Glass product machining apparatus

Information

  • Patent Grant
  • 6419443
  • Patent Number
    6,419,443
  • Date Filed
    Monday, April 26, 1999
    25 years ago
  • Date Issued
    Tuesday, July 16, 2002
    22 years ago
Abstract
A glass product machining apparatus comprises a grindstone rotatable around an axis by means of a motor, moving table movable under the grindstone in the cross direction of the grindstone, frame for supporting the grindstone for up-and-down motion, lift, guides, supporting arms, pressure cylinder supported on the frame, and dressing machine for dressing or truing the grindstone. The pressure cylinder serves to apply a fixed elastic load to the grindstone as the grindstone shifts its position upward. A glass panel is located on the moving table. The panel moves together with the table. When the panel passes under the grindstone, an outer peripheral surface of the grindstone is brought into contact with the surface of the panel with a fixed force of pressure by the pressure cylinder. The grindstone relatively moves along the curved surface of the panel as it grinds the panel surface.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a glass product machining apparatus used to shape the surface of a glass product having a surface, such as a panel that constitutes the front portion of a Braun tube or cathode ray tube of a television set.




After a glass product having a surface, e.g., a glass panel that constitutes the front portion of a cathode ray tube of a television set, is press-molded, its surface is polished and finished into a smooth one. Conventionally, the panel surface is polished in a manner such that a polishing slurry is poured onto it as a polisher is slid thereon to correct its shape.





FIGS. 13 and 14

show the basic concept of the conventional polishing method. In these drawings, symbol P designates a panel that has a surface. The panel P is placed on a moving table


1


. After the panel P is fixed to the table


1


, a polisher


3


is brought into contact with the surface of the panel P under a fixed pressure F. Then, the moving table


1


is reciprocated in an axial direction T of the panel P, and a polishing slurry Q is poured into the gap between the polisher


3


and the panel P by means of a hose


4


, whereupon the surface of the panel P is polished. In doing this, the whole panel surface can be polished by gradually moving the polisher


3


in a direction (indicated by arrow S in

FIG. 13

) perpendicular to the moving direction T of the moving table


1


. In moving the polisher


3


in the direction S, the polisher


3


is inclined corresponding to the curvature of the surface of the panel P.




There are three types of polishers


3


for three different stages of polishing, rough polishing, medium-roughness polishing, and finish polishing. These polishers of different types may be prepared and changed with the progress of polishing. Alternatively, a machine is used exclusively for each polisher. In either case, a polishing slurry for each polishing stage is poured into a sliding zone between the polisher


3


and the panel P as the panel surface is polished.




In the conventional polishing system arranged in this manner, however, the surface of the glass product must be polished as the polishing slurry is poured. Correcting distortion of the product surface and polishing the surface take much time, so that the operating efficiency lowers inevitably.




BRIEF SUMMARY OF THE INVENTION




Accordingly, the object of the present invention is to provide a glass product machining apparatus capable of efficiently shaping the surface of a glass product in a short time.




According to the present invention, there is provided a glass product machining apparatus for machining and finishing a surface of a glass product, which comprises a rotatable grindstone, a moving table horizontally movable under the grindstone, supporting means for supporting the grindstone for up-and-down motion, and elastic load applying means for applying a fixed elastic load to the grindstone supported by the supporting means as the position of the grindstone is shifted upward. The glass product is placed on the moving table. As the glass product, along with the moving table, moves under the grindstone, the grindstone is brought into contact with the surface of the glass product with a fixed force of pressure by the elastic load applying means. In this state, the grindstone relatively moves along the surface of the glass product, thereby grinding the product surface.




According to the invention, moreover, there is provided another glass product machining apparatus, which comprises a rotatable grindstone, a moving table horizontally movable under the grindstone, supporting means for supporting the grindstone for up-and-down motion, and position control means for controlling the position of the grindstone supported by the supporting means. The glass product is placed on the moving table. As the glass product, along with the moving table, moves under the grindstone, the position control means controls the position of the grindstone that grinds the surface of the glass product.




In the glass product machining apparatus of the invention constructed in this manner, the glass product is caused to pass under the rotating grindstone, and the surface of the glass product is ground by means of the grindstone, whereupon the surface of the glass product is finished. Thus, according to the apparatus of the invention, a polishing slurry, which is essential to the conventional polishing system, is unnecessary, so that the machining time can be shortened by a large margin. Accordingly, the efficiency of operation for finishing the glass product is securely improved. Since the polishing slurry is not used, moreover, the cost of equipment, environmental conditions, etc. can be improved considerably.




Preferably, the apparatus according to the invention is provided with a dressing machine for dressing or truing the grindstone in case of loading and so on. With this arrangement, loading of the grindstone can be easily corrected by means of the dressing machine so that the grindstone can be reused.




Preferably, furthermore, the apparatus according to the invention is provided with inclination adjusting means for correspondingly inclining the grindstone or the glass product when the surface of the glass product on the moving table is inclined at an angle to the longitudinal axis of the grindstone in the width direction of the glass product, thereby adjusting the inclination of the grindstone or the glass product so that the grindstone is in contact with the product surface throughout its length. If the surface of the glass product on the moving table is inclined with respect to the longitudinal axis of the grindstone in the width direction thereof, with this arrangement, the inclination adjusting means can bring the grindstone into contact with the product surface throughout its length despite the inclination, so that the product surface can be ground uniformly.




In the glass product machining apparatus according to the invention, the axial length of the grindstone may be substantially equal to the width of the glass product, so that the whole surface of the glass product can be ground at a stroke when the glass product passes once under the grindstone. Alternatively, in the apparatus of the invention, the axial length of the grindstone may be shorter than the width of the glass product, so that the grindstone is moved in the width direction of the glass product with each of times the glass product is caused to pass under the grindstone as the whole surface of the glass product is ground.




Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING




The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.





FIG. 1

is a front view, partially in section, showing a glass product machining apparatus according to a first embodiment of the present invention;





FIG. 2

is a side view of the glass product machining apparatus shown in

FIG. 1

;





FIG. 3

is a plan view of a part of the glass product machining apparatus shown in

FIG. 1

;





FIG. 4

is a side view of the part of the glass product machining apparatus shown in

FIG. 1

;





FIG. 5

is a sectional view of a grindstone supporting portion of the glass product machining apparatus shown in

FIG. 1

;





FIG. 6

is a perspective view conceptually showing the basic configuration of the glass product machining apparatus according to the first embodiment of the invention;





FIG. 7

is a perspective view conceptually showing the basic configuration of the glass product machining apparatus shown in

FIG. 6

that uses a shorter grindstone;





FIG. 8

is a front view, partially in section, showing a glass product machining apparatus according to a second embodiment of the invention;





FIG. 9

is a side view of the glass product machining apparatus shown in

FIG. 8

;





FIG. 10

is a perspective view conceptually showing the basic configuration of the glass product machining apparatus shown in

FIG. 8

;





FIG. 11

is a perspective view conceptually showing the basic configuration of the glass product machining apparatus shown in

FIG. 8

that uses a shorter grindstone;





FIG. 12

is a sectional view showing an example of inclination adjusting means for correcting a crosswise inclination, if any, of the surface of the glass product;





FIG. 13

is a side sectional view of a conventional polishing machine; and





FIG. 14

is a front sectional view of the polishing machine shown in FIG.


13


.











DETAILED DESCRIPTION OF THE INVENTION




Preferred embodiments of the present invention will now be described with reference to the accompanying drawings of

FIGS. 1

to


12


.





FIGS. 1

to


6


show a first embodiment of the present invention.

FIG. 1

is a front view of a machining apparatus A for machining the surface of a glass product (panel P) such as a cathode ray tube, and

FIG. 2

is a side view of the apparatus A. The machining apparatus A comprises a base


10


. As shown in

FIG. 3

, guide rails


11


are arranged above the base


10


. A moving table


13


is located on the rails


11


so that it can reciprocate horizontally along the rails


11


. The table


13


is moved in the longitudinal direction (direction indicated by arrow X in

FIG. 3

) along the guide rails


11


by means of a feed mechanism


100


, which uses a motor


12


as its drive source. The feed mechanism


100


includes a feed screw


101


, which is rotated by means of a motor


12


such as a servomotor, and a nut member


102


that mates with the screw


101


. The nut member


102


provided on the table


13


. When the feed screw


101


is rotated by the motor


12


, in this case, the nut member


102


advances screwing corresponding to the rotating direction and speed of the screw


101


, whereupon the table


13


moves in the direction indicated by arrow X.




A frame


14


is set up on the base


10


. A lift


15


is attached to the frame


14


. The lift


15


is supported for up-and-down motion on the frame


14


by means of LM (linear motion) guides


16


that extend in the vertical direction. The lift


15


can be accurately moved up and down with a small force in a manner such that its weight is balanced by means of a counterweight


17


.




A pair of supporting arms


19


, left and right, are opposed to each other at the lower part of the lift


15


. As shown in

FIG. 5

, a fitting hole


20


is formed in each arm


19


. A bearing


21


is set in each hole


20


. A main spindle


22


is horizontally supported for rotation by means of the bearings


21


. A cylindrical formed grindstone


23


is fixed to the outer periphery of the middle portion of the spindle


22


. The grindstone


23


rotates integrally with the spindle


22


. The grindstone


23


has an outer peripheral surface


23




a


that centers around the axis Z. The grindstone


23


may alternatively be hourglass-shaped, as indicated by two-dot chain line C in FIG.


5


. The frame


14


, lift


15


, supporting arm


19


, bearing


21


, etc. constitute supporting means


18


for supporting the grindstone


23


for vertical movement and rotation around the axis Z.




A spring-type pressure cylinder


24


for use as elastic load applying means is provided on the upper part of the frame


14


. It is used to apply a fixed elastic load to the vertically movable grindstone


23


as the grindstone


23


shifts its position upward. The cylinder


24


is designed to urge the grindstone


23


downward by means of the repulsive force of compressed gas charged therein or the elastic force of a spring, for example.




A plurality of elastic bodies


25


of rubber or the like for use as inclination adjusting means are interposed between the outer peripheral surface of each bearing


21


for supporting the main spindle


22


of the grindstone


23


and the inner peripheral surface of each corresponding fitting hole


20


. The spindle


22


can incline at a narrow angle to the horizontal direction as the elastic bodies


25


are elastically deformed.




A grindstone driving motor


29


is mounted on a holder


28


beside the frame


14


. An output shaft


29




a


of the motor


29


and the main spindle


22


are connected to each other by means of a universal joint


30


. The joint


30


enables the grindstone


23


to shift its position in the vertical direction along the LM guides


16


.




A dressing machine


33


is provided on one end portion of the moving table


13


. As shown in

FIGS. 3 and 4

, the machine


33


has a holder


35


on the table


13


. The holder


35


is supported on guide rails


34


, which extend in a direction Y perpendicular to the moving direction X of the table


13


. The holder


35


is driven to move in the direction Y along the rails


34


by means of a drive mechanism


36


. A main spindle


38


, which is rotated by means of a motor


37


, is provided on the holder


35


. A dresser


39


is mounted on the spindle


38


. The spindle


38


that supports the dresser


39


extends parallel to and is located on the same height level as the main spindle


22


that supports the grindstone


23


. The dresser


39


, which is represented by a diamond dresser, for example, has functions to dress and true the working surface (outer peripheral surface


23




c


) of the grindstone


23


into an accurate shape.




Dressing is an operation to correct the shape of the working surface of the grindstone


23


in order to expose fresh sharp abrasive cutting edges on the working surface of the grindstone


23


when the working surface is loaded. Truing is an operation to rebalance the grindstone


23


or reshape its working surface into a nearly new state when the grindstone


23


is deformed due to uneven wear or from some other cause.




In

FIGS. 1

,


2


, etc., symbol P designates a panel as an example of the glass product that constitutes the front portion of the cathode ray tube of the television set. As shown in

FIG. 2

, the surface of the panel P is an upwardly convex surface that is curved gently. After press molding, the curved surface of the panel P is shaped into a predetermined shape by means of the machining apparatus A according to the invention.




The following is a description of a process for forming the surface of the panel P by using the machining apparatus A according to the present embodiment. First, the panel A is fixed on the moving table


13


with its curved surface upward. Then, the grindstone


23


is rotated by means of the motor


29


, and the moving table


13


is driven by means of the motor


12


so that the panel P on the table


13


is moved in the direction of arrow E in

FIG. 2

toward the grindstone


23


.




As the panel P is moved in this manner, it gets under the grindstone


23


, whereupon the outer peripheral surface


23




c


of the rotating grindstone


23


comes into contact with the surface of the panel P. The grindstone


23


is supported by the spring-type pressure cylinder


24


. When the panel P, along with the moving table


13


, further moves in the direction of arrow E under the grindstone


23


, therefore, the grindstone


23


shifts its position vertically along the curved surface of the panel P.




As this is done, the outer peripheral surface


23




c


of the grindstone


23


is brought into contact with the surface of the panel P with a fixed force of pressure by the elastic load applied by the pressure cylinder


24


. Thus, as the panel P passes under the grindstone


23


, its surface is ground by the grindstone


23


.

FIG. 6

shows the basic concept of this grinding method.




The extent of grinding of the panel P is settled in consideration of the correlation between the type of the grindstone


23


, grinding pressure, depth of cut, ground surface roughness, etc. More specifically, the difference between the external dimension of the unmachined panel P and a predetermined final dimension of the panel P to be machined is obtained by measuring the external dimension of the panel P after press molding, and the necessary depth of cut for grinding is determined. Further, the force (contact pressure) of the grindstone


23


to press the panel P, the moving speed of the panel P, the rotational speed of the grindstone


23


, etc. are settled corresponding to the necessary extent of grinding. In particular, the force of pressure of the grindstone


23


is variably set by adjusting the fluid pressure of the pressure cylinder


24


.




Under the grinding conditions settled in this manner, the panel P is passed once under the rotating grindstone


23


. By doing this, the surface of the panel P is shaped and finished having a predetermined dimension by one cycle of grinding by means of the grindstone


23


. Thus, according to the machining apparatus A, the machining time can be made much shorter than in the case of the conventional polishing system. Moreover, a polishing slurry, which is essential to the conventional polishing system, is unnecessary, so that the cost of equipment, environmental conditions, etc. can be improved considerably.




In some cases, the surface of the panel P may be inclined at an angle θ to a horizontal segment G, thus causing a difference in height between the opposite end portions of the panel P, as indicated by two-dot chain line B in FIG.


5


. In the machining apparatus A according to the present embodiment, the main spindle


22


of the grindstone


23


is supported on the supporting arm


19


by means of the elastic bodies


25


. As the elastic bodies


25


are elastically deformed, the outer peripheral surface


23




c


of the grindstone


23


can shift its position along the inclined surface of the panel P. Thus, the grindstone


23


, having its axis Z in the width direction of the panel P, can touch the panel P across its width. Even if the panel P is inclined, therefore, its whole surface can be ground uniformly.




With the passage of working time, the working surface of the grindstone


23


is loaded, so that the grinding capability of the grindstone


23


is lowered. If the grinding capability of the grindstone


23


is lowered during use, the dressing machine


33


is actuated. When the machine


33


is actuated, the dresser


39


is rotated by the motor


37


, and the moving table


13


is moved in the direction indicated by arrow E in

FIG. 2

by the motor


12


. Thereupon, the holder


35


moves integrally with the table


13


toward the grindstone


23


, so that the dresser


39


comes into contact with the outer peripheral surface


23




c


of the grindstone


23


. As the holder


35


in this state is further moved in the direction indicated by arrow Y in

FIG. 3

along the guide rails


34


by the drive mechanism


36


, the outer peripheral surface


23




c


of the grindstone


23


is dressed by the dresser


39


. In truing the grindstone


23


, the moving table


13


and the holder


35


are moved in the direction X (shown in

FIG. 3

) and the direction Y (direction along the axis Z of the grindstone


23


), respectively, by actuating the motor


12


and the drive mechanism


36


.




Thus, the grindstone


23


is dressed and trued with the dresser


39


held directly against it during use. Accordingly, loading of the grindstone


23


can be corrected easily and quickly to ensure reuse of the grindstone


23


without removing the grindstone


23


from the main spindle


22


.




In the embodiment described above, the length (L


1


) of the grindstone


23


in the direction of the axis Z is made equal to or greater than the width (W) between the opposite ends of panel P. Accordingly, the whole surface of the panel P can be ground at a stroke when the panel P passes once under the grindstone


23


. As in the case of a grindstone


23




a


shown in

FIG. 7

, however, the length (L


2


) of the grindstone in the direction of its axis z may be made shorter than the width W of the panel P to facilitate the manufacture of the grindstone. In this case, the position of the grindstone


23




a


is shifted in the width direction of the panel P every time the panel P passes under the grindstone


23




a


as the whole surface of the panel P is ground.




In the embodiment described above, the pressure cylinder


24


is used as the elastic load applying means for applying a fixed elastic load to the grindstone


23


(or


23




a


) that shifts its position upward. However, a spring member may be used in place of the cylinder


24


.





FIGS. 8

to


10


show a machining apparatus A′ according to a second embodiment of the invention. In the machining apparatus A of to the first embodiment, the grindstone


23


is relatively moved along the curved surface of the panel P to grind it in a manner such that the grindstone


23


is kept in contact with the panel surface under a fixed pressure by the elastic load applying means (pressure cylinder


24


). On the other hand, the machining apparatus A′ of the second embodiment shown in

FIGS. 8

to


10


is designed to grind the surface of the panel P with the vertical position of the grindstone


23


controlled.




Thus, in the machining apparatus A′ according to the second embodiment, a lift motor


42


for vertically shifting the position of the grindstone


23


, a sensor


43




a


, such as an encoder, for detecting the vertical position of the lift


15


, and a position control device


43


for controlling the motor


42


to adjust the position of the grindstone


23


are used in place of the pressure cylinder


24


according to the first embodiment. The lift motor


42


and the position control device


43


constitute position control means according to the invention. A signal from the position sensor


43




a


is applied to the input of the position control device


43


, which is formed of a microcomputer or the like. For other parts, the machining apparatus A′ is constructed in the same manner as the apparatus A according to the first embodiment.




According to the second embodiment, the panel P is first fixed on the moving table


13


with its surface upward. The grindstone


23


is rotated by means of the motor


29


, and the moving table


13


is actuated by means of the motor


12


, whereupon the panel P is moved toward the grindstone


23


.




When the panel P passes under the grindstone


23


, the lift motor


42


is actuated by means of the position control device


43


. The vertical position of the grindstone


23


is controlled by means of the motor


42


as the outer peripheral surface


23




c


of the grindstone


23


is brought into contact with the surface of the panel P to grind the panel P.

FIG. 10

shows the basic concept of this grinding method.




The extent of grinding of the panel P is settled in consideration of the correlation between the type of the grindstone


23


, grinding pressure, depth of cut, ground surface roughness, etc. More specifically, the external dimension of the panel P is measured after press molding. The difference between the measured value and a predetermined external dimension (final dimension of the panel P to be machined) is obtained, and the necessary depth of cut for grinding is determined. Further, the vertical position of the grindstone


23


, the moving speed of the panel P, the rotational speed of the grindstone


23


, etc. are settled corresponding to the necessary extent of grinding.




Under the grinding conditions settled in this manner, the panel P is passed once under the rotating grindstone


23


. By doing this, the surface of the panel P is shaped and finished having a predetermined dimension by one cycle of grinding. Thus, according to the machining apparatus A′, the machining time can be made much shorter than in the case of the conventional polishing system. Moreover, the polishing slurry, which is essential to the conventional polishing system, is unnecessary, so that the cost of equipment, environmental conditions, etc. can be improved considerably.




If the grinding capability of the grindstone


23


is lowered during the grinding operation by means of the grindstone


23


, the dressing machine


33


is actuated. When the machine


33


is actuated, the dresser


39


is rotated by the motor


37


. Further, the moving table


13


is moved by the motor


12


, and the holder


35


, along with the table


13


, moves toward the grindstone


23


, so that the dresser


39


comes into contact with the outer peripheral surface


23




c


of the grindstone


23


. As the holder


35


in this state is further moved along the guide rails


34


by the drive mechanism


36


, the outer peripheral surface


23




c


of the grindstone


23


is dressed by the dresser


39


. In truing the grindstone


23


, the moving table


13


and the holder


35


are moved in the directions X and Y, respectively (as in the case of the embodiment of FIG.


3


), by actuating the motor


12


and the drive mechanism


36


.




Thus, the grindstone


23


is dressed and trued with the dresser


39


held directly against it during use, so that loading of the grindstone


23


can be corrected easily and quickly to ensure reuse of the grindstone


23


without removing the grindstone


23


from the main spindle


22


.




In the embodiment described above, the length (L


1


) of the grindstone


23


in the direction of the axis Z is made equal to or greater than the width (W) between the opposite ends of panel P. Accordingly, the whole surface of the panel P can be ground at a stroke when the panel P passes once under the grindstone


23


. As in the case of a grindstone


23




a


shown in

FIG. 11

, however, the length (L


2


) of the grindstone


23




a


in the direction of its axis Z may be made shorter than the width W of the panel P to facilitate the manufacture of the grindstone. In this case, the position of the grindstone


23




a


is shifted in the width direction of the panel P every time the panel P passes under the grindstone


23




a


as the whole surface of the panel P is ground.





FIG. 12

shows an embodiment in which the moving table


13


is provided with inclination adjusting means as a measure to counter the inclination of the surface of the panel P in the width direction. The moving table


13


of this embodiment has a stationary plate


46


on a table body


45


that moves along the guide rails


11


. Formed on the top surface of the plate


46


is a curved recess


46




a


, which has a profile in the form of a circular arc extending in the longitudinal direction of the plate


46


(direction along the width W of the panel P). A movable plate


47


is located on the stationary plate


46


. Formed on the undersurface of the movable plate


47


is a curved protuberance


47




a


, which has a profile in the form of a circular arc corresponding to the recess


46




a


. The protuberance


47




a


is fitted in the recess


46




a


of the stationary plate


46


so as to be slidable along the curved surface of the recess


46




a.






A hole


49


is bored through the central portion of the movable plate


47


. A stud bolt


50


is attached to the stationary plate


46


. The bolt


50


is inserted into the hole


49


from above the movable plate


47


. The outside diameter of the bolt


50


is smaller than the inside diameter (M) of the hole


49


. A coned disk spring


51


for use as an elastic member is provided on the upper part of the bolt


50


. As the movable plate


47


is pressed against the stationary plate


46


by means of the elastic force of the spring


51


, a moderate contact pressure is produced between the curved protuberance


47




a


and the curved recess


46




a.






The panel P is placed on the movable plate


47


. The moving table


13


moves in this state. As the panel P is fed under the grindstone


23


, its surface is ground by the outer peripheral surface


23




c


of the grindstone


23


. Let it now be supposed that there is a difference between the respective heights (H


1


and H


2


) of the opposite side portions of the panel P and that the surface of the panel P is inclined in its width direction. When the surface of the panel P touches the outer peripheral surface


23




c


of the grindstone


23


, in this case, the curved protuberance


47




a


of the movable plate


47


slides along the curved recess


46




a


of the stationary plate


46


, whereupon the movable plate


47


tilts sideways. As this is done, the difference in height between the opposite side portions of the panel P is absorbed, so that the extent of grinding by means of the grindstone


23


can be kept uniform throughout the surface of the panel P.




Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.



Claims
  • 1. A glass product machining apparatus for grinding a surface of a glass product, comprising:a base frame having vertical guide members; a grindstone rotatable around an axis and having an outer peripheral surface; supporting means for supporting the grindstone for vertical movement and rotation around the axis; grindstone driving means for rotating the grindstone around the axis; a moving table located below the grindstone, movable in the cross direction of the grindstone, and fixing the glass product with the surface upward; vertically moving means for moving the grindstone supported by the supporting means, upward and downward with respect to a desired extent of grinding of the glass product, while the glass product, along with the moving table, moves under the grindstone; a feed mechanism for moving the moving table horizontally with respect to the grindstone in the cross direction thereof, while said outer peripheral surface of the grindstone is in contact with the glass product, thereby relatively moving the grindstone along the surface of the glass product; and a counterweight mechanism for urging said grindstone and said supporting means upward, the counterweight mechanism having a balance link including a first end and a second end and supported on an upper portion of the frame by means of a pivot pin which is situated between both said ends, a counterweight balancing with weight of said grindstone and said supporting means, a first pivot mechanism that connects said first end of the balance link to said supporting means, and a second pivot mechanism that connects said second end of the balance link to said counterweight.
  • 2. A glass product machining apparatus according to claim 1, wherein said vertically moving means is an elastic load applying means which applies an elastic load to the grindstone supported by the supporting means as the position of the grindstone is shifted upward, thereby bringing the outer peripheral surface of the grindstone into contact with the surface of the glass product with a predetermined force of pressure, while the glass product, along with the moving table, moves under the grindstone.
  • 3. A glass product machining apparatus according to claim 1, wherein said vertically moving means is position control means which controls the vertical position of the grindstone supported by the supporting means so that the outer peripheral surface of the grindstone cuts to a predetermined depth into the surface of the glass product while the glass product, along with the moving table, moves under the grindstone.
  • 4. A glass product machining apparatus according to claim 2, wherein a distance between the second pivot mechanism and the pivot pin is greater than a distance between the first pivot mechanism and the pivot pin.
  • 5. A glass product machining apparatus according to claim 2, further comprising a dressing machine for dressing or truing the grindstone, the dressing machine including a holder movable integrally with the moving table in the cross direction of the grindstone, a dresser on the holder, a motor on the holder for rotating the dresser, and a drive mechanism for moving the holder in the direction of an axis of the grindstone.
  • 6. A glass product machining apparatus according to claim 3, further comprising a dressing machine for dressing or truing the grindstone, the dressing machine including a holder movable integrally with the moving table in the cross direction of the grindstone, a dresser on the holder, a motor on the holder for rotating the dresser, and a drive mechanism for moving the holder in the direction of an axis of the grindstone.
  • 7. A glass product machining apparatus according to claim 2, further comprising inclination adjusting means for correspondingly inclining the grindstone or the glass product when the surface of the glass product on the moving table is inclined at an angle to the axis of the grindstone in the width direction of the glass product, thereby automatically adjusting the inclination of the grindstone or the glass product so that the glass product and the grindstone are uniformly in contact with each other with respect to the direction of the axis.
  • 8. A glass product machining apparatus according to claim 3, further comprising inclination adjusting means for correspondingly inclining the grindstone or the glass product when the surface of the glass product on the moving table is inclined at an angle to the axis of the grindstone in the width direction of the glass product, thereby automatically adjusting the inclination of the grindstone or the glass product so that the glass product and the grindstone are uniformly in contact with each other with respect to the direction of the axis.
  • 9. A glass product machining apparatus according to claim 2, wherein the length of said grindstone in the direction of the axis is equal to or greater than the width of the glass product, so that the whole surface of the glass product can be ground at a stroke by the grindstone when the glass product passes once under the grindstone.
  • 10. A glass product machining apparatus according to claim 3, wherein the length of said grindstone in the direction of the axis is equal to or greater than the width of the glass product, so that the whole surface of the glass product can be ground at a stroke by the grindstone when the glass product passes once under the grindstone.
  • 11. A glass product machining apparatus according to claim 2, wherein the length of said grindstone in the direction of the axis is shorter than the width of the glass product, so that the grindstone is relatively moved in the width direction of the glass product with each of times the glass product is caused to pass under the grindstone as the whole surface of the glass product is ground.
  • 12. A glass product machining apparatus according to claim 3, wherein the length of said grindstone in the direction of the axis is shorter than the width of the glass product, so that the grindstone is relatively moved in the width direction of the glass product with each of times the glass product is caused to pass under the grindstone as the whole surface of the glass product is ground.
Priority Claims (1)
Number Date Country Kind
10-117082 Apr 1998 JP
US Referenced Citations (15)
Number Name Date Kind
3693297 Cann Sep 1972 A
3910159 Gladwin Oct 1975 A
4172338 Kojo et al. Oct 1979 A
4811522 Gill, Jr. Mar 1989 A
4907371 Shoda et al. Mar 1990 A
4928435 Masaki et al. May 1990 A
4953522 Vetter Sep 1990 A
5272843 Maruyama et al. Dec 1993 A
5620358 Furukawa et al. Apr 1997 A
5679054 Chun et al. Oct 1997 A
5707272 Hasimoto et al. Jan 1998 A
5718619 Merrill et al. Feb 1998 A
5733179 Bauer Mar 1998 A
5895311 Shiotani et al. Apr 1999 A
5954566 Bauer Sep 1999 A
Foreign Referenced Citations (1)
Number Date Country
09314450 Dec 1997 JP