GNSS control system and method for irrigation and related applications

Information

  • Patent Grant
  • 8401704
  • Patent Number
    8,401,704
  • Date Filed
    Wednesday, July 22, 2009
    15 years ago
  • Date Issued
    Tuesday, March 19, 2013
    11 years ago
Abstract
A global navigation satellite sensor system (GNSS) control system and method for irrigation and related applications is provided for a boom assembly with main and extension boom sections, which are hingedly connected and adapted for folding. The control system includes an antenna and a receiver connected to the antenna. A rover antenna is mounted on the boom extension section and is connected to the receiver. A processor receives GNSS positioning signals from the receiver and computes locations for the antennas, for which a vector indicating an attitude of the extension boom section can be computed. Various boom arrangements and field configurations are accommodated by alternative aspects of the control system.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to global navigation satellite system (GNSS) control systems and methods for mobile, fixed-course equipment for irrigation and related applications.


2. Description of the Related Art


GNSS guidance and control are widely used for vehicle and personal navigation and a variety of other uses involving precision location in geodesic reference systems. GNSS, which includes the Global Positioning System (GPS) and other satellite-based positioning systems, has progressed to sub-centimeter accuracy with known correction techniques, including a number of commercial Satellite Based Augmentation Systems (SBASs).


Agricultural equipment represents a significant market for GNSS control systems. Various aspects of agricultural equipment guidance can benefit from GNSS technology, including tillage, planting, spraying (e.g., applying fertilizer, herbicides, pesticides, etc.) and harvesting. In arid regions, mechanized irrigation techniques and equipment have greatly increased crop production and correspondingly made vast tracts of previously barren land viable for productive agriculture, thus enhancing its value and crop yields. Broadly speaking, mechanized irrigation involves pumping water from a source and spraying it on crops and/or fields. Although sprayer vehicles are extensively used and widely available, their operation tends to be relatively expensive due to operating costs such as labor and fuel, and capital costs of vehicles. Therefore, automatic irrigation systems tapping into subterranean aquifers are widely used and cover large areas relatively cost-effectively. Typical large-scale irrigation uses distribution piping carried on self-propelled support towers and supplying multiple spray nozzles, which pass over crops and distribute water evenly thereon. Self-propelled irrigation equipment is constructed for linear operation, e.g., along guide paths, and for center-pivot operation, which produces circular irrigation patterns.


Such irrigation equipment tends to move relatively slowly and operate relatively automatically, and is thus ideal for autonomous guidance and control. Previous methods of monitoring and guiding irrigation devices include positive position encoders located at the center pivot for monitoring angular or rotational orientation of the irrigation boom with respect to the center pivot. Another method included buried wires and sensors, which were detectable by equipment mounted on the rotating booms.


Global navigation satellite systems (GNSS), including global positioning systems (GPS), have also been used for center pivot irrigation monitoring and guidance. For example, U.S. Pat. No. 6,095,439 discloses a corner irrigation system including a GPS guidance system. Field corners, which would otherwise fall outside a circular coverage pattern, are accommodated by an extension boom, which is pivotable with respect to a main boom and swings out into the field corners under GPS guidance. However, previous GPS guidance and control systems for agricultural irrigation have tended to be relatively expensive, complex, inaccurate and/or susceptible to other deficiencies and disadvantages.


It is known in the art that by using GPS satellites' carrier phase transmissions, and possibly carrier phase signal components from base reference stations or Space Based Augmentation Systems (SBAS) satellites, including Wide Area Augmentation System (WAAS) (U.S.), and similar systems such as EGNOS (European Union) and MSAS (Japan), a position may readily be determined to within millimeters. When accomplished with two antennas at a fixed spacing, an angular rotation may be computed using the position differences. In an exemplary embodiment, two antennas placed in the horizontal plane may be employed to compute a heading (rotation about a vertical axis) from a position displacement. Heading information, combined with position, either differentially corrected (DGPS) or carrier phase corrected (RTK), provides the feedback information desired for a proper control of the vehicle direction.


Another benefit achieved by incorporating a GPS-based heading sensor is the elimination or reduction of drift and biases resultant from a gyro-only or other inertial sensor approach. Yet another advantage is that heading may be computed while movable equipment is stopped or moving slowly, which is not possible in a single-antenna, GPS-based approach that requires a velocity vector to derive a heading. Yet another advantage is independence from a host vehicle's sensors or additional external sensors. Thus, such a system is readily maintained as equipment-independent and may be moved from one vehicle to another with minimal effort. Yet another exemplary embodiment of the sensor employs Global Navigation Satellite System (GNSS) sensors and measurements to provide accurate, reliable positioning information. GNSS sensors include, but are not limited to GPS, Global Navigation System (GLONAS), Wide Area Augmentation System (WAAS) and the like, as well as combinations including at least one of the foregoing.


An example of a GNSS is the Global Positioning System (GPS) established by the United States government, which employs a constellation of 24 or more satellites in well-defined orbits at an altitude of approximately 26,500 km. These satellites continually transmit microwave L-band radio signals in two frequency bands, centered at 1575.42 MHz and 1227.6 MHz, denoted as L1 and L2 respectively. These signals include timing patterns relative to the satellite's onboard precision clock (which is kept synchronized by a ground station) as well as a navigation message giving the precise orbital positions of the satellites, an ionosphere model and other useful information. GPS receivers process the radio signals, computing ranges to the GPS satellites, and by triangulating these ranges, the GPS receiver determines its position and its internal clock error.


In standalone GPS systems that determine a receiver's antenna position coordinates without reference to a nearby reference receiver, the process of position determination is subject to errors from a number of sources. These include errors in the GPS satellite's clock reference, the location of the orbiting satellite, ionosphere induced propagation delay errors, and troposphere refraction errors.


To overcome these positioning errors of standalone GPS systems, many positioning applications have made use of data from multiple GPS receivers. Typically, in such applications, a reference receiver, located at a reference site having known coordinates, receives the GPS satellite signals simultaneously with the receipt of signals by a remote receiver. Depending on the separation distance between the two GPS receivers, many of the errors mentioned above will affect the satellite signals equally for the two receivers. By taking the difference between signals received both at the reference site and the remote location, these errors are effectively eliminated. This facilitates an accurate determination of the remote receiver's coordinates relative to the reference receiver's coordinates.


The technique of differencing signals from two or more GPS receivers to improve accuracy is known as differential GPS (DGPS). Differential GPS is well known and exhibits many forms. In all forms of DGPS, the positions obtained by the end user's remote receiver are relative to the position(s) of the reference receiver(s). GPS applications have been improved and enhanced by employing a broader array of satellites such as GNSS and WAAS. For example, see commonly assigned U.S. Pat. No. 6,469,663 to Whitehead et al. titled Method and System for GPS and WAAS Carrier Phase Measurements for Relative Positioning, dated Oct. 22, 2002, the disclosures of which are incorporated by reference herein in their entirety. Additionally, multiple receiver DGPS has been enhanced by utilizing a single receiver to perform differential corrections. For example, see commonly assigned U.S. Pat. No. 6,397,147 to Whitehead titled Relative GPS Positioning Using A Single GPS Receiver With Internally Generated Differential Correction Terms, dated May 28, 2002 the disclosures of which are incorporated by reference herein in their entireties.


Heretofore there has not been available a GNSS control system for agricultural irrigation and related applications with the advantages and features of the present invention.


SUMMARY OF THE INVENTION

Disclosed herein in an exemplary embodiment is a GNSS control system for irrigation equipment, which system includes a base GNSS receiver with a base antenna, which can be mounted on a main irrigation boom, and a rover antenna mounted on an extension irrigation boom, which pivots outwardly from the main irrigation boom to cover field corners. The GNSS ranging signals received by the antennas are processed by a single receiver and processor for determining a position and/or attitude of the extension boom, which is guided through the corners thereby. Alternative aspects include an RTK base unit for receiving and transmitting RTK correction signals. Another alternative aspect provides multiple receivers on the irrigation boom sections. A method is adaptable for obstacle avoidance in an irrigated field. Other field conditions and configurations can be accommodated, including elongated rectangular fields. Spray nozzle operation can also be selectively and individually controlled for irrigation and related applications.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary, perspective view of a center-pivot irrigation application of the control system and method of the present invention, particularly showing a vector control of an extension boom section in a field corner;



FIG. 2 is a schematic diagram of the control system, which is configured for determining vectors;



FIG. 3 is a plan view of the center-pivot irrigation equipment application, showing the progressive extension boom section positions and configurations;



FIG. 4 is a schematic diagram of an alternative aspect control system with RTK;



FIG. 5 is a plan view of a center-pivot irrigation application covering multiple, nearby fields and including a centralized RTK receiver;



FIG. 6 is a schematic diagram of a system with the base providing RTK correction;



FIG. 7 is a plan view of a center-pivot irrigation application with a base located at the center pivot;



FIG. 8 is a plan view of a center-pivot irrigation application with the control system and the boom sections configured for obstacle avoidance; and



FIG. 9 is a plan view of an irrigation application for an elongated, rectangular field with an extension boom covering the field corners.





DETAILED DESCRIPTION OF THE PREFERRED ASPECTS
I. Introduction and Environment

Global navigation satellite systems (GNSSS) are broadly defined to include GPS (U.S.), Galileo (Europe, proposed), GLONASS (Russia), BeidoulCompass (China, proposed), IRNSS (India, proposed), QZSS (Japan, proposed) and other current and future positioning technology using signals from satellites, with or without augmentation from SBAS or terrestrial reference correction sources. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.


Without limitation on the generality of useful applications of the present invention, an exemplary application comprises a GNSS control system 2 for self-propelled, center-pivot irrigation equipment 4. “Control,” as used herein, encompasses all functions and operating parameters associated with the irrigation equipment 4, such as navigation in a geodetic frame of reference via motive power and steering control, and the operation of operative components such as spray nozzles, pumps, etc.


The irrigation equipment 4 generally includes a center pivot 6 connected to an articulated boom assembly 8, which includes a main boom section 10 and an extension boom section 12. The center pivot 6 can comprise a wellhead connected to a subsurface aquifer, or a suitable water source, such as a pipeline, can supply the equipment 4. A pump can be provided for delivering water under pressure to the boom assembly 8. The boom assembly 8 generally has a horizontal truss configuration and includes multiple drive towers 14 positioned at spaced intervals, including a steerable drive tower 14a supporting and mobilizing the boom extension section 12. As shown in FIG. 1, an irrigated field 16 includes a circular central area 18 with corners 20 between the circumference 22 of the circular area 18 and the field perimeter 24, which generally defines a square in the illustrated example. The boom assembly 8 is shown with a counterclockwise direction of rotation as indicated by the directional arrow 26, although the rotational direction could also be clockwise. The main and extension boom sections 10, 12 intersect at a hinged connection 28, which is generally located at a drive tower 14.


II. GNSS Control System 2

The GNSS control system 2 can comprise a single-receiver, two-antenna vector system as shown in FIG. 2. A GNSS receiver 30 includes an RF converter (downconverter) 32 connected to a first antenna 34, which can be designated as a base, reference or master antenna. A tracking device 36 is connected to the downconverter 32 and provides GNSS-derived ranging data for a controller (CPU) 38, including a graphical user interface (GUI)/display 40, a microprocessor 42 and media 44 for storing data. The controller 38 can be associated with the main boom section 10. A second antenna 46, which can be designated as a rover or slave antenna, is mounted on the extension boom section 12 and is connected to the receiver 30 by an RF cable 48 for providing GNSS-derived ranging signals to the receiver 30. The RF cable 48 has a constant length whereby cable delays are relatively constant and can be accurately calculated and taken into account in processing the GNSS signals. Other relatively constant (linear) delays, such as temperature-related delays, can be accommodated with suitable corrections, such as a lookup table stored in the media 44.


The controller 38 controls the operation of the drive towers 14, 14a via a CAN bus 50 or some other suitable communication mode, such as RS-485 or a wireless RF connection, which can be selected for compatibility with the drive tower control communications of the irrigation system manufacturer. The speed of the drive towers 14 is variably controlled. Moreover, the speed and direction of the steerable drive tower 14a is controlled via the CAN bus 50, or some other suitable communication mode. Multiple spray nozzles 52 can be individually and selectively controlled by the controller 38 via the CAN bus 50. For example, the controller 38 can be preprogrammed for irrigation in varying amounts emitted from the nozzles 52 depending upon, for example, boom speed (increasing proportionally outwardly from the center pivot 6), wind speed and direction, field conditions, crop conditions, etc.


The vector configuration of the GNSS control system 2 provides a heading for the boom extension 12 based on the location differential for the antennas 34, 46 and a fixed distance between them. An advantage of such a vector is that the boom extension 12 heading or attitude can be calculated with the boom 8 at rest or moving slowly, which is typically the case with center-pivot irrigation equipment. Single-antenna systems, on the other hand, require movement to determine a direction of travel based on logged antenna positions from which a heading or direction of travel can be determined.



FIG. 3 shows a sequence of boom assembly 8 configurations for accommodating a square field 16. At the circle quadrants (0°, 90°, 180°, 270°) where the circumference 22 intersects the field perimeter 24, i.e. the first condition, the extension boom section 12 is fully retracted, forming a 90° right angle with the main boom section 10 and trailing directly behind it along the perimeter 24. In the second position the extension boom section 12 is fully extended to reach a corner of the field 16 with the main boom section 10 slightly past the crux of the corner whereafter the extension boom section 12 begins retracting. In other words, the extension boom section 12 is always somewhat trailing the main boom section 10. The third configuration occurs between the first and second configurations, i.e. between the fully-retracted and the fully-extended positions. For example, if the field 16 of FIG. 3 is oriented with due north corresponding to 0°, the extension boom section 12 is partly retracted as the boom assembly 8 traverses from 0° (fully retracted) to 90° (fully retracted). Likewise, partial extension occurs between 90° and 180°, and at corresponding intervals around the circular area 18. The outer end of the extension boom section 12 generally follows the field perimeter 24 whereby the corner areas 20 are substantially completely irrigated, covered or treated, depending upon the nature of the agricultural operation. By determining the extension boom section 12 attitude from the GNSS-defined positions of the antennas 34, 46, the extension boom section 12 can be accurately located and guided with its steerable drive tower 14a. Although the control system 2 can be set up and programmed to compute and track the main boom section 10 position and/or rotational orientation, the extension boom section 12 can be independently guided through the field corners 20 without reference to the location or orientation of the main boom section 10. In other words, the relative locations of the antennas 34, 46 provide sufficient information for properly orienting the extension boom sections 12 through the field corners 20.


U.S. Pat. No. 7,400,294 for Satellite Positioning and Heading Sensor for Vehicle Steering, which is assigned to a common assignee herewith, discloses apparatus and methods for attitude determination using GNSS and is incorporated herein by reference.


III. Alternative Aspect Control Systems, Methods and Applications

A system 102 comprising a vector/RTK alternative aspect of the invention is shown in FIG. 4 and includes a main boom 110 and an extension boom 112 generally similar to the boom sections 10, 12 described above, with the addition of a rover RTK receiver 106 to the main boom GNSS receiver 130 and the addition of a fixed-position RTK base 132 including an RTK antenna 134, a receiver 136 and a transmitter 138. The RTK base 132 transmits GNSS correction values to the rover receiver 106 and/or to the extension boom antenna 46, for computing relatively accurate ranging signal corrections using well-known techniques.


The RTK base 132 can be located anywhere within its effective range, e.g., several kilometers or more, from the irrigation equipment 104. For example, FIG. 5 shows multiple fields 16a, 16b, 16c and 16d serviced by the irrigation equipment 104 and receiving GNSS RTK correction from a centrally-located RTK base 132.



FIG. 6 shows another configuration GNSS RTK system 152, which is similar to the systems 2 and 102 described above, with a base 160 located at the center pivot 6 and including a base GNSS receiver 162 including an RTK transmitter 164. The RTK transmitter 164 transmits RTK correction signals to the rover GNSS receiver 166, which includes a rover RTK receiver 168. Guidance can be provided for the main boom section 170 and the extension boom section 172 using normal RTK positioning techniques, which are well known. In conventional standalone GNSS systems that determine a receiver's antenna position coordinates without reference to a nearby reference receiver, the process of position determination is subject to errors from a number of sources. These include errors in the GNSS satellite's clock reference, the location of the orbiting satellite, ionosphere induced propagation delay errors, and troposphere refraction errors. The RTK positioning systems described above overcome or least minimize such errors by providing correction signals, which are utilized by the processor for canceling out the atmospheric, clock and other positioning errors.



FIG. 7 shows a center pivot application 182 of the GNSS system 152. As shown, the base 160 is located at the center pivot 6 and the rover antenna 174 is located partway out along the boom section 170. In the application shown in FIG. 7, the boom includes only the main boom section 170. FIG. 8 shows an obstacle-avoidance/multiple-radius application 184 of the GNSS control system wherein a field 186 includes an obstacle (such as a structure, an untreated area, etc.) 188 located in proximity to the center pivot 6. An articulated irrigation boom 190 includes a proximate section 192 connected to the center pivot 6 and a distal section 194 pivotally connected to the proximate section 192. A base GNSS receiver 194 (similar to the receivers 30, 132 described above) is mounted on the boom 190 at a hinged connection 198 of its sections 192, 194. A rover antenna 196 is mounted partway out along the boom distal section 194 and is similar to the rover antennas 46 described above. Alternatively, a rover receiver similar to the receivers 106, 166 described above can be utilized. As shown in FIG. 8, the boom 190 is adapted for folding at the hinged connection 198 whereby the obstacle 188 is avoided. Moreover, such folding produces an effective radius of the covered area R2, as opposed to R1 representing the fully-extended boom 190 radius. The system shown in FIG. 8 can be programmed to alternate between clockwise and counterclockwise arcuate paths of movement 199a,b represented by the directional arrows.



FIG. 9 shows a rectangular field 216 representing another irrigation application 204 including a GNSS guidance system 202, which can be similar to the guidance systems 2, 102 and 152 described above. The field 216 is generally rectangular with a medial path of travel 218 for an articulated irrigation boom assembly 208 including main and extension boom sections 210, 212, which operate similar to the boom sections 10, 12 described above. As shown in FIG. 9, the boom assembly 208 is adapted for traveling in a linear path of travel 218, as indicated by the directional arrow 220, with the boom assembly 208 folded. The boom assembly 208 extends across and covers the field corners 222 at each end of its path of travel 218, as described above. Various other field configurations could likewise be accommodated by articulated boom sections similar to those described above. For example, multiple articulated sections could also be provided and controlled with GNSS vector and/or RTK systems.


IV. Conclusion

It will be appreciated that while a particular series of steps or procedures is described as part of the abovementioned guidance method, no order of steps should necessarily be inferred from the order of presentation. For example, the method includes installation and power up or initialization. It should be evident that power-up and initialization could potentially be performed and executed in advance without impacting the methodology disclosed herein or the scope of the claims.


It should further be appreciated that while an exemplary partitioning functionality has been provided, it should be apparent to one skilled in the art that the partitioning could be different. For example, the control of the receivers and the controller could be integrated in other units. The processes for determining the alignment may, for ease of implementation, be integrated into a single receiver. Such configuration variances should be considered equivalent and within the scope of the disclosure and claims herein.


The disclosed invention may be embodied in the form of computer-implemented processes and apparatuses for practicing those processes. The present invention can also be embodied in the form of computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium 44 wherein the computer becomes an apparatus for practicing the invention when the computer program code is loaded into and executed by the computer. The present invention can also be embodied in the form of computer program code stored in a storage medium or loaded into and/or executed by a computer, for example. The present invention can also be embodied in the form of a data signal transmitted by a modulated or unmodulated carrier wave, over a transmission medium, such as electrical wiring or cabling, through fiber optics or via electromagnetic radiation. When the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.


While the description has been made with reference to exemplary embodiments, it will be understood by those of ordinary skill in the pertinent art that various changes may be made and equivalents may be substituted for the elements thereof without departing from the scope of the disclosure. In addition, numerous modifications may be made to adapt the teachings of the disclosure to a particular object or situation without departing from the essential scope thereof. Therefore, it is intended that the claims not be limited to the particular embodiments disclosed as the currently preferred best modes contemplated for carrying out the teachings herein, but that the claims shall cover all embodiments falling within the true scope and spirit of the disclosure.

Claims
  • 1. A GNSS-based control system for irrigation equipment including a boom assembly with a main boom section, an extension boom section hingedly connected to the main boom section and boom drives mounted on said main and extension boom sections respectively, which control system includes: a first GNSS antenna mounted on the boom assembly;a GNSS receiver mounted on the boom assembly and connected to the first GNSS antenna;a second GNSS antenna mounted on the extension boom section and connected to the receiver;a controller including a processor connected to and receiving input signals from said receiver, said processor being adapted for computing position solutions for said antennas using GNSS ranging signals received by said receiver;said controller being adapted for controlling said extension boom section drives using said position solutions;said boom assembly including multiple spray nozzles;each said spray nozzle having a variable discharge rate;said processor being adapted for selectively and individually controlling said spray nozzle discharge rates based on GNSS-defined positions of said extension boom section;an RTK base including a base GNSS antenna, a base RTK receiver connected to said base antenna and a base RTK transmitter connected to said base antenna;said RTK base adapted to service multiple fields located in proximity to said RTK base;said controller being programmed with a GNSS-defined location of an obstacle located in a field in the path of said boom assembly;said extension boom section having a stop position in proximity to said GNSS-defined obstacle location; andsaid stop position being GNSS-defined.
  • 2. The invention of claim 1, which includes: said control system including a radio frequency (RF) correction signal receiver connected to said controller; andsaid RTK base being located in spaced relation from said irrigation equipment and transmitting RTK correction signals to said correction signal receiver.
  • 3. The invention of claim 2, which includes: each field having irrigation equipment including a respective boom assembly and a respective GNSS-based control system controlling said irrigation equipment; andsaid RTK base providing RTK correction signals to said control systems.
  • 4. The invention of claim 1, which includes: said irrigation equipment having a center-pivot configuration with a central water source and said boom assembly main section having a proximate end pivotally connected to said water source;said main boom section having a distal end;said extension boom section having a proximate end hingedly connected to said main boom distal end and an extension boom section distal end;said first antenna being located at said hinged connection of said boom sections; andsaid second antenna being located on said extension boom section in spaced relation from said extension boom section proximate end.
  • 5. The invention of claim 4, which includes: said boom drives comprising drive towers attached to said main and extension boom sections;said extension boom section drive tower being steerable; andsaid processor steering said extension boom section drive tower.
  • 6. The invention of claim 5, which includes: said main boom section having a generally circular movement path;said extension boom section being movable through a range of movement relative to said main boom section from a fully-retracted angle of approximately 90° with said main boom section oriented perpendicularly to the sides of a generally square field to maximum partial extension angle of slightly less than 180° with said main boom section extending towards corners of said field.
  • 7. The invention of claim 1, which includes: said field having corner areas beyond a circular area covered by said main boom section;said extension boom section substantially covering said corner areas;said extension boom section being guided through said corner areas by GNSS positioning signals received by said first and second antennas; andsaid controller computing vector orientations of said extension boom section for guiding said extension boom section through said corner areas.
  • 8. The invention of claim 1, which includes: said field having a rectangular configuration with parallel sides having greater lengths than ends of said field and corners of said field;said irrigation equipment having a linear travel path between and generally parallel to said field sides;said boom assembly having a linear travel configuration with said extension boom section fully retracted; andsaid boom assembly having an end configuration with said extension boom section partially retracted and covering said field corners.
  • 9. The invention of claim 1, which includes: said controller and said boom drives being connected by one of a group comprising a computer area network (CAN) bus, a software protocol and a wireless connection.
  • 10. The invention of claim 1, which includes: said boom assembly having a main section drive tower on said main boom section, a steerable extension section drive tower on said extension boom section and an intermediate drive tower located in proximity to said hinged connection of said main and extension boom sections.
  • 11. A GNSS-based system for positioning a center-pivot irrigation boom assembly including a boom drive for rotating the boom assembly around a center-pivot water source, which system includes: a first GNSS antenna mounted on the boom assembly;a GNSS receiver mounted on the boom assembly and connected to the first GNSS antenna;a second GNSS antenna mounted on the boom assembly in spaced relation outwardly from said first GNSS antenna and connected to the receiver;said second GNSS antenna forming a baseline with said first GNSS antenna;a controller including a processor connected to and receiving input signals from said receiver, said processor being adapted for computing position solutions for said antennas using GNSS ranging signals received by said receiver;said processor being adapted for computing a vector projecting from said baseline using said position solutions;said controller being adapted for controlling the boom drive using said vector and said position solutions;said boom assembly including multiple spray nozzles;each said spray nozzle having a variable discharge rate; andsaid processor being adapted for selectively and individually controlling said spray nozzle discharge rates based on GNSS-defined positions of said antennas and vectors of said boom assembly.
  • 12. A GNSS-based control system for a center-pivot irrigation boom assembly with a main boom section, an extension boom section hingedly connected to the main boom section and boom drives mounted on said main and extension boom sections respectively, which control system includes: a first GNSS antenna mounted on the boom assembly;a GNSS receiver mounted on the boom assembly and connected to the first GNSS antenna;a second GNSS antenna mounted on the extension boom section and connected to the receiver;a controller including a processor connected to and receiving input signals from said receiver, said processor being adapted for computing position solutions for said antennas using the GNSS ranging signals received by said receiver; andsaid controller being adapted for controlling said extension boom section drives using said position solutions;a radio frequency (RF) correction signal receiver connected to said controller;an RTK base including a base GNSS antenna, a base RTK receiver connected to said base antenna and a base RTK transmitter connected to said base antenna;said RTK base being located in spaced relation from irrigation equipment and transmitting RTK correction signals to said correction signal receiver;said irrigation equipment having a center-pivot configuration with a central water source and said boom assembly main section having a proximate end pivotally connected to said water source;said main boom section having a distal end;said extension boom section having a proximate end hingedly connected to said main boom distal end and an extension boom section distal end;said first antenna being located at said hinged connection of said boom sections;said second antenna being located on said extension boom section in spaced relation from said extension boom section proximate end;boom drives comprising drive towers attached to said main and extension boom sections;said extension boom section drive tower being steerable;said processor steering said extension boom section drive tower;said boom assembly including multiple spray nozzles;each said spray nozzle having a variable discharge rate; andsaid processor being adapted for selectively and individually controlling said spray nozzle discharge rates based on GNSS-defined positions of said extension boom section.
  • 13. The invention of claim 12, which includes: said main boom section having a generally circular movement path;said extension boom section being movable through a range of movement relative to said main boom section from a fully-retracted angle of approximately 90° with said main boom section is adapted to be oriented perpendicularly to the sides of a generally square field to maximum partial extension angle of slightly less than 180° with said main boom section extending towards corners of said field.
  • 14. The invention of claim 13, which includes: said field having corner areas beyond a circular area covered by said main boom section;said extension boom section substantially covering said corner areas;said extension boom section being guided through said corner areas by GNSS positioning signals received by said first and second antennas; andsaid controller computing vector orientations of said extension boom section for guiding said extension boom section through said corner areas.
  • 15. The invention of claim 13, which includes: an obstacle located in said field in the path of said boom assembly;said controller being programmed with a GNSS-defined location of said obstacle;said extension boom section having a stop position in proximity to said obstacle; andsaid stop position being GNSS-defined.
  • 16. The invention of claim 13, which includes: said field having a rectangular configuration with parallel sides having greater lengths than ends of said field and corners of said field;said irrigation equipment having a linear travel path between and generally parallel to said field sides;said boom assembly having a linear travel configuration with said extension boom section fully retracted; andsaid boom assembly having an end configuration with said extension boom section partially retracted and covering said field corners.
  • 17. The invention of claim 12, which includes: said controller and said boom drives being connected by one of a group comprising a computer area network (CAN) bus, a software protocol and a wireless connection.
  • 18. The invention of claim 12, which includes: said boom assembly having a main section drive tower on said main boom section, a steerable extension section drive tower on said extension boom section and an intermediate drive tower located in proximity to said hinged connection of said main and extension boom sections.
  • 19. A method of guiding an articulated, center-pivot irrigation equipment boom assembly including: a main boom section with a proximate end connected to a center-pivot water source, a distal end and a main boom section drive; and an extension boom section having a proximate end hingedly connected to said main boom section distal end, a distal end and an extension boom section drive, which method includes the steps of: mounting a first GNSS antenna on the boom assembly;mounting a GNSS receiver on the boom assembly and connecting said receiver to said first GNSS antenna;mounting a second GNSS antenna on the extension boom section and connecting said second GNSS antenna to said receiver;providing a controller including a processor;connecting said processor to said receiver and providing input signals from said receiver to said processor;computing position solutions for said antennas with said receiver using GNSS ranging signals received by said receiver;controlling said extension section boom drive using said position solutions;providing said boom assembly with multiple spray nozzles;providing each said spray nozzle with a variable discharge rate;said processor selectively and individually controlling said spray nozzle discharge rates based on GNSS-defined positions of said extension boom section;servicing multiple fields with an RTK base;providing each said field with a respective GNSS-based control system controlling said irrigation equipment;wherein each said field has a generally elongated rectangular configuration; andsaid processor guiding said irrigation equipment along a linear travel path between innings of each said field wherein said extension boom section partially extends into corners of each said field.
  • 20. The method of claim 19, which includes the additional steps of: providing an RF correction signal receiver and connecting said correction signal receiver to said controller;providing said RTK base including a base GNSS antenna, a base RTK receiver and a base RTK transmitter;connecting said base RTK receiver to said base antenna;connecting said base RTK transmitter to said base antenna;locating said RTK base in spaced relation from said irrigation equipment; andtransmitting RTK correction signals to said correction signal receiver.
  • 21. The method of claim 19 wherein each said field has a generally square configuration with a contained circular coverage area for said main boom section and corners located outside of said circular coverage area, which method includes the additional steps of: locating said first antenna at the hinged connection between said main and extension boom sections;locating said second antenna in spaced relation outwardly along said extension boom section from said first antenna;providing said extension boom section with a steerable drive tower;moving said main boom section through a generally circular movement path;moving said extension boom section relative to said main boom section between a fully-retracted angle of approximately 90° with said main boom section extending towards a respective side and a maximum partial extension angle of slightly less than 180° with said main boom section oriented towards a respective corner;said controller computing vector orientations of said extension boom section; andsaid controller guiding said extension boom section through said corners using said vector orientations.
  • 22. The method of claim 19 wherein each said field includes an obstacle, which method includes the additional steps of: programming said processor with the location of said obstacle;said processor guiding said extension boom section through a modified travel path avoiding said obstacle.
  • 23. The method of claim 22, which includes the additional steps of: said processor guiding said extension boom section between opposite stop locations located along respective opposite sides of said obstacle; andsaid processor guiding said extension boom section through a path covering an area with a varying radius including a minimum radius opposite sides of said obstacle and a maximum radius diametrically opposed from said obstacle.
US Referenced Citations (416)
Number Name Date Kind
3585537 Rennick et al. Jun 1971 A
3596228 Reed, Jr. et al. Jul 1971 A
3727710 Sanders et al. Apr 1973 A
3815272 Marleau Jun 1974 A
3899028 Morris et al. Aug 1975 A
3987456 Gelin Oct 1976 A
4132272 Holloway et al. Jan 1979 A
4170776 MacDoran Oct 1979 A
4180133 Collogan et al. Dec 1979 A
4398162 Nagai Aug 1983 A
4453614 Allen et al. Jun 1984 A
4529990 Brunner Jul 1985 A
4637474 Leonard Jan 1987 A
4667203 Counselman, III May 1987 A
4689556 Cedrone Aug 1987 A
4694264 Owens et al. Sep 1987 A
4710775 Coe Dec 1987 A
4714435 Stipanuk et al. Dec 1987 A
4739448 Rowe et al. Apr 1988 A
4751512 Longaker Jun 1988 A
4769700 Pryor Sep 1988 A
4785463 Janc et al. Nov 1988 A
4802545 Nystuen et al. Feb 1989 A
4812991 Hatch Mar 1989 A
4813991 Hale Mar 1989 A
4858132 Holmquist Aug 1989 A
4864320 Munson et al. Sep 1989 A
4894662 Counselman Jan 1990 A
4916577 Dawkins Apr 1990 A
4918607 Wible Apr 1990 A
4963889 Hatch Oct 1990 A
5031704 Fleischer et al. Jul 1991 A
5100229 Lundberg et al. Mar 1992 A
5134407 Lorenz et al. Jul 1992 A
5148179 Allison Sep 1992 A
5152347 Miller Oct 1992 A
5155490 Spradley et al. Oct 1992 A
5155493 Thursby et al. Oct 1992 A
5156219 Schmidt et al. Oct 1992 A
5165109 Han et al. Nov 1992 A
5173715 Rodal et al. Dec 1992 A
5177489 Hatch Jan 1993 A
5185610 Ward et al. Feb 1993 A
5191351 Hofer et al. Mar 1993 A
5202829 Geier Apr 1993 A
5207239 Schwitalia May 1993 A
5239669 Mason et al. Aug 1993 A
5255756 Follmer et al. Oct 1993 A
5268695 Dentinger et al. Dec 1993 A
5293170 Lorenz et al. Mar 1994 A
5294970 Dornbusch et al. Mar 1994 A
5296861 Knight Mar 1994 A
5311149 Wagner et al. May 1994 A
5323322 Mueller et al. Jun 1994 A
5334987 Teach Aug 1994 A
5343209 Sennott et al. Aug 1994 A
5345245 Ishikawa et al. Sep 1994 A
5359332 Allison et al. Oct 1994 A
5361212 Class et al. Nov 1994 A
5365447 Dennis Nov 1994 A
5369589 Steiner Nov 1994 A
5375059 Kyrtsos et al. Dec 1994 A
5390124 Kyrtsos Feb 1995 A
5390125 Sennott et al. Feb 1995 A
5390207 Fenton et al. Feb 1995 A
5416712 Geier et al. May 1995 A
5442363 Remondi Aug 1995 A
5444453 Lalezari Aug 1995 A
5451964 Babu Sep 1995 A
5467282 Dennis Nov 1995 A
5471217 Hatch et al. Nov 1995 A
5476147 Fixemer Dec 1995 A
5477228 Tiwari et al. Dec 1995 A
5477458 Loomis Dec 1995 A
5490073 Kyrtsos Feb 1996 A
5491636 Robertson Feb 1996 A
5495257 Loomis Feb 1996 A
5504482 Schreder Apr 1996 A
5511623 Frasier Apr 1996 A
5519620 Talbot et al. May 1996 A
5521610 Rodal May 1996 A
5523761 Gildea Jun 1996 A
5534875 Diefes et al. Jul 1996 A
5543804 Buchler et al. Aug 1996 A
5546093 Gudat et al. Aug 1996 A
5548293 Cohen Aug 1996 A
5561432 Knight Oct 1996 A
5563786 Torii Oct 1996 A
5568152 Janky et al. Oct 1996 A
5568162 Samsel et al. Oct 1996 A
5583513 Cohen Dec 1996 A
5589835 Gildea et al. Dec 1996 A
5592382 Colley Jan 1997 A
5596328 Stangeland Jan 1997 A
5600670 Turney Feb 1997 A
5604506 Rodal Feb 1997 A
5608393 Hartman Mar 1997 A
5610522 Locatelli et al. Mar 1997 A
5610616 Vallot et al. Mar 1997 A
5610845 Slabinski Mar 1997 A
5612883 Shaffer et al. Mar 1997 A
5615116 Gudat et al. Mar 1997 A
5617100 Akiyoshi et al. Apr 1997 A
5617317 Ignagni Apr 1997 A
5621646 Enge et al. Apr 1997 A
5638077 Martin Jun 1997 A
5644139 Allen et al. Jul 1997 A
5664632 Frasier Sep 1997 A
5673491 Brenna et al. Oct 1997 A
5680140 Loomis Oct 1997 A
5684696 Rao et al. Nov 1997 A
5706015 Chen et al. Jan 1998 A
5717593 Gvili Feb 1998 A
5725230 Walkup Mar 1998 A
5731786 Abraham et al. Mar 1998 A
5739785 Allison et al. Apr 1998 A
5757316 Buchler May 1998 A
5765123 Nimura et al. Jun 1998 A
5777578 Chang et al. Jul 1998 A
5810095 Orbach et al. Sep 1998 A
5828336 Yunck et al. Oct 1998 A
5838562 Gudat et al. Nov 1998 A
5854987 Sekine et al. Dec 1998 A
5862501 Talbot et al. Jan 1999 A
5864315 Welles et al. Jan 1999 A
5864318 Cosenza et al. Jan 1999 A
5875408 Bendett et al. Feb 1999 A
5877725 Kalafus Mar 1999 A
5890091 Talbot et al. Mar 1999 A
5899957 Loomis May 1999 A
5906645 Kagawa et al. May 1999 A
5912798 Chu Jun 1999 A
5914685 Kozlov et al. Jun 1999 A
5917448 Mickelson Jun 1999 A
5918558 Susag Jul 1999 A
5919242 Greatline et al. Jul 1999 A
5923270 Sampo et al. Jul 1999 A
5926079 Heine et al. Jul 1999 A
5927603 McNabb Jul 1999 A
5928309 Korver et al. Jul 1999 A
5929721 Munn et al. Jul 1999 A
5933110 Tang Aug 1999 A
5935183 Sahm et al. Aug 1999 A
5936573 Smith Aug 1999 A
5940026 Popeck Aug 1999 A
5941317 Mansur Aug 1999 A
5943008 Van Dusseldorp Aug 1999 A
5944770 Enge et al. Aug 1999 A
5945917 Harry Aug 1999 A
5949371 Nichols Sep 1999 A
5955973 Anderson Sep 1999 A
5956250 Gudat et al. Sep 1999 A
5969670 Kalafus et al. Oct 1999 A
5987383 Keller et al. Nov 1999 A
6014101 Loomis Jan 2000 A
6014608 Seo Jan 2000 A
6018313 Engelmayer et al. Jan 2000 A
6023239 Kovach Feb 2000 A
6052647 Parkinson et al. Apr 2000 A
6055477 McBurney et al. Apr 2000 A
6057800 Yang et al. May 2000 A
6061390 Meehan et al. May 2000 A
6061632 Dreier May 2000 A
6062317 Gharsalli May 2000 A
6069583 Silvestrin et al. May 2000 A
6076612 Carr et al. Jun 2000 A
6081171 Ella Jun 2000 A
6100842 Dreier et al. Aug 2000 A
6104978 Harrison et al. Aug 2000 A
6122595 Varley et al. Sep 2000 A
6128574 Diekhans Oct 2000 A
6144335 Rogers et al. Nov 2000 A
6191730 Nelson, Jr. Feb 2001 B1
6191733 Dizchavez Feb 2001 B1
6198430 Hwang et al. Mar 2001 B1
6198992 Winslow Mar 2001 B1
6199000 Keller et al. Mar 2001 B1
6205401 Pickhard et al. Mar 2001 B1
6215828 Signell et al. Apr 2001 B1
6229479 Kozlov et al. May 2001 B1
6230097 Dance et al. May 2001 B1
6233511 Berger et al. May 2001 B1
6236916 Staub et al. May 2001 B1
6236924 Motz May 2001 B1
6253160 Hanseder Jun 2001 B1
6256583 Sutton Jul 2001 B1
6259398 Riley Jul 2001 B1
6266595 Greatline et al. Jul 2001 B1
6285320 Olster et al. Sep 2001 B1
6290151 Barker et al. Sep 2001 B1
6292132 Wilson Sep 2001 B1
6307505 Green Oct 2001 B1
6313788 Wilson Nov 2001 B1
6314348 Winslow Nov 2001 B1
6325684 Knight Dec 2001 B1
6336066 Pellenc et al. Jan 2002 B1
6345231 Quincke Feb 2002 B2
6356602 Rodal et al. Mar 2002 B1
6377889 Soest Apr 2002 B1
6380888 Kucik Apr 2002 B1
6389345 Phelps May 2002 B2
6392589 Rogers et al. May 2002 B1
6397147 Whitehead May 2002 B1
6415229 Diekhans Jul 2002 B1
6418031 Archambeault Jul 2002 B1
6421003 Riley et al. Jul 2002 B1
6424915 Fukuda et al. Jul 2002 B1
6431576 Viaud et al. Aug 2002 B1
6434462 Bevly et al. Aug 2002 B1
6445983 Dickson et al. Sep 2002 B1
6445990 Manring Sep 2002 B1
6449558 Small Sep 2002 B1
6463091 Zhodzicshsky et al. Oct 2002 B1
6463374 Keller et al. Oct 2002 B1
6466871 Reisman et al. Oct 2002 B1
6469663 Whitehead et al. Oct 2002 B1
6484097 Fuchs et al. Nov 2002 B2
6501422 Nichols Dec 2002 B1
6512992 Fowell et al. Jan 2003 B1
6515619 McKay, Jr. Feb 2003 B1
6516271 Upadhyaya et al. Feb 2003 B2
6539303 McClure et al. Mar 2003 B2
6542077 Joao Apr 2003 B2
6549835 Deguchi Apr 2003 B2
6553299 Keller et al. Apr 2003 B1
6553300 Ma et al. Apr 2003 B2
6553311 Ahearn et al. Apr 2003 B2
6570534 Cohen et al. May 2003 B2
6577952 Geier et al. Jun 2003 B2
6587761 Kumar Jul 2003 B2
6606542 Hauwiller et al. Aug 2003 B2
6611228 Toda et al. Aug 2003 B2
6611754 Klein Aug 2003 B2
6611755 Coffee et al. Aug 2003 B1
6622091 Perlmutter et al. Sep 2003 B2
6631394 Ronkka et al. Oct 2003 B1
6631916 Miller Oct 2003 B1
6643576 O'Connor et al. Nov 2003 B1
6646603 Dooley et al. Nov 2003 B2
6657875 Zeng et al. Dec 2003 B1
6671587 Hrovat et al. Dec 2003 B2
6686878 Lange Feb 2004 B1
6688403 Bernhardt et al. Feb 2004 B2
6703973 Nichols Mar 2004 B1
6711501 McClure et al. Mar 2004 B2
6721638 Zeitler Apr 2004 B2
6732024 Wilhelm Rekow et al. May 2004 B2
6744404 Whitehead et al. Jun 2004 B1
6754584 Pinto et al. Jun 2004 B2
6774843 Takahashi Aug 2004 B2
6792380 Toda Sep 2004 B2
6819269 Flick Nov 2004 B2
6822314 Beasom Nov 2004 B2
6865465 McClure Mar 2005 B2
6865484 Miyasaka et al. Mar 2005 B2
6879283 Bird et al. Apr 2005 B1
6900992 Kelly et al. May 2005 B2
6922635 Rorabaugh Jul 2005 B2
6923390 Barker Aug 2005 B1
6928339 Barker Aug 2005 B2
6931233 Tso et al. Aug 2005 B1
6961018 Heppe et al. Nov 2005 B2
6967538 Woo Nov 2005 B2
6990399 Hrazdera et al. Jan 2006 B2
7006032 King et al. Feb 2006 B2
7026982 Toda et al. Apr 2006 B2
7027918 Zimmerman et al. Apr 2006 B2
7031725 Rorabaugh Apr 2006 B2
7089099 Shostak et al. Aug 2006 B2
7142956 Heiniger et al. Nov 2006 B2
7155335 Rennels Dec 2006 B2
7162348 McClure et al. Jan 2007 B2
7191061 McKay et al. Mar 2007 B2
7221314 Brabec et al. May 2007 B2
7231290 Steichen et al. Jun 2007 B2
7248211 Hatch et al. Jul 2007 B2
7271766 Zimmerman et al. Sep 2007 B2
7277784 Weiss Oct 2007 B2
7292186 Miller et al. Nov 2007 B2
7324915 Altmann Jan 2008 B2
7358896 Gradincic et al. Apr 2008 B2
7373231 McClure et al. May 2008 B2
7388539 Whitehead et al. Jun 2008 B2
7395769 Jensen Jul 2008 B2
7428259 Wang et al. Sep 2008 B2
7437230 McClure et al. Oct 2008 B2
7451030 Eglington et al. Nov 2008 B2
7479900 Horstemeyer Jan 2009 B2
7505848 Flann et al. Mar 2009 B2
7522099 Zhodzishsky et al. Apr 2009 B2
7522100 Yang et al. Apr 2009 B2
7571029 Dai et al. Aug 2009 B2
7689354 Heiniger et al. Mar 2010 B2
20030014171 Ma et al. Jan 2003 A1
20030093210 Kondo et al. May 2003 A1
20030187560 Keller et al. Oct 2003 A1
20030208319 Ell et al. Nov 2003 A1
20040039514 Steichen et al. Feb 2004 A1
20040212533 Whitehead et al. Oct 2004 A1
20050080559 Ishibashi et al. Apr 2005 A1
20050225955 Grebenkemper et al. Oct 2005 A1
20050265494 Goodlings Dec 2005 A1
20060027677 Abts Feb 2006 A1
20060031664 Wilson et al. Feb 2006 A1
20060167600 Nelson et al. Jul 2006 A1
20060206246 Walker Sep 2006 A1
20060215739 Williamson et al. Sep 2006 A1
20070001035 Barker Jan 2007 A1
20070078570 Dai et al. Apr 2007 A1
20070088447 Stothert et al. Apr 2007 A1
20070121708 Simpson May 2007 A1
20070205940 Yang et al. Sep 2007 A1
20070285308 Bauregger et al. Dec 2007 A1
20080129586 Martin Jun 2008 A1
20080204312 Euler Aug 2008 A1
20090171583 DiEsposti Jul 2009 A1
20090174597 DiLellio et al. Jul 2009 A1
20090174622 Kanou Jul 2009 A1
20090177395 Stelpstra Jul 2009 A1
20090177399 Park et al. Jul 2009 A1
20090259397 Stanton Oct 2009 A1
20090259707 Martin et al. Oct 2009 A1
20090262014 DiEsposti Oct 2009 A1
20090262018 Vasilyev et al. Oct 2009 A1
20090262974 Lithopoulos Oct 2009 A1
20090265054 Basnayake Oct 2009 A1
20090265101 Jow Oct 2009 A1
20090265104 Shroff Oct 2009 A1
20090273372 Brenner Nov 2009 A1
20090273513 Huang Nov 2009 A1
20090274079 Bhatia et al. Nov 2009 A1
20090274113 Katz Nov 2009 A1
20090276155 Jeerage et al. Nov 2009 A1
20090295633 Pinto et al. Dec 2009 A1
20090295634 Yu et al. Dec 2009 A1
20090299550 Baker Dec 2009 A1
20090322597 Medina Herrero et al. Dec 2009 A1
20090322598 Fly et al. Dec 2009 A1
20090322600 Whitehead et al. Dec 2009 A1
20090322601 Ladd et al. Dec 2009 A1
20090322606 Gronemeyer Dec 2009 A1
20090326809 Colley et al. Dec 2009 A1
20100013703 Tekawy et al. Jan 2010 A1
20100026569 Amidi Feb 2010 A1
20100030470 Wang et al. Feb 2010 A1
20100039316 Gronemeyer et al. Feb 2010 A1
20100039318 Kmiecik Feb 2010 A1
20100039320 Boyer et al. Feb 2010 A1
20100039321 Abraham Feb 2010 A1
20100060518 Bar-Sever et al. Mar 2010 A1
20100063649 Wu Mar 2010 A1
20100084147 Aral Apr 2010 A1
20100085249 Ferguson et al. Apr 2010 A1
20100085253 Ferguson et al. Apr 2010 A1
20100103033 Roh Apr 2010 A1
20100103034 Tobe et al. Apr 2010 A1
20100103038 Yeh et al. Apr 2010 A1
20100103040 Broadbent Apr 2010 A1
20100106414 Whitehead Apr 2010 A1
20100106445 Kondoh Apr 2010 A1
20100109944 Whitehead et al. May 2010 A1
20100109945 Roh May 2010 A1
20100109947 Rintanen May 2010 A1
20100109948 Razoumov et al. May 2010 A1
20100109950 Roh May 2010 A1
20100111372 Zheng et al. May 2010 A1
20100114483 Heo et al. May 2010 A1
20100117894 Velde et al. May 2010 A1
20100117899 Papadimitratos et al. May 2010 A1
20100117900 van Diggelen et al. May 2010 A1
20100121577 Zhang et al. May 2010 A1
20100124210 Lo May 2010 A1
20100124212 Lo May 2010 A1
20100134354 Lennen Jun 2010 A1
20100149025 Meyers et al. Jun 2010 A1
20100149030 Verma et al. Jun 2010 A1
20100149033 Abraham Jun 2010 A1
20100149034 Chen Jun 2010 A1
20100149037 Cho Jun 2010 A1
20100150284 Fielder et al. Jun 2010 A1
20100152949 Nunan et al. Jun 2010 A1
20100156709 Zhang et al. Jun 2010 A1
20100156712 Pisz et al. Jun 2010 A1
20100156718 Chen Jun 2010 A1
20100159943 Salmon Jun 2010 A1
20100161179 McClure et al. Jun 2010 A1
20100161211 Chang Jun 2010 A1
20100161568 Xiao Jun 2010 A1
20100171660 Shyr et al. Jul 2010 A1
20100171757 Melamed Jul 2010 A1
20100185364 McClure Jul 2010 A1
20100185366 Heiniger et al. Jul 2010 A1
20100185389 Woodard Jul 2010 A1
20100188285 Collins Jul 2010 A1
20100188286 Bickerstaff et al. Jul 2010 A1
20100189163 Burgi et al. Jul 2010 A1
20100207811 Lackey Aug 2010 A1
20100210206 Young Aug 2010 A1
20100211248 Craig et al. Aug 2010 A1
20100211315 Toda Aug 2010 A1
20100211316 DaSilva Aug 2010 A1
20100220004 Malkos et al. Sep 2010 A1
20100220008 Conover et al. Sep 2010 A1
20100222076 Poon et al. Sep 2010 A1
20100225537 Abraham Sep 2010 A1
20100228408 Ford Sep 2010 A1
20100228480 Lithgow et al. Sep 2010 A1
20100231443 Whitehead Sep 2010 A1
20100231446 Marshall et al. Sep 2010 A1
20100232351 Chansarkar et al. Sep 2010 A1
20100235093 Chang Sep 2010 A1
20100238976 Young Sep 2010 A1
20100241347 King et al. Sep 2010 A1
20100241353 Park Sep 2010 A1
20100241441 Page et al. Sep 2010 A1
20100241864 Kelley et al. Sep 2010 A1
Foreign Referenced Citations (12)
Number Date Country
07244150 Sep 1995 JP
WO9836288 Aug 1998 WO
WO0024239 May 2000 WO
WO03019430 Mar 2003 WO
WO2005011938 Dec 2005 WO
WO2009006618 May 2009 WO
WO-2009082745 Jul 2009 WO
WO2009012658 Oct 2009 WO
WO2009014863 Dec 2009 WO
WO-2010005945 Jan 2010 WO
WO-2010104782 Sep 2010 WO
WO-2011014431 Feb 2011 WO
Non-Patent Literature Citations (38)
Entry
Parkinson, Bradford W., et al., “Global Positioning System: Theory and Applications, vol. II”, Bradford W. Parkinson and James J. Spiker, Jr., eds., Global Postioning System: Theory and Applicaitons, vol. II, 1995, AIAA, Reston, VA, USA, pp. 3-50, (1995),3-50.
“Orthman Manufacturing Co., www.orthman.com/htm;guidance.htm”, 2004, regarding the “Tracer Quick-Hitch”.
Lin, Dai et al., “Real-time Attitude Determination fro Microsatellite by Lamda Method Combined with Kalman Filtering”, A Collection fof the 22nd AIAA International Communications Satellite Systems Conference and Exhibit Technical Paers vol. 1, Monetrey, California American Institute of Aeronautics and Astronautics, Inc., (May 2004),136-143.
Xu, Jiangning et al., “An EHW Architecture for Real-Time GPS Attitude Determination Based on Parallel Genetic Algorithm”, The Computer SocietyProceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (EH'02), (2002).
Han, Shaowel et al., “Single-Epoch Ambiguity Resolution for Real-Time GPS Attitude Determination with the Aid of One-Dimensional Optical Fiber Gyro”, GPS Solutions, vol. 3, No. 1, pp. 5-12 (1999) John Wiley & Sons, Inc.
Park, Chansik et al., “Integer Ambiguity Resolution for GPS Based Attitude Determination System”, SICE Jul. 29-31, 1998, Chiba, 1115-1120.
Last, J. D., et al., “Effect of skywave interference on coverage of radiobeacon DGPS stations”, IEEE Proc.—Radar, Sonar Navig., vol. 144, No. 3, Jun. 1997, pp. 163-168.
“International Search Report and Written Opinion”, PCT/US2004/015678, filed May 17, 2004, Jun. 21, 2005.
“ISO”, 11783 Part 7 Draft Amendment 1 Annex, Paragraphs B.6 and B.7.ISO 11783-7 2004 DAM1, ISO: Mar. 8, 2004.
Kaplan, E D., “Understanding GPS: Principles and Applications”, Artech House, MA, 1996.
Irsigler, M et al., “PPL Tracking Performance in the Presence of Oscillator Phase Noise”, GPS Solutions, vol. 5, No. 4, pp. 45-57 (2002).
Ward, Phillip W., “Performance Comparisons Between FLL, PLL and a Novel FLL-Assisted-PLL Carrier Tracking Loop Under RF Interference Conditions”, 11th Int. Tech Meeting of the Satellite Division of the U.S. Inst. of Navigation, Nashville, TN, Sep. 15-18, 1998, 783-795.
Bevly, David M., “Comparison of INS v. Carrier-Phase DGPS for Attitude Determination in the Control of Off-Road Vehicles”, ION 55th Annual Meeting; Jun. 28-30, 1999; Cambridge, Massachusetts; pp. 497-504.
Keicher, R. et al., “Automatic Guidance for Agricultural Vehicles in Europe”, Computers and Electronics in Agriculture, vol. 25, (Jan. 2000),169-194.
Takac, Frank et al., “SmartRTK: A Novel Method of Processing Standardised RTCM Network RTK Information for High Precision Positioning”, Proceedings of ENC GNSS 2008, Toulouse, France,(Apr. 22, 2008).
“International Search Report”, PCT/US09/49776, (Aug. 11, 2009).
“International Search Report”, PCT/AU/2008/000002, (Feb. 28, 2008).
“International Search Report”, PCT/US09/33693, (Mar. 30, 2009).
“International Search Report”, PCT/US09/039686, (May 26, 2009).
“International Search Report,”, PCT/US09/34376, (Nov. 2, 2009).
“International Search Report”, PCT/US09/067693, (Jan. 26, 2010).
“International Search Report and Written Opinion”, PCT/US10/21334, (Mar. 12, 2010).
Rho, Hyundho et al., “Dual-Frequency GPS Precise Point Positioning with WADGPS Corrections”, [retrieved on May 18, 2010]. Retrieved from the Internet: URL: http://gauss.gge.unb.ca/papers.pdf/iongnss2005.rho.wadgps.pdf (Jul. 12, 2006).
“Eurocontrol, Pegasus Technical Notes on SBAS”, report [online], Dec. 7, 2004 [retrieved on May 18, 2010], Retrieved from the Internet: http://www.icao.int/icao/en/ro/nacc/meetings/2004/gnss/documentation/Pegasus/tn.pdf> (Dec. 7, 2004), p. 89 paras [0001]-[0004].
“ARINC Engineering Services, Interface Specification IS-GPS-200, Revision D”, Online [retrieved on May 18, 2010]. Retrieved from the Internet;<URL: http://www.navcen.uscg.gov/gps/geninfo/IS-GPS-200D.pdf>, Dec. 7, 2004), p. 168 para [0001].
Schaer, et al., “Determination and Use of GPS Differential Code Bias Values”, Presentation [online]. Revtrieved May 18, 2010. Retrieved from the internet: <http://nng.esoc.esa.de/ws2006/REPR2.pdf>, (May 8, 2006).
“International Search Report”, PCT/US10/26509, (Apr. 20, 2010).
“International Search Report”, PCT/US09/33567, (Feb. 9, 2009).
“International Search Report and Written Opinion”, PCT/IB2008/003796 (Jul. 15, 2009).
“International Search Report/ Written Opinion”, PCT/US09/63594.
“International Search Report”, PCT/US09/60668.
“International Search Report and Written Opinion”, International Searching Authortiy, PCT/US08/88070, Feb. 9, 2009.
“ISR Notification & Written Opinion”, PCT/US10/26509, (Apr. 20, 2010),1-7.
“Notification Concerning Transmittal of International Report on Patentability (PCT)”, PCT/US2009/049776, (Jan. 20, 2011).
“Notification of Transmittal of InternatinalPrelim. Report of Patentability”, International Application No. PCT/US09/039686, (Oct. 21, 2010).
“International Search Report and Written Opinion”, PCT/US2010/043094, (Sep. 17, 2010).
“Notification of Publication of International Application”, WO 2011/014431, (Feb. 3, 2011).
“International Search Report and Written Opinion”, PCT/US08/81727, (Dec. 23, 2008).
Related Publications (1)
Number Date Country
20110022238 A1 Jan 2011 US