1. Field of the Invention
This invention relates broadly to ocular implants. More particularly, this invention relates to ocular implants for transporting aqueous and used in the treatment of glaucoma.
2. State of the Art
Intraocular pressure in the eye is maintained by the formation and drainage of the aqueous. Aqueous is a clear, colorless fluid that fills the anterior and posterior chambers of the eye. Aqueous is a product of the ciliary body in the eye and is a carrier of nutrients for the lens. In addition, aqueous provides a continuous stream into which surrounding tissues can discharge the waste products of metabolism.
Aqueous produced in the ciliary body circulates from the posterior chamber to the anterior chamber of the eye through the pupil and is absorbed through the trabecular meshwork, a plurality of crisscrossing collagen cords covered by endothelium. Once through the trabecular meshwork, aqueous passes through Schlemm's canal and into venous circulation. The rate of aqueous outflow through the trabecular meshwork in a normal eye is typically 2 to 5 μL/min.
Glaucoma is a progressive disease of the eye characterized by a gradual increase of intraocular pressure. This increase in pressure is most commonly caused by stenosis or blockage of aqueous outflow, resulting in excessive buildup of aqueous fluid in the chambers of the eye. Other causes include increase in venous pressure outside the eye which is reflected back through the aqueous drainage channels and increased production of aqueous. This increase in intraocular pressure produces gradual and permanent damage to the optic nerve resulting in loss of vision in the afflicted eye.
Existing corrective methods for the treatment of glaucoma include drugs, non-implant surgery, and implant surgery. The most common type of implant is a shunt generally including a single layer plate and a draining tube. The plate is sutured onto the sclera of the eye between the rectus muscles, and the drainage tube includes a first end coupled to a periphery of the plate and a second end implanted into the anterior chamber of the eye through a scleral incision adjacent the limbus. The first end of the drainage tube may be open or provided with a valve to control release of aqueous through the tube. By way of example, U.S. Pat. No. 5,454,796 to Krupin; U.S. Pat. Nos. 5,178,604, 5,397,300, 5,476,445, 5,558,629, and 6,050,970 to Baerveldt; U.S. Pat. Nos. 5,071,408, 5,411,473, 5,681,275, 5,743,869, 5,785,675, and 6,261,256 to Ahmed; and U.S. Pat. No. 4,750,901 to Molteno disclose implants as broadly discussed above. Once implanted, a scar tissue bleb forms around the plate. After bleb formation, the bleb controls the release and flow rate of aqueous transported by the tube and, if successful, regulates and normalizes the pressure within the eye. A large bleb is desirable as it filters a greater volume of aqueous, provided however the device which initiates bleb formation should not impinge on the rectus muscles or optic nerve.
In addition, prior art single plate shunt devices (as opposed to devices which include multi-layer overlying plates) terminate the drainage tube at the perimeter of the plate. When scar tissue bleb formation occurs, the bleb about the plate of such a device may obstruct or block the outflow of aqueous through the drainage tube. Such will prevent desirable results for the treatment by failing to regulate intraocular pressure to desirable levels.
It is an object of the invention to provide a glaucoma shunt for the eye which creates a large bleb for better filtration and increased outflow of aqueous.
It is another object of the invention to provide a glaucoma shunt for the eye which is easier for the surgeon to implant and requires a shorter procedure for implantation.
It is a further object of the invention to provide a glaucoma shunt which has a drainage tube having an outlet adjacent the plate which will not be blocked by bleb formation.
It is also an object of the invention to provide a glaucoma shunt which has a shape designed to elicit minimal undesired foreign body response by the tissues of the eye.
It is an additional object of the invention to provide a glaucoma shunt which has a reduced profile and is very thin, but has relatively high rigidity.
In accord with these objects, which will be discussed in detail below, a glaucoma shunt is provided which includes a flexible, polymeric filtration plate and a flexible drainage tube. The plate includes filtration and fixation portions. The filtration portion includes upper and lower surfaces, a large posterior portion with a concave rear edge providing additional clearance for the optic nerve of the eye, and a relatively narrower anterior portion. The lower surface is substantially spherically concave to contour to the surface of the sclera, and is provided with stiffening ribs which increase rigidity of the thin flexible plate and further space the plate relative to the tissue to provide better filtration. The filtration portion is sized to have the maximum possible surface area positionable on the sclera within a quadrant of the eye which does not impinge on the rectus muscles and which does not interfere with the optic nerve.
The fixation portion of the plate is integral with the anterior portion and extends anteriorly relative to the prior art to facilitate access thereto for stitching the fixation portion to the sclera. A narrow waist is defined between the filtration and fixation portions. The fixation portion includes a front edge, an opening in the front edge, and an upper channel continuous therewith and extending into a central portion of the plate. The fixation portion optionally includes reference holes for suture placement.
A ridge is provided on the upper side of the plate, over an intermediate portion of the channel. The drainage tube extends through the opening in the front channel and is at last partially recessed within the channel so as to have a low profile relative to the plate. The tube has a first end terminating within the channel at a central portion of the plate, preferably beyond the ridge but spaced from the end of the channel. The ridge lifts the eye tissue off the first end of the tube to prevent obstruction of the first end of the tube. By locating the first end of the tube centrally, it is distanced from perimetric scarring which can result in tube outlet blockage. The first end may be valved or non-valved. The tube has sufficient length such that the second end may be inserted through an incision in the sclera adjacent the limbus and implanted within the anterior chamber of the eye.
In another embodiment of the invention, the plate of the implant is provided with lateral extensions of posterior and anterior portions of the plate. In addition, the embodiments of the implant according to the invention may be optionally provided with fenestration holes to enhance filtration.
Additional objects and advantages of the invention will become apparent to those skilled in the art upon reference to the detailed description taken in conjunction with the provided figures.
Turning now to
The plate 12 includes a filtration portion 13, about which a bleb forms after implantation, and a fixation portion 15, utilized to secure the shunt to the sclera and about which bleb formation generally does not occur. The filtration portion 13 includes an upper surface 16 and a lower surface 18. The lower surface 18 is substantially spherically concave to contour to the surface of the sclera. In addition, the lower surface 18 is provided with stiffening ribs 20 preferably extending substantially the majority of the anterior-posterior length of the plate which increase rigidity of the thin flexible plate and further space the plate relative to the tissue to provide better filtration. The ribs 20 preferably have a flat lower surface 22. The filtration portion 13 of the plate 12 includes a large proximal portion 24 with a concave rear edge 26 providing additional clearance for the optic nerve of the eye, and tapers to a relatively narrower anterior portion 28.
The fixation portion 15 is integral with the anterior portion 28 of the filtration portion 13 of the plate 12, and extends anteriorly to facilitate access thereto for stitching the fixation portion to the sclera. The fixation portion defines a narrow waist 32 at the junctions of the filtration and fixation portions 13, 15. After implantation, a bleb forms over filtration portion 13 of the plate 12 and crosses the plate 12 at the waist 32 (i.e., does not form about the fixation portion 15). Thus, the size of the bleb is defined by the area of the filtration portion 13. The filtration portion 13 of the plate 12, as further discussed below, is sized to have the maximum possible surface area positionable on the sclera within a quadrant of the eye which does not impinge on the rectus muscles and which does not interfere with the optic nerve.
The fixation portion 15 includes a front edge 34, an opening 36 in the front edge 34, and an upper channel 38 continuous therewith and extending into a central portion 40 of the plate 12. The fixation portion 15 optionally includes reference holes 42 for suture placement. However, the silicone material of the plate 12 is soft enough to permit suturing through any location of the fixation portion 15, and the reference holes 42 are providing only as guides.
Referring to
By way of example, and not by limitation, one embodiment of the shunt 10 of the invention has the following dimensions: the width D1 across the posterior portion 24 of the plate 10 is preferably approximately 16 mm, the width D2 across the anterior portion 26 of the plate 10 is preferably approximately 12.4 mm, the anterior-posterior length D3 of the filtration portion 13, from the concavity 26 in the posterior portion 24 to the waist 32 between the filtration and fixation portions 13, 15 is preferably approximately 15.7 mm, the width D4 across the waist 32 is preferably approximately 4.8 mm, the length D5 of the fixation portion from the anterior edge 44 of the filtration portion is approximately 4.7 mm, and the overall anterior-posterior arc length D6 of the plate 12 is preferably approximately 22.2 mm. Such dimensions provide an overall plate surface area of 279 mm2, and a 249 mm2 surface area for the filtration portion 13 of the plate 12.
By way of example, and not by limitation, another embodiment of the shunt 10 of the invention has the following dimensions: the width D1 across the posterior portion 24 of the plate 10 is preferably approximately 13 mm, the width D2 across the anterior portion 26 of the plate 10 is preferably approximately 12 mm, the anterior-posterior length D3 of the filtration portion 13, from the concavity 26 in the posterior portion 24 to the waist 32 between the filtration and fixation portions 13, 15 is preferably approximately 14 mm, the width D4 across the waist 32 is preferably approximately 4.8 mm, the length D5 of the fixation portion from the anterior edge 44 of the filtration portion is approximately 4 mm, and the overall anterior-posterior arc length D6 of the plate 12 is preferably approximately 18 mm.
Turning now to
Referring to
The fixation portion 15 of the plate 12 is then sutured to the sclera 200 with interrupted, nonabsorbent sutures 210. The sutures 210 may be provided through the fixation holes 42 or sewn through any other portion of the fixation portion 15. The relatively anterior position of the fixation portion 15, extending forward preferably approximately 5 mm from the anterior edge 44 of the filtration portion 13, provides easier surgeon access for anchoring the implant, requires that less of the conjunctiva be incised, and permits a faster surgical procedure.
The tube 14 should face the limbus 212. A separate corneal paracentesis tract is made before the limbal entry incision, and while a viscoelastic agent can be injected into the anterior chamber, over inflation of the anterior chamber is avoided. If vitreous is present in the anterior chamber, an automated vitrectomy is performed via a separate entry site, prior to insertion of the tube 14. Two types of limbal entry incisions are possible: full thickness, or preferably within the bed of a 4 mm×4 mm ½ thickness lamellar scleral flap. If a lamellar scleral flap is created, the flap is dissected into clear cornea, improving visualization of the limbal anatomy and allowing more accurate tube placement into the anterior chamber. A full thickness entry tract is indicated if the sclera is extremely thin, making dissection of a flap difficult. Depending upon access and incision, the tube may be cut to a shorter length, if desired. The second end of the tube is inserted into the anterior chamber. A tissue graft 216 is then sutured over the limbal entry incision.
After implantation and prior to bleb formation, a valve, if provided at the first end 56 of the tube 14, provides flow control to prevent hypotony. If the first end 56 is non-valved, it is preferable that dissolvable sutures be provided through the tube 14 which prevent or limit uncontrolled aqueous flow through the drainage tube until bleb formation. After bleb formation (caused by scar tissue formation about the periphery of the filtration portion 13 of the plate 12), regardless of the presence of a valve, the bleb controls the maximum flow rate of the drainage of aqueous from the anterior chamber through the drainage tube 14, onto the plate 12 and into the surrounding tissue.
Turning now to
Referring to
Turning now to
Referring now to
Turning now to
Referring now to
There have been described and illustrated herein embodiments of a glaucoma shunt and method of implanting the same. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise. Thus, while silicone is a preferred material, it will be appreciated that other preferably flexible materials, including gellans and hydromers may be used as well. In addition, while particular shapes of the implant have been disclosed, it will be understood that the shunt can be formed with other suitable shapes that will not negatively impinge anatomical features. Also, while dimensions and surface areas of preferred embodiments have been disclosed, the invention is not limited thereto. With respect thereto, those embodiments indicated to preferably have a surface area of approximately (or at least approximately) 350 mm2, may be smaller in size and have a surface area of 200-350 mm2. In addition, in each of the embodiments, the flexible drainage tube may be valved, non-valved and permanently open, or provided with a dissolvable or otherwise removable plug which initially obstructs passage of aqueous through the tube and is later removed (by dissolution, physician action, or other means) to allow increased flow of aqueous through the tube. In addition, each of the embodiments may be provided rimmed with a wall or non-rimmed, and with ribs for lifting the tissue (as shown) or without ribs. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from scope as claimed.
Number | Date | Country | |
---|---|---|---|
60574781 | May 2004 | US |