The present specification generally relates to glass manufacturing apparatuses and, more specifically, to fusion draw machines with cooling devices and methods for using the same.
Glass substrates are commonly utilized in a variety of consumer electronic devices including smart phones, lap-top computers, LCD displays and similar electronic devices. The quality of the glass substrates used in such devices is important for both the functionality and aesthetics of such devices. For example, a lack of surface smoothness on the glass substrates may interfere with the optical properties thereof and, as a result, may degrade the performance of the electronic devices in which the glass substrates are employed. Moreover, variations in the surfaces of the glass substrates that are visually discernible may adversely impact consumer perception of the electronic device in which the glass substrates are employed.
In addition, it is desirable to increase production rates for the manufacture of glass substrates. However, increasing the glass flow rate within glass manufacturing apparatuses also increases heat generation within such apparatuses which, in turn, affects the quality of the glass produced.
Accordingly, a need exists for alternative methods and apparatuses for producing glass substrates.
The embodiments disclosed herein relate to fusion draw machines with increased cooling capacities that provide for sufficient cooling of glass web produced with increased flow production rates or decreased glass thickness. Also described herein are glass manufacturing apparatuses that incorporate such fusion draw machines as well as methods for drawing glass webs with increased production flow rates and corresponding increased cooling within the fusion draw machines such that the glass webs are subjected to and experience desired cooling.
According to one embodiment, an apparatus, for example a fusion draw machine, includes an enclosure and a forming vessel comprising outer forming surfaces and a length extending along a long axis of the vessel positioned within the enclosure. The outer forming surfaces converge at a bottom edge, or root, of the forming vessel. A draw plane parallel with the long axis extends in a downstream direction from the root, the draw plane defining a travel path of the glass web from the forming vessel. At least one actively cooled flapper is positioned within the enclosure downstream of the root and extends across the draw plane in a width-wise direction, i.e., parallel with the root. In examples, the apparatus may comprise a pair of actively cooled flappers, the pair of actively cooled flappers arranged in an opposing relationship along opposite sides of the draw plane. The at least one actively cooled flapper comprises a shaft extending parallel to the draw plane and a fin extending outwardly from the shaft, for example extending orthogonally from the shaft. The actively cooled flapper also comprises an axis of rotation parallel with the draw plane such that the actively cooled flapper is rotatable about the axis of rotation. The axis of rotation of the actively cooled flapper may, for example, coincide with an axis of rotation of the shaft. The actively cooled flapper may, in some examples, be rotatable between a horizontal position and a vertical position.
One or more cooling fluid channels of the actively cooled flapper may be in fluid communication with a cooling fluid source, the cooling fluid source supplying a cooling fluid to the one or more cooling channels of the actively cooled flapper. The one or more cooling fluid channels of the actively cooled flapper may comprise an tube-in-tube construction. For example, the cooling fluid channels may be arranged in an annular construction. The cooling fluid supplied by the cooling fluid source may be a mixture of a liquid cooling fluid and a gas cooling fluid. In some examples, the cooling fluid supplied by the cooling fluid source can be water, air or a mixture of water and air.
A first pull roll and a second pull roll can be rotatably positioned within the enclosure. The first pull roll and the second pull roll cooperate to draw the glass web on the draw plane in a downstream direction. The actively cooled flapper may be positioned upstream of the first pull roll and the second pull roll.
The apparatus may further comprise a flapper positioning device mechanically coupled to the actively cooled flapper that locks the actively cooled flapper in a position about its axis of rotation.
In some examples the actively cooled flapper may further comprise a coating disposed thereon such that an emissivity of the coated flapper is in a range from about 0.8 to about 0.95.
In some examples, the enclosure may further comprise a transition upper region, a transition lower region and a liaison region located between the transition upper region and the transition lower region. The actively cooled flapper may be located in a lower portion of the transition upper region, an upper portion of the transition lower region or in the liaison region.
According to another embodiment, a method for forming a glass web includes melting glass batch materials to form molten glass and forming the molten glass into a glass web with a fusion draw machine. The fusion draw machine comprises an enclosure and a forming vessel with outer forming surfaces and a long axis extending in a width-wise direction positioned within the enclosure. The forming surfaces converge at a root. A draw plane parallel with the long axis (i.e., parallel with the root) extends in a downstream direction from the root, the draw plane defining a travel path of the glass web from the forming vessel. At least one actively cooled flapper is included and positioned within the enclosure downstream of the root and extends across the draw plane in the width-wise direction parallel with the draw plane. The actively cooled flapper comprises a shaft arranged parallel with the draw plane and a fin extending outwardly, for example orthogonally, from the shaft.
The glass web is drawn through the enclosure and a cooling fluid is circulated through the actively cooled flapper as the glass web is drawn through the enclosure, the actively cooled flapper extracting heat from the glass web. The cooling fluid may be a mixture of a liquid cooling fluid and a gas cooling fluid. In some examples, the cooling fluid is water, air or a mixture of water and air. The circulating can in some examples comprise circulating the cooling fluid through one or more cooling fluid channels of the actively cooled flapper, the one or more cooling fluid channels comprising a tube-in-tube construction, for example an annular construction.
The method may further comprise orienting the actively cooled flapper relative to the glass web to maximize heat extraction from the glass web. In some examples, the method may comprise orienting the actively cooled flapper at an oblique angle relative to the glass web as the glass web is drawn through the enclosure. In some examples, the actively cooled flapper may be positioned in a horizontal position prior to drawing the glass web through the enclosure.
The method may further comprise rotating the fin about an axis of rotation of the actively cooled flapper and securing the fin in one or more angular positions relative to the glass web, for example between a horizontal position and a vertical position, using a flapper positioning device, the rotating adjusting a heat extraction rate from the glass web as the glass web is drawn through the enclosure.
The method may further comprise contacting the glass web with a pull roll assembly. The pull roll assembly may, for example, be positioned downstream of the actively cooled flapper. The pull roll assembly can be used to draw the glass web from the forming vessel.
In some examples the actively cooled flapper may be coated with a coating such that an emissivity of the coated flapper is in a range from about 0.8 to about 0.95.
Additional features and advantages of the apparatuses and methods described herein will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.
Reference will now be made in detail to various embodiments of fusion draw machines with cooling devices and glass manufacturing apparatuses utilizing the same, examples of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
Ranges can be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, for example by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
Directional terms as used herein—for example up, down, right, left, front, back, top, bottom—are made only with reference to the figures as drawn and are not intended to imply absolute orientation. In particular, unless otherwise indicated, the terms “vertical” and “horizontal” are to be construed relative to the local plane of the earth, where horizontal is parallel with the local plane of the earth, and vertical is perpendicular to the local plane of the earth.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order, nor that with any apparatus specific orientations be required. Accordingly, where a method claim does not actually recite an order to be followed by its steps, or that any apparatus claim does not actually recite an order or orientation to individual components, or it is not otherwise specifically stated in the claims or description that the steps are to be limited to a specific order, or that a specific order or orientation to components of an apparatus is not recited, it is in no way intended that an order or orientation be inferred, in any respect. This holds for any possible non-express basis for interpretation, including: matters of logic with respect to arrangement of steps, operational flow, order of components, or orientation of components; plain meaning derived from grammatical organization or punctuation, and; the number or type of embodiments described in the specification.
As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a” component includes aspects having two or more such components, unless the context clearly indicates otherwise.
In one embodiment, an apparatus for forming a glass web is disclosed comprising an enclosure and a forming vessel positioned within the enclosure. The apparatus may comprise, for example, a fusion draw machine (FDM), wherein the forming vessel comprises outer forming surfaces that converge at a bottom edge, or root, of the forming vessel. The forming vessel includes a length extending along a long axis of the forming vessel. A draw plane parallel with the long axis of the forming vessel, i.e. parallel with the root, extends in a downstream direction from the root and generally defines a travel path of a glass web from the forming vessel. The FDM also comprises at least one actively cooled flapper positioned within the enclosure downstream of the root and extending parallel with the draw plane in a width-wise direction. The actively cooled flapper comprises an axis of rotation extending parallel with the draw plane such that the actively cooled flapper is rotatable about the axis of rotation, for example between a horizontal position and a vertical position. The actively cooled flapper also comprises one or more cooling fluid channels in fluid communication with a cooling fluid source. The actively cooled flapper extracts heat from the interior of the enclosure as the glass web travels on the draw plane. Various embodiments of fusion draw machines with cooling devices and methods for using the same will be described in further detail herein with specific reference to the appended drawings.
Referring now to
The delivery vessel 108 supplies the molten glass 106 through a downcomer 109 into the FDM 120. The FDM 120 comprises an enclosure 122 in which an inlet 110 and a forming vessel 111 are positioned. As shown in
Still referring to
Referring now to
Conventionally, the FDM 120 may further include one or more cooling bayonets 130 that assist in cooling the glass web 148 as the web is drawn on the draw plane 149. The cooling bayonets 130 can be present in the transition upper region 124 and/or the transition lower region 125. The cooling bayonets 130 may be slidably positioned within FDM 120 (e.g., within enclosure 122) and are generally positioned parallel to and on opposite sides of the draw plane 149. Once inserted in the enclosure, the cooling bayonets 130 are fixed in position relative to the draw plane 149. A cooling fluid, such as a gas (e.g., air), liquid (e.g., water) or a combination thereof, may be circulated through the cooling bayonets 130 to extract heat from the interior of the FDM 120 to cool the glass web 148 traveling on the draw plane at a predetermined rate. The rate of heat extraction may be varied by inserting or removing the cooling bayonets 130 from the FDM or changing the diameter of the cooling bayonets 130.
The throughput of the glass forming apparatus 100 may be increased by increasing the mass flow rate of molten glass into and through the FDM 120. For a constant thickness of the glass web 148, the temperature inside the FDM 120 increases due to the increased mass flow rate. However, it has been determined that cooling bayonets 130 are insufficient to dissipate the heat generated when the mass flow rate of the glass is significantly increased. Under such conditions the glass cooling curve associated with the FDM 120 drifts towards higher temperatures. As used herein, the cooling curve refers to the temperature of the glass web as a function of distance from the root. The foregoing insufficiency means the glass web 148 is not sufficiently cooled as it travels through the FDM 120 due to the build-up of heat within the enclosure 122.
As the cooling curve drifts towards higher temperatures as a result of the heat build-up, undesirable effects can occur. For example, the stability of the glass web 148 may diminish, causing process disruptions such as, for example, uncontrolled separation of the glass web 148 (commonly referred to as a “crack out”) that decreases production efficiencies. Alternatively or in addition, the relatively high temperature of the glass web 148 as it exits the FDM 120 may result in unequal cooling of the glass web 148 at ambient temperatures, leading to unacceptable attributes in the glass web, i.e., defects such as blisters, cracks, seeds, stones and other inclusions in the glass web. Such defects may result in portions of the glass web 148 being discarded as waste glass. Accordingly, it should be understood that insufficient cooling of the glass web 148 within the FDM 120 as the mass flow rate of the glass into the FDM 120 is increased can cause process instabilities and/or defects in the glass web leading to production inefficiencies. The embodiments described herein provide methods and apparatuses for enhancing the cooling of glass webs traveling through an FDM, improving the stability of the glass web and reducing the occurrence of defects.
Still referring to
The shaft 156 and the fin 154 are rotatable about the axis of rotation 153 such that a position of the fin 154 of the actively cooled flapper 152 is adjustable with respect to the draw plane 149. For example, the fin 154 extending outwardly from the shaft 156 can in some embodiments be oriented substantially perpendicular to the draw plane 149 (and thus perpendicular to a glass web traveling on the draw plane) when the actively cooled flapper 152 is in a horizontal position. The fin 154 can be oriented substantially parallel to the draw plane 149 when the actively cooled flapper 152 is in a vertical position. For the purposes of the instant disclosure, the term “substantially” refers to within +/−five degrees (5°) of a given position. Accordingly, it should be understood that the fin 154 can be oriented at an oblique angle with respect to the draw plane 149 when the actively cooled flapper 152 is not positioned in either a vertical position or a horizontal position. It should be recognized that the fin 154 may be planar, for example comprising at least one planar major surface, for example two oppositely positioned and generally flat (planar) major surfaces, or the fin may be curved and/or include curved major surfaces. Additionally, whether planar or curved, the fin 154 may extend orthogonally from the shaft, or extend tangent to the shaft. In the event the fin 154 comprises at least one generally planar surface, reference to horizontal or vertical orientation is to be construed as the position of the at least one planar surface (the reference plane) relative to a horizontal or vertical plane. In the event the fin 154 is a curved fin, the reference plane of the fin is to be construed as a plane tangent to the fin at the location where the fin joins the shaft 156, recognizing that the fin may be attached orthogonally to the shaft, or tangent to the shaft.
The pair of actively cooled flappers 152 (only one shown in
Referring now to
In an alternative embodiment, the actively cooled flapper 152 can comprise one or more cooling fluid channels 159 arranged in a serpentine pattern extending along the length of the fin 154, as depicted in
In an alternative embodiment, the actively cooled flapper 152 can comprise a pair of cooling fluid channels 159a arranged in a serpentine pattern extending along the length of the fin 154, as depicted in
In an alternative embodiment, the actively cooled flapper 152 can have one or more cooling fluid channels 159c and one or more cooling fluid channels 159d extending along the length of the fin 154, as depicted in
In an alternative embodiment, the actively cooled flapper 152 can comprise one or more cooling fluid channels 159e and one or more cooling fluid channels 159f extending along the length of the fin 154. The shaft 156 can be in the form of a tube-in-a-tube construction with the outer tube 156a and an inner tube 156b, as depicted in
The one or more cooling fluid channels 155, 159a, 159c-159f shown in
In the embodiments described herein, the cooling fluid 163 supplied by the cooling fluid source 160 through the cooling fluid line 162 to the one or more cooling fluid channels 155, 159a, 159c-159f of the actively cooled flapper 152 can be a liquid cooling fluid, a gas cooling fluid, or a mixture of a liquid and gas cooling fluid. For example, the cooling fluid can be water, air, or a mixture of water and air. Other gases and liquids having a high heat capacity such as helium and ammonia, and combinations thereof, can be used as the cooling fluid 163.
Referring now to
Referring again to
In embodiments, the actively cooled flapper 152 can be made from metallic materials suitable for use at high temperatures such as steels, stainless steels, nickel-base alloys, cobalt-base alloys, refractory metals and alloys, and the like. In some embodiments, the shaft 156 of the actively cooled flapper 152 can be made from the same material as the fin 154 while in other embodiments the shaft 156 of the actively cooled flapper 152 can be made from material different than the fin 154.
In embodiments, the actively cooled flapper 152 can have a coating with a relatively high emissivity. In embodiments, the emissivity of the coated flapper may be in a range from about 0.8 to about 0.95. The coating should prevent discoloration of a surface of the actively cooled flapper 152 and thus reduce or prevent hot spots on the fin 154 during production of the glass web 148. In one embodiment, the coating can be a Cetek high emissivity ceramic coating with an emissivity of about 0.92 provided by Cetek Ceramic Technologies located in Brook Park, Ohio, USA. Use of a coating with a relatively high emissivity on the fin 154 provides substantially uniform temperature across the length and width of the actively cooled flapper and aids in uniform heat extraction from the glass web 148.
The FDM 120 with actively cooled flappers 152 described herein may be used in the formation of a glass web 148. For example, during a start-up of the glass forming apparatus 100, the pair of actively cooled flappers 152 can be positioned in the horizontal orientation with no cooling fluid 163 supplied to the one or more cooling fluid channels 155, 159a, 159c-159f to assist in heating the transition upper region 124. Once the glass web 148 has been established and is being pulled downstream with the pull roll assembly 140, cooling fluid 163 can be supplied to the one or more cooling fluid channels 155, 159a, 159c-159f and the position of the actively cooled flapper 152 can be altered to assist in cooling of the glass web 148 as it is pulled through the transition region 123. The angular position of the actively cooled flappers 152 relative to the glass web 148 may be adjusted during start up to obtain a desired cooling of the glass web 148 in the FDM 120. For example, when a greater amount of cooling is desired, the actively cooled flapper 152 may be adjusted towards the vertical position, thereby increasing the exposure of the glass web 148 to the surface of the actively cooled flapper 152 and increasing cooling. When a lesser amount of cooling is desired, the actively cooled flapper 152 may be adjusted towards the horizontal position, thereby decreasing the exposure of the glass web 148 to the surface of the actively cooled flapper 152 and decreasing cooling. The exact position of the actively cooled flappers 152 is dependent, inter alia, on the composition of the glass flowing through the glass forming apparatus 100, the mass flow rate of the glass flowing over the forming surfaces of the forming vessel and the desired cooling curve to be applied to the glass web.
Referring now to
In contrast, the cooling curve labeled GFC3 is for the production of a glass web 148 at the second glass web flow rate and with an actively cooled flapper 152 positioned at an angle of 37° relative to horizontal and using water as the cooling fluid 163. The cooling curve labeled GFC4 is for the production of a glass web 148 at a third glass web flow rate that is 40% greater than the first glass web flow rate and cooled using cooling bayonets 130 and with all heating elements (not shown in the figures) in the transition region 123 turned off. It should be appreciated that the cooling curve labeled GFC4 represents the maximum increase in glass web flow rate that can be cooled using conventional FDM cooling practices and still obtain the target cooling curve GFC1.
As illustrated by the cooling curves in
Referring to
It should now be understood that fusion draw machines with the cooling devices described herein may be utilized to provide enhanced cooling capabilities during the production of glass web at increased glass flow production rates. The cooling devices described herein may also be used to provide enhanced cooling capabilities during the production of glass web using standard glass flow production rates.
It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 62/257,517, filed on Nov. 19, 2015, the content of which is relied upon and incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US16/61103 | 11/9/2016 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62257517 | Nov 2015 | US |