1. Field of the Invention
The present invention relates generally to aircraft guidance and control with differential global navigation satellite systems (DGNSSs), and in particular to a DGNSS-based system and method for optimizing crop dusting with dry materials.
2. Description of the Related Art
GNSS guidance and control are widely used for vehicle and personal navigation and a variety of other uses involving precision location in geodesic reference systems. GNSS, which includes the Global Positioning System (GPS) and other satellite-based positioning systems, can achieve greater accuracy with known correction techniques, including a number of commercial satellite based augmentation systems (SBASs).
Aircraft are often used to spray and dust croplands, forests and other land areas with chemicals, fertilizers, seeds, water, fire suppressants and other materials. These materials may be liquid or solid. An important objective in spraying and dusting crops and in aerial firefighting is even coverage without gaps or overlaps. Another major objective is avoiding exclusion areas, which can be located internally within a field or forest being treated, or externally beyond its borders. Dry materials are typically dropped from fixed and rotary wing aircraft using spreaders. These spreaders clamp to a gate box at the base of a hopper located inside of the fuselage. As the gate box is opened, material flows from the hopper into the spreader and is pushed out behind the aircraft by air passing through the spreader. Historically these systems had to be operated manually, but methods now exist that will allow these systems to operate electronically and/or hydraulically via switches in the cockpit. However, precise distribution control presents challenges with existing equipment.
Aircraft can use venturi spreaders to distribute seed, dusting material, and other chemicals. Venturi spreaders clamp to a gate box at the base of a hopper. As the adjustable door of the gate box opens, seeds, chemicals and other materials from the hopper fall into the venturi spreader and airflow through the spreader distributes it. The amount the door is opened determines the material flow rate. Optional agitators to help material exit the hopper and gate box assembly can also be included.
Ideally the material being dropped from the aircraft will entirely cover the property being targeted while avoiding exclusion areas. However, factors such as the altitude of the aircraft, the ground speed of the aircraft, temperature, humidity, moisture content of the material and ambient wind speed and direction can affect the results. Flying too high or too low can distort the swath of the spread and result in misapplication of the material. Guidance systems, such as DGNSS, combined with electronic controllers for the spreading equipment, can optimize crop dusting.
Aerial photography, videography, surveying and telemetry procedures commonly require accurate navigation and aircraft locating equipment and methods in order to achieve optimum results. Flight guidance has also been automated with autopilots, automatic landing systems, navionics and other equipment. Such procedures can benefit from accurate GNSS-based control systems and methods.
DGNSS can utilize satellite based augmentation systems (SBAS), including the Wide Area Augmentation System (WAAS) (U.S.), and similar systems such as EGNOS (European Union) and MSAS (Japan). When accomplished with two or more antennas at a fixed spacing, an angular rotation may be computed using the position differences. In an exemplary embodiment, two antennas placed in the horizontal plane may be employed to compute a heading (rotation about a vertical axis) from a position displacement. Heading information, combined with position, provides the feedback information desired for a proper control of the vehicle direction.
Another benefit achieved by incorporating a GNSS-based heading sensor is the elimination or reduction of drift and biases resultant from a gyro-only or other inertial sensor approach. Yet another advantage is that heading may be computed while movable equipment is stopped or moving slowly, which is not possible in a single-antenna, GNSS-based approach that requires a velocity vector to derive a heading. Yet another advantage of incorporating a GNSS-based heading sensor is independence from a host vehicle's sensors or additional external sensors. Thus, such a system is readily maintained as equipment-independent and may be moved from one vehicle to another with minimal effort.
An example of a GNSS is the Global Positioning System (GPS) established by the United States government, which employs a constellation of 24 or more satellites in well-defined orbits at an altitude of approximately 26,500 km. These satellites continuously transmit microwave L-band radio signals in two frequency bands, centered at 1575.42 MHz and 1227.6 MHz, denoted as L1 and L2 respectively. These signals include timing patterns relative to the satellite's onboard precision clock (which is kept synchronized by a ground station) as well as a navigation message giving the precise orbital positions of the satellites, an ionosphere model and other useful information. GPS receivers process the radio signals, computing ranges to the GPS satellites, and by triangulating these ranges, the GPS receiver determines its position and its internal clock error.
In standalone GPS systems that determine a receiver's antenna position coordinates without reference to a nearby reference receiver, the process of position determination is subject to errors from a number of sources. These include errors in the GPS satellite's clock reference, the location of the orbiting satellite, ionosphere-induced propagation delay errors, and troposphere refraction errors.
To overcome these positioning errors of standalone GPS systems, GPS applications have been improved and enhanced by employing a broader array of satellites such as GNSS and WAAS. For example, see commonly assigned U.S. Pat. No. 6,469,663 to Whitehead et al. titled Method and System for GPS and WAAS Carrier Phase Measurements for Relative Positioning, dated Oct. 22, 2002, the disclosures of which are incorporated by reference herein in their entirety. Additionally, multiple receiver DGPS has been enhanced by utilizing a single receiver to perform differential corrections. For example, see commonly assigned U.S. Pat. No. 6,397,147 to Whitehead titled Relative GPS Positioning Using A Single GPS Receiver With Internally Generated Differential Correction Terms, dated May 28, 2002, the disclosures of which are incorporated by reference herein in their entirety.
Heretofore there has not been available a GNSS system and method for guiding aircraft to optimize various procedures, including the spreading of solid material accurately on a predetermined area within relatively precise boundaries while avoiding exclusion areas with the advantages and features of the present invention.
In practice, an exemplary embodiment of the present invention uses a GNSS system(s) in combination with a hydraulically-actuated, airborne dispenser for a dry material crop dusting system to optimize the distribution of dry materials over a particular tract of land. The system is applicable to agriculture, but is not limited to that purpose. The system includes a GNSS subsystem with at least one GNSS antenna and one GNSS receiver located on the aircraft. The system also includes an electronic/hydraulic crop dusting subsystem connected to the GNSS. The GNSS ranging signals received by the antennas are processed by a receiver and processor system for determining the vehicle's position and dynamic attitude in three dimensions (3D). A graphical user interface (GUI) placed in the vehicle will give the driver a real-time view of his or her current bearing as well as a calculated “optimal path” based on calculations and variable data, such as wind speed and direction, material moisture content, altitude, air speed and other conditions.
Information that GNSS can provide to the pilot of an aircraft includes not only the current position, but extends to providing the pilot with knowledge of the ideal flight path to provide relatively even distribution of dry material over the desired tract of land. An integrated system will use the GNSS system to control the gate box of the hydraulic crop dusting system. The GNSS guidance system will recognize the ideal time to open or close the gate, how far to open the gate and how much to alter the gate opening during flight based on fluctuations in ground speed. The gate positions can also change automatically based on data entered into a pre-designed map of varying rates. The opening and changing of gate positions are intended to achieve a continual optimal desired output while the guidance system is ensuring an even distribution of the dry material. Other exemplary embodiments include an aerial camera for photography or videography, a telemetry device, a laser altimeter and components, including software, for aerial mapping and surveying. Automatic and assisted landing functions can be accomplished with the DGNSS-based control system supplemented with the laser altimeter.
An ideal function of the present invention is to gather information using an aircraft and a dry gate device and to save this information into a profile to be used during later dusting/spreading sessions over the same piece of land. This profile information will be used to calibrate a gate box assembly and control system as well as the GNSS guidance system. Information stored in the profile will include gate box metering data, GNSS flight path data, and visual imaging or telemetry data gathered by an included camera and/or telemetry device. A crop dusting control system aspect of the present invention includes a GNSS subsystem connected to a controller and providing georeference guidance and positioning, and a bulk material dispensing subsystem connected to the controller and selectively and variably discharging dry material with real-time feedback signals indicating actual discharge rates. A tracking aspect of the present invention uses GNSS with the vehicle controller for tracking. An imagery aspect of the present invention uses pre-existing or new, real-time images captured by an onboard camera device and precisely matched with georeference coordinates. A comprehensive system for GNSS-controlling vehicle navigation and material discharge flow control comprises another aspect of the present invention and uses various sensors as input devices and actuators.
The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
As required, detailed aspects of the present invention are disclosed herein; however, it is to be understood that the disclosed aspects are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art how to variously employ the present invention in virtually any appropriately detailed structure.
Global navigation satellite systems (GNSSs) are broadly defined to include GPS (U.S.), Galileo (Europe, proposed), GLONASS (Russia), Beidou/Compass (China, proposed), IRNSS (India, proposed), QZSS (Japan, proposed) and other current and future positioning technology using signals from satellites, with or without augmentation from SBAS or terrestrial reference correction sources. Inertial navigation systems (INS) include gyroscopic (gyro) sensors, accelerometers and similar technologies for providing output corresponding to the inertia of moving components in all axes, i.e. through six degrees of freedom (positive and negative directions along longitudinal X, transverse Y and vertical Z axes). Yaw, pitch and roll refer to moving component rotation about the Z, Y and X axes respectively. Said terminology will include the words specifically mentioned, derivatives thereof and words of similar meaning.
Disclosed herein in an exemplary embodiment is a sensor system for vehicle control and guidance. The sensor system utilizes at least one GNSS carrier phase differenced antenna to derive attitude information, herein referred to as a GNSS attitude system. Moreover, the GNSS attitude system may optionally be combined with one or more rate gyro(s) used to measure turn, roll or pitch rates and to further calibrate bias and scale factor errors within these gyros. In an exemplary embodiment, the rate gyros and the GNSS receiver/antenna are integrated together within the same unit, to provide multiple mechanisms to characterize a vehicle's motion and position to make a robust vehicle steering control mechanism.
Without limitation on the generality of useful applications of the present invention, an exemplary application of the DGNSS optimized crop dusting control system 2 (crop dusting system) comprises a crop dusting aircraft 4, the receiver unit 12, a master antenna 6 and optional slave antennas 8, 10, a gate box control unit 30 and a SBAS 7 such as WAAS. The rover receiver unit 12 is comprised of a clock 16, a central processing unit (CPU) 18, a GNSS graphical user interface (GUI) 20, a master rover receiver 14, an optional slave rover receiver 22, an antenna switch control 24, and an orientation device 26. The CPU 18 is electrically connected to the gate box control unit 30, which is comprised of a gate box controller 38 and a gate box control display 40. DGNSS accuracy is created by using SBAS 7 (e.g. WAAS) corrections in combination with the above-mentioned GNSS equipment. An optional camera/telemetry device 28 is connected to the CPU 18 and provides photography, videography and related optical and other telemetry functions, such as surveying topography and image capture for monitoring, recording and analyzing aerial procedures for direct georeferencing to 3-D digital models, such as the Google Earth model.
The exemplary purpose of the present invention is to gather data while flying over a specific piece of land. Information to be gathered includes visual image data and/or telemetry data, flight path information based on GNSS data points, and the rate of dry material being dropped from a dry gate mechanism. This data will be saved to a profile based on the material used and the land being flown over. Additional data may be input into said profile from external data sources, such as the internet or manually by a programmer or end-user. The goal of this combination of data is to increase the accuracy of dropping material over a piece of land from an aircraft for agricultural or other purposes.
Referring to the drawings more detail, the reference numeral 2 generally designates the crop dusting control system. The crop dusting control system 2 is comprised generally of a crop-dusting aircraft 4, a GNSS-based aircraft control subsystem 9 and a gate box control system 11. The GNSS-based control subsystem is comprised of: antennas 6, 8, 10; additional flight instruments; the receiver unit 12; and the GUI 20. The gate box control system is comprised of a gate box control unit 30, an internal hopper 42, a gate box assembly 64, and a spreader 62.
The GNSS system is comprised of the external antennas and the internal components including a receiver unit 12. The master rover antenna 6 and the two optional slave antennas 8, 10 can be placed externally on the aircraft 4. The example shown in
The master rover receiver 14 and the optional slave rover receiver 22 receive positional data from at least one antenna 6, 8, 10 on the aircraft, as well as from an SBAS 7. As stated above regarding the slave antennas, the slave receiver 22 is an optional device that increases the positional accuracy of the entire system. The CPU 18 processes all information received by the master and slave rover receivers 14, 22 and compiles this data with information it may receive from other optional flight instruments. Through a combination of the clock 16, CPU 18, the orientation device 26, and other optional flight instruments, information is displayed to the pilot through the GUI 20 located in the cockpit of the aircraft 4. The GUI 20 provides information to the pilot graphically and allows the pilot to input commands directly into the GUI 20, which are read and processed by the CPU 18. Commands entered by the pilot are communicated to the crop dusting system 2 through the CPU 18. The system also contains the antenna switch control 24, which enables switching among the antennas 6, 8, 10 for selective or sequenced input to the receivers 14, 22. The CPU 18 can be programmed for switching among the antennas 6, 8, 10 via the switch control 24. Also contained within the receiver unit 12 is a wide area network (WAN) antenna 90 which can access long-distance wireless WAN networks and connect the pilot to the internet.
Information displayed to the pilot on the GUI 20 will include the aircraft's dynamic operating characteristics such as current speed, altitude, heading, yaw, pitch, and roll. Additionally, the pre-programmed flight path over the selected tract of land will be displayed with the position of the aircraft 4 dynamically displayed in real-time, providing the pilot with a flight path that will produce optimal application of the dry crop dusting material. The GNSS system 9 will also notify the pilot when the aircraft 4 is deviating from the ideal path as calculated by the crop dusting system 2. Ideal speeds for making sweeping turns will also be displayed, giving the pilot an opportunity to anticipate each turn.
The WAN antenna 90 is able to connect to a nearby WAN or local area network (LAN). This connection to the internet will give the pilot (or driver in the case of adapting the present invention to a ground vehicle) internet capabilities which will allow the pilot to access specific websites containing recently updated photographs of the land to be dusted or surveyed. Information that can be gleaned from such a map includes field water data, the location of obstacles where dry material should not be spread, and other relevant data necessary for accurate and complete coverage of dry material.
Data generated by the various sub-systems of the aircraft can be automatically sent over the WAN from the local WAN antenna 90 to a computer on the ground via the internet. This information can then be used to track the aircraft as it currently flies, to determine where a past aircraft has flown, or simply to monitor the various sub-systems. The CPU 18 connects to said WAN antenna and provides any and all relevant data requested by the user on the ground regarding the various systems and sub-systems of the overall crop dusting control system 2.
The optional camera/telemetry device 28 can facilitate a variety of procedures and operations. For example, real-time video images of fields, forests and other fly-over land and marine images can be captured for processing by the CPU 18, thus providing visual records of operations. Such records can be uploaded to a server for further analysis and record-keeping. Aircraft equipped with the control system 2 can receive such photographic and geographic data for use in subsequent operations. For example, imagery can be made available for a next day's operations, or with even shorter turnaround. Such visual records can be matched with Google Earth data as mentioned below by an automatic geo-referencing process to generate pre-planned flight paths based on recent land data retrieved by fly-overs. Moreover, telemetry procedures such as topographical mapping, mineral surveying and other aerial operations can be facilitated with suitable RF, IR, optical, sonar, radar and other telemetry means.
Providing up-to-date visual data and accurate information about water and mineral data would be extremely important in the agricultural field. There is a need in the industry for updated visual field data quickly and often. With the internet connection allowed by the WAN antenna 90, an aircraft outfitted with the present invention can perform a fly-over of a particular piece of land and gather image data with the connected camera/telemetry device 28. These images can immediately be sent over the network to whomever requested those photos, and the user on the ground can compare the images and setup a pre-planned flight path on a ground computer. This flight path can then be sent to the pilot who will then perform a job of dusting the area chosen by the user on the ground. Optionally, unmanned aerial vehicles (UAVs) can be used to daily or weekly perform large-scale sweeping flights over varying areas of land to gather image data. This data can be uploaded to a server accessible on the internet whereby paid subscribers can retrieve relevant and up-to-date image data on their particular piece of land by entering in geo-reference information.
Even more simply, the camera or telemetry device 28 can be used to determine and account for altitude and wind drift calculations. Using simple image recognition the system can pick out a single point in an image and track its movement so as to determine aircraft altitude depending on how fast the tracked object moves through the frame. Determining the angle of movement relative to the orientation of the airplane can be used to determine cross wind. Combined with GNSS positional data, all positional information likely required by the CPU to calculate when and where dry material should be dropped onto a field should be readily available from the onboard equipment.
The gate control system 11 is comprised of the controller unit 30, the gate box assembly 64 and connected components. The gate box control unit 30 contains the electrical gate box controller 38 and the electrically connected gate box GUI 40. The gate box control display 40 is similar to the GNSS GUI 20 in that it displays graphically information related to the gate control unit 11 to the pilot. The pilot can optionally enter commands into the gate box control display 40 which will send signals to the gate box controller 38 to open or close the gate box assembly 64. It should be noted that a non-graphical user interface can be installed in place of the gate box GUI 40.
The gate box controller 38 is also electrically connected with the CPU 18, which is in constant communication with the GNSS-based control subsystem 9. This allows the CPU 18 to autonomously control the opening and closing of the gate box assembly 64 based on GNSS positional data. This combination of positional data, gate box control and a pre-planned flight path allows the pilot to optionally hand over all crop dusting control to the CPU while the pilot focuses on the task of flying the plane along the desired path. If the pilot wishes to regain manual control over the gate box assembly 64, the pilot interrupts the auto-control of the gate box controller 38 via the gate box GUI 40.
The gate control system 11 includes a “soft close” feature whereby the final closing of the gate box assembly 64 is controlled via a proportional-integral-derivative (PID) control feature or function and algorithm, which can be programmed into the gate box control unit 30 and/or the CPU 18. The PID soft close control is effective during the final portion of the gate closing motion and “softly” closed the gates just enough to prevent further material flow. In particular, the soft close control avoids “overclosing” the gates with greater force and movement than is necessary. Overclosing the gates tends to delay reopening because the actuator mechanism must overcome the greater force and the moving parts must travel further. Prompt system reactions upon crossing boundaries between different application rate zones are helpful in applying material.
The two displays, the GNSS GUI 20 and the gate controller display 40, are available to the pilot in the aircraft 4 cockpit and allow the pilot to make on-the-fly changes to the crop dusting system control 2, or to merely adjust the aircraft's course to maintain the calculated optimal course. The two displays are electrically connected to the gate controller 38 and the CPU 18, which are also electrically connected. Information sent to the gate controller 38 by the gate box control display 40 is also processed by the CPU 18 and stored in memory.
The internal hopper 42 supplies the dry material to the gate box assembly 64. The gate box assembly 64 is opened and closed using the above-mentioned hydraulic subsystem 80. As the gate opens, dry material exits the hopper 42 and enters the gate box assembly 64. Air passing through the spreader 62 pulls the dry material out of the spreader and the spread material 44 disburses evenly through the air as it falls on the ground below.
Precise location and altitude variables are automatically obtained by the DGNSS portion of the crop dusting system 2, processed by the CPU 18, and instructions are automatically passed on to the gate box controller 38. Variables that are input into the system manually to increase accuracy and optimization include, but are not limited to, wind speed, material type, and the spread density required. Additionally, boundary information regarding the specific tract of land to be dusted must necessarily be defined to the CPU for it to determine when the gate must be closed and when it should be reopened. Such boundary information can also be acquired through connections with the Google Earth program, as described in more detail below. Alternatively, the gate controller may be controlled manually via the gate box control display 40.
A pre-planned path can be programmed into the CPU which defines where the aircraft 4 should fly. This pre-planned path can be based on only data points or it can be introduced through common mapping programs such as Google Earth, a product of Google Inc. of Mountain View, Calif. By creating new Google Earth files with positioning information, the CPU can take DGNSS position information of the aircraft and overlay that information onto the Google Earth map to determine precise positional information. The DNGSS control subsystem 9 is designed to interact with planned advances in Google Earth software that will allow positional data to include Z-axis topography to further optimize position tracking and field spraying. Thus, if the land below the aircraft varies in height, the aircraft can automatically adjust its altitude as need to avoid irregular field spraying or dusting.
The preferred embodiment of the present invention is designed to incorporate KML reference data used in conjunction with Google Earth. KML is a file format used to display geographic data in an Earth browser such as Google Earth and Google Maps. By using KML code, pilots or agricultural planners can use the Google Earth interface to add ground overlays, placemarks and other geographic data to the Google Earth interface, and save this as KML reference data which can then be shared with other pilots or agricultural planners for future use on a particular site. This reference data can then be incorporated into the pre-planned flight path over a particular tract of land. Alternatively, a map can be provided to the pilots via the GUI mentioned above wherein the Google Earth interface is overlaid with the flight plan and the pilot can visualize the flight pattern needed to cover the field.
Said pre-planned flight path can also be created based on imaging taken by the aircraft on previous flights. Image data can be geo-referenced automatically using a program like Google Earth. The user may then overlay flight path information or field data onto the digital map, or may place reference points directly into the program and export a data file that can be used to preload the CPU 18 with information pertinent to the job to be performed at the field site. This information may include flight path routes, water data, crop zone layouts, and where not to dump dry material on the ground below.
In another alternative use of the invention, the crop dusting control system 2 can be used to carry large amounts of water or chemicals, either solid or liquid, for the purpose of putting out large forest fires. Data from Google Earth created by such agencies as the U.S. Forest Service will allow such fire-fighting aircraft to quickly upload a pre-planned map of an area and even update that map with target fire-control zones. Since the system 2 can recognize data that already exist in a three-dimensional form within Google Earth, valuable time is saved, and highly precise flight plans can be created quickly and easily.
Although DGNSS systems are ideal and highly accurate when dealing with generally planar, two-dimensional coordinate systems, they are not as accurate when dealing with z-axis attitude for vehicles such as aircraft (e.g., X and Y). For this reason, altimeters are still used rather than relying on DGNSS alone. A laser altimeter 228 may be accurate to the centimeter level. Combining the altimeter 228 with the DGNSS system and a dual-frequency receiver such as the Eclipse receiver available from Hemisphere GPS can provide ideal approach vectors for use with the above-mentioned Google Earth mapping applications.
Using input variables such as wind speed, wind direction, desired spread density and material type, altitude, roll, pitch and yaw the crop dusting control system CPU 18 determines how much to open or close the gate box assembly 64. These variables, when changed, will also change the rate at which dry material must be dropped out of the plane. As the aircraft's flight path changes, the crop dusting control system 2 receives the constantly updating DGNSS data and the CPU 18 recalculates how open the gate box assembly 64 must be to maintain optimal material coverage. This same principal applies as the aircraft 4 approaches the tract border. For example, the faster the flight of the aircraft 4, the sooner the controller 18 must shut the gate box assembly 64. The inclusion of an optional laser altimeter 228 can enable more accurate flight plan following, for example using Google Earth information from planned future advances to include Z-axis topography, and allowing for a completely three-dimensional flight plan to be created prior to the aircraft taking off. Although the above generally represents an exemplary embodiment of the invention, it is to be understood that the invention can be embodied in various forms, and is not to be limited to the examples discussed above. For example, the system could be implemented to work with a material spreader designed for use with helicopter crop dusting equipment.
It is to be understood that while certain aspects of the disclosed subject matter have been shown and described, the disclosed subject matter is not limited thereto and encompasses various other embodiments and aspects
This application is related to and claims priority in U.S. Provisional Patent Application Ser. No. 61/252,994, filed Oct. 19, 2009, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3585537 | Rennick et al. | Jun 1971 | A |
3596228 | Reed, Jr. et al. | Jul 1971 | A |
3727710 | Sanders et al. | Apr 1973 | A |
3815272 | Marleau | Jun 1974 | A |
3899028 | Morris et al. | Aug 1975 | A |
3987456 | Gelin | Oct 1976 | A |
4132272 | Holloway et al. | Jan 1979 | A |
4170776 | MacDoran | Oct 1979 | A |
4180133 | Collogan et al. | Dec 1979 | A |
4398162 | Nagai | Aug 1983 | A |
4453614 | Allen et al. | Jun 1984 | A |
4529990 | Brunner | Jul 1985 | A |
4637474 | Leonard | Jan 1987 | A |
4667203 | Counselman, III | May 1987 | A |
4689556 | Cedrone | Aug 1987 | A |
4694264 | Owens et al. | Sep 1987 | A |
4710775 | Coe | Dec 1987 | A |
4714435 | Stipanuk et al. | Dec 1987 | A |
4739448 | Rowe et al. | Apr 1988 | A |
4751512 | Longaker | Jun 1988 | A |
4769700 | Pryor | Sep 1988 | A |
4785463 | Janc et al. | Nov 1988 | A |
4802545 | Nystuen et al. | Feb 1989 | A |
4812991 | Hatch | Mar 1989 | A |
4813991 | Hale | Mar 1989 | A |
4838598 | Hyde | Jun 1989 | A |
4858132 | Holmquist | Aug 1989 | A |
4864320 | Munson et al. | Sep 1989 | A |
4894662 | Counselman | Jan 1990 | A |
4916577 | Dawkins | Apr 1990 | A |
4918607 | Wible | Apr 1990 | A |
4963889 | Hatch | Oct 1990 | A |
5031704 | Fleischer et al. | Jul 1991 | A |
5100229 | Lundberg et al. | Mar 1992 | A |
5134407 | Lorenz et al. | Jul 1992 | A |
5148179 | Allison | Sep 1992 | A |
5152347 | Miller | Oct 1992 | A |
5155490 | Spradley et al. | Oct 1992 | A |
5155493 | Thursby et al. | Oct 1992 | A |
5156219 | Schmidt et al. | Oct 1992 | A |
5165109 | Han et al. | Nov 1992 | A |
5173715 | Rodal et al. | Dec 1992 | A |
5177489 | Hatch | Jan 1993 | A |
5185610 | Ward et al. | Feb 1993 | A |
5191351 | Hofer et al. | Mar 1993 | A |
5202829 | Geier | Apr 1993 | A |
5207239 | Schwitalla | May 1993 | A |
5239669 | Mason et al. | Aug 1993 | A |
5255756 | Follmer et al. | Oct 1993 | A |
5268695 | Dentinger et al. | Dec 1993 | A |
5293170 | Lorenz et al. | Mar 1994 | A |
5294970 | Dornbusch et al. | Mar 1994 | A |
5296861 | Knight | Mar 1994 | A |
5311149 | Wagner et al. | May 1994 | A |
5323322 | Mueller et al. | Jun 1994 | A |
5334987 | Teach | Aug 1994 | A |
5343209 | Sennott et al. | Aug 1994 | A |
5345245 | Ishikawa et al. | Sep 1994 | A |
5359332 | Allison et al. | Oct 1994 | A |
5361212 | Class et al. | Nov 1994 | A |
5365447 | Dennis | Nov 1994 | A |
5369589 | Steiner | Nov 1994 | A |
5375059 | Kyrtsos et al. | Dec 1994 | A |
5390124 | Kyrtsos | Feb 1995 | A |
5390125 | Sennott et al. | Feb 1995 | A |
5390207 | Fenton et al. | Feb 1995 | A |
5416712 | Geier et al. | May 1995 | A |
5442363 | Remondi | Aug 1995 | A |
5444453 | Lalezari | Aug 1995 | A |
5451964 | Babu | Sep 1995 | A |
5467282 | Dennis | Nov 1995 | A |
5471217 | Hatch et al. | Nov 1995 | A |
5476147 | Fixemer | Dec 1995 | A |
5477228 | Tiwari et al. | Dec 1995 | A |
5477458 | Loomis | Dec 1995 | A |
5490073 | Kyrtsos | Feb 1996 | A |
5491636 | Robertson | Feb 1996 | A |
5495257 | Loomis | Feb 1996 | A |
5504482 | Schreder | Apr 1996 | A |
5511623 | Frasier | Apr 1996 | A |
5519620 | Talbot et al. | May 1996 | A |
5521610 | Rodal | May 1996 | A |
5523761 | Gildea | Jun 1996 | A |
5534875 | Diefes et al. | Jul 1996 | A |
5543804 | Buchler et al. | Aug 1996 | A |
5546093 | Gudat et al. | Aug 1996 | A |
5548293 | Cohen et al. | Aug 1996 | A |
5561432 | Knight | Oct 1996 | A |
5563786 | Torii | Oct 1996 | A |
5568152 | Janky et al. | Oct 1996 | A |
5568162 | Samsel et al. | Oct 1996 | A |
5583513 | Cohen | Dec 1996 | A |
5589835 | Gildea et al. | Dec 1996 | A |
5592382 | Colley | Jan 1997 | A |
5596328 | Stangeland et al. | Jan 1997 | A |
5600670 | Turney | Feb 1997 | A |
5604506 | Rodal | Feb 1997 | A |
5608393 | Hartman | Mar 1997 | A |
5610522 | Locatelli et al. | Mar 1997 | A |
5610616 | Vallot et al. | Mar 1997 | A |
5610845 | Slabinski | Mar 1997 | A |
5612883 | Shaffer et al. | Mar 1997 | A |
5615116 | Gudat et al. | Mar 1997 | A |
5617100 | Akiyoshi et al. | Apr 1997 | A |
5617317 | Ignagni | Apr 1997 | A |
5621646 | Enge et al. | Apr 1997 | A |
5638077 | Martin | Jun 1997 | A |
5644139 | Allen et al. | Jul 1997 | A |
5664632 | Frasier | Sep 1997 | A |
5673491 | Brenna et al. | Oct 1997 | A |
5680140 | Loomis | Oct 1997 | A |
5684696 | Rao et al. | Nov 1997 | A |
5706015 | Chen et al. | Jan 1998 | A |
5717593 | Gvili | Feb 1998 | A |
5725230 | Walkup | Mar 1998 | A |
5731786 | Abraham et al. | Mar 1998 | A |
5739785 | Allison et al. | Apr 1998 | A |
5757316 | Buchler | May 1998 | A |
5765123 | Nimura et al. | Jun 1998 | A |
5777578 | Chang et al. | Jul 1998 | A |
5810095 | Orbach et al. | Sep 1998 | A |
5828336 | Yunck et al. | Oct 1998 | A |
5838562 | Gudat et al. | Nov 1998 | A |
5854987 | Sekine et al. | Dec 1998 | A |
5862501 | Talbot et al. | Jan 1999 | A |
5864315 | Welles et al. | Jan 1999 | A |
5864318 | Cosenza et al. | Jan 1999 | A |
5875408 | Bendett et al. | Feb 1999 | A |
5877725 | Kalafus | Mar 1999 | A |
5890091 | Talbot et al. | Mar 1999 | A |
5899957 | Loomis | May 1999 | A |
5906645 | Kagawa et al. | May 1999 | A |
5912798 | Chu | Jun 1999 | A |
5914685 | Kozlov et al. | Jun 1999 | A |
5917448 | Mickelson | Jun 1999 | A |
5918558 | Susag | Jul 1999 | A |
5919242 | Greatline et al. | Jul 1999 | A |
5923270 | Sampo et al. | Jul 1999 | A |
5926079 | Heine et al. | Jul 1999 | A |
5927603 | McNabb | Jul 1999 | A |
5928309 | Korver et al. | Jul 1999 | A |
5929721 | Munn et al. | Jul 1999 | A |
5933110 | Tang | Aug 1999 | A |
5935183 | Sahm et al. | Aug 1999 | A |
5936573 | Smith | Aug 1999 | A |
5940026 | Popeck | Aug 1999 | A |
5941317 | Mansur | Aug 1999 | A |
5943008 | Van Dusseldorp | Aug 1999 | A |
5944770 | Enge et al. | Aug 1999 | A |
5945917 | Harry | Aug 1999 | A |
5949371 | Nichols | Sep 1999 | A |
5955973 | Anderson | Sep 1999 | A |
5956250 | Gudat et al. | Sep 1999 | A |
5969670 | Kalafus et al. | Oct 1999 | A |
5987383 | Keller et al. | Nov 1999 | A |
6014101 | Loomis | Jan 2000 | A |
6014608 | Seo | Jan 2000 | A |
6018313 | Engelmayer et al. | Jan 2000 | A |
6023239 | Kovach | Feb 2000 | A |
6052647 | Parkinson et al. | Apr 2000 | A |
6055477 | McBurney et al. | Apr 2000 | A |
6057800 | Yang et al. | May 2000 | A |
6061390 | Meehan et al. | May 2000 | A |
6061632 | Dreier | May 2000 | A |
6062317 | Gharsalli | May 2000 | A |
6069583 | Silvestrin et al. | May 2000 | A |
6076612 | Carr et al. | Jun 2000 | A |
6081171 | Ella | Jun 2000 | A |
6100842 | Dreier et al. | Aug 2000 | A |
6122595 | Varley et al. | Sep 2000 | A |
6128574 | Diekhans | Oct 2000 | A |
6144335 | Rogers | Nov 2000 | A |
6191730 | Nelson, Jr. | Feb 2001 | B1 |
6191733 | Dizchavez | Feb 2001 | B1 |
6198430 | Hwang et al. | Mar 2001 | B1 |
6198992 | Winslow | Mar 2001 | B1 |
6199000 | Keller et al. | Mar 2001 | B1 |
6205401 | Pickhard et al. | Mar 2001 | B1 |
6215828 | Signell et al. | Apr 2001 | B1 |
6229479 | Kozlov et al. | May 2001 | B1 |
6230097 | Dance et al. | May 2001 | B1 |
6233511 | Berger et al. | May 2001 | B1 |
6236916 | Staub et al. | May 2001 | B1 |
6236924 | Motz | May 2001 | B1 |
6253160 | Hanseder | Jun 2001 | B1 |
6256583 | Sutton | Jul 2001 | B1 |
6259398 | Riley | Jul 2001 | B1 |
6266595 | Greatline et al. | Jul 2001 | B1 |
6285320 | Olster et al. | Sep 2001 | B1 |
6292132 | Wilson | Sep 2001 | B1 |
6307505 | Green | Oct 2001 | B1 |
6313788 | Wilson | Nov 2001 | B1 |
6314348 | Winslow | Nov 2001 | B1 |
6325684 | Knight | Dec 2001 | B1 |
6336066 | Pellenc et al. | Jan 2002 | B1 |
6345231 | Quincke | Feb 2002 | B2 |
6356602 | Rodal et al. | Mar 2002 | B1 |
6377889 | Soest | Apr 2002 | B1 |
6380888 | Kucik | Apr 2002 | B1 |
6389345 | Phelps | May 2002 | B2 |
6392589 | Rogers et al. | May 2002 | B1 |
6397147 | Whitehead | May 2002 | B1 |
6415229 | Diekhans | Jul 2002 | B1 |
6418031 | Archambeault | Jul 2002 | B1 |
6421003 | Riley et al. | Jul 2002 | B1 |
6424915 | Fukuda et al. | Jul 2002 | B1 |
6431576 | Viaud et al. | Aug 2002 | B1 |
6434462 | Bevly et al. | Aug 2002 | B1 |
6445983 | Dickson et al. | Sep 2002 | B1 |
6445990 | Manring | Sep 2002 | B1 |
6449558 | Small | Sep 2002 | B1 |
6463091 | Zhodzicshsky et al. | Oct 2002 | B1 |
6463374 | Keller et al. | Oct 2002 | B1 |
6466871 | Reisman et al. | Oct 2002 | B1 |
6469663 | Whitehead et al. | Oct 2002 | B1 |
6484097 | Fuchs et al. | Nov 2002 | B2 |
6501422 | Nichols | Dec 2002 | B1 |
6515619 | McKay, Jr. | Feb 2003 | B1 |
6516271 | Upadhyaya et al. | Feb 2003 | B2 |
6539303 | McClure et al. | Mar 2003 | B2 |
6542077 | Joao | Apr 2003 | B2 |
6549835 | Deguchi | Apr 2003 | B2 |
6553299 | Keller et al. | Apr 2003 | B1 |
6553300 | Ma et al. | Apr 2003 | B2 |
6553311 | Aheam et al. | Apr 2003 | B2 |
6570534 | Cohen et al. | May 2003 | B2 |
6577952 | Geier et al. | Jun 2003 | B2 |
6587761 | Kumar | Jul 2003 | B2 |
6606542 | Hauwiller et al. | Aug 2003 | B2 |
6611228 | Toda et al. | Aug 2003 | B2 |
6611754 | Klein | Aug 2003 | B2 |
6611755 | Coffee et al. | Aug 2003 | B1 |
6622091 | Perlmutter et al. | Sep 2003 | B2 |
6631916 | Miller | Oct 2003 | B1 |
6643576 | O'Connor et al. | Nov 2003 | B1 |
6646603 | Dooley et al. | Nov 2003 | B2 |
6657875 | Zeng et al. | Dec 2003 | B1 |
6671587 | Hrovat et al. | Dec 2003 | B2 |
6688403 | Bernhardt et al. | Feb 2004 | B2 |
6703973 | Nichols | Mar 2004 | B1 |
6711501 | McClure et al. | Mar 2004 | B2 |
6721638 | Zeitler | Apr 2004 | B2 |
6732024 | Wilhelm Rekow et al. | May 2004 | B2 |
6744404 | Whitehead et al. | Jun 2004 | B1 |
6754584 | Pinto et al. | Jun 2004 | B2 |
6774843 | Takahashi | Aug 2004 | B2 |
6792380 | Toda | Sep 2004 | B2 |
6810315 | Cessac | Oct 2004 | B2 |
6819269 | Flick | Nov 2004 | B2 |
6822314 | Beasom | Nov 2004 | B2 |
6865465 | McClure | Mar 2005 | B2 |
6865484 | Miyasaka et al. | Mar 2005 | B2 |
6879283 | Bird et al. | Apr 2005 | B1 |
6900992 | Kelly et al. | May 2005 | B2 |
6922635 | Rorabaugh | Jul 2005 | B2 |
6931233 | Tso et al. | Aug 2005 | B1 |
6961018 | Heppe et al. | Nov 2005 | B2 |
6967538 | Woo | Nov 2005 | B2 |
6990399 | Hrazdera et al. | Jan 2006 | B2 |
7006032 | King et al. | Feb 2006 | B2 |
7026982 | Toda et al. | Apr 2006 | B2 |
7027918 | Zimmerman et al. | Apr 2006 | B2 |
7031725 | Rorabaugh | Apr 2006 | B2 |
7089099 | Shostak et al. | Aug 2006 | B2 |
7142956 | Heiniger et al. | Nov 2006 | B2 |
7162348 | McClure et al. | Jan 2007 | B2 |
7191061 | McKay et al. | Mar 2007 | B2 |
7221314 | Brabec et al. | May 2007 | B2 |
7231290 | Steichen et al. | Jun 2007 | B2 |
7248211 | Hatch et al. | Jul 2007 | B2 |
7271766 | Zimmerman et al. | Sep 2007 | B2 |
7277784 | Weiss | Oct 2007 | B2 |
7292186 | Miller et al. | Nov 2007 | B2 |
7324915 | Altmann | Jan 2008 | B2 |
7358896 | Gradincic et al. | Apr 2008 | B2 |
7373231 | McClure et al. | May 2008 | B2 |
7388539 | Whitehead et al. | Jun 2008 | B2 |
7395769 | Jensen | Jul 2008 | B2 |
7428259 | Wang et al. | Sep 2008 | B2 |
7437230 | McClure et al. | Oct 2008 | B2 |
7451030 | Eglington et al. | Nov 2008 | B2 |
7479900 | Horstemeyer | Jan 2009 | B2 |
7505848 | Flann et al. | Mar 2009 | B2 |
7522099 | Zhodzishsky et al. | Apr 2009 | B2 |
7522100 | Yang et al. | Apr 2009 | B2 |
7571029 | Dai et al. | Aug 2009 | B2 |
7689354 | Heiniger et al. | Mar 2010 | B2 |
20030014171 | Ma et al. | Jan 2003 | A1 |
20030187560 | Keller et al. | Oct 2003 | A1 |
20030208319 | Ell et al. | Nov 2003 | A1 |
20040039514 | Steichen et al. | Feb 2004 | A1 |
20040212533 | Whitehead et al. | Oct 2004 | A1 |
20050080559 | Ishibashi et al. | Apr 2005 | A1 |
20050225955 | Grebenkemper et al. | Oct 2005 | A1 |
20050265494 | Goodings | Dec 2005 | A1 |
20060167600 | Nelson et al. | Jul 2006 | A1 |
20060206246 | Walker | Sep 2006 | A1 |
20060215739 | Williamson et al. | Sep 2006 | A1 |
20070078570 | Dai et al. | Apr 2007 | A1 |
20070088447 | Stothert et al. | Apr 2007 | A1 |
20070121708 | Simpson | May 2007 | A1 |
20070205940 | Yang et al. | Sep 2007 | A1 |
20070285308 | Bauregger et al. | Dec 2007 | A1 |
20080129586 | Martin | Jun 2008 | A1 |
20080204312 | Euler | Aug 2008 | A1 |
20090171583 | DiEsposti | Jul 2009 | A1 |
20090174597 | DiLellio et al. | Jul 2009 | A1 |
20090174622 | Kanou | Jul 2009 | A1 |
20090177395 | Stelpstra | Jul 2009 | A1 |
20090177399 | Park et al. | Jul 2009 | A1 |
20090259397 | Stanton | Oct 2009 | A1 |
20090259707 | Martin et al. | Oct 2009 | A1 |
20090262014 | DiEsposti | Oct 2009 | A1 |
20090262018 | Vasilyev et al. | Oct 2009 | A1 |
20090262974 | Lithopoulos | Oct 2009 | A1 |
20090265054 | Basnayake | Oct 2009 | A1 |
20090265101 | Jow | Oct 2009 | A1 |
20090265104 | Shroff | Oct 2009 | A1 |
20090273372 | Brenner | Nov 2009 | A1 |
20090273513 | Huang | Nov 2009 | A1 |
20090274079 | Bhatia et al. | Nov 2009 | A1 |
20090274113 | Katz | Nov 2009 | A1 |
20090276155 | Jeerage et al. | Nov 2009 | A1 |
20090295633 | Pinto et al. | Dec 2009 | A1 |
20090295634 | Yu et al. | Dec 2009 | A1 |
20090299550 | Baker | Dec 2009 | A1 |
20090322597 | Medina Herrero et al. | Dec 2009 | A1 |
20090322598 | Fly et al. | Dec 2009 | A1 |
20090322600 | Whitehead et al. | Dec 2009 | A1 |
20090322601 | Ladd et al. | Dec 2009 | A1 |
20090322606 | Gronemeyer | Dec 2009 | A1 |
20090326809 | Colley et al. | Dec 2009 | A1 |
20100013703 | Tekawy et al. | Jan 2010 | A1 |
20100026569 | Amidi | Feb 2010 | A1 |
20100030470 | Wang et al. | Feb 2010 | A1 |
20100039316 | Gronemeyer et al. | Feb 2010 | A1 |
20100039318 | Kmiecik et al. | Feb 2010 | A1 |
20100039320 | Boyer et al. | Feb 2010 | A1 |
20100039321 | Abraham | Feb 2010 | A1 |
20100060518 | Bar-Sever et al. | Mar 2010 | A1 |
20100063649 | Wu et al. | Mar 2010 | A1 |
20100084147 | Aral | Apr 2010 | A1 |
20100085249 | Ferguson et al. | Apr 2010 | A1 |
20100085253 | Ferguson et al. | Apr 2010 | A1 |
20100103033 | Roh | Apr 2010 | A1 |
20100103034 | Tobe et al. | Apr 2010 | A1 |
20100103038 | Yeh et al. | Apr 2010 | A1 |
20100103040 | Broadbent | Apr 2010 | A1 |
20100106414 | Whitehead | Apr 2010 | A1 |
20100106445 | Kondoh | Apr 2010 | A1 |
20100109944 | Whitehead et al. | May 2010 | A1 |
20100109945 | Roh | May 2010 | A1 |
20100109947 | Rintanen | May 2010 | A1 |
20100109948 | Razoumov et al. | May 2010 | A1 |
20100109950 | Roh | May 2010 | A1 |
20100111372 | Zheng et al. | May 2010 | A1 |
20100114483 | Heo et al. | May 2010 | A1 |
20100117894 | Velde et al. | May 2010 | A1 |
20100117899 | Papadimitratos et al. | May 2010 | A1 |
20100117900 | Van Diggelen et al. | May 2010 | A1 |
20100124210 | Lo | May 2010 | A1 |
20100124212 | Lo | May 2010 | A1 |
20100134354 | Lennen | Jun 2010 | A1 |
20100149025 | Meyers et al. | Jun 2010 | A1 |
20100149030 | Verma et al. | Jun 2010 | A1 |
20100149033 | Abraham | Jun 2010 | A1 |
20100149034 | Chen | Jun 2010 | A1 |
20100149037 | Cho | Jun 2010 | A1 |
20100150284 | Fielder et al. | Jun 2010 | A1 |
20100152949 | Nunan et al. | Jun 2010 | A1 |
20100156709 | Zhang et al. | Jun 2010 | A1 |
20100156712 | Pisz et al. | Jun 2010 | A1 |
20100156718 | Chen | Jun 2010 | A1 |
20100159943 | Salmon | Jun 2010 | A1 |
20100161179 | Mcclure et al. | Jun 2010 | A1 |
20100161211 | Chang | Jun 2010 | A1 |
20100161568 | Xiao | Jun 2010 | A1 |
20100171660 | Shyr et al. | Jul 2010 | A1 |
20100171757 | Melamed | Jul 2010 | A1 |
20100185364 | McClure | Jul 2010 | A1 |
20100185366 | Heiniger et al. | Jul 2010 | A1 |
20100185389 | Woodard | Jul 2010 | A1 |
20100188285 | Collins | Jul 2010 | A1 |
20100188286 | Bickerstaff et al. | Jul 2010 | A1 |
20100189163 | Burgi et al. | Jul 2010 | A1 |
20100207811 | Lackey | Aug 2010 | A1 |
20100210206 | Young | Aug 2010 | A1 |
20100211248 | Craig et al. | Aug 2010 | A1 |
20100211315 | Toda | Aug 2010 | A1 |
20100211316 | DaSilva et al. | Aug 2010 | A1 |
20100220008 | Conover et al. | Sep 2010 | A1 |
20100222076 | Poon et al. | Sep 2010 | A1 |
20100225537 | Abraham | Sep 2010 | A1 |
20100228408 | Ford et al. | Sep 2010 | A1 |
20100228480 | Lithgow et al. | Sep 2010 | A1 |
20100231446 | Marshall et al. | Sep 2010 | A1 |
20100235093 | Chang | Sep 2010 | A1 |
20100241347 | King et al. | Sep 2010 | A1 |
20100241353 | Park | Sep 2010 | A1 |
20100241441 | Page et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
07244150 | Sep 1995 | JP |
WO9836288 | Aug 1998 | WO |
WO0024239 | May 2000 | WO |
WO03019430 | Mar 2003 | WO |
WO2005119386 | Dec 2005 | WO |
WO2009066183 | May 2009 | WO |
WO-2009082745 | Jul 2009 | WO |
WO2009126587 | Oct 2009 | WO |
WO2009148638 | Dec 2009 | WO |
WO-2010005945 | Jan 2010 | WO |
WO-2011014431 | Feb 2011 | WO |
Entry |
---|
Parkinson, Bradford W., et al., “Global Positioning System: Theory and Applications, vol. II”, Bradford W. Parkinson and James J. Spiker, Jr., eds., Global Positioning System: Theory and Applications, vol. II, 1995, AIAA, Reston, VA, USA, pp. 3-50. (1995), 3-50. |
“Orthman Manufacturing Co., www.orthman.com/htm;guidance.htm”, 2004, regarding the “Tracer Quick-Hitch”. |
Lin, Dai et al., “Real-time Attitude Determination fro Microsatellite by Lamda Method Combined with Kalman Filtering”, A Collection fof the 22nd AIAA International Communications Satellite Systems Conference and Exhibit Technical Pairs vol. 1, Monterey, California American Institute of Aeronautics and Astronautics, Inc., (May 2004), 136-143. |
Xu, Jiangning et al., “An EHW Architecture for Real-Time GPS Attitude Determination Based on Parallel Genetic Algorithm”, The Computer Society Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (EH'02), (2002). |
Han, Shaowel et al., “Single-Epoch Ambiguity Resolution for Real-Time GPS Attitude Determination with the Aid of One-Dimensional Optical Fiber Gyro” GPS Solutions, vol. 3, No. 1, pp. 5-12 (1999) John Wiley & Sons, Inc. |
Park, Chansik et al., “Integer Ambiguity Resolution for GPS Based Attitude Determination System”, SICE Jul. 29-31, 1998, Chiba, 1115-1120. |
Last, J. D., et al., “Effect of skywave interference on coverage of radiobeacon DGPS stations”, IEEE Proc.-Radar, Sonar Navig., vol. 144, No. 3, Jun. 1997, pp. 163-168. |
“International Search Report and Written Opinion”, PCT/US2004/015678, filed May 17, 2004, Jun. 21, 2005. |
Kaplan, E D., “Understanding GPS: Principles and Applications”, Artech House, MA, 1996. |
Irsigler, M et al., “PPL Tracking Performance in the Presence of Oscillator Phase Noise”, GPS Solutions, vol. 5, No. 4, pp. 45-57 (2002). |
Ward, Phillip W., “Performance Comparisons Between FLL, PLL and a Novel FLL-Assisted-PLL Carrier Tracking Loop Under RF Interference Conditions”, 11th Int. Tech Meeting of the Satellite Division of the U.S. Inst. of Navigation, Nashville, TN, Sep. 15-18, 783-795, 1998. |
Bevly, David M., “Comparison of INS v. Carrier-Phase DGPS for Attitude Determination in the Control of Off-Road Vehicles”, ION 55th Annual Meeting; Jun. 28-30, 1999; Cambridge, Massachusetts; pp. 497-504. |
“International Search Report and Written Opinion”, International Searching Authortiy, PCT/US08/88070, Feb. 9, 2009. |
Keicher, R. et al., “Automatic Guidance for Agricultural Vehicles in Europe”, Computers and Electronics in Agriculture, vol. 25, (Jan. 2000),169-194. |
Takac, Frank et al., “SmartRTK: A Novel Method of Processing Standardised RTCM Network RTK Information for High Precision Positioning”, Proceedings of ENC GNSS 2008, Toulouse, France,(Apr. 22, 2008). |
“International Search Report”, PCT/US09/33567, (Feb. 9, 2009). |
“International Search Report”, PCT/US09/49776, (Aug. 11, 2009). |
“International Search Report”, PCT/AU/2008/000002, (Feb. 28, 2008). |
“International Search Report and Written Opinion”, PCT/IB2008/003796, (Jul. 15, 2009). |
“International Search Report”, PCT/US09/33693, (Mar. 30, 2009). |
“International Search Report”, PCT/US09/039686, (May 26, 2009). |
“International Search Report”, PCT/US09/34376, (Nov. 2, 2009). |
“International Search Report / Written Opinion”, PCT/US09/63594, (Jan. 11, 2010). |
“International Search Report”, PCT/US09/60668, (Dec. 9, 2009). |
“International Search Report”, PCT/US09/067693, (Jan. 26, 2010). |
“International Search Report and Written Opinion”, PCT/US10/21334, (Mar. 12, 2010). |
Rho, Hyundho et al., “Dual-Frequency GPS Precise Point Positioning with WADGPS Corrections”, [retrieved on May 18, 2010]. Retrieved from the Internet: ,URL: http://gauss.gge.unb.ca/papers.pdf/iongnss2005.rho.wadgps.pdf, (Jul. 12, 2006). |
“Eurocontrol, Pegasus Technical Notes on SBAS”, report [online], Dec. 7, 2004 [retrieved on May 18, 2010]. Retrieved from the Internet: <URL: http://www.icao.int/icao/en/ro/nacc/meetings/2004/gnss/documentation/Pegasus/tn.pdf>, (Dec. 7, 2004),p. 89 paras [0001]-[0004]. |
“ARINC Engineering Services, Interface Specification IS-GPS-200, Revision D”, Online [retrieved on May 18, 2010]. Retrieved from the Internet;<URL: http://www.navcen.uscg.gov/gps/geninfo/IS-GPS-200D.pdf>, (Dec. 7, 2004),p. 168 para [0001]. |
Schaer, et al., “Determination and Use of GPS Differential Code Bias Values”, Presentation [online]. Retrieved May 18, 2010. Retrieved from the internet: <http://nng.esoc.esa.de/ws2006/REPR2.pdf>, (May 8, 2006). |
“International Search Report”, PCT/US10/26509, (Apr. 20, 2010). |
“Notification Concerning Transmittal of International Preliminary Report on Patentability”, PCT/US2009/049776, (Jan. 20, 2011). |
“Notification of Transmittal of International Prelim. Report of Patentability”, International Application No. PCT/US09/039686, (Oct. 21, 2010). |
“International Search Report and Written Opinion”, PCT/US2010/043094, (Sep. 17, 2010). |
“Notification of Publication of International Application”, WO 2011/014431, (Feb. 3, 2011). |
“International Search Report and Written Opinion”, PCT/US08/81727. (Dec. 23, 2008). |
“ISO”, 11783 Part 7 Draft Amendment 1 Annex, Paragraphs B.6 and B.7.ISO 11783-7 DAM1, ISO: Mar. 8, 2004. |
Number | Date | Country | |
---|---|---|---|
20110264307 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
61252994 | Oct 2009 | US |