My machine relates to the field of jigs, dry washers, and rockers. which are particularly of use in the field of mining and mineral exploration, but in the case of jigs, may find use in other fields. In the case of jigs and rockers, the primary use is the recovery of desirable gemstones and precious metals contained in the raw material. Dry washers are only used for metals. Rockers may be used for either, but are primarily involved in gold mining.
The use of jigs in the mining industry is common and, for the most part, jigs use a pulsation of water to effect a lifting, separation, and agitation of the raw material. As the raw material settles following a pulse of water, the heavier fraction of the raw material settles faster. This differential settlement has the result of the heavier material sinking through the pulp or gangue to be retained at the bottom of the jig box, on top of the ragging, or passing through the ragging and screen, and into the hutch, where it is retained, while the lighter material is carried out of the jig by the water flowing through.
Jigs have three characteristics that limit their use. They requires large amounts of water. That limits their use in arid country. They also have a poor recovery ratio, that is the ratio of favorable material retained compared to the total raw material run through them, is poor. It's often necessary to run multiple jigs in series, to ensure a good recovery ratio. Jigs also require a high energy input as enough force is required to lift the weight of the gangue, as well as the weight of the water needed to lift the gangue. Jigs are effective at retaining even very fine flour gold, however, and also, with a correctly classified raw material feed, do very well at the recovery of gemstones.
In the use of dry washers I've noticed that the results on small, flour gold are poor. The nature of their operation requires a strong flow of air through the cloth bottom of the riffle tray. That flow of air often lifts the very small, flat gold particles back into the waste stream, and thus they are not retained.
Dry washers are also of no use in recovering gemstones, and require a high energy supply, as the separating medium is pressurized air.
Rockers are, in most cases hand operated. Their feed rate is slow, though they do a fair job on small gold, and in some instances can recover gems. They often used mercury, a dangerous chemical, to amalgamate the flour gold, as the final step in the recovery process. They also require, in most cases, two people to operate.
This embodiment is a method and machine for the recovery of gold and gemstones. The machine is comprised of a cylindrical body supported by legs which are adjustable to level the body. Across the top of the body is attached a flexible diaphragm. The diaphragm is attached at the perimeter of the body. The diaphragm is allowed to sag down, forming a depression within the body.
Within the body, at a predetermined point is a rigid support member made up of a steel square tube. The tube has a vertical hole in the center large enough that a shaft through the hole may turn freely. Fastened to the member are bearing plates of UHMW plastic. The plates are drilled to be a close fit on a steel shaft. A shaft extends from below the member to a predetermined height below the top of the body. The shaft is turned by any appropriate means.
Attached to the shaft by a set screw is a thrust collar that rides against the top surface of the upper bearing plate. Sliding the shaft within the collar allows vertical adjustment of the shaft.
Attached to the upper end of the shaft is a lifting assembly. The assembly is comprised of a center hub, with a set screw for locking the assembly to the shaft. The assembly rotates with the shaft. The center hub is rectangular in shape. Attached to the hub, in this embodiment, are support arms of inverted angle irons. The support arms extend radially to, but not in contact with, the inside face of the body. The angles are attached with the legs of the angles down against the upper surface of the hub, leaving the legs at a 45 degree slope relative to the direction of rotation.
Attached to the leading leg of each support arm is a flat solid lifting surface of UHMW plastic.
Each surface extends above the corner formed by the legs of the angle irons, and each surface extends outwardly to the end of its support arm. The shaft is adjusted vertically so the upper edge of the lifting surface is in light contact with the bottom surface of the diaphragm.
The gold and gem recovery is enhanced if the contact edges of the lifting surfaces where they contact the diaphragm, are offset from the center of rotation. That offset makes any outward point, along the contact edge, lead any more inward point. That lead results in the diaphragm being lifted at any outward point before any more inward point. That increases the slope to center of the diaphragm, and results in a sweeping action that tends to drive the material in contact with the diaphragm towards the center of the depression formed by the diaphragm, and hold it there.
A supply funnel, in this embodiment, is mounted above the radial center of the circular body. The mounting is such that the funnel may be adjusted for vertical elevation above the diaphragm. In this embodiment, a block of steel, attached to the body, is used to mount the funnel support leg. The leg is bent such that one portion is vertical, and the other portion is horizontal. The vertical portion has a sliding mounting within the block, and can be locked in place with a set screw for which the block is drilled and tapped. The horizontal portion is attached to the funnel.
The operation of this embodiment consists of feeding a supply of pulp or gangue to the funnel, where it is directed to the center of the top surface of the diaphragm. The fed material forms a conical pile on the diaphragm. The rotation of the lifting assembly results in a rotating, upward-projecting ridge in the diaphragm. The revolving ridge results in a repeated lifting, separation, and agitation of the pulp or gangue the result of which is the heavier materials sink down through the pulp or gangue to the diaphragm. Once in contact with the diaphragm they move down the slope of the diaphragm. This movement down the diaphragm slope is opposite in direction to the movement of the waste material, which enhances the separation of the desired material from the waste. The heavy material ends up at the lowest point of the depression formed by the diaphragm. The offset-from-the-radial-center position of the arms results in an accelerated urging of the heavy material to the center. The lighter waste material remains above the diaphragm, and drifts down the slope of the pile to the perimeter, and then over the edge to the waste pile.
Shown in the drawings,
The mounting points, along the length of the hub 30, of the arms 32, are such that the corner of the angle formed by the legs of each arm 32 is offset from the radial center of the hub 30. Attached to the arms 32 are flat, solid lifting surfaces 34 of UHMW plastic. The lifting surfaces 34 are mounted such that their inside end does not extend radially beyond the radial center of the hub 30. Each lifting surface 34 extends outward, radially, to the approximate outer end of the support arm 32. The upper edge of each lifting surface 34 is angled to approximately follow the slope of the diaphragm 18. The lifting assembly 28 is adjusted on the shaft 24 such that the lifting surfaces 34 are in light contact with the bottom surface of the diaphragm 18. Attached to the outside of the body 12 is an additional block 36, which allows a sliding mount of the funnel support leg 38 of a supply funnel 40. The support leg 38 is bent at a roughly 90 degree angle such that there is a vertical portion and a horizontal portion. The horizontal portion is attached to the funnel, and the vertical portion is a sliding mount in block 36.
It will be appreciated that the configuration of this embodiment, as outlined, may be considerably varied, as to both minor construction details, and also in materials used to construct the machine.
Steel was utilized, for the most part, other than the diaphragm 18, and the lifting surfaces 34. In most cases, either aluminum, or an appropriate plastic could be substituted for the steel parts, and, for some parts, even wood could be utilized. UHMW plastic was selected for the lifting surfaces 34 because it is self-lubricating, and thus low in friction. After much experimentation, it was decided to use low-density polyethylene for the diaphragm 18, but other waterproof fabrics were also used with good success, though they cost more. In actuality, any tightly-stitched flexible fabric, or monolithic material, even leather, can be used for dry operation, and the same fabric, in a waterproof material, can be used when operating wet. Low-density polyethylene is nice because it's cheap and readily available, though it doesn't wear as well, so needs to be replaced more often.
Operation of the machine is simple, though there are some factors to consider. The machine is set up by adjusting the legs 14 so that the upper end of the body is level. The machine is turned on, and a supply of raw material is entered into the supply funnel 40. As the concave depression of the diaphragm 18 becomes filled with material, the diaphragm 18 comes into firmer contact with the lifting surfaces 34 beneath. A ridge
The upper edges of the lifting surfaces 34 are offset from the radial center of the lifting assembly 28. The result of the offset is that any outward point along the diaphragm contact edge of each lifting surface 34 leads, radially, as the assembly 28 rotates, any more inward point. The effect of that is the diaphragm 18 is lifted outwardly, by each ridge, before it is lifted more inwardly. Thus the slope of the diaphragm 18 is increased as the ridge passes. That increased slope occurs as a motion going from the perimeter of the diaphragm 18, and moving towards the center. That motion urges the material in contact with the diaphragm 18, to accelerates its movement toward the center. The overall effect is a sweeping action that drives the heavy material to the center, and holds it there. The greater the offset distance, the greater the sweeping force.
When dealing with materials like gemstones, there are relatively small differences between the specific gravity of the stones, and the specific gravity of the general raw material, or gangue.
Also, when dealing with true flour gold, that is gold that is below 50 mesh in size, and has an extremely flat shape, the gold, while having a large difference in specific gravity, acts as though the difference is slight. In fact, in some circumstances, gold may settle slower than gemstones when being concentrated. My experiments have shown that the only way to separate these materials of slight specific gravity differences is to use a gentle action when agitating the raw material. Any harsh movement of the pulp or gangue has a tendency to “float” these materials, of slight difference in specific gravity, back into the waste stream, where they are often lost.
The point of the last paragraph is to emphasize the rather gentle up-and-down motion of the pulp or gangue resulting from the movement of the ridges, and the positive effect of the sweeping action of the offset lifting surfaces. The effect of overdoing the sweeping force is that it may cause an upwelling of the recovered material in the center, thus pushing the desired material back up and into the waste stream. I recommend the offset of the inward end of the upper edge of the lifting surfaces 34, be no more than approximately 20% of the diaphragm 18 radius, though more, or less, may be required for some uses, and depending on the material being worked.
Another factor to consider is the rotation speed of the lifting assembly 28. It isn't desirable to have the lifting ridge throwing material off the diaphragm. I've found a good speed of rotation is one that finds the outward end of the lifting surfaces 34 moving at approximately 270 feet/minute, though the operator may experiment for the optimal recovery on the particular raw material being run.
The machine, when used dry for gems, has its best efficiency when the raw material that is smaller then the smallest gem wanting to be retained, is screened-out before the raw material is fed to the machine. This may not be required in every circumstance and is dependent on the nature of the raw material being run. It also may not be required when operating the machine wet. When operated dry, the optimal supply rate is one that finds the supplied material forming a conical pile in the center of the diaphragm 18, the sides of which slope at approximately 10 degrees to the horizontal towards the perimeter.
When operating with water, the pile may have somewhat less slope to the perimeter due to the reduced friction in the wet material. Operating the machine wet may be required any time the raw material is not completely dry, or when the material is clumpy, and water is needed to break it down.
In both cases the water is doing nothing more than ensuring that the very small gems and flour gold, do not stick to the unwanted material, and are allowed to settle. The water has no effect, either positive or negative on the recovery process. It is recommended that the water be introduced at the supply funnel 40, and be allowed to sink into the raw material, where it will become approximately level with the perimeter of the diaphragm 18, with the excess flowing over the side. The water input should not be such that the water carries any material across the surface of the pile.
The lifting, separation, and agitation of the raw material results in movement of the waste under the force of gravity. The rate of supply impacts the height of the pile of raw material, and thus how quickly the material moves toward the perimeter. Having the supply too fast may result in some desired material being lost to waste.
The rate of supply can be controlled, to some extent, by the height of the supply funnel 40 above the center of the diaphragm. The machine will self-control to some extent, dependent on the height of the funnel.
Depending on the amount of desired material in the raw material, it is recommended to remove and empty the diaphragm 18 periodically. The diaphragm 18 should be removed, emptied into a tub for further processing, and reinstalled.
This embodiment is shown in
There is no change of operation with embodiment 1.
This embodiment is shown in
There is no change in operation with embodiment 2.
This embodiment is shown in
There is no change in operation with embodiment 3.
This embodiment is shown in
This embodiment gives the advantage of a directed waste discharge.
This embodiment would be the addition of a vibrating element at any point in the machine.
The vibrating element helping to break down hard lumps of material and free the small desired fraction. Also, the vibration would hasten the overall movement of material.
From the foregoing, it can be seen that this machine is well composed to accomplish the goals set forth. Among the advantages are simple design, easy maintenance, light weight when built in small sizes, and the ability to be operated in either wet or dry modes. In addition this machine is capable of recovery of materials, wet or dry, of only a slight density increase over the pulp or gangue, including gemstones of any variety, and micron gold. It accomplishes this without the use of dangerous chemicals. This machine, however, should not be limited in scope to minerals. It could serve to separate materials in any industry where that purpose is required.
While my description, above, contains specificities, these should not be construed as limitations on the scope, but instead as the exemplification of one embodiment. Other variations are possible. Such variations may include but are not limited to, such items as materials used in its construction, the shape of some parts, and the method of powering the machine.
Accordingly, the scope should be determined not by any particular embodiment, but rather by the appended claims and their legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
849553 | Michaelsen | Apr 1907 | A |
1986778 | Hinkley | Jan 1935 | A |
2029090 | Yewell | Jan 1936 | A |
2344094 | Kraut | Mar 1944 | A |
4008152 | Kleven | Feb 1977 | A |
4431532 | Wyke | Feb 1984 | A |
4561973 | Cleland | Dec 1985 | A |
5160035 | McConnell | Nov 1992 | A |
5447239 | Tubbs, Jr. | Sep 1995 | A |
5788293 | Krenzler | Aug 1998 | A |
6612443 | Kelsey | Sep 2003 | B2 |
8057685 | Laing | Nov 2011 | B2 |