The invention relates to a glass pane, a method for producing the glass pane, and its use as a head-up display.
Head-up displays (HUDs) are widespread in aviation. The systems mounted in the direct field of vision of pilots display the most important data about their own and other aircraft. These systems, established and much used in the military sector, also have many possibilities for use in the civil sector, in particular in the automobile sector. Thus, data about the speed, the distance from the preceding vehicle or directional data from the navigation equipment can, in contrast to head-down displays (HDDs), be displayed right at the eye level of the driver. These capabilities clearly improve the traffic safety of the vehicle as the driver cannot watch the traffic situation while looking at the instruments. At increased speeds of the motor vehicle, on freeways, for example, the distance traveled “blind” by the vehicle can be significant and can cause an increased accident risk.
If head-up displays (HUDs) are illuminated by an external light source, such as a laser, the light fields can be seen only with difficulty depending on the prevailing light and weather conditions. Strong sunlight and light reflection through drops of water or particles of dirt make seeing the data projected in the head-up display significantly more difficult. This is particularly clearly evident with virtual images that are projected onto the display area, for example, the front window. Disadvantages of these conventional HUDs are also the limited field of vision for presentation of the projected data. Real images generated on the display area by electromagnetically excited dyes or pigments constitute a possible approach to a solution. In this case, the entire pane can, in principle, be used as a data carrier.
Because of the size of the pane and the tendency of the pigments to distribute themselves uniformly in the adhesive layer, relatively high concentrations of the chromophoric pigments are necessary. The treatment of the glass pane in the autoclave intensifies the dissolution of the pigments in the adhesive layer. However, in many cases, high pigment concentrations are very expensive and sometimes require special precautionary measures in light of the regulatory classification and handling of pigments or dyes as hazardous substances.
DE 603 14 613 T2 discloses a photochromic composition and a method for its production. The composition contains a linear, cross-linkable polyurethane or polyurethane-urea polymer and a photochromic organic compound.
WO 2004/099172. A1 discloses a photochromic composition on a benzo-, naphtho-, and phenathrochromic structure substituted with an arylamine group.
U.S. Pat. No. 7,230,767 B2 discloses an image display system in a motor vehicle window pane. The arrangement contains luminescent compounds on the outward facing side of the inner pane. The luminescent compounds are illuminated by a light source and appear in the field of vision of an automobile driver.
The object of the invention is to provide a glass pane that can be used as a head-up display and enables good recognizability as well as high luminosity in one or a plurality of colors under all light conditions even with low pigment or dye concentrations.
The object of the present invention is accomplished according to the invention by means of the independent claim 1. Preferred embodiments are given by the subclaims.
A method according to the invention for producing a glass pane with head-up display, a device, and their use emerge from other coordinated claims.
The glass pane according to the invention comprises at least one pane and at least one polymer adhesive layer. The pane preferably contains flat glass (float glass), quartz glass, borosilicate glass, soda lime glass. The pane preferably has average light transmission (unless otherwise specified as light transmission for light type A and a 2°—standard observer according to DIN 5033 for light of the wavelengths from 380 nm to 780 nm) of more than 80%, preferably more than 90% The pane preferably has light transmission of >70%, particularly preferably 75% in the wavelength range from 360 nm to 420 nm.
The adhesive layer contains at least a first luminescent pigment, a thermoplastic film, and a. barrier film. The adhesive layer is disposed with the thermoplastic film side on the pane and fixedly bonded to the pane. The barrier film is disposed on the side of the adhesive layer facing away from the pane. The thermoplastic film preferably contains PVB (polyvinyl butyral) or EVA (poly-ethyl-vinyl acetate). The luminescent first pigments are preferably contained in the entire first thermoplastic film volume. The barrier film acts as a diffusion barrier for the luminescent pigments. The anti-scratch coating on the side of the barrier film facing away from the pane acts as a hard, scratch-resistant surface. The barrier film preferably contains less than 20%, particularly preferably less than 10%, and more particularly preferably less than 1% of the concentration of luminescent pigment than in the thermoplastic film. The luminescent pigments contain, in the context of the invention, organic and/or inorganic luminescent compounds, ions, aggregates, and/or molecules. Luminescence includes fluorescence and/or phosphorescence processes, excitation with electromagnetic radiation, and emission of electromagnetic radiation. The radiation emitted preferably has a different wavelength from the exciting radiation. The radiation emitted preferably has a higher wavelength. The thermoplastic film and further thermoplastic films, if any, preferably have light transmission of >70% particularly preferably >82%, measured at a wavelength of 405 nm. The light transmission of the thermoplastic films can be adjusted by film thickness, polymer composition, degree of polymerization, distribution of polymerization, UV blockers, or plasticizers.
The barrier film preferably contains polybutylene terephthalate (PBT), polycarbonate (PC), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN), poly vinyl chloride (PVC), polyvinyl fluoride (PVF), polyvinyl butyral (PVB) without plasticizer, and/or copolymers thereof, particularly preferably polyethylene terephthalate (PET).
The barrier film preferably has light transmission of >70%, particularly preferably >80%, measured at a wavelength of 405 nm.
The thermoplastic film preferably has light transmission of >75%, preferably >82%, in the wavelength range from. 390 nm to 410 nm.
The adhesive layer preferably contains PVC (polyvinyl chloride), PU (polyurethane), EVA (poly-ethyl vinyl acetate and mixtures as well as copolymers thereof.
The barrier film preferably contains a second luminescent pigment or dye. The second luminescent pigment preferably has a different excitation wavelength and emission wavelength from the first luminescent pigment. Alternatively, further thermoplastic films with luminescent pigments and barrier films lying therebetween can be disposed.
The adhesive layer preferably contains no other UV blockers active in the range of the excitation spectrum of the fluorescent particles between 360 nm and 400 nm. The luminescent pigments according to the invention preferably act as UV blockers.
The luminescent pigment preferably has a local excitation maximum in the range from 350 nm to 450 nm, particularly preferably 390 nm to 420 nm.
The luminescent pigment preferably has a local emission maximum in the range from 400 nm to 800 nm.
The anti-scratch coating preferably contains organically and/or inorganically bound SiO2, TiO2, Al2O3, Si3N4, preferably polysiloxane. The anti-scratch coating is disposed on the barrier film on the side of the adhesive layer facing away from the pane.
The adhesive layer preferably has a thickness of 0.30 mm to 1.2 mm, preferably 0.70 mm to 0.90 mm. The barrier film preferably has a thickness of 0.10 mm to 0.30 mm. The thermoplastic film preferably has a thickness of 0.3 mm to 0.9 mm.
The luminescent pigment preferably contains a hydroxyalkyl terephthalate with the formula: R1—COO—P(OH)x(0-4)-COO—R2, where R1, R2 is an alkyl or allyl residue with 1 to 10 C atoms, P is a phenyl ring, OH is hydroxyl groups bonded to the phenyl ring, and x is the number of hydroxyl groups bonded to the phenyl ring. The general structural formula is:
The luminescent pigment preferably contains diethyl 2,5-dihydroxyterephtalate. The structural formula is:
The luminescent pigment preferably contains benzopyranes, naphthopyranes, 2H-naphthopyranes, 3H-naphthopyranes, 2H-phenanthropyranes, 3H-phenanthropyranes, photochromic resins, coumarins, xanthines, naphthalinic acid derivatives, oxazoles, stilbenes, styryls, perylenes, naphthalimides, naphthals, phenyls, xanthenes, lanthanides, preferably Y2O3:Eu, YVO4:Tm, Y2O2S:Pr, Gd2O2S:Tb, and/or mixtures thereof.
The thermoplastic film preferably contains 0.1 g/m2 to 15 g/m2 of luminescent pigment. The quantity indications are based on a thickness of the thermoplastic film of roughly 0.76 mm.
The pane preferably has a thickness of 1 mm to 8 mm, particularly preferably 1.4 mm to 2.5 mm.
The barrier film preferably has a coating, preferably a metallic coating, particularly preferably, ZnO, Ag, In2O3, TiO2, AlN. The coating intensifies the action of the barrier film as a diffusion barrier for the luminescent pigments or dyes. The coating is preferably disposed on the barrier film adjacent the thermoplastic film.
The invention further comprises a device for displaying a pictogram, numbers, and graphic characters. The device comprises a glass pane as described above and a light source directed to the glass pane. The light source emits electromagnetic radiation, preferably electromagnetic radiation of the wavelength of 360 nm to 420 nm. The radiation emitted by the light source is absorbed by the luminescent pigments in the adhesive layer and is re-emitted with a changed wavelength. This emitted radiation is perceived by the viewer as a pixel on the pane. The light source preferably comprises a diode laser or laser scanner.
The invention further comprises a method for producing a glass pane. In a first step, a thermoplastic film (preferably PVB or EVA) and a barrier film (preferably PET) with an anti-scratch coating (preferably polysiloxane) are bonded to form an adhesive layer (lamination film) on the outside of the barrier film. Then, a luminescent pigment is applied on the thermoplastic film side of the adhesive layer. In the following step, the adhesive layer is laminated between a pane (on the thermoplastic film side) and a lamination pane (on the barrier film side having the anti-scratch coating). The lamination preferably occurs at temperatures from 120° C. to 170° C., a pressure of 10 bar to 15 bar, and for a period of 30 min to 240 min. During lamination, the luminescent pigments are distributed preferably uniformly in the entire thermoplastic film and only slightly in the barrier film. After lamination, the barrier film preferably contains less than 1 wt.-% of a first luminescent pigment in the thermoplastic film. Subsequently, the lamination pane is carefully removed and a composite of a pane and an adhesive layer is obtained.
The luminescent pigment is preferably applied by spraying, screen printing, offset printing, ink jet printing, and/or flexographic printing.
The invention further comprises the use of the glass pane as transparent or (partially) tinted display systems, head-up display in buildings, billboards, motor vehicles, airplanes, and/or helicopters, particularly preferably as windshield in motor vehicles or as a billboard.
In the following, the invention is explained in detail with reference to the drawings and an exemplary embodiment as well as a comparative example. The drawings are purely schematic representations and are not to scale. They in no way restrict the invention.
They depict:
(1) pane,
(2) adhesive layer,
(2a) luminescent pigment or dye,
(2b) thermoplastic film,
(2c) barrier film,
(2d) anti-scratch coating,
(2e) coating between barrier film and thermoplastic film,
(3) lamination pane,
(4) light source,
(5) viewer, and
(6) second pane.
Number | Date | Country | Kind |
---|---|---|---|
10177778 | Sep 2010 | EP | regional |
The present application is a Continuation of U.S. application Ser. No. 13/819,197 filed on Jun. 3, 2013, which, in turn, is the US national stage of International Application PCT/EP2011/064354 filed on Aug. 22, 2011 which, in turn, claims priority to European Patent Application EP 10177778.7 filed on Sep. 21, 2010.
Number | Name | Date | Kind |
---|---|---|---|
2490662 | Thomsen | Dec 1949 | A |
5549786 | Jones et al. | Aug 1996 | A |
5573842 | Gutweiler | Nov 1996 | A |
6002505 | Kraenert et al. | Dec 1999 | A |
6072686 | Yarbrough | Jun 2000 | A |
6670603 | Shimada et al. | Dec 2003 | B2 |
6708595 | Chaussade et al. | Mar 2004 | B1 |
6879499 | Matsumoto | Apr 2005 | B2 |
7012746 | Bermel | Mar 2006 | B2 |
7090355 | Liu et al. | Aug 2006 | B2 |
7230767 | Walck et al. | Jun 2007 | B2 |
7261842 | Henry et al. | Aug 2007 | B2 |
8072686 | Cui et al. | Dec 2011 | B2 |
8339332 | Kanou | Dec 2012 | B2 |
8487277 | Labrot et al. | Jul 2013 | B2 |
8519362 | Labrot et al. | Aug 2013 | B2 |
8722195 | Labrot et al. | May 2014 | B2 |
20010005262 | Tsurushima | Jun 2001 | A1 |
20010041251 | Bravet et al. | Nov 2001 | A1 |
20020120916 | Snider, Jr. | Aug 2002 | A1 |
20030166788 | Papenfuhs | Sep 2003 | A1 |
20030193044 | Henry et al. | Oct 2003 | A1 |
20050007562 | Seki et al. | Jan 2005 | A1 |
20050074591 | Zagdoun | Apr 2005 | A1 |
20050077647 | Coyle et al. | Apr 2005 | A1 |
20060065735 | Li et al. | Mar 2006 | A1 |
20060153558 | Tan et al. | Jul 2006 | A1 |
20060171007 | Chen et al. | Aug 2006 | A1 |
20060221021 | Hajjar et al. | Oct 2006 | A1 |
20060221022 | Hajjar | Oct 2006 | A1 |
20060227087 | Hajjar et al. | Oct 2006 | A1 |
20060244925 | Seki et al. | Nov 2006 | A1 |
20070014318 | Hajjar et al. | Jan 2007 | A1 |
20070046176 | Bukesov et al. | Mar 2007 | A1 |
20070187616 | Burroughs et al. | Aug 2007 | A1 |
20070188417 | Hajjar et al. | Aug 2007 | A1 |
20070206258 | Malyak et al. | Sep 2007 | A1 |
20070228927 | Kindler et al. | Oct 2007 | A1 |
20080203901 | Bukesov et al. | Aug 2008 | A1 |
20080231738 | Iida | Sep 2008 | A1 |
20080259431 | Weichmann et al. | Oct 2008 | A1 |
20080291140 | Kent et al. | Nov 2008 | A1 |
20080318063 | Anderson | Dec 2008 | A1 |
20090033884 | Yonekubo et al. | Feb 2009 | A1 |
20090115100 | Nakai et al. | May 2009 | A1 |
20090141496 | Yamamoto et al. | Jun 2009 | A1 |
20090153582 | Hajjar et al. | Jun 2009 | A1 |
20090174632 | Hajjar et al. | Jul 2009 | A1 |
20100063176 | Kato et al. | Mar 2010 | A1 |
20100243858 | Newman et al. | Sep 2010 | A1 |
20100253600 | Seder et al. | Oct 2010 | A1 |
20110073773 | Labrot et al. | Mar 2011 | A1 |
20110074660 | Hajjar et al. | Mar 2011 | A1 |
20110076473 | Lin et al. | Mar 2011 | A1 |
20110109529 | Hajjar et al. | May 2011 | A1 |
20110141150 | Hajjar et al. | Jun 2011 | A1 |
20110164158 | Iida | Jul 2011 | A1 |
20110176208 | Kindler et al. | Jul 2011 | A1 |
20110181948 | Kindler et al. | Jul 2011 | A1 |
20110291554 | Bukesov et al. | Dec 2011 | A1 |
20120068083 | Labrot et al. | Mar 2012 | A1 |
20120299328 | Labrot et al. | Nov 2012 | A1 |
20140218803 | Labrot et al. | Aug 2014 | A1 |
20140232707 | Alschinger et al. | Aug 2014 | A1 |
20160011414 | Joseph | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
1464884 | Dec 2003 | CN |
101302301 | Nov 2008 | CN |
822 714 | Nov 1951 | DE |
40 24 330 | Feb 1992 | DE |
199 18 811 | Nov 2000 | DE |
100 02 152 | Jul 2001 | DE |
103 50 529 | Mar 2005 | DE |
10 2005 061 855 | Jul 2007 | DE |
603 14 613 | Mar 2008 | DE |
10 2009 044 181 | Apr 2011 | DE |
0 157 030 | Oct 1985 | EP |
0 597 391 | May 1994 | EP |
0 734 852 | Oct 1996 | EP |
0 990 941 | Apr 2000 | EP |
2 110 237 | Oct 2009 | EP |
2 233 962 | Sep 2010 | EP |
2 929 016 | Sep 2009 | FR |
2 929 017 | Sep 2009 | FR |
2 424 382 | Sep 2006 | GB |
7-149988 | Jun 1995 | JP |
9-327898 | Dec 1997 | JP |
10-119110 | May 1998 | JP |
2001-113588 | Apr 2001 | JP |
2001-249399 | Sep 2001 | JP |
2002-241371 | Aug 2002 | JP |
2003-340851 | Dec 2003 | JP |
2004-341210 | Dec 2004 | JP |
2007-1122 | Jan 2007 | JP |
2007-527548 | Sep 2007 | JP |
2008-235681 | Oct 2008 | JP |
2008-260498 | Oct 2008 | JP |
2009-86182 | Apr 2009 | JP |
2009-139940 | Jun 2009 | JP |
2009-145846 | Jul 2009 | JP |
2009-539120 | Nov 2009 | JP |
2010-243940 | Oct 2010 | JP |
2010-271443 | Dec 2010 | JP |
10-1999-0071481 | Sep 1999 | KR |
2000-0068557 | Nov 2000 | KR |
10-2005-0066398 | Jun 2005 | KR |
WO-0194496 | Dec 2001 | WO |
WO-2004099172 | Nov 2004 | WO |
WO-20070398503 | Apr 2007 | WO |
WO-2008132368 | Nov 2008 | WO |
WO-2010139889 | Dec 2010 | WO |
WO-2011042384 | Apr 2011 | WO |
Entry |
---|
International Search Report for the Application No. PCT/EP2012/064666 dated Oct. 5, 2012. |
Written Opinion of the International Searching Authority (PCT/ISA/237) for Application No. PCT/EP2012/064666 dated Oct. 5, 2012. |
Day, M. et al., “Photochemical Degradation of Poiy(ethyiene Terephthalate). I. Irradiation Experiments with the Xenon and Carbon Arc”, Journal of Applied Polymer Science, 1972, vol. 16, pp. 175-189. |
Edge, M. et al., “Identification of luminescent species contributing to the yellowing of poly(ethylene terephthalate) on degradation”, Polymer. 1995, vol. 36, No. 2, pp. 227-234. |
International Search Report for the Application No. PCT/EP2010/064734 dated Jan. 19, 2011. |
Written Opinion of the International Searching Authority (PCT/ISA/237) for Application No. PCT/EP2010/064734 dated Jan. 19, 2011. |
Non-Final Office Action for U.S. Appl. No. 13/499,235 from the United States Patent and Trademark Office dated Oct. 1, 2013. |
Notice of Allowance for U.S. Appl. No. 13/499,235 from the United States Patent and Trademark Office dated Mar. 14, 2014. |
International Search Report for the Application No. PCT/EP2011/064354 dated Nov. 3, 2011. |
Written Opinion of the International Searching Authority (PCT/ISA/237) for Application No. PCT/EP2011/064354 dated Nov. 3, 2011. |
Written Opinion of the International Searching Authority (PCT/ISA/237) for Application No. PCT/EP2012/052338 dated Nov. 5, 2012. |
International Search Report for the Application No. PCT/EP2012/05233 dated Nov. 5, 2012. |
Non-Final Office Action for U.S. Appl. No. 14/110,916 from the United States Patent and Trademark Office dated Nov. 12, 2015. |
Final Office Action for U.S. Appl. No. 14/110,916 from the United States Patent and Trademark Office dated May 13, 2016. |
Notice of Allowance for U.S. Appl. No. 14/110,916 from the United States Patent and Trademark Office dated Jan. 4, 2017. |
Number | Date | Country | |
---|---|---|---|
20170184845 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13819197 | US | |
Child | 15459996 | US |