This disclosure relates to systems and methods for delivery of medicinal fluids, such as infusion pump systems for the delivery of glucagon, insulin, or both, other delivery devices (such as glucagon “pens”), or the like.
Pump devices are commonly used to deliver one or more fluids to a targeted individual. For example, a medical infusion pump device may be used to deliver a medicine to a patient as part of a medical treatment. The medicine that is delivered by the infusion pump device can depend on the condition of the patient and the desired treatment plan. For example, infusion pump devices have been used to deliver insulin into the subcutaneous tissue and to the vasculature of diabetes patients so as to regulate blood-glucose levels. In some circumstances, the dosage of medicine delivered by the infusion pump can be calculated by the infusion pump system. In these circumstances, the infusion pump system can take into account many variables, including user input, when making such calculations.
Other forms of fluid delivery to a targeted individual are also possible. For example, insulin, glucagon, or another medicine can be injected using a manual syringe or a single use injection “pen.” In some circumstances, an injectable form of glucagon is used in emergency aid of severe hypoglycemia when the victim is unconscious or for other reasons cannot take glucose orally. The glucagon fluid can be rapidly injected to the patient by intramuscular, intravenous or subcutaneous injection, and quickly raises the blood glucose level of the patient.
Some embodiments a glucagon administration system can provide a suggested glucagon dosage based on one or more particular parameters (e.g., the user's recent blood glucose characteristics, food intake data, an amount of insulin already delivered to the user which has not yet acted on the user, glucagon sensitivity of the user, and the like). In some circumstances, a controller device of the glucagon administration system can receive information indicative of the user's blood glucose level and suggest a glucagon dosage that is at least partially dependent upon a stored glucagon sensitivity value that is predetermined for the user. Such a glucagon dosage suggestion feature can be initiated, for example, by the glucagon administration system in response to input of a blood glucose level that is below a target level, or in response to a combination of the blood glucose level, previously delivered insulin dosages, and a user's insulin sensitivity value that permit the system to predict a pending low glucose event. Accordingly, the suggested glucagon dosage can vary depending on one or more of these parameters. Such a feature can be helpful to a user when a glucagon administration device is operated in conjunction with a glucose monitoring device (or an insulin pump that receives data of blood glucose levels) because the suggested glucagon dosage can be at least partially based on recent data indicative of the user's blood glucose level (and, optionally, recent insulin use).
Particular embodiments described herein may include a glucagon administration system. The system may include a portable pump housing that receives a medicinal fluid for dispensation to a user. The pump housing may at least partially contain a pump drive system to dispense the medicinal fluid through a flow path to the user. The system may also include a controller that communicates with the pump drive system to dispense the medicinal fluid from the portable pump housing. The controller may be configured to activate a glucagon dosage calculator that calculates a suggested glucagon dosage value based at least in part on a glucagon sensitivity parameter, which can be, optionally, stored in a computer-readable memory device of the controller.
Some embodiments described herein include a method of operating glucagon administration system. The method may include receiving, by a controller of an infusion pump system, glucose information indicative of a blood glucose level of a user. The method may also include detecting, by the controller of an infusion pump system, that the blood glucose level of the user is less than a threshold value stored by the controller of the infusion pump system. The method may further include activating a glucagon dosage calculator configured to determine a suggested glucagon dosage according to a function that is at least partially dependent upon (i) a glucagon sensitivity parameter stored by the controller of the infusion pump system, (ii) the blood glucose level of the user, and (iii) a targeted blood glucose level of the user. The method may optionally include displaying on a display screen the suggested glucagon dosage, the blood glucose level of the user, and an indication that the rate of change in the blood glucose level in increasing or decreasing.
Additional embodiments described herein include a method of determining a suggested glucagon dosage. The method may include storing, at a portable computing system, a parameter value indicative of a glucagon sensitivity of a user. The method may also include receiving, by the portable computing system, glucose information indicative of a blood glucose level of the user. The method may further include comparing, by the portable computing system, the blood glucose level of the user to threshold level to determine that the blood glucose level of the user is below the threshold level. The may include calculating a suggested glucagon dosage for the user using at least the parameter value indicative of the glucagon sensitivity of the user. Optionally, this calculating operation may be in response to determining that the blood glucose level of the user is below the threshold level. The method may also include displaying on a display screen the suggested glucagon dosage.
In some embodiments described herein, a medicine administration system includes pump device (which may optionally be disposable and non-reusable) and a removable controller device. The pump device may include a pump housing that defines a space to receive an insulin cartridge. The pump device may also include a drive system to dispense insulin when the insulin cartridge is received by the pump housing. The drive system may include a piston rod that is incrementally movable to apply a dispensing force. The removable controller device may include a controller housing that is removably attachable to the pump housing in a fixed relationship to provide an electrical connection between the controller device and the pump device. The removable controller device may include control circuitry arranged in the controller housing to electrically communicate with the drive system in the pump housing. Also, the removable controller device may include a user interface connected to the control circuitry, the user interface including a display and one or more user-selectable buttons. The removable controller device may further include a wireless communication device to receive glucose information from a wearable monitoring device. The glucose information may be indicative of a blood glucose level of the user. The removable controller device may displays a suggested glucagon dosage (which may optionally occur in response to user input to the user interface). The suggested glucagon dosage may be at least partially dependent upon a glucose sensitivity value stored by the controller device, a target blood glucose level stored by the controller device, and the blood glucose level of the user.
These and other embodiments described herein may provide one or more of the following advantages. First, some embodiments of a glucagon administration system can implement a glucagon dosage calculator, which is configured to accurately calculate a suggested glucagon bolus dosage based upon the user's glucagon sensitivity value (stored by a controller) and other parameters (e.g., the user's target blood glucose level, the users current blood glucose level, the rate of change of the user's blood glucose level, the user's recent or pending food intake, the user's previously dosed insulin that has not yet acted (an insulin-on-board value, a total insulin load, value, or the like), the user's activity level, or a combination thereof). The user's glucagon sensitivity value, which may be a personalized parameter indicative of the user's bodily response to glucagon, can be manually input by a clinician or by the user or can be calculated by the controller based upon the user's historical treatment data.
Second, in some embodiments of the systems described herein, the user's glucagon sensitivity value can be stored in a computer-readable memory of the system and accessed by the controller device when the glucagon dosage calculator is activated. When the suggested glucagon dosage value is calculated, the system can display the suggested glucagon dosage to the user such that the user can make an informed decision regarding glucagon delivery. In some embodiments, the user can readily accept the suggested glucagon dosage by pressing a single button on the user interface, which then prompts a glucagon pump device to dispense the dosage to the user via an infusion set or other fluid delivery path to the user. In alternative embodiments, the user can view the displayed suggestion for the glucagon dosage value and then manually inject the suggested dosage using a glucagon injector pen device.
Third, the system may utilize this glucagon bolus calculation feature in combination with a glucose monitoring device that continuously transmits blood glucose information (e.g., every minute, every two minutes, every five minutes, every ten minutes, or the like) to the controller. The blood glucose information from the glucose monitoring device can be used by the glucagon administration system to determine the user's recent blood glucose value, the recent rate of change in the user's blood glucose level, or both. The glucagon calculator feature of the system can use such glucose level/rate-of-change parameter to accurately calculate a suggested glucagon dosage as described in more detail below.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
Briefly, in this embodiment, the infusion pump system 60 is configured to accurately calculate a suggested glucagon bolus dosage based upon the user's glucagon sensitivity value (stored by a memory device 65 of the controller 62) and other parameters (e.g., the user's target blood glucose level, the users current blood glucose level, the rate of change of the user's blood glucose level, the user's recent or pending food intake, the user's previously dosed insulin that has not yet acted (an insulin-on-board value, a total insulin load, value, or the like), the user's activity level, or a combination thereof). The user's glucagon sensitivity value, which may be a personalized parameter indicative of the user's bodily response to glucagon, can be manually input by a clinician or by the user or can be calculated by the controller 62 based upon the user's historical treatment data. When the suggested glucagon dosage value is calculated, the suggested glucagon dosage can be displayed to the user (e.g., refer to
Still referring to
As described in more detail below, the medicine cartridge 68 can be received within a cavity in the infusion pump system 60. In some embodiments, the cartridge 68 is a replaceable cartridge such that, when the replaceable cartridge is exhausted, the replaceable cartridge can be removed from the infusion pump system 60 and replaced with another new pre-filled cartridge. In other embodiments (refer to
Still referring to
In particular embodiments, the controller 62 can be configured to determine a suggested glucagon dosage to administer to a user to maintain or return the user's blood glucose level to a targeted value within a predetermined range. For example, the infusion pump system 60 can receive information indicative of the user's blood glucose level, either through wireless communication of a blood glucose level of the user from the glucose monitoring device 50, from a blood glucose meter (e.g., a blood test strip reader) in wireless communication with the infusion pump system 60, or by receiving manual data input via the user interface 63 indicating a blood glucose level of the user. If the blood glucose level is below a predetermined blood glucose threshold level or otherwise below a predetermined safety range for the blood glucose level, or if the rate of change of the user's blood glucose level indicates that the user's blood glucose level will fall below the predetermined safety range within the near future, the controller 62 can activate the glucagon dosage calculator 64 so as to determine a suggested glucagon dosage to return the user's blood glucose level to the desired range.
As described in more detail below, the controller 62 can be configured to access a number of parameters (some or all of which are stored and updated in the memory device 65) when determining a suggested glucagon dosage. These parameters can include glucagon sensitivity of the user, current blood glucose level of the user, target blood glucose level(s), food intake by the user, previous insulin doses, previous glucagon doses, and activity level of the user. The glucagon sensitivity of the user can be a patient-specific value or time-of-day dependent series of values, that is indicative how a particular user reacts to administration of glucagon. In some embodiments, the stored glucagon sensitivity value represents a user-specific value that correlates the number of units (e.g., mg or mcg) of glucagon required to alter the user's blood glucose level by 1 mg/dL, or inversely how many mg/dL of glucose change will be achieved by a standardized dosage unit of glucagon. For example, in this embodiment, the stored glucagon sensitivity value represents a user-specific value that correlates the number of units (e.g., mg or mcg) of glucagon required to alter the user's blood glucose level by 1 mg/dL. Food intake data can include information on the amount of carbohydrates, fats, proteins, or other nutrients recently ingested by the user (or, in some embodiments, soon to be ingested by the user). Information on a user's insulin load can be used in determining a recommended glucagon dosage and can include an estimated value of previously dispensed insulin that has not yet acted in the user's body, such as total insulin load (TIL) information (e.g., an insulin load calculation that includes previous basal and bolus dosages, previously consumed food, or the like), traditional insulin-on-board estimates (which typically account for only bolus dosages), or other such estimated insulin load values. Activity level can be a user-specific, time-sensitive value represented by a time based decay function that assumes activity has a near term effect of significantly lowering glucose within an hour or less of the activity as well as a long term effect of lowering glucose to a lesser degree over a period of 4 to 8 hours. Such an activity level can be detected by the sensors of the pump system 60 (e.g., a set of accelerometers housed within the pump system 60) or manually input via the user interface 63.
Optionally, when the suggested glucagon dosage is calculated by the pump system 60, the controller 62 can display the suggested glucagon dosage to the user along with a prompt for the user to accept or reject the dosage amount for dispensation. For example, the controller 62 can cause the user interface 63 to display the suggested glucagon dosage and prompt the user to accept or reject the recommended dosage. If the user accepts the recommended dosage, the controller 62 can generate control signals to cause the drive system 67 to dispense the suggested dosage of glucagon from the glucagon cartridge 68.
Alternatively, in some embodiments in which the reservoir 68 is exhausted or contains a medicinal fluid other than glucagon (e.g., insulin), the controller 62 can still use the glucagon dosage calculator 64 provide the suggested glucagon dosage to the user to allow the user to administer the suggested dosage using a separate glucagon injector 80 or another glucagon dispensing device external from the pump system 60. For example, the infusion pump system 60 may be an infusion pump for dispensing insulin and the cartridge 68 can contain insulin for dispensing in response to control signals generated by the controller 62 for controlling the drive system 67. The controller 62 can execute the glucagon dosage calculator 64 to provide a suggested glucagon dosage to the user (e.g., by displaying the suggested dosage on a display screen of the user interface 63, or by wirelessly transmitting (via the device 61) the suggested glucagon dosage value for display on another device, such as a personal computer, mobile phone, tablet device, or glucagon pump or pen injector device). The user can then manually administer the suggested glucagon dosage using the glucagon injector 80 (e.g., a glucagon pen or a syringe device) or another glucagon delivery device external from the infusion pump system 60.
In some implementations, the glucagon dosage calculator 64 is implemented by a device other than an infusion pump system 60. For example, such suggested glucagon dosage determinations can be made implemented by a glucagon dosage calculator implemented as a computer-readable program executed on a smart phone or tablet device, by control circuitry of a blood glucose meter, or by a glucagon dosage suggestion calculator attached to or configured to interact with a glucagon delivery device such as a glucagon pen injector 80.
Referring now to
In some embodiments, the pump system 60 can be configured to supply scheduled basal dosages of insulin (or glucagon or another medication) along with user-selected bolus dosages. For example, the pump device 100 is configured to receive a preloaded cartridge 120 of a medicinal liquid, such as insulin or glucagon, which is then controllably dispensed to the user.
As previously described, even in the embodiments in which the pump system 60 dispenses insulin from the cartridge 120 (
In some alternative embodiments, the pump system 60 can be configured to supply dosages of glucagon to the user. For example, the glucagon dosages can be user selected, or administered in response to user input prompted by a suggested glucagon dosage provided by the pump system 60.
Still referring to
As described in more detail below, the controller device 200 can suggest a glucagon dosage to the user based, at least in part, on the user's “insulin load.” As described herein, “insulin load” includes an estimated value of previously dispensed insulin that has not yet acted in the user's body, such as total insulin load (TIL) information (e.g., an insulin load calculation that includes previous basal and bolus dosages, previously consumed food, or the like), traditional insulin-on-board estimates (which typically account for only bolus dosages), or other such estimated insulin load values. Due in part to pharmacokinetic effects (e.g., the time it takes for insulin to enter the blood stream from the subcutaneous point of delivery) and pharmacodynamic effects (e.g., the time it takes for a concentration of insulin in the blood to have the physiological effect of lower blood glucose level), basal and bolus insulin dispensed into the user's system may not act instantaneously, but instead may act over a period of time to control the user's blood glucose level. As such, the user's body may include some amount of insulin that has not yet acted even while the infusion pump system 60 is activated to deliver additional dosages (basal, bolus, or a combination thereof). In these circumstances, the infusion pump system 60 can be used to determine a user's insulin load, which can provide an estimate of the insulin which was delivered but has not yet acted in the user's body. This insulin load information can be used as a parameter in the calculation of the suggested glucagon dosage.
The controller device 200 can also access a glucagon sensitivity value stored in an internally housed memory device of the controller device 200, and the glucagon sensitivity value can serve as a patient-specific parameter for determining a suggested glucagon dosage for the user. Glucagon sensitivity represents a user specific value that correlates the number of units of glucagon (e.g., mg or mcg) required to alter the user's blood glucose level by 1 mg/dL. The glucagon calculator executed by the controller device 200 can use this user-specific value to determine how much glucagon to administer to the user to reach a target blood glucose level for the user, when the current blood glucose level of the user is below the target value.
In some embodiments, the controller device 200 can suggest a glucagon dosage to the user in a manner that accounts for the user's food intake, the user's blood glucose information (including the rate of change in the blood glucose level), previously delivered insulin that has not yet acted on the user, and previously delivered glucagon that has not yet acted on the user. As described in more detail below, this process for determining a suggested glucagon dosage can accurately reflect food intake data entered into the controller device 200 by the user, the user's recent blood glucose level (e.g., input into the controller device 200 by the user, transmitted to the controller device 200 from the blood glucose monitoring device 50, transmitted from an external blood glucose meter, or the like), the recent rate of change in the user's blood glucose level, and the user's insulin load. For example, a user can enter information indicative of a user activity (e.g., a 6 mile run that will start in 15 minutes, a 6 mile run that started 50 minutes ago, or the like) into the controller device 200, and use the entered information in determining a suggested glucagon dosage for returning the user's blood glucose level to a desired value. The user can benefit from a glucagon dosage determination system that also takes into account other parameters so that a more accurate glucagon dosage can be suggested. For example, the controller device 200 can be configured to provide a more accurate glucagon dosage suggestion by accounting for the user's blood glucose level, the rate of change in the user's blood glucose level, and/or the user's glucagon sensitivity.
Still referring to
Referring now to
In some embodiments, the controller device 200 communicates with the pump device 100 to control the operation of the pump drive system. When the controller device 200, the pump device 100 (including the cap device 130 in this embodiment), and the fluid cartridge 120 are assembled together, the user may conveniently wear the infusion pump system 60 on the user's skin under clothing or in the user's pocket while receiving the fluid dispensed from the pump device 100 (refer, for example, to
The controller device 200 may be configured as a reusable component that provides electronics and a user interface 220 to control the operation of the pump device 100. In such circumstances, the pump device 100 can be a disposable component that configured and constructed to be discarded after a single use. For example, the pump device 100 can be a “one time use” component that is thrown away after the fluid cartridge 120 therein is exhausted. Thereafter, the user can removably attach a new pump device 100 to the reusable controller device 200 for the dispensation of fluid from a new fluid cartridge 120. Accordingly, the user is permitted to reuse the controller device 200 (which may include complex or valuable electronics) while disposing of the relatively low-cost pump device 100 after each use. Such a pump system 60 can provide enhanced user safety as a new pump device 100 (and drive system therein) is employed with each new fluid cartridge 120.
Briefly, in use, the pump device 100 can be configured to removably attach to the controller device 200 in a manner that provides a secure fitting, an overall compact size, and a reliable electrical connection. The compact size permits the infusion pump system 60 to be discrete and portable. The controller device 200 of the infusion pump system can be used to provide glucose alarms indicative of high and low blood glucose levels (when compared to predetermined high and low blood glucose alarm levels, respectively), to provide glucose alarms indicative of rapidly increasing or decreasing blood glucose levels, and to modify predetermined high and low blood glucose alarm levels based on the rate at which a user's blood glucose level is changing.
It should be understood that, in alternative embodiments, the pump device 100 and the controller device 200 can be configured as a single housing unit in which the control components and the pump drive system are arranged in a single housing. In these alternative embodiments, the pump assembly (including the controller device and the pump device) may have a different size and shape and may operate as a reusable unit that can communicate with a number of monitoring devices (such as a blood glucose level monitoring device) over a period of time.
Still referring to
In some embodiments, the pump device 100 may include one or more structures that interfere with the removal of the medicine cartridge 120 after the medicine cartridge 120 is inserted into the cavity 116. For example, as shown in
Embodiments of the pump device 100 that hinder the removal of the medicine cartridge 120 may facilitate the “one-time-use” feature of the pump device 100. Because the barb structure 119 can interfere with attempts to remove the medicine cartridge 120 from the pump device 100, the pump device 100 will be discarded along with the medicine cartridge 120 after the medicine cartridge 120 is emptied, expired, or otherwise exhausted. The barb structure 119 may serve to hinder attempts to remove the exhausted medicine cartridge 120 and to insert a new medicine cartridge 120 into the previously used pump device 100. Accordingly, the pump device 100 may operate in a tamper-resistant and safe manner because the pump device 100 can be designed with predetermined life expectancy (e.g., the “one-time-use” feature in which the pump device is discarded after the medicine cartridge 120 is emptied, expired, or otherwise exhausted).
Still referring to
In some embodiments, the controller device 200 may be removably attached to the pump device 100 so that the two components are mechanically mounted to one another in a fixed relationship. Such a mechanical mounting can form an electrical connection between the removable controller device 200 and the pump device 100. For example, the controller device 200 may be in electrical communication with a portion of a drive system (described in connection with
The controller device 200 may be configured to removably attach to the pump device 100, for example, in a side-by-side arrangement. The compact size permits the infusion pump system 60 to be discrete and portable when the pump device 100 is attached with the controller device 200 (as shown in
As shown in
The controller device 200 includes the user interface 220 that permits a user to monitor the operation of the pump device 100. In some embodiments, the user interface 220 includes a display 222 and one or more user-selectable buttons (e.g., four buttons 224 in this embodiment). In addition to (or as an alternative to) the buttons 224, the display 222 of the user interface 220 can be equipped with a touchscreen configured to receive user input. The display 222 may include an active area in which numerals, text, symbols, images, or a combination thereof can be displayed. For example, the display 222 may be used to communicate a number of status indicators, alarms, settings, and/or menu options for the pump system 60. In some embodiments, the display 222 can inform the user of the amount of a suggested glucagon dosage, the user's blood glucose level, an indication that the user's blood glucose level is rising or falling, an indication that the user's blood glucose level is below a target level or range, an indication that the glucagon dosage suggestion includes a correction for the rate of change in the user's blood glucose level, and the like. In the example depicted in
In some embodiments, the user may press one or more of the buttons 224 to shuffle through a number of menus or program screens that show particular status indicators, settings, and/or data (e.g., review data that shows the medicine dispensing rate, the amount of medicine delivered during the last bolus, the delivery time of the last bolus, the total amount of medicine dispensed in a given time period, the amount of medicine scheduled to be dispensed at a particular time or date, the approximate amount of medicine remaining in the cartridge 120, or the like). In some embodiments, the user can adjust the settings or otherwise program the controller device 200 by pressing one or more buttons 224 of the user interface 220. For example, in embodiments of the pump system 60 configured to dispense glucagon, the user may press one or more of the buttons 224 to change the dispensation rate of glucagon or to request that a bolus of glucagon be dispensed immediately or at a scheduled, later time. In another example, the user may use the buttons 224 to manually input information such as the user's current blood glucose level (e.g., as measured by an external blood glucose meter), the current rate of change in the user's blood glucose level, or the like into the pump system 60.
The display 222 of the user interface 220 may be configured to display information when no buttons 224 have been pressed. For example, as shown in
Accordingly, when the controller device 200 is connected to the pump device 100, the user is provided with the opportunity to readily monitor infusion pump operation by simply viewing the display 222 of the controller device 200. Such monitoring capabilities may provide comfort to a user who may have urgent questions about the current operation of the pump device 100 (e.g., the user may be unable to receive immediate answers if wearing an infusion pump device having no user interface attached thereto). Moreover, information related to the last delivered bolus can be displayed contemporaneously with the detected blood glucose value and an indication of whether the user's blood glucose level is rising or falling, so the user is provided with the opportunity to make informed decisions regarding the current and future status of his or her blood glucose level.
Also, in some embodiments described herein, there may be no need for the user to carry and operate a separate module to monitor the operation of the infusion pump device 100, thereby simplifying the monitoring process and reducing the number of devices that must be carried by the user. If a need arises in which the user desires to monitor the operation of the pump device 100 or to adjust settings of the pump system 10 (e.g., to request a bolus amount of medicine), the user can readily operate the user interface 220 of the controller device 200 without the requirement of locating and operating a separate monitoring module.
In other embodiments, the user interface 200 is not limited to the display and buttons depicted in
Referring to
The pump system 10 is shown in
Referring to
Referring to
Referring now to
In operation 505, the controller device 200 can receive data indicative of a user's glucagon sensitivity. For example, the user can use controls 224 of the controller device 200 to enter the user's glucagon sensitivity value into the controller device 200. In some circumstances, the user's glucagon sensitivity value can be a clinically determined value (determined at a clinic or determined based upon the user's previous dosage history data), which is manually input to the controller device via the user interface 220 and stored in a memory device of the controller device 200. As another example, the controller device 200 can receive an indication of the user's glucagon sensitivity via a wired or wireless connection with a remote device, such as a mobile phone or tablet device. As yet another example, a user can enter a glucagon sensitivity value into a device (such as a mobile phone) using a touch screen of the device.
In operation 510, the controller device 200 can receive data indicative of a user's blood glucose level for a recent period of time, including a most recent blood glucose measurement. For example, the controller device 200 can retrieve 1 to 3 blood glucose level values, representing the information for the 1 to 3 most recent blood measurements, from memory. In another example, the controller device 200 can retrieve one or more recent blood glucose levels stored in memory and can initiate a current blood glucose measurement (e.g., by receiving information from the glucose monitoring device 50, by instructing the user to perform a blood glucose measurement and input the data into the controller device 200, by inserting a glucose test strip containing a blood sample into a strip reader device that communicates with the controller device 200, or the like). In yet another example, the controller device 200 can retrieve blood glucose information for a period of time (e.g., less than one hour, less than 30 minutes, about 2 minutes to about 20 minutes, and about 5 minutes to about 15 minutes) for use in the calculation of the blood glucose correction component.
In some embodiments, additional information can be received. For example, the controller device 200 can receive food on board (FOB) data and insulin load data. FOB is a measurement of food previously consumed by a user. In one embodiment, FOB is a measurement of food that has been consumed by a user, but not yet converted into glucose usable by the body for metabolism. The insulin load data can be in the form of insulin-on-board (IOB) or total insulin load (TIL), as previously described. In some embodiments, additional information that can be received by the controller device 200 can include an indication of glucagon on board (GOB). For example, the controller device 200 can access memory to identify a previous amount of glucagon administered to a patient, as well as a time duration since the glucagon was administered. As another example, a glucagon administration device (such as a glucagon pen) can provide GOB information (e.g., through a wireless or wired communication link) to the controller device 200. The GOB information can include one or more dosage amounts of glucagon, time since the glucagon was administered, and/or time at which the glucagon was administered.
In various embodiments, the controller device 200 may use the FOB and/or insulin load information in combination with blood glucose level information and glucagon sensitivity value for the user to calculate a suggested glucagon dosage amount. In various embodiments, individual parameters such as sensitivity to insulin, sensitivity to glucagon, sensitivity to carbohydrates or other endocrine information may allow the pump to improve the accuracy of suggested glucagon dosages.
An onboard assistance system may include a processing method, for example, which incorporates carbohydrate, protein, and fat values to determine a value for food on board (“FOB”) for the user. The FOB calculation might correspond to the equivalent amount of carbohydrate for each of the protein and fat intakes. As such, the pump user may request a task, and be given further assistance by the onboard assistance system to carry out the task with accuracy.
The onboard assistance program may include a monitoring method that incorporates previously entered data and treatment information to determine a value for IOB for the user. In general, an IOB feature in a pump calculates the decay of insulin in the body after a bolus of insulin is given to a pump user. The infusion pump system may recognize current dosage levels that a user is receiving and further, can measure the dosage to determine future infusion dosages or rates. The pump user can input several variables that the pump system can utilize to recommend one or more treatments (such as, for example, administration of a dosage of glucagon). Advantageously, using an infusion pump having manual and autonomous control properties may allow an accurate estimate of a particular bolus rate or amount.
Other information that can be received by the controller device 200 (or another device performing some or all of the operations of the process 500) include of total insulin load (TIL) for the user and an activity level for the user. A TIL value can correspond to an insulin load calculation that includes previous basal and bolus dosages of insulin, previously consumed food, previously administered glucagon, or the like. Activity level can be a user specific, time sensitive function that includes quantified activity levels represented by a time based decay function that assumes activity has a near term effect of significantly lowering glucose during a short term period, as well as a long term effect of lowering glucose to a lesser degree for an extended time period. For example, the decay function can be based on an assumption that a given activity would have a near term effect of significantly lowering blood glucose of a user within an hour or less of the activity as well as a long term effect of lowering blood glucose of the user to a lesser degree over a period of 4 to 8 hours.
In some embodiments, the process 500 can include calculating the blood glucose rate of change for the most recent time. For example, the controller device 200 can subtract the blood glucose level corresponding to a previous measurement from the most recent measurement and divide this value by the change in time between the two measurements. In another example, three or more recent blood glucose measurements can be used to provide a broader range of data points for the calculated rate-of-change parameter (e.g., in an effort to reduce the effect of any noise in the signal from the glucose monitoring device 50) or to also produce the acceleration of the glucose. In another example, the controller device 200 can estimate the instantaneous blood glucose rate of change at a time (e.g., the most current measurement) from a blood glucose curve.
After receiving data indicative of one or more parameters associated with the user, the process 500 can execute operation 515 of identifying a target blood glucose level for the user. The target blood glucose level can be a value (e.g., 90 mg/dL) or a value range (e.g., 80 to 100 mg/dL) and the target may vary over the course of the day or day of the week or month. In some implementations, the target blood glucose level can be identified, based in part on a weight or age of the user or other user condition such as pregnancy or hypoglycemia unawareness. The target blood glucose level can be stored in a memory accessible by the controller device 200. The controller device 200 can access the memory to identify the target blood glucose level for the user.
The controller device 200 can compare the identified target blood glucose level for the user and information indicative of the user's current blood glucose level to determine that the user's blood glucose level is below the target level.
At operation 520, the process 500 can determine a suggested glucagon dose for the user to achieve the identified target blood glucose level. In some embodiments, the operation 520 can be performed in response to a determination that the user's blood glucose level is below the target level. The suggested glucagon dose can be displayed to the user to cause the user to administer glucagon to achieve a blood glucose level that is proximate to the target level (or is within the target level range). If the target blood glucose level is a range, the suggested glucagon dose can be determined to cause the user's blood glucose level to reach the bottom value of the range, to reach a mid-point value of the range, or to reach another specified value within the range (for example, a suggested glucagon dose can be calculated to cause the user's blood glucose level to at least exceed a value that is 5 mg/dL greater than the bottom of the target blood glucose range). The controller device 200 can use various parameters associated with the user to determine the suggested glucagon dose for the user. For example, the controller device 200 can use the user's current blood glucose level, the target blood glucose level, and the user's glucagon sensitivity value to determine a suggested glucagon dose according to the following formula:
Suggested Glucagon Dose=(Target BG−Current BG)/Glucagon Sensitivity
Stepping through the above equation, if, for example, the user's current BG level is 50 mg/dL, the user's target BG level is 90 mg/dL, and the user's glucagon sensitivity is 20 mg/dL/Unit of Glucagon, then the above equation would be solved as:
Suggested Glucagon Dose=(90−50)/20=40/20=2 Units of Glucagon
Depending upon the concentration of the glucagon fluid, a “Unit” of glucagon correlates to a particular number of milligrams (mg) or micrograms (mcg) of Glucagon. For example, in this embodiment, a “Unit” of glucagon correlates to 0.4 mg of glucagon, so the suggested glucagon dose of 2 Units of glucagon would be 0.8 mg of glucagon (refer to the screen display in
In some embodiments, rather than a current BG level for the user, a projected BG level for the user can be identified based on a determined BG level rate of change for the user and a previously identified BG level for the user. The controller device 200 can then use the projected BG level to determine a suggested glucagon dose according to the following formula:
Suggested Glucagon Dose=(Target BG−Projected BG)/Glucagon Sensitivity
As described above, additional parameters can also be used when determining a suggested glucagon dosage to achieve a target BG level for the user. For example Insulin on Board (IOB) or Total Insulin Load (TIL) values can be used in combination with an insulin sensitivity for the user when determining a suggested glucagon dose. For example, IOB can be used to determine a suggested glucagon dose for the user according to the formula:
Suggested Glucagon Dose=(Target BG−Current BG−(IOB/Insulin Sensitivity))/Glucagon Sensitivity
Similarly, TIL can be used to determine a suggested glucagon dose for the user according to the formula:
Suggested Glucagon Dose=(Target BG−Current BG−(TIL/Insulin Sensitivity))/Glucagon Sensitivity
Another factor that can be considered when determining the suggested glucagon dose is a recent activity of the user. The effect of an activity on a user can be quantified as an activity level divided by an activity sensitivity for the user (where the activity sensitivity defines how the user's BG level changes in response to activity). Activity level can be used to determine a suggested glucagon dose for the user according to the formula:
Suggested Glucagon Dose=(Target BG−Current BG−(Activity Level/Activity Sensitivity))/Glucagon Sensitivity
Yet another parameter that can be taken into consideration when determining the suggested glucagon dose for the user is Food on Board (FOB). For example, the FOB value can indicate a number of grams of carbohydrates ingested by the user. This value can be utilized along with a “carb ratio” for the user (i.e., a ratio indicating effect of carbohydrates on the BG level of the user). FOB can be a time sensitive function where food action is assumed to decay over a period of time from the time of ingestion. Food action may vary based on the content of the food, with protean and fat components having a longer time function in comparison to high glycemic index carbohydrates, which have a very short time function and low glycemic index carbohydrates, which have a moderate time function. FOB can be used to determine a suggested glucagon dose for the user according to the formula:
Suggested Glucagon Dose=(Target BG−Current BG+(FOB/Carb Ratio))/Glucagon Sensitivity
Another parameter that can be taken into consideration when calculating a suggested glucagon dose is glucagon on board (GOB). The GOB value can be, for example, received from a glucagon administration device, or be entered into a suggested glucagon dose calculator manually by a user. The GOB can be, for example, a measure of the amount of glucagon in a user's system that has not yet been processed. GOB can be used to determine a suggested glucagon dose for the user according to the formula:
Suggested Glucagon Dose=(Target BG−Current BG)/Glucagon Sensitivity−GOB
It should be understood from the teachings herein that, in some embodiments, any combination of the aforementioned parameters can be taken into consideration by the glucagon dosage calculator when calculating a suggested glucagon dose. For example, in particular embodiments, all of these aforementioned parameters can be taken into account when calculating a suggested glucagon dose:
Suggested Glucagon Dose=[Target BG−Current BG−(IOB/Insulin Sensitivity)−(Activity Level/Activity Sensitivity)+(FOB/Carb Ratio)]/Glucagon Sensitivity—GOB
Other combinations of the above discussed parameters can be used when determining a suggested glucagon dose for the user. Additional parameters could also be used in determining a suggested blood glucagon dose for the user.
Still referring to the embodiment in
In some embodiments, the suggested glucagon dose is transmitted from a first device to a second device for presentation to the user. For example, the operations 405-420 can be performed by the controller device 200 of the infusion pump system 60. The suggested glucagon dose can then be transmitted to the user's mobile phone for presentation to the user (e.g., through a Bluetooth connection, or via an SMS message). As another example, the suggested glucagon dose can be determined by circuitry included as part of a blood glucose monitor and transmitted to a user's tablet device for presentation to the user.
The process 500 can execute an optional operation 530 by receiving user input indicating acceptance of the suggested glucagon dose. For example, the suggested glucagon dose can be displayed on the user interface 220 of the controller device 200. The user can use the buttons 224 to accept or decline the suggested glucagon dose. As another example, voice recognition capability of the controller device 200 can be used to allow the user to verbally accept the suggested glucagon dosage. In some embodiments, the user can manually modify the suggested glucagon dosage.
The process 500 can further execute an optional operation 535 by administering a suggested glucagon dose to the user. For example, the controller device 200 can, in response to receiving an acceptance of the suggested glucagon dose, send control signals to the disposable pump device 100 to cause the disposable pump device 100 to administer the suggested glucagon dose to the user. As another example, the suggested glucagon dose can be presented to the user on the user's mobile phone. The user can then accept the suggested glucagon dose, and an indication of the suggested glucagon dose can be transmitted to a glucagon delivery device (such as an infusion pump) to cause the glucagon delivery device to administer the suggested glucagon dose to the user. In some embodiments, the user can manually administer the suggested glucagon dose using a syringe, glucagon pen, or other glucagon delivery device. For example, the user can use a mobile application installed on the user's mobile phone to determine a suggested glucagon dose. The application can display the suggested glucagon dose to the user on a display screen of the mobile phone. The user can then use a glucagon pen to administer the suggested glucagon dose.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation application of and claims priority to U.S. application Ser. No. 14/320,863, filed on Jul. 1, 2014.
Number | Name | Date | Kind |
---|---|---|---|
5984894 | Poulsen | Nov 1999 | A |
6126595 | Amano et al. | Oct 2000 | A |
6233471 | Berner et al. | May 2001 | B1 |
6461331 | Van Antwerp | Oct 2002 | B1 |
6474219 | Klitmose et al. | Nov 2002 | B2 |
6485461 | Mason et al. | Nov 2002 | B1 |
6508788 | Preuthun | Jan 2003 | B2 |
6524280 | Hansen et al. | Feb 2003 | B2 |
6533183 | Aasmul et al. | Mar 2003 | B2 |
6537251 | Klitmose | Mar 2003 | B2 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6544229 | Danby et al. | Apr 2003 | B1 |
6547764 | Larsen et al. | Apr 2003 | B2 |
6551276 | Mann et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6554800 | Nezhadian et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6562011 | Buch-Rasmussen et al. | May 2003 | B1 |
6564105 | Starkweather et al. | May 2003 | B2 |
6569126 | Poulsen et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572542 | Houben | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6582404 | Klitgaard et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6585699 | Ljunggreen et al. | Jul 2003 | B2 |
6605067 | Larsen | Aug 2003 | B1 |
6613019 | Munk | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6650951 | Jones et al. | Nov 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6659978 | Kasuga | Dec 2003 | B1 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6663602 | Moller | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6669669 | Flaherty et al. | Dec 2003 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6690192 | Wing | Feb 2004 | B1 |
6691043 | Ribeiro, Jr. | Feb 2004 | B2 |
6692457 | Flaherty | Feb 2004 | B2 |
6692472 | Hansen et al. | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6702779 | Connelly et al. | Mar 2004 | B2 |
6715516 | Ohms et al. | Apr 2004 | B2 |
6716198 | Larsen | Apr 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6723077 | Pickup et al. | Apr 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6736796 | Shekalim | May 2004 | B2 |
6740059 | Flaherty | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6744350 | Blomquist | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6786246 | Ohms et al. | Sep 2004 | B2 |
6786890 | Preuthun et al. | Sep 2004 | B2 |
6796970 | Klitmose et al. | Sep 2004 | B1 |
6799149 | Hartlaub | Sep 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6827702 | Lebel et al. | Dec 2004 | B2 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6854620 | Ramey | Feb 2005 | B2 |
6854653 | Eilersen | Feb 2005 | B2 |
6855129 | Jensen et al. | Feb 2005 | B2 |
6872200 | Mann et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878132 | Kipfer | Apr 2005 | B2 |
6893415 | Madsen et al. | May 2005 | B2 |
6899695 | Herrera | May 2005 | B2 |
6899699 | Enggaard | May 2005 | B2 |
6922590 | Whitehurst | Jul 2005 | B1 |
6925393 | Kalatz et al. | Aug 2005 | B1 |
6936006 | Sabra | Aug 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6945961 | Miller et al. | Sep 2005 | B2 |
6948918 | Hansen | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6979326 | Mann et al. | Dec 2005 | B2 |
6997911 | Klitmose | Feb 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
7005078 | Van Lintel et al. | Feb 2006 | B2 |
7008399 | Larson et al. | Mar 2006 | B2 |
7014625 | Bengtsson | Mar 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7054836 | Christensen et al. | May 2006 | B2 |
7104972 | Moller et al. | Sep 2006 | B2 |
7109878 | Mann et al. | Sep 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7133329 | Skyggebjerg et al. | Nov 2006 | B2 |
7232423 | Mernoe et al. | Jun 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7291107 | Hellwig et al. | Nov 2007 | B2 |
7879026 | Estes et al. | Feb 2011 | B2 |
8105268 | Lebel et al. | Jan 2012 | B2 |
20010056262 | Cabiri | Dec 2001 | A1 |
20020004651 | Ljndggreen et al. | Jan 2002 | A1 |
20020007154 | Hansen et al. | Jan 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020091358 | Klitmose | Jul 2002 | A1 |
20020126036 | Flaherty et al. | Sep 2002 | A1 |
20030055380 | Flaherty | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030088238 | Poulsen | May 2003 | A1 |
20030104982 | Wittmann et al. | Jun 2003 | A1 |
20030199825 | Flaherty | Oct 2003 | A1 |
20030216683 | Shekalim | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040019325 | Shekalim | Jan 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040064096 | Flaherty et al. | Apr 2004 | A1 |
20040078028 | Flaherty et al. | Apr 2004 | A1 |
20040087894 | Flaherty | May 2004 | A1 |
20040092865 | Flaherty et al. | May 2004 | A1 |
20040092878 | Flaherty | May 2004 | A1 |
20040116866 | Gorman et al. | Jun 2004 | A1 |
20040127844 | Flaherty | Jul 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040171983 | Sparks et al. | Sep 2004 | A1 |
20040176720 | Kipfer | Sep 2004 | A1 |
20040176727 | Shekalim | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040220551 | Flaherty et al. | Nov 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20040260233 | Garibotto et al. | Dec 2004 | A1 |
20050021005 | Flaherty et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050065760 | Murtfeldt et al. | Mar 2005 | A1 |
20050090808 | Malave et al. | Apr 2005 | A1 |
20050095063 | Fathallah | May 2005 | A1 |
20050160858 | Mernoe | Jul 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050182366 | Vogt et al. | Aug 2005 | A1 |
20050192561 | Mernoe | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050215982 | Estes | Sep 2005 | A1 |
20050222645 | Malave et al. | Oct 2005 | A1 |
20050238507 | Ditanni et al. | Oct 2005 | A1 |
20050245878 | Mernoe et al. | Nov 2005 | A1 |
20050251097 | Mernoe | Nov 2005 | A1 |
20050267402 | Stewart et al. | Dec 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060069382 | Pedersen | Mar 2006 | A1 |
20060074381 | Malave et al. | Apr 2006 | A1 |
20060095014 | Ethelfeld | May 2006 | A1 |
20060135913 | Ethelfeld | Jun 2006 | A1 |
20060142698 | Ethelfeld | Jun 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060184119 | Remde et al. | Aug 2006 | A1 |
20060200073 | Radmer et al. | Sep 2006 | A1 |
20060206054 | Shekalim | Sep 2006 | A1 |
20060247581 | Pedersen et al. | Nov 2006 | A1 |
20070073228 | Mernoe et al. | Mar 2007 | A1 |
20070073235 | Estes et al. | Mar 2007 | A1 |
20070073236 | Mernoe et al. | Mar 2007 | A1 |
20070088271 | Richards | Apr 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070156092 | Estes et al. | Jul 2007 | A1 |
20070167905 | Estes et al. | Jul 2007 | A1 |
20070167912 | Causey et al. | Jul 2007 | A1 |
20070173761 | Kanderian, Jr. et al. | Jul 2007 | A1 |
20070179444 | Causey et al. | Aug 2007 | A1 |
20080125700 | Moberg et al. | May 2008 | A1 |
20080172027 | Blomquist | Jul 2008 | A1 |
20080177165 | Blomquist et al. | Jul 2008 | A1 |
20080294094 | Mhatre et al. | Nov 2008 | A1 |
20080294142 | Patel et al. | Nov 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306444 | Brister | Dec 2008 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20110313390 | Roy | Dec 2011 | A1 |
20120123234 | Atlas et al. | May 2012 | A1 |
20120289931 | Robinson et al. | Nov 2012 | A1 |
20160331898 | Damiano | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2543545 | May 2005 | CA |
196 27 619 | Jan 1998 | DE |
102 36 669 | Feb 2004 | DE |
20 2005 012 358 | Oct 2005 | DE |
0 062 974 | Oct 1982 | EP |
0 098 592 | Jan 1984 | EP |
0 275 213 | Jul 1988 | EP |
0 496 141 | Jul 1992 | EP |
0 612 004 | Aug 1994 | EP |
0 580 723 | Oct 1995 | EP |
1 045 146 | Dec 2000 | EP |
1 136 698 | Sep 2001 | EP |
1 177 802 | Feb 2002 | EP |
0 721 358 | May 2002 | EP |
1 495 775 | Jan 2005 | EP |
1 527 792 | May 2005 | EP |
1 754 498 | Feb 2007 | EP |
1 818 664 | Aug 2007 | EP |
2 585 252 | Jan 1987 | FR |
747 701 | Apr 1956 | GB |
2 218 831 | Nov 1989 | GB |
WO 1990015928 | Dec 1990 | WO |
WO 1997021457 | Jun 1997 | WO |
WO 1998011927 | Mar 1998 | WO |
WO 1998057683 | Dec 1998 | WO |
WO 1999021596 | May 1999 | WO |
WO 1999039118 | Aug 1999 | WO |
WO 1999048546 | Sep 1999 | WO |
WO 2001072360 | Oct 2001 | WO |
WO 2001091822 | Dec 2001 | WO |
WO 2001091833 | Dec 2001 | WO |
WO 2002040083 | May 2002 | WO |
WO 2002057627 | Jul 2002 | WO |
WO 2002100469 | Dec 2002 | WO |
WO 2003103763 | Dec 2003 | WO |
WO 2004056412 | Jul 2004 | WO |
WO 2004093648 | Nov 2004 | WO |
WO 2004110526 | Dec 2004 | WO |
WO 2005002652 | Jan 2005 | WO |
WO 2005039673 | May 2005 | WO |
WO 2005072794 | Aug 2005 | WO |
WO 2005072795 | Aug 2005 | WO |
WO 2006075016 | Jul 2006 | WO |
WO 2006105792 | Oct 2006 | WO |
WO 2006105793 | Oct 2006 | WO |
WO 2006105794 | Oct 2006 | WO |
WO 2010097796 | Sep 2010 | WO |
Entry |
---|
“Using the Deltec Cozmo Insulin Pump Correction Bolus Feature” believed to be publicly available before May 5, 2008, pp. 36-41. |
“Which Insulin Pump is Right for Me?”, Albany Medical Center, Goodman Diabetes Service, Jan. 2006, 4 pages. |
Asante Pearl, Insulin Pump User Manual, 2012, 180 pages. |
Collins and Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab Chip, 2003, 12 pages. |
Debiotech News Release, “Debiotech reveals its new miniaturized Disposable Insulin Nanopump™ for Diabetes therapy,” available at http://www.debiotech.com/news/nw_159.html Apr. 24, 2006, 3 pages. |
European Patent Office, International Search Report & Written Opinion for Application No. PCT/US2009/069937, dated May 27, 2010, 18 pages. |
Medtronic News Release, “Medtronic Receives FDA Approval for World's First Insulin Pump with Real-time Continuous Glucose Monitoring,” Apr. 13, 2006, 3 pages. |
Patent Abstracts of Japan, vol. 1999, No. 04, and JP 11 010036 , Apr. 30, 1999 and Jan. 19, 1999, Toray Ind. Inc., 6 pages. |
Walsh et al., “Guidelines for Insulin Dosing in Continuous Subcutaneious Insulin Infusion Using New Formulas from a Retrospective Study of Individuals with Optimal Glucose Levels”, J. Diabetes Science and Technology, Sep. 2010, 4(5):8 pages. |
Walsh et al.,“Guidelines for Optimal Bolus Calculator Settings in Adults”, J. Diabetes Science and Technology, Jan. 2011, 5(1):7 pages. |
International Search Report and Written Opinion in International Application No. PCT/US2015/38843, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20170189615 A1 | Jul 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14320863 | Jul 2014 | US |
Child | 15462334 | US |