The present invention relates to golf ball dimples having a novel shape obtained from the intersection of a toroid and a sphere.
Dimples on the outer surface of golf balls are known to have a significant effect on the aerodynamic forces acting on the ball during flight. For example, the dimples on a golf ball create a turbulent boundary layer around the ball. The turbulence energizes the boundary layer and helps it stay attached further around the ball to reduce the area of the wake. This greatly increases the pressure behind the ball and substantially reduces the drag. Dimples also contribute to the overall aesthetic appearance of the ball. Based on the role that dimples play in aesthetics and aerodynamic characteristics of golf balls, golf ball manufacturers continually seek to develop novel dimple patterns, sizes, plan shapes, volumes, cross-sections, etc. Thus, the present invention is directed to a golf ball having uniquely shaped dimples that provide the ball with enhanced aesthetics and unique aerodynamic properties.
The present invention is directed to a golf ball having a spherical surface and comprising a plurality of recessed dimples on the spherical surface, at least a portion of which, for example, about 50 percent or more, or about 80 percent or more, have a perimeter defined by a curve of intersection resulting from the intersection of a toroid with a sphere and a surface shape defined by the portion of the toroidal outer surface that intersects with the sphere.
In a particular embodiment, the toroid is a rectangular toroid. In another particular embodiment, the toroid is an elliptical toroid. In another particular embodiment, the toroid is a circular toroid. In another particular embodiment, the toroid is a rectangular twisted toroid.
In the accompanying drawings, which form a part of the specification and are to be read in conjunction therewith, and which are given by way of illustration only, and thus are not meant to limit the present invention:
The present invention is directed to golf balls having improved aesthetics and desirable aerodynamic properties due, at least in part, to the use of dimples having a novel shape obtained from the intersection of a toroid and a spherical body, the spherical body representing the golf ball. The resulting curve of intersection represents the dimple perimeter. The portion of the toroidal outer surface that intersects with the sphere represents the dimple surface shape. The dimple volume is the space enclosed within the dimple surface shape and the portion of the spherical surface within the dimple perimeter.
A toroid is a solid formed by revolving a closed plane geometric figure in three-dimensional space about an axis which is external to and does not intersect the closed plane geometric figure. For example,
As shown in
In forming dimples of the present invention, the average diameter of the toroid, Dave, is related to the diameter of the golf ball, Dball, such that the ratio of Dave to Dball is defined as
For purposes of the present invention, the spherical surface of the golf ball has a diameter, Dball, of from 1.62 inches to 1.72 inches.
Referring now to
The common volume resulting from the intersection of the two solids, i.e., the space between the two bounding surfaces S1 and S2, represents the dimple surface volume in accordance with the present invention.
The intersection of a toroid with a spherical body representing a golf ball to form a dimple shape on the golf ball is limited by three defining dimensions: the maximum normal interference length, LN, the maximum toroidal interference length, LT, and the maximum profile interference length, LP.
As shown in
As shown in
As shown in
In a particular embodiment, the maximum toroidal interference length, LT, does not equal the maximum profile interference length, LP.
The intersection of the toroid and the sphere to define a dimple should result in a dimple volume wherein there is no undercut, meaning that the widest part of the dimple volume in any orientation coincides with the spherical outer surface.
Dimple Patterns & Packing
In a particular embodiment, each dimple having a perimeter and a surface shape defined in accordance with the present invention is part of an overall dimple pattern that maximizes surface coverage uniformity and packing efficiency. Thus, in one embodiment, the dimple pattern provides for overall dimple coverage of 80% or greater. In another embodiment, the dimple pattern provides for overall dimple coverage of 85% or greater. In another embodiment, the dimple pattern provides for overall dimple coverage of 90% or greater. In another embodiment, the dimple pattern provides for overall dimple coverage of 92% or greater.
While dimples having a perimeter and a surface shape defined in accordance with the present invention may be used for at least a portion of the dimples on a golf ball, it is not necessary that such dimple perimeter and surface shapes be used on every dimple of a golf ball. In general, it is preferred that a sufficient number of dimples on the ball have a perimeter and a surface shape defined according to the present invention so that the aerodynamic characteristics of the ball may be altered and the unique aesthetics realized. Thus, in one embodiment, 30% or greater of the dimples on a golf ball include a perimeter and a surface shape according to the present invention. In another embodiment, 50% or greater of the dimples on a golf ball include a perimeter and a surface shape according to the present invention. In another embodiment, 70% or greater of the dimples on a golf ball include a perimeter and a surface shape according to the present invention. In another embodiment, 90% or greater of the dimples on a golf ball include a perimeter and a surface shape according to the present invention. In another embodiment, 95% or greater of the dimples on a golf ball include a perimeter and a surface shape according to the present invention. In another embodiment, 99% or greater of the dimples on a golf ball include a perimeter and a surface shape according to the present invention. In another embodiment, 100% of the dimples on a golf ball include a perimeter and a surface shape according to the present invention.
While the present invention is not limited by any particular dimple pattern, in one embodiment, dimples having a perimeter and a surface shape defined according to the present invention are arranged along parting lines or equatorial lines, in proximity to the poles, or along the outlines of a geodesic or polyhedron pattern, and dimples that do not have a perimeter and a surface shape defined according to the present invention occupy the remaining spaces. In another embodiment, dimples that do not have a perimeter and a surface shape defined according to the present invention are arranged along parting lines or equatorial lines, in proximity to the poles, or along the outlines of a geodesic or polyhedron pattern, and dimples that have a perimeter and a surface shape defined according to the present invention occupy the remaining spaces. Suitable dimple patterns include, but are not limited to, polyhedron-based patterns (e.g., icosahedron, octahedron, dodecahedron, tetrahedron, icosidodecahedron, cuboctahedron, and triangular dipyramid), phyllotaxis-based patterns, spherical tiling patterns, and random arrangements.
Golf Ball Construction
The dimples of the present invention may be used with practically any type of ball construction. For instance, the golf ball may have a two-piece design, a double cover, or veneer cover construction depending on the type of performance desired of the ball. Other suitable golf ball constructions include solid, wound, liquid-filled, and/or dual cores, and multiple intermediate layers.
Different materials may be used in the construction of the golf balls made with the present invention. For example, the cover of the ball may be made of a thermoset or thermoplastic, a castable or non-castable polyurethane and polyurea, an ionomer resin, balata, or any other suitable cover material known to those skilled in the art. Conventional and non-conventional materials may be used for forming core and intermediate layers of the ball including polybutadiene and other rubber-based core formulations, ionomer resins, highly neutralized polymers, and the like.
When numerical lower limits and numerical upper limits are set forth herein, it is contemplated that any combination of these values may be used.
While the illustrative embodiments of the invention have been described with particularity, it will be understood that various other modifications will be apparent to and can be readily made by those of ordinary skill in the art without departing from the spirit and scope of the invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the examples and descriptions set forth herein, but rather that the claims be construed as encompassing all of the features of patentable novelty which reside in the present invention, including all features which would be treated as equivalents thereof by those of ordinary skill in the art to which the invention pertains.
This application is a continuation of U.S. patent application Ser. No. 14/983,495, filed on Dec. 29, 2015, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4284276 | Worst | Aug 1981 | A |
5536013 | Pocklington | Jul 1996 | A |
5547197 | Pocklington | Aug 1996 | A |
5653648 | Thurman | Aug 1997 | A |
5879245 | Hwang | Mar 1999 | A |
5890975 | Stiefel | Apr 1999 | A |
6475105 | Murphy | Nov 2002 | B1 |
20060223654 | Kennedy, III | Oct 2006 | A1 |
20070259738 | Sato | Nov 2007 | A1 |
20110111887 | Sullivan | May 2011 | A1 |
20110300971 | Nakagawa | Dec 2011 | A1 |
20130005510 | Kim | Jan 2013 | A1 |
20170182365 | Madson | Jun 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20180147450 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14983495 | Dec 2015 | US |
Child | 15880652 | US |