The present invention relates to a manufacturing process for the preparation of α,α-branched alkane carboxylic acids providing glycidyl esters with an improved softness or hardness of the coatings derived thereof.
More in particular the invention relates to the preparation of aliphatic tertiary saturated carboxylic acids or α,α-branched alkane carboxylic acids, which contain 9 or 13 carbon atoms and which provide glycidyl esters with a branching level of the alkyl groups depending on the olefin feedstock used, and which is defined as below.
It is generally known from e.g. U.S. Pat. No. 2,831,877, U.S. Pat. No. 2,876,241, U.S. Pat. No. 3,053,869, U.S. Pat. No. 2,967,873 and U.S. Pat. No. 3,061,621 that mixtures of α,α-branched alkane carboxylic acids can be produced, starting from mono-olefins, carbon monoxide and water, in the presence of a strong acid.
From e.g. H van Hoorn and G C Vegter, Dynamic modulus measurements as a tool in the development of paint base materials FATIPEC, Euro Continental Congress 9, p. 51-60 (1968); Rheol. Acta 10, p. 208-212 (1971); H van Hoorn, the influence of side group structure on the glass transition temperature of isomeric vinyl ester polymers, the relation between the final coating film properties and the isomer distribution in starting branched carboxylic acids, was known.
In such mixtures of α,α-branched alkane carboxylic acids, significant proportions of blocking β-methyl-branched carboxylic acid isomers were found, the properties of which have been found to antagonize the attractive properties of other α,α-branched saturated carboxylic acid constituents of said mixtures, when applied in the form of vinyl esters in the coating industry, requiring more and more so-called softer acid derivatives.
More in particular the conventionally produced α,α-branched carboxylic acid mixtures had been found to cause a too high hardness of the final coating of films, which was disadvantageous and therefore undesired for certain applications, due to the presence of significant proportions of blocking β-alkyl-branched isomers.
One of the more recent remedies has been disclosed in EP 1033360A1. The problem of providing better softening derivatives of α,α-branched acids, manufactured from alkenes, carbon monoxide and water and an acid catalyst was solved therein by a process, which actually comprised:
An object of the above process are branched carboxylic acids, which are prepared from butene dimers obtainable by the OCTOL oligomerization process and containing not more than 35 wt % of multi-branched olefins, such as dimethylhexene, and preferably at most 25 wt %. Moreover said carboxylic acids, having a significantly increased content of 2,2-dimethyl heptanoic acid and 2-ethyl,2-methyl hexanoic acid, and a decreased content of 2,3-dimethyl-2-ethyl pentanoic acid, could provide the presently required attractive properties of the corresponding vinyl esters, such as a Tg of −3° C. at the lowest for the homopolymer of said C9 vinyl ester.
Another object of the disclosed process in EP 1 033 360 are branched C13 carboxylic acids, which are prepared from butene trimers obtainable by the OCTOL oligomerization process. Moreover said carboxylic acids, could provide the required attractive properties of the corresponding vinyl esters, such as a Tg of −13° C. at the lowest for the homopolymer of said C13 vinyl ester.
The entire prior art is interested to provide soft monomers to be used as vinyl ester in latex formulations for example and to act as plasticizer.
An object of the present invention is to provide α,α-branched alkane carboxylic acids glycidyl ester derivatives in order to obtain attractive properties of coatings derived therefrom.
As a result of extensive research and experimentation a process giving the branched carboxylic acids aimed at, it has surprisingly been found, that the branching level of the glycidyl ester has a strong influence on the coating properties.
Accordingly, the invention relates to a manufacturing process for the preparation of α,α-branched alkane carboxylic acids, by reacting a mono-olefin or a precursor thereof, with carbon monoxide in the presence of a catalyst and water characterized in that the starting olefin is ethylene or ethylene oligomers, or butene or butene derivatives or butene precursors (such as alcohol), the most preferred are butene or butene oligomers. The industrial sources for butene are Raffinate I or Raffinate II or Raffinate III.
Raf I or any other mixture of alkane-alkene with a isobutene content of at least 50% weight on total alkene, are fractions used to produce a highly branched acid derivatives after dimerisation or trimerisation, carboxylation and subsequently glycidation, the mixture of neo-acid (C9 or C13 acids) derivatives obtained by such a process and providing a mixture where the sum of the concentration of the blocked and of the highly branched isomers is at least 55%, preferably above 65%, most preferably above 75%.
If the olefin feed is based on Raf. II or Raf III or any mixture rich in n-butene isomers on the total olefins, the subsequently mixture of neo-acid (C9 or C13 acids) derivatives will provide a mixture where the concentration of blocked and highly branched isomers is maximum 55% preferably below 40% and most preferably below 30%.
We have discovered that well chosen blend of isomers of the glycidyl ester of, for example, neononanoic acids give different and unexpected performance in combination with some particular polymers such as polyester polyols. The isomers are described in Table 1 and illustrate in FIG. 1.
From the prior art it is known that polyester resins based on the commercially available Cardura E10 often result in coatings with a low hardness and a poor drying speed. This low drying speed results in work time lost when the coating is applied e.g. on cars and other vehicles. One alternative to this drawback was suggested in the literature by using the pivalic glycidyl ester (EP 0 996 657), however this low molecular derivative is volatile.
There is also a need for glycidyl esters giving a lower viscosity to the derived polyesters or ether resins and epoxy systems but that are free of any safety risks.
We have found that the performance of the glycidyl ester derived from the branched acid is depending on the branching level of the alkyl groups R1, R2 and R3, for example the neononanoic acid has 3, 4 or 5 methyl groups. Highly branched isomers are defined as isomers of neo-acids having at least 5 methyl groups.
Mixture of neononanoic acid providing a high hardness is a mixture where the sum of the concentration of the blocked and of the highly branched isomers is at least 50%, preferably above 60%, and most preferably above 75%.
Mixture of neononanoic acids providing soft polymers is a mixture where the concentration of blocked and highly branched isomers is maximum 55%, preferably below 40%, and most preferably below 30%.
The desired isomer distribution can be obtained by the selection of the correct starting olefin or precursors thereof, and also to a lesser extend by adjusting the Kock reaction conditions. The dimerisation or trimerisation of the olefin and/or the precussor thereof can be done for example according the method of EP1033360 and the subsequently carbonylation will provide the desired branched acid, which can be, for example glycidated according to PCT/EP2010/003334 or the U.S. Pat. No. 6,433,217.
The glycidyl esters so obtained can be used as reactive diluent for epoxy based formulations such as examplified in the technical brochure of Momentive (Product Bulletin: Cardura E10P The Unique Reactive Diluent MSC-521). Other uses of the glycidyl ester are the combinations with polyester polyols, or acrylic polyols, or polyether polyols. The combination with polyester polyols such as the one used in the car industry coating leads to a fast drying coating system with attractive coating properties.
The invention is further illustrated by the following examples, however without restricting its scope to these embodiments.
The isomer distribution of neo-acid can be determined by gas chromatography, using a flame ionization detector (FID). 0.5 ml sample is diluted in analytical grade dichloromethane and n-octanol may be used as internal standard. The conditions presented below result in the approximate retention times given in table 1. In that case n-Octanol has a retention time of approximately 8.21 minutes.
The GC method has the following settings:
Column: CP Wax 58 CB (FFAP), 50 m×0.25 mm, df=0.2 μm
Oven program: 150° C. (1.5 min)−3.5° C./min−250° C. (5 min)=35 min
Flow: 2.0 mL/min constant
Split flow: 150 mL/min
Split ratio: 1:75
Injector temp: 250° C.
Detector temp: 325° C.
Injection volume: 1 μL
CP Wax 58 CB is a Gas chromatography column available from Agilent Technologies.
The isomers of neononanoic acid as illustrative example have the structure (R1R2R3)—C—COOH where the three R groups are linear or branched alkyl groups having together a total of 7 carbon atoms.
The structures and the retention time, using the above method, of all theoretical possible neononanoic isomers are drawn in FIG. 1 and listed in Table 1.
The isomers content is calculated from the relative peak area of the chromatogram obtained assuming that the response factors of all isomers are the same.
Whereas the carbon atom in alpha position of the carboxylic acid is always a tertiary carbon atom, the carbon atom(s) in β position can either be primary, secondary or tertiary. Neononanoic acids (V9) with a secondary or a tertiary carbon atoms in the position are defined as blocking isomers (FIGS. 2 and 3).
The molecular weights of the resins are measured with gel permeation chromatography (Perkin Elmer/Water) in THF solution using polystyrene standards. Viscosity of the resins are measured with Brookfield viscometer (LVDV-I) at indicated temperature. Solids content are calculated with a function (Ww−Wd)/Ww×100%. Here Ww is the weight of a wet sample, Wd is the weight of the sample after dried in an oven at a temperature 110° C. for 1 hour.
Pot-life is determined by observing the elapsed time for doubling of the initial viscosity at room temperature, usually 24.0±0.5° C. The initial viscosity of the clear coat is defined at 44-46 mPa·s for Part 1 and 93-108 mPa·s for Part 3 measured with Brookfield viscometer.
Q-panels are used as substrates. Then the panels are cleaned by a fast evaporating solvent methyl ethyl ketone or acetone. For Part 1 the clearcoat is spray-applied on Q-panels covered with basecoat; for Parts 2 & 3 the clearcoat is barcoated directly on Q-panels.
The dust free time (DFT) of clear coat is evaluated by vertically dropping a cotton wool ball on a flat substrate from a defined distance. When the cotton ball contacts with the substrate, the substrate is immediately turned over. The dust free time is defined as the time interval at which the cotton wool ball no longer adhered to the substrate.
Hardness development is followed using pendulum hardness tester with Koenig method.
HDI: 1,6-hexamethylene diisocyanate trimer, Desmodur N3390 BA from Bayer Material Science or
Tolonate HDT LV2 from Perstorp
Leveling agent: ‘BYK 10 wt %’ which is BYK-331 diluted at 10% in butyl acetate
Catalyst: ‘DBTDL 1 wt %’ which is Dibutyl Tin Dilaurate diluted at 1 wt % in butyl acetate
Thinner: A: is a mixture of Xylene 50 wt %, Toluene 30 wt %, ShellsolA 10 wt %, 2-Ethoxyethylacetate 10 wt %.
80.4 g amount of butylacetate, 68.3 g of monopentaerythritol, 258.2 g of methylhexahydrophthalic anhydride are loaded in a glass reactor and heated to reflux until complete dissolution. Afterwards, the temperature is decreased down to 120° C. and 333.0 g of GE9S are added over about one hour. The cooking is pursued at 120° C. for the time needed to decrease epoxy group content and acid value down to an acid value below 15 mg KOH/g. Then, further 82.4 g of butylacetate are added. Test results are indicated in table 2.
80.4 g amount of butylacetate, 68.3 g of monopentaerythritol, 258.2 g of methylhexahydrophthalic anhydride are loaded in a glass reactor and heated to reflux until complete dissolution. Afterwards, the temperature is decreased down to 120° C. and 337.1 g of GE9H are added over about one hour. The cooking is pursued at 120° C. for the time needed to decrease epoxy group content and acid value down to an acid value below 15 mg KOH/g. Then, further 83.4 g of butylacetate are added.
CE-GE9Hb is a duplication of Example 2a performed in very close experimental conditions.
71.3 g amount of butylacetate, 60.5 g of monopentaerythritol, 228.90 g of methylhexahydrophthalic anhydride are loaded in a glass reactor and heated to reflux until complete dissolution. Afterwards, the temperature is decreased down to 120° C. and 214.3 g of GE5 are added over about one hour. The cooking is pursued at 120° C. for the time needed to decrease epoxy group content and acid value down to an acid value below 15 mg KOH/g. Then, further 52.1 g of butylacetate are added.
CE-GE5b is a duplication of comparative example 1a performed in very close experimental conditions except for the higher amount of butylacetate added at the end of the reaction.
105.0 g amount of CE10 (Cardura™ E10-glycidyl ester of Versatic acid) and 131.6 g of Shellsol A are loaded in a glass reactor and heated up to 157.5° C. Then, a mixture of monomers (37.4 g acrylic acid, 107.9 g hydroxyethyl methacrylate, 180.0 g styrene, 100.2 g butyl acrylate, 69.6 g methyl methacrylate) and initiator (12.0 g Di-tert-butyl peroxide) is fed into the reactor at a constant rate in 5 hours. Then post cooking started: a mixture of 6.0 g Di-tert-butyl peroxide and 18.0 g n-butyl acetate is fed into the reactor at a constant rate in 0.5 hour, then temperature maintained at about 157.5° C. for a further 0.5 hour. Finally, 183.2 g of n-butyl acetate is added under stirring to achieve a polyol resin with the target solids content. Test results are indicated in table 3.
Three types of formulations have been prepared:
The clearcoat formulations are barcoat applied on degreased Q-panel for Parts 2 & 3; sprayed for the Part 1 on Q-panel with a basecoat. The panels are dried at room temperature, optionally with a preliminary stoving at 60° C. for 30 min.
Part 1—CE-GEx Polyesters Blend with Acryl-CE(10)/Room Temperature Curing
Part 2—CE-GEx Polyesters Alone, No Acryl-CE(10)/Room Temperature Curing and Room Temperature Drying after Stoving
Part 3—CE-GEx Polyesters Alone, No Acryl-CE(10)/Room Temperature Curing and Room Temperature Drying after Stoving (0.09 Wt % DBTDL)
The potlife is about the same, the dust free time is shorter for GE9Hb vs. GE5b.
The 24 h hardness order GE9H, GE5 and GE9S and the dust free time at room temperature is the best for GE9H.
The hardness development is the best for GE9H at room temperature and heat cure, the dust free time at room temperature is quicker for GE9H than for GE5; and with a volatile organic content of 300 g/1.
The following constituents were charged to a reaction vessel equipped with a stirrer, a thermometer and a condenser: 134 grams of di-Trimethylol propane (DTMP), 900 grams of glycidyl neononanoate, GE9 H, 135.5 grams of n-butylacetate (BAC) and 2.5 grams of Tin 2 Octoate. The mixture was heated to its reflux temperature of about 180° C. for about 4 hours till the glycidyl neononaoate was converted to an epoxy group content of less than 0.12 mg/g. After cooling down the polyether had a solids content of about 88%.
A resin for vacuum infusion of large structures such as yacht and wind turbines was prepared by mixing 27.7 part by weight of curing agent blend and 100 part of epoxy resins blend described here:
Jeffamine D230 is a polyoxyalkyleneamines available from Huntsman Corporation. Epikote 828 is an epoxy resin available from Momentive Specialty Chemicals Inc.
The ingredients presented in the table below were mixed for the preparation of a trowellable flooring compound
The ingredients presented in the table below were mixed for the preparation of a waterbased self leveling flooring system.
The adducts of Glycidyl neononanoate GE9H with acrylic acid (ACE-adduct) and with methacrylic acid (MACE-adduct) are acrylic monomers that can be used to formulate hydroxyl functional (meth)acrylic polymers.
A glass reactor equipped with stirrer was flushed with nitrogen, and the initial reactor charge heated to 160° C. The monomer mixture including the initiator was then gradually added to the reactor via a pump over 4 hours at this temperature. Additional initiator was then fed into the reactor during another period of 1 hour at 160° C. Finally the polymer is cooled down to 135° C. and diluted to a solids content of about 68% with xylene.
Solvents were blended to yield a thinner mixture of the following composition:
A clearcoat was then formulated with the following ingredients (parts by weight).
A reactor for acrylic polyols is flushed with nitrogen and the initial reactor charge heated to 140° C. At this temperature the monomer mixture including the initiator is added over 4 hours to the reactor via a pump. Additional initiator is fed into the reactor during one hour, and then the mixture is kept at 140° C. to complete the conversion in a post reaction. Finally the polymer is cooled down and diluted with butyl acetate to a solids content of about 60%.
Clear lacquers are formulated from the acrylic polymers by addition of Cymel 1158 (curing agent from CYTEC), and solvent to dilute to spray viscosity. The acidity of the polymer is sufficient to catalyse the curing process, therefore no additional acid catalyst is added. The lacquer is stirred well to obtain a homogeneous composition.
The coatings are applied with a barcoater on Q-panels to achieve a dry film thickness of about 40 μm. The systems are flashed-off at room temperature for 15 minutes, then baked at 140° C. for 30 minutes. Tests on the cured systems are carried out after 1 day at 23° C.
Number | Date | Country | Kind |
---|---|---|---|
10013766.0 | Oct 2010 | EP | regional |
10015919.3 | Dec 2010 | EP | regional |
This application claims the benefit of PCT Application PCT/EP2011/005105 with International Filing Date of Oct. 12, 2011, published as WO 2012/052126 A1, which further claims priority to European Patent Application No. 10015919.3 filed Dec. 22, 2010 and European Patent Application No. 10013766.0 filed Oct. 19, 2010, the entire contents of all are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/005105 | 10/12/2011 | WO | 00 | 4/4/2014 |