1. Field of the Invention
The present invention relates generally to chairs and benches, and more specifically to glider benches.
2. Description of Related Art
Benches are well known in the art and it is known to construct benches with a variety of different configurations. For example, benches may include one or more arms or armrests. These arms or armrests may be placed at the outer edges of the bench and one or more arms may be disposed towards the center of the bench. Conventional benches may also include a seat and a back that are integrally formed as a single component, or the seat and back may consist of separate components that are joined together or spaced apart by a distance.
Conventional benches are often constructed from materials such as wood. In particular, the seat and back of many conventional benches are often constructed from a number of wooden boards or slats that are connected to a frame. Disadvantageously, the wood may quickly deteriorate when exposed to the elements. For example, the wood may warp or rot when used outdoors. Additionally, the wood is often limited in strength because it may crack or fracture if over-stressed. Further, the wood must be treated, such as sanding, staining and painting, before use and the wood frequently requires periodic maintenance such as repainting and replacement of broken boards.
Conventional benches may also be constructed from metal. For example, the seat and back portions of the bench may be constructed from metal but these large metal components often rust or corrode over time, especially when the benches are placed outdoors.
Known benches may also include a metal or wooden frame that is used to support the bench seat and back. A large number of screws are typically used to attach the bench seat and back to the frame, especially if the seat and back are constructed from wood. The screws, however, may loosen and require replacement over time. Additionally, connecting numerous boards to the frame with the screws requires a substantial amount of time, which increases manufacturing time and costs. Thus, conventional benches are often relatively expensive because the benches are constructed from multiple components that are connected by a large number of screws.
In addition, because conventional benches are often constructed from materials such as wood and metal, the benches are heavy. For instance, if the seat and back are constructed from wood, a heavy and sturdy frame is required to support the heavy wooden seat and back. The heavy seat and back may also require heavier-duty fasteners to connect the seat and back to the frame. Therefore, conventional benches are often undesirably heavy.
The heavy benches are often expensive to transport and ship. For example, if the benches are being shipped from the manufacturer to a retailer or consumer, the shipping costs of the heavy benches is significant. Additionally, if the consumer purchases the bench at a retail store, such as a hardware store or home center, then the consumer must be able to take the bench home. Consumers, however, may be reluctant to purchase benches that are too heavy to easily transport. For example, many consumers may be unwilling to purchase a bench that is difficult to move to the checkout stand, load into a vehicle and place in a desired location such as the consumer's backyard. Additionally, even if the bench is placed in an originally desired location, consumers may want to move the bench. For example, some consumers may desire to use a bench indoors, outdoors or in different locations depending upon the time of the year. Benches that are too heavy, however, may be difficult or impossible for some consumers to move.
Conventional benches may also be shipped in unassembled configurations to reduce the size and bulk of the packaging. While this may reduce the costs to ship the benches, the retailer or consumer may have difficulty in assembling the benches, especially if the benches are heavy. Retailers and consumers may also have difficulty assembling conventional benches because of the multiple components and plurality of screws used to assemble the benches. Accordingly, many consumers may not want to purchase conventional benches because these known benches are often heavy and difficult to assemble.
A need therefore exists for a bench that eliminates the above-described disadvantages and problems.
One aspect of the invention is a glider bench that rocks or swings. Desirably, the glider bench has a smooth gliding motion that freely swings backwards and forwards. Preferably, the glider bench moves only forwards and backwards without any significant rotational or sideways movement.
Another aspect is the glider bench may include a generally stationary frame and movable bench connected to the frame. The bench may be pivotally connected to the frame by a linkage or glider mechanism. The linkage mechanism, for example, may include one or more links connecting the bench to the frame and the links may be in a parallelogram configuration.
Yet another aspect of the glider bench is the bench seat and back are preferably lightweight because the seat and back are constructed from plastic. In particular, the bench seat and back are preferably constructed from blow-molded plastic in order to create a lightweight structure. Because the bench seat and back are preferably constructed from lightweight plastic materials, the fame does not have to support a large amount of weight and that may allow a lighter-weight frame to be used. For example, the frame may be constructed by hollow metal tubing and this may allow a glider bench that is very lightweight to be constructed.
Still another aspect of the glider bench is the bench seat and back may include one or more depressions, “tack-offs” or “kiss-offs.” The depressions, which extend from one surface towards another surface, are desirably sized and configured to increase the strength and/or rigidity of the bench seat and back. Preferably, the depressions extend from one surface and contact or engage an opposing surface, but the depressions do not have to contact or engage the opposing surface. The depressions are desirably formed in the rear surface of the bench back and/or in the bottom surface of the bench seat so that the depressions are generally not visible. The depressions, however, may be formed in the front surface and/or any other surfaces of the bench seat and back. For example, one or more depressions may be formed in the rear surface of the bench back and one or more depressions may be formed in the front surface of the back, and these opposing depressions may be generally aligned. At least a portion of these opposing depressions preferably contact or engage each other, but the opposing depressions do not touch or engage.
Advantageously, the blow-molded plastic bench seat and back are relatively strong because they include two or more opposing walls or surfaces that are separated by a given distance. The opposing walls help create a high-strength, rigid back and seat. Because the interior portions of the bench seat and back are generally hollow, that creates a lightweight back and seat. Significantly, the strong and sturdy back and seat can withstand repeated impacts with various objects and may allow the glider bench to be used for an extended period of time.
Significantly, the bench seat and back can be quickly and easily constructed because these components are preferably constructed using a blow-molded plastic process. Advantageously, the blow-molding process allows the double walls and any suitable number of depressions to be quickly and easily formed in the bench seat and back. As discussed above, the double walls and depressions allow a strong and sturdy bench seat and back to be constructed. These and other features also allow the back and seat to be constructed with relatively thin plastic walls and that reduces the amount of materials used to construct the back and seat. This saves manufacturing costs and reduces the amount of resources required to construct the back and seat. The thin plastic walls also allow the back and seat to be cooled more quickly during the manufacturing process, and that saves time and further decreases costs.
Yet another aspect of the glider bench is the bench seat and back can be constructed in any desired configuration, shape, size and design depending, for example, upon the intended use and/or configuration of the glider bench. Significantly, if the bench seat and back are constructed from blow-molded plastic, they can easily be formed into any desired size, configuration, and color. In addition, the blow-molded plastic bench seat and back are durable, weather resistant and generally temperature insensitive. The blow-molded plastic bench seat and back, in contrast to many conventional benches, do not corrode, rust or otherwise deteriorate over time.
Advantageously, because the bench seat and back may be constructed from blow-molded plastic, the seat and back are generally hollow and this allows a glider bench with reduced weight to be constructed. Significantly, the lightweight glider bench can be easily transported, which decreases shipping costs. Additionally, the consumer may appreciate the reduced weight because they can much more easily transport and assemble the glider bench. Further, because the bench seat and back are lightweight, the glider bench does not require a large or heavy duty frame to support the back and seat.
The blow-molded plastic seat and back allow a strong, rigid and sturdy glider bench to be constructed. Significantly, the blow-molded bench seat and back may form structural members of the glider bench, or the back and seat may be supported by the frame. In addition, the blow-molded construction of the bench seat and back may allow other features to be formed in the bench and this may reduce the number of steps required in the manufacturing process, which may reduce the overall cost of the glider bench. For example, one or more grooves may be formed in the seat and/or back to allow the seat or back to be mounted to the frame, and one or more depressions may be formed in the seat and/or back to increase the strength and structural integrity of the blow-molded components.
These and other aspects, features and advantages of the present invention will become more fully apparent from the following detailed description of preferred embodiments and appended claims.
The appended drawings contain figures of preferred embodiments to further clarify the above and other aspects, advantages and features of the present invention. It will be appreciated that these drawings depict only preferred embodiments of the invention and are not intended to limits its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The present invention is directed towards a glider bench. The principles of the present invention, however, are not limited to glider benches. It will be understood that, in light of the present disclosure, the glider bench disclosed herein can be successfully used in connection with other types of chairs, benches and furniture.
Additionally, to assist in the description of the glider bench, words such as top, bottom, front, rear, right and left are used to describe the accompanying figures. It will be appreciated, however, that the glider bench can be located in a variety of desired positions—including various angles, sideways and even upside down. A detailed description of the glider bench now follows.
As seen in
As more clearly shown in
The base 12, including the support members 14 and the elongated members 20, is preferably constructed from metal and, in particular, from metal tubes that are bent or formed into the desired shape and configuration. It will be appreciated, however, that the base 12 may be constructed from other suitable materials and the base may have other appropriate shapes and configurations depending, for example, upon the type of materials used to construct the base or the intended use of the glider bench 8.
The bench portion 10 of the glider bench 8 is supported by a frame 22. The frame 22, as best seen in
The back and seat support portions 28, 30 are preferably constructed from metal and, in particular, from metal tubes that may be bent or formed into the desired shape and configuration. It will be appreciated, however, that the back and seat support portions 28, 30 may be constructed from any suitable materials and these components may have other appropriate shapes and configurations depending, for example, upon the type of materials used to construct the back and seat support 24 or the intended use of the glider bench 8. It will also be appreciated that the back and seat support 24 may have other suitable configurations depending, for example, upon the configuration and intended use of the glider bench 8.
As best seen in
The first and second generally L-shaped members 36, 38 are preferably welded together to form a strong and rigid arm support portion 26, but one skilled in the art will understand that the first and second generally L-shaped members can be connected in any suitable manner. The first and second generally L-shaped members 36, 38 may also be integrally formed as a single structure or multiple components that are interconnected. The first and second generally L-shaped members 36, 38 are preferably constructed from metal and, in particular, from hollow metal tubes. It will be understood that the first and second generally L-shaped members 36, 38 may be constructed from other materials with desired characteristics and the members may have other suitable shapes and configurations depending, for example, upon the type of materials used to construct the members, or the intended use of the glider chair 8.
The back and seat support 24 and the arm support 26 of the frame 22 are connected together by fasteners such as bolts, screws, rivets and the like. In particular, the back and seat support portion 24 is preferably connected to the first and second generally L-shaped members 36, 38 of the arm support 26 by the fasteners. One skilled in the art will appreciate that the back and seat support 24 and the arm support 26 portions of the frame 22 can be connected using any suitable methods or means, including welding, riveting, adhesives, and the like, and these components may also be constructed from a single, unitary member. Further, the back and seat support 24 and arm support 26 portions of the frame 22 may have other suitable configurations depending, for example, upon the intended configuration of the frame and/or glider bench 8.
The bench 10 and base 12 are movably connected to provide the gliding motion of glider bench 8. In particular, a linkage or glider mechanism interconnects the bench frame 22 and the base 10 to allow the glider bench 8 to rock or swing. The linkage mechanism includes a first pair of links 50, 52 disposed on one side of the glider bench 8 and a second pair of links 54, 56 disposed on an opposing side of the bench. The links 50, 52, 54, 56 are disposed between the frame 22 and the base 12, and the links preferably form part of a four-bar linkage.
In greater detail, as best seen in
The links 50, 52, 54 and 56 may be pivotally attached to the base 12 and the frame 22 by bolts, screws, rivets, pins, and the like. Desirably, the links 50, 52, 54 and 56 are attached to the base 12 and the frame 22 by using one or more bushings, bearings, washers, etc. to facilitate the pivotal connection of the links to the base and the frame. Advantageously, the bushings, bearings, washers, etc. may allow for the smooth gliding motion of the frame 22 relative to the base 12 and these components may allow the glider bench 8 to freely move. It will be appreciated, however, that the bushings, bearings, washers, etc. are not required to construct the glider bench 8.
The links 50, 52, the connecting portion 16 of the support member 14, and the lower generally horizontal portion 46 of the arm support portion 26 of the frame 22 preferably form a four bar linkage that interconnects the base 12 and the frame 22. As shown in the accompanying figures, the first link 50 is preferably angled slightly towards the back of the glider bench 8 and the second link 52 is preferably angled slightly towards the front of the bench, but it will be appreciated that the links can have any suitable alignment and orientation. Additionally, it will be appreciated that the links 50, 52, the connecting portion 16 of the support member 14, and the lower generally horizontal portion 46 of the arm support 26 do not have to be interconnected to connect the base 12 to the frame 22. In contrast, any suitable portions of the base 12 and frame 22 may be connected to allow movement of the bench 10 relative to the base to form the glider bench 8.
Advantageously, the links 50, 52, 54 and 56 allow the glider bench 8 to move backward and forward with a smooth gliding motion. Desirably, the bench portion 10 freely swings forward and backward, and the bench does not undesirably rotate in a sideways direction. Additionally, the bench 10 preferably moves in a stable, predictable manner to create a steady and expected motion.
Significantly, the base 12 and frame 22 of the glider bench 8 can be constructed with a minimum number of components and it is easy to manufacture and assemble. It will be appreciated, however, that the glider bench 8 can have other suitable configurations and there are a variety of ways to connect the base 12 to the frame 22. Additionally, as discussed above, the base 12 and the frame 22 are preferably constructed from metal and these metal components preferably have a tubular configuration for relatively high-strength and lightweight. These metal components are preferably powder-coated to prevent the metal from rusting or corroding due to environmental factors such as rain or snow. The base 12 and the frame 22 may also be constructed from other materials with suitable characteristics, and the shape and configuration of the components may vary depending, for example, upon the type of materials used to construct the components. For example, if the base 12 and the frame 22 are constructed from metal, then these components may have an oval, rectangular, square or other cross-sectional configuration. Additionally, the base 12 and the frame 22 do not have to be constructed with a tubular or hollow configuration and, in contrast, the base and frame could be formed from solid materials.
As seen in
As best seen in
The bench back 70 and the bench seat 72 may also be contoured for increased comfort of the user. In particular, the bench back 70 and the bench seat 72 may be curved to conform to the natural curves of the human body. For example, as seen in
The bench back 70 and the bench seat 72 are preferably constructed from plastic and, in particular, from blow-molded plastic. Advantageously, blow-molded plastic allows a strong and lightweight bench back 70 and bench seat 72 to be constructed. In particular, the blow-molded bench back 70 and seat 72 preferably include two opposing walls or surfaces that are separated by a given distance in order to create a strong and sturdy structure. In addition, the interior portion of the blow-molded bench back 70 and seat 72 are preferably generally hollow. Advantageously, this creates a bench back 70 and seat 72 that are lightweight, strong and rigid, and are relatively easy to manufacture. Significantly, because the blow-molded plastic bench back 70 and the bench seat 72 are generally hollow, the back and seat are lightweight. This may allow a lightweight frame 22 to be used to support the bench back 70 and seat 72 because the frame does not have to support heavy back and seat members.
The bench back 70 and the bench seat 72 may be constructed from a variety of different types of plastics with suitable characteristics. For example, the bench back 70 and the bench seat 72 may be constructed from low-density polyethylene or a high-density polyethylene with the desired characteristics. Significantly, the blow-molded plastic is generally weather resistant, corrosion resistant and temperature insensitive. This allows a strong, long-lasting bench back 70 and seat 72 to be constructed. Advantageously, the blow-molded plastic bench back 70 and seat 72 generally do not corrode, rust or otherwise deteriorate over time.
The bench back 70 and seat 72 preferably is constructed from lightweight, blow-molded plastic because weight reduction of the glider chair 8 may be highly desirable. For example, constructing the bench back 70 and seat 72 from lightweight blow-molded plastic may allow shipping costs to be decreased. In addition, because glider benches 8 may be marketed directly to consumers in retail stores a lightweight glider bench may be very important. In particular, because consumers may be required to bring the glider bench 8 to a register to be purchased, load the bench into a vehicle, and assemble the bench at home, they may desire a lightweight glider bench. Consumers may be reluctant to purchase a glider bench that is too heavy.
Advantageously, the bench back 70 and the bench seat 72 may include multiple features that are integrally formed in the back and seat during the blow-molding process. For example, a plurality of grooves 92 may be formed in the front surface 78 of the bench back 70 and the top surface 86 of the bench seat 72 to create the appearance of wooden slats that are used to create a conventional wooden bench. These grooves 92 may also be formed in the rear surface 80 of the bench back 70 and the bottom surface 88 of the bench seat 72. The front surface 78 of the bench back 70 and the top surface 86 of the bench seat 72 may also be textured, if desired.
One or more receiving channels 94 may also be formed in the rear surface 80 of the bench back 70 and the bottom surface 88 of the bench seat 72 to allow the chair frame 12 to be attached. Preferably, at least a portion of the receiving channels 94 generally conform to the shape of the corresponding frame 22 so that at least part of the frame may fit snugly into the receiving channel. Additionally, the receiving channels 94 may be sized and configured to receive the frame 22 by a snap, friction or interference fit to attach the bench back 70 and the bench seat 72 to the frame. It will be appreciated, however, that the receiving channels 94 may have any desired shape or configuration, and one or more fasteners may be used to in conjunction with the receiving channels to attach the bench back 70 and seat 72 to the frame 22.
Further, as best seen in
The bench back 70 and seat 72 are preferably constructed as unitary, one-piece structures. Advantageously, this further decreases manufacturing costs and time because one or more components do not have to be assembled or fastened together to form the back or seat. It will be appreciated that the bench back 70 and seat 72 may be constructed as a single member, or by one or more components that are fastened together by any suitable means.
As discussed above, the bench back 70 and the bench seat 72 may be attached to the frame 22 by one or more fasteners such as bolts, screws, rivets and the like. It will be appreciated that any suitable type of fastener, adhesives, and the like may be used to attach the bench back 70 and the bench seat 72 to the fame 22. Desirably, as shown in
Desirably, in order to provide a secure attachment for the fastener, a least two threads of the fastener should engage the wall 100 of the screw boss 98. The thickness of the wall 100 should be sufficient to allow engagement of the threads of the fastener 100 without the threads piercing the wall. It will be appreciated that the thickness and the depth of the screw boss 98 may be a function of the position of the screw boss as well as a function of the load applied to fastener.
The screw boss 98 is desirably located in a stretch region of the bench back 70 which allows the screw boss to be formed without piercing the back or creating a portion of the back in which the plastic is too thin. Additionally, the screw boss 98 may be created with an open or closed distal end 101. These and other features of a screw boss that may be used in conjunction with the glider bench 8 are described in detail in assignee's co-pending U.S. patent application Ser. No. 10/005,933, entitled Screw Bosses for Blow-Molded Structures, which was filed on Dec. 5, 2001, and is hereby incorporated by reference in its entirety.
As shown in
The depressions 102 are desirably formed during the blow-molding process and the depressions may be formed by placing a pin in the mold during the blow molding process. The pin causes the plastic material to stretch and deform into the depression 102. For example, a depression 102 may be formed in the rear surface 80 of the bench back 70 and the length of the pin may cause the end 104 of the depression to contact the front surface 78 of the bench back, as illustrated in FIG. 9A. The depression 102, however, may only extend partially into generally hollow interior portion of the bench back 70 and the end 104 of the depression may not contact front surface 78 of the bench back 70, as illustrated in FIG. 9B. Advantageously, because the depressions 102 can be formed during the blow-molding process, that may eliminate a step during the manufacturing process.
Additionally, while the depressions 102 have been described as being formed in the rear surface 80 of the bench back 70, it will be appreciated that depressions may be formed in the front surface 78 of the bench back, the bottom surface 88 of the bench seat 72, and/or the top surface 86 of the seat if desired. Additionally, one or more depressions 102 may be formed on both the front and rear surfaces 78, 80 of the bench back 70 or the top and bottom surfaces 86, 88 of the bench seat 72.
As seen in
Advantageously, the blow-molded plastic bench back 70 and/or seat 72 allows the glider bench 8 to be constructed using a minimum of materials and components. In addition, the blow-molded plastic structures may reduce the number of steps required to construct the glider bench 8 and may allow the bench to be assembled more easily. Significantly, the transportation, storage, and shipping costs may be greatly reduced because a strong, yet lightweight glider bench 8 can be constructed. Further, the blow-molded plastic bench back 70 and the bench seat 72 allow the glider bench 8 to be used indoors and outdoors.
Although this invention has been described in terms of certain preferred embodiments, other embodiments apparent to those of ordinary skill in the art are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by the claims which follow.
This application is a continuation-in-part of U.S. Design patent application Ser. No. 29/160,295, filed May 8, 2002 now U.S. Pat. No. Des. 472,721, entitled GLIDER BENCH, which is incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1271453 | Elzey | Jul 1918 | A |
1325358 | Elzey | Dec 1919 | A |
1959032 | McGowen | May 1934 | A |
D103956 | Rink | Apr 1937 | S |
D121462 | Tabb | Jul 1940 | S |
2311482 | Smith | Feb 1943 | A |
D135777 | Smith | Jun 1943 | S |
D152129 | Sanford | Dec 1948 | S |
D153162 | Nelems | Mar 1949 | S |
D154356 | Allmand | Jul 1949 | S |
2517278 | Benson | Aug 1950 | A |
D165835 | Glass | Feb 1952 | S |
3047334 | Vanderminden | Jul 1962 | A |
D273444 | Harper, Jr. et al. | Apr 1984 | S |
4796949 | Boyce | Jan 1989 | A |
D313515 | Wood | Jan 1991 | S |
D325304 | Grosfillex | Apr 1992 | S |
D335971 | Hess | Jun 1993 | S |
D342629 | Tseng | Dec 1993 | S |
D355783 | Noll | Feb 1995 | S |
D369922 | Kirn et al. | May 1996 | S |
5667273 | Noll | Sep 1997 | A |
D385425 | Goetz | Oct 1997 | S |
D419004 | Collins | Jan 2000 | S |
D419315 | Durbin et al. | Jan 2000 | S |
D423801 | Noll | May 2000 | S |
D425718 | Van Valderen | May 2000 | S |
D432323 | Pomeroy et al. | Oct 2000 | S |
D434573 | Noll | Dec 2000 | S |
D439068 | Vanderbyl | Mar 2001 | S |
6199950 | Noll | Mar 2001 | B1 |
D457339 | Liu | May 2002 | S |
D457342 | Muller | May 2002 | S |
6783184 | DiBattista et al. | Aug 2004 | B2 |
Number | Date | Country |
---|---|---|
11-318634 | Nov 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20030209928 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29160295 | May 2002 | US |
Child | 10378763 | US |