a shows a schematic diagram of a former for producing an integrally formed glove with a trough according to the first embodiment of the invention;
b shows a schematic diagram of the glove produced using the former of
c shows a schematic diagram of the glove of
a shows a schematic diagram of a former for producing an integrally formed glove with a ribbed arm trough according to a second embodiment of the invention;
b shows a schematic diagram of the glove produced using the former of
The glove with an integrally formed arm trough for capturing liquids includes a latex elastomeric glove having hand covering portions and arm covering portions. The arm covering portion has three discrete ridges encircling the arm. The first and third ridges may be a sharp ridge or a c shaped ridge that are concave in nature and fold easily away from the arm. The central second ridge may be a sharp ridge or a c shaped ridge that is concave in nature and folds inwards towards the arm. The diameter of the latex glove at the second ridge location is substantially larger, typically 1.25 to 1.5 times, than the nominal diameter of the arm at this location and the glove essentially ‘hangs out’ at the second ridge. The user upon wearing the glove of the present invention pushes the third ridge towards the first ridge pushing out the second ridge outward from the arm. At this stage, the second ridge automatically moves forward towards the hand portion of the glove since the distance between the second ridge and the third ridge (L2) is larger than the distance between the second ridge and the first ridge (L1) nominally in a ratio range of 1.05 to 1.5. The first ridge forms the base of a capturing trough that is cone shaped and the second ridge forms the lip of the trough. The latex layer between the second ridge and the third ridge forms a second layer of latex that acts as a wall for the cone shaped trough.
The angle of the cone and its depth is controlled by the distance between the third ridge and the first ridge, the distance designated as L3. When distance L3 is large, the cone angle is large and the depth of the trough is correspondingly small resulting in small capture volume of liquids. However, when distance L3 is small, the cone angle is small and the depth of the trough is large and the trough holds a larger volume of the captured liquid. The diameter of the second ridge is fixed and the trough in the form of a cone extends downwards from this second ridge. Due to this larger diameter, any spill of liquid does not run down the cuff portion of the glove, but spills away from the user's arm. The portion of the arm below the arm trough is also covered by the glove providing protection from contact with the liquid.
The first embodiment of the invention has all the latex surfaces in the arm region are planar. The second ridge forms a lip with the sharp edge second ridge or a C shaped second ridge and liquid does not spill easily. The two layers of latex that are laterally displaced provide mechanical support to the liquid that is captured and the arm trough does not invert even when hand is vigorously moved.
The second embodiment of the invention is similar to the first except the regions that form the arm trough are provided with a folded bellow like latex surface. This folded architecture of the latex layer between the first and second ridges as well as the latex layer between second and third ridges provides a structure that provides additional mechanical support. While a convex shaped second ridge is desirable, it need not be created from a groove in the former since the bellow structure easily folds in a manner similar to a convex ridge.
The glove of the present invention is manufactured by dipping a specially shaped former coated with a coagulant solution such as calcium nitrate in an aqueous latex emulsion. The aqueous latex emulsion may comprise natural rubber, synthetic polyisoprene, styrene-butadiene, carboxylated or non-carboxylated acrylonitrile-butadiene, polychloroprene, polyacrylic, butyl rubber, or polyurethane (polyester based or polyether based) or combinations thereof. The former has a hand portion and an arm portion matching a human arm and hand. The diameter of the arm portion progressively increases as a function of distance from the hand portion. The middle portion of the arm portion has three ridges that facilitate the formation of the trough by the user. The user pushes the third ridge towards the first ridge thereby extending the second ridge away from the arm and towards the hand portion of the glove forming an arm trough. The cone angle of the trough and its depth from the second ridge determines the volumetric liquid holding capacity of the trough and is controlled by the distance between the first and third ridge.
a illustrates the shape of a former 10 used to produce the glove with integrally formed arm trough. The hand portion of the glove is shown at 11. The first ridge is located in the arm portion 16 at 12 and is generally a C shaped projection. When a glove is dipped the latex layer that is inverted has a groove at this location. The groove facilitates bending of the latex layer away from the arm. At a distance L1 from the first ridge 12, a second ridge is provided in the arm portion 16. This ridge is a groove in the former as shown at 13 and forms a convex projection in the inverted latex glove, which facilitates the bending of the latex towards the arm. At a distance of L2 from the second ridge 13 a third ridge is provided in the arm portion 16. This third ridge 14 in the former is a projection similar to the first ridge 12 and produces a groove in the latex glove arm. The region below the third ridge 14 is the cuff portion 15 that protects the arm of the user.
b illustrates a latex glove 20 produced using the former of
c illustrates the latex glove 30 of
a illustrates a former 40 of a second embodiment of the invention. The hand portion is shown at 11. The first ridge in the arm portion 16 is shown at 12 as groove in the former. The second ridge in the arm portion 16 is shown as a sharp corner at 13. The second ridge has a larger diameter with conical connections to first ridge and third ridge as shown. The third ridge in the arm portion 16 is a groove in the former shown at 14. The portion between the first ridge and second ridge is ribbed with corrugations. Similarly, the portion between the second ridge and third ridge is also ribbed as shown. The cuff portion is also ribbed as shown at 15. When this glove is dipped in latex, these ribs or corrugations produce corresponding ribs in the latex layer formed providing additional mechanical rigidity when the arm trough is formed.
b illustrates the use of the glove 50 produced using the former of
Therefore for α, to be a positive value, the length L2 should be larger than length L1. As L3 decreases, the angle, ox, decreases.
The maximum liquid capture volume in the trough is given by the formula shown below:
TroughVolume=πL13 Sin2α Cos α
since
TroughDiameter=L1 Sin α
TroughHeight=L1 Cos α
Having thus described the invention in rather full detail, it will be understood that such detail need not be strictly adhered to, but that additional changes and modifications may suggest themselves to one skilled in the art, all falling within the scope of the invention as defined by the subjoined claims.