Glow plug for internal combustion engines

Information

  • Patent Grant
  • 6459072
  • Patent Number
    6,459,072
  • Date Filed
    Monday, August 6, 2001
    23 years ago
  • Date Issued
    Tuesday, October 1, 2002
    22 years ago
Abstract
A glow plug for internal-combustion engines, comprising: a metal body (12); a metal sheath (24) having one closed end (26) and one open end (28); a terminal (30) extending through the open end (28) of the sheath (24); a conductive powder (34) set in electrical connection with one end (36) of the terminal (30) and with the sheath (24); and a layer (38) of insulating powder set between the aforesaid conductive powder (34) and the sheath (24) in an area between the closed end (26) of the sheath (24) and the end (36) of the terminal (30).
Description




BACKGROUND OF THE INVENTION




The present invention relates to a glow plug for internal-combustion engines, the glow plug being known from the document DE-A-2637464. This document describes a plug comprising a metal shell with a longitudinal hole in which is housed a metal sheath having one end closed and containing a resistive heating element consisting of an SiC powder, which may also contain a metal powder or a powder of an electrically conductive metal oxide. An electrical terminal has one end that extends up to the vicinity of the closed end of the metal sheath and is inserted inside the resistive element consisting of conductive powders. The terminal is surrounded by an insulating powder set on top of the heating element.




SUMMARY OF THE INVENTION




Starting from the above state of the art, the purpose of the present invention is to provide a glow plug with a resistive heating element consisting of conductive powders which makes it possible to vary in a simple way the design value of the resistance of the conductive powders and to obtain a spatial distribution of the resistance inside the metal sheath that is adequate for achieving the desired thermoelectric characteristics, such as position of ignition point, pre-heating time, current absorption, and the like.




According to the present invention the above purpose is achieved by a glow plug having the characteristics that form the subject of the invention











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will now be described in detail with reference to the attached drawings, which are provided purely to furnish a non-limiting example, and in which:





FIG. 1

is a partially sectioned side view of a glow plug according to the present invention; and





FIG. 2

is a schematic axial section at an enlarged scale of the part indicated by the arrow II in FIG.


1


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




With reference to the drawings, the number


10


designates a glow plug for internal-combustion engines. The glow plug


10


comprises a metal body


12


which has a through cavity


14


and is provided, on its external surface, with a hexagonal portion


16


designed to be engaged by a wrench, and with a threaded stretch


18


for fixing the plug


10


to the cylinder head (not illustrated) of an internal-combustion engine.




A heating element


20


is fixed inside the cavity


14


of the metal body


12


and protrudes from a first end


22


of the latter. The heating element


20


comprises a metal sheath


24


made of a material resistant to high temperatures and to the corrosion due to the combustion gases of an engine. The metal sheath


24


has one closed end


26


, for example having a rounded shape, and one open end


28


. A metal terminal


30


extends through the open end


28


of the sheath


24


and is electrically connected to an electrical connector


32


which is fixed with respect to the body


12


and is electrically insulated from the latter. A sealing ring


31


is set between the open end


28


of the sheath


24


and the external surface of the terminal


30


.




With reference to

FIG. 2

, the metal sheath


24


, which is produced by means of a process in itself known, is filled with a resistive powder


34


, preferably consisting of a mixture of two or more components.




Preferably, the resistive mixture


34


comprises an insulating powder (such as magnesium-oxide powder) intimately mixed with one or more conductive powders consisting, for example, of nickel powder, Hytemco®, Kanthal AF®, CF8®, MoSi


2


powder, etc. An appropriate selection of the grain sizes and relative concentrations of the conductive powders and insulating powders makes it possible to obtain a desired value of the electrical resistance and a desired spatial distribution of the resistance inside the metal sheath. In order to obtain a distribution of the electrical resistance along the longitudinal axis of the heating element


20


, the terminal


30


is set in such a way that its end


36


inserted inside the sheath


24


is close to the open end


28


of the sheath


24


. More precisely, the distance h


1


between the end


36


of the terminal


30


and the closed end


26


of the sheath


24


is equal to or greater than the distance h


2


between the end


36


of the terminal


30


and the open end


28


of the sheath


24


. The spatial distribution of the value of the electrical resistance of the powder


34


is important for achieving the desired thermoelectric characteristics of the plug, in particular as regards to the position of the ignition point, pre-heating time, current absorption, etc.




According to a preferred embodiment of the present invention, along the longitudinal axis of the sheath


24


it is possible to alternate resistive mixtures having different chemical compositions. This characteristic enables simulation of the thermoelectric characteristics of various types of glow plugs currently available on the market: single-coil plugs, double-coil plugs, and self-limiting double-coil plugs (long post-heating, or LPH plugs). In particular, a stretch “a” of the sheath


24


can be filled with a mixture of powders that performs the function of as heating resistor, and a stretch “b” of the sheath


24


can be filled with a mixture of powders comprising powders of conductive elements with a positive temperature coefficient (PTC), which performs the function of a regulating resistive element.




The table below shows some of the possible combinations of materials that enable different characteristics of thermal behaviour of the plug to be obtained.




















Type of plug




Heating mixture




Regulating mixture




























Single-coil




MgO + Kanthal AF









MgO + Ni








MgO + CF8















Double-coil




MgO + Kanthal




MgO + Nickel








AF




MgO + Hytemco







LPH double-coil




MgO − Kanthal




MgO + CF8








AF















The mixture of powders


34


is electrically insulated from the side wall of the sheath


24


by means of a tubular layer


38


of non-sintered insulating powder, such as magnesium oxide (MgO). The insulating layer


38


may be compacted and introduced into the sheath


24


before the powder mixture


34


is introduced.




The resistive mixture


34


may be inserted inside the sheath


24


in the form of a powder or in the form of a (non-sintered) compacted cylindrical tablet.




Electrical contact between the resistive mixture


34


, the terminal


30


, and the end


26


of the sheath


24


is ensured by adequate modulation of the concentration of conductive powders of the resistive mixture in the contact areas designated by


40


and


42


. In these contact areas, the powder mixture has a resistive value negligible as compared to the overall resistive value of the heating element.




The present invention makes it possible to provide plugs with a regulating material which has a high temperature coefficient and which normally cannot be reduced to wires. A particularly advantageous aspect of the present invention lies in the fact that the powder mixtures


34


and


38


are not sintered beforehand, and this makes it possible to obtain compacting of the powders by means of a reduction in the diameter, i.e., swaging, of the sheath


24


via plastic deformation (hammering) after the sheath


24


has been filled and sealed. The technology for producing the plug according to the present invention does not require substantial modifications of the process for producing traditional plugs with coil-shaped heating elements, in that also in the process for producing traditional plugs a step is envisaged of introduction of a magnesium-oxide powder. The present invention does not entail limits of reliability linked to the dimensions of the sheath


24


, and is therefore perfectly applicable in the case of sheaths of reduced dimensions (for example, with final diameter of 4 mm). For this type of application, the invention solves certain technological problems linked to the production of small-sized sheaths with coil-shaped resistive elements (problems of short-circuits between the coil and the sheath due to a poor alignment of the coil). The present invention does not entail any limit to the final resistive value that it is aimed to achieve. The resistive value can be modulated as desired by means of an appropriate selection of the grain size and concentration of the powders.



Claims
  • 1. A glow plug for internal-combustion engines, comprising:a metal body; a metal sheath having one closed end and one open end; a terminal extending through the open end of the sheath; a conductive powder set in electrical connection with one end of the terminal and with the sheath; and a layer of insulating powder set between the aforesaid conductive powder and the sheath in an area between the closed end of the sheath and the aforesaid end of the terminal.
  • 2. A glow plug according to claim 1, wherein the distance between the closed end of the sheath and the aforesaid end of the terminal is equal to or greater than the distance between the end of the terminal and the open end of the sheath.
  • 3. A glow plug according to claim 1, wherein the aforesaid conductive powder is a mixture of two or more powders including at least one insulating powder and one conductive powder.
  • 4. A glow plug according to claim 1, wherein the aforesaid conductive powder is divided into two sections containing mixtures of powders with different compositions.
  • 5. A glow plug according to claim 2, wherein the aforesaid conductive powder comprises contact areas with a higher concentration of conductive powders located at the aforesaid end of the electrode and at the closed end of the sheath.
  • 6. A glow plug according to claim 1, wherein the aforesaid layer of insulating powder consists of non-sintered compacted powder forming a tubular element which is inserted inside the sheath before introduction of the conductive powder.
  • 7. A glow plug according to claim 1, wherein the aforesaid conductive powder is made in the form of a compacted and non-sintered cylindrical element.
Priority Claims (1)
Number Date Country Kind
00830579 Aug 2000 EP
US Referenced Citations (2)
Number Name Date Kind
4200077 Kauhl et al. Apr 1980 A
4281451 Mann Aug 1981 A
Foreign Referenced Citations (4)
Number Date Country
2637464 Feb 1978 DE
989370 Mar 2000 EP
57-12221 Jan 1982 JP
9112904 May 1997 JP