The present invention relates generally to the field of orthopaedics, and more particularly, to an implant for use in arthroplasty.
Cross reference is made to the following applications: DEP 5070 entitled “EXTENDED ARTICULATION PROSTHESIS ADAPTOR AND ASSOCIATED METHOD”, DEP 5072 entitled “GLENOID AUGMENT AND ASSOCIATED METHOD”, DEP 5304 entitled “INSTRUMENT FOR PREPARING AN IMPLANT SUPPORT SURFACE AND ASSOCIATED METHOD”, DEP 5306 entitled MODULAR GLENOID PROSTHESIS AND ASSOCIATED METHOD”, and DEP 5307 entitled “GLENOID INSTRUMENTATION AND ASSOCIATED METHOD”, filed concurrently herewith which are incorporated herein by reference.
During the lifetime of a patient, it may be necessary to perform a total shoulder replacement procedure on the patient as a result of, for example, disease or trauma. In a total shoulder replacement procedure, a humeral component having a head portion is utilized to replace the natural head portion of the arm bone or humerus. The humeral component typically has an elongated intramedullary stem which is utilized to secure the humeral component to the patient's humerus. In such a total shoulder replacement procedure, the natural glenoid surface of the scapula is resurfaced or otherwise replaced with a glenoid component that provides a bearing surface for the head portion of the humeral component.
As alluded to above, the need for a shoulder replacement procedure may be created by the presence of any one of a number of conditions. One such condition is the deterioration of the patient's scapula in the area proximate to the glenoid surface as a result of, for example, gleno-humeral arthritis. In such a condition, the erosion of the patient's scapula is generally observed posteriorly on the glenoid surface. Occasionally the erosion of the patient's scapula occurs anteriorly. Such erosion of the scapula renders treatment difficult, if not impossible, with a conventional glenoid prosthesis.
In order to treat a condition in which a portion of the scapula has been eroded, a number of glenoid prostheses have heretofore been designed. Such glenoid prostheses, known generally as augmented glenoid prostheses, have a posterior edge that is thicker than the corresponding anterior edge.
The design of the augmented glenoid component, however, has a number of associated drawbacks. For example, the relatively smooth, arcuate-shaped medial surface may over time lead to loosening of the augmented glenoid component, thereby potentially necessitating additional surgical procedures to replace or reseat the component. Further, due to the configuration of the medial surface, a relatively high shear load is created along the implant-to-bone interface when the component is implanted. The presence of a high shear load along the implant-to-bone interface tends to also cause loosening of the component 100 over a period of time. Post-operative loosening is the largest cause of failures of implanted glenoid components.
Another heretofore-designed augmented glenoid component has a single component plastic body. The thickness of the plastic body gradually increases from an anterior edge to a posterior edge thereof thereby creating a relatively smooth, arcuate-shaped medial surface from which a number of posts or pegs extend. The design of this augmented glenoid component, however, suffers from at least the same drawbacks as the glenoid component.
Prior attempts have been made to treat patients with posterior erosion of the glenoid. Many surgeons simply ream the glenoid surface to the proper orientation and implant the glenoid. Such a procedure leaves little supporting bone. Furthermore, because the little supporting bone is left there is almost no support bone available for a revision surgery if necessary.
Another common approach to treatment of posterior eroded glenoid is to ream the glenoid in a retroverted position. Although the glenoid is fully supported when utilizing such a ream approach, it is preferably loaded on the posterior edge. Such loading on the posterior edge can lead to loosing and failure of the glenoid component. A third option for treatment of glenoids with posterior erosion is a bone wedged graft. Such a bone wedged graft is technically difficult and has an inherent risk of failure.
More recently glenoid component have been developed that have a posterior augmentation. For example U.S. Pat. No. 6,699,289 to Iannotti and Williams, hereby incorporated by reference in its entirety has provided an option for treating glenoids with a posterior defect. Such glenoids with posterior augmentation are prepared utilizing a step cut method or removing more bone from the posterior portions of glenoid than from the anterior portion of the glenoid. These step cut glenoids require a proper characterization of the defect present in the natural glenoid.
There are currently no devices to provide the necessary information to the surgeon to aid in the implantation of these devices. One of the most common techniques surgeons use to verify the correct version is to place their finger on the anterior rim of glenoid fossa. It is has been reported that the correct angle between the anterior cortex and the plane of the glenoid is approximately 67 degrees. This information can be utilized to help a surgeon ensure that the glenoid implant is correctly implanted.
Referring now to
Referring now to
Referring now to
Referring now to
The present invention relates to novel instrumentation designed to give a surgeon a tool for deciding on the proper treatment for certain pathological conditions in the shoulder. Patients with posterior glenoid defects such as the type that includes bone loss need a special therapy to correct the defect. In order to properly and accurately treat the defect, it must be accurately characterized.
According to the present invention such characterization is accomplished with an instrument that tells the surgeon the appropriate size of the glenoid implant to be used. This instrument is augmented with a device to give the surgeon information about the size and depth of the posterior defect. This instrument or sizer disk may have a depth gauge. Such depth gauge may be a sliding rod type depth gauge and may be positioned on the rim of the sizer disk to give the surgeon information about the deepest portion of the defect. The sizer disk may have a wedge shape on the deepest portion of the defect corresponding to the specific glenoid implant. The sizer disk may also provide information to the surgeon on the correct version of the implant depending on the embodiments or combination of features.
The present invention describes several embodiments that are aspects capable, either alone or in concert, of giving the surgeon the necessary information for proper glenoid implantation. A first embodiment is a sizer disk with a protrusion on the anterior edge. This protrusion can be sufficiently long, yet narrow, to give the surgeon instant feedback on the version of the native glenoid or the reamed glenoid.
In some instances patients may have Type C erosion of the glenoid in which the glenoid fossa has been entirely eroded and the plane of the glenoid is apparently retroverted several degrees. This device will aide the surgeon in making that determination.
Another embodiment of the present invention may be in the form of a wedged shaped sizer disk that can be utilized on cases where there is Type C erosion. This disk will show the surgeon a more anatomical version, if not the correct version. Such a wedged shaped disk will allow the surgeon to size the implant necessary for such patients. This is necessary since due to the shape of the glenoid, as one moves more medially, the surface area of the glenoid fossa decreases. To make an attempt to return the glenoid to its anatomical version would result in excessive bone loss. The instruments of the present invention allow the surgeon to make an assessment of the proper size of the step cut for the glenoid that will be needed to correct the defect.
Another embodiment of the present invention is a sizer disk with a depth gage positioned on the posterior rim of sizer disk. The depth gauge may be in the form of a needle type depth gauge. This depth gauge allows the surgeon to properly size the glenoid to the existing bone and to measure the size of the step that will be required to correct the defect with the least amount of bone loss.
Since it is anticipated these devices will be used with a step cut glenoid system, they may be marked by etching, or other means, to determine the exact position of the central edge of the step augment. Such marking may aide the surgeon in assessing the glenoid for proper treatment.
According to one embodiment of the present invention, there is provided an instrument for measuring a defect in a glenoid fossa of a scapula. The instrument includes a member for contact with the glenoid fossa and a probe. The probe is moveably associated with the member. The probe is operably associated with the defect for measuring the defect in the scapula.
According to another embodiment of the present invention there is provided an instrument for measuring a defect in a glenoid fossa of a scapula. The instrument includes a body adapted to be secured to the scapula and an element. The element defines a surface of the element having a shape replicating that of a normal glenoid fossa. The element is securable to the body.
According to still another embodiment of the present invention there is provided a kit for measuring a defect in a worn glenoid fossa of a scapula. The kit includes a first sizing device defining a first surface for contact with the worn glenoid fossa and a second surface opposed to the first surface. The second surface has a shape conforming to a normal glenoid fossa. The first surface of the first sizing device is spaced from the second surface a first distance to represent a normal glenoid fossa. The kit also includes a second sizing device defining a first surface for contact with the worn glenoid fossa and a second surface opposed to the first surface. The second surface has a shape conforming to a normal glenoid fossa. The first surface is spaced from the second surface a second distance to represent a normal glenoid fossa. The second distance and the first distance being different from each other.
According to a further embodiment of the present invention, there is provided a method for providing arthroplasty on a glenoid fossa of a scapula. The method includes the step of providing a first glenoid component for attachment to the glenoid. The first glenoid component has a larger posterior dimension than the corresponding anterior dimension. The method also includes the step of providing a second glenoid component for attachment to the glenoid. The second glenoid component has a larger posterior dimension than the corresponding anterior dimension and has one dimension different from that of said first glenoid component. The method also includes the steps of providing a first sizing device corresponding to the first glenoid component and providing a second sizing device corresponding to the second glenoid component.
The method further includes the steps of placing the first sizing device against the glenoid fossa and placing the second sizing device against the glenoid fossa. The method also includes the step of determining which of the first glenoid component and the second glenoid component should be implanted onto the scapula, based on the placing of the one of the first sizing device and the second sizing device against the glenoid fossa. The method also includes the step of implanting the selected one of the first glenoid component and the second glenoid component.
The technical advantages of the present invention include the ability to accurately characterize a posterior defect. Such accurate characterizing of the posterior defect can be used to choose the appropriate glenoid implant for a posterior defect. For example, according to one aspect of the present invention an instrument for measuring a defect in a glenoid fossa of a scapula is provided. The instrument includes a member for contact with the glenoid fossa and a probe. The probe is removably associated with the member. The probe is operably associated with the defect for measuring the defect in the bone. Thus the present invention provides for an instrument which has an ability to accurately characterize a posterior defect.
The technical advantages of the present invention further include the ability of the instrument of the present invention to determine the size of a posterior defect on a glenoid. For example according to one aspect of the present invention an instrument for measuring a defect in a glenoid fossa of a scapula is provided. The instrument includes a member for contact with the glenoid fossa and a probe moveably associated with a member. The probe includes indicia located on the probe for indicating relative position of the probe with respect to the member. Thus the present invention provides for an instrument that can be used to determine the size of a posterior defect on a glenoid.
The technical advantages of the present invention include the ability of the instrument to be used to determine the shape of the posterior defect. For example, according to another aspect of the present invention a kit is provided for measuring a defect in worn glenoid fossa of a scapula. The kit includes a first sizing device defining a first surface and a second surface. The second surface is spaced a first distance from the first surface. The kit further includes a second sizing device having the first surface and a second surface spaced apart a second distance from the first surface. The first and second distances are different. Thus the present invention can be used to determine the shape of the posterior defect by placing the various sizing devices of the kit against the worn glenoid to determine the shape of the posterior defect.
The technical advantages of the present invention further include the ability to use the present invention to select one of plurality of posterior augment prostheses. For example according to another aspect of the present invention a kit is provided for measuring a defect in a worn glenoid fossa of a scapula. The kit includes a first sizing device and a second sizing device having a dimension different from the first sizing device. Each of the sizing devices may correspond to a particular augmented prosthesis. Thus the present invention can be used to select one of a plurality of posterior augmented prostheses.
The technical advantages of the present invention further include the ability of the present invention to be used to determine a specific measurement of the prosthesis needed. For example, according to one aspect of the present invention a instrument for measuring a defect in a glenoid fossa of a scapula is provided. The instrument includes a member for contact with the glenoid fossa and a probe moveably associated with the member for measuring the defect in the bone. The probe includes indicia thereon for indicating the relative position of the probe to the number. The indicia include marks, lines, alphabetic characters, or numbers in order to determine the specific measurement of the prosthesis. Thus the present invention provides for determining a specific measurement to determine the prosthesis needed.
The technical advantages of the present invention further include the ability to provide for a device for use in measuring Type C erosion of a glenoid cavity. For example, according an aspect of the present invention an instrument for measuring a defect in a glenoid fossa of a scapula is provided. The instrument includes a body adapted to be secured to the scapula and an element defining a surface thereof having a shape replicating that of a normal glenoid fossa. The body includes a protrusion for cooperation with an external cortical wall of the scapula. The protrusion may be adapted to secure the body to the scapula. By providing an instrument that is located against the exterior cortical wall of the scapula a glenoid cavity with Type C erosion or with an entire surface of the glenoid worn can be measured by locating the instrument on the exterior cortical wall of the glenoid.
Other technical advantages of the present invention will be readily apparent to one skilled in the art from the following figures, descriptions and claims.
Corresponding reference characters indicate corresponding parts throughout the several views. Like reference characters tend to indicate like parts throughout the several views.
Embodiments of the present invention and the advantages thereof are best understood by referring to the following descriptions and drawings, wherein like numerals are used for like and corresponding parts of the drawings.
According to the present invention and referring now to
As shown in
The probe 20 may include indicia 32 positioned on the probe 20. The indicia 32 may be utilized for indicating the relative position of the probe 20 with respect to the member 18.
The indicia 32 may be in any form that can be used to determine the position of the probe 20 with respect to the member 18. For example the indicia 32 may be in the form of marks 34 or lines 36. For example, parallel spaced apart lines 36 may be positioned along the probe 20. For example, marks 34 may be positioned alternatively between the lines 36. Further, the indicia 32 may also include characters 38. For example the character 38 may be in the form of alphabetic characters 40 or numeric characters 42. Also, the indicia 32 may also include colors or alternatively dark and light markings.
The probe 20 may include a contact area 44 for contact with the defect 12. The probe 20 may include a stem 46 which may include the contact area 44 and which may extend downwardly from the convex surface 22 of the member 18. The contact area 44 may be positioned on an arm or extension 48 extending from the stem 46. For simplicity the stem 46 and the opening 30 may be circular. Alternatively the stem 46 and the mating opening 30 may have a noncircular cross section. For example the stem 46 may have a rectangular, triangular, or a stem cross-section with a flat. A non-uniform cross-section for the stem 46 may serve to keep the arm or extension 48 in the proper angular position to contact the defect 12.
The instrument 10 may alternatively include a probe 20A as shown in phantom for measuring anterior erosion.
Referring now to
Referring now to
The probe 20 may include a head 58 to prevent the probe 20 from moving downward out of the bushing 52. The probe 20 may also include an urging device in the form of, for example, a spring 60 which may be positioned over the stem 46. The spring 60 may be positioned between the member 18 and, for example, a stop 62. The spring 60 may be adapted to urge the stem 46 downward in the direction of arrow 64 to assure that the contact area 44 of the probe 20 is in contact with the defect 12 of the glenoid fossa 14.
Referring now to
The body 102 may be secured to the glenoid fossa 14 of the scapula 16 in any suitable manner for example as in shown in
Preferably and as is shown in
Referring now to
For example and as is shown in
The body 102A may be integral or may include a base 101A defining support surface 108A. The body 102A may further include a protrusion 104A extending from the base 101A. The element 104A may define the articulating surface 106A.
The instrument 100A preferably and is shown in
The pin guide 109A may, as is shown in
A pin 112A is slideably fitted in the opening 111A. The pin 112A may be a self-drilling and a self-tapping pin which may inserted into the glenoid vault 16A when the instrument 100A is in position. The pin 112A may be utilized to assist in the forming of a resurface glenoid fossa.
According to the present invention and referring now to
While the element 204 may be secured to the body 202 in any suitable fashion, for example by screws, pins or by welding, the body 202, as shown in
As shown in
The instrument 200 may be secured to the scapula 16 in any suitable manner. For example, as shown in
Alternatively and is shown in
Referring now to
Referring now to
Referring now to
Kit 300 may further include a second sizing device 312. The second sizing device 312 defines a first surface or support surface 314. The support surface 314 is utilized for contact with the worn glenoid fossa 14. The second sizing device 312 further defines a second surface 316 in the form of an articulating surface. The second surface or articulating surface 316 has a shape conforming to a normal glenoid fossa. The second surface 316 is opposed to the first surface 314. The second surface 316 is separated from the first surface 314 a distance T3 at a first end 318 of the second sizing device 312 and is separated a distance T4 at a second end 320 of the second sizing device 312. As shown in
The kit 300 may as shown in
According to the present invention and referring now to
For example, and is shown in
Preferably and is shown in
The pin 312A is slideably fittably to the pin guide opening 311A. The pin 312A may be self-drilling and self-tapping for insertion into the glenoid vault 116.
The opening 311 in the first sizing device 302A, is preferably normal or perpendicular to articulating surface 306A of the first sizing device 302A.
Continuing to refer to
The second sizing device 312A includes a posterior protrusion 313 sufficiently different from the posterior protrusion 303A of the first sizing device 302A. As shown in
The kit glenoid 300A further includes a first implant 322A. The first sizing device 302A is adapted for use with the first implant 322A. The first glenoid implant 322A therefore has a size and shape identical to the first sizing device 302A.
The kit 300A may further include a second glenoid implant 324A which has a size and shape identical to the second sizing device 312A. It should be appreciated that the first glenoid implant 322A and the second glenoid implant 324A do may include the openings of the first and second sizing device 302A and 312A, respectively.
The instruments 100, 200 as well as the sizing devices 302 and 312 may be made of any suitable, durable material. Preferably, the material for the instrument is sterilizable by common sterilizable techniques such as gamma irradiation, autoclaving or by other sterilizing techniques. The instruments of the present invention may be made of any suitable, durable material and may, for example, be made of a metal, a plastic, a ceramic or a composite. If made of a metal, the instrument 100, 200 and sizing devices 302 and 312 may be made of a cobalt chromium alloy, a stainless steel alloy, or a titanium alloy.
Referring now to
Referring now to
For example and is shown in
Unlike the trial 302 of the instrument 300 of
The sensors 520 and 522 may be utilized to measure the joint loads and or the kinematics of the joint for which the trial and resulting prosthesis are to be used.
The sensors 520 and 522 may be sensors capable of measuring, for example, temperature, pressure, electrical current, or any other measurable characteristics at or around the articulating surface 506 of the trial 502. The sensors 520 and 522 may, for example, be pressure transducers. If pressure transducers 520 and 522 may, for example, be pressure transducers as shown in U.S. patent application Ser. No. 10/667,763_to Wasielewski incorporated herein reference is to entirety.
Referring now to
Referring now to
Instrument 700 further includes a first sensor 720 and second sensor 722 embedded in the instrument 700 and positioned below articulating surface 706 of the instrument 700. The sensors 720 and 722 are similar to the sensors 520 and 522 of the trial 502 of
Referring now to
Alternatively and as is shown in
Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.