The present invention relates to a glass fusing method which manufactures a glass fusing structure by fusing glass substrates to each other.
Various techniques concerning fusing and cutting of glass substrates by utilizing laser light have conventionally been proposed (see, for example, Patent Literatures 1 to 4). Patent Literature 1 discloses a technique which irradiates stacked glass substrates with laser light along a cutline, so as to fusion-cut the glass substrates by laser ablation, while using the resulting heat to fuse the glass substrates to each other.
Patent Literature 1: Japanese Patent Application Laid-Open No. 2007-90405
Patent Literature 2: Japanese Translated International Application Laid-Open No. 2006-524419
Patent Literature 3: Japanese Patent Application Laid-Open No. 2007-264135
Patent Literature 4: Japanese Patent Application Laid-Open No. 2002-287107
Since the glass substrates are fusion-cut by laser ablation in the technique disclosed in Patent Literature 1, however, organic matters and the like may remain as contaminants in the part where the glass substrates are fused to each other, thereby deteriorating the reliability of the glass fusing structure.
In view of such circumstances, it is an objet of the present invention to provide a glass fusing method which can manufacture a highly reliable glass fusing structure.
For achieving the above-mentioned object, the glass fusing method in accordance with the present invention is a glass fusing method for manufacturing a glass fusing structure by fusing first and second glass substrates to each other, the method comprising the steps of arranging a glass layer containing a laser-light-absorbing material between the first and second glass substrates with a predetermined width along an extending region to be fused; forming an initial fracture in at least the second glass substrate in the first and second glass substrates such that the initial fracture overlaps the glass layer when seen in a thickness direction of the first and second glass substrates; and irradiating the glass layer with laser light such that at least a part of the initial fracture is included in the laser light while relatively moving an irradiation region of the laser light along the region to be fused, so as to subject the glass layer and the first and second glass substrates to a heating stage and a cooling stage, thereby fusing and cleaving the first and second glass substrates along the region to be fused; wherein in the heating stage the glass layer is molten and a temperature difference is generated in a part along the region to be fused in each of the first and second glass substrates so that a main face on the glass layer side has a temperature higher than that on a main face on the opposite side of the glass layer in each of the first and second glass substrates; and wherein in the cooling stage the molten glass layer is solidified and by a stress occurring during cooling a fracture is grown in a thickness direction of the first and second glass substrates through the glass layer from the initial fracture acting as a start point.
In this glass fusing method, the glass layer is molten by irradiation with the laser light in the heating stage, so as to generate a temperature difference in a part along the region to be fused in each of the first and second glass substrates such that the main face on the glass layer side has a temperature higher than that on the main face on the opposite side. In the cooling stage, the molten glass layer solidifies, and the cooling generates a stress in the first and second glass substrates. Here, since the initial fracture is formed in at least the second glass substrate so as to overlap the glass layer when seen in the thickness direction of the first and second glass substrates, a fracture grows in the thickness direction of the first and second glass substrates through the glass layer from the initial fracture acting as a start point. As a consequence, contaminants remain less than in fusion-cutting by laser ablation, for example, so that the first and second glass substrates can be fused together and cleaved along the region to be fused. Hence, this glass fusing method can manufacture a highly reliable glass fusing structure. Either the step of arranging the glass layer between the first and second glass substrates or the step of forming the initial fracture in the first glass substrate may be performed earlier than the other.
Preferably, in the glass fusing method in accordance with the present invention, the glass layer is irradiated with the laser light through the second glass substrate from the second glass substrate side. In the heating stage in this case, a part on the second glass substrate side of the molten glass layer has the highest temperature. Therefore, the temperature change from the heating stage to the cooling stage becomes greater in the second glass substrate than in the first glass substrate. Hence, the deformation due to expansion/shrinkage is greater in extent in the second glass substrate than in the first glass substrate. That is, increasing the temperature change and its resulting extent of deformation on the second glass substrate side, which is required to be formed with the initial fracture, can reliably grow the fracture from the initial fracture acting as a start point, thereby making it possible to cleave the first and second glass substrates stably.
Preferably, in the glass fusing method in accordance with the present invention, the initial fracture is formed on the main face on the opposite side of the glass layer in the second glass substrate. In this case, the initial fracture can be formed in the second glass substrate after arranging the glass layer between the first and second glass substrates. This makes it unnecessary to handle the glass substrate in a state formed with the initial fracture and thus can improve the yield.
Preferably, in the glass fusing method in accordance with the present invention, the glass layer is irradiated with the laser light such that a peak value of a beam profile in a width direction of the glass layer substantially coincides with the initial fracture. In this case, in the width direction of the glass layer, the temperature change from the heating stage to the cooling stage becomes the largest at a position formed with the initial fracture, so that the fracture can grow more reliably from the initial fracture acting as a start point, whereby the first and second glass substrates can be cleaved more stably.
Preferably, when the region to be fused has a corner in the glass fusing method in accordance with the present invention, the glass layer has an intersection at the corner. This allows the fracture to reliably attain an intersection at the corner of the region to be fused, whereby the first and second glass substrates can be cut out securely along the region to be fused.
The present invention can manufacture a highly reliable glass fusing structure.
In the following, preferred embodiments of the present invention will be explained in detail with reference to the drawings. In the drawings, the same or equivalent parts will be referred to with the same signs while omitting their overlapping descriptions.
As illustrated in
A glass fusing method for manufacturing the glass fusing structure 1 will now be explained.
First, as illustrated in
The glass substrate 40 is a rectangular sheet-shaped substrate including a plurality of glass members 4 arranged two-dimensionally. For cutting out the glass members 4 from the glass substrate 40, the regions to be fused R each extending like a rectangular ring are set so as to be arranged two-dimensionally on the main face 40a of the glass substrate 40 correspondingly to the respective glass members 4. The paste layer 6 is formed such as to have an intersection (cross) at each corner of the regions to be fused R.
Subsequently, the paste layer 6 is dried, so as to remove the organic solvent, thereby securing the glass layers 3 to the main face 40a of the glass substrate 40. Then, the glass layers 3 are irradiated with laser light along the regions to be fused R, while locating a converging spot at the glass layers 3, so as to gasify the binder and remove it from the glass layers 3, while melting/re-solidifying the glass layers 3, thereby burning and fixing the glass layers 3 to the main face 40a of the glass substrate 40 (temporary firing). The temporary firing of the glass layers 3 may be performed by heating in a furnace instead of irradiation with the laser light.
Next, as illustrated in
Subsequently, as illustrated in
Next, as illustrated in
The heating and cooling stages will now be explained in more details. First, the heating stage is a stage where the glass layers 3 are irradiated with the laser light L through the glass substrate 50 from the glass substrate 50 side as illustrated in
Next, as illustrated in
Since the glass layers 3 are irradiated with the laser light L through the glass substrate 50 from the glass substrate 50 side, the parts of the molten glass layers 3 on the glass substrate 50 side have the highest temperature in the heating stage as illustrated in
In the glass fusing method for manufacturing the glass fusing structure 1, as explained in the foregoing, in the heating stage, the glass layers 3 is molten by irradiation with the laser light L and a temperature difference is generated in a part along the region to be fused R in each of the glass substrates 40, 50 so that the main faces 40a, 50a on the glass layer 3 side have a temperature higher than that on the main faces 40b, 50b on the opposite side of the glass layers 3. The cooling stage solidifies the molten glass layers 3 and generates a stress in the glass substrates 40, 50 by cooling. Here, since the initial fractures 8 are formed in the glass layer 50 such as to overlap the glass layers 3 when seen in the thickness direction of the glass substrates 40, 50, the fractures 9 grow in the thickness direction of the glass layers 40, 50 though the glass layers 3 from the initial fractures 8 acting as a start point. As a consequence, contaminants remain less than in fusion-cutting by laser ablation, for example, so that the glass substrates 40, 50 can be fused together and cleaved along the regions to be fused R. Hence, this glass fusing method can manufacture the glass fusing structure 1 with high reliability.
The glass layers 3 are irradiated with the laser light L through the glass substrate 50 formed with the initial fractures 8 from the glass substrate 50 side. As a consequence, in the heating stage, parts on the glass substrate 50 side of the molten glass layers 3 have the highest temperature. Therefore, the temperature change from the heating stage to the cooling stage becomes greater in the glass substrate 50 than in the glass substrate 40. Hence, the deformation due to expansion/shrinkage is greater in extent in the glass substrate 50 on the entrance side of the laser light L than in the glass substrate 40. That is, increasing the temperature change and its resulting extent of deformation on the side of the glass substrate 50 formed with the initial fractures 8 can reliably grow the fractures 9 from the initial fractures 8 acting as a start point, thereby making it possible to cleave the glass substrates 40, 50 stably.
The initial fractures 8 are formed on the main face 50b on the opposite side of the glass layers 3 in the glass substrate 50. In this case, the initial fractures 8 can be formed in the glass substrate 50 after stacking the glass substrates 40, 50 with the glass layers 3 interposed therebetween. This makes it unnecessary to handle the glass substrate 50 in a state formed with the initial fractures 8 and thus can improve the yield.
The glass layers 3 are irradiated with the laser light L such that a peak value of the beam profile in the width direction of the glass layers 3 substantially coincides with the initial fractures 8. As a consequence, in the width direction of the glass layers 3, the temperature change from the heating stage to the cooling stage becomes the largest at positions formed with the initial fractures 8, so that the fractures 9 can grow more reliably from the initial fractures 8 acting as a start point, whereby the glass substrates 40, 50 can be cleaved more stably.
Since the glass layers 3 have an intersection at each corner of the regions to be fused R, the fractures 9 can reliably attain an intersection at the corner, whereby the glass substrates 40, 50 can be cut out securely along the regions to be fused R. This is effective in particular when taking out a number of glass members 4, 5 from the glass substrates 40, 50.
The present invention is not limited to the above-mentioned embodiment. For example, at least one of the glass substrates 40, 50 may be formed with the initial fractures 8 before stacking the glass substrates 40, 50 with the glass layers 3 interposed therebetween.
The initial fractures 8 are not limited to scribe lines and the like which overlap all the parts where the glass layers 3 extend, but may be dot-like cutouts and the like overlapping a part of the glass layers 3. Irradiating the glass layers 3 with the laser light L so that such initial fractures 8 are included in the laser light L while relatively moving the irradiation region of the laser light L along the regions to be fused R allows the fractures 9 generated from the initial fractures 8 acting as a start point to grow along the regions to be fused R in this case as well.
As illustrated in
As illustrated in
As illustrated in
As illustrated in
As the glass layers 3 to be irradiated with the laser light L, film-like (layered) members containing a laser-light-absorbing pigment may be used. When temporary firing is performed by irradiation with laser light, glass materials such as the glass frit 2 constituting the glass layers 3 may have a melting point on a par with or higher than that of the glass substrates 40, 50 instead of the one lower than that. The laser-light-absorbing pigment may be contained in glass materials, such as the glass frit 2, themselves.
The present invention can manufacture a highly reliable glass fusing structure.
1 . . . glass fusing structure; 3 . . . glass layer; 40 . . . glass substrate (first glass substrate); 50 . . . glass substrate (second glass substrate); R . . . region to be fused; L . . . laser light
Number | Date | Country | Kind |
---|---|---|---|
P2009-258989 | Nov 2009 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2010/066135 | 9/17/2010 | WO | 00 | 6/1/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/058819 | 5/19/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3453097 | Hafner | Jul 1969 | A |
3663793 | Petro et al. | May 1972 | A |
4343833 | Sawae et al. | Aug 1982 | A |
5489321 | Tracy et al. | Feb 1996 | A |
6565400 | Lee et al. | May 2003 | B1 |
7371143 | Becken et al. | May 2008 | B2 |
7641976 | Lamberson et al. | Jan 2010 | B2 |
7820941 | Brown et al. | Oct 2010 | B2 |
7834550 | Lee et al. | Nov 2010 | B2 |
7932670 | Yoo et al. | Apr 2011 | B2 |
8063561 | Choi et al. | Nov 2011 | B2 |
8440479 | Nguyen et al. | May 2013 | B2 |
8490434 | Watanabe et al. | Jul 2013 | B2 |
8516852 | Matsumoto et al. | Aug 2013 | B2 |
20040069017 | Li et al. | Apr 2004 | A1 |
20040207314 | Aitken et al. | Oct 2004 | A1 |
20050103755 | Baker et al. | May 2005 | A1 |
20060082298 | Becken et al. | Apr 2006 | A1 |
20060084348 | Becken et al. | Apr 2006 | A1 |
20070007894 | Aitken et al. | Jan 2007 | A1 |
20070053088 | Kranz et al. | Mar 2007 | A1 |
20070128967 | Becken et al. | Jun 2007 | A1 |
20070170845 | Choi et al. | Jul 2007 | A1 |
20070173167 | Choi | Jul 2007 | A1 |
20080106194 | Logunov et al. | May 2008 | A1 |
20080124558 | Boek et al. | May 2008 | A1 |
20080135175 | Higuchi | Jun 2008 | A1 |
20080182062 | Becken et al. | Jul 2008 | A1 |
20090071588 | Kimura et al. | Mar 2009 | A1 |
20090080055 | Baur et al. | Mar 2009 | A1 |
20090086325 | Liu et al. | Apr 2009 | A1 |
20090110882 | Higuchi | Apr 2009 | A1 |
20090142984 | Logunov et al. | Jun 2009 | A1 |
20090297861 | Banks et al. | Dec 2009 | A1 |
20090297862 | Boek et al. | Dec 2009 | A1 |
20090308105 | Pastel et al. | Dec 2009 | A1 |
20100006228 | Abe et al. | Jan 2010 | A1 |
20100095705 | Burkhalter et al. | Apr 2010 | A1 |
20100116119 | Bayne | May 2010 | A1 |
20100129666 | Logunov et al. | May 2010 | A1 |
20100154476 | Becken et al. | Jun 2010 | A1 |
20100267307 | Park et al. | Oct 2010 | A1 |
20100304513 | Nguyen et al. | Dec 2010 | A1 |
20110001424 | Logunov et al. | Jan 2011 | A1 |
20110061789 | Matsumoto | Mar 2011 | A1 |
20110067448 | Matsumoto et al. | Mar 2011 | A1 |
20110072855 | Matsumoto et al. | Mar 2011 | A1 |
20110088430 | Matsumoto | Apr 2011 | A1 |
20110088431 | Matsumoto | Apr 2011 | A1 |
20110135857 | Logunov et al. | Jun 2011 | A1 |
20110169108 | Gardner et al. | Jul 2011 | A1 |
20110223360 | Shibuya et al. | Sep 2011 | A1 |
20110223371 | Kawanami | Sep 2011 | A1 |
20110256407 | Boek et al. | Oct 2011 | A1 |
20110265518 | Matsumoto et al. | Nov 2011 | A1 |
20120111059 | Watanabe et al. | May 2012 | A1 |
20120147538 | Kawanami et al. | Jun 2012 | A1 |
20120151965 | Matsumoto et al. | Jun 2012 | A1 |
20120156406 | Banks et al. | Jun 2012 | A1 |
20120222450 | Lamberson et al. | Sep 2012 | A1 |
20120234048 | Matsumoto | Sep 2012 | A1 |
20120240628 | Matsumoto | Sep 2012 | A1 |
20120240629 | Matsumoto | Sep 2012 | A1 |
20120240630 | Matsumoto | Sep 2012 | A1 |
20120240631 | Matsumoto | Sep 2012 | A1 |
20120240632 | Matsumoto | Sep 2012 | A1 |
20120240633 | Matsumoto | Sep 2012 | A1 |
20120247153 | Matsumoto | Oct 2012 | A1 |
20120260694 | Matsumoto | Oct 2012 | A1 |
20120285200 | Tanaka | Nov 2012 | A1 |
20120287026 | Masuda | Nov 2012 | A1 |
20120318023 | Shimomura | Dec 2012 | A1 |
20120320444 | Baur et al. | Dec 2012 | A1 |
20130011598 | Kawanami et al. | Jan 2013 | A1 |
20130104980 | Sridharan et al. | May 2013 | A1 |
20130111953 | Maloney et al. | May 2013 | A1 |
20130134396 | Shimomura et al. | May 2013 | A1 |
20130174608 | Takeuchi et al. | Jul 2013 | A1 |
20130237115 | Choi et al. | Sep 2013 | A1 |
20130280981 | Lee | Oct 2013 | A1 |
20130314760 | Baur et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
1329395 | Jan 2002 | CN |
1738777 | Feb 2006 | CN |
1798708 | Jul 2006 | CN |
1798710 | Jul 2006 | CN |
1836177 | Sep 2006 | CN |
101005915 | Jul 2007 | CN |
101095247 | Dec 2007 | CN |
101103429 | Jan 2008 | CN |
101139165 | Mar 2008 | CN |
100409392 | Aug 2008 | CN |
101312234 | Nov 2008 | CN |
101386477 | Mar 2009 | CN |
101434453 | May 2009 | CN |
101501808 | Aug 2009 | CN |
102056858 | May 2011 | CN |
2-120259 | May 1990 | JP |
5-166462 | Jul 1993 | JP |
2002-015108 | Jan 2002 | JP |
2002-224871 | Aug 2002 | JP |
2002-287107 | Oct 2002 | JP |
2002-366050 | Dec 2002 | JP |
2002-367514 | Dec 2002 | JP |
2002366050 | Dec 2002 | JP |
2004-182567 | Jul 2004 | JP |
2005-007665 | Jan 2005 | JP |
2006-524419 | Jul 2005 | JP |
2005-213125 | Aug 2005 | JP |
2006-151774 | Jun 2006 | JP |
2007-90405 | Apr 2007 | JP |
2007-264135 | Oct 2007 | JP |
2008-115057 | May 2008 | JP |
2008-115067 | May 2008 | JP |
2008115057 | May 2008 | JP |
2008-127223 | Jun 2008 | JP |
2008-527655 | Jul 2008 | JP |
2009-123421 | Jun 2009 | JP |
2009-196862 | Sep 2009 | JP |
10-0350323 | Mar 2002 | KR |
10-2007-0003681 | May 2007 | KR |
I495409 | Jul 2002 | TW |
200516064 | May 2005 | TW |
I255934 | Jun 2006 | TW |
200733787 | Sep 2007 | TW |
200737370 | Oct 2007 | TW |
200822789 | May 2008 | TW |
200911438 | Mar 2009 | TW |
200944908 | Nov 2009 | TW |
WO 2007067533 | Jun 2007 | WO |
WO 2009131144 | Oct 2009 | WO |
2009150975 | Dec 2009 | WO |
2009150976 | Dec 2009 | WO |
2009157281 | Dec 2009 | WO |
2009157282 | Dec 2009 | WO |
Entry |
---|
U.S. Office Action dated Jul. 2, 2014 that issued in U.S. Appl. No. 13/511,754 including Double Patenting Rejections on pp. 5-8. |
U.S. Office Action dated Jun. 28, 2012 that issued in U.S. Appl. No. 12/994,320 including Double Patenting Rejections on pp. 7-9. |
U.S. Office Action dated Jul. 9, 2012 that issued in U.S. Appl. No. 12/994,321 including Double Patenting Rejections on pp. 7-9. |
Cheung, Kerry, “Die-Level Glass Frit Vacuum Packaging for a Micro-Fuel Processor System,” Massachusetts Institute of Technology, Jun. 2005, pp. 17-19. |
U.S. Office Action dated Apr. 25, 2013 that issued in U.S. Appl. No. 12/994,539 including Double Patenting rejections on pp. 5-8. |
JP 20022366050 (Human Translation), retrieved from USPTO Translation Services and attached to the above-listed U.S. Office Action dated Apr. 25, 2013 in U.S. Appl. No. 12/994,539. |
JP 2008115057 (Human Translation), retrieved from USPTO Translation Services and attached to the above-listed U.S. Office Action dated Apr. 25, 2013 in U.S. Appl. No. 12/994,539. |
JP 20022366050 (Machine Translation), as attached to Office Action dated Jun. 1, 2012 in U.S. Appl. No. 12/994,354. |
JP 2008115057 (Machine Translation), as attached to Office Action dated Jun. 1, 2012 in U.S. Appl. No. 12/994,354. |
U.S. Office Action dated May 9, 2013 that issued in U.S. Appl. No. 12/994,399 including Double Patenting Rejections on pp. 6-10. |
U.S. Office Action dated Apr. 25, 2014 that issued in U.S. Appl. No. 13/511,721 including Double Patenting Rejections on pp. 2-3. |
U.S. Office Action dated Jan. 28, 2014 that issued in U.S. Appl. No. 13/511,688 including Double Patenting Rejections on pp. 4-8. |
U.S. Office Action dated Jan. 16, 2014 that issued in U.S. Appl. No. 13/511,735 including Double Patenting Rejections on pp. 4-8. |
U.S. Office Action dated Jun. 3, 2014 that issued in U.S. Appl. No. 13/511,683 including Double Patenting Rejections on pp. 5-11. |
U.S. Office Action dated Jul. 1, 2014 that issued in U.S. Appl. No. 13/511,738 including Double Patenting Rejections on pp. 4-5. |
U.S. Office Action dated Jul. 31, 2014 that issued in U.S. Appl. No. 12/994,354 including Double Patenting Rejections on pp. 7-10. |
U.S. Office Action dated Jul. 1, 2014 that issued in U.S. Appl. No. 13/511,747 including Double Patenting Rejections on pp. 4-5. |
U.S. Office Action dated Feb. 24, 2015 that issued in U.S. Appl. No. 13/345,199 including Double Patenting Rejections on pp. 4-14. |
Number | Date | Country | |
---|---|---|---|
20120234048 A1 | Sep 2012 | US |