1. Field of the Invention
The present invention relates to GNSS (Global Navigation Satellite System) receiving, more particularly, to an interference handling method for detecting interference and preventing false determination in signal peak searching, and a correlator which implements the above method.
2. Description of the Prior Art
In satellite communication system, such as GNSS, a receiver detects signals from each satellite, The signals of respective satellites are distinguishable by distinct PRN code patterns. The receiver further measures the time delay for each satellite. The receiver produces an identical PRN sequence (i.e. local PRN replica) as that of each satellite. By correlating the input PRN sequence with the local PRN replica, the receiver can measure the delay and calculate its distance to the satellite. A general search scheme for satellite signals is to search for a strong peak within a hypothesized code chip and Doppler search range. Once the strong peak is found. it is deemed that the signal is found, and the search is stopped. However, in some environments, such as urban canyon, the signal strength may become weak. In such circumstances, a peak caused by jamming may be incorrectly determined as the signal peak, resulting in a false determination. As commonly known in this field, there are various interferences such as CW (continuous wave) jamming and PRN (pseudo random noise) jamming or any other types of jamming. PRN jamming is also known as the cross-correlation from the PRN of other strong signals, which are often seen in outdoor environment. Some strong satellite signals may cause difficulties in acquiring other weaker satellite signals. Furthermore, with the modernization of GNSS system, the cross-correlation effect may also exist among different satellite systems.
One method to avoid false determination (or referred to as “false alarm”) is to search over the whole search range and find the maximum peak as the required signal. However, when the search range is quite large or the integration period is long, such a method will take too much time. Another method is to perform FFT (Fast Fourier Transform)of the signal to remove peaks caused by CW (continuous wave) jamming in frequency domain before correlation. Such a method is often implemented by hardware. Because of the high sampling rate of the IF (intermediate frequency) signal, the cost is very high. In addition, the method is only useful for CW jamming but not PRN (pseudo random noise) jamming since the latter can only be observed after correlation, details thereof will be further described.
To overcome PRN jamming, a method is to reproduce the strong satellite IF signal and subtract it from the input signal if the code chip delay, Doppler frequency and power of the present strong signal is known. However, the cost is also very high. In addition, it is not able to find the jamming in the early stage, false determination of the signal may still occur.
As mentioned above, there is a need for an efficient, low-cost scheme to effectively detect interferences and reduce false determination in the present of various kinds of interferences. The present invention satisfies such a need.
The present invention is to provide a GNSS satellite signal interference handling method. For a specific Doppler bin, when a peak is found, it is checked if the specific Doppler bin is polluted with interference. To detect interference, it is determined whether a specific Doppler bin of a signal is polluted with jamming or not by comparing a statistical value such as a mean value of correlation results of a plurality of code chip hypotheses with a reference. Alternatively, it is determined whether a specific Doppler bin is polluted with jamming by checking if there are plural peaks existing in the correlation results.
If the detection result indicates that the specific Doppler bin is polluted with interference, a threshold, which is used to determine whether the actual signal peak is found or not, is then raised to a higher value, so as to increase the searching reliability.
The present invention still provides a correlator, which implements GNSS satellite signal interference handling method. Determination operations can be executed by built-in programs of a processor of the correlator. A calculation unit can be added to execute calculation of the statistical value.
The present invention will be further described in details in conjunction with the accompanying drawings.
When the signal is subjected to interference from another satellite (another PRN (pseudo random noise) code), in addition to the actual signal peak, there are sub-peaks appearing on multiple code chips for respective Doppler bins, which are 1 kHz apart from each other. This is known as “PRN jamming”. The sub-peaks caused by strong PRN jamming can be higher than the noise floor and lead to false alarm in signal searching or jeopardize tracking reliability.
The processor 870 checks if the maximum value of the correlation results exceeds a predetermined detection threshold in step S730. If not, it means that there is no peak is present in the Doppler bin. Then the searching for this Doppler bin is finished, and searching for code chip delays on another Doppler bin is started (step S765). If the maximum value of the correlation results exceeds the threshold, it indicates that a signal peak is found. To prevent false determination of the signal peak, in step S740, a checking operation is executed. In the present embodiment, the correlator 100 has a sum/mean calculation unit 860. The calculation unit 860 receives integration results from the integration and dump units 842 and 844. The calculation unit 860 calculates a mean value of a plurality of code chip hypotheses for the current Doppler bin, and then outputs the mean value to the processor 870. It is noted that the plurality of code chip hypotheses can be some or all of the code chip hypotheses for the current Doppler bin. In addition, it is possible to search several Doppler bins at the same time. When the plurality of code chip hypotheses are a portion of all the code chip hypotheses for the current Doppler bin, a specific range or selected ones of all the code chip hypotheses for the current Doppler bin can be included. Reference values of unpolluted and polluted Doppler bins can be obtained by gathering statistics experimental data and stored in the processor 870 in advance. The mean value calculated by the calculation unit 860 is compared with the reference values by the processor 870 to determine whether the current Doppler bin is polluted or not. For example, if the mean of the correlation values for the Doppler bin is higher than the noise floor by 2 dB, then it is determined that this Doppler bin is polluted. It is noted that in addition to mean value, other statistical values such as sum or standard deviation of correlation results of plural code phase hypotheses can also be used to determine the existence of interference, such as general jamming or cross-correlations caused by signals from other GNSS systems or different PRN of the same GNSS system.
In another embodiment, in step S740, it is checked that whether there are more than one peak present on the current Doppler bin. For example, if there is another peak not lower than the maximum peak by 15 dB, then it is determined that there are plural peaks existing on the Doppler bin. Accordingly, the Doppler bin is determined as polluted.
In the check step S740, if it is determined that the Doppler bin is not polluted, then the found signal peak is deemed as reliable. That is, the signal is acquired (step S770). However, if it is determined that the Doppler bin is polluted, to avoid false determination for signal peak searching, in accordance with the present invention, the processor 870 raises the detection threshold to a higher value in step S750. After the threshold is set to the new value, in step S760, it is checked again whether the maximum value of the correlation results exceeds the new threshold. If so, the signal is acquired. If not, the search for the Doppler bin is finished and the process goes to step S765.
In determining whether there is jamming or not, the statistical value (e.g. the mean value) of the correlation results can be gathered from arbitrary or selected plural code chips, from a specific range of code chips, or from all the code chips of the current Doppler bin. Therefore, by using the present invention, effective, efficient and reliable signal search can be achieved with limited cost.
By using the present invention, it is easy to check whether a Doppler bin is polluted with interference or not. Further, if the Doppler bin is determined as polluted, the probability of false determination of signal peak searching is reduced by raising the threshold to a higher value. The threshold is to be compared with the found peak to determine whether signal acquisition is achieved. This can be implemented by a built-in program of the processor 870, the cost thereof is quite low.
While the preferred embodiment of the present invention has been illustrated and described in details, various modifications and alterations can be made by persons skilled in this art. The embodiment of the present invention is therefore described in an illustrative but not in a restrictive sense. It is intended that the present invention should not be limited to the particular forms as illustrated, and that all modifications and alterations which maintain the spirit and realm of the present invention are within the scope as defined in the appended claims.