1. Technical Field
This invention relates generally to a GNSS device and more particularly to a GNNS extension device for use with portable devices in a Mapping Geographical Information System (MGIS).
2. State of the Art
An MGIS device includes a high end MGIS receiver that encapsulates a reasonably powerful GNSS board and computing processor. The GNSS antennas in high-end MGIS systems are typically ceramic antennas, which deliver very good signals in open sky, but have problems in challenging environments. These receivers typically provide the possibility of being connected to an external antenna. Once the high-end GNSS receiver is connected to the external antenna, they provide GNSS signals that are comparable to the signals from high end survey receivers. Because this type of receiver is reasonably complex, the market price is typically high. Another aspect is that such receivers often operate with an outdated operating system, which affects the usability experience of the user.
Another existing MGIS device includes low end receivers that are much like a smart phone. It uses the same grade of integrated GNSS chipsets and typically the same GNSS antenna grade as existing smart phones. The signal reception quality is lacking The advantages these devices possess are that they are typically ruggedized, and carry specific software to be used for typical MGIS user workflows. These MGIS devices typically do not employ a powerful processor; however they do not need it, since the GNSS signal tracking is taken care of already in the GNSS chipset. The application has only to deal with the pre-processed positions and their integration into the user workflow.
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, the Figures are not necessarily drawn to scale, and:
As discussed above, embodiments of the present invention relate to a GNSS extension device that is coupled to a portable computing device to enable the portable computing device to operate in a Mapping Geographical Information System (MGIS). An MGIS is used to capture, store, check, and display data related to positions on Earth's surface and show the collected or a portion of the collected data on a map. Often, the maps can include data layers, wherein each layer can be added or subtracted from a map.
The characteristics a user often desires from an MGIS device includes (1) moderate to low market price; (2) at least average signal quality, the option to use an external antenna as a possible additional element; (3) a powerful GNSS tracking and positioning engine; (4) a state-of-the-art operating system; (5) state-of-the-art user interaction hardware and software; and (6) a minimally ruggedized enclosure.
Embodiments take advantage of existing hardware and software that a user owns, providing the supplemental hardware and software in order to upgrade the user's device to a level similar to high-end MGIS receivers. These embodiments supplement a portable computing device with particular capabilities to operate in a MGIS. In other words, embodiments of a GNSS extension device convert a portable computing device into an MGIS device.
An embodiment includes a GNSS extension device comprising a GNSS antenna and a GNSS processing board having a memory and a processor for tracking and processing GNSS signals. The GNSS extension device may further comprise a battery to supply power to the GNSS processing board and GNSS antenna, and a software application to manage the GNSS device.
Another embodiment includes a GNSS extension device that includes a housing and a portable device receiver, a GNSS antenna located within the housing, and a GNSS processing board located within the housing. The GNSS processing board includes a memory and a processor for tracking and processing GNSS signals. The GNSS extension device further includes a battery retained within the housing, wherein the battery supplies power to the GNSS processing board and GNSS antenna. Additionally, embodiments include a software application stored in the memory of the GNSS processing board, wherein the software application includes instructions processed by the processor of the GNSS processing board to manage operation of the GNSS extension device. Further still, embodiments may include a portable computing device coupled within the portable device receiver, the portable computing device is in communication with the GNSS processing board, the GNSS processing board operating the instructions of the software application in response to receiving a second set of instructions from the portable computing device.
Referring to the drawings,
In other embodiments, as in
The GNSS processing board 104, as shown in
In particular embodiments, the GNSS extension device 100 may include a wireless communication device, wherein the GNSS extension device 100 is in wireless communication with the portable computing device 110. This wireless communication may be Bluetooth, WIFI, near field communication (NFC) or other wireless protocols for communication. In other embodiments, the GNSS extension device 100 may include a wired connection with the portable computing device 110 in order to provide a communication connection between the portable computing device 110 and the GNSS extension device 100.
Referring further to
The GNSS extension device 100 allows for transforming a portable computing device 110 into a high precision MGIS device without the cost of a high-precision MGIS device. Additionally, the GNSS extension device 100 may operate with any operating system.
The GNSS extension device 100 could be used to leverage the technology a user already owns, providing a very cost-efficient way of giving the user access to high-end GNSS results for different applications. The leverage of the user interface hardware and software already employed in high-end phone and tablet devices might be an advantage with respect to the hardware/software available in specialized MGIS hardware.
Referring again to the drawings,
The method 300 may include coupling the portable computing device within a portable device receiver of the GNSS extension device. The method 300 may also include establishing a communication connection between the portable computing device and the GNSS extension device. In some embodiments, establishing a communication connection may include establishing a wireless communication connection.
The embodiments and examples set forth herein were presented in order to best explain the present invention and its practical application and to thereby enable those of ordinary skill in the art to make and use the invention. However, those of ordinary skill in the art will recognize that the foregoing description and examples have been presented for the purposes of illustration and example only. The description as set forth is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the teachings above without departing from the spirit and scope of the forthcoming claims.
This application claims priority to U.S. Provisional Patent Application to Rodrigo Leandro entitled “GNSS EXTENSION DEVICE,” Ser. No. 61/922,561, filed Dec. 31, 2013, now pending, the disclosure of which is hereby incorporated entirely herein by reference.
Number | Date | Country | |
---|---|---|---|
61922561 | Dec 2013 | US |