The present invention relates to tempered glass substrate, and particular to a tempered glass substrate having non-tempered area for performing extra works such as cutting or splitting.
Tempered glass is a pre-stressed glass. Common processes for making tempered glass are thermal tempering process and chemical process. Thermal tempering process is done by heating the glass between the strain point and softening point. The glass is then rapidly cooled below the strain point so as to create a surface layer retaining compressive stress for improving strength of the glass substrate. The chemical process is done by ion exchange through soaking a glass substrate (such as sodium glass substrate) into a liquid (such as molten sylvite) for tempering process so that larger ions (potassium ions) will take the place of the small ions (sodium ions). Such exchange will retain compressive stress into the surface of the substrate for increasing toughness against tensile force. However, both the processes will toughen the whole glass substrate. The stress retained inside the substrate will increase the difficulty of extra working to the tempered glass such as cutting or splitting. For the tempered glass with the depth of stressed layer over 20 μm and compressive stress over 400 MPa, the flaws caused by the machinery will easily result in shattering. Even the tempered glass is successfully cut, the edge won't be very smooth especially for thick glass substrate. Accordingly, all the work such as cutting, drilling, and polishing must be done before the tempering process. Such limitation seriously constrains the usage of tempered glass substrate among various panel applications. For example, the manufacture of the panel using tempered glass has to be done unit by unit. The glass has to be cut into pieces according to the specification in advanced, and the circuit layout and related processes can be performed to the pieces. The productivity is then extremely lowered. For the complicated and precise processes of panel manufacturing, such limitation will cause more difficulties and defects to the product.
Accordingly, the primary object of the present invention is to provide a glass substrate having a patterned layer of compressive stress to form predetermined tempered area and non-tempered area on a surface thereof. The tempered area will improve strength of the glass substrate against splintering and scratching. However, extra work to the glass substrate such as cutting, splitting, and grinding can be performed through the non-tempered area of the glass substrate.
The various objects and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the appended drawing.
In order that those skilled in the art can further understand the present invention, a description will be provided in the following in details. However, these descriptions and the appended drawings are only used to cause those skilled in the art to understand the objects, features, and characteristics of the present invention, but not to be used to confine the scope and spirit of the present invention defined in the appended claims.
Referring to
Preferably, the glass substrate is a flat sodium glass with a thickness of 1 mm. The glass substrate is soaked by molten sylvite for forming a predetermined pattern of compressive stress area so that the area within the pattern is tempered and the rest area of the glass substrate still has capability of being worked. Wherein, the depth of compressive stress layer of the low stress area 13 is less than 20 μm, and the compressive stress is lower than 400 MPa. The depth of compressive stress layer of the high stress area 12 is between 5 μm to 90 μm, and the compressive stress is between 100 MPa to 800 MPa. In the embodiment mentioned above, the surface of the glass substrate is separated into high stress areas 12 and low stress areas 13. The stress difference between adjacent areas is larger than 100 MPa, or the depth difference between adjacent areas is larger than 5 μm.
Comparing with known processes of making tempered glass, the tempered glass substrate of the present invention still can be cut, split, or ground. For example, the glass substrate of the present invention can be used for panel production by forming circuit or component within the high stress area and performing extra work within low stress area so that the process limitation of the tempered glass can be eliminated and the yield, productivity can be also improved.
Comprehensibly, the compressive stress pattern F is formed to the upper surface of the substrate and the opposite lower surface can have a compressive stress layer 14 retaining even stress so as to prevent deformation to glass substrate due to stress difference as shown in
Referring to
The present invention is thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.