Glass or glass ceramic articles with copper-metallized through holes and processes for making the same

Information

  • Patent Grant
  • 11760682
  • Patent Number
    11,760,682
  • Date Filed
    Tuesday, February 4, 2020
    4 years ago
  • Date Issued
    Tuesday, September 19, 2023
    7 months ago
Abstract
A process for heating a glass or glass ceramic article with copper-metallized through holes includes heating the article from a first temperature to a second temperature. The first temperature is greater than or equal to 200° C. and less than or equal to 300° C., and the second temperature is greater than or equal to 350° C. and less than or equal to 450° C. An average heating rate during the heating of the article from the first temperature to the second temperature is greater than 0.0° C./min and less than 8.7° C./min. An article includes a glass or glass ceramic substrate having at least one through hole penetrating the substrate in a thickness direction; and copper present in the at least one through hole. The article does not comprise radial cracks.
Description
BACKGROUND
Field

The present specification generally relates to processes for manufacturing glass or glass ceramic and glass or glass ceramic ceramics articles with copper-metallized conductive through holes, and is particularly related to processes for heating glass or glass ceramic articles with copper-metallized through holes to reduce radial cracking.


Technical Background

Glass and glass ceramics substrates are used in components of electronic devices because the glass and glass ceramic substrates, generally, do not react with other components of the electronic devices. This may be, in part, because glass and glass ceramic substrates have a low dielectric constant, and because glass and glass ceramic substrates are thermally stable. In many electronic devices, the glass and glass ceramic substrates have through holes that can be rendered conductive by introducing metal into the through-holes, such as, for example, interposers. To use glass and glass ceramic substrates for components of electronic devices, such as, for example, interposers, a conductive metal layer is applied to one or more surfaces of the glass and glass ceramic substrate and the conductive metal fills the through-holes in the glass and glass ceramic substrate. One metal that is commonly used to fill the through holes in glass and glass ceramics substrates is copper (Cu) because of its high electrical conductivity. However, upon heating a glass or glass ceramic article comprising a copper-metallized through hole, radial cracks can form adjacent to the through hole, which can render the glass or glass ceramics article comprising copper-metallized through holes less efficient or unusable.


Accordingly, a need exists for a process that reduces radial cracking in glass and glass ceramic articles comprising copper-metallized through holes during heating.


SUMMARY

According to a first clause, process comprises heating a glass or glass ceramic article comprising copper-metallized through holes from a first temperature to a second temperature, wherein the first temperature is greater than or equal to 200° C. and less than or equal to 300° C., and wherein the second temperature is greater than or equal to 350° C. and less than or equal to 450° C., wherein an average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature is greater than 0.0° C./min and less than 8.7° C./min.


A second clause includes the process of the first clause, wherein the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature does not cause radial cracks in the glass or glass ceramic article comprising copper-metallized through holes.


A third clause includes a process of any of the preceding clauses, further comprising heating the glass or glass ceramic article comprising copper-metallized through holes from room temperature to the first temperature.


A fourth clause includes the process of the third clause, wherein an average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from room temperature to a first temperature is greater than 0.0° C./min and less than 8.7° C./min.


A fifth clause includes a process of any of the preceding clauses, wherein the first temperature is from greater than or equal to 225° C. and less than or equal to 275° C.


A sixth clause includes a process of any of the preceding clauses, wherein the second temperature is from greater than or equal to 375° C. and less than or equal to 425° C.


A seventh clause includes a process of any of the preceding clauses, wherein the average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to a second temperature is greater than or equal to 1.0° C./min and less than or equal to 6.5° C./min.


An eighth clause includes a process of any of the preceding clauses, wherein the average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to a second temperature is substantially constant.


A ninth clause includes a process of any of the preceding clauses, wherein the average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to a second temperature is variable


A tenth clause includes a process of any of the preceding clauses, wherein the process further comprises holding the glass or glass ceramic article comprising copper-metallized through holes at the first temperature for a duration of greater than or equal to 10 minutes and less than or equal to an hour.


An eleventh clause includes a process of any of the preceding clauses, wherein the process further comprises holding the glass or glass ceramic article comprising copper-metallized through holes at the second temperature for a duration of greater than or equal to 10 minutes and less than or equal to an hour.


A twelfth clause includes a process of any of the preceding clauses, wherein the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to a second temperature comprises holding the glass or glass ceramic article comprising copper-metallized through holes at a constant temperature for a duration that is greater than or equal to 10 minutes and less than or equal to 45 minutes.


A thirteenth clause includes a process of any of the preceding clauses, wherein a diameter of the through holes in the glass or glass ceramic article comprising copper-metallized through holes is greater than or equal to 25 μm and less than or equal to 75 μm.


A fourteenth clause includes a process of any of the preceding clauses, wherein a pitch of the through holes in the glass or glass ceramic article comprising copper-metallized through holes is greater than or equal to 60 μm and less than or equal to 800 μm.


A fifteenth clause includes a process of any of the preceding clauses, wherein a depth of the through holes in the glass or glass ceramic article comprising copper-metallized through holes is greater than or equal to 50 μm and less than or equal to 600 μm.


A sixteenth clause includes a process of any of the preceding clauses, wherein the glass or glass ceramic article comprises at least 90 wt % silica.


A seventeenth clause includes a process, comprising: heating the glass or glass ceramic article comprising copper-metallized through holes from a first temperature to a second temperature, wherein the first temperature is greater than or equal to 240° C. and less than or equal to 260° C., and wherein the second temperature is greater than or equal to 400° C. and less than or equal to 450° C., wherein an average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to a second temperature is greater than 0.0° C./min and less than or equal to 6.5° C./min.


An eighteenth clause includes a glass or glass ceramic article comprising: a glass or glass ceramic substrate comprising at least one through hole penetrating the glass or glass ceramic substrate in a thickness direction; and copper present in the at least one through hole, wherein the glass or glass ceramic article does not comprise radial cracks after annealing to ≤450° C.


A nineteenth clause includes a glass or glass ceramic article of clause 18, wherein the glass or glass ceramic substrate comprises at least 90 wt % silica.


A twentieth clause includes a glass or glass ceramic article of any one of clauses 18 and 19, wherein a diameter of the at least one hole in the glass or glass ceramic substrate is greater than or equal to 25 μm and less than or equal to 75 μm.


A twenty first clause includes a glass or glass ceramic article of any one of clauses 18 to 20, wherein a pitch of at least one through hole in the glass or glass ceramic article is greater than or equal to 60 μm and less than or equal to 800 μm.


A twenty second clause includes a glass or glass ceramic article of any one of clauses 18 to 21, wherein a depth of at least one through hole in the glass or glass ceramic substrate is greater than or equal to 50 μm and less than or equal to 600 μm.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts a top view of a copper-metallized through hole in a glass or glass ceramic substrate that comprises a radial crack;



FIG. 2 schematically depicts a top view of a glass or glass ceramic article having a plurality of copper-metallized through holes that comprises radial cracks;



FIG. 3 graphically depicts radial stress and circumferential stress that occur during heating a glass or glass ceramic article comprising copper-metallized through holes;



FIG. 4 graphically depicts circumferential stress versus heat treatment temperature for heating a glass or glass ceramic article comprising copper-metallized through holes;



FIG. 5A graphically depicts substantially constant heating rates in temperature versus time for heating a glass or glass ceramic article comprising copper-metallized through holes;



FIG. 5B graphically depicts variable heating rates in temperature versus time for heating a glass or glass ceramic article comprising copper-metallized through holes;



FIG. 6 is a magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with radial cracks when heated at a substantially constant heating rate of 26.0° C./min;



FIG. 7A is a 50× magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with radial cracks when heated at a substantially constant heating rate of 13.0° C./min;



FIG. 7B is a 200× magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with radial cracks when heated at a substantially constant heating rate of 13.0° C./min;



FIG. 8A is a 50× magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with radial cracks when heated at a substantially constant heating rate of 8.7° C./min;



FIG. 8B is a 500× magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with radial cracks when heated at a substantially constant heating rate of 8.7° C./min;



FIG. 9A is a 50× magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with no radial cracks when heated at a heating rate of 6.5° C./min according to embodiments disclosed and described herein;



FIG. 9B is a 200× magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with no radial cracks when heated at a substantially constant heating rate of 6.5° C./min according to embodiments disclosed and described herein;



FIG. 10 is a 200× magnified photograph of a glass or glass ceramic article comprising copper-metallized through holes with no radial cracks when heated at a variable heating rate and an average heating rate of 2.3° C./min according to embodiments disclosed and described herein;



FIG. 11 graphically depicts heating crack density versus heating rate for glass or glass ceramic articles comprising copper-metallized through holes;



FIGS. 12A-12C show radial crack formation of copper-metallized through holes heated at 20.5° C./min over time; and



FIG. 13 graphically depicts copper protrusion versus annealing heating rate.





DETAILED DESCRIPTION

Many components in electronic devices need electrical conduction through the thickness of the substrate. This is accomplished using an electrically conductive hole typically constructed by fabricating a through-hole in a substrate, such as a glass or glass ceramic substrate, by computer numerical controller (CNC) drilling or laser drilling, and then coating and/or filling the through-hole with an electrically conductive metal such as, for example, copper. In the case of solid filled electrically conducting holes a uniform electrically conducting layer is applied and then electrolytic/galvanic plating is completed until the through-hole is filled. By these methods, a glass or glass ceramic article having copper-metallized through holes is formed. However, many processes require that the glass or glass ceramic article having copper-metallized through holes be heated after copper has been filled into the through holes.


However, when heating a glass or glass ceramic article having copper-metallized through holes, thermo-mechanical challenges arise due to the coefficient of thermal expansion (CTE) mismatch between the glass or glass ceramic matrix and the copper. One thermo-mechanically induced failure mode in glass or glass ceramic, is the formation of radial cracks. Radial cracks are formed during heating or ramp-up step of a heat treatment process. Without being bound by any particular theory, it is believed the radial cracks are formed due to high tensile stresses in the circumferential direction in glass or glass ceramic as a result of CTE mismatch between copper in the through hole and the glass or glass ceramic matrix. This CTE difference leads to high stress buildup that results in different failure modes, such as cracks in glass or glass ceramic, voids, sidewall delamination and much more.


Common practices to prevent the formation of cracks include using better CTE matching glass or glass ceramic compositions, use of annular or conformally plated through holes, lower annealing temperatures (usually <300° C., corresponding to the reflow temperature of lead-free solders), smaller hole sizes, or the use of metallization materials having with lower electrical conductivity than copper, but better CTE matching with the glass or glass ceramic. However, these solutions can limit the application of metallized through-holes. For instance, annular holes and small diameter holes, are not preferred for high current carrying applications, such as power devices, where thick layer of metallization is required. Also, for high frequency applications, high silica content glasses are generally used.


To address the above, and other, issues processes according to embodiments disclosed and described herein comprise heating a glass or glass ceramic article comprising copper-metallized through holes from a first temperature to a second temperature, wherein the first temperature is greater than or equal to 200° C. and less than or equal to 300° C., and wherein the second temperature is greater than or equal to 350° C. and less than or equal to 450° C., wherein an average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature is greater than 0.0° C./min and less than 8.7° C./min. Embodiments also include a glass or glass ceramic article comprising a glass or glass ceramic substrate comprising at least one through hole penetrating the glass or glass ceramic substrate in a thickness direction, and copper present in the at least one through hole, wherein the glass or glass ceramic article does not comprise radial cracks.


As discussed above, and with reference to FIG. 1, embodiments of a glass or glass ceramic article 100 comprise a glass or glass ceramic substrate 110 and a copper-metallized through hole 120. The copper-metallized through hole 120 is cylindrical in shape and comprises a copper metal in at least a portion of the through hole. It should be understood that any through hole geometry can be used according to embodiments disclosed and described herein. Such geometries include, but are not limited to conical through holes, frustoconical through holes, or pinched through holes (e.g., through holes with an hour-glass type shape). The copper-metallized through 120 has a radius “r”. The CTE mismatch between the glass or glass ceramic substrate 110 and the CTE of the copper that is present in the through hole may cause the formation of cracks 130 that extend in a radial direction from the copper-metallized through hole 120. These cracks 130 that extend in a radial direction from the copper-metallized through hole 120 are referred to herein as radial cracks. Without being bound by any particular theory, it is believed that as the glass or glass ceramic article 100 comprising copper-metallized through holes is heated the relatively low expansion of the glass or glass ceramic substrate 110 constrains the free expansion of the copper present in the copper-metallized through hole 120, such that high stresses are built up and radial cracks 130 are formed in the glass or glass ceramic substrate 110.


Although embodiments are directed to copper-metallized through holes, it should be understood that the processes disclosed and described herein may be used on through holes that are metallized with any metallic material. In particular, because processes disclosed and described herein are directed to glass and glass ceramic substrates having a CTE mismatch with the material present in a through hole, radial cracks can be minimized or eliminated in glass or glass ceramic substrates having through holes that are metallized with any metal material.


In some embodiments, and with reference now to FIG. 2, the glass or glass ceramic substrate 110 may comprise a plurality of copper-metallized through holes 120a-102f that are positioned along a straight line in the glass or glass ceramic substrate 110. In such a configuration, a plurality of radial cracks 130a-130e may be formed in the glass or glass ceramic substrate 110 such that the radial cracks 130a-130e span the distance between adjacent copper-metallized through holes 120a-120f. For instance, a radial crack 130a may extend between adjacent copper-metallized through holes 120a and 120b and a radial crack 130b may extend between adjacent copper-metallized through holes 120b and 120c. In this way, radial cracks 130a-130e can, span between each of the copper-metallized through holes 120a-120f in the glass or glass ceramic substrate 110.


As mentioned above, stresses present in the glass or glass ceramic article 100 with copper-metallized through holes may cause radial cracks 130 to form upon heating the glass or glass ceramic article 100. These stresses that may cause the radial cracks 130 can be approximated theoretically as shown below and, according to embodiments disclosed and described herein, processes that control the stresses and minimize or eliminate radial cracks in the glass or glass ceramic article 100 with copper-metallized through holes can be developed.


Because the copper-metallized through holes 120 in the glass or glass ceramic substrate 110 are generally cylindrical and are encased by a glass or glass ceramic matrix, the stresses in glass or glass ceramic can be determined using Lame's thick/solid wall cylinder equation, where the in-plane stresses—radial and circumferential stresses—are equal but opposite at the central region of the glass or glass ceramic thickness as shown in equation 1 below:

σr=−σ248  (1)

where σr is the radial stress and σϑ is the circumferential (or hoop) stress.


The in-plane thermo-mechanical stresses in glass or glass ceramic surrounding a single copper via can be calculated using equation 2 below with exemplary values that follow:










σ
r

=


-

σ
ϑ


=

[




-


E
Cu



(


α
Cu

-

α
glass


)




Δ





T



(

1
-

2


v
Cu



)

+


(


1
+

v
glass



1
+

v
Cu



)



(


E
Cu


E
glass


)







(


D
Cu


2

r


)

2


]






(
2
)








where αCu is the CTE for copper (16.7 ppm/° C.); αglass is the CTE of glass or glass ceramic (0.6 ppm/° C.); υglass and υCu are the Poisson ratios for the glass or glass ceramic (0.26) and copper (0.35), respectively; r is the distance in glass or glass ceramic from the center of the hole. This means that at the interface between the glass or glass ceramic substrate and the copper, r is the radius of the metallized through hole. DCu is the diameter of the through hole (50 μm); ECu and Eglass are the elastic modulus of copper (120 GPa) and the glass or glass ceramic (70 GPa), respectively; and ΔT is the change in temperature. Using equation 2 and the values provided above for copper and glass or glass ceramic, the stress in a glass or glass ceramic substrate during heating from room temperature (about 25° C.) to a maximum temperature can be calculate; where copper and glass or glass ceramic are assumed to be elastic materials. The calculated glass or glass ceramic stresses from the through hole edge is presented in FIG. 3, where it is shown that the circumferential and the radial stresses are equal in magnitude but opposite in direction. In FIG. 3, the tensile circumferential stress in glass or glass ceramic is expected to be a primary cause for the formation of radial cracks during heating, as cracks are known to form due to tensile stress field. The maximum stresses occur at the edge of the via, which exponentially decays away from the through hole edge, where the through hole is not closely adjacent to another through hole.


Equation 2 above can be used to determine the maximum tensile circumferential stress value as a function of temperature. FIG. 4 shows a plot of heat treatment temperature (° C.) versus circumferential stress (MPa). The plot in FIG. 4 shows that an increase in the temperature during a heat treatment results in an essentially linear increase in circumferential stress, which shows that the probability for forming radial cracks increases as the temperature of a heat treatment increases. Thus, at higher temperatures, radial cracks are more likely to occur.


Using the above equations and analysis, processes for heating glass or glass ceramic articles comprising copper-metallized through holes according to embodiments disclosed and described herein were formulated that minimize or eliminate the formation of radial cracks in glass or glass ceramic articles comprising copper-metallized through holes. Without being bound by any particular theory, it is believed that using a low average heating rate during high-temperature portions of the heat treatment allows for stress relaxation mechanisms to activate which minimizes the effects of the higher circumferential stress present at high temperatures, thereby reducing or eliminating the formation of radial cracks in the glass or glass ceramic article comprising copper-metallized through holes.


Processes for heating glass or glass ceramic articles comprising copper-metallized through holes according to embodiments will now be described. As mentioned above, using Equation 2, it was determined that circumferential stress in glass or glass ceramic articles comprising copper-metallized through holes—which may lead to the formation of radial cracks—increases as heat treatment temperatures increase. Accordingly, it was determined that in processes for heating glass or glass ceramic articles comprising copper-metalized through holes according to embodiments, there is a first temperature at which the probability of radial crack formation becomes significant, and the average heating rate above this first temperature is controlled to be a low average heating rate, thereby reducing or minimizing the formation of radial cracks. According to some embodiments, the heating rate at temperatures below this first temperature does not need to be limited. Thus, the glass or glass ceramic article comprising copper-metallized through holes can be heated to the first temperature using any average heating rate. Therefore, embodiments of processes for heating glass or glass ceramic articles comprising copper-metallized through holes are directed to controlling the average heating rate during the process where the temperature of the glass or glass ceramic article comprising the copper-metallized through holes is greater than or equal to the first temperature and less than or equal to a second temperature where heat treatments are usually concluded. It should be understood that the temperatures disclosed herein refer to the measured atmospheric temperature of the device used to heat the glass or glass ceramic article comprising copper-metallized through holes, such as an oven, furnace, kiln, lehr, or the like.


Using this information, heat treatments were conducted on glass or glass ceramic articles comprising copper-metallized through holes to determine the temperature at which radial cracks form. Through visual observation of the various heat treatments, it was found that the probability that radial cracks will form significantly increases at temperatures greater than or equal to 200° C., such as at temperatures greater than or equal to 210° C., temperatures greater than or equal to 220° C., temperatures greater than or equal to 230° C., temperatures greater than or equal to 240° C., temperatures greater than or equal to 250° C., temperatures greater than or equal to 260° C., temperatures greater than or equal to 270° C., temperatures greater than or equal to 280° C., or temperatures greater than or equal to 290° C. Accordingly, in processes for heating a glass or glass ceramic article comprising copper-metallized through holes according to embodiments, the heating rate at temperatures below the first temperature do not need to be controlled because the probability of radial crack formation at temperatures below the first temperature is low. In embodiments, the first temperature is greater than or equal to 200° C. and less than or equal to 300° C., such as greater than or equal to 210° C. and less than or equal to 300° C., greater than or equal to 220° C. and less than or equal to 300° C., greater than or equal to 230° C. and less than or equal to 300° C., greater than or equal to 240° C. and less than or equal to 300° C., greater than or equal to 250° C. and less than or equal to 300° C., greater than or equal to 260° C. and less than or equal to 300° C., greater than or equal to 270° C. and less than or equal to 300° C., greater than or equal to 280° C. and less than or equal to 300° C., or greater than or equal to 290° C. and less than or equal to 300° C. In some embodiments, the first temperature is greater than or equal to 200° C. and less than or equal to 290° C., such as greater than or equal to 200° C. and less than or equal to 280° C., greater than or equal to 200° C. and less than or equal to 270° C., greater than or equal to 200° C. and less than or equal to 260° C., greater than or equal to 200° C. and less than or equal to 250° C., greater than or equal to 200° C. and less than or equal to 240° C., greater than or equal to 200° C. and less than or equal to 230° C., greater than or equal to 200° C. and less than or equal to 220° C., or greater than or equal to 200° C. and less than or equal to 210° C. In some embodiments, the first temperature is greater than or equal to 220° C. and less than or equal to 280° C., such as greater than or equal to 225° C. and less than or equal to 275° C., or greater than or equal to 240° C. and less than or equal to 260° C.


The probability for radial crack formation in glass or glass ceramic articles having copper-metallized through holes is high from the first temperature, which are mentioned above, to a second temperature where heat treatments generally are concluded. In embodiments, the second temperature is greater than or equal to 350° C. and less than or equal to 450° C., such as greater than or equal to 360° C. and less than or equal to 450° C., greater than or equal to 370° C. and less than or equal to 450° C., greater than or equal to 380° C. and less than or equal to 450° C., greater than or equal to 390° C. and less than or equal to 450° C., greater than or equal to 400° C. and less than or equal to 450° C., greater than or equal to 410° C. and less than or equal to 450° C., greater than or equal to 420° C. and less than or equal to 450° C., greater than or equal to 430° C. and less than or equal to 450° C., or greater than or equal to 440° C. and less than or equal to 450° C. In some embodiments, the second temperature is greater than or equal to 350° C. and less than or equal to 440° C., such as greater than or equal to 350° C. and less than or equal to 430° C., greater than or equal to 350° C. and less than or equal to 420° C., greater than or equal to 350° C. and less than or equal to 410° C., greater than or equal to 350° C. and less than or equal to 400° C., greater than or equal to 350° C. and less than or equal to 390° C., greater than or equal to 350° C. and less than or equal to 380° C., greater than or equal to 350° C. and less than or equal to 370° C., or greater than or equal to 350° C. and less than or equal to 360° C. In embodiments the second temperature is greater than or equal to 375° C. and less than or equal to 450° C., such as greater than or equal to 375° C. to less than or equal to 425° C.


As mentioned above, processes for heating glass or glass ceramic articles comprising copper-metallized through holes according to embodiments disclosed and described herein control the average heating rate when the glass or glass ceramic article comprising copper-metallized through holes is at temperatures greater than or equal to the first temperature and less than or equal to the second temperature—where the probability for crack formation is high. As used herein, the average heating rate is the difference between the second temperature and the first temperature divided by the amount of time it takes to heat the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature. Thus, the average heating rate, as used herein, includes any temperature holds where the glass or glass ceramic article comprising copper-metallized through holes is at a temperature greater than or equal to the first temperature and less than or equal to the second temperature. As an example, if a glass or glass ceramic article comprising copper-metallized through holes is heated from a first temperature of 300° C. to 350° C. in 10 minutes, held at 350° C. for 10 minutes and then heated from 350° C. to the second temperature of 400° C. in 10 minutes, the average heating rate is 3.33° C./min







(


i
.
e
.

,


4

0


0








C
.

-

300










C
.



30





min



)

.




In embodiments, the average heating rate from the first temperature to the second temperature is greater than 0.0° C./min and less than 8.7° C./min, such as greater than 0.0° C./min and less than or equal to 8.5° C./min, greater than 0.0° C./min and less than or equal to 8.2° C./min, greater than 0.0° C./min and less than or equal to 8.0° C./min, greater than 0.0° C./min and less than or equal to 7.8° C./min, greater than 0.0° C./min and less than or equal to 7.5° C./min, greater than 0.0° C./min and less than or equal to 7.2° C./min, greater than 0.0° C./min and less than or equal to 7.0° C./min, greater than 0.0° C./min and less than or equal to 6.8° C./min, greater than 0.0° C./min and less than or equal to 6.5° C./min, greater than 0.0° C./min and less than or equal to 6.2° C./min, greater than 0.0° C./min and less than or equal to 6.0° C./min, greater than 0.0° C./min and less than or equal to 5.8° C./min, greater than 0.0° C./min and less than or equal to 5.5° C./min, greater than 0.0° C./min and less than or equal to 5.2° C./min, or greater than 0.0° C./min and less than or equal to 5.0° C./min. In some embodiments, the average heating rate from the first temperature to the second temperature is greater than or equal to 2.0° C./min and less than 8.7° C./min, such as greater than or equal to 2.2° C./min and less than 8.7° C./min, greater than or equal to 2.5° C./min and less than 8.7° C./min, greater than or equal to 2.8° C./min and less than 8.7° C./min, greater than or equal to 2.8° C./min and less than 8.7° C./min, greater than or equal to 3.0° C./min and less than 8.7° C./min. In embodiments, the average heating rate from the first temperature to the second temperature is greater than or equal to 2.0° C./min and less than or equal to 6.5° C./min, such as greater than or equal to 2.2° C./min and less than or equal to 6.5° C./min, greater than or equal to 2.5° C./min and less than 6.5° C./min, greater than or equal to 2.8° C./min and less than 6.5° C./min, or greater than or equal to 3.0° C./min and less than 6.5° C./min. Heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature at the above average heating rates does not cause radial cracks in the glass or glass ceramic article comprising copper-metallized through holes.


According to some embodiments, the heating rate from the first temperature to the second temperature is kept substantially constant such that a uniform heating rate is used in the entire temperature range from the first temperature to the second temperature. As used herein, a substantially constant heating rate refers to a heating rate that is maintained as close the heating rate set point as can be controlled by the device used to heat the glass or glass ceramic article comprising the copper-metallized through holes. For instance, it may be determined that the heating rate in a temperature range from the first temperature to the second temperature should be constant and set at 6.5° C./min. However, given inherent inconsistencies and inefficiencies in the device used to heat the glass or glass ceramic article comprising copper-metallized through holes, the heating rate may decrease to, for example, 6.2° C./min or increase to, for example 6.8° C./min even though the heating rate is intended to be constant at 6.5° C./min. As used herein, this situation would be a “substantially constant” heating rate. In some embodiments, the heating rate from the first temperature to the second temperature may be variable. As used herein, a “variable” heating rate refers to a heating rate that is intentionally changed in a temperature range from the first temperature to the second temperature. An example of an embodiment having a variable heating rate would be where the glass or glass ceramic article comprising copper-metallized through holes is heated from the first temperature of 300° C. to a temperature of 350° C. at a heating rate of 6.5° C./min and then intentionally heated from 350° C. to a second temperature of 400° C. at a heating rate of 2.3° C./min.


Although, in embodiments, the average heating rate where the glass or glass ceramic article comprising copper-metallized through holes is at a temperature from room temperature (about 25° C.) to the first temperature is not limited, in some embodiments the average heating rate the average heating rate where the glass or glass ceramic article comprising copper-metallized through holes is at a temperature from room temperature (about 25° C.) to the first temperature is also kept low to help ensure that radial cracks do not form. Accordingly, in embodiments, the average heating rate from room temperature to the first temperature is greater than 0.0° C./min and less than 8.7° C./min, such as greater than 0.0° C./min and less than or equal to 8.5° C./min, greater than 0.0° C./min and less than or equal to 8.2° C./min, greater than 0.0° C./min and less than or equal to 8.0° C./min, greater than 0.0° C./min and less than or equal to 7.8° C./min, greater than 0.0° C./min and less than or equal to 7.5° C./min, greater than 0.0° C./min and less than or equal to 7.2° C./min, greater than 0.0° C./min and less than or equal to 7.0° C./min, greater than 0.0° C./min and less than or equal to 6.8° C./min, greater than 0.0° C./min and less than or equal to 6.5° C./min, greater than 0.0° C./min and less than or equal to 6.2° C./min, greater than 0.0° C./min and less than or equal to 6.0° C./min, greater than 0.0° C./min and less than or equal to 5.8° C./min, greater than 0.0° C./min and less than or equal to 5.5° C./min, greater than 0.0° C./min and less than or equal to 5.2° C./min, or greater than 0.0° C./min and less than or equal to 5.0° C./min. In some embodiments, the average heating rate from room temperature to the first temperature is greater than or equal to 1.0° C./min and less than 8.7° C./min, such as greater than or equal to 2.0° C./min and less than 8.7° C./min, greater than or equal to 2.5° C./min and less than 8.7° C./min, greater than or equal to 2.8° C./min and less than 8.7° C./min, greater than or equal to 2.8° C./min and less than 8.7° C./min, greater than or equal to 3.0° C./min and less than 8.7° C./min. In embodiments, the average heating rate from room temperature to the first temperature is greater than or equal to 1.0° C./min and less than or equal to 6.5° C./min, such as greater than or equal to 2.0° C./min and less than or equal to 6.5° C./min, greater than or equal to 2.2° C./min and less than 6.5° C./min, greater than or equal to 2.5° C./min and less than 6.5° C./min, greater than or equal to 2.7° C./min and less than 6.5° C./min, or greater than or equal to 3.0° C./min and less than 6.5° C./min.


As mentioned above, processes for heating a glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature may include various temperature holds, where the temperature is held constant for a period of time. Without being bound to any particular theory, it is believed that by holding the glass or glass ceramic article comprising copper-metallized through holes at a constant temperature, relaxation occurs during the temperature hold, and the stress in the glass or glass ceramic article comprising copper-metallized through holes may decrease. Accordingly, if a temperature hold is conducted before crack formation occurs, relaxation resulting from the temperature hold may reduce the stresses in the glass or glass ceramic article comprising copper-metallized through holes enough that there is no crack formation. In addition, temperature holds may be used at one or more of the first temperature and the second temperature to allow the stresses in the glass or glass ceramic article comprising copper-metallized through holes to relax.


In embodiments, the glass or glass ceramic article comprising copper-metallized through holes may be held at the first temperature for a duration greater than or equal to ten (10) minutes and less than or equal to 120 minutes, such as greater than or equal to fifteen (15) minutes and less than or equal to 120 minutes, greater than or equal to thirty (30) minutes and less than or equal to 120 minutes, greater than or equal to forty five (45) minutes and less than or equal to 120 minutes, greater than or equal to sixty (60) minutes and less than or equal to 120 minutes, greater than or equal to seventy five (75) minutes and less than or equal to 120 minutes, greater than or equal to ninety (90) minutes and less than or equal to 120 minutes, or greater than or equal to forty 105 minutes and less than or equal to 120 minutes. In embodiments, the glass or glass ceramic article comprising copper-metallized through holes may be held at the first temperature for a duration greater than or equal to ten (10) minutes and less than or equal to 105 minutes, such as greater than or equal to ten (10) minutes and less than or equal to ninety (90) minutes, greater than or equal to ten (10) minutes and less than or equal to seventy five (75) minutes, greater than or equal to ten (10) minutes and less than or equal to sixty (60) minutes, greater than or equal to ten (10) minutes and less than or equal to forty five (45) minutes, greater than or equal to ten (10) minutes and less than or equal to thirty (30) minutes, or greater than or equal to ten (10) minutes and less than or equal to fifteen (15) minutes.


In embodiments, the glass or glass ceramic article comprising copper-metallized through holes may be held at the second temperature for a duration greater than or equal to ten (10) minutes and less than or equal to 120 minutes, such as greater than or equal to fifteen (15) minutes and less than or equal to 120 minutes, greater than or equal to thirty (30) minutes and less than or equal to 120 minutes, greater than or equal to forty five (45) minutes and less than or equal to 120 minutes, greater than or equal to sixty (60) minutes and less than or equal to 120 minutes, greater than or equal to seventy five (75) minutes and less than or equal to 120 minutes, greater than or equal to ninety (90) minutes and less than or equal to 120 minutes, or greater than or equal to forty 105 minutes and less than or equal to 120 minutes. In embodiments, the glass or glass ceramic article comprising copper-metallized through holes may be held at the second temperature for a duration greater than or equal to ten (10) minutes and less than or equal to 105 minutes, such as greater than or equal to ten (10) minutes and less than or equal to ninety (90) minutes, greater than or equal to ten (10) minutes and less than or equal to seventy five (75) minutes, greater than or equal to ten (10) minutes and less than or equal to sixty (60) minutes, greater than or equal to ten (10) minutes and less than or equal to forty five (45) minutes, greater than or equal to ten (10) minutes and less than or equal to thirty (30) minutes, or greater than or equal to ten (10) minutes and less than or equal to fifteen (15) minutes.


In embodiments, the glass or glass ceramic article comprising copper-metallized through holes may be held at a constant temperature between the first temperature and the second temperature for a duration greater than or equal to ten (10) minutes and less than or equal to 120 minutes, such as greater than or equal to fifteen (15) minutes and less than or equal to 120 minutes, greater than or equal to thirty (30) minutes and less than or equal to 120 minutes, greater than or equal to forty five (45) minutes and less than or equal to 120 minutes, greater than or equal to sixty (60) minutes and less than or equal to 120 minutes, greater than or equal to seventy five (75) minutes and less than or equal to 120 minutes, greater than or equal to ninety (90) minutes and less than or equal to 120 minutes, or greater than or equal to forty 105 minutes and less than or equal to 120 minutes. In embodiments, the glass or glass ceramic article comprising copper-metallized through holes may be held at a constant temperature between the first temperature and the second temperature for a duration greater than or equal to ten (10) minutes and less than or equal to 105 minutes, such as greater than or equal to ten (10) minutes and less than or equal to ninety (90) minutes, greater than or equal to ten (10) minutes and less than or equal to seventy five (75) minutes, greater than or equal to ten (10) minutes and less than or equal to sixty (60) minutes, greater than or equal to ten (10) minutes and less than or equal to forty five (45) minutes, greater than or equal to ten (10) minutes and less than or equal to thirty (30) minutes, or greater than or equal to ten (10) minutes and less than or equal to fifteen (15) minutes.


Although processes disclosed herein may be used on glass or glass ceramic articles comprising any sized copper-metallized through holes, the processes disclosed herein may be particularly suitable for use on glass or glass ceramic articles comprising relatively small copper-metallized through holes. In embodiments, the copper-metallized through holes may have a diameter greater than or equal to 25 μm and less than or equal to 75 μm, such as greater than or equal to 30 μm and less than or equal to 70 μm, greater than or equal to 35 μm and less than or equal to 70 μm, greater than or equal to 40 μm and less than or equal to 70 μm, greater than or equal to 45 μm and less than or equal to 70 μm, greater than or equal to 50 μm and less than or equal to 70 μm, greater than or equal to 55 μm and less than or equal to 70 μm, greater than or equal to 60 μm and less than or equal to 70 μm, or greater than or equal to 65 μm and less than or equal to 70 μm. In embodiments, the copper-metallized through holes may have a diameter greater than or equal to 25 μm and less than or equal to 65 μm, such as greater than or equal to 25 μm and less than or equal to 60 μm, greater than or equal to 25 μm and less than or equal to 55 μm, greater than or equal to 25 μm and less than or equal to 50 μm, greater than or equal to 25 μm and less than or equal to 45 μm, greater than or equal to 25 μm and less than or equal to 40 μm, greater than or equal to 25 μm and less than or equal to 35 μm, or greater than or equal to 25 μm and less than or equal to 30 μm. In embodiments, the copper-metallized through holes may have a diameter greater than or equal to 35 μm and less than or equal to 65 μm, such as greater than or equal to 40 μm and less than or equal to 60 μm.


It should be understood that the processes disclosed and described herein may be used with through holes having any pitch. Specifically, by heating glass or glass ceramic articles according to embodiments disclosed and described herein, radial cracking can be minimized or eliminated regardless of the pitch of the through holes. Further, the pitch of the through holes will depend on the diameter of the through holes in the substrate. However, in some embodiments, where the diameter of the through holes is about 50 μm, the copper-metallized through holes may have a pitch greater than or equal to 60 μm and less than or equal to 800 μm, such as greater than or equal to 100 μm and less than or equal to 750 μm, greater than or equal to 150 μm and less than or equal to 700 μm, greater than or equal to 200 μm and less than or equal to 650 μm, greater than or equal to 250 μm and less than or equal to 600 μm, greater than or equal to 300 μm and less than or equal to 550 μm, greater than or equal to 350 μm and less than or equal to 500 μm, or greater than or equal to 400 μm and less than or equal to 450 μm. In embodiments, the copper-metallized through holes may have a pitch greater than or equal to 60 μm and less than or equal to 140 μm, such as greater than or equal to 60 μm and less than or equal to 130 μm, greater than or equal to 60 μm and less than or equal to 120 μm, greater than or equal to 60 μm and less than or equal to 110 μm, greater than or equal to 60 μm and less than or equal to 100 μm, greater than or equal to 60 μm and less than or equal to 90 μm, greater than or equal to 60 μm and less than or equal to 80 μm, or greater than or equal to 60 μm and less than or equal to 70 μm.


It should be understood that the processes disclosed and described herein may be used with through holes having any depth. Specifically, by heating glass or glass ceramic articles according to embodiments disclosed and described herein, radial cracking can be minimized or eliminated regardless of the depth of the through holes. However, in some embodiments, the copper-metallized through holes may have a depth greater than or equal to 50 μm and less than or equal to 600 μm, such as greater than or equal to 75 μm and less than or equal to 575 μm, greater than or equal to 100 μm and less than or equal to 550 μm, greater than or equal to 125 μm and less than or equal to 525 μm, greater than or equal to 150 μm and less than or equal to 500 μm, greater than or equal to 175 μm and less than or equal to 475 μm, greater than or equal to 200 μm and less than or equal to 450 μm, greater than or equal to 225 μm and less than or equal to 425 μm, greater than or equal to 250 μm and less than or equal to 400 μm, greater than or equal to 275 μm and less than or equal to 375 μm, or greater than or equal to 300 μm and less than or equal to 350 μm. In embodiments, the copper-metallized through holes may have a depth greater than or equal to 200 μm and less than or equal to 400 μm, such as greater than or equal to 200 μm and less than or equal to 375 μm, greater than or equal to 200 μm and less than or equal to 350 μm, greater than or equal to 200 μm and less than or equal to 325 μm, greater than or equal to 200 μm and less than or equal to 300 μm, greater than or equal to 200 μm and less than or equal to 275 μm, greater than or equal to 200 μm and less than or equal to 250 μm, or greater than or equal to 200 μm and less than or equal to 225 μm.


Any glass or glass ceramic material may be used as the glass or glass ceramic substrate of the glass or glass ceramic article comprising copper-metallized through holes according to embodiments disclosed and described herein. Specifically, by heating glass or glass ceramic articles according to embodiments disclosed and described herein, radial cracking can be minimized or eliminated regardless of the composition of the glass or glass ceramic. However, as referred to above, the processes of embodiments are particularly useful when the glass or glass ceramic material used as the glass or glass ceramic substrate of the glass or glass ceramic article comprising copper-metallized through holes has a high CTE mismatch with the CTE of copper. Accordingly, in some embodiments, the glass or glass ceramic substrate of the glass or glass ceramic article comprising copper-metallized through holes comprises high amounts of silica. In some embodiments, the substrate comprises greater than or equal to 50 mol % silica, such as greater than or equal to 55 mol % silica, greater than or equal to 60 mol % silica, greater than or equal to 65 mol % silica, greater than or equal to 70 mol % silica, greater than or equal to 75 mol % silica, greater than or equal to 80 mol % silica, greater than or equal to 85 mol % silica, greater than or equal to 90 mol % silica, greater than or equal to 95 mol % silica, or about 100 mol % silica. In embodiments, the substrate comprises at least 90 wt % silica.


Glass or glass ceramic articles comprising copper-metallized through holes made according to processes disclosed and described herein may be free of radial cracks after the heat treatment when viewed at 50× magnification or more.


Example

Embodiments will be further clarified by the following example.


A fully filled cylindrical bottom-up electroplated copper-metallized through holes in a glass substrate comprising at least 90 wt % silica was used. After the filling the through holes with copper by bottom-up electroplating, chemical-mechanical-polishing (CMP) was used to remove copper overburden. Thereafter the substrate was diced into die size of 14 mm by 14 mm, resulting in a die area of 196 mm2. Each die contained four columns of copper-metallized through hole arrays, with a total of 952 copper-metallized through holes. The copper-metallized through hole diameter, pitch and depth were 50 μm, 100 μm and 300 μm respectively. The samples were then subjected to annealing treatments using different heating rates to a maximum temperature of 420° C. before the sample was oven cooled to room temperature (about 25° C.). FIG. 5A graphically depicts the annealing profile of four samples having substantially constant heating rates at 6.5° C./min, 8.7° C./min, 13.0° C./min, and 26.0° C./min. FIG. 5B graphically depicts the annealing profile having a variable heating rate, with an average heating rate of 2.3° C./min. Accordingly, heating rates from 2.3° C./min to 26.0° C./min were studied and their full details are presented in Table 1.












TABLE 1





Total Heating





Time to
Average
Constant or


420° C.
Heating Rate
Variable
Annealing


(min)
(° C./min)
Heating Rate
Environment.


















15
26.0
Constant
Air


30
13.0
Constant
Air


45
8.7
Constant
Air


60
6.5
Constant
Air


180
2.3
Variable
Vacuum









A constant temperature hold for a duration of 30 min at 420° C. was used for all test conditions with the exception of the test condition having an average heating rate of 2.3° C./min, which had a constant temperature hold for a duration of 60 min. The cooling, which is achieved by oven cooling was not varied and took about 120 min.


After the annealing treatment, optical inspection of the dies was performed to determine the dependence of ramp-rate on radial crack formation. The number of cracks on a die for the different ramp-up rates was counted and the crack density for each test condition was calculated using Equation 3. The cracks were observed by optical microscope at 50× to 500× magnification. One sample was used for the study of each heating rate.









Crack





Density


=


Number





of





Cracks


Die





Area







(
3
)







In order to determine the temperature at which cracks are initiated, an in-situ temperature-dependent study was performed. In this study the sample was heated up to 420° C. at a ramp-rate of 20.5° C./min. By using an in-situ imaging system, images of the same particular set of vias were acquired as a function of temperature every 10 seconds, which were later analyzed to determine the temperature at which cracks were initiated.


Additionally, Zygo topography measurement method was used determine how much copper protrusion occurred with respect to the used annealing heating rate. Based on this measurement, the height of the protruding copper was determined.



FIG. 6 presents a 50× optical image of a sample having a heating/ramp-up rate of 26.0° C./min. It was observed that using this fast heating rate results in the formation of cracks in the sample. The radial cracks are shown to form crack chains all through the sample, as they were found to link up with cracks from the adjacent copper-metallized through holes, leading to a network of radial cracks. The total number of radial cracks on the 14 mm by 14 mm die was 375 cracks; yielding a crack density of 1.91 cracks/mm2.


Slowing the heating rate to 13.0° C./min and 8.7° C./min continued to result in the formation of radial cracks. The cracks formed at a heating rate of 13.0° C./min are shown in FIG. 7A (50×) and FIG. 7B (200×). The cracks formed at a heating rate of 8.7° C./min are shown in FIG. 8A (50×) and FIG. 8B (500×). However, a significant continual drop in the number of cracks was observed. The total number of radial cracks for the 13.0° C./min heating rate was found to be only 8 cracks, and the total number of cracks for the 8.7° C./min heating rate was only 4 cracks; yielded densities of 0.04 cracks/mm2 and 0.02 cracks/mm2, respectively.


However, at a heating rate of 6.5° C./min, no cracks were observed, as shown in FIG. 9A (50×) and FIG. 9B (200×). Similarly, no cracks were observed for samples annealed using a variable heating rate with an average heating rate of 2.3° C./min, as shown in FIG. 10 (200×).


Table 2 below summarizes the results of the above tests.














TABLE 2







Total Heating

Number of




Time to
Average
Radial
Radial Crack



420° C.
Heating Rate
Cracks on
Density



(min)
(° C./min)
Die
(cracks/mm2)





















15
26.0
375
1.91



30
13.0
8
0.04



45
8.7
4
0.02



60
6.5
0
0



180
2.3
0
0










From the summarized results presented in Table 2, it was observed that for heating rates below 8.7° C./min radial cracks are at a minimum, and at heating rates ≥8.7° C./min the number of radial cracks on the die increased with increasing heating. However, at heating rates below 8.7° C./min the number of cracks was minimal and eventually the cracks were not present at heating rates ≤6.5° C./min. This clearly indicates that the formation of radial crack is a time-dependent phenomenon.


Additionally, the crack density was calculated as shown in Table 2 and presented graphically in FIG. 11. Crack density was found to exponentially increase with the used annealing heating rate. FIG. 11 clearly indicates that the formation of radial cracks is a rate-dependent phenomenon. This also shows that radial crack formation is stress driven, emanating from the mismatch in the CTE of copper and its surrounding glass matrix. As such, the absence of cracks for heating rates ≤6.5° C./min, suggests sufficient activation of rate-controlled stress relaxation mechanisms in the copper-metallized through holes. Further, because limited amounts of cracks are observed at heating rates below 8.7° C./min, this means that for heating rates <8.7° C./min, the stresses in the copper-metallized through holes are lower, leading to lower induced stresses in the glass that are below the threshold critical stress value needed for the initiation of cracks in the glass.



FIGS. 12A-12C are in-situ, temperature-dependent images of copper-metallized through holes. Visually, at 317° C., no radial cracks were observed (FIG. 12A). However, after 10 seconds, a crack is observed to propagate from the third copper-metallized through hole from the left, which corresponds to a temperature of 321° C. (FIG. 12B). Further increases in temperature resulted in growth of the crack until it finally connected to the adjacent copper-metallized through hole (i.e., the fourth copper-metallized through hole from the left) sixty seconds later, as shown in FIG. 12C. Although the radial crack was first observed at 321° C., it may have developed at lower temperatures due to the setup of the testing protocol. For instance, images were only capture every 10 seconds.


To more fully understand the activity of stress relaxation mechanisms, further experimental study was done by the measurement of the copper protrusion after annealing with respect to the annealing heating rate, which is presented in FIG. 13. Copper protrusion is the inelastic out-of-plane deformation. It occurs during heating due to the buildup of high compressive stresses in the copper due to the mismatch in the CTE of the copper and the surrounding glass substrate. Copper protrusion is a combination of plastically deformed copper, as well as hillock formation. Plastic deformation occurs due to the attainment of the yield strength of copper, which decreases with increasing temperature. On the other hand, hillock formation is a preferential out-of-plane displacement of Cu grain by grain boundary sliding (GBS) phenomenon. GBS is a stress relaxation mechanism which is a diffusion controlled mechanism that results in the approximate translation of one grain over another, parallel to the boundary interface. GBS leads to the formation of copper protrusion due to the vertical displacement of grains during translation.


In FIG. 13, it was measured that the copper protrusion height increased with increasing heating time, in order words, the copper protrusion increased with decreasing heating rates. For instance, the amount of Cu protrusion at a heating rate of 26.0° C./min was measured to be 400 nm, however, when a heating rate of 6.5° C./min was used, the copper protrusion height was measured to be about 1100 nm. FIG. 13, shows a strong dependence of copper protrusion on the used annealing heating rate. Based on Table 2 and FIG. 13, it can be inferred that the increase in copper protrusion results in the decrease in the number of formed radial cracks. This is due to the increased activity of stress relaxation mechanisms with increased heating time or decreased heating rate. GBS is known to be a rate-controlled stress relaxation mechanism that is also accompanied by the formation of micro-voids, as such, its activity increases with lower annealing heating rate. This means that the activity of GBS and plastic deformation sufficiently relaxes the built up stresses in copper below the critical stress threshold needed for the formation of radial cracks when ramp-up rates <8.7° C./min, such as ≤6.5° C./min were used.


As used herein, the term “about” means that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. When the term “about” is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to. Whether or not a numerical value or end-point of a range in the specification recites “about,” the numerical value or end-point of a range is intended to include two embodiments: one modified by “about,” and one not modified by “about.” It will be further understood that the end-points of each of the ranges are significant both in relation to the other end-point, and independently of the other end-point.


It will be apparent to those skilled in the art that various modifications and variations can be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.

Claims
  • 1. A process comprising: heating a glass or glass ceramic article comprising copper-metallized through holes to a first temperature, wherein the first temperature is greater than or equal to 220° C. and less than or equal to 300° C.,holding the glass or glass ceramic article comprising copper-metallized through holes at the first temperature for a duration of greater than or equal to 10 minutes and less than or equal to 120 minutes, andheating the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to a second temperature, wherein the second temperature is greater than or equal to 350° C. and less than or equal to 450° C.,wherein an average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature is greater than 0.0° C./min and less than 8.7° C./min.
  • 2. The process of claim 1, wherein the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature does not cause radial cracks in the glass or glass ceramic article comprising copper-metallized through holes.
  • 3. The process of claim 1, further comprising heating the glass or glass ceramic article comprising copper-metallized through holes from room temperature to the first temperature.
  • 4. The process of claim 3, wherein an average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from room temperature to the first temperature is greater than 0.0° C./min and less than 8.7° C./min.
  • 5. The process of claim 1, wherein the first temperature is from greater than or equal to 225° C. and less than or equal to 275° C.
  • 6. The process of claim 1, wherein the second temperature is from greater than or equal to 375° C. and less than or equal to 425° C.
  • 7. The process of claim 1, wherein the average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature is greater than or equal to 1.0° C./min and less than or equal to 6.5° C./min.
  • 8. The process of claim 1, wherein the average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature is substantially constant.
  • 9. The process of claim 1, wherein the average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature is variable.
  • 10. The process of claim 1, wherein the process further comprises holding the glass or glass ceramic article comprising copper-metallized through holes at a constant temperature between the first temperature and the second temperature for a duration of greater than or equal to 10 minutes and less than or equal to 120 minutes.
  • 11. The process of claim 1, wherein the process further comprises holding the glass or glass ceramic article comprising copper-metallized through holes at the second temperature for a duration of greater than or equal to 10 minutes and less than or equal to 120 minutes.
  • 12. The process of claim 1, wherein the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature comprises holding the glass or glass ceramic article comprising copper-metallized through holes at a constant temperature for a duration that is greater than or equal to 10 minutes and less than or equal to 60 minutes.
  • 13. The process of claim 1, wherein a diameter of the through holes in the glass or glass ceramic article comprising copper-metallized through holes is greater than or equal to 25 μm and less than or equal to 75 μm.
  • 14. The process of claim 1, wherein a pitch of the through holes in the glass or glass ceramic article comprising copper-metallized through holes is greater than or equal to 60 μm and less than or equal to 800 μm.
  • 15. The process of claim 1, wherein a depth of the through holes in the glass or glass ceramic article comprising copper-metallized through holes is greater than or equal to 50 μm and less than or equal to 600 μm.
  • 16. The process of claim 1, wherein the glass or glass ceramic article comprises at least 90 wt % silica.
  • 17. A process, comprising: heating a glass or glass ceramic article comprising copper-metallized through holes to a first temperature, wherein the first temperature is greater than or equal to 240° C. and less than or equal to 260° C.;holding the glass or glass ceramic article comprising copper-metallized through holes at the first temperature for a duration of greater than or equal to 10 minutes and less than or equal to 120 minutes; andheating the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to a second temperature, wherein the second temperature is greater than or equal to 400° C. and less than or equal to 450° C.,wherein an average heating rate during the heating of the glass or glass ceramic article comprising copper-metallized through holes from the first temperature to the second temperature is greater than 0.0° C./min and less than or equal to 6.5° C./min.
Parent Case Info

This application claims the benefit of priority to U.S. Provisional Application Ser. No. 62/808,566 filed on Feb. 21, 2019, the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (233)
Number Name Date Kind
208387 Geoege Sep 1878 A
237571 Messier Feb 1881 A
3798013 Hasegawa et al. Mar 1974 A
4214886 Shay et al. Jul 1980 A
4395271 Beall et al. Jul 1983 A
4732780 Mitoff et al. Mar 1988 A
4776869 Offenbacher et al. Oct 1988 A
5166037 Atkinson et al. Nov 1992 A
5340947 Credle et al. Aug 1994 A
5745236 Haga Apr 1998 A
5746884 Gupta et al. May 1998 A
5909284 Nakamura Jun 1999 A
5925443 Aoude et al. Jul 1999 A
5933230 Imaino et al. Aug 1999 A
5969422 Ting et al. Oct 1999 A
6072624 Dixon et al. Jun 2000 A
6077780 Dubin Jun 2000 A
6234755 Bunker et al. May 2001 B1
6344242 Stolk et al. Feb 2002 B1
6406777 Boss et al. Jun 2002 B1
6734101 Bao May 2004 B1
6906795 Goto et al. Jun 2005 B2
6951816 Nopper et al. Oct 2005 B2
7019257 Stevens Mar 2006 B2
7043072 Goto et al. May 2006 B2
7211899 Taniguchi et al. May 2007 B2
7407889 Tsunetomo et al. Aug 2008 B2
7514149 Bocko et al. Apr 2009 B2
7528967 Okawauchi et al. May 2009 B2
7626665 Koike Dec 2009 B2
7683370 Kugimiya et al. Mar 2010 B2
7749809 How et al. Jul 2010 B2
7894870 Lucisano et al. Feb 2011 B1
7994503 Hino et al. Aug 2011 B2
8119462 Takasawa et al. Feb 2012 B2
8163649 Koike et al. Apr 2012 B2
8187716 Sutter et al. May 2012 B2
8338957 Nilsson Dec 2012 B2
8354337 Matsumoto et al. Jan 2013 B2
8384083 Mori et al. Feb 2013 B2
8411459 Yu et al. Apr 2013 B2
8482189 Goto et al. Jul 2013 B2
8531679 Scheiner Sep 2013 B2
8535997 Kawakami et al. Sep 2013 B2
8569165 Gordon et al. Oct 2013 B2
8643129 Laming et al. Feb 2014 B2
8673779 Yoon et al. Mar 2014 B1
8699037 Cox Apr 2014 B2
8742588 Nilsson et al. Jun 2014 B2
8836126 Ochimizu et al. Sep 2014 B2
8871641 Nilsson Oct 2014 B2
8873067 Lee et al. Oct 2014 B2
9024443 Inaba et al. May 2015 B2
9093381 Barriere et al. Jul 2015 B2
9140539 Scheiner Sep 2015 B2
9232652 Fushie et al. Jan 2016 B2
9236274 Mobley et al. Jan 2016 B1
9278886 Boek et al. Mar 2016 B2
9296646 Burket et al. Mar 2016 B2
9305470 Miki et al. Apr 2016 B2
9337060 Mobley et al. May 2016 B1
9346706 Bazemore et al. May 2016 B2
9374892 Mobley et al. Jun 2016 B1
9377583 Giaretta et al. Jun 2016 B2
9517963 Marjanovic et al. Dec 2016 B2
9656909 Burket et al. May 2017 B2
9676046 Hamada et al. Jun 2017 B2
9745220 Burket et al. Aug 2017 B2
9760986 Ramamurthy et al. Sep 2017 B2
9832868 Wright et al. Nov 2017 B1
9850160 Marjanovic et al. Dec 2017 B2
10144093 Marjanovic et al. Dec 2018 B2
10203476 Cui Feb 2019 B2
10410883 Bellman et al. Sep 2019 B2
10440835 Grober Oct 2019 B1
10454571 Gutman et al. Oct 2019 B2
20020004301 Chen et al. Jan 2002 A1
20020051563 Goto et al. May 2002 A1
20020180015 Yamaguchi et al. Dec 2002 A1
20030082356 Suemasu et al. May 2003 A1
20030137056 Taniguchi et al. Jul 2003 A1
20030206651 Goto et al. Nov 2003 A1
20030221967 Tsuchida et al. Dec 2003 A1
20040058476 Enquist et al. Mar 2004 A1
20040094524 Stevens May 2004 A1
20040166340 Cairns et al. Aug 2004 A1
20040203181 Shang et al. Oct 2004 A1
20040235294 Imori et al. Nov 2004 A1
20040256619 Nomura et al. Dec 2004 A1
20050029238 Chen Feb 2005 A1
20050033184 Christoph Feb 2005 A1
20050064707 Sinha Mar 2005 A1
20050067295 Dory et al. Mar 2005 A1
20050079650 Mancini et al. Apr 2005 A1
20050266320 Amemiya Dec 2005 A1
20060012766 Klosner et al. Jan 2006 A1
20060093732 Schut et al. May 2006 A1
20060192978 Laguarta et al. Aug 2006 A1
20060233963 Imori et al. Oct 2006 A1
20060283629 Kikuchi et al. Dec 2006 A1
20070187142 Suemasu et al. Aug 2007 A1
20080054467 Ohba et al. Mar 2008 A1
20080067073 Kagawa et al. Mar 2008 A1
20080087549 Ishizuka et al. Apr 2008 A1
20080150138 Bright et al. Jun 2008 A1
20080296768 Chebiam et al. Dec 2008 A1
20090029189 Moriwaki et al. Jan 2009 A1
20090032510 Ando et al. Feb 2009 A1
20090117336 Usui et al. May 2009 A1
20090263965 Gordon et al. Oct 2009 A1
20090283910 Hinomura Nov 2009 A1
20100096712 Knechtel Apr 2010 A1
20100133697 Nilsson Jun 2010 A1
20100284027 Scheiner Nov 2010 A1
20100320604 Isobayashi Dec 2010 A1
20110032467 Koike Feb 2011 A1
20110049718 Matsumoto et al. Mar 2011 A1
20110132883 Sheng et al. Jun 2011 A1
20110147055 Ma et al. Jun 2011 A1
20110294649 Gomez et al. Dec 2011 A1
20110308942 Liu et al. Dec 2011 A1
20120013022 Sabuncuoglu Tezcan et al. Jan 2012 A1
20120048604 Cornejo et al. Mar 2012 A1
20120092681 Cox Apr 2012 A1
20120121870 Toury et al. May 2012 A1
20120125892 Shimoi et al. May 2012 A1
20120125893 Shimoi et al. May 2012 A1
20120133047 Besling et al. May 2012 A1
20120139127 Beyne Jun 2012 A1
20120152843 Mcevoy et al. Jun 2012 A1
20120168412 Hooper Jul 2012 A1
20120196071 Cornejo et al. Aug 2012 A1
20120217165 Feng et al. Aug 2012 A1
20120235969 Burns et al. Sep 2012 A1
20120241919 Mitani Sep 2012 A1
20120276743 Won et al. Nov 2012 A1
20130026645 Mohammed et al. Jan 2013 A1
20130050226 Shenoy et al. Feb 2013 A1
20130062210 Fushie et al. Mar 2013 A1
20130075146 Fushie et al. Mar 2013 A1
20130089701 Hooper et al. Apr 2013 A1
20130105213 Hu et al. May 2013 A1
20130119555 Sundaram et al. May 2013 A1
20130163801 Ha et al. Jun 2013 A1
20130205835 Giaretta et al. Aug 2013 A1
20130224492 Bookbinder et al. Aug 2013 A1
20130228918 Chen et al. Sep 2013 A1
20130247615 Boek et al. Sep 2013 A1
20130249109 Ma et al. Sep 2013 A1
20130286610 Nakagawa Oct 2013 A1
20130330515 Oh et al. Dec 2013 A1
20130337599 Yun Dec 2013 A1
20130340480 Nattermann et al. Dec 2013 A1
20140013804 Ono et al. Jan 2014 A1
20140034374 Cornejo et al. Feb 2014 A1
20140084466 Matsumoto et al. Mar 2014 A1
20140106146 Decker et al. Apr 2014 A1
20140127899 Cabral, Jr. et al. May 2014 A1
20140144681 Pushparaj et al. May 2014 A1
20140147623 Shorey et al. May 2014 A1
20140147624 Streltsov et al. May 2014 A1
20140154439 Demartino et al. Jun 2014 A1
20140166199 Bellman et al. Jun 2014 A1
20140170378 Bellman et al. Jun 2014 A1
20140186617 Zhang et al. Jul 2014 A1
20140199519 Schillinger et al. Jul 2014 A1
20140254004 Wooder et al. Sep 2014 A1
20140262801 Jayaraju et al. Sep 2014 A1
20140300728 Drescher et al. Oct 2014 A1
20140363971 Matsumoto Dec 2014 A1
20140376006 Scheiner Dec 2014 A1
20150021775 Matsumoto et al. Jan 2015 A1
20150036065 Yousefpor et al. Feb 2015 A1
20150060402 Burkett et al. Mar 2015 A1
20150076677 Ebefors Mar 2015 A1
20150083469 Sunohara et al. Mar 2015 A1
20150099124 Beunet et al. Apr 2015 A1
20150102498 Enicks et al. Apr 2015 A1
20150166393 Marjanovic et al. Jun 2015 A1
20150166395 Marjanovic et al. Jun 2015 A1
20150166396 Marjanovic et al. Jun 2015 A1
20150239775 Amin et al. Aug 2015 A1
20150274583 An et al. Oct 2015 A1
20150306847 Bellman et al. Oct 2015 A1
20150329415 Bellman et al. Nov 2015 A1
20150353348 Vandemeer et al. Dec 2015 A1
20160026842 Withers et al. Jan 2016 A1
20160107925 Burket et al. Apr 2016 A1
20160111380 Sundaram et al. Apr 2016 A1
20160166395 Weiman Jun 2016 A9
20160176751 Lautenschlaeger et al. Jun 2016 A1
20160199944 Hosseini Jul 2016 A1
20160201474 Slavens et al. Jul 2016 A1
20160204126 Amano Jul 2016 A1
20160208387 Liu et al. Jul 2016 A1
20160219704 Vandemeer et al. Jul 2016 A1
20160237571 Liu et al. Aug 2016 A1
20160282584 Cui Sep 2016 A1
20160305764 Cui et al. Oct 2016 A1
20160312365 Cordonier et al. Oct 2016 A1
20160317821 Morioka et al. Nov 2016 A1
20160327744 Giaretta et al. Nov 2016 A1
20160334203 Cui et al. Nov 2016 A1
20160351410 Fu et al. Dec 2016 A1
20160368100 Marjanovic et al. Dec 2016 A1
20160376186 Gross Dec 2016 A1
20170008122 Wieland et al. Jan 2017 A1
20170036419 Adib et al. Feb 2017 A1
20170160077 Featherstone et al. Jun 2017 A1
20170207160 Gowda et al. Jul 2017 A1
20170228884 Yoshida Aug 2017 A1
20170229318 Tsunetomo et al. Aug 2017 A1
20170252859 Kumkar et al. Sep 2017 A1
20170276951 Kumkar et al. Sep 2017 A1
20170287728 Dahlberg et al. Oct 2017 A1
20170301585 Koelling et al. Oct 2017 A1
20170363417 Cui et al. Dec 2017 A1
20180057390 Hackert et al. Mar 2018 A1
20180062342 Comstock et al. Mar 2018 A1
20180068868 Jaramillo et al. Mar 2018 A1
20180093914 Akarapu et al. Apr 2018 A1
20180215647 Ortner et al. Aug 2018 A1
20180249581 Mamezaki et al. Aug 2018 A1
20180340262 Hiranuma Nov 2018 A1
20180342450 Huang et al. Nov 2018 A1
20180342451 Dahlberg et al. Nov 2018 A1
20190239353 Jayaraman Aug 2019 A1
20190269013 Takagi et al. Aug 2019 A1
20190273038 Nagano et al. Sep 2019 A1
20190304877 Mobley et al. Oct 2019 A1
20190327840 Bookbinder et al. Oct 2019 A1
20200227277 Brown et al. Jul 2020 A1
20210043464 Nolet et al. Feb 2021 A1
Foreign Referenced Citations (66)
Number Date Country
100494879 Jun 2009 CN
103080034 May 2013 CN
103219278 Jul 2013 CN
104112696 Oct 2014 CN
104112696 Oct 2014 CN
104364927 Feb 2015 CN
104768320 Jul 2015 CN
104897062 Sep 2015 CN
105448809 Mar 2016 CN
109075080 Dec 2018 CN
0247993 Dec 1987 EP
280918 Sep 1988 EP
2095698 Sep 2011 EP
3166372 May 2017 EP
03-196664 Aug 1991 JP
2001-044197 Feb 2001 JP
2002-134659 May 2002 JP
2003-148931 May 2003 JP
2004-311919 Nov 2004 JP
2004-363212 Dec 2004 JP
2005-257339 Sep 2005 JP
2006-287019 Oct 2006 JP
2007059796 Mar 2007 JP
2008-288577 Nov 2008 JP
2010-074017 Apr 2010 JP
2011-171334 Sep 2011 JP
2011-178642 Sep 2011 JP
2013-106015 May 2013 JP
2013-220958 Oct 2013 JP
2014093406 May 2014 JP
2014-524278 Sep 2014 JP
2015-060981 Mar 2015 JP
2015-082598 Apr 2015 JP
2015-095590 May 2015 JP
2015-146410 Aug 2015 JP
2016213253 Dec 2016 JP
2017-022220 Jan 2017 JP
2017-063109 Mar 2017 JP
2017-098466 Jun 2017 JP
2017-204527 Nov 2017 JP
2018-113392 Jul 2018 JP
2018163986 Oct 2018 JP
10-0803004 Feb 2008 KR
10-2019-0003050 Jan 2019 KR
201238387 Sep 2012 TW
9400966 Jan 1994 WO
0321004 Mar 2003 WO
2004024191 Mar 2004 WO
2005063645 Jul 2005 WO
2006129354 Dec 2006 WO
2008110061 Sep 2008 WO
2011050073 Apr 2011 WO
2012027220 Mar 2012 WO
2015113023 Jul 2015 WO
2015157202 Oct 2015 WO
2016010954 Jan 2016 WO
2016089844 Jun 2016 WO
2016114133 Jul 2016 WO
2016118683 Jul 2016 WO
2016176171 Nov 2016 WO
2017038075 Mar 2017 WO
2017062798 Apr 2017 WO
2017210376 Dec 2017 WO
2018101468 Jun 2018 WO
2018162385 Sep 2018 WO
2019055745 Mar 2019 WO
Non-Patent Literature Citations (77)
Entry
Benjamin et al; “The Adhesion of Evaporated Metal Films on Glass”; Proc. Roy. Soc. A., vol. 261, (1962); pp. 516-531.
Borghi et al; “M2 Factor of Bessel-Gauss Beams”; Optics Letiers; vol. 22, No. 5; (1997) pp. 262-264.
Chen et al. “Development of an AOI system for chips with a hole on backside based on a frame imager” Proc. of SPIE vol. 9903, 2016. 6 pgs.
Choa, Microsystem Technologies, Reliability study of hermetic wafer level MEMS packaging with through-wafer interconnect, Feb. 2009, vol. 15, pp. 677-686 (Year: 2009).
Iijima et al; “Resistivity Reduction By External Oxidation of Cu—Mn Alloy Films for Semiconductor Interconnect Application”; Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 27, 1963-1968 (2009.
Invitation to Pay Additional Fees of the International Searching Authority PCT/US2019/026342; dated Jul. 16, 2019; 14 Pages; European Patent Office.
Invitation to Pay Additional Fees of the International Searching Authority PCT/US2019/057757; dated Mar. 2, 2020; 12 Pages; European Patent Office.
Kiyama et al; “Examination of Etching Agent and Etching Mechanism on Femtosecond Laser Microfabrication of Channels Inside Vitreous Silica Substrates”; J. Phys. Chem. C, 2009, 113, pp. 11560-11566.
Koike et al; “P-33: Cu—Mn Electrodes for a-Si TFT and Its Electrical Characteristics”; SID Symposium Digest of Technical Papers, 41:1, 1343-1346 (2010).
Koike et al; “Self-Forming Diffusion Barrier Layer in Cu—Mn Alloy Metallization”; Appl Phys. Lett. 87, 041911-1-041911-3 (2005).
Microchemicals, “Silicon Wafers, Quartz Wafers, Glass Wafers,” Product Specifications: Brochure. 2014, 28 pgs.
Schott, Schott HermeS (Registered)—Hermetic Through Glass Vias (TGV), Jul. 2016 (Year: 2016).
Shorey; “Leveraging Glass for Advanced Packaging and IoT”; Apr. 21, 2016, Retrieved Form the Internet: URL:http://www.corning.com/media/worldwide/cdt/documents/iMAPs%20-%20Corning%200verview%20-%204-21-16%20FINALpptx.pdf.
Siegman; “New Development in Laser Resonators”; SPIE, vol. 1227, Optical Resonators (1990) pp. 2-14.
Thiele; “Relation Between Catalytic Activity and Size of Particle”; Industrial and Engineering Chemistry, vol. 31, No. 7; (1939) pp. 916-920.
Topper et al; “3-D Thin Film Interposer Based on TGV (Through Glass Vias): An Alternative to Si-Interposer”; IEEE, Electronic Components and Technology Conference; 2010; pp. 66-73.
U.S. Appl. No. 62/846,059; Cai et al. “Silicate Glass Compositions Useful for the Efficient Production of Through Glass Vias”, filed May 10, 2019, 43 pgs.
Wakayama et al. “Small size probe for inner profile measurement of pipes using optical fiber ring beam device” Proc. of SPIE vol. 8563, 2012. 7 pgs.
Wu et al, “A Study on Annealing Mechanisms with Different Manganese Contents in CuMn Alloy”; Journal of Alloys and Compounds, vol. 542, 2012, pp. 118-123.
Yun et al; “P-23:The Contact Properties and TFT Structures of A-IGZO TFTs Combined with Cu—Mn Alloy Electrodes”; SID Symposium Digest of Technical Papers 42:1, 1177-1180, Year: 2011.
Zavyalov, “3D Hole Inspection Using Lens with High Field Curvature” Measurement Science Review, V. 15, No. 1, 2015. pp 52-57.
Chao; “Reliability Study of Hermetic Wafer Level MEMS Packaging with Through-Wafer Interconnect”; Microsystem Technologies; 2009, vol. 15, pp. 677-686.
Anthony et al; “Microfabrication in Foturan Photosensitive Glass Using Focused Ion Beam” ; Proceedings of the World Congress on Enbineering; vol. II; 2007; 6 Pages.
Lueck et al; “Through Glass Vias (TGV) and Aspects of Reliability”; 2015 IEEE Electronic Components and Technology Conference; pp. 672-677 2015.
Bush, Glass seals MEMS for harsh environments, Nov. 2014, Electronics Weekly, <https://www.electronicsweekly.com/news/business/manufacturing/glass-seals-mems-harsh-environments-2014-11/> (Year: 2014).
Chang et al., Communication—Defect-Free Filling of High Aspect Ratio Through Vias in Ultrathin Glass, Nov. 2018, Journal of Electrochemical Society, vol. 166, No. 1 (Year: 2018).
Fu et al., Adhesive enabling technology for directly plating copper onto glass/ceramic substrates, May 2014, 2014 IEEE 64th Electronic Components and Technology Conference (ECTC) (Year: 2014).
Keusseyan et al., Material and Process Developments for Robust and High Reliability Glass Wafers for 2.5D Packaging, Jan. 2015, Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2015 (Year: 2015).
Krohnert et al., Through Glass Vias for hermetically sealed High Frequency Application, Jan. 2019, Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2019 (Year: 2019).
Kuramochi et al., Glass Substrate with TGV(Thru Glass Via) Manufacturing Technology for Display Electronics, Jun. 2017, Society for Information Display Digest of Technical Papers, vol. 48, Issue 1, pp. 1201-1204 (Year: 2017).
Lee et al., Through-glass copper via using the glass reflow and seedless electroplating processes for wafer-level RF MEMS packaging, Jun. 2013, Journal of Micromechanics and Microengineering, vol. 23, No. 8 (Year: 2013).
Li et al., Fabrication of high-density elecliical feed-throughs by deep-reactive-ion etching of Pyrex glass, Dec. 2002, Journal of Microelectromechanical Systems, vol. 11, Issue 6, pp. 625-630 (Year: 2002).
Liu et al., Failure analysis of through-silicon vias in free-standing wafer under thermal-shock test, Jan. 2013, Microelectronics Reliability, vol. 53, Issue 1, pp. 70-78 (Year: 2013).
Mobley et al., High-reliability via interconnections in glass wafers for2.5D packaging, Oct. 2014, Chip Scale Review, vol. 18, No. 5, pp. 36-38 (Year: 2014).
Ogutu et al., Superconformal Filling of Through Vias in Glass Interposers, Jun. 2014, ECS Electrochemistry Letters, vol. 3, No. 8 (Year: 2014).
Shah et al., Low-Loss, High-Linearity RF Interposers Enabled by Through Glass Vias, Nov. 2018, IEEE Microwave and Wireless Components Letters, vol. 28, Issue 11, pp. 960-962 (Year: 2018).
Shorey et al., “Advancements in Fabrication of Glass Interposers”, Electronic Components & Technology Conference,2014, pp. 6.
Sukumaran et al., Low-Cost Thin Glass Interposers as a Superior Alternative to Silicon and Organic Interposers for Packaging of 3-D ICs, Sep. 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, Issue 9, pp. 1426-1433 (Year: 2012).
Takahashi et al., “Development of High Frequency Device using Glass or Fused Silica with 3D Integration,” Electronics Components and Technology Conference, 2017, pp. 758-763.
Takahashi et al., Development of Through Glass Via (TGV) formation technology using electrical discharging for2.5/3D integrated packaging, May 2013, 2013 IEEE 63rd Electronic Components and Technology Conference (Year: 2013).
Topper et al., 3-D Thin Film Interposer Based on TGV (Through Glass Vias): An Alternative to Si-Interposer, Jun. 2010, 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC) (Year: 2010).
Woehrmann et al., Glass based interposers for RF applications up to 100GHz, Sep. 2016, 2016 6th Electronic System-Integration Technology Conference (ESTC) (Year: 2016).
Department of Defense, MIL-STD-750E, Nov. 2006 (Year: 2006).
ESPEC Corp., The Concept of Relative Humidity in HAST, Feb. 2013, <https://www.test-navi.com/eng/research/handbook/pdf/07_TheConceptOfRelativeHumidityInHAST.pdf> (Year: 2013).
Keusseyan et al., RDL Multilayer Metallization Approaches for TGV, Jan. 2017, Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) (Year: 2017).
Schott, “MEMS Tightly Sealed with SCHOTT HermeS (Trademark)”, Jan. 2010, Tech Buzz: Electronic Packaging, Issue 2, <https://www.schott.com/d/epackaging/8e070fc9-4009-40c2-bca7-323542ee3a15/1.4/schott_tech_buzzJan_2010.pdf> (Year: 2010).
TJ Green Associates, “Hermetic vs “Near Hermetic” Packagingi A Technical Review”, Sep. 2016, <https://www.tjgreenllc.com/2016/09/21/hermetic-vs-near-hermetic-packaging-a-technical-review/> (Year: 2016).
University of Maryland, Temperature Humidity Bias, Jun. 2008, <https://calce.umd.edu/temperature-humidity-bias> (Year: 2008).
Allvia; “Allvia Launches New Product Lines for Through Glass Vias (TGV) and Through Ouartz Vias (TQV)”; 2 Pages; https://www.allvia.com/news/1606_allvia_launches_new_product_lines_for_through_glass_vias_and_through_quartz_vias.html; retrieved on Sep. 30, 2019.
Bain et al; “Formation of Monolayers by the Coadsorption of Thiols on Gold: Variation in the Head Group, Tail Group, and Solvent”; Journal of the American Chemical Society; 111; pp. 7155-7164 (1989.
Cui et al; “The Evolution Of Pd/Sn Catalytic Surfaces in Electroles Copper Deposition”; Journal of the Electrochemical Society; 158, (3), pp. D172-D177 (2011.
Demir et al; “First Demonstration of Reliabi F Copper-Plated 30m Diameter Through-Package-Vias in Ultra-Thin Bare Glass Interposers” 2014 IEEE 64th Electronic Components and Technology Conference (ECTC.
Demir et al; “Reliability of Copper Through-Package Vias in Bare Glass Interposers” ; IEEE Transactions on Components, Packaging and Manufacturing Technology; vol. 7, No. 6 pp. 829-837; (2017.
Dixit et La; “Structural and Electronic Properties of A Mn Oxide Diffusion Barrier Layer Formed By Chemical Vapor Deposition”; IEEE Transactions on Device and Materials Reliability, vol. 11, No. 2; pp. 295-302 (2011.
Dow et al; “Through-Hole Filling by Copper Electroplating”; Journal of the Electrochemical Society, 155 (12) D750-D757, (2008.
Gordon et al; “Chemical Vapor Deposition (CVD) of Manganese Self-Aligned Diffusion Barries for Cu Interconnections in Microelectronics”; Advanced Metallization Conference 2008; pp. 321-329 (2009.
Hunegnaw et al; Vitrocoat GI—Ultra-Thin Adhesive Layer for Metallization of Glass Iterposer: 2015 10th International Microsystems, Packaging, Assembly, and Circuits Technology Conference (Impact) 4 Pages.
Intergrace, “Borosilicate Glass: Technical Glass By Pulles & Hanique: Duan & Pyrex,” Pulles & Hanique B.V., 2 Pgs. Published Mar. 15, 2012, Retrieved From: https://web.archive.org/web/20120315092729/http://www.pulleshanique.com/02_borosilicate-glass.htm.
Kanemoto et al; “Electroless Copper Plating Process by Applying Alternating One-Side Air Stirring Method for High-Aspect-Ratio Through-Holes”; J. Electrochem. Soc. 2017 vol. 164, Issue 12, D771-D777.
Liu et al; “Electroless and Electrolytic Copper Plating of Glass Interposer Combined with Metal Oxide Adhesion Layer for Manufacturing 3D RF Devices” ; IEEE 66th Electronic Components and Technology Conference; pp. 62-67 (2016.
Lu et al; “Thermo-Mechanical Reliability of 3-D Ics Contianing Through Silicon Vias”; IEEE Electronic Components and Technology Conference; pp. 630-634 (2009.
U.S. Appl. No. 16/578,751 Titled; “Methods for Increasing Adhesion Between Metallic Films and Glass Surfaces and Articles Made Therefrom”, Bookbinder et al; filed Sep. 23, 2019. 37 pgs.
Metwalli et al; “Surface Characterization of Mono-, Di-, and Tri-Aminosiline Treated Glass Surface”; Journal of Colloid and Interface Science, 298 (2006) pp. 825-831.
Neishi et al; “Formation of a Manganese Oxide Barrier Layer with Thermal Chemical Vapor Deposition for Advanced Large-Scale Integrated Interconnect Structure”; Appl. Phys. Lett.; 93; pp. 032106-1- 032106-3 (2008).
Ogutu et al; “Hybrid Method for Metallization of Glass Interposer”; Journal of the Electrochemical Society; vol. 160; No. 12; pp. D3228-D3236 (2013).
Ogutu et al; “Superconformal Filling of High Aspect Ration Through Glass Vias (TGV) for Interposer Applications Using TNBT and NTBC Additives”; Journal of the Electrochemical Society; 162 (9) pp. D457-D464 (2015).
Pallavicini et al; “Self-Assembled Monolayers of Silver Nanoparticles Firmly Grafted on Glass Surfaces: Low Ag+ Release for an Efficient Antibacterial Activity”; Journal of Colloid and Interface Science; 350 (2010) 110-116.
Phuong et al; “Structural Characterization of a Manganese Oxide Barrier Layer Formed by Chemical Vapor Deposition for Advanced Interconnects Application on SiOC Dielectric Substrates”; J. Phys. Chem. C; 117; pp. 160-164 (2013.
Ryu et al; “Impact of Near-Surface Thermal Stresses on Interfacial Reliability of Through-Silicon Vias for 3-D Interconnects”; IEEE Transactions on Device and Materials Reliability 11 (1) pp. 35-43 (2011.
Shachman-Diamond et al; “30 Years of Electroless Plating for Semiconductor and Polymer Mirco-Systems”; Microelectronic Engineering; 132 (2015) pp. 35-45.
Shen et al; “Periodic Pulse Reverse Cu Plating for Through-Hole Filling” ECS Electrochem. Lett. 2013 vol. 2, Issue 5, D23-D25, 2013.
Shorey et al; “Advancements in Fabrication of Glass Interposers”; 2014 Electronic Components & Technology Conference; IEEE; pp. 20-25 (2014.
Shorey et al; “Progress and Application of Through Glass Via (TGV) Technolgy”, Corning Incorporated; 6 Pages (2016.
Sukumaran; “Through-Package-Via Hole Formation, Metallization and Characterization for Ultra-Thin 3D Glass” 2014; Georgia Institute of Technology, a Dissertation; 201 Pages.
Takahashi et al; “Development of High Frequency Device Using Glass or Fused Silica with 3D Integration”; 67th Electornic Componsents and Technology Conference; IEEE; pp. 758-763 (2017.
Aric Shorey, et al., “Advancements in Fabrication of Glass Interposers”, 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), 2014, pp. 20-25.
Chinese Patent Application No. 202080025773.9, Office Action, dated Dec. 26, 2022, 4 pages Chinese Patent Office.
Related Publications (1)
Number Date Country
20200270163 A1 Aug 2020 US
Provisional Applications (1)
Number Date Country
62808566 Feb 2019 US