Global VLAN services

Information

  • Patent Grant
  • 9544219
  • Patent Number
    9,544,219
  • Date Filed
    Friday, July 31, 2015
    8 years ago
  • Date Issued
    Tuesday, January 10, 2017
    7 years ago
Abstract
One embodiment of the present invention provides a switch in a network of interconnected switches. The switch includes a forwarding domain apparatus and a forwarding apparatus. The forwarding domain apparatus maintains a mapping between a first virtual local area network (VLAN) identifier and a first global VLAN identifier in a local storage device. The global VLAN identifier represents a layer-2 forwarding domain in the network and is distinct from a customer VLAN or a service-provider VLAN. The mapping is independent of a type of the VLAN identifier. During operation, the forwarding apparatus encapsulates a first packet belonging to the first VLAN in a network encapsulation header. The encapsulated packet is forwardable in the network based on the network encapsulation header. The forwarding apparatus includes the first global VLAN identifier in the network encapsulation header of the first packet.
Description
BACKGROUND

Field


This disclosure relates to communication networks. More specifically, this disclosure relates to a system and method for extending virtualized networks.


Related Art


The exponential growth of the Internet has made it a popular delivery medium for a variety of applications running on physical and virtual devices. Such applications have brought with them an increasing demand for bandwidth. As a result, equipment vendors race to build larger and faster switches with versatile capabilities, such as network virtualization and multi-tenancy, to accommodate diverse network demands efficiently. However, the size of a switch cannot grow infinitely. It is limited by physical space, power consumption, and design complexity, to name a few factors. Furthermore, switches with higher capability are usually more complex and expensive. More importantly, because an overly large and complex system often does not provide economy of scale, simply increasing the size and capability of a switch may prove economically unviable due to the increased per-port cost.


A flexible way to improve the scalability of a switch system is to build a fabric switch. A fabric switch is a collection of individual member switches. These member switches form a single, logical switch that can have an arbitrary number of ports and an arbitrary topology. As demands grow, customers can adopt a “pay as you grow” approach to scale up the capacity of the fabric switch.


Meanwhile, layer-2 and layer-3 (e.g., Ethernet and Internet Protocol (IP), respectively) switching technologies continue to evolve. IP facilitates routing and end-to-end data transfer in wide area networks (WANs) while providing safeguards for error-free communication. On the other hand, more routing-like functionalities are migrating into layer-2. Notably, the development of the Transparent Interconnection of Lots of Links (TRILL) protocol allows Ethernet switches to function more like routing devices. TRILL overcomes the inherent inefficiency of the conventional spanning tree protocol, which forces layer-2 switches to be coupled in a logical spanning-tree topology to avoid looping. TRILL allows routing bridges (RBridges) to be coupled in an arbitrary topology without the risk of looping by implementing routing functions in switches and including a hop count in the TRILL header.


As Internet traffic is becoming more diverse, network virtualization is becoming progressively more important as a value proposition for network architects. In addition, the evolution of virtual computing has made multi-tenancy attractive and, consequently, placed additional requirements on the network. For example, virtual servers are being allocated to a large number of tenants while a respective tenant operates multiple virtualized networks. It is often desirable that the network infrastructure can provide a large number of virtualized network to support multi-tenancy and ensure network separation among the tenants.


While today's networks support many desirable features, some issues remain unsolved in efficiently facilitating virtualized networks across multiple networks.


SUMMARY

One embodiment of the present invention provides a switch in a network of interconnected switches. The switch includes a forwarding domain apparatus and a forwarding apparatus. The forwarding domain apparatus maintains a mapping between a first virtual local area network (VLAN) identifier and a first global VLAN identifier in a local storage device. The global VLAN identifier represents a layer-2 forwarding domain in the network and is distinct from a customer VLAN or a service-provider VLAN. The mapping is independent of a type of the VLAN identifier. During operation, the forwarding apparatus encapsulates a first packet belonging to the first VLAN in a network encapsulation header. The encapsulated packet is forwardable in the network based on the network encapsulation header. The forwarding apparatus includes the first global VLAN identifier in the network encapsulation header of the first packet.


In a variation on this embodiment, the mapping maps the first VLAN identifier to an internal identifier, and maps the internal identifier to the first global VLAN identifier. The internal identifier is internal and local to the switch, and is distinct from a VLAN identifier.


In a further variation, the internal identifier and the first global VLAN identifier are specified in a port profile comprising a media access control (MAC) address. In response to identifying the MAC address as a source address in a packet, the forwarding domain apparatus applies the port profile to a local ingress port of the packet.


In a variation on this embodiment, the global VLAN is represented by a first set of bits in a first header field and a second sets of bits in second header field in the network encapsulation header in a continuous representation.


In a variation on this embodiment, the forwarding domain apparatus maintains a mapping between a second VLAN identifier and the first global VLAN identifier. The first and second VLAN identifiers are associated with a same service level for a tenant.


In a further variation, the forwarding apparatus includes the first global VLAN identifier in a network encapsulation header of a packet in response to identifying the first or second VLAN identifier in the packet.


In a variation on this embodiment, a local port operates as a network extension interface for a second packet, which includes a tag representing the first global VLAN identifier. The network extension interface couples a second network of interconnected switches.


In a further variation, the switch also includes a tunnel management apparatus, which encapsulates the second packet in a tunnel encapsulation header. The network extension interface is a tunnel interface. The tunnel encapsulation header is distinct from the network encapsulation header.


In a variation on this embodiment, the switch also includes a spanning tree apparatus, which identifies a spanning tree instance associated with the first VLAN identifier and associates the spanning tree instance with the first global VLAN identifier.


In a further variation, the spanning tree apparatus associates the spanning tree instance with a local port in response to identifying the local port as being configured with the first global VLAN identifier.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1A illustrates an exemplary network with support for global virtual local area networks (VLANs), in accordance with an embodiment of the present invention.



FIG. 1B illustrates exemplary mappings of VLANs to global VLANs, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary directly coupled network extension with support for global VLANs, in accordance with an embodiment of the present invention.



FIG. 2B illustrates an exemplary tunnel-based network extension with support for global VLANs, in accordance with an embodiment of the present invention.



FIG. 3 illustrates an exemplary network with support for transparent global VLANs, in accordance with an embodiment of the present invention.



FIG. 4 presents a flowchart illustrating the process of a switch initializing global VLANs, in accordance with an embodiment of the present invention.



FIG. 5A presents a flowchart illustrating the process of a switch forwarding a packet received via an edge port based on global VLANs, in accordance with an embodiment of the present invention.



FIG. 5B presents a flowchart illustrating the process of a switch forwarding a packet received via an inter-switch port based on global VLANs, in accordance with an embodiment of the present invention.



FIG. 6 illustrates an exemplary network with support for spanning trees over global VLANs, in accordance with an embodiment of the present invention.



FIG. 7 illustrates an exemplary switch with support for global VLANs, in accordance with an embodiment of the present invention.


In the figures, like reference numerals refer to the same figure elements.





DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the invention, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the claims.


Overview


In embodiments of the present invention, the problem of facilitating large-scale network virtualization in a multi-tenant network is solved by representing tenant virtual local area networks (VLANs) as global VLANs (GVLANs) in the network. The network includes a number of interconnected member switches. A global VLAN has a larger identifier space, and thus can accommodate a plurality of VLANs of a plurality of tenants. The same VLAN of different tenants can map to different global VLANs in the member switches, thereby allowing different tenants to use the full range of VLANs.


Typically, a tenant (e.g., a client or customer) deploys a plurality of end devices (e.g., physical servers or virtual machines) belonging to different VLANs (e.g., Institute of Electrical and Electronics Engineers (IEEE) 802.1Q VLANs). Since the network can serve a plurality of tenants, each deploying a number of VLANs, a respective member switch of the network can serve a plurality of tenants while a plurality of member switches can serve the same tenant. Furthermore, a tenant can deploy its end devices across different member switches of the network. As a result, a network requires a large number of VLANs which can represent a respective VLAN of a respective tenant within the network. With existing technologies, the total number of VLANs a network can support for a tenant is limited by the number of bits dedicated for a VLAN identifier. Furthermore, a plurality of VLANs of a tenant may need a similar set of operations in the network. As a result, individual processing of these VLANs at the network switches occupies additional resources in the switches.


To solve this problem, the switches in the network use global VLANs to represent VLANs of different tenants in the network. A global VLAN creates a virtual forwarding domain within the network. Typically, a global VLAN is mapped based on a set of classification rules of a member switch. The classification rules can map a tenant VLAN to a global VLAN based on a tenant VLAN identifier and/or a media access control (MAC) address of an end device. In some embodiments, these classification rules can be local for a member switch and/or an edge port. This allows different sets of classification rules at different member switches and/or ports of the network. It should be noted that the end devices associated with the same global VLAN remain within the same forwarding domain even though the corresponding switches use different classification rules. Furthermore, if a group of VLANs of a tenant are associated with a same service level (e.g., run the same tenant application), the member switches in the network map that VLAN group to a same global VLAN. As a result, resources for maintaining the global VLAN mappings can be reduced at the switches.


In some embodiments, a global VLAN can support Internet Protocol (IP) routing. A global VLAN then can be associated with an IP sub-network (subnet) and can operate as a logical layer-3 interface assigned with an IP address from the subnet in a respective switch. A respective switch can maintain a mapping between the global VLAN and the corresponding subnet. In some embodiments, the layer-3 interface operates as a default gateway for the corresponding global VLAN and is assigned a virtual IP address, which is consistent in a respective switch. Because the layer-3 interface is associated with the same virtual IP address in a respective switch, the layer-3 interface operates as a distributed layer-3 gateway, and can operate as a tunnel endpoint to forward traffic across the network.


In some embodiments, the network is a fabric switch. In a fabric switch, any number of switches coupled in an arbitrary topology may logically operate as a single switch. The fabric switch can be an Ethernet fabric switch or a virtual cluster switch (VCS), which can operate as a single Ethernet switch. Any member switch may join or leave the fabric switch in “plug-and-play” mode without any manual configuration. In some embodiments, a respective switch in the fabric switch is a Transparent Interconnection of Lots of Links (TRILL) routing bridge (RBridge). In some further embodiments, a respective switch in the fabric switch is an IP routing-capable switch (e.g., an IP router).


It should be noted that a fabric switch is not the same as conventional switch stacking. In switch stacking, multiple switches are interconnected at a common location (often within the same rack), based on a particular topology, and manually configured in a particular way. These stacked switches typically share a common address, e.g., an IP address, so they can be addressed as a single switch externally. Furthermore, switch stacking requires a significant amount of manual configuration of the ports and inter-switch links. The need for manual configuration prohibits switch stacking from being a viable option in building a large-scale switching system. The topology restriction imposed by switch stacking also limits the number of switches that can be stacked. This is because it is very difficult, if not impossible, to design a stack topology that allows the overall switch bandwidth to scale adequately with the number of switch units.


In contrast, a fabric switch can include an arbitrary number of switches with individual addresses, can be based on an arbitrary topology, and does not require extensive manual configuration. The switches can reside in the same location, or be distributed over different locations. These features overcome the inherent limitations of switch stacking and make it possible to build a large “switch farm,” which can be treated as a single, logical switch. Due to the automatic configuration capabilities of the fabric switch, an individual physical switch can dynamically join or leave the fabric switch without disrupting services to the rest of the network.


Furthermore, the automatic and dynamic configurability of the fabric switch allows a network operator to build its switching system in a distributed and “pay-as-you-grow” fashion without sacrificing scalability. The fabric switch's ability to respond to changing network conditions makes it an ideal solution in a virtual computing environment, where network loads often change with time.


It should also be noted that a fabric switch is distinct from a VLAN. A fabric switch can accommodate a plurality of VLANs. A VLAN is typically identified by a VLAN tag. In contrast, the fabric switch is identified by a fabric identifier (e.g., a VCS identifier), which is assigned to the fabric switch. A respective member switch of the fabric switch is associated with the fabric identifier. Furthermore, when a member switch of a fabric switch learns a media access control (MAC) address of an end device (e.g., via layer-2 MAC address learning), the member switch generates a notification message, includes the learned MAC address in the payload of the notification message, and sends the notification message to all other member switches of the fabric switch. In this way, a learned MAC address is shared with a respective member switch of the fabric switch.


In this disclosure, the term “fabric switch” refers to a number of interconnected physical switches which form a single, scalable logical switch. These physical switches are referred to as member switches of the fabric switch. In a fabric switch, any number of switches can be connected in an arbitrary topology, and the entire group of switches functions together as one single, logical switch. This feature makes it possible to use many smaller, inexpensive switches to construct a large fabric switch, which can be viewed as a single logical switch externally. Although the present disclosure is presented using examples based on a fabric switch, embodiments of the present invention are not limited to a fabric switch. Embodiments of the present invention are relevant to any computing device that includes a plurality of devices operating as a single device.


Although the present disclosure is presented using examples based on an encapsulation protocol, embodiments of the present invention are not limited to networks defined using one particular encapsulation protocol associated with a particular Open System Interconnection Reference Model (OSI reference model) layer. For example, embodiments of the present invention can also be applied to a multi-protocol label switching (MPLS) network. In this disclosure, the term “encapsulation” is used in a generic sense, and can refer to encapsulation in any networking layer, sub-layer, or a combination of networking layers.


The term “end device” can refer to any device external to a network (e.g., which does not perform forwarding in that network). Examples of an end device include, but are not limited to, a physical or virtual machine, a conventional layer-2 switch, a layer-3 router, or any other type of network device. Additionally, an end device can be coupled to other switches or hosts further away from a layer-2 or layer-3 network. An end device can also be an aggregation point for a number of network devices to enter the network. An end device hosting one or more virtual machines can be referred to as a host machine. In this disclosure, the terms “end device” and “host machine” are used interchangeably.


The term “hypervisor” is used in a generic sense, and can refer to any virtual machine manager. Any software, firmware, or hardware that creates and runs virtual machines can be a “hypervisor.” The term “virtual machine” is also used in a generic sense and can refer to software implementation of a machine or device. Any virtual device which can execute a software program similar to a physical device can be a “virtual machine.”


The term “VLAN” is used in a generic sense, and can refer to any virtualized network. Any virtualized network comprising a segment of physical networking devices, software network resources, and network functionality can be can be referred to as a “VLAN.” “VLAN” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. “VLAN” can be replaced by other terminologies referring to a virtualized network or network segment, such as “Virtual Private Network (VPN),” “Virtual Private LAN Service (VPLS),” or “Easy Virtual Network (EVN).”


The term “packet” refers to a group of bits that can be transported together across a network. “Packet” should not be interpreted as limiting embodiments of the present invention to layer-3 networks. “Packet” can be replaced by other terminologies referring to a group of bits, such as “frame,” “cell,” or “datagram.”


The term “switch” is used in a generic sense, and can refer to any standalone or fabric switch operating in any network layer. “Switch” can be a physical device or software running on a computing device. “Switch” should not be interpreted as limiting embodiments of the present invention to layer-2 networks. Any device that can forward traffic to an external device or another switch can be referred to as a “switch.” Examples of a “switch” include, but are not limited to, a layer-2 switch, a layer-3 router, a TRILL RBridge, or a fabric switch comprising a plurality of similar or heterogeneous smaller physical switches.


The term “RBridge” refers to routing bridges, which are bridges implementing the TRILL protocol as described in Internet Engineering Task Force (IETF) Request for Comments (RFC) “Routing Bridges (RBridges): Base Protocol Specification,” available at http://tools.ietf.org/html/rfc6325, which is incorporated by reference herein. Embodiments of the present invention are not limited to application among RBridges. Other types of switches, routers, and forwarders can also be used.


The term “edge port” refers to a port on a network which exchanges data frames with a device outside of the network (i.e., an edge port is not used for exchanging data frames with another member switch of a network). The term “inter-switch port” refers to a port which sends/receives data frames among member switches of the network. The terms “interface” and “port” are used interchangeably.


The term “switch identifier” refers to a group of bits that can be used to identify a switch. Examples of a switch identifier include, but are not limited to, a media access control (MAC) address, an Internet Protocol (IP) address, and an RBridge identifier. Note that the TRILL standard uses “RBridge ID” (RBridge identifier) to denote a 48-bit intermediate-system-to-intermediate-system (IS-IS) System ID assigned to an RBridge, and “RBridge nickname” to denote a 16-bit value that serves as an abbreviation for the “RBridge ID.” In this disclosure, “switch identifier” is used as a generic term, is not limited to any bit format, and can refer to any format that can identify a switch. The term “RBridge identifier” is also used in a generic sense, is not limited to any bit format, and can refer to “RBridge ID,” “RBridge nickname,” or any other format that can identify an RBridge.


The term “tunnel” refers to a data communication where one or more networking protocols are encapsulated using another networking protocol. Although the present disclosure is presented using examples based on a layer-3 encapsulation of a layer-2 protocol, “tunnel” should not be interpreted as limiting embodiments of the present invention to layer-2 and layer-3 protocols. A “tunnel” can be established for and using any networking layer, sub-layer, or a combination of networking layers.


Network Architecture



FIG. 1A illustrates an exemplary network with support for global VLANs, in accordance with an embodiment of the present invention. As illustrated in FIG. 1A, a network 100 includes member switches 101, 102, 103, 104, and 105. Network 100 can be a TRILL network and a respective member switch, such as switch 105, can be a TRILL RBridge. Network 100 can also be an IP network and a respective member switch, such as switch 105, can be an IP-capable switch, which calculates and maintains a local IP routing table (e.g., a routing information base or RIB), and is capable of forwarding packets based on its IP addresses. In some embodiments, network 100 is a fabric switch, and one or more switches in fabric switch 100 can be virtual switches (e.g., a software switch running on a computing device).


Switches 103 and 105 are coupled to end devices 120 and 130, respectively. End devices 120 and 130 are host machines, each hosting a plurality of virtual machines. Member switches in network 100 use edge ports to communicate with end devices and inter-switch ports to communicate with other member switches. For example, switch 103 is coupled to end devices, such as end device 120, via edge ports and to switches 101, 102, and 104 via inter-switch ports. End devices 120 and 130 include hypervisors 121 and 131, respectively. Virtual machines (VMs) 122, 123, 124, 125, and 126 run on hypervisor 121, and virtual machines 132, 133, 134, 135, and 136 run on hypervisor 131.


In this example, virtual machines 124, 125, 126, 134, 135, and 136 belong to a tenant 1 and virtual machines 122, 123, 132, and 133 belong to a tenant 2. Tenant 1 deploys VLANs 112 and 114, and tenant 2 deploys VLAN 112. Hence, the same VLAN identifier for VLAN 112 can be used by multiple tenants. Virtual machines 125, 126, 134, and 135 are in VLAN 112 of tenant 1, virtual machines 124 and 136 are in VLAN 114 of tenant 1, and virtual machines 122, 123, 132, and 133 are in VLAN 112 of tenant 2. Since network 100 is serving a plurality of tenants, each deploying a plurality of VLANs, a respective member switch of network 100 can serve both tenants 1 and 2, and a plurality of member switches can serve the same tenant 1 or 2.


With existing technologies, the total number of VLANs network 100 can support for tenant 1 or 2 is limited by the number of bits dedicated for a VLAN identifier (e.g., 12 bits in an IEEE 802.1Q tag). On the other hand, if tenant 1 or 2 does not need a large number of VLANs, the same number of bits, though unused, remains dedicated for that tenant. If an additional VLAN identifier (e.g., an IEEE 802.1ad tag or TRILL Fine Grain Labels (FGL)) is incorporated in a packet to identify tenant 1 or 2 in network 100, the number of tenants is limited by the number of bits dedicated for the additional VLAN identifier (e.g., an additional 12 bits in the 802.1ad tag).


To overcome this issue, a respective member switch in network 100 supports a corresponding global VLAN that represents a respective tenant VLAN in network 100. A global VLAN creates a virtual forwarding domain within network 100. A global VLAN is distinct from a customer VLAN, as represented by a C-tag, or a service-provider VLAN, as represented by an S-tag. Typically, a global VLAN is mapped based on a set of classification rules in the member switches of network 100. For example, the classification rules can map tenant VLAN 112 to a global VLAN 142 based on a VLAN identifier, a virtual MAC address and an ingress port identifier of virtual machine 125. In this example, VLAN 112 of tenant 1 is mapped to global VLAN 142 in switches 103 and 105.


In some embodiments, the classification rules are local to a member switch (or a port) of network 100 and a respective member switch can maintain its own mapping for global VLANs. For example, VLAN 114 of tenant 1 is mapped to global VLAN 144 in switch 103 and to global VLAN 148 in switch 105. On the other hand, VLAN 112 of tenant 2 is mapped to global VLAN 146 in switches 103 and 105. In this way, the same VLAN of the same tenant can be mapped to different global VLANs in different switches of network 100, and the same VLAN of different tenants can be mapped to different global VLANs in network 100.


Switch 103 maps VLAN 114 of tenant 1 to global VLAN 144 based on the VLAN identifier of VLAN 114. On the other hand, switch 105 maps VLAN 114 of tenant 1 to global VLAN 148 based on the virtual MAC address of virtual machine 136. This allows different sets of classification rules at different member switches and/or ports of the network. Furthermore, the classification rules can also be port-specific. For example, the mapping between VLAN 114 of tenant 1 and global VLAN 144 based on the VLAN identifier of VLAN 114 can be specific to the edge port coupling end device 120. Another edge port of switch 103 can have a different set of classification rules.


Similarly, switch 103 can map VLAN 112 of tenant 2 to global VLAN 146 based on the VLAN identifier of VLAN 112. On the other hand, switch 105 can map VLAN 112 of tenant 2 to global VLAN 146 based on the virtual MAC address of virtual machine 132. It should be noted that since virtual machines 122 and 132 are associated with the same global VLAN 146, virtual machines 122 and 132 remain within the same forwarding domain even when switches 103 and 105 use different classification rules.


In network 100, a classification rule can map a VLAN to an internal identifier in a switch (e.g., switch 103). An internal identifier is internal and local to switch 103, and its scope may not extend beyond switch 103. The internal identifier is for internal processing of switch 103 and is not included in a packet. Switch 103 further maps an internal identifier to a global VLAN and/or an egress port. Upon receiving a packet, switch 103 determines an internal identifier based on one or more fields of the packet and/or an ingress port of the packet (e.g., based on the classification rule). Based on the internal identifier, switch 103 determines a global VLAN identifier and an egress port for the packet.


In some embodiments, a respective global VLAN in network 100 is represented using the combined bits dedicated for both tenant and additional VLAN identifiers in a flat (e.g., a continuous and non-hierarchical) representation. Suppose that a tenant VLAN identifier is represented by A bits and an additional VLAN identifier is represented by B bits. In some embodiments, a respective global VLAN in network 100 is identified by a global VLAN identifier represented by the combined bits of A.B (e.g., a concatenation) in a flat representation. Starting from the most significant bit (MSB), any number of bits in A.B can be used to represent a tenant, and can include a subset of continuous bits in A from the MSB, or all bits of A and a subset of adjacent bits in B. The rest of the bits of A.B can be used to distinctly represent a respective global VLAN for the tenant. The length of A and B can be 12 bits each (e.g., IEEE 802.1ad tag or TRILL FGL). This flat A.B representation provides a 24-bit identifier space for global VLANs in network 100. This facilitates support for up to 16 million virtual forwarding domains in network 100, which surpasses 4096 VLANs supported by an 802.1q VLAN tag.


End devices 120 and 130 can run on different technologies. The way end device 120 or 130 identifies its VLAN domains varies with the link layer technology that the end device employs. As a result, a tenant's virtual machines may run on a heterogeneous pool of equipment. Network 100 should provide network connectivity to end devices 120 and 130 so that the resources are properly utilized. Global VLANs can normalize the forwarding domain within network 100 for end devices 120 and 130 even when end devices 120 and 130 have different VLAN representations at the respective edge ports coupling them.


In some embodiments, a packet forwarded via an inter-switch link in network 100 is encapsulated in an encapsulation header. The encapsulation header can be a fabric encapsulation header (e.g., an encapsulation header used to forward the packet in a fabric switch) or a tunnel header (e.g., an encapsulation header used to forward the packet via a tunnel). Examples of a fabric encapsulation header include, but are not limited to, a TRILL header, an IP header, an Ethernet header, and a combination thereof. Examples of a tunnel include, but are not limited to, Virtual Extensible Local Area Network (VXLAN); Generic Routing Encapsulation (GRE); and GRE variants, such as Network Virtualization using GRE (NVGRE) and openvSwitch GRE. The VLAN identifier of a global VLAN can be included in the encapsulation header.


Suppose that a tenant runs its virtual machines on three end devices, such as end devices 110, 120, and 130. Each of these end devices can use a different link layer technology or protocol. For example, end device 120 can run a virtual switch supporting traditional IEEE 802.1q in hypervisor 121 and end device 130 can run a virtual switch supporting Virtual Ethernet Port Aggregator (VEPA) (IEEE 802.1Qbg) in hypervisor 131. On the other hand, end device 110 can use an overlay network (e.g., a VXLAN tunnel). As a result, packets from end device 120 (e.g., from virtual machine 122) include a traditional VLAN identifier, packets from end device 130 (e.g., from virtual machine 132) include a double tag (e.g., a C-tag and an S-tag), and packets from end device 110 include a VXLAN Network Identifier (VNI).


A respective switch in network 100 can support mapping of each of these identifiers or tags to a corresponding global VLAN. For example, switch 103 can locally map a traditional VLAN identifier of VLAN 112 of tenant 1 to global VLAN 142. Similarly, switch 105 can locally map a double tag of VLAN 112 and tenant 1 to global VLAN 142. In this way, the switches of network 100 normalize different VLAN representations by mapping them into a single global VLAN domain at the ingress ports. When a packet leaves network 100, the egress switch can remove the encapsulation and restore the original packet.


During operation, virtual machine 122 sends a packet 190. Hypervisor 121 obtains packet 190 and sends it to switch 103. Upon receiving packet 190 via an edge port, switch 103 identifies that packet 190 belongs to VLAN 112 of tenant 2. Based on the local mapping, switch 103 determines that VLAN 112 of tenant 2 is mapped to global VLAN 146. Switch 103 encapsulates packet 190 in an encapsulation header to generate a transport packet 192. A packet used to transport traffic via an inter-switch link in network 100 can be referred to as a transport packet. Switch 103 includes the VLAN identifier of global VLAN 146 in the encapsulation header of packet 192 (e.g., in the A.B bits in the encapsulation header) and forwards packet 192 to switch 102. Upon receiving packet 192, switch 102 processes packet 192 based on its header information.


In some embodiments, switches in network 100 receive the mappings from a network manager. An end device 110, which is coupled to switch 101, can operate as a network manager. Examples of a network manager include, but are not limited to, VMWare vCenter, Citrix XenCenter, and Microsoft Virtual Machine Manager. A network administrator can configure the mapping from end device 110, which in turn, provides the mapping to switch 101. Switch 101 distributes the mapping to the corresponding member switch based on an internal information distribution service of network 100. Suppose that the network manager configures a mapping VLAN 112 of tenant 1 and global VLAN 142 for switch 103 from end device 110. Switch 101 receives the mapping and provides the mapping to switch 103.


In some embodiments, a respective member switch of network 100 (e.g., switch 103) runs a control plane with automatic configuration capabilities (e.g., based on IP or Fibre Channel (FC)) and forms a logical Ethernet switch based on the automatic configuration capabilities of the control plane. To an external end device, such as end device 110, network 100 can appear as a single Ethernet switch. Upon joining network 100 via the control plane, a respective member switch receives an automatically assigned identifier corresponding to the logical Ethernet switch. However, unlike an FC fabric, the data packets in network 100 can be encapsulated and forwarded based on another forwarding protocol. Examples of this forwarding protocol include, but are not limited to, Ethernet, TRILL, and IP. Furthermore, a respective member switch of network 100 can be associated with a group identifier, which identifies network 100 as a group of interconnected switches. If network 100 is a fabric switch, this group identifier can be a fabric identifier identifying the fabric switch.


In some embodiments, network 100 maintains a port profile for a respective virtual machine. A port profile represents Fibre Channel over Ethernet (FCoE) configuration, VLAN configuration, data center bridging (DCB) configuration, quality of service (QoS) configuration, and/or security configuration of one or more virtual machines. The VLAN configuration can include the global VLAN configuration for a virtual machine. The MAC address of a virtual machine associates the corresponding port profile to the virtual machine. This MAC address can be an original virtual MAC address (e.g., originally assigned by a hypervisor), a routable MAC address assigned as a virtual MAC address, or a routable MAC address mapped to the original virtual MAC address. Port profile management in a switch is specified in U.S. Patent Publication No. 2011/0299413, titled “Port Profile Management for Virtual Cluster Switching,” the disclosure of which is incorporated herein in its entirety.


If a port profile is configured for a port, an internal identifier is allocated for a respective global VLAN defined in the port profile. This allows a switch to avoid allocation of an internal identifier when a switch learns a new MAC address that is already specified in a port profile. In this way, the internal identifiers of the switch can have better scalability. Furthermore, before the new MAC address is learned at the switch, the correct global VLAN for that MAC address becomes configured. As a result, the initial flooding of an unknown address would be forwarded via the correct VLAN.


In some embodiments, global VLANs support private VLAN (PVLANs). A global VLAN can be a primary or a secondary VLAN for a PVLAN. The classification rules of a VLAN can specify the type and its association. For example, if global VLAN 142 is a primary VLAN, the classification rules specify the PVLAN type. Based on the PVLAN type, the classification is done at a respective port. If an end device is coupled with network 100 via a trunked port (i.e., participating in a trunked link), the port may only allow secondary VLANs.



FIG. 1B illustrates exemplary mappings of VLANs to global VLANs, in accordance with an embodiment of the present invention. In this example, switch 103 maintains an internal identifier mapping 172 (e.g., in a table, which can be a database table in a local persistent storage). An entry in mapping 172 maps one or more fields of a packet header to an internal identifier. This identifier is internal and local to switch 103, and not included in a packet in network 100. Mapping 172 maps VLANs 112 and 114 of tenant 1, and corresponding tenant information, to internal identifiers 182 and 184, respectively, and VLAN 112 of tenant 2, and corresponding tenant information, to internal identifier 186. Examples of the tenant information include, but are not limited to, a tenant identifier, an IP subnet, a MAC address (e.g., the virtual MAC address of a virtual machine belonging to the tenant), an ingress port, and a combination thereof.


Switch 103 also includes a global VLAN mapping 174. An entry in mapping 174 maps an internal identifier to a corresponding global VLAN. Mapping 174 maps internal identifiers 182 and 184 to global VLANs 142 and 144, respectively, and internal identifier 186 to global VLAN 146. In some embodiments, internal identifiers 182, 184, and 186 in switch 103 are mapped to one or more corresponding egress ports, which can be included in mapping 174 or maintained separately. If the header information of an ingress packet matches an internal identifier, switch 103 forwards that packet via the corresponding egress port. In the example in FIG. 1A, upon receiving packet 190, switch 103 determines an internal identifier based on one or more fields and/or an ingress port, retrieves an egress port mapped to the internal identifier, and forwards the packet accordingly.


Network Extensions



FIG. 2A illustrates an exemplary directly coupled network extension with support for global VLANs, in accordance with an embodiment of the present invention. In this example, network 100 is coupled to network 200, which includes member switches 201, 202, 203, 204, and 205. Network 200 can be a TRILL network and a respective member switch, such as switch 205, can be a TRILL RBridge. Network 200 can also be an IP network and a respective member switch, such as switch 205, can be an IP-capable switch, which calculates and maintains a local IP routing table (e.g., a routing information base or RIB), and is capable of forwarding packets based on its IP addresses. In some embodiments, network 200 is a fabric switch, and one or more switches in fabric switch 200 can be virtual switches (e.g., a software switch running on a computing device).


Switch 205 is coupled to end device 220. Member switches in network 200 use edge ports to communicate with end devices and inter-switch ports to communicate with other member switches. For example, switch 205 is coupled to end devices, such as end device 220, via edge ports and to switches 201, 202, and 204 via inter-switch ports. Host machine 220 includes hypervisor 221. Virtual machines 222 and 223 run on hypervisor 221 and belong to tenant 2. Virtual machines 222 and 223 are in VLAN 112 of tenant 2. In this example, VLAN 112 of tenant 2 is mapped to global VLAN 246 in network 200.


Suppose that packet 190 is destined to virtual machine 222 in host machine 220 coupled to network 200. With existing technologies, when transport packet 192, which includes packet 190 in its payload, reaches switch 102, switch 102 removes the encapsulation header, extracts packet 190, and forwards packet 190 to network 200 (e.g., either to switch 201 or 203). As a result, packet 190 can only carry the identifier (e.g., 12 bits in an IEEE 802.1Q tag) of tenant VLAN 112. Hence, the total number of VLANs a port of switch 102 coupling network 200 can support for tenant 1 is limited by the number of bits dedicated for the VLAN identifier.


To solve this problem, interconnections between networks 100 and 200 are established via network extension interfaces. Through network extension interfaces, global VLAN 146 in network 100 and global VLAN 246 in network 200 are translated at the network extension interfaces to form a unified layer-2 forwarding domain (e.g., a unified VLAN domain).


The network extension interfaces between networks 100 and 200 can be one or more pseudo-QinQ (i.e., IEEE 802.1ad) interfaces. The pseudo QinQ-interface may not support explicit S-tag configuration. Instead, a respective packet forwarded via the network extension interfaces includes the QinQ double tagging to indicate a global VLAN identifier. A respective switch in network 100 maintains a mapping between a global VLAN identifier and a corresponding QinQ double tag (e.g., S-tag and C-tag) for the packets leaving network 100. Similarly, a respective switch in network 200 maintains a mapping between a global VLAN identifier and a corresponding QinQ double tag for the packets leaving network 200.


In some embodiments, a respective network maintains separate global VLAN mappings. For example, VLAN 112 of tenant 1 is mapped to global VLAN 146 in network 100 and to global VLAN 246 in network 200. As a result, even though global VLANs 146 and 246 are part of the same layer-2 forwarding domain, they have separate global VLAN identifiers. Switches participating in the network extension interfaces can maintain a mapping between a remote QinQ double tag and the corresponding local global VLAN identifier. Upon receiving a packet, such a switch can translate the QinQ double tag of the packet to a local global VLAN identifier.


Switch 102 can include a QinQ double tag associated with global VLAN 146 in the header of packet 190 to generate an extension packet 212. A packet sent via the network extension interfaces can be referred to as an extension packet. Switch 102 then forwards packet 212 to network 200. Suppose that switch 201 receives packet 212. Upon detecting the QinQ double tag in its header, switch 201 identifies the corresponding VLAN identifier of global VLAN 246. Switch 201 strips the QinQ double tag from packet 212 to obtain packet 190. Switch 201 encapsulates packet 190 in an encapsulation header to generate transport packet 214, includes the VLAN identifier of global VLAN 246 in the encapsulation header, and forwards packet 214 to switch 205. In this way, network extension interfaces facilitate a unified layer-2 forwarding domain spanning networks 100 and 200.


In some embodiments, a network extension interface can be a tunnel interface. FIG. 2B illustrates an exemplary tunnel-based network extension with support for global VLANs, in accordance with an embodiment of the present invention. In this example, networks 100 and 200 are coupled via a layer-3 network 280. Hence, the network extension interfaces of networks 100 and 200 are tunnel interfaces (e.g., a VXLAN or NVGRE tunnel interface). One or more switches of network 100 establish corresponding tunnels 270 with one or more switches of network 200 via network 280.


Upon generating extension packet 212, which includes the QinQ double tag, switch 102 encapsulates packet 212 in a tunnel encapsulation header (e.g., a VXLAN or NVGRE header) to generate tunnel-encapsulated extension packet 216. Suppose that switch 201 of network 200 is the remote tunnel endpoint of the tunnel. Switch 102 sets the switch identifier (e.g., an IP address) of switch 201 as the destination switch identifier of the tunnel encapsulation header, identifies the local port associated with the tunnel interface, and forwards packet 216 via the port. Switch 201 receives packet 216, identifies the local switch as the destination switch, and decapsulates the tunnel encapsulation header to obtain packet 212. Switch 201 then processes packet 212 based on the QinQ double tag, as described in conjunction with FIG. 2A.


In some embodiments, a global VLAN can support Internet Protocol (IP) routing and can be associated with an IP subnet. A global VLAN can operate as a logical layer-3 interface assigned with an IP address, which can be a virtual IP address, from the subnet in switches 101 and 102. Switches 101 and 102 can maintain a mapping between the global VLAN and the corresponding subnet. In some embodiments, the layer-3 interface operates as a default gateway for a respective global VLAN. Because the layer-3 interface is associated with the same virtual IP address in switches 101 and 102, the layer-3 interface operates as a distributed layer-3 gateway, and can operate as the tunnel endpoint address for the tunnels between networks 100 and 200.


Transparent Global VLANs


If a group of VLANs of a tenant are associated with a same service level (e.g., run the same tenant application), the member switches in the network map that VLAN group to a same global VLAN. This global VLAN can be referred to as a transparent global VLAN (T-GVLAN). FIG. 3 illustrates an exemplary network with support for transparent global VLANs, in accordance with an embodiment of the present invention. In this example, switches 103 and 105 are coupled to end devices 320 and 330, respectively. End devices 320 and 330 are host machines, each hosting a plurality of virtual machines.


End devices 320 and 330 include hypervisors 321 and 331, respectively. Virtual machines 322, 323, and 324 run on hypervisor 321, and virtual machines 332 and 333 run on hypervisor 331. Virtual machines 322 and 333 belong to VLAN 312 of tenant 1, virtual machine 323 belongs to VLAN 314 of tenant 1, and virtual machines 324 and 332 belong to VLAN 112 of tenant 2. Different service levels are needed to meet the requirements of a tenant. Transparent global VLANs facilitate a single layer-2 forwarding domain in network 100 for a VLAN group instead of an individual tenant VLAN. A VLAN group can represent a specific tenant application. The services associated with the transparent VLAN can collectively represent a respective VLAN in the VLAN group that participates in the tenant application.


Suppose that VLANs 312 and 314 are associated with a same service level (e.g., a Service Level Agreement (SLA) level). Hence, VLANs 312 and 314 can be mapped to a transparent global VLAN 340. VLANs 312 and 314 share the same layer-2 forwarding domain represented by transparent global VLAN 340 in network 100. As a result, flooding domains are not separated for VLANs 312 and 314. It should be noted that, since transparent global VLANs provide a layer-2 forwarding domain, respective virtual MAC addresses of virtual machines 322, 323, and 333 should be unique. Switches in network 100 may not maintain VLAN isolation for VLANs 112 and 114. On the other hand, VLAN 112 of tenant 2 is mapped to global VLAN 146. Hence, switches 103 and 105 can map some VLANs to global VLANs and some other VLANs to transparent global VLANs.


In some embodiments, a classification rule can map a range of tenant VLANs to a transparent global VLAN. A transparent global VLAN can also be configured for a trunk port. The trunk port can support coexistence of classification rules for both global VLANs and transparent global VLANs. However, a tenant VLAN can be mapped to either a global VLAN or a transparent global VLAN. It should be noted that, since a transparent global VLAN is associated with a plurality of VLANs, network 100 does not implement per-VLAN spanning trees for a transparent global VLAN.


Suppose that switch 103 receives a control packet via transparent global VLAN 340. Switch 103 determines whether the packet is tagged (i.e., includes a VLAN tag) or not. If the packet is an untagged packet, switch 103 processes the packet based on the corresponding protocol configuration (e.g. trap, drop, or forward). If the packet is a tagged packet, switch 103 forwards the packet similarly to a data packet. However, if the packet is received via global VLAN 146, switch 103 processes the packet based on the corresponding protocol configuration.


Initialization and Operations


In the example in FIG. 1A, a respective member switch in network 100 initializes global VLANs 142, 144, and 146. FIG. 4 presents a flowchart illustrating the process of a switch initializing global VLANs, in accordance with an embodiment of the present invention. During operation, the switch identifies a tenant (operation 402). The switch then obtains tenant VLAN identifiers and tenant information associated with the tenant (operation 404). Tenant information includes one or more of: MAC addresses of tenant devices, port identifiers of ports coupling tenant devices, and IP subnets of the tenant. The switch determines a set of global VLAN identifiers corresponding to the tenant VLAN identifiers (operation 406). The switch then maps a respective tenant VLAN identifier and corresponding tenant information to a corresponding global VLAN identifier (operation 408).



FIG. 5A presents a flowchart illustrating the process of a switch forwarding a packet received via an edge port based on global VLANs, in accordance with an embodiment of the present invention. During operation, the switch receives a packet via a local edge port (operation 502) and determines an internal identifier for the packet based on the local port (e.g., a port identifier) and/or one or more fields in the packet's header (operation 504). The switch obtains a global VLAN identifier mapped to the determined internal identifier from the local mapping (operation 506). The switch encapsulates the packet in an encapsulation header to generate a transport packet (operation 508) and includes the obtained global VLAN identifier in the encapsulation header (operation 510), as described in conjunction with FIG. 1A. The switch then determines an egress port for the packet based on the determined internal identifier and transmits the packet via the port (operation 512). If the packet is a multi-destination packet, a plurality of egress ports can be mapped to the internal identifier.



FIG. 5B presents a flowchart illustrating the process of a switch forwarding a packet received via an inter-switch port based on global VLANs, in accordance with an embodiment of the present invention. During operation, the switch receives a packet via a local inter-switch port (operation 552) and checks whether the packet is destined for the local switch (operation 554). If the packet is not destined for the local switch, the switch forwards the packet based on the egress switch identifier and global VLAN identifier in the encapsulation header of the packet (operation 556). If the packet is destined for the local switch, the switch decapsulates the encapsulation header to obtain the inner packet (e.g., an Ethernet frame) (operation 558). This inner packet can be a tenant packet.


The switch then checks whether the destination address of the inner packet (e.g., a destination MAC address) is reachable via a local network extension interface (operation 560). If the destination of the inner packet is not reachable via a local network extension interface, the packet is for a device coupled via a local edge port. The switch then forwards the inner packet based on the destination switch identifier (e.g., the destination MAC address) and a tenant VLAN identifier in the header of the inner packet (operation 562). If the destination of the inner packet is reachable via a local network extension interface, the switch determines an internal identifier for the packet based on the local port (e.g., a port identifier) and one or more fields in the packet's header (operation 564).


The switch identifies a network extension interface associated with the internal identifier (operation 566) and obtains a global VLAN identifier mapped to the internal identifier (operation 568). The switch includes the obtained global VLAN identifier in the packet header of the inner packet (e.g., as a QinQ tag) to generate an extension packet (operation 570), as described in conjunction with FIG. 2A. If the network extension interface is a tunnel interface, the switch identifies the tunnel interface of the network extension interface and encapsulates the extension packet in a corresponding tunnel header (operation 572), as described in conjunction with FIG. 2B. The switch determines an egress port associated with the network extension interface for the (encapsulated) extension packet and transmits the packet via the port (operation 574).


Spanning Trees


In network 100, tenant VLANs are configured for edge ports and global VLANs are configured for inter-switch ports. Typically, network 100 supports only a single Spanning Tree Protocol (STP) domain of any variation of STP that sends untagged Bridge Protocol Data Units (BPDUs). Examples of such variations include, but are not limited to, Rapid Spanning Tree Protocol (RSTP) and Multiple Spanning Tree Protocol (MSTP). As a result, ports participating in an STP should include VLANs with identical configurations. FIG. 6 illustrates an exemplary network with support for spanning trees over global VLANs, in accordance with an embodiment of the present invention. In this example, network 100 is coupled to virtual data centers 602, 604, and 606. To establish loop-free communication via network 100, virtual data centers 602, 604, and 606 may not have any physical connectivity among them.


If the variant of STP is RSTP, each of virtual data centers 602, 604, and 606 can participate in the RSTP. It should be noted that an RSTP instance is unaware of a global VLAN. Network 100, operating as a single switch, forms a single RSTP topology with virtual data centers 602, 604, and 606.


Loops between network 100 and virtual data centers 602, 604, and 606 are detected by this RSTP topology. If a port of a switch in network 100 cannot participate in the RSTP instance (e.g., due to a configuration conflict), a user may configure that port to put it in a blocking state. The default state for a global VLAN can be “no blocking.”


If the variant of STP is MSTP, switches in network 100 create a spanning tree instance for a group of VLANs in network 100, and virtual data centers 602, 604, and 606. The spanning instance should be the same in network 100 and virtual data centers 602, 604, and 606. Network 100, operating as a single switch, forms an MSTP topology for a respective MSTP instance with virtual data centers 602, 604, and 606. Loops between network 100 and virtual data centers 602, 604, and 606 are detected by this topology associated with the MSTP instance. If a port of a switch in network 100 cannot participate in an MSTP instance, a user may configure that port to put it in a blocking state. The default state for a global VLAN for that MSTP instance can be “no blocking.”


For Per-VLAN Spanning Tree (PVST), switches in network 100 create a spanning tree instance for a respective global VLAN. Since network 100 participates in PVST instances with virtual data centers 602, 604, and 606, a PVST instance can be enabled for a global VLAN if the classification rule for that global VLAN includes a corresponding tenant VLAN. Virtual data centers 602, 604, and 606 participate in the PVST instance based on the tenant VLAN. It should be noted that the tenant VLAN should not conflict with other global VLAN configurations in network 100.


In some embodiments, a respective switch in network 100 runs an edge loop detection algorithm. A member switch of network 100 sends an edge loop detection packet for a respective global VLAN via a respective port associated with the global VLAN. If any switch in network 100 receives a loop detection packet originated from network 100, that switch detects a loop for that global VLAN.


Network 100 can use tunneling over a spanning tree. Since network 100 is a multi-tenant network, network 100 can participate in a spanning tree instance of any of the tenants. However, if network 100 only supports one spanning tree, only the ports associated with that spanning tree can provide tunneling over a spanning tree. Other ports may not support tunneling for the spanning tree. Hence, these ports should be removed from a corresponding global VLAN (i.e., removed from the corresponding layer-2 flooding domain).


Exemplary Switch



FIG. 7 illustrates an exemplary switch with support for global VLANs, in accordance with an embodiment of the present invention. In this example, a switch 700 includes a number of communication ports 702, a packet processor 710, a forwarding domain apparatus 730, a forwarding apparatus 760, and a storage device 750. In some embodiments, packet processor 710 adds an encapsulation header to a packet. In some embodiments, switch 700 includes a network management apparatus 720, which maintains a membership in a network of interconnected switches. A respective switch of the network is associated with a group identifier identifying the network.


In some embodiments, the network is a fabric switch. Switch 700 maintains a configuration database in storage 750 that maintains the configuration state of a respective switch within the fabric switch. Switch 700 maintains the state of the fabric switch, which is used to join other switches. Under such a scenario, communication ports 702 can include inter-switch communication channels for communication within a fabric switch. This inter-switch communication channel can be implemented via a regular communication port and based on any open or proprietary format (e.g., a TRILL or IP protocol).


Forwarding domain apparatus 730 maintains a mapping between a first VLAN identifier and a first global VLAN identifier in storage device 750. During operation, forwarding apparatus 760 encapsulates a first packet belonging to the first VLAN in a network encapsulation header and includes the first global VLAN identifier in the network encapsulation header of the first packet. The mapping can map the first VLAN identifier to an internal identifier and the internal identifier to the first global VLAN identifier. In some embodiments, if forwarding apparatus 760 identifies a MAC address as a source address in a packet, forwarding apparatus 760 applies a port profile comprising the MAC address, the internal identifier, and the first global VLAN identifier to the ingress port of the packet.


Forwarding domain apparatus 730 can maintain a mapping between a second VLAN identifier and the first global VLAN identifier. The first and second VLAN identifiers are in the same VLAN group and associated with a same service level for a tenant. If forwarding apparatus 760 identifies the first or second VLAN identifier in the packet, forwarding apparatus 760 includes the first global VLAN identifier in a network encapsulation header of a packet. In some embodiments, switch 700 also includes a tunnel management apparatus 740, which encapsulates an extension packet in a tunnel encapsulation header. Switch 700 can also include a spanning tree apparatus 732, which identifies a spanning tree instance associated with the first VLAN identifier and associates the spanning tree instance with the first global VLAN identifier. Spanning tree apparatus 732 associates the spanning tree instance with a local port in response to identifying the local port as being configured with the first global VLAN identifier.


Note that the above-mentioned modules can be implemented in hardware as well as in software. In one embodiment, these modules can be embodied in computer-executable instructions stored in a memory which is coupled to one or more processors in switch 700. When executed, these instructions cause the processor(s) to perform the aforementioned functions.


In summary, embodiments of the present invention provide a switch and a method for providing global VLAN services. In one embodiment, the switch is in a network of interconnected switches. The switch includes a forwarding domain apparatus and a forwarding apparatus. The forwarding domain apparatus maintains a mapping between a first VLAN identifier and a first global VLAN identifier in a local storage device. The global VLAN identifier represents a layer-2 forwarding domain in the network and is distinct from a customer VLAN or a service-provider VLAN. The mapping is independent of a type of the VLAN identifier. During operation, the forwarding apparatus encapsulates a first packet belonging to the first VLAN in a network encapsulation header. The encapsulated packet is forwardable in the network based on the network encapsulation header. The forwarding apparatus includes the first global VLAN identifier in the network encapsulation header of the first packet.


The methods and processes described herein can be embodied as code and/or data, which can be stored in a computer-readable non-transitory storage medium. When a computer system reads and executes the code and/or data stored on the computer-readable non-transitory storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the medium.


The methods and processes described herein can be executed by and/or included in hardware modules or apparatus. These modules or apparatus may include, but are not limited to, an application-specific integrated circuit (ASIC) chip, a field-programmable gate array (FPGA), a dedicated or shared processor that executes a particular software module or a piece of code at a particular time, and/or other programmable-logic devices now known or later developed. When the hardware modules or apparatus are activated, they perform the methods and processes included within them.


The foregoing descriptions of embodiments of the present invention have been presented only for purposes of illustration and description. They are not intended to be exhaustive or to limit this disclosure. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A switch in a network of interconnected switches, wherein the switch comprises: a storage device;forwarding domain circuitry configured to maintain a mapping that maps a first virtual local area network (VLAN) identifier and an internal virtual identifier to a first global VLAN identifier in the storage device, wherein the global VLAN identifier represents a layer-2 forwarding domain in the network of interconnected switches and is distinct from a customer VLAN or a service-provider VLAN, and wherein the internal virtual identifier is local and internal to the switch, and not included in a packet; andforwarding circuitry configured to: encapsulate a first packet belonging to the first VLAN in a network encapsulation header, wherein the encapsulated packet is forwardable in the network of interconnected switches based on the network encapsulation header; andinclude the first global VLAN identifier in the network encapsulation header encapsulating the first packet, wherein a set of bits representing the global VLAN identifier in the network encapsulation header indicates a single value.
  • 2. The switch of claim 1, wherein the mapping further maps the internal identifier to an egress port associated with the first global VLAN identifier; and wherein the internal identifier is distinct from a VLAN identifier.
  • 3. The switch of claim 1, wherein the internal identifier and the first global VLAN identifier are specified in a port profile comprising a media access control (MAC) address, wherein the port profile represents a set of configurations for a port; and wherein the forwarding domain circuitry is further configured to, in response to identifying the MAC address as a source address in a packet, apply the port profile to a local ingress port of the packet.
  • 4. The switch of claim 1, wherein the set of bits representing the global VLAN identifier includes a first subset of bits in a first header field and a second subset of bits in a second header field in the network encapsulation header in a continuous representation indicating the single value.
  • 5. The switch of claim 1, wherein the forwarding domain circuitry is further configured to maintain a second mapping between a second VLAN identifier and the first global VLAN identifier, wherein the first and second VLAN identifiers are associated with a same service level for a tenant.
  • 6. The switch of claim 5, wherein the forwarding circuitry is further configured to include the first global VLAN identifier in a second network encapsulation header encapsulating a second packet in response to identifying the second VLAN identifier in the second packet.
  • 7. The switch of claim 1, wherein the forwarding circuitry is further configured to determine a port of the switch as a network extension interface for a second packet, wherein the network extension interface is an egress port associated with a second network of interconnected switches, and wherein the second packet includes a tag representing the first global VLAN identifier.
  • 8. The switch of claim 7, further comprising tunnel management circuitry configured to encapsulate the second packet in a tunnel encapsulation header, wherein the network extension interface is a tunnel interface, and wherein the tunnel encapsulation header is distinct from the network encapsulation header.
  • 9. The switch of claim 1, further comprising spanning tree circuitry configured to: identify a spanning tree instance associated with the first VLAN identifier; andassociate the spanning tree instance with the first global VLAN identifier.
  • 10. The switch of claim 9, wherein the spanning tree circuitry is further configured to associate the spanning tree instance with a local port in response to identifying the local port as being configured with the first global VLAN identifier.
  • 11. A computer-executable method, comprising: maintaining a mapping that maps a first virtual local area network (VLAN) identifier and an internal virtual identifier to a first global VLAN identifier in a storage device of a switch in a network of interconnected switches, wherein the global VLAN identifier represents a layer-2 forwarding domain in the network of interconnected switches and is distinct from a customer VLAN or a service-provider VLAN, and wherein the internal virtual identifier is local and internal to the switch, and not included in a packet;encapsulating a first packet belonging to the first VLAN in a network encapsulation header, wherein the encapsulated packet is forwardable in the network of interconnected switches based on the network encapsulation header; andincluding the first global VLAN identifier in the network encapsulation header encapsulating the first packet, wherein a set of bits representing the global VLAN identifier in the network encapsulation header indicates a single value.
  • 12. The method of claim 11, wherein the mapping further maps the internal identifier to an egress port associated with the first global VLAN identifier; and wherein the internal identifier is distinct from a VLAN identifier.
  • 13. The method of claim 11, wherein the internal identifier and the first global VLAN identifier are specified in a port profile comprising a media access control (MAC) address, wherein the port profile represents a set of configurations for a port; and wherein the method further comprises, in response to identifying the MAC address as a source address in a packet, applying the port profile to a local ingress port of the packet.
  • 14. The method of claim 11, wherein the set of bits representing the global VLAN identifier includes a first subset of bits in a first header field and a second subset of bits in a second header field in the network encapsulation header in a continuous representation indicating the single value.
  • 15. The method of claim 11, further comprising maintaining a second mapping between a second VLAN identifier and the first global VLAN identifier, wherein the first and second VLAN identifiers are associated with a same service level for a tenant.
  • 16. The method of claim 15, further comprising including the first global VLAN identifier in a second network encapsulation header encapsulating a second packet in response to identifying the second VLAN identifier in the second packet.
  • 17. The method of claim 11, further comprising determining a port of the switch as a network extension interface for a second packet, wherein the network extension interface is an egress port associated with a second network of interconnected switches, and wherein the second packet includes a tag representing the first global VLAN identifier.
  • 18. The method of claim 17, further comprising encapsulating the second packet in a tunnel encapsulation header, wherein the network extension interface is a tunnel interface, and wherein the tunnel encapsulation header is distinct from the network encapsulation header.
  • 19. The method of claim 11, further comprising: identifying a spanning tree instance associated with the first VLAN identifier; andassociating the spanning tree instance with the first global VLAN identifier.
  • 20. The method of claim 19, further comprising associating the spanning tree instance with a local port in response to identifying the local port as being configured with the first global VLAN identifier.
  • 21. A computing system, comprising: a processor; anda memory storing instructions that when executed by the processor cause the system to perform a method, the method comprising: maintaining a mapping that maps a first virtual local area network (VLAN) identifier and an internal virtual identifier to a first global VLAN identifier in a storage device of a switch in a network of interconnected switches, wherein the global VLAN identifier represents a layer-2 forwarding domain in the network of interconnected switches and is distinct from a customer VLAN or a service-provider VLAN, and wherein the internal virtual identifier is local and internal to the switch, and not included in a packet;encapsulating a first packet belonging to the first VLAN in a network encapsulation header, wherein the encapsulated packet is forwardable in the network of interconnected switches based on the encapsulation header; andincluding the first global VLAN identifier in the network encapsulation header encapsulating the first packet, wherein a set of bits representing the global VLAN identifier in the network encapsulation header indicates a single value.
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/031,746, titled “Spanning Tree Protocol in Fabric Switch Supporting Global VLAN” by inventors Chi L. Chong and Ganesh D. Venkata, filed 31 Jul. 2014, the disclosure of which is incorporated by reference herein. The present disclosure is related to U.S. Pat. No. 8,867,552, titled “Virtual Cluster Switching,” by inventors Suresh Vobbilisetty and Dilip Chatwani, issued 21 Oct. 2014; U.S. patent application Ser. No. 13/971,397, titled “Global VLANs for Fabric Switches,” by inventors Suresh Vobbilisetty, Phanidhar Koganti, and Chi Lung Chong, filed 20 Aug. 2013; and U.S. Pat. No. 8,948,056, titled “Spanning-Tree Based Loop Detection for an Ethernet Fabric Switch,” by inventors Tse Yu Lei, Ning Song, Vardarajan Venkatesh, and Mythilikanth Raman, issued 3 Feb. 2015, the disclosures of which are incorporated by reference herein.

US Referenced Citations (416)
Number Name Date Kind
829529 Keathley Aug 1906 A
5390173 Spinney Feb 1995 A
5802278 Isfeld Sep 1998 A
5878232 Marimuthu Mar 1999 A
5959968 Chin Sep 1999 A
5973278 Wehrill, III Oct 1999 A
5983278 Chong Nov 1999 A
6041042 Bussiere Mar 2000 A
6085238 Yuasa Jul 2000 A
6104696 Kadambi Aug 2000 A
6185214 Schwartz Feb 2001 B1
6185241 Sun Feb 2001 B1
6331983 Haggerty Dec 2001 B1
6438106 Pillar Aug 2002 B1
6498781 Bass Dec 2002 B1
6542266 Phillips Apr 2003 B1
6633761 Singhal Oct 2003 B1
6771610 Seaman Aug 2004 B1
6873602 Ambe Mar 2005 B1
6937576 DiBenedetto Aug 2005 B1
6956824 Mark Oct 2005 B2
6957269 Williams Oct 2005 B2
6975581 Medina Dec 2005 B1
6975864 Singhal Dec 2005 B2
7016352 Chow Mar 2006 B1
7061877 Gummalla Jun 2006 B1
7173934 Lapuh Feb 2007 B2
7197308 Singhal Mar 2007 B2
7206288 Cometto Apr 2007 B2
7310664 Merchant Dec 2007 B1
7313637 Tanaka Dec 2007 B2
7315545 Chowdhury et al. Jan 2008 B1
7316031 Griffith Jan 2008 B2
7330897 Baldwin Feb 2008 B2
7380025 Riggins May 2008 B1
7397794 Lacroute Jul 2008 B1
7430164 Bare Sep 2008 B2
7453888 Zabihi Nov 2008 B2
7477894 Sinha Jan 2009 B1
7480258 Shuen Jan 2009 B1
7508757 Ge Mar 2009 B2
7558195 Kuo Jul 2009 B1
7558273 Grosser Jul 2009 B1
7571447 Ally Aug 2009 B2
7599901 Mital Oct 2009 B2
7688736 Walsh Mar 2010 B1
7688960 Aubuchon Mar 2010 B1
7690040 Frattura Mar 2010 B2
7706255 Kondrat et al. Apr 2010 B1
7716370 Devarapalli May 2010 B1
7720076 Dobbins May 2010 B2
7729296 Choudhary Jun 2010 B1
7787480 Mehta Aug 2010 B1
7792920 Istvan Sep 2010 B2
7796593 Ghosh Sep 2010 B1
7808992 Homchaudhuri Oct 2010 B2
7836332 Hara Nov 2010 B2
7843906 Chidambaram et al. Nov 2010 B1
7843907 Abou-Emara Nov 2010 B1
7860097 Lovett Dec 2010 B1
7898959 Arad Mar 2011 B1
7912091 Krishnan Mar 2011 B1
7924837 Shabtay Apr 2011 B1
7937756 Kay May 2011 B2
7945941 Sinha May 2011 B2
7949638 Goodson May 2011 B1
7957386 Aggarwal Jun 2011 B1
8018938 Fromm Sep 2011 B1
8027354 Portolani Sep 2011 B1
8054832 Shukla Nov 2011 B1
8068442 Kompella Nov 2011 B1
8078704 Lee Dec 2011 B2
8102781 Smith Jan 2012 B2
8102791 Tang Jan 2012 B2
8116307 Thesayi Feb 2012 B1
8125928 Mehta Feb 2012 B2
8134922 Elangovan Mar 2012 B2
8155150 Chung Apr 2012 B1
8160063 Maltz Apr 2012 B2
8160080 Arad Apr 2012 B1
8170038 Belanger May 2012 B2
8175107 Yalagandula May 2012 B1
8194674 Pagel Jun 2012 B1
8195774 Lambeth Jun 2012 B2
8204061 Sane Jun 2012 B1
8213313 Doiron Jul 2012 B1
8213336 Smith Jul 2012 B2
8230069 Korupolu Jul 2012 B2
8239960 Frattura Aug 2012 B2
8249069 Raman Aug 2012 B2
8270401 Barnes Sep 2012 B1
8295291 Ramanathan Oct 2012 B1
8295921 Wang Oct 2012 B2
8301686 Appajodu Oct 2012 B1
8339994 Gnanasekaran Dec 2012 B2
8351352 Eastlake Jan 2013 B1
8369335 Jha Feb 2013 B2
8369347 Xiong Feb 2013 B2
8392496 Linden Mar 2013 B2
8462774 Page Jun 2013 B2
8467375 Blair Jun 2013 B2
8520595 Yadav Aug 2013 B2
8599850 Jha Dec 2013 B2
8599864 Chung Dec 2013 B2
8615008 Natarajan Dec 2013 B2
8706905 McGlaughlin Apr 2014 B1
8724456 Hong May 2014 B1
8806031 Kondur Aug 2014 B1
8826385 Congdon Sep 2014 B2
8918631 Kumar Dec 2014 B1
8937865 Kumar Jan 2015 B1
8995272 Agarwal Mar 2015 B2
20010005527 Vaeth Jun 2001 A1
20010055274 Hegge Dec 2001 A1
20020019904 Katz Feb 2002 A1
20020021701 Lavian Feb 2002 A1
20020039350 Wang Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020091795 Yip Jul 2002 A1
20030041085 Sato Feb 2003 A1
20030123393 Feuerstraeter Jul 2003 A1
20030147385 Montalvo Aug 2003 A1
20030174706 Shankar Sep 2003 A1
20030189905 Lee Oct 2003 A1
20030208616 Laing Nov 2003 A1
20030216143 Roese Nov 2003 A1
20040001433 Gram Jan 2004 A1
20040003094 See Jan 2004 A1
20040010600 Baldwin Jan 2004 A1
20040049699 Griffith Mar 2004 A1
20040057430 Paavolainen Mar 2004 A1
20040081171 Finn Apr 2004 A1
20040117508 Shimizu Jun 2004 A1
20040120326 Yoon Jun 2004 A1
20040156313 Hofmeister et al. Aug 2004 A1
20040165595 Holmgren Aug 2004 A1
20040165596 Garcia Aug 2004 A1
20040205234 Barrack Oct 2004 A1
20040213232 Regan Oct 2004 A1
20050007951 Lapuh Jan 2005 A1
20050044199 Shiga Feb 2005 A1
20050074001 Mattes Apr 2005 A1
20050094568 Judd May 2005 A1
20050094630 Valdevit May 2005 A1
20050122979 Gross Jun 2005 A1
20050157645 Rabie et al. Jul 2005 A1
20050157751 Rabie Jul 2005 A1
20050169188 Cometto Aug 2005 A1
20050195813 Ambe Sep 2005 A1
20050207423 Herbst Sep 2005 A1
20050213561 Yao Sep 2005 A1
20050220096 Friskney Oct 2005 A1
20050265356 Kawarai Dec 2005 A1
20050278565 Frattura Dec 2005 A1
20060007869 Hirota Jan 2006 A1
20060018302 Ivaldi Jan 2006 A1
20060023707 Makishima Feb 2006 A1
20060029055 Perera Feb 2006 A1
20060034292 Wakayama Feb 2006 A1
20060036765 Weyman Feb 2006 A1
20060059163 Frattura Mar 2006 A1
20060062187 Rune Mar 2006 A1
20060072550 Davis Apr 2006 A1
20060083254 Ge Apr 2006 A1
20060093254 Mozdy May 2006 A1
20060098589 Kreeger May 2006 A1
20060140130 Kalkunte Jun 2006 A1
20060168109 Warmenhoven Jul 2006 A1
20060184937 Abels Aug 2006 A1
20060221960 Borgione Oct 2006 A1
20060227776 Chandrasekaran Oct 2006 A1
20060235995 Bhatia Oct 2006 A1
20060242311 Mai Oct 2006 A1
20060245439 Sajassi Nov 2006 A1
20060251067 DeSanti Nov 2006 A1
20060256767 Suzuki Nov 2006 A1
20060265515 Shiga Nov 2006 A1
20060285499 Tzeng Dec 2006 A1
20060291388 Amdahl Dec 2006 A1
20060291480 Cho Dec 2006 A1
20070036178 Hares Feb 2007 A1
20070053294 Ho Mar 2007 A1
20070083625 Chamdani Apr 2007 A1
20070086362 Kato Apr 2007 A1
20070094464 Sharma Apr 2007 A1
20070097968 Du May 2007 A1
20070098006 Parry May 2007 A1
20070116224 Burke May 2007 A1
20070116422 Reynolds May 2007 A1
20070156659 Lim Jul 2007 A1
20070177525 Wijnands Aug 2007 A1
20070177597 Ju Aug 2007 A1
20070183313 Narayanan Aug 2007 A1
20070211712 Fitch Sep 2007 A1
20070258449 Bennett Nov 2007 A1
20070274234 Kubota Nov 2007 A1
20070289017 Copeland, III Dec 2007 A1
20080052487 Akahane Feb 2008 A1
20080056135 Lee Mar 2008 A1
20080065760 Damm Mar 2008 A1
20080080517 Roy Apr 2008 A1
20080095160 Yadav Apr 2008 A1
20080101386 Gray May 2008 A1
20080112400 Dunbar et al. May 2008 A1
20080133760 Berkvens Jun 2008 A1
20080159277 Vobbilisetty Jul 2008 A1
20080172492 Raghunath Jul 2008 A1
20080181196 Regan Jul 2008 A1
20080181243 Vobbilisetty Jul 2008 A1
20080186981 Seto Aug 2008 A1
20080205377 Chao Aug 2008 A1
20080219172 Mohan Sep 2008 A1
20080225852 Raszuk Sep 2008 A1
20080225853 Melman Sep 2008 A1
20080228897 Ko Sep 2008 A1
20080240129 Elmeleegy Oct 2008 A1
20080267179 LaVigne Oct 2008 A1
20080285458 Lysne Nov 2008 A1
20080285555 Ogasahara Nov 2008 A1
20080298248 Roeck Dec 2008 A1
20080304498 Jorgensen Dec 2008 A1
20080310342 Kruys Dec 2008 A1
20090022069 Khan Jan 2009 A1
20090037607 Farinacci Feb 2009 A1
20090042270 Dolly Feb 2009 A1
20090044270 Shelly Feb 2009 A1
20090067422 Poppe Mar 2009 A1
20090067442 Killian Mar 2009 A1
20090079560 Fries Mar 2009 A1
20090080345 Gray Mar 2009 A1
20090083445 Ganga Mar 2009 A1
20090092042 Yuhara Apr 2009 A1
20090092043 Lapuh Apr 2009 A1
20090106405 Mazarick Apr 2009 A1
20090116381 Kanda May 2009 A1
20090129384 Regan May 2009 A1
20090138577 Casado May 2009 A1
20090138752 Graham May 2009 A1
20090161584 Guan Jun 2009 A1
20090161670 Shepherd Jun 2009 A1
20090168647 Holness Jul 2009 A1
20090199177 Edwards Aug 2009 A1
20090204965 Tanaka Aug 2009 A1
20090213783 Moreton Aug 2009 A1
20090222879 Kostal Sep 2009 A1
20090232031 Vasseur Sep 2009 A1
20090245137 Hares Oct 2009 A1
20090245242 Carlson Oct 2009 A1
20090246137 Hadida Oct 2009 A1
20090252049 Ludwig Oct 2009 A1
20090252061 Small Oct 2009 A1
20090260083 Szeto Oct 2009 A1
20090279558 Davis Nov 2009 A1
20090292858 Lambeth Nov 2009 A1
20090316721 Kanda Dec 2009 A1
20090323698 LeFaucheur Dec 2009 A1
20090323708 Ihle Dec 2009 A1
20090327392 Tripathi Dec 2009 A1
20090327462 Adams Dec 2009 A1
20100027420 Smith Feb 2010 A1
20100046471 Hattori Feb 2010 A1
20100054260 Pandey Mar 2010 A1
20100061269 Banerjee Mar 2010 A1
20100074175 Banks Mar 2010 A1
20100097941 Carlson Apr 2010 A1
20100103813 Allan Apr 2010 A1
20100103939 Carlson Apr 2010 A1
20100131636 Suri May 2010 A1
20100158024 Sajassi Jun 2010 A1
20100165877 Shukla Jul 2010 A1
20100165995 Mehta Jul 2010 A1
20100168467 Johnston Jul 2010 A1
20100169467 Shukla Jul 2010 A1
20100169948 Budko Jul 2010 A1
20100182920 Matsuoka Jul 2010 A1
20100195489 Zhou Aug 2010 A1
20100215042 Sato Aug 2010 A1
20100215049 Raza Aug 2010 A1
20100220724 Rabie Sep 2010 A1
20100226368 Mack-Crane Sep 2010 A1
20100226381 Mehta Sep 2010 A1
20100246388 Gupta Sep 2010 A1
20100257263 Casado Oct 2010 A1
20100265849 Harel Oct 2010 A1
20100271960 Krygowski Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281106 Ashwood-Smith Nov 2010 A1
20100284414 Agarwal Nov 2010 A1
20100284418 Gray Nov 2010 A1
20100287262 Elzur Nov 2010 A1
20100287548 Zhou Nov 2010 A1
20100290473 Enduri Nov 2010 A1
20100299527 Arunan Nov 2010 A1
20100303071 Kotalwar Dec 2010 A1
20100303075 Tripathi Dec 2010 A1
20100303083 Belanger Dec 2010 A1
20100309820 Rajagopalan Dec 2010 A1
20100309912 Mehta Dec 2010 A1
20100329110 Rose Dec 2010 A1
20110019678 Mehta Jan 2011 A1
20110032945 Mullooly Feb 2011 A1
20110035489 McDaniel Feb 2011 A1
20110035498 Shah Feb 2011 A1
20110044339 Kotalwar Feb 2011 A1
20110044352 Chaitou Feb 2011 A1
20110055274 Scales et al. Mar 2011 A1
20110064086 Xiong Mar 2011 A1
20110064089 Hidaka Mar 2011 A1
20110072208 Gulati Mar 2011 A1
20110085560 Chawla Apr 2011 A1
20110085563 Kotha Apr 2011 A1
20110110266 Li May 2011 A1
20110134802 Rajagopalan Jun 2011 A1
20110134803 Dalvi Jun 2011 A1
20110134925 Safrai Jun 2011 A1
20110142053 VanDerMerwe Jun 2011 A1
20110142062 Wang Jun 2011 A1
20110161494 McDysan Jun 2011 A1
20110161695 Okita Jun 2011 A1
20110176412 Stine Jul 2011 A1
20110188373 Saito Aug 2011 A1
20110194403 Sajassi Aug 2011 A1
20110194563 Shen Aug 2011 A1
20110228780 Ashwood-Smith Sep 2011 A1
20110231570 Altekar Sep 2011 A1
20110231574 Saunderson Sep 2011 A1
20110235523 Jha Sep 2011 A1
20110243133 Villait Oct 2011 A9
20110243136 Raman Oct 2011 A1
20110246669 Kanada Oct 2011 A1
20110255538 Srinivasan Oct 2011 A1
20110255540 Mizrahi Oct 2011 A1
20110261828 Smith Oct 2011 A1
20110268120 Vobbilisetty Nov 2011 A1
20110268125 Vobbilisetty Nov 2011 A1
20110273988 Tourrilhes Nov 2011 A1
20110274114 Dhar Nov 2011 A1
20110280572 Vobbilisetty Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110296052 Guo Dec 2011 A1
20110299391 Vobbilisetty Dec 2011 A1
20110299413 Chatwani Dec 2011 A1
20110299414 Yu Dec 2011 A1
20110299527 Yu Dec 2011 A1
20110299528 Yu Dec 2011 A1
20110299531 Yu Dec 2011 A1
20110299532 Yu Dec 2011 A1
20110299533 Yu Dec 2011 A1
20110299534 Koganti Dec 2011 A1
20110299535 Vobbilisetty Dec 2011 A1
20110299536 Cheng Dec 2011 A1
20110317559 Kern Dec 2011 A1
20110317703 Dunbar et al. Dec 2011 A1
20120011240 Hara Jan 2012 A1
20120014261 Salam Jan 2012 A1
20120014387 Dunbar Jan 2012 A1
20120020220 Sugita Jan 2012 A1
20120027017 Rai Feb 2012 A1
20120033663 Guichard Feb 2012 A1
20120033665 Jacob Feb 2012 A1
20120033668 Humphries Feb 2012 A1
20120033669 Mohandas Feb 2012 A1
20120033672 Page Feb 2012 A1
20120063363 Li Mar 2012 A1
20120075991 Sugita Mar 2012 A1
20120099567 Hart Apr 2012 A1
20120099602 Nagapudi Apr 2012 A1
20120106339 Mishra May 2012 A1
20120117438 Shaffer May 2012 A1
20120131097 Baykal May 2012 A1
20120131289 Taguchi May 2012 A1
20120134266 Roitshtein May 2012 A1
20120147740 Nakash Jun 2012 A1
20120158997 Hsu Jun 2012 A1
20120163164 Terry Jun 2012 A1
20120177039 Berman Jul 2012 A1
20120210416 Mihelich Aug 2012 A1
20120243539 Keesara Sep 2012 A1
20120275297 Subramanian Nov 2012 A1
20120275347 Banerjee Nov 2012 A1
20120278804 Narayanasamy Nov 2012 A1
20120294192 Masood Nov 2012 A1
20120294194 Balasubramanian Nov 2012 A1
20120320800 Kamble Dec 2012 A1
20120320926 Kamath et al. Dec 2012 A1
20120327766 Tsai et al. Dec 2012 A1
20120327937 Melman et al. Dec 2012 A1
20130003535 Sarwar Jan 2013 A1
20130003737 Sinicrope Jan 2013 A1
20130003738 Koganti Jan 2013 A1
20130028072 Addanki Jan 2013 A1
20130034015 Jaiswal Feb 2013 A1
20130034021 Jaiswal Feb 2013 A1
20130067466 Combs Mar 2013 A1
20130070762 Adams Mar 2013 A1
20130114595 Mack-Crane et al. May 2013 A1
20130124707 Ananthapadmanabha May 2013 A1
20130127848 Joshi May 2013 A1
20130136123 Ge May 2013 A1
20130148546 Eisenhauer Jun 2013 A1
20130194914 Agarwal Aug 2013 A1
20130219473 Schaefer Aug 2013 A1
20130250951 Koganti Sep 2013 A1
20130259037 Natarajan Oct 2013 A1
20130272135 Leong Oct 2013 A1
20130294451 Li Nov 2013 A1
20130301642 Radhakrishnan Nov 2013 A1
20130346583 Low Dec 2013 A1
20140013324 Zhang Jan 2014 A1
20140025736 Wang Jan 2014 A1
20140044126 Sabhanatarajan Feb 2014 A1
20140056298 Vobbilisetty Feb 2014 A1
20140105034 Sun Apr 2014 A1
20150010007 Matsuhira Jan 2015 A1
20150030031 Zhou Jan 2015 A1
20150143369 Zheng May 2015 A1
Foreign Referenced Citations (11)
Number Date Country
102801599 Nov 2012 CN
0579567 May 1993 EP
0579567 Jan 1994 EP
0993156 Dec 2000 EP
1398920 Mar 2004 EP
1916807 Apr 2008 EP
2001167 Oct 2008 EP
2008056838 May 2008 WO
2009042919 Apr 2009 WO
2010111142 Sep 2010 WO
2014031781 Feb 2014 WO
Non-Patent Literature Citations (202)
Entry
Office action dated Feb. 2, 2016, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office Action dated Feb. 2, 2016. U.S. Appl. No. 14/154,106, filed Jan. 13, 2014.
Office Action dated Feb. 3, 2016, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office Action dated Feb. 4, 2016, U.S. Appl. No. 13/557,105, filed Jul. 24, 2012.
Office Action dated Feb. 11, 2016, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 13/971,397, filed Aug. 20, 2013.
Office Action dated Feb. 24, 2016, U.S. Appl. No. 12/705,508, filed Feb. 12, 2010.
Eastlake, D. et al., ‘RBridges: TRILL Header Options’, Dec. 24, 2009, pp. 1-17, TRILL Working Group.
Perlman, Radia et al., ‘RBridge VLAN Mapping’, TRILL Working Group, Dec. 4, 2009, pp. 1-12.
Touch, J. et al., ‘Transparent Interconnection of Lots of Links (TRILL): Problem and Applicability Statement’, May 2009, Network Working Group, pp. 1-17.
‘Switched Virtual Networks. Internetworking Moves Beyond Bridges and Routers’ Data Communications, McGraw Hill. New York, US, vol. 23, No. 12, Sep. 1, 1994 (Sep. 1, 1994), pp. 66-70,72,74, XP000462385 ISSN: 0363-6399.
Knight S et al: ‘Virtual Router Redundancy Protocol’ Internet Citation Apr. 1, 1998 (Apr. 1, 1998), XP002135272 Retrieved from the Internet: URL:ftp://ftp.isi.edu/in-notes/rfc2338.txt [retrieved on Apr. 10, 2000].
Office Action dated Jun. 18, 2015, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Perlman R: ‘Challenges and opportunities in the design of TRILL: a routed layer 2 technology’, 2009 IEEE Globecom Workshops, Honolulu, HI, USA, Piscataway, NJ, USA, Nov. 30, 2009 (Nov. 30, 2009), pp. 1-6, XP002649647, DOI: 10.1109/GLOBECOM.2009.5360776 ISBN: 1-4244-5626-0 [retrieved on Jul. 19, 2011].
TRILL Working Group Internet-Draft Intended status: Proposed Standard RBridges: Base Protocol Specificaiton Mar. 3, 2010.
Office Action dated Jun. 16, 2015, U.S. Appl. No. 13/048,817, filed Mar. 15, 2011.
Knight P et al: ‘Layer 2 and 3 Virtual Private Networks: Taxonomy, Technology, and Standardization Efforts’, IEEE Communications Magazine, IEEE Serivce Center, Piscataway, US, vol. 42, No. 6, Jun. 1, 2004 (Jun. 1, 2004), pp. 124-131, XP001198207, ISSN: 0163-6804, DOI:10.1109/MCOM.2004.1304248.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 29, 2013.
Perlman, Radia et al., ‘RBridges: Base Protocol Specification; Draft-ietf-trill-rbridge-protocol-16.txt’, Mar. 3, 2010, pp. 1-117.
‘An Introduction to Brocade VCS Fabric Technology’, Brocade white paper, http://community.brocade.com/docs/DOC-2954, Dec. 3, 2012.
Brocade, ‘Brocade Fabrics OS (FOS) 6.2 Virtual Fabrics Feature Frequently Asked Questions’, pp. 1-6, 2009 Brocade Communications Systems, Inc.
Brocade, ‘FastIron and TurboIron 24x Configuration Guide’, Feb. 16, 2010.
Brocade, ‘The Effortless Network: Hyperedge Technology for the Campus LAN’ 2012.
Brocade ‘Brocade Unveils ‘The Effortless Network’’, http://newsroom.brocade.com/press-releases/brocade-unveils-the-effortless-network-nasdaq-brcd-0859535, 2012.
Christensen, M. et al., ‘Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches’, May 2006.
FastIron Configuration Guide Supporting Ironware Software Release 07.0.00, Dec. 18, 2009.
Foundary FastIron Configuration Guide, Software Release FSX 04.2.00b, Software Release FWS 04.3.00, Software Release FGS 05.0.00a, Sep. 2008.
Knight, ‘Network Based IP VPN Architecture using Virtual Routers’, May 2003.
Kreeger, L. et al., ‘Network Virtualization Overlay Control Protocol Requirements draft-kreeger-nvo3-overlay-cp-00’, Jan. 30, 2012.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT)’, draft-lapuh-network-smlt-08, Jul. 2008.
Lapuh, Roger et al., ‘Split Multi-Link Trunking (SMLT)’, Network Working Group, Oct. 2012.
Louati, Wajdi et al., ‘Network-based virtual personal overlay networks using programmable virtual routers’, IEEE Communications Magazine, Jul. 2005.
Narten, T. et al., ‘Problem Statement: Overlays for Network Virtualization d raft-na rten-n vo3-over l ay-problem-statement-01’, Oct. 31, 2011.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, from Park, Jung H., dated Jul. 18, 2013.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Jul. 24, 2014.
Office Action for U.S. Appl. No. 13/365,993, filed Feb. 3, 2012, from Cho, Hong Sol., dated Jul. 23, 2013.
Office Action for U.S. Appl. No. 13/742,207 dated Jul. 24, 2014, filed Jan. 15, 2013.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Apr. 26, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jan. 4, 2013.
Office Action for U.S. Appl. No. 12/950,968, filed Nov. 19, 2010, dated Jun. 7, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated Dec. 20, 2012.
Office Action for U.S. Appl. No. 12/950,974, filed Nov. 19, 2010, dated May 24, 2012.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Apr. 25, 2013.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, dated Dec. 3, 2012.
Office Action for U.S. Appl. No. 13/030,806, filed Feb. 18, 2011, Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Mar. 18, 2013.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Jul. 31, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Feb. 22, 2013.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jun. 11, 2013.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Oct. 2, 2013.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Oct. 26, 2012.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated May 16, 2013.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Jun. 21, 2013.
Office Action for U.S. Appl. No. 13/092,580, filed Apr. 22, 2011, dated Jun. 10, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/092,701, filed Apr. 22, 2011, dated Jul. 3, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,724, filed Apr. 22, 2011, dated Jul. 16, 2013.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 5, 2013.
Office Action for U.S. Appl. No. 13/092,864, filed Apr. 22, 2011, dated Sep. 19, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jun. 19, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Mar. 4, 2013.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Sep. 5, 2013.
Office Action for U.S. Appl. No. 13/098,360, filed Apr. 29, 2011, dated May 31, 2013.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Jul. 9, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 28, 2013.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated May 22, 2013.
Office Action for U.S. Appl. No. 13/365,808, filed Jul. 18, 2013, dated Jul. 18, 2013.
Perlman, Radia et al., ‘Challenges and Opportunities in the Design of TRILL: a Routed layer 2 Technology’, 2009.
S. Nadas et al., ‘Virtual Router Redundancy Protocol (VRRP) Version 3 for IPv4 and IPv6’, Internet Engineering Task Force, Mar. 2010.
‘RBridges: Base Protocol Specification’, IETF Draft, Perlman et al., Jun. 26, 2009.
U.S. Appl. No. 13/030,806 Office Action dated Dec. 3, 2012.
Office action dated Apr. 26, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Sep. 12, 2012, U.S. Appl. No. 12/725,249, filed Mar. 16, 2010.
Office action dated Dec. 21, 2012, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Mar. 27, 2014, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated Jul. 9, 2013, U.S. Appl. No. 13/098,490, filed May 2, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Dec. 5, 2012, U.S. Appl. No. 13/087,239, filed Apr. 14, 2011.
Office action dated Apr. 9, 2014, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Feb. 5, 2013, U.S. Appl. No. 13/092,724, filed Apr. 22, 2011.
Office action dated Jan. 10, 2014, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jun. 10, 2013, U.S. Appl. No. 13/092,580, filed Apr. 22, 2011.
Office action dated Jan. 16, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 18, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Jul. 31, 2013, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Aug. 29, 2014, U.S. Appl. No. 13/042,259, filed Mar. 7, 2011.
Office action dated Mar. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jun. 21, 2013, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Aug. 14, 2014, U.S. Appl. No. 13/092,460, filed Apr. 22, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Mar. 26, 2014, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office action dated Jul. 3, 2013, U.S. Appl. No. 13/092,701, filed Apr. 22, 2011.
Office Action dated Apr. 9, 2014, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Office action dated Dec. 20, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated May 24, 2012, U.S. Appl. No. 12/950,974, filed Nov. 19, 2010.
Office action dated Jan. 6, 2014, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Sep. 5, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Mar. 4, 2013, U.S. Appl. No. 13/092,877, filed Apr. 22, 2011.
Office action dated Jan. 4, 2013, U.S. Appl. No. 12/950,968, filed Nov. 19, 2010.
Office action dated Jun. 7, 2012, U.S. Appl. 12/950,968, filed Nov. 19, 2010.
Office action dated Sep. 19, 2012, U.S. Appl. No. 13/092,864, filed Apr. 22, 2011.
Office action dated May 31, 2013, U.S. Appl. No. 13/098,360, filed Apr. 29, 2011.
Office action dated Jul. 7, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Oct. 2, 2013, U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office Action dated Dec. 19, 2014, for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011.
Office action dated Dec. 3, 2012, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 22, 2014, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/030,806, filed Feb. 18, 2011.
Office action dated Apr. 25, 2013, U.S. Appl. No. 13/030,688, filed Feb. 18, 2011.
Office action dated Feb. 22, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Jun. 11, 2013, U.S. Appl. No. 13/044,301, filed Mar. 9, 2011.
Office action dated Oct. 26, 2012, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated May 16, 2013, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Aug. 4, 2014, U.S. Appl. No. 13/050,102, filed Mar. 17, 2011.
Office action dated Jan. 28, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Dec. 2, 2013, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated May 22, 2013, U.S. Appl. No. 13/148,526, filed Jul. 16, 2011.
Office action dated Aug. 21, 2014, U.S. Appl. No. 13/184,526, filed Jul. 16, 2011.
Office action dated Nov. 29, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jun. 19, 2013, U.S. Appl. No. 13/092,873, filed Apr. 22, 2011.
Office action dated Jul. 18, 2013, U.S. Appl. No. 13/365,808, filed Feb. 3, 2012.
Office Action dated Mar. 6, 2014, U.S. Appl. No. 13/425,238, filed Mar. 20, 2012.
Office action dated Nov. 12, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office action dated Jun. 13, 2013, U.S. Appl. No. 13/312,903, filed Dec. 6, 2011.
Office Action dated Jun. 18, 2014, U.S. Appl. No. 13/440,861, filed Apr. 5, 2012.
Office Action dated Feb. 28, 2014, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated May 9, 2014, U.S. Appl. No. 13/484,072, filed May 30, 2012.
Office Action dated May 14, 2014, U.S. Appl. No. 13/533,843, filed Jun. 26, 2012.
Office Action dated Feb. 20, 2014, U.S. Appl. No. 13/598,204, filed Aug. 29, 2012.
Office Action dated Jun. 6, 2014, U.S. Appl. No. 13/669,357, filed Nov. 5, 2012.
Brocade ‘An Introduction to Brocade VCS Fabric Technology’, Dec. 3, 2012.
Huang, Nen-Fu et al., ‘An Effective Spanning Tree Algorithm for a Bridged LAN’, Mar. 16, 1992.
Lapuh, Roger et al., ‘Split Multi-link Trunking (SMLT) draft-lapuh-network-smlt-08’, Jan. 2009.
Mckeown, Nick et al. “OpenFlow: Enabling Innovation in Campus Networks”, Mar. 14, 2008, www.openflow.org/documents/openflow-wp-latest.pdf.
Office Action for U.S. Appl. No. 13/030,688, filed Feb. 18, 2011, dated Jul. 17, 2014.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, from Jaroenchonwanit, Bunjob, dated Jan. 16, 2014.
Office Action for U.S. Appl. No. 13/044,326, filed Mar. 9, 2011, dated Jul. 7, 2014.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Apr. 9, 2014.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Jul. 25, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Jun. 20, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Aug. 7, 2014.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 6, 2014.
Office Action for U.S. Appl. No. 13/556,061, filed Jul. 23, 2012, dated Jun. 6, 2014.
Office Action for U.S. Appl. No. 13/950,974, filed Nov. 19, 2010, from Haile, Awet A., dated Dec. 2, 2012.
Office Action for U.S. Appl. No. 12/725,249, filed Mar. 16, 2010, dated Sep. 12, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Dec. 21, 2012.
Office Action for U.S. Appl. No. 13/098,490, filed May 2, 2011, dated Mar. 27, 2014.
Office Action for U.S. Appl. No. 13/312,903, filed Dec. 6, 2011, dated Jun. 13, 2013.
Office Action for U.S. Appl. No. 13/044,301, dated Mar. 9, 2011.
Office Action for U.S. Appl. No. 13/087,239, filed Apr. 14, 2011, dated Dec. 5, 2012.
Office Action for U.S. Appl. No. 13/092,873, filed Apr. 22, 2011, dated Nov. 7, 2014.
Office Action for U.S. Appl. No. 13/092,877, filed Apr. 22, 2011, dated Nov. 10, 2014.
Office Action for U.S. Appl. No. 13/157,942, filed Jun. 10, 2011.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/184,526, filed Jul. 16, 2011, dated Dec. 2, 2013.
Office Action for U.S. Appl. No. 13/351,513, filed Jan. 17, 2012, dated Feb. 28, 2014.
Office Action for U.S. Appl. No. 13/533,843, filed Jun. 26, 2012, dated Oct. 21, 2013.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Jan. 5, 2015.
Office Action for U.S. Appl. No. 13/598,204, filed Aug. 29, 2012, dated Feb. 20, 2014.
Office Action for U.S. Appl. No. 13/669,357, filed Nov. 5, 2012, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/851,026, filed Mar. 26, 2013, dated Jan. 30, 2015.
Office Action for U.S. Appl. No. 13/092,887, dated Jan. 6, 2014.
Zhai F. Hu et al. ‘RBridge: Pseudo-Nickname; draft-hu-trill-pseudonode-nickname-02.txt’, May 15, 2012.
Abawajy J. “An Approach to Support a Single Service Provider Address Image for Wide Area Networks Environment” Centre for Parallel and Distributed Computing, School of Computer Science Carleton University, Ottawa, Ontario, K1S 5B6, Canada.
Office action dated Oct. 2, 2014, for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011.
Kompella, Ed K. et al., ‘Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling’ Jan. 2007.
Office Action for U.S. Appl. No. 13/042,259, filed Mar. 7, 2011, dated Feb. 23, 2015.
Office Action for U.S. Appl. No. 13/044,301, filed Mar. 9, 2011, dated Jan. 29, 2015.
Office Action for U.S. Appl. No. 13/050,102, filed Mar. 17, 2011, dated Jan. 26, 2015.
Office Action for U.S. Appl. No. 13/092,460, filed Apr. 22, 2011, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 13/092,752, filed Apr. 22, 2011, dated Feb. 27, 2015.
Office Action for U.S. Appl. No. 13/425,238, filed Mar. 20, 2012, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/425,238, dated Mar. 12, 2015.
Office Action for U.S. Appl. No. 13/786,328, filed Mar. 5, 2013, dated Mar. 13, 2015.
Office Action for U.S. Appl. No. 14/577,785, filed Dec. 19, 2014, dated Apr. 13, 2015.
Rosen, E. et al., “BGP/MPLS VPNs”, Mar. 1999.
Office action dated Jun. 8, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated May 21, 2015, U.S. Appl. No. 13/288,822, filed Nov. 3, 2011.
Office action dated Apr. 30, 2015, U.S. Appl. No. 13/351,513, filed Jan. 17, 2012.
Office Action dated Apr. 1, 2015, U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Apr. 1, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action Dated Jun. 10, 2015, U.S. Appl. No. 13/890,150, filed May 8, 2013.
Mahalingam “VXLAN: A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” Oct. 17, 2013 pp. 1-22, Sections 1, 4 and 4.1.
Siamak Azodolmolky et al. “Cloud computing networking: Challenges and opportunities for innovations”, IEEE Communications Magazine, vol. 51, No. 7, Jul. 1, 2013.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 13/598,204, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/473,941, filed Aug. 29, 2014.
Office Action dated Jul. 31, 2015, U.S. Appl. No. 14/488,173, filed Sep. 16, 2014.
Office Action dated Aug. 21, 2015, U.S. Appl. No. 13/776,217, filed Feb. 25, 2013.
Office Action dated Aug. 19, 2015, U.S. Appl. No. 14/156,374, filed Jan. 15, 2014.
Office Action dated Sep. 2, 2015, U.S. Appl. No. 14/151,693, filed Jan. 9, 2014.
Office Action dated Sep. 17, 2015, U.S. Appl. No. 14/577,785, filed Dec. 19, 2014.
Office Action dated Sep. 22, 2015 U.S. Appl. No. 13/656,438, filed Oct. 19, 2012.
Office Action dated Nov. 5, 2015, U.S. Appl. No. 14/178,042, filed Feb. 11, 2014.
Office Action dated Oct. 19, 2015, U.S. Appl. No. 14/215,996, filed Mar. 17, 2014.
Office Action dated Sep. 18, 2015, U.S. Appl. No. 13/345,566, filed Jan. 6, 2012.
Open Flow Switch Specification Version 1.2 Dec. 5, 2011.
Open Flow Switch Specification Version 1.1.0, Feb. 28, 2011.
Open Flow Switch Specification Version 1.0.0, Dec. 31, 2009.
Open Flow Configuration and Management Protocol 1.0 (OF-Config 1.0) Dec. 23, 2011.
Related Publications (1)
Number Date Country
20160036774 A1 Feb 2016 US
Provisional Applications (1)
Number Date Country
62031746 Jul 2014 US