Gold alloy for black coloring, processed article of black colored gold alloy and method for production of the processed article

Information

  • Patent Grant
  • 5139739
  • Patent Number
    5,139,739
  • Date Filed
    Tuesday, April 9, 1991
    33 years ago
  • Date Issued
    Tuesday, August 18, 1992
    32 years ago
Abstract
A gold alloy for black coloring comprising gold and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, a gold alloy for black coloring having the composition described above and further comprising at least one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni; a method for the production of a processed article of gold alloy possessing a black surface layer by the steps of shaping the gold alloy mentioned above, heat-treating the shaped gold alloy, and cooling; and processed article of gold alloy obtained by the method.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a gold alloy suitable for producing a colored gold alloy possessing a glossy black surface layer and used in ornaments of precious metal, a processed article of gold alloy, and a method for the production of the processed article.
2. Prior Art Statement
As ornaments of gold, processed articles of 18-carat gold, i.e. an alloy having a gold content of 75% by weight are widely available on the market. The 18-carat gold is characterized by possessing the stablest mechanical, physical, and chemical properties, excelling in workability, and permitting easy variation of hue. The processed articles of gold inherently have a gold hue and, because of this hue, are esteemed highly as ornaments. In recent years, processed articles of gold have become increasingly intricate in design and demand for such articles in a wider variety of hues has increased.
The hues in which the products of gold alloys meeting this demand are currently available include a light greenish yellow color of the Au-Ag alloy (Metal Data Book, page 186, Maruzen, 1984), a yellow color of the Au-Ag-Cu alloy (ibid.), a red color of the Au-Cu alloy (ibid.), and a light yellowish white color of the Au-Cu-Ni alloy (ibid.). Very recently, a purple color of the Au-Al alloy (Metal, Nov. issue, page 30, Agne's, 1984) and a yellowish green color of the Au-Cd alloy (Nonferrous Metals, II, page 231, compiled by Japan Metallurgical Society, 1986) have been developed.
With only five colors available (white, yellow, red, purple, and yellowish green), however, there are limits on the color variation of gold ornaments that can be obtained. Thus, the desirability of developing gold alloys of colors other than the colors mentioned above, particularly gold alloys of a black color forming a very fine contrast with the golden color, has been finding growing recognition.
SUMMARY OF THE INVENTION
This invention has been accomplished in answer to the desire mentioned above.
To be specific, this invention is directed to:
a gold alloy for black coloring consisting essentially of gold and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti and containing the coloring metallic element in a concentration in the range of 5 to 65 wt %;
a gold alloy for black coloring consisting essentially of gold, at least one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni, and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, containing the gold in a proportion of at least 38% by weight to the sum of the amount of the gold and the amount of the alloying element, having the content of the coloring metallic element in the gold alloy in the range of 5 to 40% by weight in the case of Cu, 3 to 40% by weight in the case of Fe, 3 to 40% by weight in the case of Co, or 1 to 10% by weight in the case of Ti, and having the total content of component elements other than gold of the gold alloy in the range of 5 to 65% by weight;
gold alloys for black coloring having the compositions described above, further comprising Zn, and containing the Zn in a concentration in the range of 0.5 to 10% by weight;
a processed article of gold alloy possessing a glossy black surface layer, obtained by shaping a gold alloy comprising gold and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti and containing the coloring metallic element in a concentration in the range of 5 to 65% by weight, then heat-treating the shaped gold alloy in an oxidizing atmosphere at a temperature not exceeding the melting temperature of the gold alloy, and thereafter cooling the resultant shaped gold alloy;
a processed article of gold alloy possessing a glossy black surface layer, obtained by shaping a gold alloy comprising gold, at least one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni, and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, containing the gold in a proportion of at least 38% by weight to the sum of the amount of the gold and the amount of the alloying element, having the content of the coloring metallic element in the gold alloy in the range of 5 to 40% by weight in the case of Cu, 3 to 40% by weight in the case of Fe, 3 to 40% by weight in the case of Co, or 1 to 10% by weight in the case of Ti, and having the total content of component element other than gold of the gold alloy in the range of 5 to 65% by weight, then heat-treating the shaped gold alloy in an oxidizing atmosphere at a temperature not exceeding the melting temperature of the gold alloy, and thereafter cooling the resultant shaped gold alloy;
processed articles of gold alloys possessing a glossy black surface layer having the compositions described above, further comprising Zn, and containing the Zn in a concentration in the range of 0.5 to 10% by weight;
a method for the production of a processed article of gold alloy possessing a glossy black surface layer, which method consists essentially of shaping a gold alloy comprising gold and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti and containing the coloring metallic element in a concentration in the range of 5 to 65% by weight, then heat-treating the shaped gold alloy in an oxidizing atmosphere at a temperature not exceeding the melting temperature of the gold alloy, and thereafter cooling the resultant gold alloy;
a method for the production of a processed article of gold alloy possessing a glossy black surface layer, which method consists essentially of shaping a gold alloy comprising gold, at least one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni, and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, containing the gold in a proportion of at least 38% by weight to the sum of the amount of the gold and the amount of the alloying element, having the content of the coloring metallic element in the gold alloy in the range of 5 to 40% by weight in the case of Cu, 3 to 40% by weight in the case of Fe, 3 to 40% by weight in the case of Co, or 1 to 10% by weight in the case of Ti, and having the total content of component elements other than gold of the gold alloy in the range of 5 to 65% by weight, then heat-treating the shaped gold alloy in an oxidizing atmosphere at a temperature not exceeding the melting temperature of the gold alloy, and thereafter cooling the resultant gold alloy; and
method for the production of processed articles of gold alloy, which methods use gold alloys having the compositions described above, further comprising Zn, and containing the Zn in a concentration in the range of 0.5 to 10% by weight.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
This invention is based on the development of a novel gold alloy for black coloring. The gold alloy of this invention is characterized by comprising gold and 5 to 65% by weight of at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ni. If the content of the coloring metallic element is less than 5% by weight, the alloy composition cannot acquire the black layer on the surface as aimed at by the coloring treatment. If this content exceeds 65% by weight, the produced gold alloy is no longer capable of retaining the excellent characteristic properties inherent to the gold alloy of this invention.
Part of the gold in the gold alloy may be replaced by at least one member selected from the group consisting of the platinum group elements (Pt, Pd, Rh, Ir, Ru, and Os), Ag, and Ni. In this case, the gold alloy is required to contain the gold in a proportion of at least 38% by weight to the sum of the amount of the gold and the amount of at least one member selected from the group consisting of the platinum group elements, Ag, and Ni. If the proportion is less than 38% by weight, the final produced gold alloy no longer retains the characteristic quality of carat gold. When part of the gold is replaced by at least one member selected from the group consisting of the platinum group elements, Ag, and Ni, the content of the coloring metallic element in the gold alloy is required to be in the range of 5 to 40% by weight in the case of Cu, 3 to 40% by weight in the case of Fe, 3 to 40% by weight in the case of Co, or 1 to 10% by weight in the case of Ti. It is further an essential requirement that the total content of component elements other than gold should be in the range of 5 to 65% by weight.
Now, the production of the gold alloy of this invention will be described.
The gold alloy of this invention can be obtained by combining component metallic elements in ratios corresponding to an alloy composition aimed at and melting the resultant composition under a vacuum or in an atmosphere of inert gas within an arc furnace provided with a water cooled copper crucible or a high-frequency induction furnace.
Generally, the amount of the composition to be melted in one lot is approximately in the range of 50 to 100 g.
The gold, the Cu, Fe, Co, and Ti as coloring metallic elements, and the Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni as alloying elements usable in place of part of the gold are desired to be as pure as possible. Practically, however, they may contain impurities in a ratio such that the formation of the black layer in the produced gold alloy and the characteristic quality of the gold alloy will not be adversely affected.
The impurities to be contained in the gold alloy of the present invention are desired not to exceed their respective limits (in ppm) indicated below.
Mg<3, Ca<1, Al<1, Cr<1, Pb<0.3, C<40, S<10, P<10, Si<10, and Mn<10
Now, the method for producing a processed article of gold alloy possessing a glossy black surface layer from the gold alloy described above will be described.
The ingot of gold alloy produced by melting the component elements in a given mold as described above is melted under a vacuum or in an atmosphere of inert gas such as, for example, argon gas and the resultant melt is cast in a mold made of the suitable refractories such as magnesia, zircon, alumina, mullite, or silica. In this case, it is desired during the course of the casting to improve the filling property of the melt in the cavity of the mold by utilizing the pressure of inert gas or centrifugal force.
Then, on the casting product consequently obtained, proper finishing work such as, for example, filing, flaking, polishing with a grindstone, and buffing, is conducted.
Then, the finished casting product is heated in the atmosphere or in an oxidizing atmosphere kept under a pressure higher or lower than the partial pressure of the oxygen in the atmosphere and subsequently cooled suitably in the medium of air, oil, or water.
The temperature of the heating is lower than the melting point of the alloy composition of the casting product. To be specific, this temperature is approximately in the range of 700.degree. C. to 950.degree. C. when the heating is carried out in the natural atmosphere. Generally, the temperature is not less than 700.degree. C. The duration of the heating is determined by the size of the casting product and the degree of black color of the product. The degree of black color increases in proportion as the duration of the heating is lengthened, for example. When the processed article is a small product such as, for example, a ring or a brooch, the heating time is generally in the range of 20 to 30 minutes. When the processed article has a slightly larger size, the heating time is sufficient in the range of 30 to 60 minutes.
In consequence of the heat treatment performed as described above, the surface layer of the processed article acquires a black color.
When the black color developed on the surface of the processed article by slight buffing performed after completion of the treatment for black color development lacks sufficient gloss, the sufficient gloss can be obtained by exposing the polished surface of the processed article for a brief time to the flame of a gas burner using city gas or liquefied propane gas and buffing the surface.
The addition of zinc is aimed mainly at degassing the alloy composition. When zinc is added during the course of production of the gold alloy, the otherwise possible occurrence of minute bubbles on the surface of the product can be prevented. If the amount of zinc thus added is less than 0.5% by weight, the purpose of its addition is not attained. Conversely, if this amount exceeds 10% by weight, the excess zinc degrades the physical properties of the gold alloy.
Now, the present invention will be described more specifically below with reference to working examples and comparative experiments. The working examples concern gold alloys of 18 carats, 14 carats, and 10 carats which find popular use. Gold alloys of the compositions of this invention produce similar effects. The gold alloys and the processed articles of gold alloy according with the present invention are produced very easily without requiring any special raw material or device. Thus, the present invention enjoys very high practical utility.
EXAMPLES
A. The following working examples involve gold alloys of 18 carats (Au content 75% by weight), the commonest Au grade.
EXAMPLE 1
A mixture consisting of 75 g of pure Au and 25 g of electrolytic Co was melted by arc melting in an atmosphere of argon gas. The alloy consequently obtained was centrifugally cast under a vacuum in a mold prepared by the lost-wax process. The casting products (ring and brooch) were filed and ground to finish the surface, soaked in the air at 800.degree. C. for 20 minutes for coloring, and subsequently cooled with water. When the processed articles were subsequently polished again by buffing, they acquired a brilliant black color. Consequently, there were obtained processed articles of gold alloy each possessing a glossy black surface layer. The black surface layers were approximately 3 to 4 .mu.m in thickness. These black surface layers were composed of Au-containing CoO.
EXAMPLES 2 TO 16
Mixtures of pure gold with different elements were melted in the same manner as in Example 1. The resultant gold alloys were cast. The casting products (ring and brooch) were soaked in the air and then cooled in the same manner as in Example 1. Consequently, there were obtained processed articles of gold alloy each possessing a glossy black surface layer.
The alloy compositions, the heating conditions, and the black surface layers were as shown in Table 1.
TABLE 1__________________________________________________________________________ 1 2 3 4 5 6 7 8__________________________________________________________________________Pure Au 75 75 75 75 75 75 75 75Oxygen-free Cu 25 15Electrolytic iron 25 15Electrolytic Co 25 15Pure Ti 25 8Pure Ag 10 10 17Electrolytic Ni 10Pure ZnHeating temperature (.degree.C.) 800 850 750 800 800 850 850 800Heating time (min.) 20 20 30 20 20 30 20 20Medium for cooling water air air air air air air airBlack surface layerThickness (.mu.m) 3-4 2-3 3-4 3-4 3-4 2-3 2-3 3-4Composition Au Au Au Au Au,Ag Au,Ag Au,Ag Au CoO TiO.sub.2-x Fe.sub.3 O.sub.4 CuO Fe.sub.3 O.sub.4 CoO TiO.sub.2-x NiO Ag.sub.2 O* Ag.sub.2 O* CuO__________________________________________________________________________ 9 10 11 12 13 14 15 16__________________________________________________________________________Pure Au 75 75 75 75 75 75 75 75Oxygen-free Cu 5 15Electrolytic iron 15 7 24 10 13 9Electrolytic Co 18 20 20 10 5Pure Ti 5 2 1Pure Ag 10Electrolytic Ni 10Pure Zn 1Heating temperature (.degree.C.) 850 900 900 800 800 850 900 800Heating time (min.) 20 15 15 20 20 20 15 20Medium for cooling air air air air air air air waterBlack surface layerThickness (.mu.m) 3-4 3-4 2-3 3-4 3-4 3-4 3-4 3-4Composition Au,Ni Au Au Au Au Au Au Au,Ag Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 CoO CoO Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 CoO CoO TiO.sub.2-x CuO ZnO* CuO CoO Fe.sub.3 O.sub.4 TiO.sub.2-x TiO.sub.2-x__________________________________________________________________________ *small amount
EXAMPLES 17 TO 31
Processed articles of black colored gold alloy were obtained by following the procedure of Example 1, except that the alloy compositions were varied as indicated in Table 2. The black surface layers consequently formed measured 3 to 4 .mu.m in thickness and possessed a beautiful appearance.
TABLE 2__________________________________________________________________________ 17 18 19 20 21 22 23 24__________________________________________________________________________Pure Au 75 75 75 75 75 75 75 75Oxygen-free Cu 5 5 10 5 5 5 5 3Electrolytic iron 10 5 8 10Electrolytic Co 10 5 8 10 20Pure Ti 5 2 2 2Pure Ag 10 10 10 10 10 10Electrolytic NiPure ZnHeating temperature (.degree.C.) 750 800 720 800 750 800 750 730Heating time (min.) 30 30 30 30 30 30 30 30Medium for cooling air air air air air air air airBlack surface layerThickness (.mu.m) 4-6 4-6 4-6 4-6 4-6 4-6 4-6 4-6Composition Au,Ag Au,Ag Au,Ag Au,Ag Au,Ag Au,Ag Au Au CoO CuO CuO CuO CuO CuO CuO CuO CuO Fe.sub.3 O.sub.4 TiO.sub.2-x Fe.sub.3 O.sub.4 CoO Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 CoO CoO TiO.sub.2-x TiO.sub.2-x CoO TiO.sub.2-x__________________________________________________________________________ 25 26 27 28 29 30 31__________________________________________________________________________Pure Au 75 75 75 75 75 75 75Oxygen-free Cu 2Electrolytic iron 7 9 6 5Electrolytic Co 15 10 6 10 5Pure Ti 1 1 5 1 1Pure Ag 10 10 15 10 10 10Electrolytic Ni 5 5 5 2 3 3Pure Zn 1 1 1Heating temperature (.degree.C.) 800 800 750 800 800 800 800Heating time (min.) 30 30 30 30 30 30 30Medium for cooling air air air air air air airBlack surface layerThickness (.mu.m) 4-6 4-6 4-6 4-6 4-6 4-6 4-6Composition Au Au,Ag Au,Ag Au,Ag Au,Ag Au,Ag Au,Ag CuO CoO Fe.sub.3 O.sub.4 TiO.sub.2-x Fe.sub.3 O.sub.4 CoO CoO CoO CoO TiO.sub.2-x Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 TiO.sub.2-x TiO.sub.2-x__________________________________________________________________________
EXAMPLE 32
A mixture consisting of 75 g of pure Au, 10 g of pure Pd, and 15 g of electrolytic Co was melted and cast in the same manner as in Example 1. The casting products (ring and brooch) consequently obtained were soaked in the air at 800.degree. C. for 20 minutes for coloring, then cooled with air, and polished again by buffing. As a result, beautiful, glossy black products were obtained. The black surface layers formed by the coloring treatment measured 3 to 4 .mu.m in thickness and were composed of Au, Pd, and Fe.sub.3 O.sub.4.
EXAMPLES 33 TO 42
Processed articles of gold alloy possessing a glossy black surface layer were obtained by following the procedure of Example 1, except that the alloy compositions were varied. The alloy compositions, the heating conditions, and the black surface layers were as shown in Table 3.
TABLE 3__________________________________________________________________________ 32 33 34 35 36 37 38 39 40 41 42__________________________________________________________________________Pure Au 75 75 75 75 75 75 75 75 75 75 75Oxygen-free Cu 20 5 10Electrolytic iron 15 20 5 10 9Electrolytic Co 15 10 15 10 10 5Pure Ti 8 5Pure Pt 5 5 5 5Pure Pd 10 10 17 10 10 10 10Pure Rh 5 1Heating temperature (.degree.C.) 800 850 850 800 850 900 900 800 850 900 800Heating time (min.) 20 20 20 20 20 15 15 20 20 15 20Medium for cooling air air air air air air air air air water waterBlack surface layerThickness (.mu.m) 3-4 2-3 2-3 3-4 3-4 3-4 2-3 3-4 3-4 3-4 3-4Composition Au,Pd Au,Pd Au,Pd Au,Pt Au,Ph Au,Pd Au,Pt Au,Pd Au,Pt Au,Pd Au,Pd Fe.sub.3 O.sub.4 CoO TiO.sub.2-x CuO Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 CoO CoO Fe.sub.3 O.sub.4 Pt Rh CoO TiO.sub.2-x CuO CuO CoO Fe.sub.3 O.sub.4 CoO__________________________________________________________________________
EXAMPLES 43 TO 57
Coloring processed articles of gold alloy were obtained by following the procedure of Example 1, except that alloy compositions were varied as indicated in Table 4. The black surface layers consequently formed measured 4 to 6 .mu.m in thickness and possessed a beautiful appearance.
TABLE 4__________________________________________________________________________ 43 44 45 46 47 48 49 50__________________________________________________________________________Pure Au 75 75 75 75 75 75 75 75Oxygen-free Cu 5 5 10 5 5 5 5 3Electrolytic iron 9 5 5Electrolytic Co 10 5 8 10 20Pure Ti 5 2 2 1Pure Pt 5 8 1Pure Pd 10 10 5 10 10 10 5Pure Ir 1Pure AgElectrolytic NiPure ZnHeating temperature (.degree.C.) 750 750 750 750 750 750 750 750Heating time (min.) 30 30 30 30 30 30 30 30Medium for cooling air air air air air air air airBlack surface layerThickness (.mu.m) 4-6 4-6 4-6 4-6 4-6 4-6 4-6 4-6Composition Au,Pd Au,Pd Au,Pd Au,Pd Au,Pd Au,Pd Au,Pd Au,Pt CuO CuO CuO CuO CuO CuO CuO CoO CoO Fe.sub.3 O.sub.4 TiO.sub.2-x Fe.sub.3 O.sub.4 CoO TiO.sub.2-x Fe.sub.3 O.sub.4 CuO CoO TiO.sub.2-x CoO__________________________________________________________________________ 51 52 53 54 55 56 57__________________________________________________________________________Pure Au 75 75 75 75 75 75 75Oxygen-free Cu 2Electrolytic iron 7 9 6 5Electrolytic Co 10 10 6 10 5Pure Ti 1 1 5 1Pure Pt 1Pure Pd 5 5 10 5 6 6 6Pure IrPure Ag 10 10 6 5 5Electrolytic Ni 5 5 3 3Pure Zn 1Heating temperature (.degree.C.) 750 750 750 750 750 750 750Heating time (min.) 30 30 30 30 30 30 30Medium for cooling air air air air air air airBlack surface layerThickness (.mu.m) 4-6 4-6 4-6 4-6 4-6 4-6 4-6Composition Au,Pd Au,Ag Au,Pd Au,Pd Au,Ag Au,Pd Au,Pd CuO Pd Ni Ag,Ni Pd,Pt Ag,Ni Ag,Ni Fe.sub.3 O.sub.4 CoO Fe.sub.3 O.sub.4 TiO.sub.2-x Fe.sub.3 O.sub.4 CoO Fe.sub.3 O.sub.4 CoO CoO CoO__________________________________________________________________________
B. The following working examples involved gold alloys of 14 carats (Au content 58.3% by weight).
Processed articles of gold alloy possessing a black surface layer were obtained by following the procedure of Example 1, except that pure Au was mixed with different elements as shown in Table 5. The black surface layers in these products all measured approximately 5 to 6 .mu.m.
TABLE 5__________________________________________________________________________ 58 59 60 61 62 63 64 65 66__________________________________________________________________________Pure Au 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3Oxygen-free Cu 41.7 10 20Electrolytic iron 15 20 5Electrolytic Co 41.7 15 21.7 36.7 21.7 15Pure Ti 5Pure PtPure PdPure RhPure RuPure Ag 26.7 26.7 21.7Electrolytic Ni 31.7Pure ZnHeating temperature (.degree.C.) 720 720 720 720 720 720 720 720 720Heating time (min.) 30 30 30 30 30 30 30 30 30Black surface layerThickness (.mu.m) 5-6 5-6 5-6 5-6 5-6 5-6 5-6 5-6 5-6Composition Au Au Au,Ag Au,Ni Au,Ag Au Au Au Au,Ag CoO CuO CoO CuO Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 CoO CuO Fe.sub.3 O.sub.4 CoO TiO.sub.2-x CoO CoO__________________________________________________________________________ 67 68 69 70 71 72 73 74 75__________________________________________________________________________Pure Au 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3 58.3Oxygen-free Cu 10 20 10 10 10Electrolytic iron 20 5 10Electrolytic Co 15 20 20 20 20 15 15Pure Ti 2 2Pure Pt 21.7 14.7 5 3.7Pure Pd 21.7 21.7 6.7 6.7 10 10Pure Rh 2 1.7Pure Ru 3Pure AgElectrolytic Ni 16.7Pure Zn 3 3Heating temperature (.degree.C.) 720 720 720 720 720 720 720 720 720Heating time (min.) 30 30 30 30 30 30 30 30 30Black surface layerThickness (.mu.m) 5-6 5-6 5-6 5-6 5-6 5-6 5-6 5-6 5-6Composition Au,Ni Au,Pd Au,Pd Au,Pt Au,Pt Au,Pt Au,Pd Au,Pt Au,Pd CuO Fe.sub.3 O.sub.4 CoO Cuo Rh Pd Fe.sub.3 O.sub.4 Pd Rh CoO Fe.sub.3 O.sub.4 CuO CoO CuO CuO CoO CoO TiO.sub.2-x CoO CoO RuO.sub.2 TiO.sub.2-x__________________________________________________________________________
C. The following working examples involved gold alloys of 10 carats (Au content 41.7% by weight).
Processed articles of gold alloy possessing a black surface layer were obtained by following the procedure of Example 1, except that pure Au was mixed with different elements as shown in Table 6. The black surface layers in these products all measured approximately 5 to 6 .mu.m.
TABLE 6__________________________________________________________________________ 76 77 78 79 80 81 82 83 84 85 86 87__________________________________________________________________________Pure Au 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7 41.7Oxygen-free Cu 58.3 10 10 10 5Electrolytic iron 20 5 20 5Electrolytic Co 58.3 20 26.6 26.6 20 15 15 15Pure Ti 10 5Pure Pt 38.3 5 7Pure Pd 38.3 23.3 28.3 15Pure Ru 3.3Pure Ag 38.3 48.3 16.7 10 10Electrolytic Ni 38.3 16.7 5Pure Zn 3Heating temperature (.degree.C.) 700 700 700 700 700 700 700 700 700 700 700 700Heating time (min.) 30 30 30 30 30 30 30 30 30 30 30 30Medium for cooling air air air air air air air air air air air airBlack surface layerThickness (.mu.m) 6 6 6 6 6 6 6 6 6 6 6 6Composition Au Au Au,Ag Au,Ni Au,Ag Au,Ag Au,Ni Au,Pd Au,Pt Au,Ag Au,Ni Au,Ag CoO CuO CoO CoO TiO.sub.2-x CoO CuO Fe.sub.3 O.sub.4 Fe.sub.3 O.sub.4 Pd Pt,Pd Pt,Pd CuO Fe.sub.3 O.sub.4 CuO CoO Ru TiO.sub.2-x CoO CoO Fe.sub.3 O.sub.4 CuO CoO__________________________________________________________________________
COMPARATIVE EXPERIMENTS 1 TO 4
Processed articles of gold alloy were obtained by following the procedure of Example 1, except that pure Au was mixed with different elements as indicted in Table 7. The surface layers formed on these processed articles possessed a color of yellow mixed with gray. The black surface layers contemplated by this invention were not obtained in these processed products.
TABLE 7______________________________________ Comparative Experiment No.Composition 1 2 3 4______________________________________Pure Au 75 75 75 75Oxygen-free Cu 1Electrolytic iron 3 1Electrolytic Co 3 2 1.5Pure Ti 0.5Pure Pt 10Pure Pd 10Pure Ag 22 12 12 12Electrolytic Ni 10______________________________________
Claims
  • 1. A processed article of gold alloy possessing a glossy black surface layer which comprises gold and a coloring metallic oxide, obtained by melting in a vacuum or an inert gas atmosphere an ingot of gold alloy comprising gold and at least one coloring metallic element in a concentration in the range of 5 to 65% by weight selected from the group consisting of Cu, Fe, Co, and Ti, investment casting the melted gold alloy in a vacuum or an inert gas atmosphere, then heat-treating the casting of the gold alloy in an oxidizing atmosphere at a temperature between 700.degree. and 950.degree. C. for 20 to 60 minutes, and thereafter cooling the resultant gold alloy.
  • 2. A processed article of gold alloy possessing a glossy black surface layer which comprises gold and a coloring metallic oxide, obtained by melting in a vacuum or an inert gas atmosphere an ingot of gold alloy comprising gold, at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, and Zn, containing said coloring metallic element in a concentration in the range of 5 to 65% by weight and containing Zn in a concentration in the rang of 0.5 to 10% by weight, investment casting the melted gold alloy in a vacuum or an inert gas atmosphere, then heat-treating the casting of the gold alloy in an oxidizing atmosphere at a temperature between 700.degree. and 950.degree. C. for 20 to 60 minutes, and thereafter cooling the resultant gold alloy.
  • 3. A processed article of gold alloy possessing a glossy black surface layer which comprises gold, a coloring metallic oxide, at least one of an alloying element and an alloying element oxide, obtained by melting in a vacuum or an inert gas atmosphere an ingot of gold alloy comprising gold, at least one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni, and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, containing a the gold in a proportion of at least 38% by weight to the sum of the amount of the gold and the amount of the alloying element, having the content of said coloring metallic element in said gold alloy in the range of 5 to 40% by weight in the case of Cu, 3 to 40% by weight in the case of Fe, 3 to 40% by weight in the case of Co, or 1 to 10% by weight in the case of Ti, and having the total content of component elements other than gold of said gold alloy in the range of 5 to 65% by weight, casting the melted gold alloy in a vacuum or an inert gas atmosphere, then heat-treating the casting of the gold alloy in an oxidizing atmosphere at a temperature between 700.degree. and 950.degree. C. for 20 to 60 minutes, and thereafter cooling the resultant gold alloy.
  • 4. A processed article of gold alloy possessing a glossy black surface layer comprising gold, a coloring metallic oxide, at least one of an alloying element and an alloying element oxide, obtained by melting in a vacuum or an inert gas atmosphere an ingot of gold alloy comprising gold, at least one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni, at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, and Zn, containing said gold in a proportion of at least 38% by weight to the sum of the amount of said gold and the amount of said alloying element, having the content of said coloring metallic element in said gold alloy in the range of 5 to 40% by weight in the case of Cu, 3 to 40% by weight in the case of Fe, 3 to 40% by weight in the case of Co, or 1 to 10% by weight in the case of Ti, containing Zn in a concentration in the rang of 0.5 to 10% by weight, and having the total content of component elements other than gold of said gold alloy in the range of 5 to 65% by weight, investment casting the melted gold alloy in a vacuum or an inert gas atmosphere, then heat-treating the casting of the gold alloy in an oxidizing atmosphere at a temperature between 700.degree. and 950.degree. C. for 20 to 60 minutes, and thereafter cooling the resultant gold alloy.
  • 5. A processed article of gold alloy possessing a glossy black surface layer which comprises gold, a coloring metallic element, at least one of an alloying element and an alloying element oxide, obtained by melting in a vacuum or an inert gas atmosphere an ingot of gold alloy comprising (a) a gold-based metal selected from the group consisting of (i) gold and (ii) an alloy of gold, consisting of gold and one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni, and (b) at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, provided that when said gold-based metal is gold, said coloring metallic element is present in a concentration in the range of 5 to 65 wt. %; and when said gold-based metal is said alloy of gold, said gold is present in a proportion of at least 38% by weight based on the sum of the amount of said gold and the amount of said alloying element, said coloring metallic element in said gold alloy is present in the range of 5 to 40% by weight in the case of Cu, 3 to 40% by weight in the case of Fe, 3 to 40% by weight in the case of Co, or 1 to 10% by weight in the case of Ti, and the total content of component elements other than gold of said gold alloy is in the range of 5 to 65% by weight, investment casting the melted gold alloy in a vacuum or an inert gas atmosphere, then heat-treating the casting of the gold alloy in an oxidizing atmosphere at a temperature between 700.degree. and 950.degree. C. for 20 to 60 minutes, and thereafter cooling the resultant gold alloy.
Priority Claims (1)
Number Date Country Kind
1-45420 Feb 1989 JPX
Parent Case Info

This application is a division of application Ser. No. 07/438,324, filed on Nov. 20, 1989, now abandoned.

US Referenced Citations (1)
Number Name Date Kind
3189482 Bajars et al. Jun 1965
Foreign Referenced Citations (7)
Number Date Country
57-5833 Jan 1982 JPX
2066291 Jul 1981 GBX
2091294 Jul 1982 GBX
2108152 May 1983 GBX
2138027 Oct 1984 GBX
2184457 Jun 1987 GBX
0453443 Apr 1975 SUX
Non-Patent Literature Citations (5)
Entry
McDonald et al., Gold Bulletin, vol. 11, (Jul. 1978) 66.
Ott et al., Gold Bull. 18 (1985) 140.
Susz et al., Gold Bull. 13 (1980) 15.
MacCormack et al., Gold Bull. 14 (1981) 19.
German et al., Gold Bull., vol. 13 (1980) 113.
Divisions (1)
Number Date Country
Parent 438324 Nov 1989