowing and color biasing in the glass production process of the light guide plate are much reduced.
The embodiments shown and described above are only examples. Even though numerous characteristics and advantages of the present technology have been set forth in the foregoing description, together with details of the structure and function of the present disclosure, the disclosure is illustrative only, and changes may be made in the detail, including in matters of shape, size, and arrangement of the parts within the principles of the present disclosure, up to and including the full extent established by the broad general meaning of the terms used in the claims.
Number | Date | Country | Kind |
---|---|---|---|
201610114182.4 | Mar 2016 | CN | national |