The present invention relates to a glass melting tank having at least one doghouse for the introduction of the charge material, and having at least one charging device.
It is known that the introduction of charge material in end-fired furnaces is significantly more difficult and less satisfactory than in cross-burner furnaces. In the end-fired furnaces, so-called doghouses are provided on one side or on both sides of the furnace longitudinal axis; the charge material is placed into the doghouses from above and is pushed in the direction of the melting tank. These doghouses act as pre-sintering zones. If the doghouses are made too small, the not yet pre-melted batch is exposed at the surface to the flame flowing above it at a high speed. This causes a high degree of dust to develop in the melting tank, and the dust deposits on the side walls and on the tank cover, and, together with the refractory material, enters into low-melting compounds. This is known in connection with the corrosion of refractory materials. In addition, parts of the dust are carried into the regenerative chambers. There as well, the dust reacts with the refractory material and results in corrosion. In addition, the dust can also collect on the grating in the regenerative chambers and can reduce the efficiency of the air pre-heating. This type of dust contamination is even more pronounced in particular with the use of pre-heated batch material, with the named consequences.
In his book, “Glasschmelzöfen, Konstruktion und Betriebsverhalten [Glass melting furnaces, construction and operating performance]”, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984, page 154, Dr. Wolfgang von Trier describes this problem and suggests, inter alia, to correspondingly enlarge the doghouse. The fact that up to today this has not been realized is clearly due to the fear that in a larger doghouse the glass would freeze in, i.e. would become too cold. The known front parts have therefore deliberately continued to be kept small.
The problem is thus that the introduced raw material mixture has a too-short dwell time in the pre-sintered zone, i.e. the doghouse. It is known that for a mixture of raw materials suitable for production of a glass melt a finite period of time is required in order to sinter the surface as a pile in an environment having a temperature of greater than 1000° C. This surface sintering of the supplied batch prevents the danger of the above-described dust contamination.
The dwell time of the material in the doghouse can be determined from the raw material bulk, the surface of the doghouse, the density of the pile, and the charging quantity per time unit. Here, the mass flow per hour conveyed through the doghouse into the melt installation is decisive. This defines the so-called K factor. This is generally known as a measure of the specific melting performance of a glass melting furnace. The use of the K factor in connection with the doghouse is not known.
Independently of the above-described damaging dust contamination, in short doghouses the charge material also loses thermal energy to the atmosphere, and this energy is lost to the melting process.
Therefore, the object of the present invention is to improve charging technology in glass melting tanks of the type named above such that heat losses to the atmosphere are reduced, and transport of dust into the upper furnace of the melting tank is reduced, while the heating of the charge material is nonetheless intensified.
According to the present invention, this object is achieved in that the transport path of the charge material in the doghouse is so long that the charge material is heated in the doghouse up to an at least partial melting,
and that the doghouse has an inner length (LV) in the direction toward the melting tank of at least 2250 mm,
and that the doghouse contains an insulating roof having a length (LG) of at least 1200 mm,
and that the roof has an end wall facing the charging device that encloses, with the roof, a gas chamber that is open toward the melting tank, and
that the throughput (P) of the charge material through the doghouse (in tonnes/hour) and the inner surface (F) of the doghouse (in m2) form, for a specified transport path, a ratio P/F that is known as a characteristic value (K) and that given the dimensions (LV) and (LG) of the doghouse has a value of less than 3.50 t/h·m2.
The enlargement of the doghouse connected with the change according to the present invention of the upper construction of the doghouse achieves the result that a sufficient radiant heat is present in the doghouse, which ensures that the batch is both pre-heated and pre-sintered, and that there is no danger of a “freezing of the melt” in the front part area. This is due to the fact that, inter alia, the enlargement of the doghouse causes an increased flow from the center of the melting tank (hot glass) back into the doghouse. This goes along with the transport of heat that is used to provide an accelerated melting of the batch from underneath. The flow of the glass into the doghouse region is determined by the thermal convection. In practice, this means that given an inner length (LV) of the doghouse up to the inner edge of the upper furnace of the melting tank of approximately 2250 mm, and a length (LG) of the gas chamber over the melt of the doghouse of approximately 1200 mm, and given a ratio of the charge quantity (throughput) to the surface of the doghouse [P/F=K] of less than 3.5 t/h·m2, a dwell time of approximately 2.5 minutes is present, which is sufficient for a pre-sintering at the surface of the batch piles.
A further advantage of the measures according to the present invention is that in the actual region of the melting tank the melting is temporally and spatially shortened, increasing the efficiency of the installation.
According to an advantageous embodiment of the present invention, it is provided that the end wall has a lower edge that is situated above a plane (E-E) in which the upper tank edge is situated, and that limits a charging gap.
As a development of this idea of the invention, it is provided that the charging device contains an insert plate that can be moved periodically, by which the portions of charge material can be fed through the charging gap into the doghouse and onto the melt.
According to a further specific embodiment, the charging device has a screw conveyor by which the charge material can be fed into the doghouse and onto the melt, the screw conveyor having according to the present invention a housing that is set into the end wall of the doghouse in a sealed fashion.
It has turned out to be advantageous that the roof of the doghouse is realized so as to be curved upward in the longitudinal direction of the doghouse, the roof of the doghouse usefully being realized so as to be inclined upward in the direction toward the melting tank.
According to the present invention, the gas chamber has a height (H) over the plane (E-E) of the tank edge of at least 600 mm.
According to a further embodiment of the present invention, the doghouse has side walls that enclose between them an angle (a) of 0 to 45°, opening in the direction toward the melting tank, preferably an angle of 5 to 30°.
It has turned out to be advantageous that the doghouse has at its inlet into the melt tank a width (BV) of at least 1000 mm. This ensures a secure transition of the charge material into the melting tank.
For an arbitrary throughput (charging quantity) of the doghouse on a glass melting tank, for K it results that the length (LG) of the roof of the doghouse is at least 70% of the length (LV) of the doghouse.
The present invention also relates to a method for heating charge material in glass melting tanks having at least one doghouse having a charging device for introducing the charge material.
In order to achieve the same object, such a method is characterized according to the present invention in that the charge material is heated and sintered in the doghouse from above by the penetration of thermal radiation from the tank space into the doghouse,
that the charge material is heated and sintered in the doghouse from below by a flow and by the penetration of the glass melt up to an at least partial melting,
that the charge material is pushed onto the surface of the glass melt in the melting tank in an at least partly melted state, and
that the characteristic value (K) forming the ratio between the throughput (P) of the charge material through the doghouse (in tonnes/hour) and the inner surface (F) of the doghouse (in m2), given a transport path through the doghouse according to the dimensions (LV) and (LG) of the doghouse, does not exceed a value of 3.5 t/h·m2.
In such a method, it is ensured that the charge material is sufficiently sintered when it is pushed from the doghouse onto the surface of the glass melt.
It has turned out to be advantageous if the transport path of the charge material in the doghouse is chosen to be between 2.25 and 5 m, and/or if the width (BV) of the transport path of the charge material in the doghouse at the inlet into the melting tank is chosen to be at least 1.0 m.
A particularly good heat exchange between the gas chamber in the doghouse and the gas chamber over the glass melt is achieved if the position of the melt surface in the gas chamber in the insert chamber is selected such that there remains a minimum distance of 600 mm relative to the highest point of the roof.
Due to the features of the present invention, in the region of the doghouses no significant gas flow is produced, so that the risk of dust being carried along is greatly reduced. While under the tank cover, average flow speeds of between 10 and 15 m/s are measured in the core flow of the combustion region, the average flow speed in the doghouses is only less than 1 m/s, but temperatures up to greater than 1300° C. have been measured, resulting in a high energy transmission of approximately 50 kW/m2.
Developments, advantages, and possible applications of the present invention result from the following description of two exemplary embodiments and from the drawings, in which
On both sides of melting tank 1, there are situated, in mirror-symmetrical arrangement, so-called doghouses 6, also called front parts, each having a roof 7 that can be curved upward (see
End walls 8 terminate downward with a lower edge 11 that leaves open a charging gap 11a, limited as narrowly as possible, over the plane (E-E) for the dosage of charge material. The length (LG) of gas chamber 9 under roof 7, from the end wall 8 to a side wall 1c of the melting tank 1, is a minimum of approximately 70% of the inner length (LV) of doghouse 6, from a lower end wall 8a to the side wall 1c, such that between end wall 8 and the adjacent edge of melting tank 1 and doghouse 6 there still remains free a surface for depositing charge material 14 over glass melt 2. The inner length (LV) of the doghouse 6 from the lower end wall 8a to the inner edge of the side wall 1c of the melting tank may be approximately 2250 mm.
As can be seen from
From
The spatial form of the volume and the temperature control inside doghouses 6 are selected such that within glass melt 2 there arises a flow characteristic in accordance with the depicted arrows. Due to thermokinetic effects, underneath charge material 14 there arises a flow in the direction toward the inner end of doghouses 6, causing glass melt 2 to emit a part of its thermal capacity to charge material 14. Due to the cooling, glass melt 2 sinks in the direction of the floor of doghouse 6 and melting tank 1, and returns back into this tank. From above, charge material 14 is heated by the thermal radiation penetrating into gas chamber 9. Due to this combined effect, charge material 14 is heated to a high temperature that promotes a partial melting of the particles, a process that can also be referred to as sintering, and that largely prevents the development of dust.
In a vertical top view of the melting tank,
In a vertical top view of the melting tank,
As can be seen from
In the design of the doghouse, characteristic value K plays a decisive role. K is the ratio between the throughput (P) of the charge material through the doghouse (in tonnes/hour) and the inner surface (F) of the doghouse (in m2), such that given a transport path through the doghouse according to dimensions LV and LG of the doghouse, characteristic value K is not to exceed a value of 3.5 t/h·m2.
Finally, the doghouse is to be fashioned in such a way that the thermal and mechanical preconditions are created for the introduction of sufficient quantities of charge material in a partly sintered state via the doghouse into a melting tank, while maintaining the floatability of the sintered products.
For the method, this means that the heating of the charge material takes place under the action of the components of the device. Above all, the K value is not to exceed a value of 3.5 t/h·m2.
As is apparent from the foregoing specification, the invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. It should be understood that I wish to embody within the scope of the patent warranted hereon all such modifications as reasonably and properly come within the scope of my contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 020 176 | May 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/002217 | 5/4/2011 | WO | 00 | 1/14/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/141136 | 11/17/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2397852 | Gentil | Apr 1946 | A |
2890547 | Lyle | Jun 1959 | A |
3074568 | Mambourg | Jan 1963 | A |
3219209 | Blaine | Nov 1965 | A |
3294506 | Blaine | Dec 1966 | A |
3436200 | Zellers, Jr. | Apr 1969 | A |
3836349 | Knavish | Sep 1974 | A |
3941576 | Welton, Jr. | Mar 1976 | A |
4046546 | Hynd | Sep 1977 | A |
4329165 | Rau | May 1982 | A |
5123942 | Argent | Jun 1992 | A |
5906119 | Boillet | May 1999 | A |
20120070252 | Waltert | Mar 2012 | A1 |
Number | Date | Country |
---|---|---|
8304858 | Jul 1983 | DE |
202009014937 | Oct 2010 | DE |
0580048 | Jan 1994 | EP |
2299277 | Aug 1976 | FR |
406577 | Mar 1934 | GB |
1067240 | May 1967 | GB |
1425461 | Feb 1976 | GB |
Entry |
---|
European Office Action, dated Mar. 28, 2014. |
W. Trier: Glasschmelzoefen, Springer-Verlag, Berlin, 1984. |
European Opposition Report, dated Jul. 8, 2016. |
“Integrated Concept for batch Handling at the Furnace”, SIMS, Richard et al., Jan. 2011. |
“An Introduction to the Integrated Concept”, SIMS, Richard, Sep. 2010. |
“Glass Furnaces”, Trier, Wofgang, 1987. |
Number | Date | Country | |
---|---|---|---|
20130114638 A1 | May 2013 | US |