The present invention relates generally to a gliding board and, more particularly, to a gliding board with varying bending properties.
Specially configured boards for gliding along a surface are known, such as snowboards, snow skis, water skis, wake boards, surfboards and the like. For purposes herein, “gliding board” refers generally to any of the foregoing boards as well as to other devices which allow a rider to traverse a surface. For ease of understanding, however, and without limiting the scope of the invention, aspects of the invention are discussed below particularly in connection with a snowboard.
A typical snowboard includes a running length extending between opposite nose and tail ends. The nose and tail ends may have a “shovel” shape where the board end curves upwardly generally avoiding contact with the snow when riding on smooth terrain. The location at which the ends curve upward and away from the running length of the board is commonly called a transition or contact area.
The nose and/or tail provide an important function when riding over curved or bumpy surfaces, and when riding in deep snow. When riding on curved or bumpy surfaces, the nose and/or tail can prevent the leading end from digging into the curve or bump, and instead allow the board to glide up a curve or over a bump. When riding in deep snow, the leading end of the snowboard (usually the nose) is upturned and contacts the snow so that the board does not dive under the snow surface. That is, the upturned nose forces snow under the board and keeps the board from sinking excessively into the snow. This ability of the board to force a proper amount of snow under the board and keep the rider at a suitable position relative to the surface of deep snow is commonly called “float.” To improve float in deep snow, some cap-type construction boards have been provided with a core that has a tapered thickness at the nose. This tapered thickness of the core results in a cap-type board having a nose that increases in flexibility from the transition or contact area toward the tip of the nose. This increased flexibility allows the nose to flex upward to a varying degree along the nose when contacted by snow, thereby increasing the frontal area on the nose and the amount of lift provided to the board.
A cap-type snowboard is typically constructed from several components including a core, e.g., made of wood, top and bottom reinforcing layers that sandwich the core, a top cosmetic layer and a bottom gliding surface, or base. The top reinforcing layer typically overlaps the side edges of the core to protect the core from the environment and provide structural support to the board. Since the core in a cap-type board typically extends into the nose and tail ends of the snowboard, tapering the core at the nose end results in a board having a tapered nose and improved float.
Another construction type of snowboard is the sidewall-type board. Similar to a cap board, sidewall boards typically have a core, top and bottom reinforcing layers, a top cosmetic layer and a bottom gliding surface. However, in contrast to cap boards, the top reinforcing layer does not cover the side edges of the core. Instead, a sidewall support member is positioned between the top and bottom reinforcing layers (and/or a metal edge at the bottom of the board). The sidewall is bonded to the top and bottom layers to protect the interior of the board, including the core, from the environment. The core in sidewall boards does not normally extend into the nose and tail ends of the board. Instead, the core terminates near the transitions at the nose and tail, and a spacer made from a flat sheet material is positioned between the top and bottom reinforcing layers in the nose and tail. The spacer typically has a constant thickness and forms a significant portion of the thickness of the nose and tail ends. Thus, prior sidewall-type boards have not been provided with a tapered nose or other features to improve the float of the board.
One illustrative embodiment in accordance with the invention provides a gliding board for traveling over powder or soft snow with increased lift or float. The gliding board includes a running length that extends into opposite ends, two edges and a sidewall extending along at least a portion of one edge of the running length. A nose is located at one end of the board, and a tail is located at the other end. The nose and tail each have a transition end near the running length and a tip end opposite the transition end. At least one of the nose and tail has varying bending properties to provide improved float of the board. For purposes herein, “bending properties” refers to a property such as the flexibility, bending modulus, flexural rigidity or any other bending property that may be varied over a span of the nose or tail. For example, the varying bending properties may include a flexibility of the nose or tail that changes over the nose or tail. The bending properties of the nose or tail may vary in any suitable way.
In another illustrative embodiment, a snowboard, adapted to cooperate with a pair of foot bindings that secure a rider's feet to the snowboard, includes a running length having two side edges extending between forward and rear transitions. The running length has a sidewall extending over at least a portion of the side edges. An upturned nose is positioned at the forward transition and has a transition end and a tip end. The nose has a cap construction and a flexibility that varies between the transition end and the tip end.
In another illustrative embodiment, a method of manufacturing a gliding board having a running length and an upturned nose joined to the running length at a transition includes providing a core constructed and arranged for incorporation into a gliding board. The core has top and bottom surfaces and lateral sides. At least one sidewall element, a top reinforcement layer and a bottom reinforcement layer are also provided, and the top reinforcement layer, the bottom reinforcement layer, the at least one sidewall and the core are assembled together. The gliding board is assembled so that (i) the top and bottom reinforcement layers are on opposite top and bottom surfaces of the core, (ii) the at least one sidewall element is secured along a lateral side of the core, and (iii) the nose has varying bending properties.
In another illustrative embodiment, a gliding board includes a running length formed, at least in part, with a sidewall construction, and an upturned nose located at one end of the running length. The nose includes means for providing the nose with a varying bending property.
These and other aspects of the invention will be appreciated from the following description and claims.
It should be understood that the drawings are provided for the purpose of illustration only and are not intended to define the limits of the invention. Various aspects of the present invention will become apparent with reference to the following detailed description taken in conjunction with the accompanying drawings in which:
In one illustrative embodiment in accordance with the invention, a nose or tail of a sidewall constructed gliding board is configured with varying flex properties to affect the float or lift performance of the board in deep snow or powder. For example, the gliding board may have a sidewall construction along a portion of the running length of the board, and a cap construction at the nose and/or tail with a varying bending property, e.g., flexibility, in either the nose or tail. The bending properties may vary in any direction within the nose or tail, and may vary linearly, non-linearly, continuously, in a step-wise manner, or in any suitable manner. Thus, the bending property of the nose or tail may vary longitudinally and/or laterally, providing desired lift or float characteristics when gliding, particularly in powder or soft snow, since the nose or tail may flex when contacting snow or other material to present an increased surface area. A hybrid sidewall/cap construction of the board can provide some of the desired characteristics of an all sidewall construction board, such as easier repair, resistance to damage at the edges, and improved shock absorption, while also providing some of the advantages of a cap-type construction, such as simplified manufacturing techniques, improved responsiveness of the board in turning, etc.
In one illustrative embodiment, at least one end (nose or tail) of the board may be more flexible near the tip than near the transition to the running length of the board. The more flexible tip of the end may bend to provide a greater surface area against which the snow or other material may impact and force snow to travel under the board. For example, the increased surface area created by flexing may increase the force of snow or other material urging the end upward during gliding, thereby increasing the lifting force on the board. The stiffer portion of the nose or tail near the transition to the running length may resist large amounts of bending and more directly and effectively transfer force of the snow on the more flexible tip end to the running length of the board.
In one illustrative embodiment, the board nose and/or tail includes a structural element that has at least one feature to provide the nose and/or tail with varying bending properties. For example, the structural element may be a part of the board core or any other single constituent part or material, or group of parts or materials, in the nose or tail. The features of the structural element that provide the varying bending properties can include a tapering in thickness of the element, grooves, holes or other physical features formed in the element, a change in material or material properties in the element or any other suitable features. For example, the material type or density of the core or the reinforcing layers may be varied over the areas of the nose and tail, or varying amounts or types of reinforcement fibers or embedded materials may be added to the core in different areas to change the local bending properties of the nose and tail. The bending properties may also be varied by controlling the amount or type of adhesives used to attach the various layers of the board.
In one illustrative embodiment, an end (nose or tail) of the board decreases in overall thickness from near the transition toward the tip. For example, in one embodiment, the nose may taper approximately 1 mm in thickness over an approximately 150 to 200 mm length. This taper in overall thickness may result in increased flexibility of the end, e.g., to allow the end to flex further upwards when gliding in deep snow. The thickness of the nose or tail near the transition may not be needed over the entire area of the nose or tail and thus, the thickness may taper because the nose and tail typically experience less stress closer to the tip. A decreasing thickness in the nose or tail may give the board the required structural integrity while allowing an increased and/or differential flexibility in the nose or tail. The tapering thickness may be formed in any suitable way. For example, the board core may taper at the nose or tail, or the core may have a constant thickness and other board components may vary in thickness. The thickness of the core and/or board may vary in the lateral direction instead of, or in combination with, the longitudinal direction to provide varying flexibility in a lateral direction.
An illustrative embodiment of a gliding board 1 shown in
The board 1 may be made to have little or no upturn at the tail 5, and the shape and/or size of the upturn at the nose 3 or tail 5 may be balanced with the bending properties of the nose 3 and/or tail 5. For example, the nose 3 or tail 5 may be curved at a suitable radius and/or arc length to cooperate appropriately with the bending properties of the nose 3 or tail 5 and/or the intended use of the board 1. Of course, the nose 3 and/or tail 5 need not be curved at a single radius. Instead, the nose 3 or tail 5 may have a variable radius, may be approximately straight and arranged at an angle to the running length 2, and so on.
Since the core 25 tapers in this embodiment, the overall thickness of the nose 3 also tapers (although not necessarily) and the nose 3 has a varying flexibility from the transition 4 toward the tip 7. That is, in this embodiment, the nose 3 is more flexible near the tip 7 than near the transition 4. As discussed above, the varying bending properties of the nose 3 and/or tail 5 may be provided in any suitable way apart from that shown in this illustrative embodiment. For example, the core 25 may have a constant thickness, or approximately constant thickness, from near the transition 4 to the tip 7, and other portions of the board 1 may be varied in thickness or other properties to provide the varying bending properties. The core 25 or other structural element in the nose 3 may include grooves 39, holes 37 or other physical features, a change in material or material properties or any other suitable feature to provide the desired bending properties, as shown by way of example in
Although the bending properties of the nose 3 or tail 5 preferably include a variation in flexibility from more stiff near the transition to more flexible near the tip, the bending properties may be arranged in other ways. For example, the flexibility of the nose 3 or tail 5 may be high near the transition, drop toward the middle of the nose 3 or tail 5, and then stay constant to the tip, e.g., to prevent breakage of the nose 3 or tail 5. Alternately, the flexibility may be high near the transition, drop near the middle of the nose 3 or tail 5, and then increase toward the tip, e.g., to create a zone in the middle of the nose 3 or tail 5 where a majority of flexing will take place, as shown by way of example in
While the nose 3 and/or the tail 5 may have a cap construction, at least one portion of one side of the running length of the board 1 includes a sidewall or sidewall construction. In short, the portion of the board 1 having a sidewall construction may have any suitable construction (many of which are well known in the art) that includes a sidewall element that is not covered on a side surface by a top reinforcing layer (e.g., similar to the way the top reinforcing layer wraps over the edge of the core 25 in
Since the board 1 in this illustrative embodiment includes at least one portion with a sidewall construction and a nose 3 and tail 5 having a cap construction, a transition between sidewall construction portions and cap construction portions is made. The transition may take place gradually, e.g., the sidewall 20 may taper or step down in thickness at the transition between sidewall and cap portions. Alternately, the transition may occur abruptly, e.g., the sidewall 20 may be cut off squarely at the ends. The transitions between sidewall and cap construction may occur within the nose 3 and/or tail 5 of the board 1, or within the running length 2 of the board 1.
In lieu of cap construction within the nose 3 and/or tail 5, a sidewall-type construction may be used in the nose 3 or tail 5. Thus, the board 1 may be made to have a sidewall construction throughout.
As discussed above, the gliding board 1 may be made in any suitable way, e.g., similar to that for skis or snowboards. The gliding board 1 may have metal edges, a plastic base material, vertical or horizontal wood laminate core or foam core material, and so on. An exemplary board 1 would include a vertical laminate wood core surrounded by one or more fiber layers for torsional control. A sintered, extruded or graphite base is provided on the snow contacting surface of the board 1 while a plastic, preferably opaque, top sheet for protecting the core and laminate from abrasion and from exposure to ultraviolet light is arranged on the opposite surface. Sidewall or mixed sidewall/cap construction may be employed to protect the core. Stainless steel edges may be included to enhance edge grip. The board 1 may be arranged with a fully distinct nose and tail for directional riding or, instead, with identical shaped tips (and flex patterns) at both ends for matched riding with either the nose or tail forward. The board 1 may have a sidecut for ease of turning the sliding device, and or camber, e.g., to even the contact pressures on the board 1 along the running length. Preferably, the nose and tail are upturned in a shovel arrangement.
The gliding board 1 may be a snowboard that is symmetric or asymmetric about section lines A-A and C-C as shown in
Having described particular embodiments of the invention in detail, various modifications and improvements will readily occur to those skilled in the art. Such modifications and improvements are intended to be part of this disclosure and within the spirit and scope of the invention. Accordingly, the foregoing description is by way of example only and the invention is defined by the following claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 09/755,513, filed Jan. 5, 2001 now abandonded.
Number | Name | Date | Kind |
---|---|---|---|
3599259 | Shewmon | Aug 1971 | A |
3655211 | Bolletieri et al. | Apr 1972 | A |
3705729 | Arnsteiner | Dec 1972 | A |
3758127 | Doyle | Sep 1973 | A |
3801117 | Pierce | Apr 1974 | A |
3854739 | Toda | Dec 1974 | A |
3900204 | Weber | Aug 1975 | A |
3933360 | Arai | Jan 1976 | A |
3947049 | Pederson | Mar 1976 | A |
4382610 | Arnsteiner | May 1983 | A |
4455037 | Pilpel et al. | Jun 1984 | A |
4498686 | Pilpel et al. | Feb 1985 | A |
4545597 | Meatto et al. | Oct 1985 | A |
4671529 | LeGrand et al. | Jun 1987 | A |
4861063 | Abondance | Aug 1989 | A |
4867470 | Clark | Sep 1989 | A |
4953884 | Diard et al. | Sep 1990 | A |
4961592 | Diard et al. | Oct 1990 | A |
4971350 | Fagot | Nov 1990 | A |
5002300 | Pascal et al. | Mar 1991 | A |
5108124 | Pascal et al. | Apr 1992 | A |
5135249 | Morris | Aug 1992 | A |
5160158 | Scherubl | Nov 1992 | A |
5242187 | Diard et al. | Sep 1993 | A |
5292146 | Palau | Mar 1994 | A |
5292148 | Abondance et al. | Mar 1994 | A |
5320378 | Wiig | Jun 1994 | A |
5366234 | Rohrmoser | Nov 1994 | A |
5372370 | Rohrmoser | Dec 1994 | A |
5496053 | Abondance | Mar 1996 | A |
5538272 | Peart | Jul 1996 | A |
5553884 | Abondance | Sep 1996 | A |
5599036 | Abondance et al. | Feb 1997 | A |
5690349 | Rohrmoser | Nov 1997 | A |
5725236 | Stephanova et al. | Mar 1998 | A |
5788259 | Emig | Aug 1998 | A |
5803478 | Gavalis | Sep 1998 | A |
5816590 | Fey et al. | Oct 1998 | A |
5836594 | Simmons | Nov 1998 | A |
5851331 | Grenetier et al. | Dec 1998 | A |
5871223 | Zanco | Feb 1999 | A |
5871224 | Vance | Feb 1999 | A |
5895067 | Stephanova et al. | Apr 1999 | A |
5915717 | Faye | Jun 1999 | A |
5921564 | Olson | Jul 1999 | A |
5924718 | Gordon et al. | Jul 1999 | A |
5954356 | Busby, Jr. et al. | Sep 1999 | A |
5984343 | Longoni et al. | Nov 1999 | A |
RE36453 | Abondance et al. | Dec 1999 | E |
6000711 | Fey et al. | Dec 1999 | A |
RE36586 | Abondance et al. | Feb 2000 | E |
6073954 | Guiguet et al. | Jun 2000 | A |
6105991 | Dodge | Aug 2000 | A |
6113126 | Zanco | Sep 2000 | A |
6402182 | Noviant | Jun 2002 | B1 |
Number | Date | Country |
---|---|---|
989 435 | May 1976 | CA |
2 820 382 | May 1978 | DE |
4 101 915 | Jan 1991 | DE |
4 205 356 | Feb 1992 | DE |
610660 | Apr 1997 | EP |
0 785 000 | Jul 1997 | EP |
822 9184 | Sep 1996 | JP |
8-318020 | Dec 1996 | JP |
WO 9925433 | May 1999 | WO |
WO 9946016 | Sep 1999 | WO |
WO 0213923 | Feb 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050073132 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09755513 | Jan 2001 | US |
Child | 10997425 | US |