Glenoid component with an anatomically optimized keel

Abstract
A glenoid component for a shoulder prosthesis adapted to be mounted in a glenoid cavity of a shoulder. An elongated keel adapted to engage with the glenoid cavity is attached to the internal surface of the base. The keel extends along a longitudinal axis of the base. The keel includes various configurations of transverse members extending away from the longitudinal axis. The surgeon selects a glenoid component with a keel and transverse member configuration that is anatomically optimized for the patient. Glenoid components properly optimized provide mechanical strength and stability superior to prior art devices. The glenoid components disclosed herein are particularly well suited for use in an anatomical total shoulder prosthesis, but may are also suited to partial shoulder prostheses and reverse shoulder prostheses.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application claims priority to French application No. 0603291 filed on Apr. 13, 2006.


FIELD OF THE INVENTION

The present invention relates to a glenoid component with an anatomically optimized keeled for use in total or partial shoulder prosthesis, and to a set of such glenoid components.


BACKGROUND OF THE INVENTION

In the field of shoulder prostheses it is known, for example from U.S. Publication No. 2005/0049709 (based on FR-A-2 859 099), to use a glenoid component that includes a base capable of resting against the patient's glenoid cavity. The base is combined with a fixing member intended to penetrate deeply into this glenoid cavity in order to connect it securely to the aforementioned component.


U.S. Publication No. 2005/0049709 teaches a fixing member is in the form of a keel that includes a main longitudinal axis. The base has a concave surface opposite the keel that is capable of cooperating with a totally hemispherical head of a humeral component of the shoulder prosthesis. For satisfactory implantation, from the anatomical point of view, of the glenoid component in the glenoid cavity the keel of this component has a length which is less than that of the base resting against the glenoid cavity. In addition, the keel is slightly tapered so that the length of its free end is less than the length of this keel in the region of its zone of connection to the base.


U.S. Publication No. 2005/0261775 also discloses an alternative solution in which the aforementioned fixing member is formed by a solid stud. As in the case of the aforementioned keel, this stud has dimensions that are less than these in the region of its zone of connection to the base, for anatomical reasons. A stud of this type is relatively invasive toward the patient. Its use necessitates the removal of a significant portion of the patient's bone stock, which is detrimental in particular when refitting the implant.


U.S. Pat. No. 3,869,730 discloses a shoulder prosthesis comprising a glenoid component that is equipped with a first diametral plate as well as two half plates extending transversely to this main plate. However, these various plates for fixing the component in the glenoid cavity are not anatomical since their dimensions are identical to those of the base and, consequently, they are capable of leading to at least partial destruction of the glenoid cavity. In this respect, it will be noted that these plates cannot be considered as a fixing keel, as mentioned above.


Bicknell et al., Does Keel Size, The Use Of Screw, And The Use Of Bone Cement Affect Fixation of A Metal Glenoid Implant?, 12 J of Shoulder Elbow Surg. 268 (2003) discloses a symmetrical blade-type, cross-keeled glenoid components. The five cross-keeled glenoid components tested varied only in size, not in the configuration had keel. The article concludes that the size of the keel was not found to have a significant effect on the stability of the glenoid components, as measured by the variable of contra-lateral lift-off. The article also concludes that supplemental screw fixation significantly improved implant fixation relative to the un-cemented keel, regardless of keel size. The keel was not optimized to the patient's anatomy.


BRIEF SUMMARY OF THE INVENTION

The various embodiments disclosed herein are directed to a glenoid component for a shoulder prosthesis adapted to be mounted in a glenoid cavity of a shoulder. An elongated keel adapted to engage with the glenoid cavity is attached to the internal surface of the base. The keel extends along a longitudinal axis of the base. The keel includes various configurations of transverse members extending away from the longitudinal axis. The surgeon selects a glenoid component with a keel and transverse member configuration that is anatomically optimized for the patient. Such glenoid components properly optimized for the patient provide mechanical strength and stability superior to prior art devices. The glenoid components disclosed herein are particularly well suited for use in an anatomical total shoulder prosthesis, but many are also suited to partial shoulder prostheses and reverse shoulder prostheses.


Optimizing the glenoid component for the patient's anatomy has the advantage of minimizing rocking of the glenoid component and reduces loosening of the glenoid component from the glenoid cavity. In addition, the keel and transverse members increase the rigidity of the base of the glenoid component. This structural advantage allows micro-movements to be reduced, owing to the improvement in the primary grip of the entire component. Finally, transverse members anatomically optimized resist shearing forces applied to the glenoid component better than conventional glenoid components.


Anatomical optimization may include selecting a glenoid component with transverse members configured, for example, with heights less than a height of the keel; at non-orthogonal angles relative to the longitudinal axis; integrally formed with, or connected to, the keel; symmetrical or asymmetrical arranged about the longitudinal axis; located at a median region, an intermediate region or an end region of the keel; with a gap between one or more of the transverse members and the keel; with anchor members oriented generally parallel to the longitudinal axis and attached to at least one of the transverse members or the keel; at least one generally planar surface located on the transverse members oriented generally parallel to the external articulating surface; and/or with holes in the transverse members. Variations in the keel configuration may also be incorporated in the set of glenoid components. Depending on the patient's anatomy, determined by the surgeon before and/or during surgery, it is possible to select a glenoid component that is anatomically optimized for the patient.


The invention relates to a total shoulder prosthesis comprising a glenoid component as defined hereinbefore, as well as a humeral component capable of cooperating with this glenoid component.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

The invention will be understood better and further advantages thereof will emerge more clearly from the following description which is given merely as a non-limiting example with reference to the accompanying drawings, in which:



FIG. 1 is a schematic view of a shoulder prosthesis including a glenoid component with a cross-keeled base in accordance with an embodiment of the present invention.



FIG. 2 is a perspective view of the glenoid component of FIG. 1.



FIG. 3 is a plan view of the glenoid component of FIG. 2.



FIG. 4 is a perspective view of a glenoid component with a cross-keeled base in accordance with another embodiment of the present invention.



FIG. 5 is a perspective view of a glenoid component with a cross-keeled base in accordance with another embodiment of the present invention.



FIG. 6 is a plan view of an alternate glenoid component with transverse members separated from the keel in accordance with an embodiment of the present invention.



FIG. 7 is a plan view of an alternate glenoid component with angled transverse members in accordance with an embodiment of the present invention.



FIG. 8 is a plan view of an alternate glenoid component with asymmetrical transverse members in accordance with an embodiment of the present invention.



FIG. 9 is a side view of an alternate glenoid component with anchor members in accordance with an embodiment of the present invention.



FIG. 10 is a side view of an alternate glenoid component with a keel having a longitudinal length approximately equal to a length of the base plate in accordance with an embodiment of the present invention.



FIG. 11 is a side view of an alternate glenoid component with a keel having a longitudinal length greater than a length of the base plate in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The total shoulder prosthesis shown in FIG. 1 includes a glenoid component 2 integrally connected to the glenoid cavity G of a shoulder as well as a humeral component 4 integrally connected to the corresponding humerus H. This humeral component 4 includes a stem 6 intended to be fixed in the medullary canal of the humerus H, as well as a hemispherical head 8 including a convex surface.


The glenoid component 2 includes a base 10 having with an external surface or articular surface 101 opposite the glenoid cavity. In the illustrated embodiment, the external surface 101, includes a concave profile that is intended to cooperate in the anatomical manner with the head 8 of the humeral component 4. The glenoid component 2 can be made of metal, plastics material, ceramic, or composites thereof, or of any other suitable biocompatible material.


Internal surface 102 of the base 10 rests against the glenoid cavity G of the shoulder. For this purpose, this internal surface 102 is optionally provided with serrations 103 to facilitate implantation of the base 10. In some embodiments, the serrations 103 increase anterior/posterior stability of the glenoid component 2. The base 10 includes keel 12 extending along longitudinal axis X-X. The keel 12 preferably includes a longitudinal dimension or length that is greater than its transverse dimension or width.


Axis Y-Y corresponds to the width of the keel and axis Z-Z corresponding to its thickness respectively. The axes X-X, Y-Y, and Z-Z are preferably orthogonal to each other. As used herein, “keel” refers to an elongated ridge or upstanding structure attached to a glenoid component with a length oriented along a longitudinal axis of the glenoid component. The keel preferably has a length greater than its width. The keel may have a length greater than, less than, or the same as the base of the glenoid component. The keel typically has generally planer sides, which may include a variety of protrusions, recesses, anchor members, and holes. The keel is adapted to engage with a glenoid cavity of a shoulder to increase mechanical strength and stability.


The length 11 of the keel 12, in the region of its zone of connection 12′ to the base 2, is less than the length L of the base 2. In addition, the length 12 of this keel 12, in the region of its free end 12″, is less than the above-defined length 11, so this keel has a slightly tapered profile. These different lengths L, 11 and 12, which are taken along the main axis X-X, are illustrated in FIG. 1.


As illustrated in FIG. 2, the keel 12 includes transverse hole 14, allowing the creation of a cement bridge for fixing the component, if it is cemented. If the component is not cemented, the hole 14 is likely to allow the creation of a bone bridge. In another embodiment, the hole 14 may be used to receive one or more fasteners, such as bone screws.


Notches 16 are preferably formed on each of the lateral surfaces of this keel 12. The notches 16 preferably extend from the walls of the hole 14, defining substantially the shape of a T. The function of these notches is to allow satisfactory attachment of the component 2 to the glenoid cavity G, either by engagement with cement or as regions for subsequent bone in-growth.


In the illustrated embodiment, two transverse members 20 extend laterally from the keel 12 while forming an angle α relative to the longitudinal axis X-X, as shown in particular in FIG. 3. In the illustrated example, this angle α is approximately 90° but, as a variation, it can be between 30 and 150°, in particular between 45 and 135° (see e.g., FIG. 7).


In the embodiment of FIG. 2 the transverse members 20 have a height measured along the Z-Z axis less than a height of the keel 12. In one embodiment, the transverse members 20 have a height of about one half the height of the keel 12. In an alternate embodiment, the transverse members 20 may have a height approximately equal to the height of the keel 12 (see e.g., FIG. 4). As used herein, “transverse member” refers to a structure on a glenoid component extending away from a longitudinal axis of a keel. The terms “transverse” or “transversely” should not be interpreted to imply right angles, since the transverse member may extend away from the keel at a variety of angles. The transverse member may be connect to or formed integrally with the keel, or may optionally be spaced apart from the keel.


The keel 12 and the transverse members 20 preferably include generally planar surfaces 22 and 24, both oriented to engage with the glenoid cavity. In the preferred embodiment, the surfaces 22 and 24 are generally parallel to the external surface 101. The surfaces 22 and 24 act in concert with the internal surface 102 of the base 10 to resist compressive forces applied to the external surface 101 by the humeral head 8. By contrast, the blade-type keel disclosed in Bicknell et al. provides minimal resistance to such compressive forces. If the glenoid component disclosed in Bicknell et al. is driven further into the glenoid cavity by such forces, instability will result.


With reference to this FIG. 3, it is noted that the transverse members 20 extend only over a portion of the base 2. In other words, the distance 11 separating the two opposing ends of these transverse members 20 is much less than the width L′ of the base 2, as measured along the Y-Y axis.


In the illustrated example, moreover, the transverse members 20 extend symmetrically about the axis X-X. Alternatively, the transverse members can be arrange asymmetrically about the axis X-X (see e.g., FIG. 8). In a variation, a single transverse member may be used. In an additional variation, a number of transverse members greater than one may be used on at least one of the two sides of the component (see e.g., FIG. 7). Finally, the dimensions of the transverse members, such as for example the length, height and width, can differ from one another.


Returning to FIG. 2, each transverse member 20 is attached to the internal surface 102 of the base 10, and to the walls of the median hole 14. The illustrated transverse members 20 therefore extends along the axis Z-Z approximately over half the thickness of the keel 12. In a variation, however, the thickness of the transverse members 20 may be greater. From this perspective, the transverse members 20 extend, for example, to the lower edge of the keel, having a shape which tapers in the direction of this lower edge in particular of a pyramid type, so as to mate with the internal shape of the anatomical glenoid cavity.


In addition, each transverse member 20 projects, relative to the keel, from a median region 12, thereof. This median region 121 is defined with reference to the longitudinal main axis X-X of the keel 12 to which reference is made above.



FIG. 4 illustrates an alternate glenoid component 102 similar to those in FIG. 1 to 3. In the embodiment of FIG. 4, the transverse members 120 project relative to the keel 112 from an end region 1122 thereof. This end region is defined, as above for the median region, by reference to the main longitudinal axis X-X of the keel 112. It will be noted that, in this first variation, the angle formed by the transverse members with this main axis X-X is also close to 90°. The transverse member 120 has a height measured along the Z-Z axis generally the same as the height of the keel 112.


In the illustrated embodiment, the transverse member 120 includes a series of grooves 122. Alternatively, a series of anchor members are optionally located on the transverse member 120 (see e.g. FIG. 9). The grooves 122 are provided to increase mechanical stability of the glenoid component 102.



FIG. 5 illustrates an alternate glenoid component 202 with transverse members 220 that project relative to the keel 212 from an intermediate region 2123 thereof, in accordance with an embodiment of the present invention. As in the foregoing, this intermediate region 2123 is defined by reference to the main longitudinal axis X-X of the keel 212 located between the respective median region 121 and the end region 1122. Similarly to the first two embodiments, the two transverse members 220 form substantially a right angle relative to the main axis X-X of the keel 212.



FIG. 6 is a plan view of an internal surface 250 of an alternate glenoid component 252 in accordance with an embodiment of the present invention. Keel 254 is similar to the keel 12 in FIG. 3. The transverse members 256, however, are not connected to the keel 254. Rather, gap 258 separates the keel 254 from the transverse members 256. The glenoid component 252 optionally includes a plurality of mounting holes 260 adapted to receive orthopaedic fasteners, such as for example bone screws or pins.



FIG. 7 is a plan view of an internal surface 270 of an alternate glenoid component 272 in accordance with an embodiment of the present invention. Keel 273 is similar to the keel 12 in FIG. 3. The transverse members 274, 276 are arranged in opposing V-shaped configurations relative to the keel 273. In the illustrated embodiment, transverse members 278, 280 are the mirror image of transverse members 274, 276. The angle 282 formed by the transverse members 274, 276, 278, 280 relative to the axis X-X can vary between about 5 degrees and about 85 degrees. The angle 282 formed with the axis X-X can optionally vary for each of the transverse members 274, 276, 278, 280.



FIG. 8 is a plan view of an internal surface 300 of an alternate glenoid component 302 in accordance with an embodiment of the present invention. Keel 304 is similar to the keel 12 in FIG. 3. The transverse members 306, 308 are arranged asymmetrically relative to the axis X-X.



FIG. 9 is a side view of an alternate glenoid component 350 in accordance with an embodiment of the present invention. Keel 352 is similar to the keel 12 in FIG. 3, except that it includes a series of anchor members 354 arranged generally parallel to axis X-X. Similarly, transverse members 356, 358 include anchor members 360 arranged generally parallel to the axis X-X. The anchor members 354, 360 can include a variety of configurations, such as for example, ridges, protrusions, recesses, serrations, fins, and the like. The anchor members 354, 360 provide enhanced engagement with the bone in the glenoidal cavity. The transverse members 356, 358 optionally include holes 362, similar to the hole 14 made in the keel 12, so as to allow the creation of a cement bridge or a bone bridge.



FIG. 10 is a side view of an alternate glenoid component 380 in accordance with an embodiment of the present invention. Keel 382 has a longitudinal length 384 approximately equal to length 388 of the base 386. FIG. 11 is a side view of an alternate glenoid component 400 in accordance with an embodiment of the present invention. Keel 402 has a longitudinal length 404 greater than length 406 of the base 408.


As seen in the foregoing, the relative position and configuration of the transverse members relative to the keel is variable. The transverse members can extend from different positions along the keel at a variety of angles.


The present invention is also directed to a set of glenoid components on which the transverse members have different sizes, shapes, positions and configurations. A set of glenoid components may include transverse members, for example, with heights less than a height of the keel; at non-orthogonal angles relative to the longitudinal axis; integrally formed with, or connected to, the keel; symmetrical or asymmetrical arranged about the longitudinal axis; located at a median region, an intermediate region or an end region of the keel; with a gap between one or more of the transverse members and the keel; with anchor members oriented generally parallel to the longitudinal axis and attached to at least one of the transverse members or the keel; at least one generally planar surface located on the transverse members oriented generally parallel to the external articulating surface; and/or with holes in the transverse members. Variations in the keel configuration may also be incorporated in the set of glenoid components. Depending on the patient's anatomy, determined by the surgeon before and/or during surgery, it is possible to select a glenoid component that is anatomically optimized for the patient.


Optimizing the glenoid component for the patient's anatomy has the advantage of minimizing rocking of the glenoid component and reduces loosening of the glenoid component from the glenoid cavity. In addition, the keel and transverse members increase the rigidity of the base of the glenoid component. This structural advantage allows micro-movements to be reduced, owing to the improvement in the primary grip of the entire component. Finally, transverse members anatomically optimized resist shearing forces applied to the glenoid component better than conventional glenoid components.


The various embodiments of the glenoid components disclosed herein can be used with partial or total anatomical shoulder prostheses or reverse prostheses, such as disclosed in U.S. Publication No. 2005/0278030; 2005/0278031; 2005/0278032; 2005/0278033; 2005/0230197; and 2005/0049709, which are all hereby incorporated by reference.


All of the patents and patent applications disclosed herein, including those set forth in the Background of the Invention, are hereby incorporated by reference. Although specific embodiments of this invention have been shown and described herein, it is to be understood that these embodiments are merely illustrative of the many possible specific arrangements that can be devised in application of the principles of the invention. Numerous and varied other arrangements can be devised in accordance with these principles by those of ordinary skill in the art without departing from the scope and spirit of the invention.

Claims
  • 1. A glenoid component for a shoulder prosthesis adapted to be mounted in a glenoid cavity of a shoulder, the glenoid component comprising: a base comprising an external articulating surface having a continuous arcuate profile configured to cooperate in an anatomical manner with a hemispherical humeral head and an internal surface adapted to engage with the glenoid cavity of the shoulder;an elongated keel attached to the internal surface of the base and extending along a longitudinal axis of the base, the keel having a proximal end and a distal end and being adapted to engage with the glenoid cavity; andone or more transverse members extending away from the longitudinal axis of the base, the transverse members comprising a maximal proximal-distal dimension less than a dimension between the proximal end and the distal end of the keel and a length less than about half a length of the keel when measured along the longitudinal axis, the transverse members including at least one generally planar surface adapted to contact and engage the glenoid cavity, wherein the generally planar surface is spaced at a distance from the internal surface of the base, and wherein the generally planar surface is oriented generally parallel to the external articulating surface.
  • 2. The glenoid component of claim 1 wherein the transverse members comprise an angle relative to the longitudinal axis of about 30° to about 150°.
  • 3. The glenoid component of claim 1 wherein the transverse members are integrally formed with, or connected to, the keel.
  • 4. The glenoid component of claim 1 wherein the transverse members comprise a length perpendicular to the longitudinal axis greater than approximately one-half of a thickness of the keel.
  • 5. The glenoid component of claim 1 wherein the transverse members comprise a symmetrical configuration about the longitudinal axis.
  • 6. The glenoid component of claim 1 wherein the transverse members comprise an asymmetrically configuration relative to the longitudinal axis.
  • 7. The glenoid component of claim 1 wherein the transverse members extend from a median region of the keel.
  • 8. The glenoid component of claim 1 wherein the transverse members extend from an end region of the keel.
  • 9. The glenoid component of claim 1 wherein the transverse members extend from an intermediate region of the keel.
  • 10. The glenoid component of claim 1 wherein the keel comprises a length approximately greater than or equal to a length of the base portion, as measured along the longitudinal axis.
  • 11. The glenoid component of claim 1 comprising at least one generally planar surface located on at least one of the elongated keel or one of the transverse members, the planar surface oriented generally parallel to the external articulating surface.
  • 12. The glenoid component of claim 1 comprising a gap between one or more of the transverse members and the keel.
  • 13. The glenoid component of claim 1 comprising anchor members oriented generally parallel to the longitudinal axis and attached to at least one of the transverse members or the keel.
  • 14. The glenoid component of claim 1 comprising holes in the transverse members.
  • 15. The glenoid component of claim 1 wherein the base comprises holes adapted to receive orthopaedic fasteners.
  • 16. The glenoid component of claim 1 wherein the transverse members comprise non-orthogonal angles relative to the longitudinal axis.
  • 17. Total shoulder prosthesis comprising: the glenoid component of claim 1; anda prosthetic humeral component adapted to cooperate with the external articulating surface.
  • 18. The glenoid component of claim 1 comprising: a first glenoid component with one or more transverse members in a first configuration relative to the longitudinal axis; and second glenoid component with one or more transverse members in a second configuration relative to the longitudinal axis, wherein the first configuration is different from the second configuration.
  • 19. A glenoid component for a shoulder prosthesis adapted to be mounted in a glenoid cavity of a shoulder, the glenoid component comprising: a base comprising an external articulating surface having a continuous arcuate profile configured to cooperate in an anatomical manner with a hemispherical humeral head and an internal surface adapted to engage with the glenoid cavity of the shoulder;an elongated keel attached to the internal surface of the base and extending along a longitudinal axis of the base; anda transverse members defining an intersection with the base and extending in a transverse direction away from the longitudinal axis of the base, the transverse members comprising a length measured along the transverse direction that is less than about half a length of the keel measured along the longitudinal axis and having an engagement surface adapted to engage the glenoid cavity, wherein at the intersection the engagement surface is located at an intermediate position between the internal surface of the base and a distal end of the keel and wherein the engagement surface is oriented generally parallel to the external articulating surface.
  • 20. A glenoid component for a total shoulder prosthesis, comprising: a base having a first face adapted for engaging a glenoid cavity of a shoulder and a second face positioned opposite the first face and having an arcuate profile adapted for articulation with a humeral head, the base having a length along a longitudinal axis;a keel extending distally from a zone of connection with the base and being adapted for securing the glenoid component in the glenoid cavity, the keel defining a length along the longitudinal axis and a thickness extending distally along a Z-axis,a transverse member extending distally from the base and laterally from the longitudinal axis,wherein the length of the keel in the region of the zone of connection with the base is less than the length of the base and the transverse member has a maximum thickness along the Z-axis that is approximately half the thickness of the keel.
  • 21. A glenoid component for a shoulder prosthesis adapted to be mounted in a glenoid cavity of a shoulder, the glenoid component comprising: a base comprising an external articulating surface having a continuous arcuate profile configured to cooperate in an anatomical manner with a hemispherical humeral head and an internal surface adapted to engage with the glenoid cavity of the shoulder;an elongated keel attached to the internal surface of the base and extending along a longitudinal axis of the base, the keel having a length along the longitudinal axis of the base and being adapted to engage with the glenoid cavity; anda transverse member extending in a transverse direction from the longitudinal axis of the base, the transverse member having a length along the transverse direction, where a maximum height of the transverse member is less than a maximum height of the keel and the length of the transverse member along the transverse direction is less that about half the length of the keel along the longitudinal axis, the transverse member including a surface spaced at a distance from the internal surface of the base and adapted to contact and engage the glenoid cavity.
Priority Claims (1)
Number Date Country Kind
06 03291 Apr 2006 FR national
US Referenced Citations (242)
Number Name Date Kind
3694820 Scales et al. Oct 1972 A
3815157 Skorecki et al. Jun 1974 A
3842442 Kolbel Oct 1974 A
3864758 Yakich Feb 1975 A
3869730 Skobel Mar 1975 A
3916451 Buechel et al. Nov 1975 A
3978528 Crep Sep 1976 A
3979778 Stroot Sep 1976 A
3992726 Freeman et al. Nov 1976 A
4003095 Gristina Jan 1977 A
4030143 Elloy et al. Jun 1977 A
4040131 Gristina Aug 1977 A
4054955 Seppo Oct 1977 A
4135517 Reale Jan 1979 A
4179758 Gristina Dec 1979 A
4206517 Pappas et al. Jun 1980 A
4261062 Amstutz et al. Apr 1981 A
4550450 Kinnett Nov 1985 A
4693723 Gabard Sep 1987 A
4822370 Schelhas Apr 1989 A
4846840 Leclercq et al. Jul 1989 A
4865605 Dines et al. Sep 1989 A
4865609 Roche Sep 1989 A
4892549 Figgie, III et al. Jan 1990 A
4919670 Dale et al. Apr 1990 A
4957510 Cremascoli Sep 1990 A
4963155 Lazzeri et al. Oct 1990 A
5032132 Matsen, III et al. Jul 1991 A
5080673 Burkhead et al. Jan 1992 A
5080685 Bolesky et al. Jan 1992 A
5127920 MacArthur Jul 1992 A
5135529 Paxson et al. Aug 1992 A
5163961 Harwin Nov 1992 A
5171289 Tornier Dec 1992 A
5181928 Bolesky et al. Jan 1993 A
5192329 Christie et al. Mar 1993 A
5201882 Paxson Apr 1993 A
5206925 Nakazawa et al. Apr 1993 A
5222984 Forte Jun 1993 A
5261914 Warren Nov 1993 A
5314479 Rockwood, Jr. et al. May 1994 A
5314485 Judet May 1994 A
5314487 Schryver et al. May 1994 A
5326359 Oudard Jul 1994 A
5330531 Capanna Jul 1994 A
5358526 Tornier Oct 1994 A
5383936 Kubein-Meesenburg et al. Jan 1995 A
5405399 Tornier Apr 1995 A
5425779 Schlosser et al. Jun 1995 A
5429639 Judet Jul 1995 A
5443519 Averill et al. Aug 1995 A
5458650 Carret et al. Oct 1995 A
5462563 Shearer et al. Oct 1995 A
5505731 Tornier Apr 1996 A
5507817 Craig et al. Apr 1996 A
5507818 McLaughlin Apr 1996 A
5507824 Lennox Apr 1996 A
5509934 Cohen Apr 1996 A
5549682 Roy Aug 1996 A
5580352 Sekel Dec 1996 A
5591168 Judet et al. Jan 1997 A
5662651 Tornier et al. Sep 1997 A
5676702 Ratron Oct 1997 A
5702447 Walch et al. Dec 1997 A
5702457 Walch et al. Dec 1997 A
5702478 Tornier Dec 1997 A
5702486 Craig et al. Dec 1997 A
5723018 Cyprien et al. Mar 1998 A
5728161 Camino et al. Mar 1998 A
5741335 Gerber et al. Apr 1998 A
5755807 Anstaett et al. May 1998 A
5766256 Oudard et al. Jun 1998 A
5800551 Williamson et al. Sep 1998 A
5824106 Fournol Oct 1998 A
5879395 Tornier et al. Mar 1999 A
5879405 Ries et al. Mar 1999 A
5902340 White et al. May 1999 A
5910171 Kummer et al. Jun 1999 A
5928285 Bigliani et al. Jul 1999 A
5944758 Mansat et al. Aug 1999 A
5961555 Huebner Oct 1999 A
5984927 Wenstrom, Jr. et al. Nov 1999 A
6015437 Stossel Jan 2000 A
6033439 Camino et al. Mar 2000 A
6045582 Prybyla Apr 2000 A
6045583 Gross et al. Apr 2000 A
6102953 Huebner Aug 2000 A
6129764 Servidio Oct 2000 A
6162254 Timoteo Dec 2000 A
6165224 Tornier Dec 2000 A
6168629 Timoteo Jan 2001 B1
6171341 Boileau et al. Jan 2001 B1
6183519 Bonnin et al. Feb 2001 B1
6197062 Fenlin Mar 2001 B1
6197063 Dews Mar 2001 B1
6203575 Farey Mar 2001 B1
6206925 Tornier Mar 2001 B1
6228120 Leonard et al. May 2001 B1
6267767 Stroble et al. Jul 2001 B1
6283999 Rockwood, Jr. Sep 2001 B1
6299646 Chambat et al. Oct 2001 B1
6312467 McGee Nov 2001 B1
6328758 Tornier et al. Dec 2001 B1
6334874 Tornier et al. Jan 2002 B1
6364910 Shultz et al. Apr 2002 B1
6368352 Camino et al. Apr 2002 B1
6368353 Arcand Apr 2002 B1
6379387 Tornier Apr 2002 B1
6398812 Masini Jun 2002 B1
6406495 Schoch Jun 2002 B1
6406496 Rüter Jun 2002 B1
6436144 Ahrens Aug 2002 B1
6436147 Zweymuller Aug 2002 B1
6454809 Tornier Sep 2002 B1
6458136 Allard et al. Oct 2002 B1
6475243 Sheldon et al. Nov 2002 B1
6488712 Tornier et al. Dec 2002 B1
6494913 Huebner Dec 2002 B1
6506214 Gross Jan 2003 B1
6508840 Rockwood, Jr. et al. Jan 2003 B1
6514287 Ondrla et al. Feb 2003 B2
6520994 Nogarin Feb 2003 B2
6530957 Jack Mar 2003 B1
6540770 Tornier et al. Apr 2003 B1
6558425 Rockwood May 2003 B2
6569202 Whiteside May 2003 B2
6582469 Tornier Jun 2003 B1
6589281 Hyde, Jr. Jul 2003 B2
6599295 Tornier et al. Jul 2003 B1
6620197 Maroney et al. Sep 2003 B2
6626946 Walch et al. Sep 2003 B1
6673114 Hartdegen et al. Jan 2004 B2
6673115 Resch et al. Jan 2004 B2
6679916 Frankle et al. Jan 2004 B1
6736851 Maroney et al. May 2004 B2
6746487 Scifert et al. Jun 2004 B2
6749637 Bahler Jun 2004 B1
6755866 Southworth Jun 2004 B2
6761740 Tornier Jul 2004 B2
6767368 Tornier Jul 2004 B2
6780190 Maroney Aug 2004 B2
6783549 Stone et al. Aug 2004 B1
6790234 Frankle Sep 2004 B1
6802864 Tornier Oct 2004 B2
6824567 Tornier et al. Nov 2004 B2
6863690 Ball et al. Mar 2005 B2
6875234 Lipman et al. Apr 2005 B2
6887277 Rauscher et al. May 2005 B2
6890357 Tornier May 2005 B2
6890358 Ball et al. May 2005 B2
6942699 Stone et al. Sep 2005 B2
6953478 Bouttens et al. Oct 2005 B2
6969406 Tornier Nov 2005 B2
7011686 Ball et al. Mar 2006 B2
7033396 Tornier Apr 2006 B2
7066959 Errico Jun 2006 B2
7108719 Horber Sep 2006 B2
7166132 Callaway et al. Jan 2007 B2
7169184 Dalla Pria Jan 2007 B2
7175663 Stone Feb 2007 B1
7195645 Disilvestro et al. Mar 2007 B2
7238207 Blatter et al. Jul 2007 B2
7238208 Camino et al. Jul 2007 B2
7297163 Huebner Nov 2007 B2
7309360 Tornier et al. Dec 2007 B2
7329284 Maroney et al. Feb 2008 B2
7338498 Long et al. Mar 2008 B2
7338528 Stone et al. Mar 2008 B2
20010032021 McKinnon Oct 2001 A1
20010047210 Wolf Nov 2001 A1
20010049561 Dews et al. Dec 2001 A1
20020032484 Hyde, Jr. Mar 2002 A1
20020099381 Maroney Jul 2002 A1
20020138148 Hyde, Jr. Sep 2002 A1
20020143402 Steinberg Oct 2002 A1
20020151982 Masini Oct 2002 A1
20030009170 Tornier Jan 2003 A1
20030009171 Tornier Jan 2003 A1
20030028198 Tornier et al. Feb 2003 A1
20030060884 Fell et al. Mar 2003 A1
20030097183 Rauscher et al. May 2003 A1
20040006392 Grusin et al. Jan 2004 A1
20040034431 Maroney et al. Feb 2004 A1
20040064189 Maroney et al. Apr 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040134821 Tornier Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040148033 Schroeder Jul 2004 A1
20040193276 Maroney et al. Sep 2004 A1
20040193277 Long et al. Sep 2004 A1
20040193278 Maroney et al. Sep 2004 A1
20040210220 Tornier Oct 2004 A1
20040210317 Maroney et al. Oct 2004 A1
20040215200 Tornier et al. Oct 2004 A1
20040220674 Pria Nov 2004 A1
20040225367 Glien et al. Nov 2004 A1
20040230197 Tornier et al. Nov 2004 A1
20040267370 Ondria Dec 2004 A1
20050008672 Winterbottom et al. Jan 2005 A1
20050015154 Lindsey et al. Jan 2005 A1
20050043805 Chudik Feb 2005 A1
20050049709 Tornier Mar 2005 A1
20050055102 Tornier et al. Mar 2005 A1
20050065612 Winslow Mar 2005 A1
20050085919 Durand-Allen et al. Apr 2005 A1
20050085921 Gupta et al. Apr 2005 A1
20050090902 Masini Apr 2005 A1
20050107882 Stone et al. May 2005 A1
20050113931 Horber May 2005 A1
20050119531 Sharratt Jun 2005 A1
20050143829 Ondria et al. Jun 2005 A1
20050165490 Tornier Jul 2005 A1
20050177241 Angibaud et al. Aug 2005 A1
20050197708 Stone et al. Sep 2005 A1
20050203536 Laffargue et al. Sep 2005 A1
20050209700 Rockwood et al. Sep 2005 A1
20050216092 Marik et al. Sep 2005 A1
20050230197 Jedele Oct 2005 A1
20050251263 Forrer et al. Nov 2005 A1
20050256584 Farrar Nov 2005 A1
20050261775 Baum et al. Nov 2005 A1
20050267590 Lee Dec 2005 A1
20050278030 Tornier et al. Dec 2005 A1
20050278031 Tornier et al. Dec 2005 A1
20050278032 Tornier et al. Dec 2005 A1
20050278033 Tornier et al. Dec 2005 A1
20050288681 Klotz et al. Dec 2005 A1
20050288791 Tornier et al. Dec 2005 A1
20060004462 Gupta Jan 2006 A1
20060009852 Winslow et al. Jan 2006 A1
20060015185 Chambat et al. Jan 2006 A1
20060020344 Shultz et al. Jan 2006 A1
20060030946 Ball et al. Feb 2006 A1
20060116772 Haidukewych Jun 2006 A1
20060173457 Tornier Aug 2006 A1
20060235538 Rochetin et al. Oct 2006 A1
20060241775 Buss Oct 2006 A1
20070043265 Rochetin Feb 2007 A1
20070225817 Reubelt et al. Sep 2007 A1
20070225818 Reubelt et al. Sep 2007 A1
20070225821 Reubelt et al. Sep 2007 A1
20070250174 Tornier et al. Oct 2007 A1
Foreign Referenced Citations (56)
Number Date Country
426096 Dec 1966 CH
507704 May 1971 CH
19509037 Sep 1996 DE
19630298 Jan 1998 DE
0257359 Mar 1988 EP
0299889 Jan 1989 EP
0524857 Jan 1993 EP
0549480 Jun 1993 EP
0599429 Jun 1994 EP
0617934 Oct 1994 EP
0664108 Jul 1995 EP
0679375 Nov 1995 EP
0712617 May 1996 EP
0715836 Jun 1996 EP
0797964 Oct 1997 EP
0807426 Nov 1997 EP
0809986 Dec 1997 EP
0864306 Sep 1998 EP
0903127 Mar 1999 EP
0903128 Mar 1999 EP
0927548 Jul 1999 EP
1062923 Dec 2000 EP
1064890 Jan 2001 EP
1195149 Apr 2002 EP
1380274 Jan 2004 EP
1402854 Mar 2004 EP
2248820 May 1975 FR
2545352 Nov 1984 FR
2574283 Jun 1986 FR
2652498 Apr 1991 FR
2664809 Jan 1992 FR
2699400 Jun 1994 FR
2721200 Dec 1995 FR
2726994 May 1996 FR
2737107 Jan 1997 FR
2835425 Aug 2003 FR
2836039 Aug 2003 FR
2859099 Mar 2005 FR
749392 Jul 1980 SU
9107932 Jun 1991 WO
9309733 May 1993 WO
9617553 Jun 1996 WO
9846172 Oct 1998 WO
9949792 Oct 1999 WO
9965413 Dec 1999 WO
0015154 Mar 2000 WO
0041653 Jul 2000 WO
0147442 Jul 2001 WO
0239931 May 2002 WO
0239933 May 2002 WO
02067821 Sep 2002 WO
03005933 Jan 2003 WO
WO 03094806 Nov 2003 WO
WO 2007109319 Feb 2007 WO
WO 2007109291 Sep 2007 WO
WO 2007109340 Sep 2007 WO
Related Publications (1)
Number Date Country
20070244564 A1 Oct 2007 US