GNSS control system and method

Information

  • Patent Grant
  • 7885745
  • Patent Number
    7,885,745
  • Date Filed
    Wednesday, January 31, 2007
    17 years ago
  • Date Issued
    Tuesday, February 8, 2011
    13 years ago
Abstract
A GNSS control system and method are provided for guiding, navigating and controlling a motive component, such as a tractor, and a working component, such as an implement. A vector position/heading sensor is mounted on the motive component and includes multiple antennas connected to a GNSS receiver. The sensor also includes inertial sensors and a direction sensor, which are connected to a microprocessor of a steering control module (SCM). The SCM can be hot swapped among different vehicles and can interface with their respective original, onboard control systems. The implement can be provided with an optional GNSS antenna, receiver or both, and can be guided independently of the motive component. The SCM can be preprogrammed to guide the vehicle over a field in operating modes including straight line, contour, concentric circle and point+direction. A spray boom with multiple nozzles can be installed on the implement and the nozzles can be independently activated based upon a location of the implement as determined from a log of GNSS data.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates generally to GNSS applications, including vehicle guidance and navigation.


2. Description of the Related Art


The use of a Global Navigation Satellite System (GNSS) for guidance, navigation and machine control has significantly advanced these fields and enabled a number of applications, including many in agriculture, transportation and other industries. GNSS systems include the Global Positioning System (GPS) and other satellite-based systems. Various GNSS receivers are available for aviation, marine and terrestrial vehicles. The GNSS information provided by such receivers can be processed and used for navigation. In more sophisticated systems, vehicle guidance can be automatically controlled using such information. For example, a predetermined travel or flight path can be programmed into an on-board computer. The vehicle guidance system can automatically maintain appropriate course parameters, such as course, heading, speed, altitude, etc. Control system, feedback theory and signal filtering techniques can be used to interactively anticipate (with higher order systems) and compensate for course deviations and navigation errors. Such sophisticated autopilot and automatic steering systems tend to involve powerful computers and complex flight and steering controls integrated with manual controls.


Accurate vehicle and equipment guidance is an important objective in agriculture. For example, cultivating, tilling, planting, spraying, fertilizing, harvesting and other farming operations typically involve specialized equipment and materials, which are operated and applied by making multiple passes over cultivated fields. Ideally, the equipment is guided through accurately-spaced passes or swaths, the spacing of which is determined by the swath width of the equipment. Gaps and overlaps can occur when operators deviate from the ideal guide paths, resulting in under-coverage and over-coverage respectively. Such gaps and overlaps are detrimental to agricultural operations and can reduce crop yields. For example, gaps in coverage reduce the effective areas of fields being cultivated and treated. Overall crop production may suffer as a result. Overlaps in coverage tend to be inefficient and wasteful of materials, such as fuel, fertilizer, pesticides, herbicides, seed, etc. Another potential problem with overlapping coverage relates to the potentially crop-damaging effects of double applications of certain agricultural chemicals.


Previous mechanical systems for assisting with the guidance of agricultural equipment include foam markers, which deposit foam along the swath edges. The foam lines produced by foam markers provide operators with visible reference lines on which subsequent passes can be aligned. However, foam marking systems consume foam-making materials and provide only temporary foam marks. Moreover, guiding along such foam lines requires the operators to visually estimate the locations of the implement ends relative to the foam lines. Implements such as spray booms with effective widths of more than 50 feet are in common use, thus increasing the difficulties associated with visually aligning distant, elevated boom ends with foam lines on the ground.


GNSS technology advanced the field of agricultural guidance by enabling reliable, accurate systems, which are relatively easy to use. GNSS guidance systems are adapted for displaying directional guidance information to assist operators with manually steering the vehicles. For example, the OUTBACK S™ steering guidance system, which is available from Hemisphere GPS LLC of Hiawatha, Kans. and is covered by U.S. Pat. No. 6,539,303 and No. 6,711,501, which are incorporated herein by reference, includes an on-board computer capable of storing various straight-line and curved (“contour”) patterns. An advantage of this system is its ability to retain field-specific cultivating, planting, spraying, fertilizing, harvesting and other patterns in memory. This feature enables operators to accurately retrace such patterns. Another advantage relates to the ability to interrupt operations for subsequent resumption by referring to system-generated logs of previously treated areas.


The OUTBACK S™ GNSS guidance system provides the equipment operators with real-time visual indications of heading error with a steering guide display and crosstrack error with a current position display. They respectively provide steering correction information and an indication of the equipment position relative to a predetermined course. Operators can accurately drive patterns in various weather and light conditions, including nighttime, by concentrating primarily on such visual displays. Significant improvements in steering accuracy and complete field coverage are possible with this system.


Another type of GNSS vehicle guidance equipment automatically steers the vehicle along all or part of its travel path and can also control an agricultural procedure or operation, such as spraying, planting, tilling, harvesting, etc. Examples of such equipment are shown in U.S. Pat. No. 7,142,956, which is incorporated herein by reference. U.S. Patent Application Publication No. 2004/0186644 shows satellite-based vehicle guidance control in straight and contour modes, and is also incorporated herein by reference.


GNSS guidance systems and equipment are distinguished by their vehicle path configuration capabilities. Initially, straight-line AB (i.e. between points A and B) guidance consisted of multiple, parallel straight lines, which were separated by the swath widths of the vehicles. Straight line AB guidance is ideally suited for rectangular fields and continuously-repeating, parallel swathing.


Non-rectangular and terraced fields typically require curvilinear vehicle paths that follow the field perimeters and the terraced elevation contours. Contour guidance systems and methods were developed to accommodate such field conditions using GNSS coordinates to define curvilinear vehicle paths. See, for example, Korver U.S. Pat. No. 5,928,309. GNSS positions can be logged on-the-fly at intervals of, for example, 0.20 seconds. Contour guidance can be accomplished by computer-generating each subsequent pass from the GNSS-defined previous pass and a user-entered swath width.


Another type of GNSS contour guidance equipment outputs guidance signals relative to the edges of all previously logged swaths. Such logged swaths typically correspond to field areas where operations, e.g. spraying, have already been carried out.


A disadvantage with some of the previous GNSS guidance techniques relates to cumulative error propagation, which can result from machine or operator bias towards one side or the other of the vehicle path, or sloping terrain, which can reduce the effective width (as determined in a horizontal plane) of the implement. Significant cumulative guidance errors in the form of overlaps and skips can result from such biases being repeated over an entire field. Another disadvantage with some of the prior art guidance systems relates to their relatively heavy computer processing overhead demands. Multi-tasking guidance and other automated features, such as steering, tended to require relatively powerful on-board computers programmed with sophisticated software and equipped with large capacity memory devices, all of which tended to increase costs and complexity. Accordingly, an objective in automated vehicle guidance is to minimize the use of computer overhead, e.g. by actively guiding to a relatively small subset of the entire logged GNSS position database.


An objective in agricultural guidance is to accommodate both straight-line and contour field conditions. Another objective is to optimize track patterns to accommodate complex field configurations and terracing conditions whereby consistent swathing coverage can be achieved with minimum travel time and distance. Another objective is to accommodate sloping terrain with appropriate adjustments “on-the-fly”. Still further, the system should be adapted for “desktop” preplanning and saving vehicle track patterns covering multiple fields for consistent coverage and repeatability. Automatic steering should be accommodated for “hands-off” operation, taking into account vehicle operating parameters, such as turning radii, speeds, swath widths, etc. Appropriate machine control functions, such as implement steering and spray boom control, should be accommodated.


Heretofore there has not been available a GNSS guidance and control system and method with the advantages and features of the present invention.


SUMMARY OF THE INVENTION

In the practice of the present invention, a GNSS system and method are provided for guiding and controlling equipment, such as agricultural equipment. The equipment can include a motive component, such as a tractor or other piece of equipment, which is designed to pull, push or otherwise transport a working component, such as a ground-working implement, in an articulated equipment system. Control can be based on GNSS positional data and various types of DGPS (Differential GPS) controls can be used, including WAAS and other suitable error-correction functionalities. A relatively simple configuration with a single DGPS antenna can be used, or multiple antennas can be used for additional information corresponding to machine orientation.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a GNSS-based control system embodying the present invention.



FIG. 2A is a diagram of a field with a sloping area and guide paths adjusted to accommodate the vehicle effective with corresponding to the vehicle tilt in the sloping area.



FIG. 2B is another diagram of the field with the sloping area, showing the guide paths.



FIG. 3 is a rear elevational view of the vehicle and implement, shown on flat ground.



FIG. 4 is a rear elevational view of the vehicle and implement, shown tilted on sloping ground.



FIG. 5 is a diagram of a field with a center pivot irrigation system, showing concentric circle guide paths.



FIG. 6 is a diagram of a field, showing point (A)+direction guide paths.



FIG. 7 is a flowchart of a GNSS control method according to an aspect of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. Introduction and Environment


As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure.


Certain terminology will be used in the following description for convenience in reference only and will not be limiting. For example, up, down, front, back, right and left refer to the invention as oriented in the view being referred to. The words “inwardly” and “outwardly” refer to directions toward and away from, respectively, the geometric center of the embodiment being described and designated parts thereof. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.


II. Preferred Embodiment System 2.


Referring to the drawings in more detail, the reference numeral 2 generally designates a GNSS control system embodying the present invention. Without limitation on the generality of useful applications of the control system 2, a motive component 6 connected to a working component 8 through an optional articulated connection or hitch 10 is shown (collectively a vehicle 4). Also by way of example, the motive component 6 can comprise a tractor and the working component 8 can comprise a ground-working implement. However, the position control system 2 can be applied to other equipment configurations for a wide range of other applications. Such applications include equipment and components used in road construction, road maintenance, earthworking, mining, transportation, industry, manufacturing, etc.


The control system 2 can be implemented with a tractor 6 including a microprocessor 12 connected to a graphical user interface (GUI) 14, which can be original equipment manufacture (OEM) general-purpose components, or special-purpose for the system 2. The tractor 6 also includes a steering wheel 16 for operating an hydraulic steering system 18. A position sensor 20 is connected to the steering wheel 16 and provides an output corresponding to its position. The components can be connected and external communication can be provided by suitable networks, buses, hardwired and wireless connections, such as CAN 58 (shown), serial and VT.


An optional steering control module (SCM) 22 includes a microprocessor 24 and a GUI 26, which can be preprogrammed and preconfigured for interfacing with the corresponding OEM components of the tractor 6. The SCM components can be removable and portable for use on multiple tractors 6, e.g. by “hot-swapping” the SCM 22 among various tractors 6 in a particular fleet. Such hot-swapping techniques can be particularly cost-effective in agricultural operations where application-specific equipment (e.g., harvesting combines, planters, sprayers, etc.) is idle much of the time and equipment usage tends to be somewhat seasonal. Alternatively, the microprocessors 12, 24 and the GUIs 14, 26 can be combined.


A position/heading (vector) sensor 28 can be mounted externally of the tractor 6, e.g. on its roof, and includes a pair of antennas 30 connected to a GNSS receiver 32. The GNSS receivers disclosed herein can be adapted for various satellite navigational systems, and can utilize a variety of Satellite Based Augmentation Systems (SBAS). Technology is also available for continuing operation through satellite signal interruptions, and can be utilized with the system 2. The antennas 30 can be horizontally aligned transversely with respect to a direction of travel of the tractor 6, i.e. parallel to its X axis. The relative positions of the antennas 30 with respect to each other can thus be processed for determining yaw, i.e. rotation with respect to the vertical Z axis. The sensor 28 also includes a direction sensor 34 and inertial sensors 36, 38 and 40 for detecting and measuring inertial movement with respect to the X, Y and Z axes corresponding to yaw, roll and pitch movements in six degrees of freedom. A tilt sensor 42 provides an output signal corresponding to a tilt or roll of the system 2. A bubble level 44 can be mounted in the tractor 6 for calibrating the tilt sensor 42, i.e. with no signal corresponding to the tractor 6 being level. Signals from the receiver 32 and the sensors 34, 36, 38, 40 and 42 are received and processed by either or both of the microprocessors 12, 24, depending upon how the system 2 is configured and programmed.


The implement (working component) 8 can optionally be equipped with an implement GNSS receiver 46 connected to an implement microprocessor 48 for steering the implement 8 independently of the tractor 6, for example with an optional articulated connection 10. Examples of such an articulated connection and an implement steering system are described in U.S. Pat. No. 6,865,465 and No. 7,162,348, which are incorporated herein by reference. The implement 8 can comprise any of a wide range of suitable implements, such as planting, cultivating, harvesting and spraying equipment. For example, spraying applications are commonly performed with a boom 52, which can be equipped for automatic, selective control of multiple nozzles 54 and other boom operating characteristics, such as height, material dispensed, etc. Automatic boom control 56 can be utilized, for example, to selectively activate and deactivate individual spray nozzles 54 whereby overspraying previously treated areas can be avoided by the system 2 keeping track of previously treated areas and turning off the nozzles 54 when those areas are reached in an overlapping swath situation, which occasionally occurs in connection with irregularly shaped parcels, near field boundaries and in other operating situations.


III. Operation and GNSS Method.


In operation, various guidance modes are available for adapting to particular field conditions. As used herein, guidance includes a graphical (visual, acoustic, etc.) interface with an operator in order to assist him or her in steering the tractor 6 and automatic steering without operator intervention. The system 2 is initialized to select operating modes and provide various information about the equipment, such as antenna height, swath width (generally corresponding to the width of the implement 8) and other operating variables. For example, the SCM 22 can be preprogrammed with a setup menu for selecting operating modes such as Straight AB (A=B) or Contour, which are described in U.S. application Ser. No. 10/804,721 (published as U.S. 2004/0186644).


The following Table 1 provides a partial listing of exemplary inputs (Data In) to the SCM control module 22 and outputs (Data Out). It will be appreciated that a wide range of data and information can be processed and utilized by SCM 22.










TABLE 1





Data In
Data Out







Antenna height, enable/disable
Center position of vehicle



lat, lon, alt, age, dop,



stdev, DGPS heading, gyro



heading, speed, tilt angle,



crab angle, status (height,



left/right corrected)


Vector to vehicle offset for guidance,
Implement position (for


vehicle X left, X right and Y controlled by
application use) lat, lon


boom control and roll and manual shift.
of center, width


Implement position for applications,
Curvature, status


vehicle X left, X right and Y controlled by


boom control and roll and heading attitude


error.


External CAN based wheel sensor


External boom control status


Steering control and status


Steering parameters needed by steering


module, internal or external










FIGS. 2A and 2B show a sloping field 60 wherein straight, parallel lines 62 defining the original guide paths traverse a sloping area 64. The system 2 detects a tilt sensor 42 signal, determines the tilt angle and compensates for the reduced effective swath width accordingly. Such detection and compensation steps can automatically occur “on-the-fly”, i.e. without operator involvement. The resulting cumulative untreated area 66 can be treated when the operator resumes driving straight swaths, after completing normal swaths or when such fill-in operations are most convenient.


A Circle/Pivot guidance mode application is shown in FIG. 5 and is particularly suited for working in circular guide paths 74 in a field 70 with a center pivot irrigation system 72. A first pass is driven around a field to create a pivot log, and a “best-fit-circle” is calculated based on the pivot log. Parallel guidance passes (or guide paths) 74 are computed as concentric circles inside or outside of the best-fit-circle. Various other guide path configurations could be implemented, including spirals and irregular shapes, for example to accommodate irregular field shapes.


Another guidance mode, which is designated A+Direction, is shown in FIG. 6 and utilizes a starting point 80 (e.g., “A”) and a directional heading 82 in degrees or radians. This guidance method is particularly applicable to large fields where defining A and B may be inconvenient, and has the further advantage of being easy to reproduce throughout multiple seasons and operations. Subsequent headings or guide paths 84 can be calculated from the initial heading 82.


Other inputs can correspond to such operating variables and conditions as GUI brightness, system sensitivity, swath width, swath offset, headland alert, perimeter setup, correction type (e.g., SBAS, L-DIF, RTK, WAAS, etc.), automatic steering setup (e.g., vehicle type, sensitivity, dampening, steering speed, maximum turn rate, steering adjust, auto engage and diagnostics), alternative units of measure, alternative languages and alternative screen displays.



FIG. 7 is a flowchart showing the general operation of the system 2, commencing with start and initialized. Equipment values (which can include those described above) are input, the tilt sensor is calibrated and a guidance mode selected. Field operations can then begin. Data points can be acquired according to predetermined priority criteria, such as proximity to the tractor 6, most recently logged, corresponding to predetermined guide path, etc. For example, rapid acquisition techniques can be employed when the tractor turns around at the end of a row and preferably rapidly acquires the data points to continue guidance. If based on a previous operation, a stored guidance log can be recalled. Otherwise a new guidance log is recorded by logging the GPS points corresponding to the swaths driven by the equipment. If a tilt condition is detected, the system 2 can automatically initiate correction measures, as described above.


It is to be understood that the invention can be embodied in various forms, and is not to be limited to the examples discussed above. Other components can be utilized. For example, the working component can comprise a sprayer with spray booms connected to a vehicle and adapted to be raised and lowered in response to GNSS position data. Moreover, the GNSS control components, including receivers, sensors, antennas, etc., can be mounted on the tractor 6, the implement 8 or above with suitable communication between tractor and implement for independent automatic tractor/implement steering and control.

Claims
  • 1. A GNSS control system for a GNSS controlled vehicle, which control system comprises: a GNSS receiver associated with the controlled vehicle;multiple antennas associated with the controlled object and connected to the GNSS receiver;X, Y and Z axis inertial sensors associated with the controlled object and providing outputs corresponding to vehicle pitch, roll and yaw respectively;a direction sensor associated with the vehicle and determining its direction of travel;a control module connected to the receiver and the vehicle and adapted for controlling the vehicle in response to GNSS input;a GNSS control function associated with said control module;a guide function for covering a predetermined area with said vehicle;multiple guidance mode functions including: straight line (AB); contour; concentric circle; spiral and point A +direction;a function for detecting an end-of-swath turnaround of said vehicle;a function for prioritizing GNSS data acquisition in response to said vehicle turnaround whereby said GNSS control function acquires and guides said vehicle along a previous swath; anda function for continuing guidance during GNSS signal interruption using the output of said direction and inertial sensors for maintaining a predetermined path of travel of said vehicle.
  • 2. The control system according to claim 1, which includes: said control module including a graphical user interface (GUI) and said GNSS control function including a guidance display on said GUI.
  • 3. The control system according to claim 1, which includes said vehicle including a steering mechanism; and: said control module comprising a steering control module (SCM) connected to said vehicle steering mechanism and said GNSS control function including automatic steering of said vehicle.
  • 4. The control system according to claim 3, which includes: said vehicle comprising a tractor and an implement connected thereto;a tilt sensor mounted on said vehicle and providing an output to said SCM corresponding to a tilting condition thereof; anda tilt correction function for compensating for a tilting condition of said vehicle.
  • 5. The control system according to claim 4, which includes: said vehicle including a vehicle microprocessor and a vehicle graphical user interface (GUI) connected thereto; andsaid SCM including an SCM microprocessor connected to said vehicle microprocessor.
  • 6. The control system according to claim 3, which includes: said vehicle steering mechanism including a steering wheel;a steering wheel position sensor connected to said steering wheel and providing an output corresponding to a steering wheel position; andsaid SCM receiving said steering wheel position sensor output and including a function for vehicle guidance based on a position of said steering wheel.
  • 7. The control system according to claim 3, which includes: said SCM being adapted for hot swapping among multiple vehicles each having a control system with a microprocessor and a GUI; andsaid SCM being preprogrammed to interface with the respective control systems of multiple vehicles.
  • 8. The control system according to claim 4, which includes: a bubble level mounted on said vehicle and adapted for calibrating said tilt sensor.
  • 9. The control system according to claim 5, which includes: a function for compensating guidance for implement yaw.
  • 10. The control system according to claim 5, which includes: a GNSS receiver mounted on said implement and communicating with said vehicle microprocessor;a function for steering said implement in response to GNSS signals received by said implement receiver;an articulated connection between said the tractor and said implement; anda positioning device for positioning said implement relative to said tractor.
  • 11. The control system according to claim 4, which includes: said implement including a spray boom with multiple nozzles; anda function independently controlling said nozzles in response to a position of said implement.
  • 12. A GNSS control system for a vehicle comprising a tractor and a towed implement connected to the tractor, which control system comprises: a vector position/heading sensor mounted on said tractor and including: multiple antennas; a GNSS receiver connected to said antennas; X, Y and Z axis inertial sensors providing outputs corresponding to vehicle pitch, roll and yaw respectively and a direction sensor;a steering control module (SCM) including a microprocessor connected to and receiving the outputs from said sensors;a function for automatically steering said vehicle;a function for covering a predetermined area with said implement;a function for logging GNSS data corresponding to area covered with said implement;a tilt sensor mounted on the vehicle and providing an output to said microprocessor corresponding to a tilting condition of said vehicle;a tilt correction function for compensating for a tilting condition of said vehicle;multiple guidance mode functions including one or more from the group consisting of: straight line (AB); contour; concentric circle; spiral and point A +direction;a GNSS receiver mounted on said implement and communicating with said microprocessor;a function for steering said implement in response to GNSS signals received by said implement receiver;an articulated connection between said the tractor and said implement;a positioning device for positioning said implement relative to said tractor;said implement including a spray boom with multiple nozzles;a function independently controlling said nozzles in response to a position of said implement;said vehicle including a steering wheel and a steering wheel position sensor providing an output corresponding to a steering wheel position;said SCM receiving said steering wheel position sensor output and including a function for guiding based on a position of said steering wheel;a function for detecting an end-of-swath turnaround of said vehicle;a function for prioritizing GNSS data acquisition in response to a vehicle turnaround; anda function for continuing guidance during GNSS signal interruption using the output of said inertial and direction sensors for maintaining a predetermined path of travel of said object.
  • 13. A GNSS method for guiding a vehicle including a motive component and a working component connected by an articulated connection, which method comprises the steps of: providing said vehicle with a vehicle control system including a microprocessor and a GUI;mounting a vector position/heading sensor on said motive component and providing said vector position/heading sensor with: multiple antennas; a GNSS receiver connected to said antennas; X, Y and Z axis inertial sensors providing outputs corresponding to vehicle pitch, roll and yaw respectively; and a direction sensor providing an output corresponding to said vehicle direction of travel;providing a steering control module (SCM) including a microprocessor and a GUI connected thereto;connecting the outputs from said inertial sensors to said SCM;providing a tilt sensor on said motive component;providing a tilt sensor output corresponding to a tilt of said motive component to said SCM microprocessor;adjusting a swath width of said working component based on said tilt sensor output;providing said SCM with guidance modes including one more from the group consisting of: straight line (AB); contour; concentric circle; spiral and point A+direction;logging GNSS data with said vector position/heading sensor and said SCM microprocessor; automatically steering said motive component in one of said guidance modes based on said logged GNSS data;providing said working component with a spray boom including multiple spray nozzles;selectively and automatically controlling the operation of said spray nozzles in response to a location of said working component as determined from GNSS logged data; andcontinuing guidance during GNSS signal interruption using the output of said inertial and direction sensors for maintaining a predetermined path of travel of said object.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part and claims the benefit of: U.S. patent application Ser. No. 11/184,657, filed Jul. 19, 2005 now U.S. Pat. No. 7,689,354; which is a continuation-in-part and claims the benefit of U.S. patent application Ser. No. 10/875,776, filed Jun. 24, 2004, now U.S. Pat. No. 7,142,956, issued Nov. 28, 2006, which is a continuation-in-part and claims the benefit of U.S. patent application Ser. No. 10/804,721, filed Mar. 19, 2004 now U.S. Pat. No. 7,437,230, which claims the benefit of U.S. provisional application No. 60/456,130, filed Mar. 20, 2003; U.S. patent application patent application Ser. No. 10/804,758, filed Mar. 19, 2004 now U.S. Pat. No. 7,400,956, which claims the benefit of U.S. provisional application No. 60/456,146, filed Mar. 20, 2003; and U.S. patent application Ser. No. 11/650,784, filed Jan. 8, 2007 now U.S. Pat. No. 7,373,231; which is a continuation and claims the benefit of U.S. patent application Ser. No. 10/733,960, filed Dec. 11, 2003, now U.S. Pat. No. 7,162,348, issued Jan. 9, 2007, which claims the benefit of U.S. provisional application No. 60/432,719, filed Dec. 11, 2002; all of which are incorporated herein by reference in their entireties.

US Referenced Citations (364)
Number Name Date Kind
3585537 Rennick et al. Jun 1971 A
3596228 Reed, Jr. et al. Jul 1971 A
3727710 Sanders et al. Apr 1973 A
3815272 Marleau Jun 1974 A
3899028 Morris et al. Aug 1975 A
3987456 Gelin Oct 1976 A
4132272 Holloway et al. Jan 1979 A
4170776 MacDoran et al. Oct 1979 A
4180133 Collogan et al. Dec 1979 A
4398162 Nagai Aug 1983 A
4453614 Allen et al. Jun 1984 A
4529990 Brunner Jul 1985 A
4637474 Leonard Jan 1987 A
4667203 Counselman, III May 1987 A
4689556 Cedrone Aug 1987 A
4694264 Owens et al. Sep 1987 A
4710775 Coe Dec 1987 A
4714435 Stipanuk et al. Dec 1987 A
4739448 Rowe et al. Apr 1988 A
4751512 Longaker Jun 1988 A
4769700 Pryor Sep 1988 A
4785463 Janc et al. Nov 1988 A
4802545 Nystuen et al. Feb 1989 A
4812991 Hatch Mar 1989 A
4858132 Holmquist Aug 1989 A
4864320 Munson et al. Sep 1989 A
4894662 Counselman Jan 1990 A
4916577 Dawkins Apr 1990 A
4918607 Wible Apr 1990 A
4963889 Hatch Oct 1990 A
5031704 Fleischer et al. Jul 1991 A
5100229 Lundberg et al. Mar 1992 A
5134407 Lorenz et al. Jul 1992 A
5148179 Allison Sep 1992 A
5152347 Miller Oct 1992 A
5155490 Spradley et al. Oct 1992 A
5155493 Thursby et al. Oct 1992 A
5156219 Schmidt et al. Oct 1992 A
5165109 Han et al. Nov 1992 A
5173715 Rodal et al. Dec 1992 A
5177489 Hatch Jan 1993 A
5185610 Ward et al. Feb 1993 A
5191351 Hofer et al. Mar 1993 A
5202829 Geier Apr 1993 A
5207239 Schwitalia May 1993 A
5239669 Mason et al. Aug 1993 A
5255756 Follmer et al. Oct 1993 A
5268695 Dentinger et al. Dec 1993 A
5293170 Lorenz et al. Mar 1994 A
5294970 Dornbusch et al. Mar 1994 A
5296861 Knight Mar 1994 A
5311149 Wagner et al. May 1994 A
5323322 Mueller et al. Jun 1994 A
5334987 Teach Aug 1994 A
5343209 Sennott et al. Aug 1994 A
5345245 Ishikawa et al. Sep 1994 A
5359332 Allison et al. Oct 1994 A
5361212 Class et al. Nov 1994 A
5365447 Dennis Nov 1994 A
5369589 Steiner Nov 1994 A
5375059 Krytsos et al. Dec 1994 A
5390124 Kyrtsos Feb 1995 A
5390125 Sennott et al. Feb 1995 A
5390207 Fenton et al. Feb 1995 A
5416712 Geier et al. May 1995 A
5442363 Remondi Aug 1995 A
5444453 Lalezari Aug 1995 A
5451964 Babu Sep 1995 A
5467282 Dennis Nov 1995 A
5471217 Hatch et al. Nov 1995 A
5476147 Fixemer Dec 1995 A
5477228 Tiwari et al. Dec 1995 A
5477458 Loomis Dec 1995 A
5490073 Kyrtsos Feb 1996 A
5491636 Robertson Feb 1996 A
5495257 Loomis Feb 1996 A
5504482 Schreder Apr 1996 A
5511623 Frasier Apr 1996 A
5519620 Talbot et al. May 1996 A
5521610 Rodal May 1996 A
5523761 Gildea Jun 1996 A
5534875 Diefes et al. Jul 1996 A
5543804 Buchler et al. Aug 1996 A
5546093 Gudat et al. Aug 1996 A
5548293 Cohen et al. Aug 1996 A
5561432 Knight Oct 1996 A
5563786 Torii Oct 1996 A
5568152 Janky et al. Oct 1996 A
5568162 Samsel et al. Oct 1996 A
5583513 Cohen Dec 1996 A
5589835 Gildea et al. Dec 1996 A
5592382 Colley Jan 1997 A
5596328 Stangeland et al. Jan 1997 A
5600670 Turney Feb 1997 A
5604506 Rodal Feb 1997 A
5608393 Hartman Mar 1997 A
5610522 Locatelli et al. Mar 1997 A
5610616 Vallot et al. Mar 1997 A
5610845 Slabinski Mar 1997 A
5612883 Shaffer et al. Mar 1997 A
5615116 Gudat et al. Mar 1997 A
5617100 Akiyoshi et al. Apr 1997 A
5617317 Ignagni Apr 1997 A
5621646 Enge et al. Apr 1997 A
5638077 Martin Jun 1997 A
5644139 Allen Jul 1997 A
5664632 Frasier Sep 1997 A
5673491 Brenna et al. Oct 1997 A
5680140 Loomis Oct 1997 A
5684696 Rao et al. Nov 1997 A
5706015 Chen et al. Jan 1998 A
5717593 Gvilli Feb 1998 A
5725230 Walkup Mar 1998 A
5731786 Abraham et al. Mar 1998 A
5739785 Allison Apr 1998 A
5757316 Buchler May 1998 A
5765123 Nimura et al. Jun 1998 A
5777578 Chang et al. Jul 1998 A
5810095 Orbach et al. Sep 1998 A
5828336 Yunck et al. Oct 1998 A
5838562 Gudat et al. Nov 1998 A
5854987 Sekine et al. Dec 1998 A
5862501 Talbot et al. Jan 1999 A
5864315 Welles et al. Jan 1999 A
5864318 Cozenza et al. Jan 1999 A
5875408 Bendett et al. Feb 1999 A
5877725 Kalafus Mar 1999 A
5890091 Talbot et al. Mar 1999 A
5899957 Loomis May 1999 A
5906645 Kagawa et al. May 1999 A
5912798 Chu Jun 1999 A
5914685 Kozlov et al. Jun 1999 A
5917448 Mickelson Jun 1999 A
5918558 Susag Jul 1999 A
5919242 Greatline et al. Jul 1999 A
5923270 Sampo et al. Jul 1999 A
5926079 Heine et al. Jul 1999 A
5927603 McNabb Jul 1999 A
5928309 Korver et al. Jul 1999 A
5929721 Munn et al. Jul 1999 A
5933110 Tang Aug 1999 A
5935183 Sahm et al. Aug 1999 A
5936573 Smith Aug 1999 A
5940026 Popeck Aug 1999 A
5941317 Mansur Aug 1999 A
5943008 Van Dusseldorp Aug 1999 A
5944770 Enge et al. Aug 1999 A
5945917 Harry Aug 1999 A
5949371 Nichols Sep 1999 A
5955973 Anderson Sep 1999 A
5956250 Gudat et al. Sep 1999 A
5969670 Kalafus et al. Oct 1999 A
5987383 Keller et al. Nov 1999 A
6014101 Loomis Jan 2000 A
6014608 Seo Jan 2000 A
6018313 Englemayer et al. Jan 2000 A
6023239 Kovach Feb 2000 A
6052647 Parkinson et al. Apr 2000 A
6055477 McBurney et al. Apr 2000 A
6057800 Yang et al. May 2000 A
6061390 Meehan et al. May 2000 A
6061632 Dreier May 2000 A
6062317 Gharsalli May 2000 A
6069583 Silvestrin et al. May 2000 A
6076612 Carr et al. Jun 2000 A
6081171 Ella Jun 2000 A
6100842 Dreier et al. Aug 2000 A
6122595 Varley et al. Sep 2000 A
6128574 Diekhans Oct 2000 A
6144335 Rogers Nov 2000 A
6191730 Nelson, Jr. Feb 2001 B1
6191733 Dizchavez Feb 2001 B1
6198430 Hwang et al. Mar 2001 B1
6198992 Winslow Mar 2001 B1
6199000 Keller et al. Mar 2001 B1
6205401 Pickhard et al. Mar 2001 B1
6215828 Signell et al. Apr 2001 B1
6229479 Kozlov et al. May 2001 B1
6230097 Dance et al. May 2001 B1
6233511 Berger et al. May 2001 B1
6236916 Staub et al. May 2001 B1
6236924 Motz May 2001 B1
6253160 Hanseder Jun 2001 B1
6256583 Sutton Jul 2001 B1
6259398 Riley Jul 2001 B1
6266595 Greatline et al. Jul 2001 B1
6285320 Olster et al. Sep 2001 B1
6292132 Wilson Sep 2001 B1
6307505 Green Oct 2001 B1
6313788 Wilson Nov 2001 B1
6314348 Winslow Nov 2001 B1
6325684 Knight Dec 2001 B1
6336066 Pellenc et al. Jan 2002 B1
6345231 Quincke Feb 2002 B2
6356602 Rodal et al. Mar 2002 B1
6377889 Soest Apr 2002 B1
6380888 Kucik Apr 2002 B1
6389345 Phelps May 2002 B2
6392589 Rogers et al. May 2002 B1
6397147 Whitehead May 2002 B1
6415229 Diekhans Jul 2002 B1
6418031 Archambeault Jul 2002 B1
6421003 Riley et al. Jul 2002 B1
6424915 Fukuda et al. Jul 2002 B1
6431576 Viaud et al. Aug 2002 B1
6434462 Bevly et al. Aug 2002 B1
6445983 Dickson et al. Sep 2002 B1
6445990 Manring Sep 2002 B1
6449558 Small Sep 2002 B1
6463091 Zhodzicshsky et al. Oct 2002 B1
6463374 Keller et al. Oct 2002 B1
6466871 Reisman et al. Oct 2002 B1
6469663 Whitehead et al. Oct 2002 B1
6484097 Fuchs et al. Nov 2002 B2
6501422 Nichols Dec 2002 B1
6515619 McKay, Jr. Feb 2003 B1
6516271 Upadhyaya et al. Feb 2003 B2
6539303 McClure et al. Mar 2003 B2
6542077 Joao Apr 2003 B2
6549835 Deguchi Apr 2003 B2
6553299 Keller et al. Apr 2003 B1
6553300 Ma et al. Apr 2003 B2
6553311 Ahearn et al. Apr 2003 B2
6570534 Cohen et al. May 2003 B2
6577952 Geier et al. Jun 2003 B2
6587761 Kumar Jul 2003 B2
6606542 Hauwiller et al. Aug 2003 B2
6611228 Toda et al. Aug 2003 B2
6611754 Klein Aug 2003 B2
6611755 Coffee et al. Aug 2003 B1
6622091 Perlmutter et al. Sep 2003 B2
6631916 Miller Oct 2003 B1
6643576 O'Connor et al. Nov 2003 B1
6646603 Dooley Nov 2003 B2
6657875 Zeng et al. Dec 2003 B1
6671587 Hrovat et al. Dec 2003 B2
6688403 Bernhardt et al. Feb 2004 B2
6703973 Nichols Mar 2004 B1
6711501 McClure et al. Mar 2004 B2
6721638 Zeitler Apr 2004 B2
6732024 Rekow et al. May 2004 B2
6744404 Whitehead et al. Jun 2004 B1
6754584 Pinto et al. Jun 2004 B2
6774843 Takahashi Aug 2004 B2
6792380 Toda Sep 2004 B2
6819269 Flick Nov 2004 B2
6822314 Beasom Nov 2004 B2
6865465 McClure Mar 2005 B2
6865484 Miyasaka et al. Mar 2005 B2
6900992 Kelly et al. May 2005 B2
6922635 Rorabaugh Jul 2005 B2
6931233 Tso et al. Aug 2005 B1
6967538 Woo Nov 2005 B2
6990399 Hrazdera et al. Jan 2006 B2
7006032 King et al. Feb 2006 B2
7026982 Toda et al. Apr 2006 B2
7027918 Zimmerman et al. Apr 2006 B2
7031725 Rorabaugh Apr 2006 B2
7089099 Shostak et al. Aug 2006 B2
7142956 Heiniger et al. Nov 2006 B2
7162348 McClure et al. Jan 2007 B2
7191061 McKay et al. Mar 2007 B2
7231290 Steichen et al. Jun 2007 B2
7248211 Hatch et al. Jul 2007 B2
7271766 Zimmerman et al. Sep 2007 B2
7277784 Weiss Oct 2007 B2
7292186 Miller et al. Nov 2007 B2
7324915 Altman Jan 2008 B2
7358896 Gradincic et al. Apr 2008 B2
7373231 McClure et al. May 2008 B2
7388539 Whitehead et al. Jun 2008 B2
7395769 Jensen Jul 2008 B2
7428259 Wang et al. Sep 2008 B2
7437230 McClure et al. Oct 2008 B2
7451030 Eglington et al. Nov 2008 B2
7479900 Horstemeyer Jan 2009 B2
7505848 Flann et al. Mar 2009 B2
7522100 Yang et al. Apr 2009 B2
7571029 Dai et al. Aug 2009 B2
7689354 Heiniger et al. Mar 2010 B2
20030014171 Ma et al. Jan 2003 A1
20030187560 Keller et al. Oct 2003 A1
20030208319 Ell et al. Nov 2003 A1
20040039514 Steichen et al. Feb 2004 A1
20040212533 Whitehead Oct 2004 A1
20050080559 Ishibashi et al. Apr 2005 A1
20050225955 Grebenkemper et al. Oct 2005 A1
20050265494 Goodlings Dec 2005 A1
20060167600 Nelson et al. Jul 2006 A1
20060215739 Williamson et al. Sep 2006 A1
20070078570 Dai et al. Apr 2007 A1
20070088447 Stothert et al. Apr 2007 A1
20070121708 Simpson May 2007 A1
20070205940 Yang et al. Sep 2007 A1
20070285308 Bauregger et al. Dec 2007 A1
20080129586 Martin Jun 2008 A1
20080204312 Euler Aug 2008 A1
20090171583 DiEsposti Jul 2009 A1
20090174597 DiLellio et al. Jul 2009 A1
20090174622 Kanou Jul 2009 A1
20090177395 Stelpstra Jul 2009 A1
20090177399 Park et al. Jul 2009 A1
20090259397 Stanton Oct 2009 A1
20090259707 Martin et al. Oct 2009 A1
20090262014 DiEsposti Oct 2009 A1
20090262018 Vasilyev et al. Oct 2009 A1
20090262974 Lithopoulos Oct 2009 A1
20090265054 Basnayake Oct 2009 A1
20090265101 Jow Oct 2009 A1
20090265104 Shroff Oct 2009 A1
20090273372 Brenner Nov 2009 A1
20090273513 Huang Nov 2009 A1
20090274079 Bhatia et al. Nov 2009 A1
20090274113 Katz Nov 2009 A1
20090276155 Jeerage et al. Nov 2009 A1
20090295633 Pinto et al. Dec 2009 A1
20090295634 Yu et al. Dec 2009 A1
20090299550 Baker Dec 2009 A1
20090322597 Medina Herrero et al. Dec 2009 A1
20090322598 Fly et al. Dec 2009 A1
20090322600 Whitehead et al. Dec 2009 A1
20090322601 Ladd et al. Dec 2009 A1
20090322606 Gronemeyer Dec 2009 A1
20090326809 Colley et al. Dec 2009 A1
20100013703 Tekawy et al. Jan 2010 A1
20100026569 Amidi Feb 2010 A1
20100030470 Wang et al. Feb 2010 A1
20100039316 Gronemeyer et al. Feb 2010 A1
20100039318 Kmiecik Feb 2010 A1
20100039320 Boyer et al. Feb 2010 A1
20100039321 Abraham Feb 2010 A1
20100060518 Bar-Sever et al. Mar 2010 A1
20100063649 Wu Mar 2010 A1
20100084147 Aral Apr 2010 A1
20100085249 Ferguson et al. Apr 2010 A1
20100085253 Ferguson et al. Apr 2010 A1
20100103033 Roh Apr 2010 A1
20100103034 Tobe et al. Apr 2010 A1
20100103038 Yeh et al. Apr 2010 A1
20100103040 Broadbent Apr 2010 A1
20100106414 Whitehead Apr 2010 A1
20100106445 Kondoh Apr 2010 A1
20100109944 Whitehead et al. May 2010 A1
20100109945 Roh May 2010 A1
20100109947 Rintanen May 2010 A1
20100109948 Razoumov et al. May 2010 A1
20100109950 Roh May 2010 A1
20100111372 Zheng et al. May 2010 A1
20100114483 Heo et al. May 2010 A1
20100117894 Velde et al. May 2010 A1
20100117899 Papadimitratos et al. May 2010 A1
20100117900 van Diggelen et al. May 2010 A1
20100124210 Lo May 2010 A1
20100124212 Lo May 2010 A1
20100134354 Lennen Jun 2010 A1
20100149030 Verma et al. Jun 2010 A1
20100152949 Nunan et al. Jun 2010 A1
20100156709 Zhang et al. Jun 2010 A1
20100156712 Pisz et al. Jun 2010 A1
20100156718 Chen Jun 2010 A1
20100159943 Salmon Jun 2010 A1
20100161179 McClure et al. Jun 2010 A1
20100161211 Chang Jun 2010 A1
20100161568 Xiao Jun 2010 A1
Foreign Referenced Citations (8)
Number Date Country
07244150 Sep 1995 JP
WO9836288 Aug 1998 WO
WO0024239 May 2000 WO
WO03019430 Mar 2003 WO
WO2005119386 Dec 2005 WO
WO2009066183 May 2009 WO
WO2009126587 Oct 2009 WO
WO2009148638 Dec 2009 WO
Related Publications (1)
Number Date Country
20070198185 A1 Aug 2007 US
Provisional Applications (3)
Number Date Country
60456130 Mar 2003 US
60456146 Mar 2003 US
60432719 Dec 2002 US
Continuations (1)
Number Date Country
Parent 10733960 Dec 2003 US
Child 11650784 US
Continuation in Parts (5)
Number Date Country
Parent 11184657 Jul 2005 US
Child 11700501 US
Parent 10875776 Jun 2004 US
Child 11184657 US
Parent 10804721 Mar 2004 US
Child 10875776 US
Parent 10804758 Mar 2004 US
Child 10804721 US
Parent 11650784 Jan 2007 US
Child 10804758 US